Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Chapter 3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs...

2

South Korea-ANL Distributed Energy Resources and Demand Side...  

Open Energy Info (EERE)

Korea-ANL Distributed Energy Resources and Demand Side Management Jump to: navigation, search Name Distributed Energy Resources and Demand Side Management in South Korea Agency...

3

Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spent 14.7 billion on DSM programs between 1989 and 1999, an average of 1.3 billion per year. Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3 Demand-Side...

4

Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spent 14.7 billion on DSM programs between 1989 and 1999, an average of 1.3 billion per year. Chapter 3: Demand-Side Resources More Documents & Publications Draft Chapter 3:...

5

Chapter 3 Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

these resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys...

6

Hawaii demand-side management resource assessment. Final report: DSM opportunity report  

SciTech Connect

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

NONE

1995-08-01T23:59:59.000Z

7

Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis  

Science Conference Proceedings (OSTI)

This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

NONE

1995-04-01T23:59:59.000Z

8

Are they equal yet. [Demand side management  

Science Conference Proceedings (OSTI)

Demand-side management (DSM) is considered an important tool in meeting the load growth of many utilities. Northwest regional and utility resource plans forecast demand-side resources to meet from one-half to two-thirds of additional electrical energy needs over the next 10 years. Numerous sources have stated that barriers, both regulatory and financial, exist to utility acquisition of demand-side resources. Regulatory actions are being implemented in Oregon to make demand-side investments competitive with supply-side investments. In 1989, the Oregon Public Utility Commission (PUC) took two actions regarding demand-side investments. The PUC's Order 89-1700 directed utilities to capitalize demand-side investments to properly match amortization expense with the multiyear benefits provided by DSM. The PUC also began an informal investigation concerning incentives for Oregon's regulated electric utilities to acquire demand-side resources.

Irwin, K.; Phillips-Israel, K.; Busch, E.

1994-05-15T23:59:59.000Z

9

Successful demand-side management  

Science Conference Proceedings (OSTI)

This article is a brief summary of a series of case studies of five publicly-owned utilities that are noted for their success with demand-side management. These utilities are: (1) city of Austin, Texas, (2) Burlington Electric Department in Vermont, (3) Sacramento Municipal Utility District in California, (4) Seattle City Light, and (5) Waverly Light and Power in Iowa. From these case studies, the authors identified a number of traits associated with a successful demand-side management program. These traits are: (1) high rates, (2) economic factors, (3) environmental awareness, (4) state emphasis on integrated resource planning/demand side management, (5) local political support, (6) large-sized utilities, and (7) presence of a champion.

Hadley, S. [Oak Ridge National Laboratory, TN (United States); Flanigan, T. [Results Center, Aspen, CO (United States)

1995-05-01T23:59:59.000Z

10

1995 Demand-Side Managment  

U.S. Energy Information Administration (EIA)

U.S. Electric Utility Demand-Side Management 1995 January 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels

11

Demand Side Bidding. Final Report  

SciTech Connect

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

12

An Integrated Multi-scale Framework for Assessing Demand-Side Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nexus of Nexus of Systems Reliability, Energy Costs, the Environment during High Energy Demand Days K. Max Zhang Sibley School of Mechanical and Aerospace Engineering Acknowledgement * Joe Eto and Pete Capper at LBNL * Dick Schuler at Cornell * Mike Swider, Peter Carney and Wes Hall at NYISO * Ari Kahn and Jamil Kahn, NYC Mayor's Office * Michael Harrington, ConED Outline * Context: A "peak" problem * Research statement * Methodology * Synergy - DOE's research needs - NYC's resiliency planning High Electric Demand Days (HEDD): A "Peak" Problem * Hot summer days and heat waves * Power Systems - Reliability is compromised - Cost of electricity is high: expensive peaking generators * Environment - High ozone air pollution - Double threats to public health: heat and air pollution

13

Demand-Side Management Glossary  

Science Conference Proceedings (OSTI)

In recent years, demand-side management (DSM) programs have grown in significance within the U.S. electric power industry. Such rapid growth has resulted in new terms, standards, and vocabulary used by DSM professionals. This report is a first attempt to provide a consistent set of definitions for the expanding DSM terminology.

1992-11-01T23:59:59.000Z

14

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1997 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

15

Is Demand-Side Management Economically Justified?  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Is Demand-Side Management Economically Justified? With billions of dollars being spent on demand-side management programs in the U.S. every year, the rationale for and performance of these programs are coming under increasing scrutiny. Three projects in the Energy Analysis Program are making significant contributions to the DSM debate. *Total Resource Cost Test Ratio = ratio of utility avoided costs (i.e., benefits) divided by total cost of program (i.e., Administrative Cost + Incentive Cost + Consumer Cost) In May, Joe Eto, Ed Vine, Leslie Shown, Chris Payne, and I released the first in a series of reports we authored from the Database on Energy Efficiency Programs (DEEP) project. The objective of DEEP is to document the measured cost and performance of utility-sponsored energy-efficiency

16

Evaluation of Orange and Rockland Utilities, Inc.`s competitive bidding program for demand-side resources. Final report  

SciTech Connect

The process evaluation reports on the implementation of Orange and Rockland Utilities demand-side bidding program in New York State during 1991 and 1992. The program is implemented by two energy service companies in Orange and rockland`s New York State service territory. The process evaluation methodology included interviews with utility staff (3), energy service company staff (2), and participating (6) and nonparticipating (7) utility customers. The two energy service companies had enrolled 14 customers in the program by summer 1992. One company had achieved 90% of their 2.75 MW bid and the other had achieved less than 90% of their 6.9 MW bid. Critical factors in success were determination of a reasonable bid amount for the market and marketing to the appropriate customers. Customers most interested in the program included those with limited access to capital and medium-sized firms with poor cash flows, particularly schools and hospitals. The findings also show that due to the incentive structure and associated need for substantial customer contributions, lighting measures dominate all installations. Customers, however, were interested in the potential savings and six of the nonparticipants chose to either install measures on their own or enroll in the utility`s rebate program.

Peters, J.S.; Stucky, L.; Seratt, P.; Darden-Butler, D. [Barakat and Chamberlin, Inc., Portland, OR (United States)

1993-02-01T23:59:59.000Z

17

Electric Utility Demand-Side Management  

U.S. Energy Information Administration (EIA)

Demand side management (DSM) activities in the electric power industry. The report presents a general discussion of DSM, its history, current issues, and a ...

18

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages:...

19

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

DOE/EIA-0589(97) Distribution Category UC-950 U.S. Electric Utility Demand-Side Management 1997 December 1998 Energy Information Administration Office of Coal ...

20

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This task of the International Energy Agency's (IEA's) Demand-Side

22

Proceedings: Demand-Side Management Incentive Regulation  

Science Conference Proceedings (OSTI)

These proceedings provide background information on proposed regulatory incentive mechanisms to encourage utilities to develop demand-side management programs. Attendees discussed and analyzed various proposals and techniques and developed lists of key attributes that incentive mechanisms should have.

None

1990-05-01T23:59:59.000Z

23

Micro economics for demand-side management  

E-Print Network (OSTI)

This paper aims to interpret Demand-Side Management (DSM) activity and to point out its problems, adopting microeconomics as an analytical tool. Two major findings follow. first, the cost-benefit analysis currently in use ...

Kibune, Hisao

1991-01-01T23:59:59.000Z

24

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This report provides Annexes 1 through 7, which are country reports from

25

Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration  

SciTech Connect

The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

1992-09-01T23:59:59.000Z

26

Identifying distributed generation and demand side management investment opportunities  

SciTech Connect

Electric utilities have historically satisfied customer demand by generating electricity centrally and distributing it through an extensive transmission and distribution network. The author examines targeted demand side management programs as an alternative to system capacity investments once capacity is exceeded. The paper presents an evaluation method to determine how much a utility can afford to pay for distributed resources. 17 refs., 2 figs, 1 tab.

Hoff, T.E. [Stanford Univ., CA (United States)

1996-12-31T23:59:59.000Z

27

U.S. Electric Utility Demand-Side Management 1999  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1999 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

28

System Demand-Side Management: Regional results  

DOE Green Energy (OSTI)

To improve the Bonneville Power Administration's (Bonneville's) ability to analyze the value and impacts of demand-side programs, Pacific Northwest Laboratory (PNL) developed and implemented the System Demand-Side Management (SDSM) model, a microcomputer-based model of the Pacific Northwest Public Power system. This document outlines the development and application of the SDSM model, which is an hourly model. Hourly analysis makes it possible to examine the change in marginal revenues and marginal costs that accrue from the movement of energy consumption from daytime to nighttime. It also allows a more insightful analysis of programs such as water heater control in the context of hydroelectric-based generation system. 7 refs., 10 figs., 10 tabs.

Englin, J.E.; Sands, R.D.; De Steese, J.G.; Marsh, S.J.

1990-05-01T23:59:59.000Z

29

Energy Conservation and Commercialization in Gujarat: Report On Demand Side  

Open Energy Info (EERE)

Energy Conservation and Commercialization in Gujarat: Report On Demand Side Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Focus Area: Crosscutting Topics: Opportunity Assessment & Screening Website: eco3.org/wp-content/plugins/downloads-manager/upload/Report%20on%20Dem Equivalent URI: cleanenergysolutions.org/content/energy-conservation-and-commercializa Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning

30

Proceedings: Demand-side management incentive regulation  

SciTech Connect

These proceedings document a workshop on Demand-Side Management Incentive Regulation, which was held in Denver, Colorado on August 16--17, 1989. The workshop provided a forum for discussion of current DSM programs and trends and their implications; fundamentals and rationale for incentive mechanisms; short- and long-term issues from the utility perspective; and approaches for enhancing the attractiveness of DSM incentive mechanisms. Attendees at this workshop included DSM managers, planners, and analysts.

Not Available

1990-05-01T23:59:59.000Z

31

Demand-Side Response from Industrial Loads  

Science Conference Proceedings (OSTI)

Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

2013-01-01T23:59:59.000Z

32

Paying for demand-side response at the wholesale level  

Science Conference Proceedings (OSTI)

The recent FERC Notice of Public Rulemaking regarding the payment to demand-side resources in wholesale markets has engendered a great deal of comments including FERC's obligation to ensure just and reasonable rates in the wholesale market and criteria for what FERC should do (on grounds of economic efficiency) without any real focus on what that commitment would really mean if FERC actually pursued it. (author)

Falk, Jonathan

2010-11-15T23:59:59.000Z

33

Demand Response as a System Reliability Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response as a System Reliability Resource Title Demand Response as a System Reliability Resource Publication Type Report Year of Publication 2012 Authors Eto, Joseph H.,...

34

Network-Driven Demand Side Management Website | Open Energy Informatio...  

Open Energy Info (EERE)

Side Management Website Jump to: navigation, search Name Network-Driven Demand Side Management Website Abstract This task of the International Energy Agency is a broad,...

35

Review of Self-direct Demand Side Management (DSM) Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Self-direct Demand Side Management (DSM) Programs Review of Self-direct Demand Side Management (DSM) Programs Title Review of Self-direct Demand Side Management (DSM) Programs Publication Type Presentation Year of Publication 2012 Authors Borgeson, Merrian Keywords demand side resources: policy, electricity markets, electricity markets and policy group, energy analysis and environmental impacts department, energy efficiency, self direct programs, technical assistance Full Text LBNL recently provided technical assistance funded by DOE to the Public Utilities Commission of Ohio to inform their decision-making about changes to their existing self-direct program for commercial and industrial customers. Self-direct programs are usually targeted at large industrial customers with specialized needs or strong in-house energy engineering capacity. These programs are found in at least 24 states, and there is significant variety in how these programs are structured - with important implications for the additionality and reliability of the energy savings that result. LBNL reviewed existing programs and compared key elements of self-direct program design. For additional questions about this work, please contact Merrian Borgeson.

36

U.S. Electric Utility Demand-Side Management 1994  

U.S. Energy Information Administration (EIA)

Preface. The U.S. Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Elec-

37

1995 Demand-Side Managment - Energy Information Administration  

U.S. Energy Information Administration (EIA)

and more detailed data on energy savings, peak load reductions and costs attributable to DSM. Target Audience ... Profile: U.S. Electric Utility Demand-Side

38

Memorandum regarding Definition for Demand Side Management Services  

NLE Websites -- All DOE Office Websites (Extended Search)

MEMORANDUM TO: Mary Anne Sullivan FROM: Larry Oliver SUBJECT: Definition for Demand Side Management Services In consultation with the Director of the Federal Energy Management...

39

U.S. Electric Utility Demand-Side Management  

Reports and Publications (EIA)

Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

Information Center

2002-12-01T23:59:59.000Z

40

Integrating Energy Efficiency and Demand Response into Utility Resource Plans  

Science Conference Proceedings (OSTI)

This report investigates the methods in which utilities integrate their supply-side and demand-side resources to meet their generating resource requirements. The major steps in developing a resource plan are reviewed, including the alternative methods currently employed. Finally, the report presents the results of a short survey that was administered to the advisors in Energy Utilization. The results show that methods are more sophisticated than 20 years ago, but more could be accomplished in ...

2013-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Demand-side management of China`s electric power  

Science Conference Proceedings (OSTI)

This article presents an analysis of China`s strategies for electricity demand-side management (DSM) by the year 2000. It discusses electricity shortages, potential for electricity conservation, and measures to cope with the problems. It concludes that the country should speed up the reform of electricity pricing, make executable laws, and invest capital in demand-side management.

Yang, M. [Asian Inst. of Tech., Bangkok (Thailand). School of Environment, Resources and Development

1996-04-01T23:59:59.000Z

42

Annual Review of Demand-Side Planning Research: 1985 Proceedings  

Science Conference Proceedings (OSTI)

EPRI's demand-side planning research spans a wide range of utility activities: planning and evaluating demand-side management programs, investigating end-use forecasting techniques, and analyzing the effect of innovative rates. Reflecting efforts to develop utility applications of EPRI research products in 1985, this report focuses on computer models such as REEPS, COMMEND, HELM, and INDEPTH.

None

1987-01-01T23:59:59.000Z

43

Quantifying the Variable Effects of Systems with Demand Response Resources  

E-Print Network (OSTI)

Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George, USA Abstract--The growing environmental concerns and increasing electricity prices have led to wider implementation of demand- side activities and created a new class of consumers, called de- mand response

Gross, George

44

U.S. electric utility demand-side management 1993  

SciTech Connect

This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

NONE

1995-07-01T23:59:59.000Z

45

U.S. Electric Utility Demand-Side Management  

Reports and Publications (EIA)

Final issue of this report. - 1996 - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

Information Center

1997-12-01T23:59:59.000Z

46

Demand-side participation in the Australian National Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand-side participation in the Australian National Electricity Market Speaker(s): Hugh Outhred Date: March 4, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

47

Proceedings: 1987 Annual Review of Demand-Side Planning Research  

Science Conference Proceedings (OSTI)

Recent EPRI research in demand-side planning (DSP) has focused on forecasting, end-use technology assessment, demand-side management (DSM), and innovative pricing. These 23 papers discuss vital DSP research, including customer response to interruptible rates, personal computer forecasting tools, integrated value-based planning, customer preference and behavior studies, and a database of end-use load shapes and DSM impacts.

None

1988-08-01T23:59:59.000Z

48

Discount rates and demand-side management  

SciTech Connect

The standard economic analysis of of implied discount rates for energy-efficiency investment is wrong. First, consumers are not profit maximizing or economic optimizing agents with respect to energy. To the extent consumers make tradeoffs on some criteria other than energy costs, implied discount rates measure that other tradeoff, not the energy cost tradeoff. Second, to the extent that product pricing does not reflect tradeoffs between first cost and energy cost, there is no meaning to implied market discount rates based on these factors. Related to this misinterpretation of consumer and market discount rates is the issue of consumer and utility self-interest. To the extent that utilities can capitalize on the energy-inefficient investment behavior of individuals through DSM programs, it is in their interest and the ratepayer's interest to do so. Considerable evidence suggests that implied discount rates convey extremely misleading information about the level of this underinvestment. Drawing inferences about the value of DSM programs from this information is similarly misleading. An economic explanation of consumer and marker behavior suggests that such underinvestment is both rational and common and that large gains may be achieved through DSM. Societal welfare would be improved if utilities aggressively capitalized on the widespread consumer underinvestment in energy efficiency by incorporating DSM in their resource planning processes.

Chernoff, H.

1993-02-01T23:59:59.000Z

49

Proceedings: International Workshop on Innovative DSM [Demand Side Management] Techniques  

Science Conference Proceedings (OSTI)

Demand-side management (DSM) is becoming more important in the utility environment characterized by increasing competition and major uncertainties in demand and supply. EPRI and CIGRE, a leading international organization for the electric power industry, cosponsored this workshop to discuss strategies for designing and implementing DSM programs.

None

1989-04-01T23:59:59.000Z

50

Evolution of the Demand Side Management in the Smart Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Evolution of the Demand Side Management in the Smart Grid Evolution of the Demand Side Management in the Smart Grid Speaker(s): Nathan Ota Date: October 20, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page Smart grid technology has rapidly evolved over the course of the last five years. From a demand side management perspective this includes consumer-owned Home Area Networks (HAN), network-centric HAN gateways, and a leveraging of a multitier smart grid for a variety of DSM applications. In particular, smart meters enable the consumer with electricity price information and near-real time energy usage data, but they also are the devices that consumers will most often interact. The success or failure of the in-home device is therefore critical to the larger Smart Grid success. Today, distinct DSM product categories are leading to a variety of new

51

U.S. electric utility demand-side management 1996  

SciTech Connect

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

1997-12-01T23:59:59.000Z

52

U.S. electric utility demand-side management 1995  

SciTech Connect

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

1997-01-01T23:59:59.000Z

53

US electric utility demand-side management, 1994  

SciTech Connect

The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

NONE

1995-12-26T23:59:59.000Z

54

An efficient load model for analyzing demand side management impacts  

SciTech Connect

The main objective of implementing Demand Side Management (DSM) in power systems is to change the utility's load shape--i.e. changes in the time pattern and magnitude of utility's load. Changing the load shape as a result of demand side activities could change the peak load, base load and/or energy demand. Those three variables have to be explicitly modeled into the load curve for properly representing the effects of demand side management. The impact of DSM will be manifested as higher or lower reliability levels. This paper presents an efficient technique to model the system load such that the impact of demand side management on the power system can be easily and accurately evaluated. The proposed technique to model the load duration curve will facilitate the representation of DSM impacts on loss-of-load probability, energy not served and energy consumption. This will provide an analytical method to study the impact of DSM on capacity requirements. So far iterative methods have been applied to study these impacts. The proposed analytical method results in a faster solution with higher accuracy. It takes only 18 seconds on an 80486 PC to solve each case study involving different peak and base loads, and energy use.

Rahman, S.; Rinaldy (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))

1993-08-01T23:59:59.000Z

55

Modeling, Analysis, and Control of Demand Response Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Analysis, and Control of Demand Response Resources Modeling, Analysis, and Control of Demand Response Resources Speaker(s): Johanna Mathieu Date: April 27, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can play an active role in power systems via Demand Response (DR). Recent DR programs have focused on peak load reduction in commercial buildings and industrial facilities (C&I facilities). We present a regression-based baseline model, which allows us to quantify DR performance. We use this baseline model to understand the performance of C&I facilities participating in an automated dynamic pricing DR program in California. In this program, facilities are

56

Proceedings: 5th National Demand-Side Management Conference, Building on Experience: Building on Experience  

Science Conference Proceedings (OSTI)

Mutual benefits are driving the growth of demand-side management (DSM): customers profit from efficiency improvements and enhanced service, utilities make better use of existing resources, and society gains from positive environmental impacts. These conference papers present results of DSM programs throughout the country and offer discussions on emerging issues.

None

1991-07-01T23:59:59.000Z

57

Demand-Responsive and Efficient Building Systems as a Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand-Responsive and Efficient Building Systems as a Resource for Electricity Reliability Title Demand-Responsive and Efficient Building Systems as a Resource for Electricity...

58

FERC Presendation: Demand Response as Power System Resources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy...

59

Demand-Side Management (DSM) Opportunities as Real-Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand-Side Management (DSM) Opportunities as Real-Options Demand-Side Management (DSM) Opportunities as Real-Options Speaker(s): Osman Sezgen Date: August 1, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare As some end-users of energy and aggregators are choosing to be exposed to real-time prices and energy price volatility, they are coming across new DSM opportunities that would not be feasible under typical utility rate structures. Effective evaluation of such opportunities requires a good understanding of the wholesale energy markets and the use of models based on recent financial techniques for option pricing. The speaker will give examples of such modeling approaches based on his experience in the retail-energy industry. Specific examples will include evaluation of distributed generation, load curtailment, dual-fuel cooling, and energy

60

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network (OSTI)

Utility managements have two primary responsibilities. They must supply reliable electric service to meet the needs of their customers at the most efficient price possible while at the same time generating the maximum rate of return possible for their shareholders. Regulator hostility towards the addition of generating capacity has made it difficult for utilities to simultaneously satisfy both the needs of their ratepayers and the needs of their shareholders. Recent advances in thermal energy storage may solve the utilities' paradox. Residential thermal energy storage promises to provide the ratepayers significantly lower electricity rates and greater comfort levels. Utilities benefit from improved load factors, peak capacity additions at low cost, improved shareholder value (ie. a better return on assets), improved reliability, and a means of satisfying growing demand without the regulatory and litigious nightmares associated with current supply side solutions. This paper discusses thermal energy storage and its potential impact on the electric utilities and introduces the demand side plant concept.

Michel, M.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Principles and Practice of Demand-Side Management  

Science Conference Proceedings (OSTI)

This report provides an overview of the demand-side management (DSM) process. It is a guide for the DSM practitioner through the different steps involved in the process, and it provides an introduction to the vast and growing literature on the subject. This report is available only to funders of Program 101A or 101.001. Funders may download this report at http://my.primen.com/Applications/DE/Community/index.asp .

1993-09-01T23:59:59.000Z

62

Re DSM: Here comes demand-side marketing  

SciTech Connect

Demand-side management (DSM) programs where utilities pay large rebates for energy efficient equipment are being declared dead. The popular view of DSM in the past was to encourage conservation of energy with significant rebates, credits and other incentives offered by electric and also natural gas utilities. After years of increase in utility DSM expenditures, the first decline took place last year of about 6% for the electric industry. Although still spending more than $2 billion in 1994, utilities have continued this year to reduce the number of DSM programs. For some utilities there has been a dramatic abandonment of energy efficiency incentive programs. Where programs remain, utilities are placing increased emphasis on the most cost-effective ones which are usually directed toward commercial and industrial facilities. At the same time utilities have been transforming their programs from demand-side management to demand-side marketing. The objectives have shifted to retaining existing customers, developing new accounts, and increasing profitable sales. Incentives are justified in this new cost-driven competitive environment when they result in decreased rates for all customers. Whereas, in the past, DSM program participants were the primary beneficiaries with reduced bills, in the new marketing environment all customers can benefit from reduced bills.

Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

1996-06-01T23:59:59.000Z

63

California Independent System Operator demand response & proxy demand resources  

Science Conference Proceedings (OSTI)

Demand response programs are designed to allow end use customers to contribute to energy load reduction individually or through a demand response provider. One form of demand response can occur when an end use customer reduces their electrical usage ...

John Goodin

2012-01-01T23:59:59.000Z

64

Opportunities and prospects for demand-side efficiency improvements  

SciTech Connect

Substantial progress has been made over the last 20 years in improving energy efficiency in all sectors of the US economy. Although there remains a large potential for further efficiency gains, progress in improving energy efficiency has slowed recently. A combination of low energy prices, environmental challenges, and life-style changes have caused energy consumption to resume rising. Both new policies and technologies will be necessary to achieve cost-effective levels of energy efficiency. This paper describes some of the promising new demand-side technologies that are currently being implemented, nearing commercialization, or in advanced stages of development. The topics discussed include finding replacements for chlorofluorocarbons (CFCs), new building equipment and envelope technologies, lessons learned about conservation program implementation, and the role of utilities in promoting the efficient use of energy.

Kuliasha, M.A.

1993-12-31T23:59:59.000Z

65

A Demand-Side Management Experience in Existing Building Commissioning  

E-Print Network (OSTI)

As part of a suite of demand-side management (DSM) program offerings, Xcel Energy provides a recommissioning program to its Colorado commercial customers. The program has a summer peak-demand savings goal of 7.8 MW to be achieved by 2005. Commenced in 2002 as a pilot, the program offers no-cost recommissioning services and incentives to participants to buy-down implementation costs to achieve a one-year simple payback. To date, four projects are complete and twenty-three more are underway. It is anticipated that approximately 65 projects will be completed through the program by 2005. This paper describes the basic program design and implementation process. The choices made in response to market barriers and program constraints are highlighted. In addition, the paper details the marketing efforts, the competitive bidding process, the standardized program elements, measurement and verification activities, and project savings to date. For each program aspect, program successes, uncertainties, and lessons learned are presented.

Franconi, E.; Selch, M.; Bradford, J.; Gruen, B.

2003-01-01T23:59:59.000Z

66

Incorporating Demand Resources into ISO New England’s Forward Capacity Market  

E-Print Network (OSTI)

The Forward Capacity Market was developed by ISO New England, the six New England states, and industry stakeholders to promote investment in demand- and supply-side resources. Under the new FCM design, ISO New England will project the needs of the power system three years in advance and then hold an annual auction to purchase the power resources that will satisfy the future regional requirements. ISO New England submitted a filing with the Federal Energy Regulatory Commission (FERC) in November of 2007 that defined 6,102 megawatts (MW) of new demand- and supply-side resources now eligible to compete in the market. Approximately 40 percent—or 2,483 MW—of the new, qualified projects are demand-side resources such as demand response, energy efficiency, load management, and distributed generation. Energy efficiency projects make up over 590 MW of that total.

Winkler, E.

2008-01-01T23:59:59.000Z

67

Guidebook for Farmstead Demand-Side Management (DSM) program design  

SciTech Connect

The acceptance and growth of Demand-Side Management (DSM) continues to increase in the US. According to latest estimates, total expenditures on electric utility DSM programs now exceed $1.2 billion annually, with these investments ranging from 1 to 5 percent of a utility's gross revenues. In addition, due to increasing environmental concerns and the high cost of new capacity, these expenditure levels are expected to increase. While the vast majority of these DSM programs are directed at the more traditional residential, commercial and industrial market sectors, significant opportunities still exist. One market segment that has not been the focus of attention but a critical sector from an economic development perspective for marry utilities -- is the agricultural and farmstead market. Although the total number of farms in the United States decreased by approximately 5 percent between 1985 and 1989, the land dedicated to farming still accounts for over 995 million acres. Furthermore, the total value of farm output in the United States has been steadily increasing since 1986. The limited penetration of energy efficiency measures in farmsteads provides an excellent opportunity for utilities to expand their DSM programming efforts to capture this non-traditional'' market segment, and at the same time assist farms in increasing their efficiency and competitiveness. In marry states, and, in particular New York State, agriculture plays a major economic role. The importance of farms not only from a utility perspective but also from a state and federal perspective cannot be overstated. As such, utilities are in a unique position to facilitate farmstead DSM technology investments in an effort to benefit the farmer (and his profitability), the utility, the state and the country. This guidebook is designed to provide the framework for agricultural demand planning, including market assessment, technology assessment, market penetration analysis and program design.

Rose, M.; Camera, R.K.

1992-02-21T23:59:59.000Z

68

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network (OSTI)

Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become increasing difficult for electric utilities to install new generating capacity due to public concerns about nuclear energy and environmental issues. In many areas of the country, utilities now find themselves capacity short during their peak periods, and have concerns about providing a reliable supply of electricity. These utilities have initiated programs which encourage their customers to conserve electric energy, and shift or lower use during the utility's peak periods. In other areas of the country there are utilities which have more than adequate electric supplies. These utilities have developed programs which ensure that costs of electricity are such that existing customers are maintained. Programs which address demand issues of an energy utility are referred to as Demand-Side Management (DSM) and are extremely rigorous in scope. Electric utilities have pursued many different DSM policies and strategies during the past decade. These programs have addressed various technologies and have included rebates for efficient lighting, electric motors and packaged air conditioning systems. More recently, however, many utilities have implemented very innovative programs, which indicates an increased commitment towards demand planning, and requires a substantial financial investment in new equipment and engineering services. Some programs have addressed such areas as thermal storage and industrial processes, and others have included comprehensive facility energy studies where greater than fifty percent of the cost of energy retrofits may be covered by the utility. Progressive pricing strategies have included real-time pricing and aggressive curtailable rates for commercial and industrial buildings. Further, new standards are being established by electric utilities which promote energy efficient new construct ion. All of these programs can have considerable impacts on both the customer's and utility's energy use patterns and load shapes. This paper will discuss a number of more significant and innovative DSM programs, and will explain the potential load and energy impacts.

Epstein, G. J.; Fuller, W. H.

1989-09-01T23:59:59.000Z

69

Resource allocation for demand surge mitigation during disaster response  

Science Conference Proceedings (OSTI)

Large-scale public health emergencies can result in an overwhelming demand for healthcare resources. Regional aid in the form of central stockpiles and resource redistribution can help mitigate the resulting demand surge. This paper discusses a resource ... Keywords: Decision support, Optimization, Pandemic flu, Resource allocation

Hina Arora; T. S. Raghu; Ajay Vinze

2010-12-01T23:59:59.000Z

70

Review of demand-side bidding programs: Impacts, costs, and cost-effectiveness  

SciTech Connect

In December 1987, Central Maine Power (CMP) instituted the first competitive bidding program that allowed developers to propose installation of conservation measures. Since then, about 30 utilities in 14 states have solicited bids from energy service companies (ESCOs) and customers to reduce energy demand in residential homes and in commercial and industrial facilities. Interest in the use of competitive procurement mechanisms for demand-side resources continues to grow. In this study, the authors build upon earlier work conducted by LBL in collaboration with others (Goldman and Busch 1992; Wolcott and Goldman 1992). They have developed methods to compare bid prices and program costs among utilities. They also characterize approaches used by utilities and developers to allocate risks associated with DSM resources based on their review of a large sample of signed contracts. These contracts are analyzed in some detail because they provide insights into the evolving roles and responsibilities of utilities, customers, and third party contractors in providing demand-side management (DSM) services. The analysis also highlights differences in the allocation of risks between traditional utility rebate programs and DSM bidding programs.

Goldman, C.A.; Kito, M.S. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-05-01T23:59:59.000Z

71

DSM (demand-side management) commercial customer acceptance: Volume 2, Survey and database documentation: Final report. [Demand-side management  

SciTech Connect

A survey was conducted among utility DSM (demand-side management) program managers to gather information on the characteristics of commercial sector programs. The survey data were used in part to identify the important factors that influence customer participation in such programs. Information was gathered in the following general areas of interest: (1) program characteristics (e.g., program type, objectives, status, etc.); (2) marketing characteristics (e.g., promotional mechanisms, budget, goals, etc.); (3) customer eligibility and participation (e.g., characteristics of the eligible population, participation by customer category, etc.); and (4) market research information (e.g., the data that pertain to the effectiveness of the progress). The survey obtained information on 108 DSM programs covering a broad range of options, including audits, non-audit information, financial incentive, direct load control, distributed local control, thermal energy storage, time-of-use rates, and other rate programs. Program planners can use the survey database, presented in its entirety in this report, to identify utilities that have already implemented DSM programs of interest and to learn from their experience.

George, S.S.; Kirksey, W.E.; Skelton, J.C.

1988-04-01T23:59:59.000Z

72

Demand Side Management in the Smart Grid: Information Processing for the Power Switch  

Science Conference Proceedings (OSTI)

In this article we discuss the most recent developments in the area of load management, and consider possible interaction schemes of novel architectures with distributed energy resources (DER). In order to handle the challenges faced by tomorrow’s smart grid, which are caused by volatile load and generation profiles (from the large number of plug-in EVs and from renewable integration), the conventional grid operating principle of load-following needs to be changed into load-shaping or generation-following. Demand Side Management will be a most promising and powerful solution to the above challenges. However, many other issues such as load forecasting, pricing structure, market policy, renewable integration interface, and even the AC/DC implementation at the distribution side, need to be taken into the design in order to search for the most effective and applicable solution.

Alizadeh, Mahnoosh; LI, Xiao; Wang, Zhifang; Scagilone, Anna; Melton, Ronald B.

2012-09-01T23:59:59.000Z

73

FERC Presendation: Demand Response as Power System Resources, October 29,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Presendation: Demand Response as Power System Resources, FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as Power System Resources More Documents & Publications A National Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Cost-Effectiveness Working Group Loads Providing Ancillary Services: Review of International Experience Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006)

74

Coordination of Energy Efficiency and Demand Response: A Resource...  

Open Energy Info (EERE)

Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

75

Towards a systematic characterization of the potential of demand side management  

E-Print Network (OSTI)

With an increasing share of electric energy produced from non-dispatchable renewable sources both energy storage and demand side management might gain tremendously in importance. While there has been significant progress in general properties and technologies of energy storage, the systematic characterization of features particular to demand side management such as its intermittent, time-dependent potential seems to be lagging behind. As a consequence, the development of efficient and sustainable strategies for demand side management and its integration into large-scale energy system models are impeded. This work introduces a novel framework for a systematic time-resolved characterization of the potential for demand side management. It is based on the specification of individual devices both with respect to their scheduled demand and their potential of load shifting. On larger scales sector-specific profiles can straightforwardly be taken into account. The potential for demand side management is then specifie...

Kleinhans, David

2014-01-01T23:59:59.000Z

76

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

77

Fuzzy financial profitability analyses of demand side management alternatives from participant perspective  

Science Conference Proceedings (OSTI)

This paper derives fuzzy profitability models for the financial evaluation of different demand side management (DSM) alternatives. The present value of cost (PVC) and equivalent uniform annual cost (EUAC) models are selected to determine the least-cost ... Keywords: Mellin transform, cogeneration, cooling energy storage, demand side management, fuzzy mathematics, fuzzy ranking, profitability analyses

J. N. Sheen

2005-02-01T23:59:59.000Z

78

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

79

Evidence is growing on demand side of an oil peak  

SciTech Connect

After years of continued growth, the number of miles driven by Americans started falling in December 2007. Not only are the number of miles driven falling, but as cars become more fuel efficient, they go further on fewer gallons - further reducing demand for gasoline. This trend is expected to accelerate. Drivers include, along with higher-efficiency cars, mass transit, reversal in urban sprawl, biofuels, and plug-in hybrid vehicles.

NONE

2009-07-15T23:59:59.000Z

80

Supply-side Resources & Planning Assumptions  

E-Print Network (OSTI)

modeling 146/19/2013 #12;6/19/2013 8 Commercial w/Limited PNW availability Proposed resources: ­ Biogas technologies Raft River Geothermal (ID)Biogas technologies Landfill Wastewater treatment Animal, commercial

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Demand-side carbon reduction strategies in an era of electric industry competition  

SciTech Connect

With the national debate on the need for intensified research and development, supply-side mandates, and carbon taxes likely to continue for some time, the authors propose a five-point, integrated demand-side plan that is compatible with marketplace forces and can be implemented now. This paper presents a five-point, integrated demand-side plan designed to be compatible with marketplace forces in the competitive electricity era, while the nation continues to debate the need for intensified research and development, supply-side mandates, and carbon taxes.

Meyers, E.M.; Hu, G.M. [District of Columbia Public Service Commission, Washington, DC (United States)

1999-01-01T23:59:59.000Z

82

Modeling, Analysis, and Control of Demand Response Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Analysis, and Control of Demand Response Resources Speaker(s): Johanna Mathieu Date: April 27, 2012 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Sila...

83

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory  

E-Print Network (OSTI)

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast supply and demand in an isolated microgrid [2], which is an important concept for renewable energy

Huang, Jianwei

84

Demand Side Energy Saving though Proper Construction Practices and Materials Selection  

E-Print Network (OSTI)

Energy consumed during the construction of buildings and structures, including the embodied energy of the concrete and other construction materials, represent a considerable percentage that may reach 40% of the total energy consumed during the whole service life of the structure. Reducing energy consumed in the construction practices along with reducing the embodied energy of concrete and building materials, therefore, are of major importance. Reducing concrete's embodied energy represents one of the major green features of buildings and an important tool to improve sustainability, save resources for coming generations and reduce greenhouse gas emissions. In this paper, different methods to reduce concrete's embodied energy are discussed and their effect on demand side energy are assessed. Using local materials, pozzolanic blended cements, fillers, along with specifying 56 days strength in design are discussed and assessed. Proper mix design, quality control and proper architectural design also affect and reduce embodied energy. Improving durability, regular maintenance and scheduled repair are essential to increase the expected service life of buildings and hence reduce overall resources consumption and reduce energy. These effects are discussed and quantified. Construction practices also consume considerable amount of energy. The effect of transporting, conveying, pouring, finishing and curing concrete on energy consumption are also discussed.

El-Hawary, M.

2010-01-01T23:59:59.000Z

85

Impact of the Demand-Side Management (DSM) Program structure on the cost-effectiveness of energy efficiency projects  

SciTech Connect

Pacific Northwest Laboratory (PNL) analyzed the cost-effective energy efficiency potential of Fort Drum, a customer of the Niagara Mohawk Power Corporation (NMPC) in Watertown, New York. Significant cost-effective investments were identified, even without any demand-side management (DSM) incentives from NMPC. Three NMPC DSM programs were then examined to determine the impact of participation on the cost-effective efficiency potential at the Fort. The following three utility programs were analyzed: (1) utility rebates to be paid back through surcharges, (2) a demand reduction program offered in conjunction with an energy services company, and (3) utility financing. Ultimately, utility rebates and financing were found to be the best programs for the Fort. This paper examines the influence that specific characteristics of the DSM programs had on the decision-making process of one customer. Fort Drum represents a significant demand-side resource, whose decisions regarding energy efficiency investments are based on life-cycle cost analysis subject to stringent capital constraints. The structures of the DSM programs offered by NMPC affect the cost-effectiveness of potential efficiency investments and the ability of the Fort to obtain sufficient capital to implement the projects. This paper compares the magnitude of the cost-effective resource available under each program, and the resulting level of energy and demand savings. The results of this analysis can be used to examine how DSM program structures impact the decision-making process of federal and large commercial customers.

Stucky, D.J.; Shankle, S.A.; Dixon, D.R.; Elliott, D.B.

1994-12-01T23:59:59.000Z

86

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Optimal Control of Distributed Energy Resources and DemandRenewable Energy, former Distributed Energy Program of theOptimal Control of Distributed Energy Resources and Demand

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

87

The Demand Side: Behavioral Patterns and Unpicked Low-Hanging Fruit  

U.S. Energy Information Administration (EIA) Indexed Site

The Demand Side: Behavioral Patterns and The Demand Side: Behavioral Patterns and Unpicked Low-Hanging Fruit James Sweeney Stanford University Director Precourt Energy Efficiency Center (Née: Precourt Institute for Energy Efficiency) Professor, Management Science and Engineering 6 Source: McKinsey & Co. Increased commercial space Gasoline Price Controls Compact Fluorescent Penetration LED: Traffic Lights, Task Lighting Appliance Energy Labeling Gasoline Rationing Much Incandescent Lighting Congestion Pricing Personal Computer Penetration Optimized Building Construction Overly Strict Building Standards Pigouvian Energy Tax Reduced Cost Decreased Energy Use "Smart" Regional Land Development Reformed Fuel Efficiency Standards Some Rail Rapid Transit Systems Efficient AC-DC Converters Halt SUV

88

Demand-side management programs change along with the electric utility industry  

Science Conference Proceedings (OSTI)

They heyday of demand-side management may be over as far as utilities are concerned. The future path of utility demand-side management programs is obscured in a haze of important questions, especially questions regarding potential legislation and retail wheeling. Until recently, utility after utility was announcing new DSM programs, seemingly almost daily. But, as pointed out in our November issue by Robert Smock, Electric Light & Power`s editorial director, {open_quotes}Survivors of ruthless competition will not be doing much to reduce electricity sales. They`ll be doing their best to sell more of their product.

Stein, H. [ed.

1995-01-01T23:59:59.000Z

89

Role of home automation in demand-side management. Topical report, May 1994  

Science Conference Proceedings (OSTI)

The report explores the role of home automation (HA) in utility demand-side management (DSM) programs, in order to demonstrate the potential usefulness of a combined HA/DSM strategy in meeting the changing needs of the gas industry and providing the industry with a timely and competitive edge in the coming decade. Research was conducted using primary and secondary sources, on-line databases, and documentary research. Factors leading to the development and implementation of demand-side management and home automation were analyzed in order to best define opportunities and interests for the gas industry.

Davis, K.W.

1994-05-01T23:59:59.000Z

90

Fourth international symposium on distribution automation and demand side management (DA/DSM 94)  

SciTech Connect

This document is the conference proceedings from the 1994 Distribution Automation/Demand Side Management meeting in Orlando, Florida. There are 87 papers presented, and topics include: (1) improved feeder efficiency, (2) automation of older substations, (3) modeling tools for distribution, planning, and operations, (4) sensing and fault detection, (5) outage monitoring, (6) cost and benefits of distribution automation, (7) communications, (8) optimization of feeder systems operations, (9) information technology, (10) demand-side management applications in the industrial, commercial, and residential sectors, (11) pricing and regulation, and (12) applications to the natural gas industry.

NONE

1994-12-31T23:59:59.000Z

91

The demand-side management program development process: A utility perspective  

SciTech Connect

This report describes an aspect of DSM that has received little attention, namely, how utilities develop DSM programs. The selection of utilities to study purposely was biased in favor of those with reputations for being experienced DSM program developers so as to optimize the chances to obtain detailed information. The DSM planning process is affected by organizational factors and external influences: (1) the location of the demand-side planning department within the utility; (2) the demand-side planning group`s functional responsibilities; (3) upper management participation in the DSM program development process; and (4) the organizational relationship between (or, separation of) supply-side and demand-side planning. Organizational factors reflect utilities` views of DSM programs and thus can affect the adoption of a technology- or customer-oriented approach. Despite repeated claims of the uniqueness of the demand- side planning process and its resistance to standardization, two general approaches to program development were discerned, namely technology- or customer-orientation. Although utilities consider customer related and technological factors in their DSM program development process, utilities can be differentiated by their emphasis on one or the other approach. 25 refs.

Wolfe, A.K. [Oak Ridge National Lab., TN (United States); Yourstone, N.E. [Yourstone (Evelin), Albuquerque, NM (United States)

1992-03-01T23:59:59.000Z

92

The demand-side management program development process: A utility perspective  

Science Conference Proceedings (OSTI)

This report describes an aspect of DSM that has received little attention, namely, how utilities develop DSM programs. The selection of utilities to study purposely was biased in favor of those with reputations for being experienced DSM program developers so as to optimize the chances to obtain detailed information. The DSM planning process is affected by organizational factors and external influences: (1) the location of the demand-side planning department within the utility; (2) the demand-side planning group's functional responsibilities; (3) upper management participation in the DSM program development process; and (4) the organizational relationship between (or, separation of) supply-side and demand-side planning. Organizational factors reflect utilities' views of DSM programs and thus can affect the adoption of a technology- or customer-oriented approach. Despite repeated claims of the uniqueness of the demand- side planning process and its resistance to standardization, two general approaches to program development were discerned, namely technology- or customer-orientation. Although utilities consider customer related and technological factors in their DSM program development process, utilities can be differentiated by their emphasis on one or the other approach. 25 refs.

Wolfe, A.K. (Oak Ridge National Lab., TN (United States)); Yourstone, N.E. (Yourstone (Evelin), Albuquerque, NM (United States))

1992-03-01T23:59:59.000Z

93

Demand Response: An UntappedDemand Response: An Untapped Resource for Western ElectricityResource for Western Electricity  

E-Print Network (OSTI)

Information Administration, Form EIA-861 Database. #12;Energy Analysis Department Significant cost@lbl.gov FERC Western Energy Infrastructure Conference Denver, Colorado July 30, 2003 #12;Energy Analysis value of demand-side for electricity markets - Short-term Load Management - Dynamic Pricing - Energy

94

Electricity pricing as a demand-side management strategy: Western lessons for developing countries  

Science Conference Proceedings (OSTI)

Electric utilities in the Western world have increasingly realized that load commitments can be met not only by constructing new generating plants but also by influencing electricity demand. This demand-side management (DSM) process requires that electric utilities promote measures on the customer's side of the meter to directly or indirectly influence electricity consumption to meet desired load objectives. An important demand-side option to achieve these load objectives is innovative electricity pricing, both by itself and as a financial incentive for other demand-site measures. This study explores electricity pricing as a DSM strategy, addressing four questions in the process: What is the Western experience with DSM in general and electricity pricing in particular Do innovative pricing strategies alter the amount and pattern of electricity consumption Do the benefits of these pricing strategies outweigh the costs of implementation What are future directions in electricity pricing Although DSM can be used to promote increases in electricity consumption for electric utilities with excess capacity as well as to slow demand growth for capacity-short utilities, emphasis here is placed on the latter. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand.

Hill, L.J.

1990-12-01T23:59:59.000Z

95

A Successful Implementation with the Smart Grid: Demand Response Resources  

E-Print Network (OSTI)

1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution to the Panel: "Reliability and Smart Grid: Public Good or Commodity" Anupama Kowli Student Member, IEEE, Matias behind the Smart Grid concept - can markedly impact the system reliability. The appropriate utilization

Gross, George

96

Simple models of district heating systems for load and demand side management  

E-Print Network (OSTI)

Simple models of district heating systems for load and demand side management and operational Energiforskningsprogrammet EFP ENS J.nr. 1373/01-0041 December 2004 #12;Simple models of district heating systems for load 87-7475-323-1 #12;Preface The research project "Simple models of district heating systems for load

97

BRENNAN --DSM UNDER COMPETITION: 1 Demand-Side Management Programs Under Retail  

E-Print Network (OSTI)

BRENNAN -- DSM UNDER COMPETITION: 1 Demand-Side Management Programs Under Retail Electricity · An automotive analogy Not marketing of fuel-efficient cars Not exactly CAFE standards or EPA mileage stickers More like getting a check from oil companies if one buys a high mileage car · Conservation

California at Berkeley. University of

98

Agent-based control for decentralised demand side management in the smart grid  

Science Conference Proceedings (OSTI)

Central to the vision of the smart grid is the deployment of smart meters that will allow autonomous software agents, representing the consumers, to optimise their use of devices and heating in the smart home while interacting with the grid. However, ... Keywords: agent-based control, agents, demand-side management electricity, energy, multi-agent systems

Sarvapali D. Ramchurn; Perukrishnen Vytelingum; Alex Rogers; Nick Jennings

2011-05-01T23:59:59.000Z

99

Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design  

E-Print Network (OSTI)

1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi.S. Wong, Senior Member, IEEE Abstract--In the future smart grid, both users and power companies can meter. All smart meters are connected to not only the power grid but also a communication infrastructure

Wong, Vincent

100

Shady Side, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Side, Maryland: Energy Resources Side, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8417821°, -76.5121798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8417821,"lon":-76.5121798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DSM strikes again. [Demand-side management of gas and electric utilities  

SciTech Connect

This paper discusses and explains demand-side management (DSM) of the gas and electric utility companies. It contrasts the advantages that electric utilities offering economic incentives (with any cost passed on to rate payers) to increase demand while such offerings are rarely available from the gas utilities. It then discusses the cause and cost of pollution from conventional electrical facilities compared to gas-operated equipment and facilities. The paper goes on to discuss fuel switching and other incentives to get individuals and facilities to switch to natural gas.

Katz, M.

1994-02-01T23:59:59.000Z

102

Demand-side-management: DSM must create a future as a profit center  

Science Conference Proceedings (OSTI)

As utilities prepare for more direct competition, demand-side management (DSM) must also become competitive to survive. DSM has traditionally been a loss leader for utilities - good public relations but expensive. In the coming years, DSM must turn that around and become a source of revenue to continue to flourish. DSm must become a profit center, contributing not only to a positive public image for the utility and appeasing government mandates, but assisting in keeping the utility on the black side of the ledger books. This article examines Central Vermont Public Service`s SmartEnergy subsidiary and it`s GreenPlugs program.

Chambers, A.

1995-03-01T23:59:59.000Z

103

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Developed and Developing World Speaker(s): Lee Schipper Date: February 15, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon A new "Great Wall" has emerged in China, this one a string of miles of cars stuck in traffic. Emissions from road transport in developing countries are expected to rise sharply in the coming decades if current trends continue. Projections of passenger and freight activity, vehicle use, and CO2 emissions push up overall CO2 emissions by a factor of three in Latin American and five in Asia by 2030, even with fuel economy improvements. The increase in car use is in part a result of growing incomes and economic activity, but it also reflects the poor quality of transit and

104

CO{sub 2} mitigation potential of efficient demand-side technologies: The case of Thailand  

SciTech Connect

This study assesses the techno-economic potential of selected demand-side efficient appliances to mitigate CO{sub 2} emission from the power sector in Thailand under national, consumer, and utility perspectives. A key finding of this study is that about 5.5--7% of the total annual CO{sub 2} emission from the electricity sector of the country can be reduced during 1996--2011 from the national perspective.

Shrestha, R.M.; Biswas, W.K.; Timilsina, G.R. [Asian Inst. of Tech., Pathumthani (Thailand). Energy Program; Khummongkol, P.; Sinbanchongjit, S. [King Mongkut`s Inst. of Tech., Bangkok (Thailand)

1998-05-01T23:59:59.000Z

105

Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs  

SciTech Connect

The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

1995-03-01T23:59:59.000Z

106

National Microalgae Biofuel Production Potential and Resource Demand  

SciTech Connect

Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

2011-04-14T23:59:59.000Z

107

Demand-Side and Supply-Side Load Management: Optimizing with Thermal Energy Storage (TES) for the Restructuring Energy Marketplace  

E-Print Network (OSTI)

The current and future restructuring energy marketplace represents a number of challenges and opportunities to maximize value through the management of peak power. This is true both on the demand-side regarding peak power use and on the supply-side regarding power generation. Thermal Energy Storage (TES) can provide the flexibility essential to the economical management of power. In large industrial applications, the added value of TES has been demonstrated, not only in managing operating costs, but also in delivering a net saving in capital cost versus conventional, non-storage approaches. This capital cost saving is often realized in situations where investments in chiller plant capacity, or in on-site power generating capacity, are required. On the demand-side, TES has long been used to shift air-conditioning loads and process cooling loads from on-peak to off-peak periods. In today's and tomorrow's restructuring energy markets, price spikes are increasingly likely during periods of peak power demand. TES is performing an important role, especially when coupled with a proper understanding of modern TES technology options. The inherent advantages and limitations of the available TES technology options are briefly reviewed and discussed. Examples of existing large TES installations are presented, identifying the TES technology types they utilize. The applications include industrial facilities, as well as universities, hospitals, government, and District Cooling utility systems. The power management impact and the economic benefits of TES are illustrated through a review of several TES case studies. Combustion Turbines (CTs) are a common choice for modern on-site and utility power generation facilities. Inlet air cooling of CTs enhances their hot weather performance and has been successfully accomplished for many years, using a variety of technologies. In many instances, TES can and does provide a uniquely advantageous method of optimizing the economics of CT Inlet Cooling (CTIC) systems. TES systems can achieve low inlet air temperatures, with resulting high levels of power augmentation. The TES approach also minimizes the installed capacity (and capital cost) of cooling systems, as well as limiting the parasitic loads occurring during periods of peak power demand and peak power value. Chilled water, ice, and low temperature fluid TES systems are all applicable to CTIC. The inherent pros and cons of each TES type are discussed. Sensitivity analyses are presented to explore the impact of cooling hours per day on capital cost per kW of power enhancement. Case histories illustrate the beneficial impact of TES-based CTIC on both capital cost and operating cost of CT power plants. TES-based CTIC is advantageous as an economical, peaking power enhancement for either peaking or base-load plants. It is applied to both new and existing CTs. TES is projected to have even greater value in future restructuring energy markets.

Andrepont, J. S.

2002-04-01T23:59:59.000Z

108

Controlling Market Power and Price Spikes in Electricity Networks: Demand-side Bidding  

E-Print Network (OSTI)

Simona Lup, Jia Jing Liu and Stephen Sosnicki for help with running the experiments and testing the software. This paper has benefited from comments from Kevin McCabe, Mark Olson, Dave Porter, and Stan Reynolds, but all errors are our own. The data are available upon request from the authors. Controlling Market Power and Price Spikes in Electricity Networks: Demand-Side Bidding In this paper we report experiments that examine how two structural features of electricity networks contribute to the exercise of market power in deregulated markets. The first feature is the distribution of ownership of a given set of generating assets. In the market power treatment, two large firms are allocated baseload and intermediate cost generators such that either firm might unilaterally withhold the capacity of its intermediate cost generators from the market to benefit from the supracompetitive prices that would result from only selling its baseload units. In the converse treatment, ownership of some of the intermediate cost generators is transferred from each of these firms to two other firms, so that no one firm could unilaterally restrict output to spawn supra-competitive prices. The second feature explores how the presence of line constraints in a radial network may segment the market and promote supra-competitive pricing in the isolated market segments. We also consider the interaction effect when both of these structural features are present. Having established a wellcontrolled data set with price spikes paralleling those observed in the naturally occurring economy, we also extend the design to include demand-side bidding. We find that demand-side bidding completely neutralizes the exercise of market power and eliminates price spikes.

Stephen J. Rassenti; Vernon L. Smith; Bart J. Wilson

2003-01-01T23:59:59.000Z

109

Demand Trading: Building Liquidity  

Science Conference Proceedings (OSTI)

Demand trading holds substantial promise as a mechanism for efficiently integrating demand-response resources into regional power markets. However, regulatory uncertainty, the lack of proper price signals, limited progress toward standardization, problems in supply-side markets, and other factors have produced illiquidity in demand-trading markets and stalled the expansion of demand-response resources. This report shows how key obstacles to demand trading can be overcome, including how to remove the unce...

2002-11-27T23:59:59.000Z

110

Lessons learned in implementing a demand side management contract at the Presidio of San Francisco  

SciTech Connect

The National Park Service (NSP) recently completed the implementation phase of its Power Saving Partners (PSP) Demand Side Management (DSM) contract with the local utility, Pacific Gas and Electric (PG&E). Through the DSM contract, NPS will receive approximately $4.1 million over eight years in payment for saving 61 kW of electrical demand, 179,000 km of electricity per year, and 1.1 million therms of natural gas per year. These payments are for two projects: the installation of high-efficiency lighting systems at the Thoreau Center for Sustainability and the replacement of an old central boiler plant with new, distributed boilers. Although these savings and payments are substantial, the electrical savings and contract payments fall well short of the projected 1,700 kW of electrical demand, 8 million kwh of annual electricity savings, and $11 million in payments, anticipated at the project's onset. Natural gas savings exceeded the initial forecast of 800,000 therms per year. The DSM contract payments did not meet expectations for a variety of reasons which fall into two broad categories: first, many anticipated projects were not constructed, and second, some of the projects that were constructed were not included in the program because the cost of implementing the DSM program's measurement and verification (M&V) requirements outweighed anticipated payments. This paper discusses the projects implemented, and examines the decisions made to withdraw some of them from the DSM contract. It also presents the savings that were realized and documented through M&V efforts. Finally, it makes suggestions relative to M&V protocols to encourage all efficiency measures, not just those that are easy to measure.

Sartor, D.; Munn, M.

1998-06-01T23:59:59.000Z

111

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

comes to demand response is FERC is own worst enemy? Tech.9.1-2 (1986), pp. 5–18. [46] FERC. A national assessment of09-demand-response.pdf. [47] FERC. National action plan on

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

112

Guidebook for Farmstead Demand-Side Management (DSM) program design. [Final report  

SciTech Connect

The acceptance and growth of Demand-Side Management (DSM) continues to increase in the US. According to latest estimates, total expenditures on electric utility DSM programs now exceed $1.2 billion annually, with these investments ranging from 1 to 5 percent of a utility`s gross revenues. In addition, due to increasing environmental concerns and the high cost of new capacity, these expenditure levels are expected to increase. While the vast majority of these DSM programs are directed at the more traditional residential, commercial and industrial market sectors, significant opportunities still exist. One market segment that has not been the focus of attention but a critical sector from an economic development perspective for marry utilities -- is the agricultural and farmstead market. Although the total number of farms in the United States decreased by approximately 5 percent between 1985 and 1989, the land dedicated to farming still accounts for over 995 million acres. Furthermore, the total value of farm output in the United States has been steadily increasing since 1986. The limited penetration of energy efficiency measures in farmsteads provides an excellent opportunity for utilities to expand their DSM programming efforts to capture this ``non-traditional`` market segment, and at the same time assist farms in increasing their efficiency and competitiveness. In marry states, and, in particular New York State, agriculture plays a major economic role. The importance of farms not only from a utility perspective but also from a state and federal perspective cannot be overstated. As such, utilities are in a unique position to facilitate farmstead DSM technology investments in an effort to benefit the farmer (and his profitability), the utility, the state and the country. This guidebook is designed to provide the framework for agricultural demand planning, including market assessment, technology assessment, market penetration analysis and program design.

Rose, M.; Camera, R.K.

1992-02-21T23:59:59.000Z

113

Demand Response Program Design and Implementation Case Study...  

NLE Websites -- All DOE Office Websites (Extended Search)

Delurey, Dan, and J. Schwartz Date Published 022013 Keywords demand response research, demand side resources: policy, electricity markets, electricity markets and policy group,...

114

Industrial demand-side management programs: What`s happened, what works, what`s needed  

Science Conference Proceedings (OSTI)

In order to analyze experience to date with industrial demand-side management (DSM), a survey of utilities was conducted and a database of industrial DSM programs was prepared. More than eighty utilities and third-party organizations were interviewed. Data were collected via phone, fax, and/or mail from the utilities and entered into a database. In order to limit the scope of this study, the database contains incentive-based, energy-saving programs and not load management or information-only programs (including technical assistance programs). Programs in the database were divided into four categories: two ``prescriptive rebate`` categories and two ``custom rebate`` categories. The database contains 31 incentive-based, energy-saving industrial DSM programs offered by 17 utilities. The appendix to this report summarizes the results approximately 60 industrial DSM programs. Most of the programs included in the appendix, but not in the database, are either C&I programs for which commercial and industrial data were not disaggregated or new industrial DSM programs for which data are not yet available.

Jordan, J.A.; Nadel, S.M. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

1993-03-01T23:59:59.000Z

115

The past, present, and future of U.S. utility demand-side management programs  

SciTech Connect

Demand-side management or DSM refers to active efforts by electric and gas utilities to modify customers` energy use patterns. The experience in the US shows that utilities, when provided with appropriate incentives, can provide a powerful stimulus to energy efficiency in the private sector. This paper describes the range and history of DSM programs offered by US electric utilities, with a focus on the political, economic, and regulatory events that have shaped their evolution. It also describes the changes these programs are undergoing as a result of US electricity industry restructuring. DSM programs began modestly in the 1970s in response to growing concerns about dependence on foreign sources of oil and environmental consequences of electricity generation, especially nuclear power. The foundation for the unique US partnership between government and utility interests can be traced first to the private-ownership structure of the vertically integrated electricity industry and second to the monopoly franchise granted by state regulators. Electricity industry restructuring calls into question both of these basic conditions, and thus the future of utility DSM programs for the public interest. Future policies guiding ratepayer-funded energy-efficiency DSM programs will need to pay close attention to the specific market objectives of the programs and to the balance between public and private interests.

Eto, J. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.

1996-12-01T23:59:59.000Z

116

Abstract--Smart Grid technology appears necessary to succeed in activating the demand through demand side management  

E-Print Network (OSTI)

1 Abstract--Smart Grid technology appears necessary to succeed in activating the demand through recommendations regarding the instruments that should be implemented to maximize the benefits of smart grids by the European Union. The development of smart grids (SG) is a possible solution for achieving these goals [1

117

Low-Interest Loans for Customer-Side Distributed Resources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Interest Loans for Customer-Side Distributed Resources Low-Interest Loans for Customer-Side Distributed Resources Low-Interest Loans for Customer-Side Distributed Resources < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info Start Date 7/21/2005 State Connecticut Program Type State Loan Program Rebate Amount Varies Provider Banc of America Long-term financing is available to retail end-use customers for the installation of customer-side distributed resources. Customer-side distributed resources are defined by Conn. Gen. Stat. § 16-1 as "(A) the generation of electricity from a unit with a rating of not more than

118

Demand responsive programs - an emerging resource for competitive electricity markets?  

E-Print Network (OSTI)

difference between Strike Price & forecast wholesale priceon day-ahead forecast of demand & price Wholesale utilitiesday-of forecast, or actual hourly spot price. A quick

Heffner, Dr. Grayson C.; Goldman, Charles A.

2001-01-01T23:59:59.000Z

119

An Open Architecture Platform for Demand Resources from AutoDR and MBCx:  

NLE Websites -- All DOE Office Websites (Extended Search)

An Open Architecture Platform for Demand Resources from AutoDR and MBCx: An Open Architecture Platform for Demand Resources from AutoDR and MBCx: National Virtual Power Plant Speaker(s): Jung In Choi Date: December 20, 2013 - 2:00pm - 3:00pm Location: 90-3122 Seminar Host/Point of Contact: Philip Haves The presentation lays out the technology and business model for National Virtual Power Plant (NVPP). NAPP is a Korean initiative to develop a cluster of demand resources from consumers by peak reduction or energy saving. Demand resources from NVPP are collectively traded in the open architecture platform for energy market. The platform enables 3rd parties to develop new business models and applications through open API s. It will bring a long tail market for demand response and energy efficiency in small and medium size buildings as well as large ones. Automated Demand

120

Deployment of Demand Response as a Real-Time Resource in Organized Markets  

Open Energy Info (EERE)

Deployment of Demand Response as a Real-Time Resource in Organized Markets Deployment of Demand Response as a Real-Time Resource in Organized Markets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Deployment of Demand Response as a Real-Time Resource in Organized Markets Focus Area: Crosscutting Topics: Potentials & Scenarios Website: www.sciencedirect.com/science/article/pii/S1040619008000973 Equivalent URI: cleanenergysolutions.org/content/deployment-demand-response-real-time- Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning This article examines the use of demand response as a dispatchable resource

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

9.1-2 (1986), pp. 5–18. [46] FERC. A national assessment ofmeet/2008/101608/E-1.pdf. [49] FERC. Order No. 745, Demand17-000.pdf. BIBLIOGRAPHY [50] FERC. Order No. 755, Frequency

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

122

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

4.2.1 Individual TCL model . . . . . . . . . . . . . .4.2.2 Plant: The TCL population . . . . . . . .5 TCL Resource, Revenues & Costs 5.1 Chapter

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

123

Agent-Based Wave Computation: Towards Controlling the Resource Demand  

Science Conference Proceedings (OSTI)

In recent years, the mobile agent paradigm has received significant consideration in the context of large complex decentralized systems. Tasks such as system monitoring, load balancing and resource management have been successfully mapped onto this paradigm. ...

Armin R. Mikler; Vivek S. Chokhani

2001-06-01T23:59:59.000Z

124

Demand responsive programs - an emerging resource for competitive electricity markets?  

SciTech Connect

The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

Heffner, Grayson C. Dr.; Goldman, Charles A.

2001-06-25T23:59:59.000Z

125

DOE Hydrogen Analysis Repository: HyDRA: Hydrogen Demand and Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

HyDRA: Hydrogen Demand and Resource Analysis Tool HyDRA: Hydrogen Demand and Resource Analysis Tool Project Summary Full Title: HyDRA: Hydrogen Demand and Resource Analysis Tool Project ID: 220 Principal Investigator: Johanna Levene Brief Description: HyDRA has evolved from a basic display of spatial data to a repository of over 100 datasets with dynamic data, querying, and interoperability with other models and spatial data repositories and over 350 registered users. Keywords: Hydrogen infrastructure; wind; solar; biomass; coal; natural gas Purpose Facilitate regional and geographical analyses of resources, demand, and infrastructure relevant to the implementation of hydrogen production, delivery, and dispensing. Performer Principal Investigator: Johanna Levene Organization: National Renewable Energy Laboratory (NREL)

126

A new model for allocating resources to scheduled lightpath demands  

Science Conference Proceedings (OSTI)

Recent research has clearly established that holding-time-aware routing-and-wavelength-assignment (RWA) schemes lead to significant improvements in resource utilization for scheduled traffic. Two different models have been proposed for scheduled traffic ... Keywords: Routing and wavelength assignment, Scheduled traffic model, Segmented sliding window model, Wavelength division multiplexing

Ying Chen; Arunita Jaekel; Ataul Bari

2011-09-01T23:59:59.000Z

127

Managing Water Resource Requirements for Growing Electric Generation Demands  

Science Conference Proceedings (OSTI)

This report is a general guide to analytical techniques used to address water resource management as related to long-term sustainability planning, and short-term regulatory requirements, including total maximum daily loads, endangered species, and relicensing of hydropower facilities. The example applications presented in the report highlight the capability of the techniques, and help electric power company and government regulatory staffs identify the best approach for a specific need.

2009-12-02T23:59:59.000Z

128

Achieving Demand-Side Synergy from Strategic Diversification: How Combining Mundane Assets Can Leverage Consumer Utilities  

Science Conference Proceedings (OSTI)

We explore the overlooked issue of how certain strategic-level, interindustry diversification options might increase consumer utility. Discussions of inter-industry diversification typically focus on producer synergies obtainable from economies ... Keywords: consumer utility, entrepreneurship, firm performance, interindustry diversification, one-stop shopping, strategic management, two-sided markets

Guangliang Ye; Richard L. Priem; Abdullah A. Alshwer

2012-01-01T23:59:59.000Z

129

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

Science Conference Proceedings (OSTI)

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

130

Coordination of Energy Efficiency and Demand Response: A Resource of the  

Open Energy Info (EERE)

Coordination of Energy Efficiency and Demand Response: A Resource of the Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Focus Area: Energy Efficiency Topics: Policy, Deployment, & Program Impact Website: www.epa.gov/cleanenergy/documents/suca/ee_and_dr.pdf Equivalent URI: cleanenergysolutions.org/content/coordination-energy-efficiency-and-de Language: English Policies: "Regulations,Deployment Programs" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Retrofits Regulations: Energy Standards

131

Handbook of evaluation of utility DSM programs. [Demand-Side Management (DSM)  

SciTech Connect

Program evaluation has become a central issue in the world of utility integrated resource planning. The DSM programs that utilities were operating to meet federal requirements or to improve customer relations are now becoming big business. DSM is being considered an important resource in a utility's portfolio of options. In the last five years, the amount of money that utilities have invested in DSM has grown exponentially in most regulatory jurisdictions. Market analysts are now talking about DSM being a $30 billion industry by the end of the decade. If the large volume of DSM-program investments was not enough to highlight the importance of evaluation, then the introduction of regulatory incentives has really focused the spotlight. This handbook was developed through a process that involved many of those people who represent the diverse constituencies of DSM-program evaluation. We have come to recognize the many technical disciplines that must be employed to evaluate DSM programs. An analysis might start out based on the principles of utility load research to find out what happened, but a combination of engineering and statistical methods must be used to triangulate'' an estimate of what would have happened without the program. The difference, of course, is that elusive but prized result of evaluation: what happened as the direct result of the DSM program. Technical performance of DSM measures is not the sole determinant of the answer, either. We also recognize the importance of such behavioral attributes of DSM as persistence and free ridership. Finally, DSM evaluation is meaningless without attention to planning an approach, communicating results to relevant decision-makers, and focusing as much on the process as the impacts of the program. These topics are all covered in this handbook.

Hirst, E.; Reed, J. (eds.); Bronfman, B.; Fitzpatrick, G.; Hicks, E.; Hirst, E.; Hoffman, M.; Keating, K.; Michaels, H.; Nadel, S.; Peters, J.; Reed, J.; Saxonis, W.; Schoen, A.; Violette, D.

1991-12-01T23:59:59.000Z

132

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

than relying on central-station electricity generation and purchase of natural gas for heating and DER under uncertain electricity and natural gas prices · Section 5 summarizes the findings Control of Distributed Energy Resources and Demand Response under Uncertainty 3 · FPt: wholesale natural

133

Engineering Methods for Estimating the Impacts of Demand-Side Management Programs: Volume 1: Fundamentals of Engineering Simulations for Residential and Commercial End Uses  

Science Conference Proceedings (OSTI)

This handbook focuses on the use of building energy computer simulations for planning and evaluating demand-side management (DSM) measures. It presents techniques for estimating energy and demand savings for a list of common residential and commercial DSM technologies using widely available public-domain and EPRI computer programs.

1992-08-01T23:59:59.000Z

134

Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes  

Science Conference Proceedings (OSTI)

This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

1994-07-01T23:59:59.000Z

135

Utilization of Energy Efficiency and Demand Response as Resources for Transmission and Distribution Planning  

Science Conference Proceedings (OSTI)

EPRI began its Energy Efficiency Initiative in early 2007. Initiative research, which covers numerous topics associated with energy efficiency and demand management, is categorized into three areas: analytics, infrastructure, and devices. The project described in this report details the Initiative’s analytics element, which deals with methods and tools for analyzing aspects of the use of energy efficiency as supply resource, including measurement and verification, inclusion in generation planning, emissi...

2008-02-05T23:59:59.000Z

136

2012 SG Peer Review - Interoperability of Demand Response Resources in New York - Andre Wellington, ConEd NY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interoperability of Demand Response Interoperability of Demand Response Resources in NY Andre Wellington Con Edison June 8, 2012 December 2008 Interoperability of Demand Resource Resources in NY Objective Life-cycle Funding ($M) FY08 - FY13 $6.8 million Technical Scope (Insert graphic here) Develop and demonstrate technology required to integrate customer owned resources into the electrical distribution system * Evaluate interconnection designs * Design and install thermal storage plant with enhanced capabilities * Develop AutoDR application for targeted distributed resources 2 December 2008 Needs and Project Targets Develop the technology required to integrate customer owned distributed resources into the distribution system to enable the of deferment capital investments. * Remote dispatch of customer resources

137

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

follows: • EDemand t : electricity demand during day t (incost of reducing electricity demand (in $/MWh e ) • HRDCost:maximum fraction of electricity demand to be met by demand

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

138

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

Consulting), and Dave Shroyer (SCG). Demand Response andOpen Automated Demand Response Opportunities for DataIAW Research Team, Demand Response Research Center, Lawrence

Watson, David S.

2013-01-01T23:59:59.000Z

139

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

Water Supply Related Electricity Demand in California. CEC33 percent of our electricity demand in 2020 from renewablebuildings, heating electricity demand is not included in

Watson, David S.

2013-01-01T23:59:59.000Z

140

Demand Response Spinning Reserve Demonstration  

Science Conference Proceedings (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electricity demand-side management for an energy efficient future in China : technology options and policy priorities  

E-Print Network (OSTI)

The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

Cheng, Chia-Chin

2005-01-01T23:59:59.000Z

142

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

Science Conference Proceedings (OSTI)

We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

2010-06-01T23:59:59.000Z

143

Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.  

DOE Green Energy (OSTI)

Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

Singh, M. K.; Moore, J. S.

2002-03-04T23:59:59.000Z

144

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

Piette, LBNL. Integrating Renewable Resources in Californiaprocurement from eligible renewable energy resources to 33%to Enable the Integration of Renewable Resources David S.

Watson, David S.

2013-01-01T23:59:59.000Z

145

Optimal Management of Renewable Resources with Growing Demand and Stock Externalities  

E-Print Network (OSTI)

MAi\\IAGEMEJ. 'n' OF RENEWABLE RESOURCES WIlli GROWING DEMANDapproximation, the problem of a renewable resource is: -f" (MA. ? \\IAGEMENl' OF RENEWABLE RESOURCES WIlli GROWING

Berck, Peter

1979-01-01T23:59:59.000Z

146

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

peak demand, and natural gas demand forecasts for eachnatural gas and other fossil fuels are the predominant heating fuels for California’s commercial buildings, heating electricity demandDemand. The California End Use Survey 2004 (CEUS 2004) provides statewide hourly electricity and natural gas

Watson, David S.

2013-01-01T23:59:59.000Z

147

Valuation of Renewable and Distributed Resources: Implications for the Integrated Resource Planning  

Science Conference Proceedings (OSTI)

Over the last two decades, traditional integrated resource planning (IRP) has proven to be a valuable tool for evaluating the tradeoffs between supply-side generation and demand-side efficiency resources. However, there has been increasing focus on the incorporation of renewable, distributed, and demand-side resources into utility planning, which requires new methodologies to assess the value of these resources. Traditional IRP is generation-centric and typically fails to take into account the operationa...

2007-06-18T23:59:59.000Z

148

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

and Demand Response under Uncertainty • F P t : wholesale natural gasdemand response and DER under uncertain electricity and natural gasand Demand Response under Uncertainty Energy Price Models We assume that the logarithms of the deseasonalized electricity and natural gas

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

149

Impact of a solar domestic hot water demand-side management program on an electric utility and its customers  

DOE Green Energy (OSTI)

A methodology to assess the economic and environmental impacts of a large scale implementation of solar domestic hot water (SDHW) systems is developed. Energy, emission and demand reductions and their respective savings are quantified. It is shown that, on average, an SDHW system provides an energy reduction of about 3200 kWH, avoided emissions of about 2 tons and a capacity contribution of 0.7 kW to a typical Wisconsin utility that installs 5000 SDHW system. The annual savings from these reductions to utility is {dollar_sign}385,000, providing a return on an investment of over 20{percent}. It is shown that, on average, a consumer will save {dollar_sign}211 annually in hot water heating bills. 8 refs., 7 figs.

Trzeniewski, J.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.

1996-09-01T23:59:59.000Z

150

Tracking Demands in Optimal Control of Managerial Systemswith Continuously-Divisible, Doubly Constrained Resources  

Science Conference Proceedings (OSTI)

The paper addresses problems of allocating continuously divisible resources among multiple production activities. The resources are allowed to be doubly constrained, so that both usage at every point of time and cumulative consumption over a planning horizon ... Keywords: Optimal control, Resource constrained scheduling, renewable and nonrenewable resources

Konstantin Kogan; Eugene Khmelnitsky

1998-08-01T23:59:59.000Z

151

Energy Conservation Through Demand-Side Management (DSM): A Methodology to Characterize Energy Use Among commercial Market Segments  

E-Print Network (OSTI)

Managing energy demand can be beneficial for both the energy consumer and the energy supplier. By reducing energy use, the consumer reduces operating costs and improves production efficiency and competitiveness. Similarly, the supplier may reduce the need for costly capacity expansion and wholesale power purchasing, especially if energy reductions occur during peak loading conditions. Energy reductions may also lessen global climate change and reduce many other consequences of fossil-fuel energy use. The following research highlights a methodology to characterize energy use and optimize a DSM program for different types of commercial buildings. Utilizing publicly available records, such as utility billing data and property tax records, the diverse commercial building market was characterized. The commercial building types were matched to relevant submarkets of the North American Industry Classification System (NAICS). These sources were combined to prioritize building type submarket energy use intensity (kWh/sf/yr), load factor and many other energy use characteristics for each market segment. From this information, lower tier performers in each NAICS submarket can be identified and appropriate DSM alternatives selected specific to each.

Grosskopf, K. R.; Oppenheim, P.; Barclay, D

2007-01-01T23:59:59.000Z

152

Battery resource assessment. Interim report No. 1. Battery materials demand scenarios  

DOE Green Energy (OSTI)

Projections of demand for batteries and battery materials between 1980 and 2000 are presented. The estimates are based on existing predictions for the future of the electric vehicle, photovoltaic, utility load-leveling, and existing battery industry. Battery demand was first computed as kilowatt-hours of storage for various types of batteries. Using estimates for the materials required for each battery, the maximum demand that could be expected for each battery material was determined.

Sullivan, D.

1980-12-01T23:59:59.000Z

153

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

N Zhou (2007), “Distributed Generation with Heat Recoveryin the form of distributed generation with combined heat andcapacity. Keywords: Distributed generation, demand response,

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

154

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Solution Procedure for SDP Energy Prices We use electricityLondon for assistance with energy price modeling. Siddiquiof DER under uncertain energy prices with demand response

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

155

? Market Simulation Activities ? Registration Process Overview ? Agreements ? Intro to Demand Response Provider Software ? Resource Data Template ? Pre-Market Meter Data Submission  

E-Print Network (OSTI)

By the end of this module, you will be able to: ? Describe the purpose of the Proxy Demand Resource project ? Identify the tabs in the Demand Response Provider software ? Identify three components of the Generator Resource Data Template and describe how they are used. ISO PUBLIC- © 2010 CAISO 3

Jenny Pedersen; Senior Client Trainer; Iso Public Caiso

2010-01-01T23:59:59.000Z

156

Optimal energy management of a micro-grid with renewable energy resources and demand response  

Science Conference Proceedings (OSTI)

With the introduction of smart energy grids and extensive penetration of renewable energy resources in distribution networks

2013-01-01T23:59:59.000Z

157

EIA's Testimony on Natural Gas Supply and Demand Before the Senate Energy and Natural Resources Committee  

Reports and Publications (EIA)

Statement of Mark J. Mazur Acting Administrator Energy Information Administration Department of Energy before the Committee on Energy and Natural Resources U.S. Senate December 12, 2000

Information Center

2000-12-12T23:59:59.000Z

158

Virtual network on demand: dedicating network resources to distributed scientific workflows  

Science Conference Proceedings (OSTI)

The VNOD project aims to build an on-demand network virtualization infrastructure that can deliver the unprecedented networking performance and quality of service required by modern, distributed, data-intensive applications utilized by user communities. ... Keywords: co-scheduling, network, virtualization

Dimitrios Katramatos; Sushant Sharma; Dantong Yu

2012-06-01T23:59:59.000Z

159

PREDICTING RESOURCE DEMAND IN HETEROGENEOUS ACTIVE NETWORKS V. Galtier, K. Mills, and Y. Carlinet  

E-Print Network (OSTI)

National Institute of Standards and Technology S. Bush and A. Kulkarni General Electric Corporate R. Incorporating adaptive CPU models can enable AVNMP to predict active-network resource usage farther into the future, and lowers prediction overhead. INTRODUCTION Growing availability of processing power

Bush, Stephen F.

160

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The alchemy of demand response: turning demand into supply  

Science Conference Proceedings (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

162

Demand-side management in office buildings in Kuwait through an ice-storage assisted HVAC system with model predictive control.  

E-Print Network (OSTI)

??Examining methods for controlling the electricity demand in Kuwait was the main objective and motivation of this researchp roject. The extensiveu se of air-conditioning for… (more)

Al-Hadban, Yehya

2005-01-01T23:59:59.000Z

163

Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver  

DOE Green Energy (OSTI)

The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated and the seasonal oxygen demand loading pattern remains unexplained. An expanded investigation of the Salt Slough watershed is warranted, because of the importance of this watershed to the oxygen demand load entering the SJR.

Wstringfellow@lbl.gov

2002-07-24T23:59:59.000Z

164

Price-elastic demand in deregulated electricity markets  

E-Print Network (OSTI)

by the amount of electricity demand that is settled forward.unresponsive demand side, electricity demand has to be metxed percentage of overall electricity demand. The ISO, thus,

Siddiqui, Afzal S.

2003-01-01T23:59:59.000Z

165

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

166

Demand Dispatch-Intelligent  

NLE Websites -- All DOE Office Websites (Extended Search)

and energy efficiency throughout the value chain resulting in the most economical price for electricity. Having adequate quantities and capacities of demand resources is a...

167

A Look Ahead at Demand Response in New England  

Science Conference Proceedings (OSTI)

The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

2008-08-01T23:59:59.000Z

168

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

169

Centralized and Decentralized Control for Demand Response  

Science Conference Proceedings (OSTI)

Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

2011-04-29T23:59:59.000Z

170

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Oakland CA, December. PJM Demand Side Response WorkingPrice Response Program a PJM Economic Load Response ProgramLoad Response Statistics PJM Demand Response Working Group

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

171

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

2007 EMCS EPACT ERCOT FCM FERC FRCC demand side managementEnergy Regulatory Commission (FERC). EPAct began the processin wholesale markets, which FERC Order 888 furthered by

Shen, Bo

2013-01-01T23:59:59.000Z

172

Demand Trading Toolkit  

Science Conference Proceedings (OSTI)

Download report 1006017 for FREE. The global movement toward competitive markets is paving the way for a variety of market mechanisms that promise to increase market efficiency and expand customer choice options. Demand trading offers customers, energy service providers, and other participants in power markets the opportunity to buy and sell demand-response resources, just as they now buy and sell blocks of power. EPRI's Demand Trading Toolkit (DTT) describes the principles and practice of demand trading...

2001-12-10T23:59:59.000Z

173

Primer on gas integrated resource planning  

Science Conference Proceedings (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

174

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

175

Demand Side Management in Rangan Banerjee  

E-Print Network (OSTI)

Compressed Air ­ reduce pressure, air leakages FRP fans ­ Cooling towers, energy efficient fans Waste heat Cooling Tower Additional Chiller pump Under ground Chilled water Storage tank Space to be conditioned, cooling, motive power...) #12;Utility Load Shape Objectives Peak Clipping Valley Filling Load Shifting

Banerjee, Rangan

176

Demand side management in district heating systems  

Science Conference Proceedings (OSTI)

This paper describes a multiagent system that has made the voyage from research project to commercialised product. The purpose for the multiagent system is to dynamically control a system so that the load of the system is below certain threshold values ... Keywords: agent-based deployed applications

Fredrik Wernstedt; Paul Davidsson; Christian Johansson

2007-05-01T23:59:59.000Z

177

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

are country reports from Task XVII participants, including Austria, Finland, Italy, Korea, the Netherlands, Spain and the United States. Annex 8 provides a list of software...

178

Geothermal resources, present and future demand for power and legislation in the State of Wyoming. Public information series 1  

DOE Green Energy (OSTI)

Data on thermal springs and wells in Wyoming, exclusive of Yellowstone Park, are summarized. The presentation includes a map showing general spring and well locations outside the Park and lands in Wyoming that have been classified as being prospectively of geothermal value. Locations and geothermal data on the springs and wells are tabulated and a short table of chemical analyses of spring waters is also presented. Although thermal data constitute most of the material presented, the present and future demands for electrical energy in Wyoming are also summarized, and state legislation pertaining to exploration near thermal springs is reviewed. A list of state and federal agencies is included so that interested parties may obtain copies of pertinent legislation and information on the status of land.

Decker, E.R.

1976-03-01T23:59:59.000Z

179

Role of Standard Demand Response Signals for Advanced Automated Aggregation  

Science Conference Proceedings (OSTI)

Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

Lawrence Berkeley National Laboratory; Kiliccote, Sila

2011-11-18T23:59:59.000Z

180

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fast Automated Demand Response to Enable the Integration of Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fast Automated Demand Response to Enable the Integration of Renewable Resources Title Fast Automated Demand Response to Enable the Integration of Renewable Resources Publication...

182

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

183

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

184

Unlocking the potential for efficiency and demand response through advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

Unlocking the potential for efficiency and demand response through advanced Unlocking the potential for efficiency and demand response through advanced metering Title Unlocking the potential for efficiency and demand response through advanced metering Publication Type Conference Paper LBNL Report Number LBNL-55673 Year of Publication 2004 Authors Levy, Roger, Karen Herter, and John Wilson Conference Name 2004 ACEEE Summer Study on Energy Efficiency in Buildings Date Published 06/2004 Publisher ACEEE Conference Location Pacific Grove, CA Call Number California Energy Commission Keywords demand response, demand response and distributed energy resources center, demand response research center, energy efficiency demand response advanced metering, rate programs & tariffs Abstract Reliance on the standard cumulative kilowatt-hour meter substantially compromises energy efficiency and demand response programs. Without advanced metering, utilities cannot support time-differentiated rates or collect the detailed customer usage information necessary to (1) educate the customer to the economic value of efficiency and demand response options, or (2) distribute load management incentives proportional to customer contribution. These deficiencies prevent the customer feedback mechanisms that would otherwise encourage economically sound demand-side investments and behaviors. Thus, the inability to collect or properly price electricity usage handicaps the success of almost all efficiency and demand response options.

185

Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world  

E-Print Network (OSTI)

MARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDMARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDend-users they serve. Demand Response Programs, once called

Heffner, Grayson C.

2002-01-01T23:59:59.000Z

186

Operations Landscape for Integrating Demand Response in Wholesale Environments: A Primer on the Wholesale Operations Landscape for I ntegrating Retail Demand Response  

Science Conference Proceedings (OSTI)

The report depicts the electric power industry operations landscape, including the functions, systems, and information exchanges that support wholesale operations. It frames industry stakeholders and their respective uses for retail demand response (DR) in a structured fashion. It also elucidates opportunities, challenges, and strategies employed when integrating DR in wholesale environments.The project approach considers diverse functions, systems, and roles for demand-side resources ...

2012-12-31T23:59:59.000Z

187

Integrated Resource Planning: A Dialogue with ELCON  

E-Print Network (OSTI)

The oil price shocks of the 1970s were a precursor to some fundamental changes in the way the supply and demand for energy is viewed. One response to the events of that period is the application of integrated resource planning (IRP). IRP is, principally, a regulatory prerogative designed to promote a balance between supply and demand resources in electricity markets. In this paper we provide a definition of that concept and discuss two of its main features: Demand-side Management programs and environmental externalities. We also examine a number of positions taken by ELCON with respect to IRP and provide our responses.

Treadway, N.; Torrent, G.

1992-04-01T23:59:59.000Z

188

Scenario Analysis of Peak Demand Savings for Commercial Buildings with  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Title Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Publication Type Conference Paper LBNL Report Number LBNL-3636e Year of Publication 2010 Authors Yin, Rongxin, Sila Kiliccote, Mary Ann Piette, and Kristen Parrish Conference Name 2010 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center, demand shifting (pre-cooling), DRQAT Abstract This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30% using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

189

Solutions for Summer Electric Power Shortages: Demand Response andits Applications in Air Conditioning and Refrigerating Systems  

SciTech Connect

Demand response (DR) is an effective tool which resolves inconsistencies between electric power supply and demand. It further provides a reliable and credible resource that ensures stable and economical operation of the power grid. This paper introduces systematic definitions for DR and demand side management, along with operational differences between these two methods. A classification is provided for DR programs, and various DR strategies are provided for application in air conditioning and refrigerating systems. The reliability of DR is demonstrated through discussion of successful overseas examples. Finally, suggestions as to the implementation of demand response in China are provided.

Han, Junqiao; Piette, Mary Ann

2007-11-30T23:59:59.000Z

190

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

191

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

192

Leveraging gamification in demand dispatch systems  

Science Conference Proceedings (OSTI)

Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grid's efficiency and a better utilization of renewable energy sources. ... Keywords: demand response, demand side management, direct load control, gamification, smart grid, sustainability

Benjamin Gnauk; Lars Dannecker; Martin Hahmann

2012-03-01T23:59:59.000Z

193

Demand Response for Ancillary Services  

Science Conference Proceedings (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

194

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The DOE Information Center's current collection has more than 40,000 documents consisting of technical reports and historical materials that relate to DOE operations....

195

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

196

Modeling renewable energy resources in integrated resource planning  

SciTech Connect

Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

1994-06-01T23:59:59.000Z

197

Energy Efficiency Resource Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Resource Standard Energy Efficiency Resource Standard Energy Efficiency Resource Standard < Back Eligibility Investor-Owned Utility Savings Category Other Program Info State Colorado Program Type Energy Efficiency Resource Standard Provider Colorado Public Utilities Commission The Colorado General Assembly passed a law ([http://www.leg.state.co.us/CLICS/CLICS2007A/csl.nsf/fsbillcont3/5EA2048E... HB 1037])in 2007 requiring the investor-owned electric and natural gas utilities to adopt demand-side management (DSM) programs that provide financial incentives for their customers to purchase more efficient equipment and processes, and to engage in demand response. The law provided minimum energy and demand savings targets but also authorized the Colorado Public Utilities Commission (PUC) to revise the goals and establish interim

198

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

199

Energy Efficiency Resource Standard | Open Energy Information  

Open Energy Info (EERE)

Energy Efficiency Resource Standard Energy Efficiency Resource Standard Jump to: navigation, search Energy efficiency resource standards (EERS) are state policies that require utilities to meet specific targets for energy savings according to a set schedule. EERS policies establish separate reduction targets for electricity sales, peak electric demand and/or natural gas consumption. In most cases, utilities must achieve energy savings by developing demand-side management (DSM) programs, which typically provide financial incentives to customers to install energy-efficient equipment. An EERS policy is sometimes coupled with a state's renewables portfolio standard (RPS). In these cases, energy efficiency is typically included as a lower-tier resource. [1] Energy Efficiency Resource Standard Incentives

200

Scenario Analysis of Peak Demand Savings for Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center,...

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis  

SciTech Connect

This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

Fournier, W.M.; Hasson, V.

1980-10-10T23:59:59.000Z

202

Demand response participation in PJM wholesale markets  

Science Conference Proceedings (OSTI)

This paper provides an overview of demand response resource participation in PJM wholesale ancillary service markets which include: Day Ahead Scheduling Reserves, Synchronized Reserves and Regulation.

Peter L. Langbein

2012-01-01T23:59:59.000Z

203

Incorporating Demand Response into Western Interconnection Transmissio...  

NLE Websites -- All DOE Office Websites (Extended Search)

side resources: policy, electricity markets, electricity markets and policy group, energy analysis and environmental impacts department Attachment Size PDF 702.25 KB Google...

204

Demand Trading: Measurement, Verification, and Settlement (MVS)  

Science Conference Proceedings (OSTI)

With this report, EPRI's trilogy of publications on demand trading is complete. The first report (1006015), the "Demand Trading Toolkit," documented how to conduct demand trading based on price. The second report (1001635), "Demand Trading: Building Liquidity," focused on the problem of liquidity in the energy industry and developed the Demand Response Resource Bank concept for governing electricity markets based on reliability. The present report focuses on the emerging price/risk partnerships in electr...

2004-03-18T23:59:59.000Z

205

Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world  

Science Conference Proceedings (OSTI)

The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

Heffner, Grayson C.

2002-09-01T23:59:59.000Z

206

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

207

The role of competitive forces in integrated resource planning  

SciTech Connect

In this report, we study the potential for competitive forces to enhance the efficiency of integrated resource planning and produce consumer cost reductions. We examine the efficiency gains from competition in the private power market, and ask whether similar forces can be successful on the demand-side of the market. The goal of this analysis is to identify and elucidate options available to state Public Utility Commissions (PUCs) to support competition in utility demand-side management programs to achieve efficiencies similar to those being achieved through development of competitive forces on the supply-side of the industry. We consider the entire market structure from upstream suppliers to distribution intermediaries to ultimate consumers. The market structure differs substantially between the demand-side and the supply-side of the electricity market. Demand-site electricity markets have a longer distribution chain and more intermediaries than the supply-side, which is attributable in part to the ultimately retail nature of demand and the wholesale nature of supply, and in part indicates market failures.

Kahn, E.; Goldman, C.

1991-10-01T23:59:59.000Z

208

Mass Market Demand Response and Variable Generation Integration Issues: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response and Variable Generation Integration Issues: A Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Title Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Cappers, Peter, Andrew D. Mills, Charles A. Goldman, Ryan H. Wiser, and Joseph H. Eto Pagination 76 Date Published 10/2011 Publisher LBNL City Berkeley Keywords demand response, electricity markets and policy group, energy analysis and environmental impacts department, renewable generation integration, smart grid Abstract The penetration of renewable generation technology (e.g., wind, solar) is expected to dramatically increase in the United States during the coming years as many states are implementing policies to expand this sector through regulation and/or legislation. It is widely understood, though, that large scale deployment of certain renewable energy sources, namely wind and solar, poses system integration challenges because of its variable and often times unpredictable production characteristics (NERC, 2009). Strategies that rely on existing thermal generation resources and improved wind and solar energy production forecasts to manage this variability are currently employed by bulk power system operators, although a host of additional options are envisioned for the near future. Demand response (DR), when properly designed, could be a viable resource for managing many of the system balancing issues associated with integrating large-scale variable generation (VG) resources (NERC, 2009). However, demand-side options would need to compete against strategies already in use or contemplated for the future to integrate larger volumes of wind and solar generation resources. Proponents of smart grid (of which Advanced Metering Infrastructure or AMI is an integral component) assert that the technologies associated with this new investment can facilitate synergies and linkages between demand-side management and bulk power system needs. For example, smart grid proponents assert that system-wide implementation of advanced metering to mass market customers (i.e., residential and small commercial customers) as part of a smart grid deployment enables a significant increase in demand response capability.1 Specifically, the implementation of AMI allows electricity consumption information to be captured, stored and utilized at a highly granular level (e.g., 15-60 minute intervals in most cases) and provides an opportunity for utilities and public policymakers to more fully engage electricity customers in better managing their own usage through time-based rates and near-real time feedback to customers on their usage patterns while also potentially improving the management of the bulk power system. At present, development of time-based rates and demand response programs and the installation of variable generation resources are moving forward largely independent of each other in state and regional regulatory and policy forums and without much regard to the complementary nature of their operational characteristics.2 By 2020, the electric power sector is expected to add ~65 million advanced meters3 (which would reach ~47% of U.S. households) as part of smart grid and AMI4 deployments (IEE, 2010) and add ~40-80 GW of wind and solar capacity (EIA, 2010). Thus, in this scoping study, we focus on a key question posed by policymakers: what role can the smart grid (and its associated enabling technology) play over the next 5-10 years in helping to integrate greater penetration of variable generation resources by providing mass market customers with greater access to demand response opportunities? There is a well-established body of research that examines variable generation integration issues as well as demand response potential, but the nexus between the two has been somewhat neglected by the industry. The studies that have been conducted are informative concerning what could be accomplished with strong broad-based support for the expansion of demand response opportunities, but typically do not discuss the many barriers that stand in the way of reaching this potential. This study examines how demand side resources could be used to integrate wind and solar resources in the bulk power system, identifies barriers that currently limit the use of demand side strategies, and suggests several factors that should be considered in assessing alternative strategies that can be employed to integrate wind and solar resources in the bulk power system. It is difficult to properly gauge the role that DR could play in managing VG integration issues in the near future without acknowledging and understanding the entities and institutions that govern the interactions between variable generation and mass market customers (see Figure ES-1). Retail entities, like load-serving entities (LSE) and aggregators of retail customers (ARC), harness the demand response opportunities of mass market customers through tariffs (and DR programs) that are approved by state regulatory agencies or local governing entities (in the case of public power). The changes in electricity consumption induced by DR as well as the changes in electricity production due to the variable nature of wind and solar generation technologies is jointly managed by bulk power system operators. Bulk power system operators function under tariffs approved by the Federal Energy Regulatory Commission (FERC) and must operate their systems in accordance with rules set by regional reliability councils. These reliability rules are derived from enforceable standards that are set by the North American Electric Reliability Corporation (NERC) and approved by federal regulators. Thus, the role that DR can play in managing VG integration issues is contingent on what opportunities state and local regulators are willing to approve and how customers' response to the DR opportunities can be integrated into the bulk power system both electrically (due to reliability rules) and financially (due to market rules).

209

Home Network Technologies and Automating Demand Response  

Science Conference Proceedings (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

210

Demand Response in U.S. Electricity Markets: Empirical Evidence  

SciTech Connect

Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ~;;38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation.

Cappers, Peter; Goldman, Charles; Kathan, David

2009-06-01T23:59:59.000Z

211

Demand Response in the West: Lessons for States and Provinces  

SciTech Connect

OAK-B135 This paper is submitted in fulfillment of DOE Grant No. DE-FG03-015F22369 on the experience of western states/provinces with demand response (DR) in the electricity sector. Demand-side resources are often overlooked as a viable option for meeting load growth and addressing the challenges posed by the region's aging transmission system. Western states should work together with utilities and grid operators to facilitate the further deployment of DR programs which can provide benefits in the form of decreased grid congestion, improved system reliability, market efficiency, price stabilization, hedging against volatile fuel prices and reduced environmental impacts of energy production. This report describes the various types of DR programs; provides a survey of DR programs currently in place in the West; considers the benefits, drawbacks and barriers to DR; and presents lessons learned and recommendations for states/provinces.

Douglas C. Larson; Matt Lowry; Sharon Irwin

2004-06-29T23:59:59.000Z

212

Model Documentation Report: Residential Demand Module of the ...  

U.S. Energy Information Administration (EIA)

rebates used in demand-side management programs), can be modified at the equipment level. Housing ... Residential retired equipment efficiencies of 2005 stock

213

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

214

Water demand management in Kuwait  

E-Print Network (OSTI)

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

215

A good integrated resource plan: Guidelines for electric utilities and regulators  

SciTech Connect

Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility`s report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

Hirst, E.

1992-12-01T23:59:59.000Z

216

A good integrated resource plan: Guidelines for electric utilities and regulators  

SciTech Connect

Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility's report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

Hirst, E.

1992-12-01T23:59:59.000Z

217

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

218

Demand Response Research in Spain  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

219

Buildings sector demand-side efficiency technology summaries  

SciTech Connect

This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

Koomey, J.G.; Johnson, F.X.; Schuman, J. [and others

1994-03-01T23:59:59.000Z

220

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network (OSTI)

programs, and the average cost per kWh saved. Using utilitythat the average per kWh program costs reported by utilities

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES  

E-Print Network (OSTI)

: Small Commercial, Residential Author: Haider Taha VII. Solar Domestic Water Heaters........................................................................... 59 End-Use: Water Heating Sector: Residential Author: Jim Lutz VIII. Heat Pump Water Heaters ................................................................................. 63 End-Use: Water Heating Sector: Residential Author: Jim Lutz IX. Energy-Efficient Motors

222

Research on Chronological Cost Simulation of Demand-Side Programs  

Science Conference Proceedings (OSTI)

Many electric power utilities use Direct Load Control (DLC) to reduce operational costs and peak capacity requirements. This report proposes a very effective and unique method for DLC dispatch.

1999-08-13T23:59:59.000Z

223

Discussion Paper Prepared for: Deploying Demand Side Energy Technologies workshop  

E-Print Network (OSTI)

The IEA study Energy Technology Perspectives 2006 (ETP 2006) demonstrates how energy technologies can contribute to a stabilization of CO2 emissions at today’s level by 2050. The results of the scenario analysis showed that no fundamental technology breakthroughs are needed. Technologies that are available today or that are under development today will

Cecilia Tam; Dolf Gielen

2007-01-01T23:59:59.000Z

224

Review of Demand-Side Bidding Programs: Impacts, Costs, and  

E-Print Network (OSTI)

Secretary of Energy Efficiency and Renewable Energy, Office ofUtility Technologies, Office ofEnergy Management Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. #12;Contents

225

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network (OSTI)

of electricity consumption reported by utility n in year telectricity consumption due to energy e?ciency DSM expenditures across utilities and years

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

226

Mobility and Carbon: The Blind Side of Transport Fuel Demand...  

NLE Websites -- All DOE Office Websites (Extended Search)

Anita Estner James McMahon A new "Great Wall" has emerged in China, this one a string of miles of cars stuck in traffic. Emissions from road transport in developing...

227

U.S. Electric Utility Demand-Side Management 2000  

U.S. Energy Information Administration (EIA)

Energy Savings for the 516 large electric utilities increased to 53.7 billion kilowatthours (kWh), 3.1 billion kWh more than in 1999. These energy savings

228

U.S. Electric Utility Demand-Side Managment 1996  

U.S. Energy Information Administration (EIA)

Energy Savings as a Percentage of Retail Sales by U.S. Electric Utilities with DSM Energy Savings Programs and Sales to Ultimate Consumers by Class of Ownership, 1996

229

Power Sector Reforms in India: Demand Side and Renewable Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

with EETD scientists on cooperative research? Get a job in EETD? Make my home more energy-efficient? Find a source within EETD for a news story I'm writing, shooting, or...

230

Wireless Network Performance for Residential Demand-Side Participation  

E-Print Network (OSTI)

and opportunities · Unintended consequences · Alternative approaches · Bottom line Energy Consumption in the United States Source: http://www.eia.doe.gov #12;2 Source: http://www.eia.doe.gov Energy Consumption by Sector of $250 B The Perfect Storm · September 11, 2001 · Terrorism, Iraq, Afghanistan · Iran, Venezuela, Nigeria

231

U.S. Electric Utility Demand-Side Management 1994  

U.S. Energy Information Administration (EIA)

10. U.S. Electric Utility Energy Savings by North American Electric Reliability Council Region and ... design, advanced electric motors and drive systems,

232

title Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans journal Energy Policy year month abstract p We review long term electric utility plans representing nbsp textquoteright of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy efficiency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in

233

Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 2  

SciTech Connect

This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

NONE

1995-04-01T23:59:59.000Z

234

Energy Efficiency Resource Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Resource Standard Energy Efficiency Resource Standard Energy Efficiency Resource Standard < Back Eligibility Investor-Owned Utility Savings Category Other Program Info State New Mexico Program Type Energy Efficiency Resource Standard Provider New Mexico Public Regulation Commission The Efficient Use of Energy Act requires investor-owned utilities in New Mexico to offer demand-side management and load management programs to their customers. The programs should be designed to achieve electricity savings totaling 5% of their 2005 retail sales by 2014, and 10% of their 2005 retail sales by 2020. All programs adopted by a utility must first be approved by the New Mexico Public Regulation Commission (PRC). Upon approval by the PRC, utilities are entitled to apply a [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NM09R&re...

235

Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-17T23:59:59.000Z

236

Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-17T23:59:59.000Z

237

Safety - Forums right side block | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Forums right side block Safety DataTools Apps Challenges Resources Blogs Let's Talk Safety You are here Data.gov Communities Safety Challenge.gov Developer Challenge...

238

Empirical analysis of the spot market implications ofprice-elastic demand  

SciTech Connect

Regardless of the form of restructuring, deregulated electricity industries share one common feature: the absence of any significant, rapid demand-side response to the wholesale (or, spotmarket) price. For a variety of reasons, electricity industries continue to charge most consumers an average cost based on regulated retail tariff from the era of vertical integration, even as the retailers themselves are forced to purchase electricity at volatile wholesale prices set in open markets. This results in considerable price risk for retailers, who are sometimes forbidden by regulators from signing hedging contracts. More importantly, because end-users do not perceive real-time (or even hourly or daily) fluctuations in the wholesale price of electricity, they have no incentive to adjust their consumption in response to price signals. Consequently, demand for electricity is highly inelastic, and electricity generation resources can be stretched to the point where system stability is threatened. This, then, facilitates many other problems associated with electricity markets, such as market power and price volatility. Indeed, economic theory suggests that even modestly price-responsive demand can remove the stress on generation resources and decrease spot prices. To test this theory, we use actual generator bid data from the New York control area to construct supply stacks, and intersect them with demand curves of various slopes to approximate different levels of demand elasticity. We then estimate the potential impact of real-time pricing on the equilibrium spot price and quantity. These results indicate the immediate benefits that could be derived from a more price-elastic demand. Such analysis can provide policymakers with a measure of how effective price-elastic demand can potentially reduce prices and maintain consumption within the capability of generation resources.

Siddiqui, Afzal S.; Bartholomew, Emily S.; Marnay, Chris

2004-07-08T23:59:59.000Z

239

TY JOUR T1 Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans JF Energy Policy A1 Jordan Wilkerson A1 Peter H Larsen A1 Galen L Barbose AB p We review long term electric utility plans representing nbsp of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy ef ciency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in peak demand by nbsp

240

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

242

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

243

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

244

Demand Pricing & Resource Allocation in Market- based ...  

Science Conference Proceedings (OSTI)

... While pricing operates on a comparatively slow ... and tracking the optimal price, admission control ... the time lag in varying and disseminating prices. ...

2013-02-25T23:59:59.000Z

245

Demand Response and Storage Integration Study: Markets Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Background Tools and techniques have been developed to help characterize demand response (DR) resources Given diversity in types of DR programs and relative...

246

Field Testing of Automated Demand Response for Integration of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products Title Field Testing of Automated...

247

Competitive Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Address 60 Church St Place Yalesville, Connecticut Zip 06492 Sector Efficiency Product Demand side management programs Website http://www.competitiveresource Coordinates 41.489499°, -72.811062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.489499,"lon":-72.811062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers...

249

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

250

Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing  

E-Print Network (OSTI)

to customers upon loss of power from the grid and under natural disasters, such as hurricanes or earthquakes to equipment failure, natural disasters, or terrorist acts. Current IEEE Standard 1547 [4] requires all of a PDS as a microgrid. Such standards will be of extreme value to maintain availability of power supply

Boutaba, Raouf

251

The Summer of 2006: A Milestone in the Ongoing Maturation of Demand Response  

E-Print Network (OSTI)

2007) Figure 7. U.S. Demand Response Resources in 2005Proposals to Augment 2007 Demand Response Programs, Aug. 22,Efforts to Improve Demand Response Programs for State to

Hopper, Nicole; Goldman, Charles; Bharvirkar, Ranjit; Engel, Dan

2007-01-01T23:59:59.000Z

252

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resources and Combined Heat and Power Distributed energy resources (DER) and combined heat and power (CHP) systems help Federal agencies meet increased demand,...

253

Tools & Resources: Resource Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Directory Resource Directory The guidance documents and reports below have been used by Better Buildings Neighborhood Program partners to build their programs and guide them to early successes. The tools and calculators can be used by homeowners, business owners, and program designers to help determine energy savings and other benefits associated with energy efficiency upgrades. Guidance Documents and Reports Background Program Evaluation Program Updates and Lessons Learned Program Design Marketing and Driving Demand Financing and Incentives Workforce Development Partnering with Utilities Technical Resources Tools and Calculators For Homes For Commercial Buildings Emissions and Equivalency Calculators Guidance Documents and Reports Background Recovery Through Retrofit Report

254

Demand Impacted by Weather  

U.S. Energy Information Administration (EIA)

When you look at demand, it’s also interesting to note the weather. The weather has a big impact on the demand of heating fuels, if it’s cold, consumers will use ...

255

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

256

Demand Response Screening Assessment Tool Version 1.0  

Science Conference Proceedings (OSTI)

The Demand Response Screeing Tool for Distribution Planners identifies opportunities for using demand response as a distribution resource. It serves as a screening tool to assist distribution planners to ascertain situations where demand response may be a cost45effective alternative to making distribution system asset investments. WindowsXP, Excel (MS Office 2003)

2010-12-06T23:59:59.000Z

257

Residential Energy Demand Reduction Analysis and Monitoring Platform - REDRAMP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dramatic Peak Residential Dramatic Peak Residential Demand Reduction in the Desert Southwest Yahia Baghzouz Center for Energy Research University of Nevada, Las Vegas Golden, CO Overview * Project description * Subdivision energy efficiency features * Home energy monitoring * Demand side management * Feeder loading * Battery Energy Storage System * Future Work Team Members Project Objective and Methodology * The main objective is to reduce peak power demand of a housing subdivision by 65% (compared to housing development that is built to conventional code). * This objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side Management - Battery Energy Storage System Project schematic Diagram Project Physical Location: Las Vegas, NV Red Rock Hotel/Casino

258

Demand Response Programs Oregon Public Utility Commission  

E-Print Network (OSTI)

(at 97 deg. F) #12;Cool Keeper Unit Installation #12;Cool Keeper Test Shed Load Profile 3350 3400 3450 operating according to their 'Natural Duty Cycle' 93 o F Expected load profile w/o Cool Keeper intervention, Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currently

259

Architecting the Consumer Side of the Grid for Energy Efficiency  

E-Print Network (OSTI)

Energy Efficiency and Demand Response Programs in the U.S. (2010 to 2030 Architecting the Consumer Side of the Grid for Energy MIT-IPC-Energy Innovation Working Paper 11-003 (also known as MIT-IPC Working

260

Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

Piette, Mary Ann; Kiliccote, Sila

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers Publication Type...

262

A new wholesale bidding mechanism for enhanced demand response in smart grids  

E-Print Network (OSTI)

Calls to improve customer participation as a key element of smart grids have reinvigorated interest in demand-side features such as distributed generation, on-site storage and demand response. In the context of deregulated ...

Wang, Jiankang

263

A demand responsive bidding mechanism with price elasticity matrix in wholesale electricity pools  

E-Print Network (OSTI)

In the past several decades, many demand-side participation features have been applied in the electricity power systems. These features, such as distributed generation, on-site storage and demand response, add uncertainties ...

Wang, Jiankang, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

264

Coordination of Energy Efficiency and Demand Response  

Science Conference Proceedings (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

265

Electrical Demand Management  

E-Print Network (OSTI)

The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below the previous year's level and yielded $150,000 annual savings. These measures include rescheduling of selected operations and demand limiting techniques such as fuel switching to alternate power sources during periods of high peak demand. For example, by rescheduling the startup of five heat treat annealing ovens to second shift, 950 kW of load was shifted off peak. Also, retired, non-productive steam turbine chillers and a diesel air compressor have been effectively operated to displaced 1330 kW during peak periods each day. Installed metering devices have enabled the recognition of critical demand periods. The paper concludes with a brief look at future plans and long range objectives of the Demand Management Plan.

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

266

Commercial and Industrial Base Intermittent Resource Management Pilot  

Science Conference Proceedings (OSTI)

This scoping study summarizes the challenges with integrating wind and solar generation into the California's electricity grid. These challenges include: Smoothing intra-hour variability; - Absorbing excess renewable energy during over-generation periods; - Addressing morning and evening ramping periods. In addition, there are technical challenges to integrating retail demand response (DR) triggered by the wholesale conditions into the CAISO markets. The study describes the DR programs available to the consumers through the utilities in California and CAISO's ancillary services market because an integration of the wholesale and retail DR requires an understanding of these different offerings and the costs associated with acquiring them. Demand-side active and passive storage systems are proposed as technologies that may be used to mitigate the effects of intermittence due to renewable generation. Commercial building technologies as well as industrial facilities with storage capability are identified as targets for the field tests. Two systems used for ancillary services communications are identified as providing the triggers for DR enablement. Through the field tests, issues related to communication, automation and flexibility of demand-side resources will be explored and the performance of technologies that participate in the field tests will be evaluated. The major outcome of this research is identifying and defining flexibility of DR resources and optimized use of these resources to respond to grid conditions.

Kiliccote, Sila; Sporborg, Pamela; Sheik, Imran; Huffaker, Erich; Piette, Mary Ann

2010-11-30T23:59:59.000Z

267

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

268

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

269

U.S. Propane Demand  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

270

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

xxxv Option Value of Electricity Demand Response, Osmanelasticity in aggregate electricity demand. With these newii) reduction in electricity demand during peak periods (

Heffner, Grayson

2010-01-01T23:59:59.000Z

271

Demand Response Valuation Frameworks Paper  

Science Conference Proceedings (OSTI)

While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

Heffner, Grayson

2009-02-01T23:59:59.000Z

272

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

273

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

internal conditions. Maximum Demand Saving Intensity [W/ft2]automated electric demand sheds. The maximum electric shed

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

274

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

275

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

276

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

277

Incorporating qualitative objectives in integrated resource planning: Application of analytic hierarchy process and compromise programming  

SciTech Connect

This article proposes a multiobjective methodology for the integrated resource planning (IRP) problem using a combined analytic hierarchy process (AHP)-compromise programming (CP) model. Six objectives, of which five are qualitative in nature, have been considered to select demand and supply-side resources for meeting future electricity demand. The quantitative objective (viz., cost) is employed directly in the CP model. AHP priorities are derived for the qualitative objectives (e.g., technological maturity) after eliciting expert judgments. These priorities are employed as coefficients of the decision variables in the objective functions corresponding to the qualitative objectives of the model. The two distinct advantages of this method are (1) explicit consideration of all important qualitative and quantitative aspects of demand-side management (DSM) and supply-side options, and (2) consideration of specific characteristics of various types of DSM options. An illustrative application is provided for an Indian utility (Maharashtra State Electricity System) for its integrated resource plan for the period 1990--2000. The results show that the AHP-CP model incorporating qualitative objectives selects a different portfolio of DSM and supply options, as compared with single-criterion solutions. Compromise among the conflicting objectives leads to significant cost savings as well as qualitative benefits like improved system reliability, reduced environmental impact, fewer problems related to fuel supply, and shorter project installation times.

Koundinya, S.; Chattopadhyay, D.; Ramanathan, R. [Indira Gandhi Inst. of Development Research, Bombay (India)

1995-09-01T23:59:59.000Z

278

Survey of Western U.S. Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U.S. Electric Utility Resource Plans Survey of Western U.S. Electric Utility Resource Plans Title Survey of Western U.S. Electric Utility Resource Plans Publication Type Journal Article Year of Publication 2014 Authors Wilkerson, Jordan, Peter H. Larsen, and Galen L. Barbose Journal Energy Policy Date Published 2014 Abstract We review long-term electric utility plans representing "' 90% of generation within the Western U.S. and Canadian provinces. We address what utility planners assume about future growth of electricity demand and supply; what types of risk they consider in their long-term resource planning; and the consistency in which they report resource planning-related data. The region is anticipated to grow by 2% annually by 2020 before Demand Side Management. About two-thirds of the utilities that provided an annual energy forecast also reported energy efficiency savings projections; in aggregate, they anticipate an average 6.4% reduction in energy and 8.6% reduction in peak demand by 2020. New natural gas-fired and renewable generation will replace retiring coal plants. Although some utilities anticipate new coal-fired plants, most are planning for steady growth in renewable generation over the next two decades. Most planned solar capacity will come online before 2020, with most wind expansion after 2020. Fuel mix is expected to remain "' 55% of total generation. Planners consider a wide range of risks but focus on future demand, fuel prices, and the possibility of GHG regulations. Data collection and reporting inconsistencies within and across electric utility resource plans lead to recommendations on policies to address this issue.

279

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

280

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Demand Response Database & Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Database & Demo Speaker(s): Mike Graveley William M. Smith Date: June 7, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Mary Ann Piette Infotility...

282

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

283

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

284

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

285

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

286

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

287

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

288

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

289

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

290

National conference on integrated resource planning: Proceedings  

Science Conference Proceedings (OSTI)

Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

Not Available

1991-01-01T23:59:59.000Z

291

National conference on integrated resource planning: Proceedings  

Science Conference Proceedings (OSTI)

Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers` short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners` (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

Not Available

1991-12-31T23:59:59.000Z

292

Estimating Demand Response Market Potential | Open Energy Information  

Open Energy Info (EERE)

Estimating Demand Response Market Potential Estimating Demand Response Market Potential Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating Demand Response Market Potential Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.ieadsm.org/Files/Tasks/Task%20XIII%20-%20Demand%20Response%20Resou Equivalent URI: cleanenergysolutions.org/content/estimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Resource Integration Planning This resource presents demand response (DR) potential results from top-performing programs in the United States and Canada, as well as a DR

293

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

294

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

time. 4 Reducing this peak demand through DR programs meansthat a 5% reduction in peak demand would have resulted insame 5% reduction in the peak demand of the US as a whole.

Shen, Bo

2013-01-01T23:59:59.000Z

295

Climate policy implications for agricultural water demand  

SciTech Connect

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

2013-03-28T23:59:59.000Z

296

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

297

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

298

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

299

Automated Demand Response Today  

Science Conference Proceedings (OSTI)

Demand response (DR) has progressed over recent years beyond manual and semi-automated DR to include growing implementation and experience with fully automated demand response (AutoDR). AutoDR has been shown to be of great value over manual and semi-automated DR because it reduces the need for human interactions and decisions, and it increases the speed and reliability of the response. AutoDR, in turn, has evolved into the specification known as OpenADR v1.0 (California Energy Commission, PIER Program, C...

2012-03-29T23:59:59.000Z

300

Travel Demand Modeling  

SciTech Connect

This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

302

On Demand Guarantees in Iran.  

E-Print Network (OSTI)

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

303

Transportation Demand Management Plan  

E-Print Network (OSTI)

Transportation Demand Management Plan FALL 2009 #12;T r a n s p o r t a t i o n D e m a n d M a n the transportation impacts the expanded enrollment will have. Purpose and Goal The primary goal of the TDM plan is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts

304

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

305

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

306

Demand response compensation, net Benefits and cost allocation: comments  

Science Conference Proceedings (OSTI)

FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

Hogan, William W.

2010-11-15T23:59:59.000Z

307

Demand Response - Policy: More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response - Policy: More Information Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the New England regional power markets. NEDRI's goal was to outline workable market rules, public policies, and regulatory criteria to incorporate customer-based demand response resources into New England's electricity markets and power systems. NEDRI promoted best practices and coordinated

308

Comfort-aware home energy management under market-based demand-response  

Science Conference Proceedings (OSTI)

To regulate energy consumption and enable Demand-Response programs, effective demand-side management at home is key and an integral part of the future Smart Grid. In essence, the home energy management is a mix between discrete appliance scheduling problem ... Keywords: demand-response, energy management, smart grid

Jin Xiao, Jian Li, Raouf Boutaba, James Won-Ki Hong

2012-10-01T23:59:59.000Z

309

Empirical Analysis of the Spot Market Implications ofPrice-Responsive Demand  

SciTech Connect

Regardless of the form of restructuring, deregulatedelectricity industries share one common feature: the absence of anysignificant, rapid demand-side response to the wholesale (or, spotmarket) price. For a variety of reasons, most electricity consumers stillpay an average cost based regulated retail tariff held over from the eraof vertical integration, even as the retailers themselves are oftenforced to purchase electricity at volatile wholesale prices set in openmarkets. This results in considerable price risk for retailers, who aresometimes additionally forbidden by regulators from signing hedgingcontracts. More importantly, because end-users do not perceive real-time(or even hourly or daily) fluctuations in the wholesale price ofelectricity, they have no incentive to adjust their consumptionaccordingly. Consequently, demand for electricity is highly inelastic,which together with the non storability of electricity that requiresmarket clearing over very short time steps spawn many other problemsassociated with electricity markets, such as exercise of market power andprice volatility. Indeed, electricity generation resources can bestretched to the point where system adequacy is threatened. Economictheory suggests that even modest price responsiveness can relieve thestress on generation resources and decrease spot prices. To quantify thiseffect, actual generator bid data from the New York control area is usedto construct supply stacks and intersect them with demand curves ofvarious slopes to approximate the effect of different levels of demandresponse. The potential impact of real-time pricing (RTP) on theequilibrium spot price and quantity is then estimated. These resultsindicate the immediate benefits that could be derived from a moreprice-responsive demand providing policymakers with a measure of howprices can be potentially reduced and consumption maintained within thecapability of generation assets.

Siddiqui, Afzal S.; Bartholomew, Emily S.; Marnay, Chris

2005-08-01T23:59:59.000Z

310

Heuristic batching policies for video-on-demand services  

Science Conference Proceedings (OSTI)

A video-on-demand (VOD) service imposes extremely severe resource requirement in terms of bandwidth and storage. Batching policies that use a single channel to serve multiple active clients for the same video program can reduce system resource requirement ... Keywords: Batching policy, Channel allocation, Instantaneous MFQL, Maximum factored queue length, Rate-based, Regular-interval, Statistical MFQL

J.-K Chen; J. -L. C Wu

1999-08-01T23:59:59.000Z

311

Computer resources Computer resources  

E-Print Network (OSTI)

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

312

DE-AC03-76SF00098. CONFIGURING LOAD AS A RESOURCE FOR COMPETITIVE ELECTRICITY MARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. AND AROUND THE WORLD  

E-Print Network (OSTI)

The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge

Grayson C. Heffner; Grayson C. Heffner

2002-01-01T23:59:59.000Z

313

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

314

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

315

Western Resource Adequacy: Challenges - Approaches - Metrics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans in the West: Resource Strategies for a "Hybrid" Market Demand Response National Trends: Implications for the West? Proposed Energy Transport Corridors: West-wide energy...

316

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

317

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

318

On Demand Paging Using  

E-Print Network (OSTI)

The power consumption of the network interface plays a major role in determining the total operating lifetime of wireless handheld devices. On demand paging has been proposed earlier to reduce power consumption in cellular networks. In this scheme, a low power secondary radio is used to wake up the higher power radio, allowing the latter to sleep or remain off for longer periods of time. In this paper we present use of Bluetooth radios to serve as a paging channel for the 802.11 wireless LAN. We have implemented an on-demand paging scheme on a WLAN consisting of iPAQ PDAs equipped with Bluetooth radios and Cisco Aironet wireless networking cards. Our results show power saving ranging from 19% to 46% over the present 802.11b standard operating modes with negligible impact on performance.

Bluetooth Radios On; Yuvraj Agarwal; Rajesh K. Gupta

2003-01-01T23:59:59.000Z

319

Net Demand3 Production  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary The US DOE has identified a number of materials that are both used by clean energy technologies and are at risk of supply disruptions in the short term. Several of these materials, especially the rare earth elements (REEs) yttrium, cerium, and lanthanum were identified by DOE as critical (USDOE 2010) and are crucial to the function and performance of solid oxide fuel cells (SOFCs) 1. In addition, US DOE has issued a second Request For Information regarding uses of and markets for these critical materials (RFI;(USDOE 2011)). This report examines how critical materials demand for SOFC applications could impact markets for these materials and vice versa, addressing categories 1,2,5, and 6 in the RFI. Category 1 – REE Content of SOFC Yttria (yttrium oxide) is the only critical material (as defined for the timeframe of interest for SOFC) used in SOFC 2. Yttrium is used as a dopant in the SOFC’s core ceramic cells.. In addition, continuing developments in SOFC technology will likely further reduce REE demand for SOFC, providing credible scope for at least an additional 50 % reduction in REE use if desirable. Category 2 – Supply Chain and Market Demand SOFC developers expect to purchase

J. Thijssen Llc

2011-01-01T23:59:59.000Z

320

Sell-Side Benchmarks  

E-Print Network (OSTI)

Sell-side analysts employ different benchmarks when defining their stock recommendations. For example, a ‘buy ’ for some brokers means the stock is expected to outperform its peers in the same sector (“sector benchmarkers”), while for other brokers it means the stock is expected to outperform the market (“market benchmarkers”), or just some absolute return (“total benchmarkers”). We explore the validity and implications of the adoption of these different benchmarks. Analysis of the relation between analysts ’ recommendations and their long-term growth and earnings forecasts suggests that analysts indeed abide by their benchmarks: Sector benchmarkers rely less on across-industry information, and focus more on ranking firms within their industries. We also find evidence that market- and sector-benchmarkers are successful in meeting or beating their benchmark returns, while total-benchmarkers are not. However, we do not find much evidence that investors react differently to recommendations based on the different benchmarks. The research carries implications for the correct understanding and interpretation of sell-side research and its investment value.

Ohad Kadan; Leonardo Madureira; Rong Wang; Tzachi Zach

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

China's Coal: Demand, Constraints, and Externalities  

Science Conference Proceedings (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

322

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Natural Gas Demands..xi Annual natural gas demand for each alternativeused in natural gas demand projections. 34

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

323

Demand Response For Power System Reliability: FAQ  

SciTech Connect

Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

Kirby, Brendan J [ORNL

2006-12-01T23:59:59.000Z

324

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Minimum demand and Maximum demand incorporate assumptionslevels, or very minor Maximum demand household size, growthvehicles in Increasing Maximum demand 23 mpg truck share

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

325

Dividends with Demand Response  

SciTech Connect

To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

2003-10-31T23:59:59.000Z

326

Resources on Water Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Efficiency » Resources on Water Efficiency Water Efficiency » Resources on Water Efficiency Resources on Water Efficiency October 8, 2013 - 10:03am Addthis Many helpful resources about water efficiency are available. Also see Contacts. Federal Resources Reverse Osmosis Optimization Technology Evaluation: -This FEMP technology evaluation assesses techniques for optimizing reverse osmosis systems to increase system performance and water efficiency. Side Stream Filtration for Cooling Towers (Full Report): Comprehensive document assessing side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. Technical Evaluation of Side Stream Filtration for Cooling Towers (Fact

327

Chinese demand drives global deforestation Chinese demand drives global deforestation  

E-Print Network (OSTI)

Chinese demand drives global deforestation Chinese demand drives global deforestation By Tansa Musa zones and do not respect size limits in their quest for maximum financial returns. "I lack words economy. China's demand for hardwood drives illegal logging says "Both illegal and authorized

328

Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand  

E-Print Network (OSTI)

: Properties of the AIDS Generalized Maximum Entropy Estimator 24 #12;Estimating a Demand SystemEstimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand Amos Golan* Jeffrey with nonnegativity constraints is presented. This approach, called generalized maximum entropy (GME), is more

Perloff, Jeffrey M.

329

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

330

A System Dynamics Approach for Developing Zone Water Demand Forecasting: A Case Study of Linkong Area  

Science Conference Proceedings (OSTI)

System dynamics (SD) approach for developing zone water demand forecasting was developed based on the analysis of its water resources system which has multi-feedback and nonlinear interactions amongst system elements. As an example, Tianjin Binhai Linkong ... Keywords: developing zone, system dynamics, water resources demand, Linkong

Xuehua Zhang; Hongwei Zhang; Xinhua Zhao

2008-12-01T23:59:59.000Z

331

Clean Energy Options for Sabah: An Analysis of Resource Availability...  

Open Energy Info (EERE)

and Latin America. For each renewable option we examine-biomass waste, hydropower, solar, wind, geothermal, and demand-side energy efficiency-we compiled cost information...

332

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 ..............................................................................3 Residential Forecast Comparison ..............................................................................................5 Nonresidential Forecast Comparisons

333

Overview of Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

334

Better Buildings Neighborhood Program: Business Model Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Model Business Model Resources to someone by E-mail Share Better Buildings Neighborhood Program: Business Model Resources on Facebook Tweet about Better Buildings Neighborhood Program: Business Model Resources on Twitter Bookmark Better Buildings Neighborhood Program: Business Model Resources on Google Bookmark Better Buildings Neighborhood Program: Business Model Resources on Delicious Rank Better Buildings Neighborhood Program: Business Model Resources on Digg Find More places to share Better Buildings Neighborhood Program: Business Model Resources on AddThis.com... Getting Started Assess the Market Establish Goals & Objectives Develop Plans of Action Business Model Resources Driving Demand Financing Workforce Development Business Model Resources Business Models Workshop and Materials

335

Grid Reliability Considerations for High Levels of Demand Response  

Science Conference Proceedings (OSTI)

The objectives of this white paper are to: (1) consider the unique characteristics of demand response relative to bulk electric system reliability needs and present contributions to system reliability, (2) identify potential bulk electric system reliability impacts of high levels of demand response without appropriate characterization of the resource over time and at increasing penetration levels, and (3) identify research needs to address these impacts so that the potential benefits of DR as system ...

2013-11-07T23:59:59.000Z

336

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

337

Rates and technologies for mass-market demand response  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and technologies for mass-market demand response Rates and technologies for mass-market demand response Title Rates and technologies for mass-market demand response Publication Type Conference Paper LBNL Report Number LBNL-50626 Year of Publication 2002 Authors Herter, Karen, Roger Levy, John Wilson, and Arthur H. Rosenfeld Conference Name 2002 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response, demand response and distributed energy resources center, demand response research center, rate programs & tariffs Abstract Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory, system-operator controlled, contingency program, and (2) a voluntary, customer controlled, bill management program with rate-based incentives. Any demand response program based on this system could consist of either or both of these components. Ideally, these programs would be bundled, providing automatic load management through customer-programmed price response, plus up to 10 GW of emergency load shedding capability in California. Finally, we discuss options for and barriers to implementation of such a program in California.

338

Tools & Resources: Resource Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

that reduce air emissions. Emissions & Generation Resource Integrated Database (eGRID) A tool that provides data on the environmental characteristics of almost all electric...

339

Publications & Resources, Human Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

or approved by Brookhaven National Laboratory or the Human Resources Division. Manuals Scientific Staff Manual Supervisors Personnel Manual SBMS Subject Areas Compensation...

340

Demand Response Spinning Reserve Demonstration -- Phase 2 Findings from the Summer of 2008  

Science Conference Proceedings (OSTI)

The Demand Response Spinning Reserve project is a pioneering demonstration showing that existing utility load-management assets can provide an important electricity system reliability resource known as spinning reserve. Using aggregated demand-side resources to provide spinning reserve as demonstrated in this project will give grid operators at the California Independent System Operator (CA ISO) and Southern California Edison (SCE) a powerful new tool to improve reliability, prevent rolling blackouts, and lower grid operating costs.In the first phase of this demonstration project, we target marketed SCE?s air-conditioning (AC) load-cycling program, called the Summer Discount Plan (SDP), to customers on a single SCE distribution feederand developed an external website with real-time telemetry for the aggregated loads on this feeder and conducted a large number of short-duration curtailments of participating customers? air-conditioning units to simulate provision of spinning reserve. In this second phase of the demonstration project, we explored four major elements that would be critical for this demonstration to make the transition to a commercial activity:1. We conducted load curtailments within four geographically distinct feeders to determine the transferability of target marketing approaches and better understand the performance of SCE?s load management dispatch system as well as variations in the AC use of SCE?s participating customers;2. We deployed specialized, near-real-time AC monitoring devices to improve our understanding of the aggregated load curtailments we observe on the feeders;3. We integrated information provided by the AC monitoring devices with information from SCE?s load management dispatch system to measure the time required for each step in the curtailment process; and4. We established connectivity with the CA ISO to explore the steps involved in responding to CA ISO-initiated requests for dispatch of spinning reserve.The major findings from the second phase of this demonstration are:1. Demand-response resources can provide full response significantly faster than required by NERC and WECC reliability rules.2. The aggregate impact of demand response from many small, individual sources can be estimated with varying degrees of reliability through analysis of distribution feeder loads.3. Monitoring individual AC units helps to evaluate the efficacy of the SCE load management dispatch system and better understand AC energy use by participating customers.4. Monitoring individual AC units provides an independent data source to corroborate the estimates of the magnitude of aggregate load curtailments and gives insight into results from estimation methods that rely solely on distribution feeder data.

Eto, Joseph H.; Nelson-Hoffman, Janine; Parker, Eric; Bernier, Clark; Young, Paul; Sheehan, Dave; Kueck, John; Kirby, Brendan

2009-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Assisting Mexico in Developing Energy Supply and Demand Projections | Open  

Open Energy Info (EERE)

Assisting Mexico in Developing Energy Supply and Demand Projections Assisting Mexico in Developing Energy Supply and Demand Projections Jump to: navigation, search Name Assisting Mexico in Developing Energy Supply and Demand Projections Agency/Company /Organization Argonne National Laboratory Sector Energy Topics GHG inventory, Background analysis Resource Type Software/modeling tools Website http://www.dis.anl.gov/news/Me Country Mexico UN Region Latin America and the Caribbean References Assisting Mexico in Developing Energy Supply and Demand Projections[1] "CEEESA and the team of experts from Mexico analyzed the country's entire energy supply and demand system using CEEESA's latest version of the popular ENPEP-BALANCE software. The team developed a system representation, a so-called energy network, using ENPEP's powerful graphical user

342

Demand Response Programs, 6. edition  

Science Conference Proceedings (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

343

Assessment of Industrial Load for Demand Response across Western Interconnect  

SciTech Connect

Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)] [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

2013-11-01T23:59:59.000Z

344

Assessment of the impacts of demand curtailments in the DAMs: issues in and proposed modifications of FERC Order No. 745.  

E-Print Network (OSTI)

??The Federal Energy Regulatory Commission (FERC), in its initiative to incentivize demand response resources (DRRs) to participate in the day-ahead markets (DAMs), enacted Order No.… (more)

Castillo, Isaac

2013-01-01T23:59:59.000Z

345

Elasticities of Electricity Demand in Urban Indian Households  

E-Print Network (OSTI)

Energy demand, and in particular electricity demand in India has been growing at a very rapid rate over the last decade. Given, current trends in population growth, industrialisation, urbanisation, modernisation and income growth, electricity consumption is expected to increase substantially in the coming decades as well. Tariff reforms could play a potentially important role as a demand side management tool in India. However, the effects of any price revisions on consumption will depend on the price elasticity of demand for electricity. In the past, electricity demand studies for India published in international journals have been based on aggregate macro data at the country or sub-national / state level. In this paper, price and income elasticities of electricity demand in the residential sector of all urban areas of India are estimated for the first time using disaggregate level survey data for over thirty thousand households. Three electricity demand functions have been estimated using monthly data for the following seasons: winter, monsoon and summer. The results show electricity demand is income and price inelastic in all three seasons, and that household, demographic and geographical variables are important in determining electricity demand, something that is not possible to determine using aggregate macro models alone. Key Words Residential electricity demand, price elasticity, income elasticity Short Title Electricity demand in Indian households Acknowledgements: The authors would like to gratefully acknowledge the National Sample Survey Organisation, Department of Statistics of the Government of India, for making available to us the unit level, household survey data. We would also like to thank Prof. Daniel Spreng for his support of our research. 2 1.

Shonali Pachauri

2002-01-01T23:59:59.000Z

346

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

347

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

348

Unlocking the potential for efficiency and demand response throughadvanced metering  

Science Conference Proceedings (OSTI)

Reliance on the standard cumulative kilowatt-hour metersubstantially compromises energy efficiency and demand response programs.Without advanced metering, utilities cannot support time-differentiatedrates or collect the detailed customer usage information necessary to (1)educate the customer to the economic value of efficiency and demandresponse options, or (2) distribute load management incentivesproportional to customer contribution. These deficiencies prevent thecustomer feedback mechanisms that would otherwise encourage economicallysound demand-side investments and behaviors. Thus, the inability tocollect or properly price electricity usage handicaps the success ofalmost all efficiency and demand response options. Historically,implementation of the advanced metering infrastructure (AMI) necessaryfor the successful efficiency and demand response programs has beenprevented by inadequate cost-benefit analyses. A recent California efforthas produced an expanded cost-effectiveness methodology for AMI thatintroduces previously excluded benefits. In addition to utility-centriccosts and benefits, the new model includes qualitative and quantitativecosts and benefits that accrue to both customers and society.

Levy, Roger; Herter, Karen; Wilson, John

2004-06-30T23:59:59.000Z

349

Automated Demand Response and Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

and Commissioning Title Automated Demand Response and Commissioning Publication Type Conference Paper LBNL Report Number LBNL-57384 Year of Publication 2005 Authors Piette, Mary...

350

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

lvi Southern California Edison filed its SmartConnectinfrastructure (e.g. , Edison Electric Institute, DemandSouthern California Edison Standard Practice Manual

Heffner, Grayson

2010-01-01T23:59:59.000Z

351

Demand Uncertainty and Price Dispersion.  

E-Print Network (OSTI)

??Demand uncertainty has been recognized as one factor that may cause price dispersion in perfectly competitive markets with costly and perishable capacity. With the persistence… (more)

Li, Suxi

2007-01-01T23:59:59.000Z

352

DPUC - Capital Grants for Customer-Side Distributed Resources...  

Open Energy Info (EERE)

Technologies, Unspecified technologies Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs, Energy Efficiency...

353

Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing  

Science Conference Proceedings (OSTI)

Controlling electric loads to deliver power system services presents a number of interesting challenges. For example, changes in electricity consumption of Commercial and Industrial (C&I) facilities are usually estimated using counterfactual baseline models, and model uncertainty makes it difficult to precisely quantify control responsiveness. Moreover, C&I facilities exhibit variability in their response. This paper seeks to understand baseline model error and demand-side variability in responses to open-loop control signals (i.e. dynamic prices). Using a regression-based baseline model, we define several Demand Response (DR) parameters, which characterize changes in electricity use on DR days, and then present a method for computing the error associated with DR parameter estimates. In addition to analyzing the magnitude of DR parameter error, we develop a metric to determine how much observed DR parameter variability is attributable to real event-to-event variability versus simply baseline model error. Using data from 38 C&I facilities that participated in an automated DR program in California, we find that DR parameter errors are large. For most facilities, observed DR parameter variability is likely explained by baseline model error, not real DR parameter variability; however, a number of facilities exhibit real DR parameter variability. In some cases, the aggregate population of C&I facilities exhibits real DR parameter variability, resulting in implications for the system operator with respect to both resource planning and system stability.

Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

2011-08-15T23:59:59.000Z

354

Retail Demand Response in Southwest Power Pool  

SciTech Connect

In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

2009-01-30T23:59:59.000Z

355

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

energy efficiency and demand response programs and tariffs.energy efficiency and demand response program and tariffenergy efficiency and demand response programs and tariffs.

Goldman, Charles

2010-01-01T23:59:59.000Z

356

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

357

Demand Response Quick Assessment Tool (DRQAT)  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool (DRQAT) The opportunities for demand reduction and cost saving with building demand responsive control vary tremendously with building type...

358

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

359

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

360

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

362

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

363

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Table 1. “Economic” demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

364

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

8 Figure 7: Maximum Demands Savings Intensity due toaddressed in this report. Maximum Demand Savings Intensity (Echelon Figure 7: Maximum Demands Savings Intensity due to

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

365

Supply, demand and ICT-based services: A local level perspective  

Science Conference Proceedings (OSTI)

While much of the economic development literature urges greater emphasis on demand-based strategies, policies designed to create economic development advantage by leveraging telecommunications investment continue to be supply side oriented. The rationale ... Keywords: Information technology utilization, Municipal telecommunications service, Public broadband network, Rural economic development, Supply side policies, Technology transfer

Jan Youtie; Philip Shapira; Greg Laudeman

2007-07-01T23:59:59.000Z

366

Analysis of Distribution Level Residential Demand Response  

SciTech Connect

Control of end use loads has existed in the form of direct load control for decades. Direct load control systems allow a utility to interrupt power to a medium to large size commercial or industrial customer a set number of times a year. With the current proliferation of computing resources and communications systems the ability to extend the direct load control systems now exists. Demand response systems now have the ability to not only engage commercial and industrial customers, but also the individual residential customers. Additionally, the ability exists to have automated control systems which operate on a continual basis instead of the traditional load control systems which could only be operated a set number of times a year. These emerging demand response systems have the capability to engage a larger portion of the end use load and do so in a more controlled manner. This paper will examine the impact that demand response systems have on the operation of an electric power distribution system.

Schneider, Kevin P.; Fuller, Jason C.; Chassin, David P.

2009-03-23T23:59:59.000Z

367

Demand or Request: Will Load Behave?  

Science Conference Proceedings (OSTI)

Power planning engineers are trained to design an electric system that satisfies predicted electrical demand under stringent conditions of availability and power quality. Like responsible custodians, we plan for the provision of electrical sustenance and shelter to those in whose care regulators have given us the responsibility to serve. Though most customers accept this nurturing gladly, a growing number are concerned with the economic costs and environmental impacts of service at a time when technology (particularly distributed generation, storage, automation, and information networks) offers alternatives for localized control and competitive service. As customers’ and their systems mature, a new relationship with the electricity provider is emerging. Demand response is perhaps the first unsteady step where the customer participates as a partner in system operations. This paper explores issues system planners need to consider as demand response matures to significant levels beyond direct load control and toward a situation where service is requested and bargains are reached with the electricity provider based on desired load behavior. On one hand, predicting load growth and behavior appears more daunting than ever. On the other, for the first time load becomes a new resource whose behavior can be influenced during system operations to balance system conditions.

Widergren, Steven E.

2009-07-30T23:59:59.000Z

368

Harnessing the power of demand  

Science Conference Proceedings (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

369

China, India demand cushions prices  

SciTech Connect

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

370

Efficient demand assignment in multi-connected microgrids  

Science Conference Proceedings (OSTI)

With the proliferation of distributed generation, an electrical load can be satisfied either by a centralized generator or by local/nearby distributed generators. Given a set of resource demands in a collection of geographically co-located microgrids ... Keywords: switching

Kirill Kogan, Sergey Nikolenko, Srinivasan Keshav, Alejandro Lopez-Ortiz

2013-01-01T23:59:59.000Z

371

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

climate zones. . . . . . . . . . . . . . . . . . .results. . . . Mapping of CEC forecast climate zones toCalifornia building climate zones. TCL parameter assumptions

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

372

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

in discrete time. . California climate zones. . . . . . .results. . . . Mapping of CEC forecast climate zones toCalifornia building climate zones. TCL parameter assumptions

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

373

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

1.2.1 Time-differentiated electricity rates 1.2.2 Incentiveto time-differentiated electricity rates. Other DR conceptsTime-differentiated electricity rates Time differentiated

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

374

Demand Responsive Programs -An Emerging Resource for Competitive  

E-Print Network (OSTI)

? Dr. Grayson C. Heffner and Charles A. Goldman Environmental Energy Technologies Division Ernest of Energy Efficiency and Renewable Energy, Office of Power Technologies of the U.S. Department of Energy Charles A. Goldman, Lawrence Berkeley National Laboratory, Berkeley, CA ABSTRACT The restructuring

375

Demand responsive programs - an emerging resource for competitive electricity markets?  

E-Print Network (OSTI)

References Bressler, Stu (PJM Interconnection, L.L.C. ).01, Effective Date: 06/01/00. PJM Interconnection, L.L.C. ,Market Monitoring Unit 2000. PJM Interconnection State of

Heffner, Dr. Grayson C.; Goldman, Charles A.

2001-01-01T23:59:59.000Z

376

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

In: IEEE Transactions on Smart Grid 11.2 (1996), pp. 708–reductions enabled by a smart grid. Tech. rep. EPRI TR-al. The many meanings of ‘smart grid’. Tech. rep. Paper 22.

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

377

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

index.cfm/mytopic=13090. [34] EERE. Results and methodology2011), pp. 411–419. [31] EERE. EnergyPlus energy simulationcfm/weather_data.cfm. [32] EERE. Estimating appliance and

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

378

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

2011), pp. 411–419. [31] EERE. EnergyPlus energy simulationcfm/weather_data.cfm. [32] EERE. Estimating appliance andmytopic=10040. [33] EERE. Lower water heater temperature for

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

379

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

for an office building. ACF and PACF computed with theCompany. xii Abbreviations ACF APE AR CAISO CBP CEC C&Iautocorrelation functions (ACF) and partial autocorrelation

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

380

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

for an office building. ACF and PACF computed with thelag one autocorrelation, or plot the ACF and PACF. First, weCompany. xii Abbreviations ACF APE AR CAISO CBP CEC C&I

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

buildings”. In: Journal of Solar Energy Engineering 120 (I-II”. In: Journal of Solar Energy Engineering 120 (1998),modeling”. In: Journal of Solar Energy Engineering 120 (

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

382

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

buildings”. In: Journal of Solar Energy Engineering 120 (I-II”. In: Journal of Solar Energy Engineering 120 (1998),modeling”. In: Journal of Solar Energy Engineering 120 (

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

383

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

384

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

the average and maximum peak demand savings. The electricity1: Average and Maximum Peak Electric Demand Savings during

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

385

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

386

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

387

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

Model of the Global Crude Oil Market and the U.S. RetailNoureddine. 2002. World crude oil and natural gas: a demandanalysis of the demand for oil in the Middle East. Energy

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

388

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

389

Effects of Demand Response on Retail and Wholesale Power Markets  

Science Conference Proceedings (OSTI)

Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energy’s Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets is discussed with necessary and sufficient conditions on system controllability, observability and stability derived.

Chassin, David P.; Kalsi, Karanjit

2012-07-26T23:59:59.000Z

390

Retail Demand Response in Southwest Power Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response in Southwest Power Pool Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region.

391

Demand Response & Smart Grid - State Legislative and Regulatory Policy  

Open Energy Info (EERE)

Demand Response & Smart Grid - State Legislative and Regulatory Policy Demand Response & Smart Grid - State Legislative and Regulatory Policy Actions: October 2008 to May 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demand Response & Smart Grid - State Legislative and Regulatory Policy Actions: October 2008 to May 2010 Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.demandresponsesmartgrid.org/Resources/Documents/State%20Policy%20S Equivalent URI: cleanenergysolutions.org/content/demand-response-smart-grid-state-legi Language: English Policies: Regulations Regulations: Enabling Legislation This report reviews the implementation of utility efficiency programs in the United States at both the state and federal levels. In addition, the updated report catalogues regulatory commission action, independent of

392

Water Utility Demand Management and the Financial, Social and Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Utility Demand Management and the Financial, Social and Environmental Water Utility Demand Management and the Financial, Social and Environmental Drivers Speaker(s): Allan J. Dietemann Date: February 19, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Camilla Whitehead At Seattle Public Utilities, Al Dietemann leads a team of 11 persons with a budget of $5 million a year implementing cost-effective resource conservation measures. In 2003, the Seattle area used less water than was used in 1950 on an annual basis. Seattle's demand management programs have been successful in holding total regional water use constant in our service area, despite an annual growth in population served. During this seminar he will speak to the following issues: 1) Water utility demand management and the financial, social and environmental drivers. 2)

393

Pathway and Resource Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway and Resource Overview Pathway and Resource Overview Delivering Renewable Hydrogen Workshop - A Focus on Near-Term Applications Mark F. Ruth November 16, 2009 Palm Springs, CA NREL/PR-6A1-47108 National Renewable Energy Laboratory Innovation for Our Energy Future Definition and Presentation Outline Hydrogen pathway analysis is analysis of the total levelized cost (including return on investment), well-to- wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways. This presentation focuses on * Pathway analyses using the Macro-System Model (MSM) * Resource and pathway analysis using the Hydrogen Demand and Resource Analysis Tool (HyDRA) * Status of water-electrolysis technology

394

Water resources planning under climate change and variability  

E-Print Network (OSTI)

Scenario to Climatic Changes. Water Resources Management 19:2006) Quantifying the Urban Water Supply Impacts of Climateto the Shape of Supply? Water Demand Under Heterogeneous

O'Hara, Jeffrey Keith

2007-01-01T23:59:59.000Z

395

Energy-water nexus : sustainability of coal and water resources.  

E-Print Network (OSTI)

??Energy and water are two precious natural resources with which demand will continue to grow with increased population growth. Coal provides a cheap and abundant… (more)

Hebel, Anna Kathleen

2010-01-01T23:59:59.000Z

396

Reinforcement learning techniques for controlling resources in power networks.  

E-Print Network (OSTI)

??As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the… (more)

Kowli, Anupama

2013-01-01T23:59:59.000Z

397

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

Benenson, P.

2010-01-01T23:59:59.000Z

398

Side by Side Testing of Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Florida A Research Institute of the University of Central Florida Side by Side Testing of Water Heating Systems Residential Energy Efficiency Stakeholder Meeting Austin , Texas March 1st, 2012 Carlos J. Colon carlos@fsec.ucf.edu FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Cocoa, Florida 3 2009 -Present (Currently in third testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Underground Circulation Loop * Solar circulation Loop 140+ feet of ½" copper tubing * Encased in PVC tubing with R-2.4 insulation * ICS to 50 gallon storage tank path need to

399

Brushless machine having ferromagnetic side plates and side magnets  

Science Conference Proceedings (OSTI)

An apparatus is provided having a cylindrical stator and a rotor that is spaced from a stator to define an annular primary air gap that receives AC flux from the stator. The rotor has a plurality of longitudinal pole portions disposed parallel to the axis of rotation and alternating in polarity around a circumference of the rotor. Each longitudinal pole portion includes portions of permanent magnet (PM) material and at least one of the longitudinal pole portions has a first end and an opposing second end and a side magnet is disposed adjacent the first end and a side pole is disposed adjacent the second end.

Hsu, John S

2012-10-23T23:59:59.000Z

400

Automated Demand Response Technologies and Demonstration in New York City  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Demonstration in New York City Technologies and Demonstration in New York City using OpenADR Title Automated Demand Response Technologies and Demonstration in New York City using OpenADR Publication Type Report LBNL Report Number LBNL-6470E Year of Publication 2013 Authors Kim, Joyce Jihyun, Sila Kiliccote, and Rongxin Yin Date Published 09/2013 Publisher LBNL/NYSERDA Abstract Demand response (DR) - allowing customers to respond to reliability requests and market prices by changing electricity use from their normal consumption pattern - continues to be seen as an attractive means of demand-side management and a fundamental smart-grid improvement that links supply and demand. Since October 2011, the Demand Response Research Center at Lawrence Berkeley National Laboratory and New York State Energy Research and Development Authority have conducted a demonstration project enabling Automated Demand Response (Auto-DR) in large commercial buildings located in New York City using Open Automated Demand Response (OpenADR) communication protocols. In particular, this project focuses on demonstrating how OpenADR can automate and simplify interactions between buildings and various stakeholders in New York State including the independent system operator, utilities, retail energy providers, and curtailment service providers. In this paper, we present methods to automate control strategies via building management systems to provide event-driven demand response, price response and demand management based on OpenADR signals. We also present cost control opportunities under day-ahead hourly pricing for large customers and Auto-DR control strategies developed for demonstration buildings. Lastly, we discuss the communication architecture and Auto-DR system designed for the demonstration project to automate price response and DR participation.

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

IP-Addressable Smart Appliances for Demand Response Applications  

Science Conference Proceedings (OSTI)

This technology brief provides a utility-centric assessment of networked appliances that use the internet protocol (IP). The impetus for this assessment is utility interest in demand-side management, and how residential appliances might participate in the associated utility programs. The residential sector has seen a steady expansion of IP-based connectivity to homes, with 55 of residences in the U.S. currently subscribing to broadband services. Networking appliances in the home using IP-based networks o...

2009-02-26T23:59:59.000Z

402

Load as a reliability resource in restructured electricity markets  

Science Conference Proceedings (OSTI)

Recent electricity price spikes demonstrate the value that demand-side responses could bring to a restructured US electricity system. This report considers how even a modest increase in demand elasticity could dramatically reduce these extremes in price volatility. The report provides a three-part assessment addressing the ability of customer's load to participate in competitive markets and the current and potential future role of customer loads as system reliability resources. The study begins by evaluating the extent to which customer loads might be able to provide electricity reliability or ancillary services and reviewing aspects of a large utility's direct load control program. The second phase of the assessment contains a survey of ways in which load has been used as a system reliability resource focusing on programs triggered by system conditions and a real-time price signal. It reviews the experience of: (1) the California ISO's Demand Relief and Participating Load programs; (2) Interruptible load programs in California; (3) the New England ISO's Load Management program; and (4) a ''mature'' program in New Zealand. The third phase of the assessment examines the status of the underlying metering, communication, and control technologies used to effect customer responses. The final section of the report provides a vision of how the future might look and uses it to outline a program of needed R&D to increase the role of customer loads as system reliability resources. Key elements of this research program include: addressing the needs of system operators, making effective use of load management assets, making use of new program design concepts, the design of end-use technologies, and benefiting from program experiences.

Kueck, J.D.; Kirby, B.J.; Eto, J.; Staunton, R.H.; Marnay, C.; Martinez, A.; Goldman, C.

2001-06-01T23:59:59.000Z

403

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

404

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart...

405

Demand for money in China .  

E-Print Network (OSTI)

??This research investigates the long-run equilibrium relationship between money demand and its determinants in China over the period 1952-2004 for three definitions of money –… (more)

Zhang, Qing

2006-01-01T23:59:59.000Z

406

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

407

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

408

Distillate Demand Strong Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Well, distillate fuel demand wasn't the reason that stocks increased in January 2001 and kept prices from going higher. As you will hear shortly, natural gas prices spiked...

409

Thermal Mass and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Mass and Demand Response Speaker(s): Gregor Henze Phil C. Bomrad Date: November 2, 2011 - 12:00pm Location: 90-4133 Seminar HostPoint of Contact: Janie Page The topic of...

410

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

411

Leslie Mancebo (7234) Transportation Demand &  

E-Print Network (OSTI)

Leslie Mancebo (7234) Transportation Demand & Marketing Coordinator 1 FTE, 1 HC Administrative Vice Chancellor Transportation and Parking Services Clifford A. Contreras (0245) Director 30.10 FTE Alternative Transportation & Marketing Reconciliation Lourdes Lupercio (4723) Michelle McArdle (7512) Parking

Hammock, Bruce D.

412

Analysis of Residential Demand Response and Double-Auction Markets  

Science Conference Proceedings (OSTI)

Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

2011-10-10T23:59:59.000Z

413

Hospitality resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

414

Healthcare resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

415

Congregation resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

416

Utility resource planning using modular simulation and optimization  

Science Conference Proceedings (OSTI)

Electric utility resource planning traditionally focuses on conventional energy supplies. Nowadays, planning of renewable energy generation and its storage has become equally important due to the growth in demand, insufficiency of natural resources, ...

Juan Sáenz Corredor; Nurcin Celik; Shihab Asfour; Young-Jun Son

2011-12-01T23:59:59.000Z

417

Teacher Resource Center: Curricular Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Curricular Resources Curricular Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides workshops and consultations on Mathematics and Science Curriculum development. Here are a list of resources for educators. See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Key Science Resources for Curriculum Planning Key Science Resources for Curriculum Planning

418

Power system balancing with high renewable penetration : the potential of demand response  

E-Print Network (OSTI)

This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model was used to represent a version of ...

Critz, David Karl

2012-01-01T23:59:59.000Z

419

DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program  

E-Print Network (OSTI)

(average foot-candles) per room BEFORE retrofits. Retrofits are designed to provide recommended and production cost of electricity (main Campus) or City electric rates (PRC) as applicable. 5. Post&V deliverables requested here meet the Federal Energy Management Program (FEMP) intent for a "Post- Installation

Hofmann, Hans A.

420

Southwest Division, Naval Facilities Engineering Command, Demand Side Management Program Implementation  

E-Print Network (OSTI)

This paper covers some of the major aspects of the development and execution of the Southwest Division, Naval Facilities Engineering Command (SOUTHWESTNAVFACENGCOM) Energy and Water Program. The program covers Naval and Marine facilities in 14 western states. It started from zero in 1992 and has grown to a program which has identified and is in the process of implementing energy and water savings projects totaling over $115,000,000.

Gates, G. G.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An MILP Formulation for Load-Side Demand Control Zhonghui Luo, Ratnesh Kumar*  

E-Print Network (OSTI)

state of the system. The algorithm is evaluated using a simulation model of an underground coal mining (Gustafson; Hsu and Su), manufacturing systems (Pongia and Battish; Su, et al), coal mines (Croyle, et al. 3. Motivating Application An electric load simulation model of a typical underground coal mine

Kumar, Ratnesh

422

ZONAL PRICING AND DEMAND-SIDE BIDDING IN THE NORWEGIAN ELECTRICITY MARKET  

E-Print Network (OSTI)

Denmark uses coal-fired thermal plants. Figures 8 and 9 show the profile of power exchange for Norway to a large thermal power area through a transmission line. The model aims to provide insight into a plant hydroelectric plants generate roughly 113,000 GWh. Some pulp and paper factories own wood-fired thermal plants

California at Berkeley. University of

423

Review of Demand-Side Bidding Programs Impacts, Costs, and Cost-Effectiveness  

E-Print Network (OSTI)

This document was prepared as an account of work sponsored by the United States Government While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. This report has been reproduced directly from the best available copy. Available to DOE and DOE Contractors

C. A. Goldman; M. S. Kito; Charles A. Goldman; M. S. Kito

1994-01-01T23:59:59.000Z

424

The Past, Present, and Future of U.S. Utility Demand-Side Management  

E-Print Network (OSTI)

Technologies, Office of Energy Management Division of the U.S. Department of Energy under Contract No. DE-AC03

425

978-3-901882-56-2 c 2013 IFIP Effective Consumption Scheduling for Demand-Side  

E-Print Network (OSTI)

grids hold the promise of connecting electricity producers, consumers, and prosumers (who act as both their consumption behavior every day. I. INTRODUCTION Today's electricity sector faces significant challenges consumption in a group of Irish residential homes occurs in the evening. Maximum electricity production

Diggavi, Suhas

426

Table 8.13 Electric Utility Demand-Side Management Programs, 1989-2010  

U.S. Energy Information Administration (EIA)

State Energy Data System ... 2 "Energy Efficiency" refers to programs that are aimed at reducing the energy used by specific end-use ... efficient building design, ...

427

Demand-side Management Strategies and the Residential Sector: Lessons from International Experience  

E-Print Network (OSTI)

in producing a given level of output or activity. It is measured by the quantity of energy required to perform a particular activity (service) expressed as energy per unit of output or activity measure of service (EERE, 2010). In the residential sector...

Haney, Aoife Brophy; Jamasb, Tooraj; Platchkov, Laura M.; Pollitt, Michael G.

428

On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch  

E-Print Network (OSTI)

-way system of communicating real-time prices and hourly de- mand between electricity producers and households a mechanism to approximate equilibrium prices and quantities for use as a real-time pricing scheme. Our goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Market Equilibrium 36 3.1 Retail Market Energy Consumption Game

Chen, Yiling

429

U.S. Electric Utility Demand-Side Management Trends and Analysis  

Reports and Publications (EIA)

A look at one of the primary tools utilities are using to reduce greenhouse gas emissions, in the context of the Energy Policy Act of 1992.

Information Center

1997-04-01T23:59:59.000Z

430

The Photovoltaic Crisis and the Demand-side Generation in Spain  

E-Print Network (OSTI)

, to boost RES- E investments. Therefore, FITs provided an opportunity to link energy and industrial policy goals (for example, the creation of a domestic PV industry). Other alternatives, as the Non-Fossil Fuel Obligations in the U.K. (Pollitt, 2010: 16...

Mir-Artigues, Pere

2013-03-01T23:59:59.000Z

431

Demand Side Interventions for the Prevention of Mother to Child Transmission of HIV  

E-Print Network (OSTI)

venting Mother-to-Child Transmission of HIV to Reach themother-to-child HIV transmission in lower-income coun-of mother-to-child HIV transmission (PMTCT) programmes with

Meese, Halea

2011-01-01T23:59:59.000Z

432

Table 8.13 Electric Utility Demand-Side Management Programs ...  

U.S. Energy Information Administration (EIA)

Energy Savings: Electric Utility Costs 4: ... motor drive) with less electricity. Examples include high-efficiency appliances, ... advanced electric motor drives, and

433

Safeguards Education and Training: Short Term Supply vs. Demand  

SciTech Connect

Much has been written and discussed in the past several years about the effect of the aging nuclear workforce on the sustainability of the U.S. safeguards and security infrastructure. This paper discusses the 10-15 year supply and demand forecast for nuclear material control and accounting specialists. The demand side of the review includes control and accounting of the materials at U.S. DOE and NRC facilities, and the federal oversight of those MC&A programs. The cadre of experts referred to as 'MC&A Specialists' available to meet the demand goes beyond domestic MC&A to include international programs, regulatory and inspection support, and so on.

Mathews, Carrie E.; Crawford, Cary E.

2004-07-16T23:59:59.000Z

434

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response and Mass Market Demand Response and Mass Market Demand Response and Mass Market Demand Response and Variable Generation Integration Issues: Variable Generation Integration Issues: Variable Generation Integration Issues: Variable Generation Integration Issues: A Scoping Study A Scoping Study Peter Cappers, Andrew Mills, Charles Goldman, Ryan Wiser, Joseph H. Eto Report Summary October 2011 Energy Analysis Department  Electricity Markets and Policy Group 1 1 Presentation Overview Presentation Overview  Objectives and Approach  Variable Generation Resources and the Bulk Power System  Demand Response Opportunities  Demand Response as a Strategy to Integrate p gy g Variable Generation Resources  Comparison of Various Strategies to Integrate Variable Generation  Conclusions Energy Analysis Department  Electricity Markets and Policy Group

435

Global irrigation demand - A holistic approach  

Science Conference Proceedings (OSTI)

To develop a research track on global irrigation demand and the use of future water resources to help feed the world, we need to adopt a holistic approach to understand inter-dependencies and the main drivers of the global water system and unravel positive (reinforcing) and negative (balancing) feedback loops that can lead to cascading consequences. Thus, there needs to be more research dedicated to 1) the modeling of the agricultural and water systems as components within an integrated assessment human-Earth modeling framework, 2) the understanding of the linkages between the physical processes and the human system, and to integrate them in an economic framework to capture the dynamics of market price, and institutional regulations. This editorial discusses the importance of tackling the global irrigation problem in an integrated assessment modeling framework.

Hejazi, Mohamad I.; Edmonds, James A.; Chaturvedi, Vaibhav

2012-09-30T23:59:59.000Z

436

US Department of Energy Integrated Resource Planning Program: Accomplishments and opportunities  

SciTech Connect

The US Department of Energy Integrated Resource Planning Program supports many activities and projects that enhance the process by which utilities assess demand and supply options and, subsequently, evaluate and select resources. The US Department of Energy program coordinates integrated resource planning in risk and regulatory analysis; utility and regional planning; evaluation and verification; information transfer/technological assistance; and demand-side management. Professional staff from the National Renewable Energy Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley Laboratory, and Pacific Northwest Laboratories collaborate with peers and stakeholders, in particular, the National Association of Regulatory Utility Commissioners, and conduct research and activities for the US Department of Energy. Twelve integrated resource planning activities and projects are summarized in this report. The summaries reflect the diversity of planning and research activities supported by the Department. The summaries also reflect the high levels of collaboration and teaming that are required by the Program and practiced by the researchers. It is concluded that the Program is achieving its objectives by encouraging innovation and improving planning and decision making. Furthermore, as the Department continues to implement planned improvements in the Program, the Department is effectively positioned to attain its ambitious goals.

White, D.L. [Oak Ridge National Lab., TN (United States); Mihlmester, P.E. [Aspen Systems Corp., Oak Ridge, TN (United States)

1993-12-17T23:59:59.000Z

437

Data warehousing and mining technologies for adaptability in turbulent resources business environments  

Science Conference Proceedings (OSTI)

Resources businesses often undergo turbulent and volatile periods, due to rapid increase of resource demand and poorly organised resources data volumes. This volatile industry operates multifaceted business units that manage heterogeneous data sources. ...

Shastri L. Nimmagadda; Heinz Dreher

2011-04-01T23:59:59.000Z

438

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

439

FPGA side-channel receivers  

Science Conference Proceedings (OSTI)

The popularity of FPGAs is rapidly growing due to the unique advantages that they offer. However, their distinctive features also raise new questions concerning the security and communication capabilities of an FPGA-based hardware platform. In this paper, ... Keywords: ddr2, fpga, i2c, phase shift, side-channel receiver, thermal

Ji Sun; Ray Bittner; Ken Eguro

2011-02-01T23:59:59.000Z

440

Agent-based coordination techniques for matching supply and demand in energy networks  

Science Conference Proceedings (OSTI)

There is a lot of effort directed toward realizing the power network of the future. The future power network is expected to depend on a large number of renewable energy resources connected directly to the low and medium voltage power network. Demand ... Keywords: Supply and demand matching, market and non-market algorithms, multi-agent systems

Rashad Badawy; Benjamin Hirsch; Sahin Albayrak

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing  

E-Print Network (OSTI)

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing Felix Creutzig a,*, Dongquan He b a Energy and Resources Group, University of California, Berkeley, USA b Energy i n f o Keywords: Climate change mitigation Transport demand management External costs Urban

Kammen, Daniel M.

442

Side Stream Filtration for Cooling Towers  

NLE Websites -- All DOE Office Websites (Extended Search)

treatment in addition to the side stream filtration, mechanical cleaning of the heat exchangers can be reduced and efficiency increased (Wymore, 2003). 7 2 Side Stream...

443

Vinyl Siding Institute (VSI) | Open Energy Information  

Open Energy Info (EERE)

profile. Create one now Vinyl Siding Institute (VSI) is a company located in Washington, DC. References Retrieved from "http:en.openei.orgwindex.php?titleVinylSidingInstitu...

444

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network (OSTI)

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

445

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network (OSTI)

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

446

The urban design of distributed energy resources  

E-Print Network (OSTI)

Distributed energy resources (DERs) are a considerable research focus for cities to reach emissions reduction goals and meet growing energy demand. DERs, consisting of local power plants and distribution infrastructure, ...

Sheehan, Travis (Travis P.)

2012-01-01T23:59:59.000Z

447

Managing Carbon Regulatory Risk in Utility Resource Planning:Current Practices in the Western United States  

Science Conference Proceedings (OSTI)

Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. Assuch, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations

Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

2008-05-16T23:59:59.000Z

448

Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States  

Science Conference Proceedings (OSTI)

Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations.

Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

2008-07-11T23:59:59.000Z

449

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

450

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

451

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

452

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

residential electricity consumption, the flattening of the demand curves (except Maximum demand) reflects decreasing population growth ratesresidential electricity demand are described in Table 11. For simplicity, end use-specific UEC and saturation rates

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

453

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

percent of 2008 summer peak demand (FERC, 2008). Moreover,138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).non-coincident summer peak demand by 157 GW” by 2030, or 14–

Goldman, Charles

2010-01-01T23:59:59.000Z

454

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

pricing tariffs have a peak demand reduction potential ofneed to reduce summer peak demand that is used to set demandcustomers and a system peak demand of over 43,000 MW. SPP’s

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

455

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

with total Statewide peak demand and on peak days isto examine the electric peak demand related to lighting inDaily) - TOU Savings - Peak Demand Charges - Grid Peak -Low

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

456

Tankless Demand Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heaters Tankless Demand Water Heaters August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is...

457

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

458

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

459

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

460

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

Regulatory Commission (FERC) 2006. “Assessment of DemandRegulatory Commission (FERC) 2007. “Assessment of DemandRegulatory Commission (FERC) 2008a. “Wholesale Competition

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

462

EIA - Annual Energy Outlook 2009 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

data Rate of Electricity Demand Growth Slows, Following the Historical Trend Electricity demand fluctuates in the short term in response to business cycles, weather conditions,...

463

Home Network Technologies and Automating Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in...

464

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

465

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

466

Equity Capital Flows and Demand for REITs  

Science Conference Proceedings (OSTI)

This paper examines the shape of the market demand curve for ... Our results do not support a downward demand curve for ... Charleston, IL 61920, USA e-mail: ...

467

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

29 5.6. Peak and hourly demand43 6.6. Peak and seasonal demandthe average percent of peak demand) significantly impact the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

468

Price-elastic demand in deregulated electricity markets  

SciTech Connect

The degree to which any deregulated market functions efficiently often depends on the ability of market agents to respond quickly to fluctuating conditions. Many restructured electricity markets, however, experience high prices caused by supply shortages and little demand-side response. We examine the implications for market operations when a risk-averse retailer's end-use consumers are allowed to perceive real-time variations in the electricity spot price. Using a market-equilibrium model, we find that price elasticity both increases the retailers revenue risk exposure and decreases the spot price. Since the latter induces the retailer to reduce forward electricity purchases, while the former has the opposite effect, the overall impact of price responsive demand on the relative magnitudes of its risk exposure and end-user price elasticity. Nevertheless, price elasticity decreases cumulative electricity consumption. By extending the analysis to allow for early settlement of demand, we find that forward stage end-user price responsiveness decreases the electricity forward price relative to the case with price-elastic demand only in real time. Moreover, we find that only if forward stage end-user demand is price elastic will the equilibrium electricity forward price be reduced.

Siddiqui, Afzal S.

2003-05-01T23:59:59.000Z

469

Price-elastic demand in deregulated electricity markets  

SciTech Connect

The degree to which any deregulated market functions efficiently often depends on the ability of market agents to respond quickly to fluctuating conditions. Many restructured electricity markets, however, experience high prices caused by supply shortages and little demand-side response. We examine the implications for market operations when a risk-averse retailer's end-use consumers are allowed to perceive real-time variations in the electricity spot price. Using a market-equilibrium model, we find that price elasticity both increases the retailers revenue risk exposure and decreases the spot price. Since the latter induces the retailer to reduce forward electricity purchases, while the former has the opposite effect, the overall impact of price responsive demand on the relative magnitudes of its risk exposure and end-user price elasticity. Nevertheless, price elasticity decreases cumulative electricity consumption. By extending the analysis to allow for early settlement of demand, we find that forward stage end-user price responsiveness decreases the electricity forward price relative to the case with price-elastic demand only in real time. Moreover, we find that only if forward stage end-user demand is price elastic will the equilibrium electricity forward price be reduced.

Siddiqui, Afzal S.

2003-05-01T23:59:59.000Z

470

Coal in transition 1980--2000 demand considerations  

DOE Green Energy (OSTI)

The usefulness of the Brookhaven model, TESOM, lies in its exploration of the demand side of the energy system. Sectors where coal may be substituted for other energy forms are identified, and attractive technologies are highlighted. The results of the runs accord well with intuitive expectations. The increasing prices of oil and natural gas usually imply that (a) coal synthetics become increasingly attractive technologies, except in the High Demand and CRUNCH Cases (b) nuclear and hydro-electric generation are preferred technologies, (c) coal steam electric, even with expensive scrubbers, becomes more attractive than oil or gas steam electric by year 1990, (d) fluidized bed combustion for electricity generation is cost effective (with relatively small environmental impacts) when compared to oil, gas and coal steam electric. FBC process steam exhibits similar behavior. In the High Demand and CRUNCH scenarios, technologies such as solar electric, which are usually not chosen on the basis of cost, enter the solution because meeting demands has become extremely difficult. As the allowed coal expansion rate becomes a limiting factor, coal synthetics manufacturing becomes an unattractive alternative. This is due both to the need for coal electric generation to meet high electricity demand levels, and to the inefficiencies in the manufacturing process. Due to preferred allocation of coal to electricity generation or synthetics, direct coal use is reduced, although this is normally a preferred option.

Kydes, A S; Cherniavsky, E A

1977-12-01T23:59:59.000Z

471

Unlocking the potential for efficiency and demand response throughadvanced metering  

SciTech Connect

Reliance on the standard cumulative kilowatt-hour meter substantially compromises energy efficiency and demand response programs. Without advanced metering, utilities cannot support time-differentiated rates or collect the detailed customer usage information necessary to (1)educate the customer to the economic value of efficiency and demand response options, or (2) distribute load management incentives proportional to customer contribution. These deficiencies prevent the customer feedback mechanisms that would otherwise encourage economically sound demand-side investments and behaviors. Thus, the inability to collect or properly price electricity usage handicaps the success of almost all efficiency and demand response options. Historically, implementation of the advanced metering infrastructure (AMI) necessary for the successful efficiency and demand response programs has been prevented by inadequate cost-benefit analyses. A recent California effort has produced an expanded cost-effectiveness methodology for AMI that introduces previously excluded benefits. In addition to utility-centric costs and benefits, the new model includes qualitative and quantitative costs and benefits that accrue to both customers and society.

Levy, Roger; Herter, Karen; Wilson, John

2004-06-30T23:59:59.000Z

472

ADB-Methods and Tools for Energy Demand Projection | Open Energy  

Open Energy Info (EERE)

ADB-Methods and Tools for Energy Demand Projection ADB-Methods and Tools for Energy Demand Projection Jump to: navigation, search Tool Summary Name: Methods and Tools for Energy Demand Projection Agency/Company /Organization: Asian Development Bank Sector: Energy Topics: Pathways analysis Resource Type: Presentation, Software/modeling tools Website: cdm-mongolia.com/files/2_Methods_Hoseok_16May2010.pdf Cost: Free Methods and Tools for Energy Demand Projection Screenshot References: Methods and Tools for Energy Demand Projection[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "Methods and Tools for Energy Demand Projection" Retrieved from "http://en.openei.org/w/index.php?title=ADB-Methods_and_Tools_for_Energy_Demand_Projection&oldid=398945" Categories:

473

Reclaimed water distribution network design under temporal and spatial growth and demand uncertainties  

Science Conference Proceedings (OSTI)

A significant-but underutilized-water resource is reclaimed water, i.e., treated wastewater that is reintroduced for various purposes. Especially in water scarce regions, reclaimed water is often the only remaining source of water to meet increasing ... Keywords: Demand and network growth uncertainty, Reclaimed water distribution system, Stochastic optimization, Water resources management

Weini Zhang, Gunhui Chung, Péguy Pierre-Louis, Güzin Bayraksan, Kevin Lansey

2013-11-01T23:59:59.000Z

474

Demand Dispatch — Intelligent Demand for a More Efficient Grid  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Demand Dispatch: Intelligent Demand for a More Efficient Grid

Keith Dodrill

2011-01-01T23:59:59.000Z

475

Demand Response and Variable Generation Integration Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Market and Policy Barriers for Demand Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Electricity Markets Peter Cappers, Jason MacDonald, Charles Goldman April 2013 Report Summary 1 Energy Analysis Department  Electricity Markets and Policy Group Presentation Overview  Objectives and Approach  Wholesale and Retail Market Environments  Market and Policy Barrier Typology  Prototypical Regional Barrier Assessment 2 Energy Analysis Department  Electricity Markets and Policy Group A Role for Demand Response to Provide Ancillary Services  Increasing penetration of renewable energy generation in U.S. electricity markets means that bulk power system operators will need to manage the variable and uncertain nature of many renewable resources

476

Energy Efficiency Funds and Demand Response Programs - National Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds and Demand Funds and Demand Response Programs - National Overview Charles Goldman Lawrence Berkeley National Laboratory November 2, 2006 Federal Utility Partnership Working Group San Francisco CA Overview of Talk * National Overview * Energy Efficiency Programs and Funds * Demand Response Programs and Funds * FEMP Resources on Public Benefit Funds *Suggestions for Federal Customers DSM Spending is increasing! * 2006 Utility DSM and Public Benefit spending is ~$2.5B$ - $1B for C&I EE programs * CA utilities account for 35% of total spending 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1994 2000 2005 2006 Costs (in billion $) DSM Costs Load Management Gas EE Other States Electric EE California Electric EE EE Spending in 2006 (by State) $ Million < 1 (23) 1 - 10 (2) 11 - 50 (13) 51 - 100 (7) > 100 (5) 790 101 257

477

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network (OSTI)

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

478

Demand Response Opportunities and Enabling Technologies for Data Centers:  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities and Enabling Technologies for Data Centers: Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Title Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Publication Type Report LBNL Report Number LBNL-5763E Year of Publication 2012 Authors Ghatikar, Girish, Venkata Ganti, Nance Matson, and Mary Ann Piette Publisher PG&E/SDG&E/CEC/LBNL Keywords communication and standards, control systems, data centers, demand response, enabling technologies, end-use technologies, load migration, market sectors, technologies Abstract The energy use in data centers is increasing and, in particular, impacting the data center energy cost and electric grid reliability during peak and high price periods. As per the 2007 U.S. Environmental Protection Agency (EPA), in the Pacific Gas and Electric Company territory, data centers are estimated to consume 500 megawatts of annual peak electricity. The 2011 data confirm the increase in data center energy use, although it is slightly lower than the EPA forecast. Previous studies have suggested that data centers have significant potential to integrate with supply-side programs to reduce peak loads. In collaboration with California data centers, utilities, and technology vendors, this study conducted field tests to improve the understanding of the demand response opportunities in data centers. The study evaluated an initial set of control and load migration strategies and economic feasibility for four data centers. The findings show that with minimal or no impact to data center operations a demand savings of 25% at the data center level or 10% to 12% at the whole building level can be achieved with strategies for cooling and IT equipment, and load migration. These findings should accelerate the grid-responsiveness of data centers through technology development, integration with the demand response programs, and provide operational cost savings.

479

New coal plant technologies will demand more water  

Science Conference Proceedings (OSTI)

Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

2008-04-15T23:59:59.000Z

480

Grid operators' newest nightmare: managing low-demand periods  

Science Conference Proceedings (OSTI)

As more renewable energy resources are added in many parts of the world, a new and even more daunting challenge is likely to face grid operators in the future - how to get through the minimum demand periods. This is especially a problem in systems where the difference between the daytime peak, usually in the early to late summer afternoons, and minimum load, usually in the late evening and early morning hours, is significant.

NONE

2009-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Scoping Study for Demand Respose DFT II Project in Morgantown, WV  

Science Conference Proceedings (OSTI)

This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

Lu, Shuai; Kintner-Meyer, Michael CW

2008-06-06T23:59:59.000Z

482

Assumptions to the Annual Energy Outlook 2000 - Electricity Market Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. The major assumptions are summarized below.

483

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

484

Technical Resources  

Science Conference Proceedings (OSTI)

AOCS Resource Directory helps members maintain technical excellence in their professions. Technical Resources Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDifferential scanning calorimetry chemi

485

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

486

Table A51. Number of Establishments by Sponsorship of Any Programs of Demand  

U.S. Energy Information Administration (EIA) Indexed Site

1. Number of Establishments by Sponsorship of Any Programs of Demand-Side Management through" 1. Number of Establishments by Sponsorship of Any Programs of Demand-Side Management through" " Electric Utility and Natural Gas Utility, by Industry Group and Selected Industries, 1994" ,," "," ",," "," ",," "," "," "," " ,," "," ","Any Programs"," "," ","Any Programs"," "," ",," " ,," "," of DSM Sponsored through Electric Utility(b)",,," of DSM Sponsored through Natural Gas Utility(c)",,,"RSE" "SIC"," ",,,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Sponsored","Not Sponsored","Don't Know","Sponsored","Not Sponsored","Don't Know","Factors"

487

Demand Response and Risk Management  

Science Conference Proceedings (OSTI)

For several decades, power companies have deployed various types of demand response (DR), such as interruptible contracts, and there is substantial ongoing research and development on sophisticated mechanisms for triggering DR. In this white paper, EPRI discusses the increasing use of electricity DR in the power industry and how this will affect the practice of energy risk management. This paper outlines 1) characteristics of a common approach to energy risk management, 2) the variety of types of DR impl...

2008-12-18T23:59:59.000Z

488

Building Technologies Office: Integrated Predictive Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

489

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

Benenson, P.

2010-01-01T23:59:59.000Z

490

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

491

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network (OSTI)

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

492

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

493

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

14 Peak Demand Baselinewinter morning electric peak demand in commercial buildings.California to reduce peak demand during summer afternoons,

Kiliccote, Sila

2010-01-01T23:59:59.000Z

494

TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and generation, including renewable resources. (4) Development and incorporation of demand response, demand-side resources, and energy-efficiency resources. (5) Deployment of...

495

Uranium resources: Issues and facts  

SciTech Connect

Although there are several secondary issues, the most important uranium resource issue is, ``will there be enough uranium available at a cost which will allow nuclear power to be competitive in the future?`` This paper will attempt to answer this question by discussing uranium supply, demand, and economics from the perspective of the United States. The paper will discuss: how much uranium is available; the sensitivity of nuclear power costs to uranium price; the potential future demand for uranium in the Unites States, some of the options available to reduce this demand, the potential role of the Advanced Liquid Metal Cooled Reactor (ALMR) in reducing uranium demand; and potential alternative uranium sources and technologies.

Delene, J.G.

1993-12-31T23:59:59.000Z

496

Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.  

Science Conference Proceedings (OSTI)

Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the reg