Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called...

2

Chapter 3: Demand-Side Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

: Demand-Side Resources Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called...

3

A Foundation of Demand-Side Resource Management in Distributed Systems  

Science Journals Connector (OSTI)

The theoretical problems of demand-side management are examined in without regard to the type of resource whose demand is to be managed, and the Maximum Demand problem is identified and addressed in a ... resourc...

Shrisha Rao

2010-01-01T23:59:59.000Z

4

Chapter 3 Demand-Side Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys technologies...

5

Report: Impacts of Demand-Side Resources on Electric Transmission Planning  

Broader source: Energy.gov [DOE]

Demand for new transmission can be driven by different factors, including connection of new generation, reliability, economics, environmental policy compliance and replacement of retiring infrastructure. This report assesses the relationship between high levels of demand-side resources (including end-use efficiency, demand response, and distributed generation) and investment in new transmission or utilization of existing transmission.

6

Changing Energy Demand Behavior: Potential of Demand-Side Management  

Science Journals Connector (OSTI)

There is a great theoretical potential to save resources by managing our demand for energy. However, demand-side management (DSM) programs targeting behavioral patterns of...

Dr. Sylvia Breukers; Dr. Ruth Mourik…

2013-01-01T23:59:59.000Z

7

Hawaii demand-side management resource assessment. Final report: DSM opportunity report  

SciTech Connect (OSTI)

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

NONE

1995-08-01T23:59:59.000Z

8

Resource–Task Network Formulations for Industrial Demand Side Management of a Steel Plant  

Science Journals Connector (OSTI)

In the industrial demand side management (iDSM) or demand response (DR) grid-consumer interface, the electricity provider gives economic incentives to the industry to alter their electricity usage behavior and there are generally two approaches:• ... It can be used as an important tool for industrial demand side management or demand response, a concept in which the plant adapts its operational behavior by changing the timing of electricity usage from on-peak to off-peak hours for the collective benefit of society. ...

Pedro M. Castro; Lige Sun; Iiro Harjunkoski

2013-08-13T23:59:59.000Z

9

Basic Theory of Demand-Side Management  

Science Journals Connector (OSTI)

Demand-Side Management (DSM) is pivotal in Integrated Resource ... to realize sustainable development, and advanced energy management activity. A project can be implemented only...

Zhaoguang Hu; Xinyang Han; Quan Wen

2013-01-01T23:59:59.000Z

10

Marketing Demand-Side Management  

E-Print Network [OSTI]

they the only game in town, enjoying a captive market. Demand-side management (DSM) again surfaced as a method for increasing customer value and meeting these competitive challenges. In designing and implementing demand-side management (DSM) programs we... have learned a great deal about what it takes to market and sell DSM. This paper focuses on how to successfully market demand-side management. KEY STEPS TO MARKETING DEMAND-SIDE MANAGEMENT Management Commitment The first key element in marketing...

O'Neill, M. L.

1988-01-01T23:59:59.000Z

11

Analysis of Michigan's demand-side electricity resources in the residential sector: Volume 3, End-use studies: Revised final report  

SciTech Connect (OSTI)

This volume of the ''Analysis of Michigan's Demand-Side Electricity Resources in the Residential Sector'' contains end-use studies on various household appliances including: refrigerators, freezers, lighting systems, water heaters, air conditioners, space heaters, and heat pumps. (JEF)

Krause, F.; Brown, J.; Connell, D.; DuPont, P.; Greely, K.; Meal, M.; Meier, A.; Mills, E.; Nordman, B.

1988-04-01T23:59:59.000Z

12

Demand Side Bidding. Final Report  

SciTech Connect (OSTI)

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

13

An Integrated Multi-scale Framework for Assessing Demand-Side Resources  

Broader source: Energy.gov (indexed) [DOE]

Nexus of Nexus of Systems Reliability, Energy Costs, the Environment during High Energy Demand Days K. Max Zhang Sibley School of Mechanical and Aerospace Engineering Acknowledgement * Joe Eto and Pete Capper at LBNL * Dick Schuler at Cornell * Mike Swider, Peter Carney and Wes Hall at NYISO * Ari Kahn and Jamil Kahn, NYC Mayor's Office * Michael Harrington, ConED Outline * Context: A "peak" problem * Research statement * Methodology * Synergy - DOE's research needs - NYC's resiliency planning High Electric Demand Days (HEDD): A "Peak" Problem * Hot summer days and heat waves * Power Systems - Reliability is compromised - Cost of electricity is high: expensive peaking generators * Environment - High ozone air pollution - Double threats to public health: heat and air pollution

14

DSM Program Development. The demand-side resource options were developed using a combination of internal engineering estimates and external consulting services. The  

E-Print Network [OSTI]

DSM Program Development. The demand-side resource options were developed using a combination analysis. Screening Criteria. The DSM screening criteria were designed to assess a program's potential taken into consideration when looking at selecting DSM programs. · Programs will be cost-effective. From

15

Demand Side Management in Rangan Banerjee  

E-Print Network [OSTI]

Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities ­ energy shortage and peak power shortage. Supply for Options ­ Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

Banerjee, Rangan

16

Is Demand-Side Management Economically Justified?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Is Demand-Side Management Economically Justified? With billions of dollars being spent on demand-side management programs in the U.S. every year, the rationale for and performance of these programs are coming under increasing scrutiny. Three projects in the Energy Analysis Program are making significant contributions to the DSM debate. *Total Resource Cost Test Ratio = ratio of utility avoided costs (i.e., benefits) divided by total cost of program (i.e., Administrative Cost + Incentive Cost + Consumer Cost) In May, Joe Eto, Ed Vine, Leslie Shown, Chris Payne, and I released the first in a series of reports we authored from the Database on Energy Efficiency Programs (DEEP) project. The objective of DEEP is to document the measured cost and performance of utility-sponsored energy-efficiency

17

Evaluation of Orange and Rockland Utilities, Inc.`s competitive bidding program for demand-side resources. Final report  

SciTech Connect (OSTI)

The process evaluation reports on the implementation of Orange and Rockland Utilities demand-side bidding program in New York State during 1991 and 1992. The program is implemented by two energy service companies in Orange and rockland`s New York State service territory. The process evaluation methodology included interviews with utility staff (3), energy service company staff (2), and participating (6) and nonparticipating (7) utility customers. The two energy service companies had enrolled 14 customers in the program by summer 1992. One company had achieved 90% of their 2.75 MW bid and the other had achieved less than 90% of their 6.9 MW bid. Critical factors in success were determination of a reasonable bid amount for the market and marketing to the appropriate customers. Customers most interested in the program included those with limited access to capital and medium-sized firms with poor cash flows, particularly schools and hospitals. The findings also show that due to the incentive structure and associated need for substantial customer contributions, lighting measures dominate all installations. Customers, however, were interested in the potential savings and six of the nonparticipants chose to either install measures on their own or enroll in the utility`s rebate program.

Peters, J.S.; Stucky, L.; Seratt, P.; Darden-Butler, D. [Barakat and Chamberlin, Inc., Portland, OR (United States)

1993-02-01T23:59:59.000Z

18

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This task of the International Energy Agency's (IEA's) Demand-Side

19

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

20

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This report provides Annexes 1 through 7, which are country reports from

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Real-Time Demand Side Energy Management  

E-Print Network [OSTI]

Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology Espańa, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs – “Demand-Side Energy Management.” Learn how process manufacturers assess energy...

Victor, A.; Brodkorb, M.

2006-01-01T23:59:59.000Z

22

Electric Utility Demand-Side Evaluation Methodologies  

E-Print Network [OSTI]

"::. ELECTRIC UTILITY DEMAND-SIDE EVALUATION METHODOLOGIES* Nat Treadway Public Utility Commission of Texas Austin, Texas ABSTRACT The electric. util ity industry's demand-side management programs can be analyzed ?from various points... of view using a standard benefit-cost methodology. The methodology now in use by several. electric utilities and the Public Utility Commlsslon of Texas includes measures of efficiency and equity. The nonparticipant test as a measure of equity...

Treadway, N.

23

IRSP (integrated resource strategic planning) with interconnected smart grids in integrating renewable energy and implementing DSM (demand side management) in China  

Science Journals Connector (OSTI)

Abstract The China's electricity consumption was 4966 TWh in 2012, which is the world top electricity consumer. The low carbon electricity is one of the key issues of its sustainable development. IRSP (integrated resource strategic planning) is a useful tool to implement DSM (demand side management) and power planning on the supply side. However, the role of interconnected smart grids with fast growing cross-region transmission is not considered in the IRSP. Therefore, the paper proposes the model of IRSP with interconnected smart grids to integrate more renewable power generation to the grids and implement more DSM projects, which is called as IRSP-sgs (IRSP smart grids) model. Two scenarios are projected to study the impact of cross-region transmission on low carbon electricity by using the IRSP-sgs model until 2025 in China. Results show that the scenario with enhanced cross-region transmission helps to reduce electricity generation by 784.38 TWh and reduce CO2 emission by 999.57 million tons during 2013–2025, since the multi-regional power operation can integrate more than 488.30 TWh renewable generation into the grids and implement more DSM projects to substitute generation. In addition, it also provides tremendous opportunities to improve the stable operation of the power system.

Yanan Zheng; Zhaoguang Hu; Jianhui Wang; Quan Wen

2014-01-01T23:59:59.000Z

24

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network [OSTI]

EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

25

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

26

Incentives for demand-side management  

SciTech Connect (OSTI)

This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state`s progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

Reid, M.W.; Brown, J.B. [Barakat and Chamberlin, Inc., Oakland, CA (United States)] [Barakat and Chamberlin, Inc., Oakland, CA (United States)

1992-01-01T23:59:59.000Z

27

Incentives for demand-side management  

SciTech Connect (OSTI)

This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state's progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

Reid, M.W.; Brown, J.B. (Barakat and Chamberlin, Inc., Oakland, CA (United States)) [Barakat and Chamberlin, Inc., Oakland, CA (United States)

1992-01-01T23:59:59.000Z

28

BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES  

E-Print Network [OSTI]

............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSsLBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey

29

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network [OSTI]

storage and its potential impact on the electric utilities and introduces the demand side plant concept....

Michel, M.

1989-01-01T23:59:59.000Z

30

Energy Conservation and Commercialization in Gujarat: Report On Demand Side  

Open Energy Info (EERE)

Energy Conservation and Commercialization in Gujarat: Report On Demand Side Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Focus Area: Crosscutting Topics: Opportunity Assessment & Screening Website: eco3.org/wp-content/plugins/downloads-manager/upload/Report%20on%20Dem Equivalent URI: cleanenergysolutions.org/content/energy-conservation-and-commercializa Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning

31

System Demand-Side Management: Regional results  

SciTech Connect (OSTI)

To improve the Bonneville Power Administration's (Bonneville's) ability to analyze the value and impacts of demand-side programs, Pacific Northwest Laboratory (PNL) developed and implemented the System Demand-Side Management (SDSM) model, a microcomputer-based model of the Pacific Northwest Public Power system. This document outlines the development and application of the SDSM model, which is an hourly model. Hourly analysis makes it possible to examine the change in marginal revenues and marginal costs that accrue from the movement of energy consumption from daytime to nighttime. It also allows a more insightful analysis of programs such as water heater control in the context of hydroelectric-based generation system. 7 refs., 10 figs., 10 tabs.

Englin, J.E.; Sands, R.D.; De Steese, J.G.; Marsh, S.J.

1990-05-01T23:59:59.000Z

32

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

33

Supply Chain Networks, Electronic Commerce, and Supply Side and Demand Side Risk  

E-Print Network [OSTI]

Supply Chain Networks, Electronic Commerce, and Supply Side and Demand Side Risk Anna Nagurney as well as demand side risk are included in the formulation. The model consists of three tiers of decision chain network equilibrium model with electronic com- merce and with supply side and demand side risk

Nagurney, Anna

34

Review of Self-direct Demand Side Management (DSM) Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review of Self-direct Demand Side Management (DSM) Programs Review of Self-direct Demand Side Management (DSM) Programs Title Review of Self-direct Demand Side Management (DSM) Programs Publication Type Presentation Year of Publication 2012 Authors Borgeson, Merrian Keywords demand side resources: policy, electricity markets, electricity markets and policy group, energy analysis and environmental impacts department, energy efficiency, self direct programs, technical assistance Full Text LBNL recently provided technical assistance funded by DOE to the Public Utilities Commission of Ohio to inform their decision-making about changes to their existing self-direct program for commercial and industrial customers. Self-direct programs are usually targeted at large industrial customers with specialized needs or strong in-house energy engineering capacity. These programs are found in at least 24 states, and there is significant variety in how these programs are structured - with important implications for the additionality and reliability of the energy savings that result. LBNL reviewed existing programs and compared key elements of self-direct program design. For additional questions about this work, please contact Merrian Borgeson.

35

Industrial demand side management status report: Synopsis  

SciTech Connect (OSTI)

Industrial demand side management (DSM) programs, though not as developed or widely implemented as residential and commercial programs, hold the promise of significant energy savings-savings that will benefit industrial firms, utilities and the environment. This paper is a synopsis of a larger research report, Industrial Demand Side Management. A Status Report, prepared for the US Department of Energy. The report provides an overview of and rationale for DSM programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential electricity savings from industrial energy efficiency measures. Overcoming difficulties to effective program implementation is worthwhile, since rough estimates indicate a substantial potential for electricity savings. The report categorizes types of DSM programs, presents several examples of each type, and explores elements of successful programs. Two in-depth case studies (of Boise Cascade and of Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. Finally, the research report also includes a comprehensive bibliography, a description of technical assistance programs, and an example of a methodology for evaluating potential or actual savings from projects.

Hopkins, M.E.F.; Conger, R.L.; Foley, T.J.; Parker, J.W.; Placet, M.; Sandahl, L.J.; Spanner, G.E.; Woodruff, M.G.; Norland, D.

1995-08-01T23:59:59.000Z

36

Research on the Demand Side Management Under Smart Grid  

Science Journals Connector (OSTI)

From the 1970 of the twentieth century demand side management has gradually become standardized management mode in electric power industry in developed ... coverage, full collection, full prepayment” to demand-side

Litong Dong; Jun Xu; Haibo Liu; Ying Guo

2014-01-01T23:59:59.000Z

37

The Important Participants in Demand-Side Management: Power Consumers  

Science Journals Connector (OSTI)

Electric power consumers are the basis for demand-side management (DSM) practice. Increased power consumption efficiency...

Zhaoguang Hu; Xinyang Han; Quan Wen

2013-01-01T23:59:59.000Z

38

Industrial demand side management: A status report  

SciTech Connect (OSTI)

This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

Hopkins, M.F.; Conger, R.L.; Foley, T.J. [and others

1995-05-01T23:59:59.000Z

39

A Survey on Privacy in Residential Demand Side Management Applications  

Science Journals Connector (OSTI)

Demand Side Management (DSM) is an auspicious concept for ... on privacy energy issues and potential solutions in Demand Response systems. For this we give an ... the BSI and indicate three technical types of Demand

Markus Karwe; Jens Strüker

2014-01-01T23:59:59.000Z

40

Organizing for demand-side management program implementation  

SciTech Connect (OSTI)

Organizing for the implementation of a demand-side management (DSM) program, is an exercise in planning and acquiring resources. However, the requirements for energy efficiency program implementation will vary and are dependent upon the type of mechanism employed in delivering the program. For example, commercial energy efficiency programs generally have three delivery mechanisms: rebate; direct installation; or DSM. For residential programs there are two unique methods, one a catalog program, which provides a source of purchasing energy efficient products, or a point-of-sale program, where rebates, in the form of coupons can be redeemed at the time of product purchase.

Obeiter, R.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

POWERTECH 2009, JUNE 28 -JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response Resources in  

E-Print Network [OSTI]

POWERTECH 2009, JUNE 28 - JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response, IEEE, Abstract--The use of demand-side resources, in general, and demand response resources (DRRs concerns. Integration of demand response resources in the competitive electricity markets impacts resource

Gross, George

42

Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential  

SciTech Connect (OSTI)

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

NONE

1995-04-01T23:59:59.000Z

43

Load-side Demand Management in Buildings using Controlled Electric Springs  

E-Print Network [OSTI]

The concept of demand-side management for electricand simulation of demand-side management potential in urbanin smart grids, demand side management has been a keen topic

Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

2014-01-01T23:59:59.000Z

44

Network-Driven Demand Side Management Website | Open Energy Informatio...  

Open Energy Info (EERE)

UtilityElectricity Service Costs) for this property. This task of the International Energy Agency is a broad, systematic examination of the potential for demand-side...

45

Distributed Coordination Schemes for Periodic Loads for Demand Side Management.  

E-Print Network [OSTI]

?? Demand side management (DSM) is a means to improve the energy efficiency, reduce the greenhouse gas emission, the consumers’ cost and the power grid… (more)

Xia, Tian

2011-01-01T23:59:59.000Z

46

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

States. Annex 8 provides a list of software tools for analysing various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of...

47

Demand Response Resources in Pacific Northwest  

E-Print Network [OSTI]

Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

48

Agreement for Energy Conservation and Demand Side Management Services Template  

Broader source: Energy.gov [DOE]

Document features a template agreement between a U.S. Federal agency and a utility company for the implementation of energy conservation measures (ECMs) and demand side management (DSM) services.

49

Demand Side Management in Smart Buildings Using KNX/EIB  

Science Journals Connector (OSTI)

This paper aims to present the development, design and analysis of a control scheme named Thermal Model Predictive Control for Demand Side Management Cooling Strategies. The control is implemented on ... for ener...

P. Romanos; N. Hatziargyriou; Jurgen Schmid

2011-01-01T23:59:59.000Z

50

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network [OSTI]

to as Demand-Side Management (DSM) and are extremely rigorous in scope. Electric utilities have pursued many different DSM policies and strategies during the past decade. These programs have addressed various technologies and have included rebates for efficient...

Epstein, G. J.; Fuller, W. H.

51

Evolution of the Demand Side Management in the Smart Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evolution of the Demand Side Management in the Smart Grid Evolution of the Demand Side Management in the Smart Grid Speaker(s): Nathan Ota Date: October 20, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page Smart grid technology has rapidly evolved over the course of the last five years. From a demand side management perspective this includes consumer-owned Home Area Networks (HAN), network-centric HAN gateways, and a leveraging of a multitier smart grid for a variety of DSM applications. In particular, smart meters enable the consumer with electricity price information and near-real time energy usage data, but they also are the devices that consumers will most often interact. The success or failure of the in-home device is therefore critical to the larger Smart Grid success. Today, distinct DSM product categories are leading to a variety of new

52

U.S. electric utility demand-side management 1995  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-01-01T23:59:59.000Z

53

U.S. electric utility demand-side management 1996  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-12-01T23:59:59.000Z

54

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

Technologies for Demand-Side Management on Isolated Mini-technologies used for demand- side management (DSM) on mini-can provide additional demand-side management based on the

Harper, Meg

2014-01-01T23:59:59.000Z

55

Mul$-scale Demand-Side Management for Con$nuous Power-intensive Processes  

E-Print Network [OSTI]

1 Mul$-scale Demand-Side Management for Con$nuous Power-intensive Processes Response Energy Efficiency Demand-Side Management (DSM)1 Integra on Demand-Side Management, with an emphasis on price responsive programs", CRA No

Grossmann, Ignacio E.

56

Dynamic Investment Strategies with Demand-Side and Cost-Side Risks  

E-Print Network [OSTI]

Dynamic Investment Strategies with Demand-Side and Cost-Side Risks Engelbert J. Dockner Department of Vienna Br¨unner Stra�e 72 1210 Vienna, Austria April 23, 2010 Abstract Investments in cost reductions. This paper stud- ies optimal investment in cost reductions as a real option under the assumption

Gaunersdorfer, Andrea

57

Modeling, Analysis, and Control of Demand Response Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling, Analysis, and Control of Demand Response Resources Modeling, Analysis, and Control of Demand Response Resources Speaker(s): Johanna Mathieu Date: April 27, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can play an active role in power systems via Demand Response (DR). Recent DR programs have focused on peak load reduction in commercial buildings and industrial facilities (C&I facilities). We present a regression-based baseline model, which allows us to quantify DR performance. We use this baseline model to understand the performance of C&I facilities participating in an automated dynamic pricing DR program in California. In this program, facilities are

58

Analytical Frameworks to Incorporate Demand Response in Long-term Resource Planning  

E-Print Network [OSTI]

management system demand-side management energy efficiencyresource plans and demand side management (DSM) program

Satchwell, Andrew

2014-01-01T23:59:59.000Z

59

Demand-Side Management (DSM) Opportunities as Real-Options  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand-Side Management (DSM) Opportunities as Real-Options Demand-Side Management (DSM) Opportunities as Real-Options Speaker(s): Osman Sezgen Date: August 1, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare As some end-users of energy and aggregators are choosing to be exposed to real-time prices and energy price volatility, they are coming across new DSM opportunities that would not be feasible under typical utility rate structures. Effective evaluation of such opportunities requires a good understanding of the wholesale energy markets and the use of models based on recent financial techniques for option pricing. The speaker will give examples of such modeling approaches based on his experience in the retail-energy industry. Specific examples will include evaluation of distributed generation, load curtailment, dual-fuel cooling, and energy

60

ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES  

E-Print Network [OSTI]

ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES BY ANUPAMA SUNIL KOWLI B of consumers - called demand response resources (DRRs) - whose role has become increasingly important

Gross, George

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

62

Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under  

E-Print Network [OSTI]

Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand and wastage through better demand-side management and control is considered a key solution ingredient of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management

Boutaba, Raouf

63

An MILP Formulation for Load-Side Demand Control Zhonghui Luo, Ratnesh Kumar*  

E-Print Network [OSTI]

Demand control systems can be divided functionally into supply-side and load-side control/management systems. Supply-side demand management systems, implemented by the utilities, choose between maintainingAn MILP Formulation for Load-Side Demand Control Zhonghui Luo, Ratnesh Kumar* , Joseph Sottile

Kumar, Ratnesh

64

Modeling, Analysis, and Control of Demand Response Resources.  

E-Print Network [OSTI]

??While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can plan an active role in… (more)

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

65

Modeling, Analysis, and Control of Demand Response Resources.  

E-Print Network [OSTI]

?? While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can plan an active role… (more)

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

66

Uranium 2014 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

67

Intelligent demand side energy management system for autonomous polygeneration microgrids  

Science Journals Connector (OSTI)

Autonomous polygeneration microgrids is a novel approach in addressing the needs of remote areas. These needs can include power, fuel for transportation in the form of hydrogen, potable water through desalination and space heating and cooling. This approach has been investigated technically and economically and has proved viable. Further research has taken place in the supervisory management of this topology using computational intelligence techniques like fuzzy logic, which has optimized the concept minimizing the sizes of the installed components. The optimal design of the system can meet, though, only the design principles and needs. In reality experience has shown that most autonomous power systems operate out of specifications very shortly after installation or after a couple of years new needs arise and it is not possible economic wise for the people to extend it. In these cases the microgrid would struggle to cover the increased needs and in the end fail, causing blackouts. A solution to this is partial load shedding in an intelligent manner. This paper presents a multi agent system for intelligent demand side management of the polygeneration microgrid topology which also includes grey prediction algorithms for better management. This approach can also be used for designing the optimal polygeneration microgrid for a given amount of an investment. The results show that the proposed intelligent demand side management system can address its design principles successfully and guaranty the most effective operation even in conditions near and over the limits of the design specification of the autonomous polygeneration microgrid.

George Kyriakarakos; Dimitrios D. Piromalis; Anastasios I. Dounis; Konstantinos G. Arvanitis; George Papadakis

2013-01-01T23:59:59.000Z

68

The use of systematic reviews to analyse demand-side management policy  

Science Journals Connector (OSTI)

Demand-side management (DSM) seeks to reduce overall energy ... change when energy is used to reduce peak demands and smooth the load curve. DSM is ... and carbon emissions reduction. However, the policy side of ...

Peter Warren

2014-06-01T23:59:59.000Z

69

Marginal Cost Pricing: An Efficient Tool to Ensure Electricity Demand Side Management  

Science Journals Connector (OSTI)

The constant adaptation between electricity supply and demand can be achieved in two ways : On the supply side, through the construction of additional facilities, and on the demand side, by implementing tariffs, ...

B. Lescoeur; J. B. Galland; E. Husson

1988-01-01T23:59:59.000Z

70

Demand side management in smart grid: A review and proposals for future direction  

Science Journals Connector (OSTI)

Abstract This paper mainly focuses on demand side management and demand response, including drivers and benefits, shiftable load scheduling methods and peak shaving techniques. Demand side management techniques found in literature are overviewed and a novel electricity demand control technique using real-time pricing is proposed. Currently users have no means to change their power consumption to benefit the whole system. The proposed method consists of modern system identification and control that would enable user side load control. This would potentially balance demand side with supply side more effectively and would also reduce peak demand and make the whole system more efficient.

Linas Gelazanskas; Kelum A.A. Gamage

2014-01-01T23:59:59.000Z

71

CSEM WP 165R Demand-Side Management and Energy Efficiency  

E-Print Network [OSTI]

CSEM WP 165R Demand-Side Management and Energy Efficiency Revisited Maximilian Auffhammer, Carl, California 94720-5180 www.ucei.org #12;Demand-Side Management and Energy Efficiency Revisited Maximilian associated with energy efficiency demand side management (DSM) programs. This claim is based on point

Auffhammer, Maximilian

72

Simple models of district heating systems for load and demand side management  

E-Print Network [OSTI]

Simple models of district heating systems for load and demand side management and operational heating systems for load and demand side management and operational optimisation Simple modeller and demand side management and operational optimisation © 2004 by the authors, Department of Mechanical

73

Linking meters and markets: Roles and incentives to support a flexible demand side  

Science Journals Connector (OSTI)

Abstract Present trends in the development of electricity systems are expected to generate a growing need for flexibility in decentralised resources, including demand response. In order to enable decentralised actors to create value, the organisation of markets and incentives should incorporate these new participants. The roll-out of smart metering to electricity consumers is an important precondition to establishing a flexible demand side and will provide essential information flows. On the basis of current incentive structures and related risks, however, the pass-through of information and value from wholesale market participants to the demand side is mostly infeasible, resulting in flexibility tasks being aggregated and delegated to balancing responsible wholesale traders. This analysis focuses on whether current incentives and roles are appropriate and where the design could be improved to establish a flexible demand side with a particular focus on the Danish case. Design-related barriers are identified that affect expected value, associated risks, and the distribution of responsibilities. This serves as a basis to define policy options in the context of Nordic electricity markets.

Jonas Katz

2014-01-01T23:59:59.000Z

74

Smart charging and appliance scheduling approaches to demand side management  

Science Journals Connector (OSTI)

Abstract Various forms of demand side management (DSM) programs are being deployed by utility companies for load flattening amongst the residential power users. These programs are tailored to offer monetary incentives to electricity customers so that they voluntarily consume electricity in an efficient way. Thus, DSM presents households with numerous opportunities to lower their electricity bills. However, systems that combine the various DSM strategies with a view to maximizing energy management benefits have not received sufficient attention. This study therefore proposes an intelligent energy management framework that can be used to implement both energy storage and appliance scheduling schemes. By adopting appliance scheduling, customers can realize cost savings by appropriately scheduling their power consumption during the low peak hours. More savings could further be achieved through smart electricity storage. Power storage allows electricity consumers to purchase power during off-peak hours when electricity prices are low and satisfy their demands when prices are high by discharging the batteries. For optimal cost savings, the customers must constantly monitor the price fluctuations in order to determine when to switch between the utility grid and the electricity storage devices. However, with a high penetration of consumer owned storage devices, the charging of the batteries must be properly coordinated and appropriately scheduled to avoid creating new peaks. This paper therefore proposes an autonomous smart charging framework that ensures both the stability of the power grid and customer savings.

Christopher O. Adika; Lingfeng Wang

2014-01-01T23:59:59.000Z

75

A Hierarchical Framework for Demand-Side Frequency Control  

SciTech Connect (OSTI)

With large-scale plans to integrate renewable generation, more resources will be needed to compensate for the uncertainty associated with intermittent generation resources. Under such conditions, performing frequency control using only supply-side resources become not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in frequency control to maintain the stability of the system at an acceptable cost. In this paper, a novel hierarchical decentralized framework for frequency based load control is proposed. The framework involves two decision layers. The top decision layer determines the optimal droop gain required from the aggregated load response on each bus using a robust decentralized control approach. The second layer consists of a large number of devices, which switch probabilistically during contingencies so that the aggregated power change matches the desired droop amount according to the updated gains. The proposed framework is based on the classical nonlinear multi-machine power system model, and can deal with timevarying system operating conditions while respecting the physical constraints of individual devices. Realistic simulation results based on a 68-bus system are provided to demonstrate the effectiveness of the proposed strategy.

Moya, Christian; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit

2014-06-02T23:59:59.000Z

76

Multiobjective demand side management solutions for utilities with peak demand deficit  

Science Journals Connector (OSTI)

Abstract Demand side management (DSM) is a growing concept around the world, particularly in urban India, recently due to presence of time of day (TOD) tariffs for the large commercial and industrial customers. Residential customers are not exposed to TOD tariff structure so far in India. This encourages commercial and industrial customers to schedule their flexible loads as per TOD tariff to extract maximum benefit of it and helps utilities to reduce their peak load demand and reshape the load curve. For efficient DSM implementation, this paper presents a multiobjective DSM solutions based on integer genetic algorithm to benefit both utilities and consumers. The proposed algorithm provides new directions on effective implementation of DSM techniques for Indian utilities. Simulations were carried out on Indian practical distribution system with large commercial and industrial loads. The simulation results of the proposed algorithm shows that the presented DSM technique comprehends reasonable savings to both utility and consumers simultaneously, while reducing the system peak.

Nandkishor Kinhekar; Narayana Prasad Padhy; Hari Om Gupta

2014-01-01T23:59:59.000Z

77

Quantifying the Variable Effects of Systems with Demand Response Resources  

E-Print Network [OSTI]

Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

Gross, George

78

Overview of Demand Side Response | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Energy Officials Need to Know High Electric Demand Days: Clean Energy Strategies for Improving Air Quality Demand Response in U.S. Electricity Markets: Empirical Evidence...

79

Review of demand-side bidding programs: Impacts, costs, and cost-effectiveness  

SciTech Connect (OSTI)

In December 1987, Central Maine Power (CMP) instituted the first competitive bidding program that allowed developers to propose installation of conservation measures. Since then, about 30 utilities in 14 states have solicited bids from energy service companies (ESCOs) and customers to reduce energy demand in residential homes and in commercial and industrial facilities. Interest in the use of competitive procurement mechanisms for demand-side resources continues to grow. In this study, the authors build upon earlier work conducted by LBL in collaboration with others (Goldman and Busch 1992; Wolcott and Goldman 1992). They have developed methods to compare bid prices and program costs among utilities. They also characterize approaches used by utilities and developers to allocate risks associated with DSM resources based on their review of a large sample of signed contracts. These contracts are analyzed in some detail because they provide insights into the evolving roles and responsibilities of utilities, customers, and third party contractors in providing demand-side management (DSM) services. The analysis also highlights differences in the allocation of risks between traditional utility rebate programs and DSM bidding programs.

Goldman, C.A.; Kito, M.S. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-05-01T23:59:59.000Z

80

588 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 2, JUNE 2014 GTES: An Optimized Game-Theoretic Demand-Side  

E-Print Network [OSTI]

, Nei Kato, Fellow, IEEE, and Ivan Stojmenovic, Fellow, IEEE Abstract--Demand-side management in smart]­[4]. For the successful deployment of the smart grid, demand-side management or demand response [5]­[7] is crucial. Demand-side in the shape of loads of the utility company. While demand-side management aims at producing a change

Stojmenovic, Ivan

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Software components for demand side integration at a container terminal  

Science Journals Connector (OSTI)

Local energy management and demand response are established methods to raise energy ... in industrial enterprises the intelligent use of power demand draws significantly increased importance. Due to the ... energ...

Norman Ihle; Serge Runge; Claas Meyer-Barlag…

2014-11-01T23:59:59.000Z

82

Demand-Side Management in The U.S.: Do We Have All the Answers?  

Science Journals Connector (OSTI)

The concept of demand-side management (DSM) has been used in the ... changes to electricity use patterns on the customer side of the meter, and to adjust their ... framework emerged to explicitly incorporate the ...

Veronika A. Rabl

1994-01-01T23:59:59.000Z

83

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network [OSTI]

of Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response under

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

84

The Impact on Consumer Behavior of Energy Demand Side Management Programs Measurement Techniques and Methods.  

E-Print Network [OSTI]

??Much effort has gone into measuring the impact of Demand Side Management (DSM) programs on energy usage, particularly in regards to electric usage. However, there… (more)

Pursley, Jeffrey L

2014-01-01T23:59:59.000Z

85

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

demand- side management (DSM) on mini-grids throughout theunderpin the need to employ DSM to reduce load or spreadand technologies for DSM vary. As described above, one

Harper, Meg

2014-01-01T23:59:59.000Z

86

A Successful Implementation with the Smart Grid: Demand Response Resources  

E-Print Network [OSTI]

1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

Gross, George

87

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

Joseph, Eto

2014-01-01T23:59:59.000Z

88

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

for Demand Response Technology Development The objective ofin planning demand response technology RD&D by conductingNew and Emerging Technologies into the California Smart Grid

Joseph, Eto

2014-01-01T23:59:59.000Z

89

FERC Presendation: Demand Response as Power System Resources, October 29,  

Broader source: Energy.gov (indexed) [DOE]

FERC Presendation: Demand Response as Power System Resources, FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as Power System Resources More Documents & Publications A National Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Cost-Effectiveness Working Group Loads Providing Ancillary Services: Review of International Experience Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006)

90

The Long View of Demand-Side Management Programs  

Science Journals Connector (OSTI)

One of the primary reasons that the electricity market failed in California during the 2000–2001 period was the lack of dynamic demand response to rising wholesale electricity prices. Had retail customers seen...

Ahmad Faruqui; Greg Wikler; Ingrid Bran

2003-01-01T23:59:59.000Z

91

Demand Side Management by controlling refrigerators and its effects on consumers  

Science Journals Connector (OSTI)

Demand Side Management in power grids has become more and more important in recent years. Continuously growing energy demand both increases the need for distributed generation from renewable energy sources and brings out the topic of Demand Side Management. One of the major application areas of Demand Side Management in smart grids is cooling systems. In this paper, Demand Side Management with control of a refrigerator and its economic effects on consumers are analyzed. With a refrigerator model based on real measurements, several cooling schedules are simulated and annual energy fees for different pricing methods in use in Turkey are calculated and discussed. The results revealed that, 37.9% of refrigerator’s demand in peak period can be shifted to other periods and annual electricity bills for customers can be reduced by 11.4%.

M. Alparslan Zehir; Mustafa Bagriyanik

2012-01-01T23:59:59.000Z

92

On-Demand Based Wireless Resources Trading for Green Communications  

E-Print Network [OSTI]

The purpose of Green Communications is to reduce the energy consumption of the communication system as much as possible without compromising the quality of service (QoS) for users. An effective approach for Green Wireless Communications is On-Demand strategy, which scales power consumption with the volume and location of user demand. Applying the On-Demand Communications model, we propose a novel scheme -- Wireless Resource Trading, which characterizes the trading relationship among different wireless resources for a given number of performance metrics. According to wireless resource trading relationship, different wireless resources can be consumed for the same set of performance metrics. Therefore, to minimize the energy consumption for given performance metrics, we can trade the other type of wireless resources for the energy resource under the demanded performance metrics. Based on the wireless resource trading relationship, we derive the optimal energy-bandwidth and energy-time wireless resource trading ...

Cheng, Wenchi; Zhang, Hailin; Wang, Qiang

2011-01-01T23:59:59.000Z

93

Review of US utility demand-side bidding programs: Impacts, costs, and cost-effectiveness  

Science Journals Connector (OSTI)

In this study, we review utility experiences with demand-side management (DSM) bidding programs. Since 1987, about 35 US utilities have signed long-term contracts with developers of DSM resources (ie energy service companies and customers) to provide a quantity of demand and energy savings at specified prices. Total resource costs range between 5.4 and 8 cents/kWh for 10 DSM bidding programs where complete information on program costs is available. Almost all DSM bidding programs have been cost-effective compared with the utility's own supply-side alternatives, although there is substantial disagreement regarding the value of these programs compared with the utility's own DSM programs. In most bidding programs, payments to bidders account for between 70 and 90% of total program costs. Variation in winning bid prices is influenced primarily by DSM bid ceiling prices, differences in the mix of measures and markets targeted by developers, and the degree of performance risk borne by the DSM developer. Bids targeting residential customers averaged 6.2 cents/kWh compared with about 5.0 cents/kWh for commercial/industrial bids. We also compared the costs of acquiring lighting savings in DSM bidding contracts with a sample of 20 utility-sponsored commercial/industrial lighting programs. We found that, on average, total resource costs were slightly higher in bidding programs (6.1 vs 5.6 cents/kWh), although ratepayers bear significantly less performance risk in bidding programs compared with traditional utility-sponsored DSM programs.

Charles A. Goldman; Michele S. Kito

1995-01-01T23:59:59.000Z

94

Demand-Side Load Scheduling Incentivized by Dynamic Energy Hadi Goudarzi, Safar Hatami, and Massoud Pedram  

E-Print Network [OSTI]

Demand-Side Load Scheduling Incentivized by Dynamic Energy Prices Hadi Goudarzi, Safar Hatami growth in electrical energy consumption under worst- case demand conditions [1]. To avoid expending 90089 {hgoudarz, shatami, pedram}@usc.edu Abstract--Demand response is an important part of the smart

Pedram, Massoud

95

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

96

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities  

E-Print Network [OSTI]

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options sensitive impacts on electricity demand growth by different demand-side management (DSM) scenarios countries. The research showed that demand side management strategies could result in significant reduction

de Weck, Olivier L.

97

Interoperability of Demand Response Resources Demonstration in NY  

SciTech Connect (OSTI)

The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

Wellington, Andre

2014-03-31T23:59:59.000Z

98

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network [OSTI]

Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

99

Why Joint Implementation Can Boost Demand Side Management in Developing Countries  

Science Journals Connector (OSTI)

In this chapter Joint Implementation will be discussed from a business perspective. In particular, the focus will be on the potential role JI can play in further developing Demand Side Management (DSM) in develop...

Wim Wilms

1995-01-01T23:59:59.000Z

100

Employee Retention and Integrated Disability Management Practices as Demand Side Factors  

Science Journals Connector (OSTI)

Introduction Demand-side employment research on company policies and practices related to retention and absence and disability management (ADM) can contribute to our understanding...Aim To examin...

Rochelle Habeck; Allan Hunt; Colleen Head Rachel…

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cost-Efficiency in Water Management Through Demand Side Management and Integrated Planning  

Science Journals Connector (OSTI)

In the context of regional planning for efficient management of water and wastewater, it is crucial ... situation. This consists of measures for water demand side management, comparison of different scenarios of ...

Dr. Ing. Ralf Otterpohl

2008-01-01T23:59:59.000Z

102

Quality-functions for an uniform and comparable analysis of demand side management algorithms  

Science Journals Connector (OSTI)

Due to renewable energies, the feed-in to the power grid will fluctuate increasingly. As long as no highly efficient storage technology is found, the importance of demand side management (DSM) will grow. Differen...

Daniel Hölker; Daniel Brettschneider…

2014-12-01T23:59:59.000Z

103

Guidelines for Marketing Demand-Side Management in the Commercial Sector  

E-Print Network [OSTI]

For the past decade, electric and gas utilities throughout the nation, not just in hot and humid climates, have promoted energy efficiency through a variety of demand-side management (DSM) programs. In 1984, the Electric Power Research Institute...

George, S. S.

1988-01-01T23:59:59.000Z

104

The Impacts of Utility-Sponsored Demand-Side Management Programs on Industrial Electricity Consumers  

E-Print Network [OSTI]

One of the most pressing issues in electric utility regulation today is the extent to which demand-side management (DSM) programs should be promoted by utilities. DSM refers to energy-efficiency or conservation measures, such as insulation, more...

Rosenblum, J. I.

105

Integrating renewables economic dispatch with demand side management in micro-grids: a genetic algorithm-based approach  

Science Journals Connector (OSTI)

Economic dispatch and demand side management are two of the most important tools for efficient energy management in the grid. It is a casual ... aiming to optimize economic dispatch have implications for demand side

Ahmer Arif; Fahad Javed; Naveed Arshad

2014-04-01T23:59:59.000Z

106

Impact of the Demand-Side Management (DSM) Program structure on the cost-effectiveness of energy efficiency projects  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) analyzed the cost-effective energy efficiency potential of Fort Drum, a customer of the Niagara Mohawk Power Corporation (NMPC) in Watertown, New York. Significant cost-effective investments were identified, even without any demand-side management (DSM) incentives from NMPC. Three NMPC DSM programs were then examined to determine the impact of participation on the cost-effective efficiency potential at the Fort. The following three utility programs were analyzed: (1) utility rebates to be paid back through surcharges, (2) a demand reduction program offered in conjunction with an energy services company, and (3) utility financing. Ultimately, utility rebates and financing were found to be the best programs for the Fort. This paper examines the influence that specific characteristics of the DSM programs had on the decision-making process of one customer. Fort Drum represents a significant demand-side resource, whose decisions regarding energy efficiency investments are based on life-cycle cost analysis subject to stringent capital constraints. The structures of the DSM programs offered by NMPC affect the cost-effectiveness of potential efficiency investments and the ability of the Fort to obtain sufficient capital to implement the projects. This paper compares the magnitude of the cost-effective resource available under each program, and the resulting level of energy and demand savings. The results of this analysis can be used to examine how DSM program structures impact the decision-making process of federal and large commercial customers.

Stucky, D.J.; Shankle, S.A.; Dixon, D.R.; Elliott, D.B.

1994-12-01T23:59:59.000Z

107

Impact of the demand-side management (DSM) Program structure on the cost-effectiveness of energy efficiency projects  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) analyzed the cost-effective energy efficiency potential of Fort Drum, a customer of the Niagara Mohawk Power Corporation (NMPC) in Watertown, New York. Significant cost-effective investments were identified, even without any demand-side management (DSM) incentives from NMPC. Three NMPC DMS programs were then examined to determine the impact of participation on the cost-effective efficiency potential at the Fort. The following three utility programs were analyzed: (1) utility rebates to be paid back through surcharges; (2) a demand reduction program offered in conjunction with an energy services company; and (3) utility financing. Ultimately, utility rebates and financing were found to be the best programs for the Fort. This paper examines the influence that specific characteristics of the DSM programs had on the decision-making process of one customer. Fort Drum represents a significant demand-side resource, whose decisions regarding energy efficiency investments are based on life-cycle cost analysis subject to stringent capital constraints. The structures of the DSM programs offered by NMPC affect the cost-effectiveness of potential efficiency investments and the ability of the Fort to obtain sufficient capital to implement the projects. This paper compares the magnitude of the cost-effective resource available under each program, and the resulting level of energy and demand savings. The results of this analysis can be used to examine how DSM program structures impact the decision-making process of federal and large commercial customers.

Stucky, D.J.; Shankle, S.A.; Dixon, D.R.; Elliott, D.B.

1995-06-01T23:59:59.000Z

108

Introduction Increasing demands on limited water resources have made  

E-Print Network [OSTI]

Introduction Increasing demands on limited water resources have made wastewater recycling quality, containing numerous microbiological and chemical contaminants, than recycled wastewater that has such that recycled water is of sufficient quality to satisfy most non-potable demands, and as such, recycled water

Sanderson, Mike

109

Demand Response This is the first of the Council's power plans to treat demand response as a resource.1  

E-Print Network [OSTI]

Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

110

The Demand Side: Behavioral Patterns and Unpicked Low-Hanging Fruit  

U.S. Energy Information Administration (EIA) Indexed Site

The Demand Side: Behavioral Patterns and The Demand Side: Behavioral Patterns and Unpicked Low-Hanging Fruit James Sweeney Stanford University Director Precourt Energy Efficiency Center (NĂ©e: Precourt Institute for Energy Efficiency) Professor, Management Science and Engineering 6 Source: McKinsey & Co. Increased commercial space Gasoline Price Controls Compact Fluorescent Penetration LED: Traffic Lights, Task Lighting Appliance Energy Labeling Gasoline Rationing Much Incandescent Lighting Congestion Pricing Personal Computer Penetration Optimized Building Construction Overly Strict Building Standards Pigouvian Energy Tax Reduced Cost Decreased Energy Use "Smart" Regional Land Development Reformed Fuel Efficiency Standards Some Rail Rapid Transit Systems Efficient AC-DC Converters Halt SUV

111

Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs  

E-Print Network [OSTI]

saving potential, and (5) a lack of organizational awareness of an operation's energy efficiency over efficiency requirements and pursuing demand-side management (DSM) incentive programs in the large industrial to investment in energy efficiency, and (2) requiring that incentive payments be dependent on measured energy

Victoria, University of

112

Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption  

E-Print Network [OSTI]

Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling consumption scheduling game, where the players are the users and their strategies are the daily schedules is achieved at the Nash equilibrium of the formulated energy consumption scheduling game. The proposed

Mohsenian-Rad, Hamed

113

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory  

E-Print Network [OSTI]

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast, Wind Power Integration, Markov Chain, Dynamic Potential Game Theory, Nash Equilibrium. I. INTRODUCTION

Huang, Jianwei

114

Abstract--Implementation of Distribution Automation (DA) and Demand Side Management (DSM) intended to serve both  

E-Print Network [OSTI]

Abstract--Implementation of Distribution Automation (DA) and Demand Side Management (DSM) intended, requires a wide-area two-way communication system. DA and DSM devices (customer meters, switches, etc for both DA/DSM applications can be met. And a scheduling policy is proposed to provide the applications

Paris-Sud XI, Université de

115

DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program  

E-Print Network [OSTI]

DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4. Operating hours per room usage category ii. Pre-retrofit energy measurements for sampled fixtures iii. Post-retrofit energy measurements for sampled fixtures iv. Summary savings report b. For each of the items above, the M

Hofmann, Hans A.

116

DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program  

E-Print Network [OSTI]

DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4) - Measure toilet and urinal flush volumes a. Units: gallon per flush (gpf) b. Measured by flushing fixture) - Measure faucet and showerhead flow rates a. Units: gallons per minute (gpm) b. Measured using a micro weir

Hofmann, Hans A.

117

A Simulation Platform to Demonstrate Active Demand-Side Management by Incorporating Heuristic Optimization for Home Energy Management.  

E-Print Network [OSTI]

??Demand-Side Management (DSM) can be defined as the implementation of policies and measures to control, regulate, and reduce energy consumption. This document introduces home energy… (more)

Gudi, Nikhil

2010-01-01T23:59:59.000Z

118

Demand Response Resources for Energy and Ancillary Services (Presentation)  

SciTech Connect (OSTI)

Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

Hummon, M.

2014-04-01T23:59:59.000Z

119

A review of demand-side management policy in the UK  

Science Journals Connector (OSTI)

Abstract Demand-side management (DSM) refers to actions undertaken on the demand side of energy metres. A broad definition of DSM is proposed to include current policy objectives for emissions reduction, energy security and affordability, and encompasses energy efficiency, demand response, and on-site back-up generation and storage. The paper reviews the concept of DSM, outlines the historical impacts of DSM globally since the energy crises of the 1970s, analyses UK DSM policy, and examines the influence of EU Directives on UK DSM policy, as the country is currently deciding on how to include the demand-side in its Electricity Market Reform proposals and wider energy policy. Much of the focus of previous research has been on DSM technological trials and modelling studies rather than DSM policy and the paper contributes to filling this gap. Policy recommendations for the UK context are discussed, and it is clear that the success of DSM policies is determined primarily by regulatory support and utility financial incentives. It is important that policy clarity is provided and that current and new policies do not overlap.

Peter Warren

2014-01-01T23:59:59.000Z

120

Shady Side, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Side, Maryland: Energy Resources Side, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8417821°, -76.5121798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8417821,"lon":-76.5121798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Developed and Developing World Speaker(s): Lee Schipper Date: February 15, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon A new "Great Wall" has emerged in China, this one a string of miles of cars stuck in traffic. Emissions from road transport in developing countries are expected to rise sharply in the coming decades if current trends continue. Projections of passenger and freight activity, vehicle use, and CO2 emissions push up overall CO2 emissions by a factor of three in Latin American and five in Asia by 2030, even with fuel economy improvements. The increase in car use is in part a result of growing incomes and economic activity, but it also reflects the poor quality of transit and

122

Municipal demand-side policy tools and the strategic management of technology life cycles  

Science Journals Connector (OSTI)

Abstract This research is particularly concerned with public policy instruments which may help to accelerate the development and diffusion of sustainable innovations and support local economic development. While sustainable technology sectors are in high demand, firms still face significant barriers in developing and diffusing their technologies in regions throughout the world (Hoff, 2012). This area has been less explored in the extant research yet recent experiences suggest that supply side tools may not always have positive benefits for supporting clean technology evolution, or for taxpayers. Leveraging innovation policy and technology life cycle literature, we develop a model of demand-side policy instruments which could be applied at different stages of the technology s-curve in order to accelerate the adoption of sustainable technologies. Implications for managers, public policy actors and researchers are considered.

Boyd Cohen; Jose Ernesto Amorós

2014-01-01T23:59:59.000Z

123

ACCURATE ESTIMATION OF TARGET AMOUNTS USING EXPANDED BASS MODEL FOR DEMAND?SIDE MANAGEMENT  

Science Journals Connector (OSTI)

The electricity demand in Korea has rapidly increased along with a steady economic growth since 1970s. Therefore Korea has positively propelled not only SSM (Supply?Side Management) but also DSM (Demand?Side Management) activities to reduce investment cost of generating units and to save supply costs of electricity through the enhancement of whole national energy utilization efficiency. However study for rebate which have influence on success or failure on DSM program is not sufficient. This paper executed to modeling mathematically expanded Bass model considering rebates which have influence on penetration amounts for DSM program. To reflect rebate effect more preciously the pricing function using in expanded Bass model directly reflects response of potential participants for rebate level.

Hyun?Woong Kim; Jong?Jin Park; Jin?O. Kim

2008-01-01T23:59:59.000Z

124

Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs  

SciTech Connect (OSTI)

The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

1995-03-01T23:59:59.000Z

125

Demand-side management and European environmental and energy goals: An optimal complementary approach  

Science Journals Connector (OSTI)

Abstract Demand side management (DSM) in electricity markets could improve energy efficiency and achieve environmental targets through controlled consumption. For the past 10 years or so DSM programmes have registered significant results. However, detailed analysis of its real impact as observed by a large number of pilot studies suggests that such programmes need to be fine-tuned to suit clearly identified conditions. This study aims to provide recommendations for the instruments to be used to prompt demand response with a view to maximizing energy and environmental efficiencies of various countries. The present study suggests that different DSM models should be deployed depending on the specific generation mix in any given country. Beside the natural benefits from cross-borders infrastructures, DSM improves the flexibility and reliability of the energy system, absorbing some shock on generation mix. We show efficiency increases with demand response but at a decreasing rate. So, according to rebound and report effects, simple DSM tools could be preferred.

Claire Bergaentzlé; Cédric Clastres; Haikel Khalfallah

2014-01-01T23:59:59.000Z

126

Integrated electricity and heating demand-side management for wind power integration in China  

Science Journals Connector (OSTI)

Abstract The wind power generation system will play a crucial role for developing the energy conservative, environmentally friendly, and sustainable electric power system in China. However, the intermittency and unpredictability of wind power has been an obstacle to the deployment of wind power generation, especially in the winter of northern China. In northern China, a combined heat and power (CHP) unit has been widely utilized as a heat and electricity source. Considering the flexible operation of CHP with introduction of electric heat pumps (EHPs), this paper proposes a new method of electricity and heating demand side management to facilitate the wind power integration with the purpose of energy conservation in a unit-commitment problem. The thermal characteristics of demand side such as the thermal inertia of buildings and thermal comfort of end users are taken into consideration. Moreover the distributed electric heat pumps (EHPs) widely used by city dwellers are introduced into the wind-thermal power system as the heating source and spinning reserve so as to increase the flexibility of heating and electricity supply. The simulation results show that the new method can integrate more wind power into power grid for electricity and heating demand to reduce the coal consumption.

Yulong Yang; Kai Wu; Hongyu Long; Jianchao Gao; Xu Yan; Takeyoshi Kato; Yasuo Suzuoki

2014-01-01T23:59:59.000Z

127

Why industry demand-side management programs should be self-directed  

SciTech Connect (OSTI)

U.S. industry believes in DSM. But it does not believe in the way DSM is being implemented, with its emphasis on mandatory utility surcharge/rebate programs. Self-directed industrial DSM programs would be better for industry - and for utilities as well. Industrial demand-side management, as it is currently practiced, relies heavily on command-and-control-style programs. The authors believe that all parties would benefit if utilities and state public service commissions encouraged the implementation of [open quotes]self-directed[close quotes] industrial DSM programs as an alternative to these mandatory surcharge/rebate-type programs. Here the authors outline industrial experience with existing demand-side management programs, and offer alternative approaches for DSM in large manufacturing facilities. Self-directed industrial programs have numerous advantages over mandatory utility-funded and sponsored DSM programs. Self-directed programs allow an industrial facility to use its own funds to meet its own specific goals, whether they are set on the basis of demand reduction, energy use reduction, spending levels for DSM and environmental activities, or some combination of these or other readily measurable criteria. This flexibility fosters a higher level of cost effectiveness, a more focused and effective approach for optimizing energy usage, larger emission reductions per dollar of expenditure, and more competitive industrial electric rates.

Pritchett, T.; Moody, L. (General Motors Corp., Detroit, MI (United States)); Brubaker, M. (Drazen-Brubaker Associates, Inc., St. Lousi, MO (United States))

1993-11-01T23:59:59.000Z

128

Analysis of control strategies for thermally activated building systems under demand side management mechanisms  

Science Journals Connector (OSTI)

Abstract Thermally activated buildings systems (TABS) are systems that integrate heating/cooling devices in the building structure, so that the building elements act as thermal storage and have an active role in the energy supply and demand management. Although TABS are well known systems, there are still open questions in their realization, mainly concerning appropriate control strategies which are influenced by the large thermal inertia. The purpose of this paper is to analyze the influence of demand side management control strategies on the performance of a thermally activated building system applied in a commercial building. The goal is to estimate the potential of TABS for load shifting requested by the electricity grid. The analysis is performed by means of a sample case: first the existing TABS control strategy and then the possible implementation of DSM mechanisms are analyzed. In particular three different demand side management mechanisms are evaluated: (i) a peak shaving strategy, (ii) a random request of switching on/off the system and (iii) a night load shifting strategy. The simulation results show high potential of TABS within the DSM framework, since TABS allow load control while scarcely affect thermal comfort.

A. Arteconi; D. Costola; P. Hoes; J.L.M. Hensen

2014-01-01T23:59:59.000Z

129

US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource...  

Broader source: Energy.gov (indexed) [DOE]

US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool HYDRA Program hydrajoseck.pdf...

130

Demand side management of a run-of-mine ore milling circuit  

Science Journals Connector (OSTI)

Increasing electricity costs coupled with lower prices for some metals such as platinum group metals require a reevaluation of the operation of grinding processes. Demand side management (DSM) has received increasing attention in the field of industrial control as an opportunity to reduce operating costs. DSM through grinding mill power load shifting is presented in this paper using model predictive control and a real-time optimizer. Simulation results indicate that mill power load shifting can potentially achieve cost reductions of $9.90 per kg of unrefined product when applied to a run-of-mine (ROM) ore milling circuit processing platinum bearing ore. DSM is however still not economically feasible when there is a demand to continuously run the milling circuit at maximum throughput.

B. Matthews; I.K. Craig

2013-01-01T23:59:59.000Z

131

Demand side management of electric car charging: Benefits for consumer and grid  

Science Journals Connector (OSTI)

Ireland is currently striving to source 10% of the energy required for its transport fleet from renewable energy sources by 2020. As part of the measures being implemented in order to help realise this ambitious target a number of Government schemes have been introduced to financially subsidise the purchase of alternative energy vehicles in an effort to achieve 10% EV (electric vehicle) penetration in the country's road fleet by 2020. The replacement of ICE (internal combustion engine) vehicles with EV equivalents poses challenges for grid operators while simultaneously offering opportunities in terms of distributed energy storage and flexible load. This paper examines how optimising the charging cycles of an electric car using DSM (Demand Side Management) based on a number of criteria could be used to achieve financial savings, increased demand on renewable energy, reduce demand on thermal generation plant, and reduce peak load demand. The results demonstrate that significant gains can be achieved using currently available market data which highlights the point that DSM can be implemented without any further technological advents.

P. Finn; C. Fitzpatrick; D. Connolly

2012-01-01T23:59:59.000Z

132

A distributed demand-side management framework for the smart grid  

Science Journals Connector (OSTI)

Abstract This paper proposes a fully distributed Demand-Side Management system for Smart Grid infrastructures, especially tailored to reduce the peak demand of residential users. In particular, we use a dynamic pricing strategy, where energy tariffs are function of the overall power demand of customers. We consider two practical cases: (1) a fully distributed approach, where each appliance decides autonomously its own scheduling, and (2) a hybrid approach, where each user must schedule all his appliances. We analyze numerically these two approaches, showing that they are characterized practically by the same performance level in all the considered grid scenarios. We model the proposed system using a non-cooperative game theoretical approach, and demonstrate that our game is a generalized ordinal potential one under general conditions. Furthermore, we propose a simple yet effective best response strategy that is proved to converge in a few steps to a pure Nash Equilibrium, thus demonstrating the robustness of the power scheduling plan obtained without any central coordination of the operator or the customers. Numerical results, obtained using real load profiles and appliance models, show that the system-wide peak absorption achieved in a completely distributed fashion can be reduced up to 55%, thus decreasing the capital expenditure (CAPEX) necessary to meet the growing energy demand.

Antimo Barbato; Antonio Capone; Lin Chen; Fabio Martignon; Stefano Paris

2014-01-01T23:59:59.000Z

133

Utility rebates for efficient motors -- The outlook for demand-side management  

SciTech Connect (OSTI)

Since 1987, many electric utilities throughout North America have been actively promoting DSM--demand-side management, the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them--these are the subjects of this paper.

Nailen, R.L. [Wisconsin Electric Power Co., Milwaukee, WI (United States)

1995-12-31T23:59:59.000Z

134

Utility rebates for efficient motors -- The outlook for demand-side management  

SciTech Connect (OSTI)

Since 1987, many electric utilities throughout North America have been actively promoting demand-side management (DSM), the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them are the subjects of this paper.

Nailen, R.L. [Wisconsin Electric Power Co., Milwaukee, WI (United States)] [Wisconsin Electric Power Co., Milwaukee, WI (United States)

1997-01-01T23:59:59.000Z

135

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

advanced metering and demand response in electricityGoldman, and D. Kathan. “Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

136

2013 Strategic Planning Initiative Market/Demand Resources Index of Resources  

E-Print Network [OSTI]

Workforce Profile 16. WWAMI Physician Workforce 2005 17. UA Expanding Access to Health Programs (EAHP) Plan 18. State Health Care Workforce Development Planning Grant Planning Alaska's Health Workforce FINAL;2013 Strategic Planning Initiative Market/Demand Resources Title: 2009 Alaska Health Workforce Vacancy Study

Pantaleone, Jim

137

SWITCH: Case Studies in the Demand Side Management of Washing Appliances  

Science Journals Connector (OSTI)

Abstract The emergence of viable smart home technologies together with ambitious government initiatives for smart meter rollouts will provide a rich platform on which to develop demand side management strategies that aim to modify consumer's use of energy. In this work we develop such a platform that aims to ‘SWITCH’ behaviour patterns and ‘SWITCH’ on/off energy consuming appliances when they are not needed or when they could be utilised to benefit from on-site power generation or off-peak electricity. This platform was installed in 3 occupied domestic properties that form part of the Creative Energy Homes project at the University of Nottingham, UK. A total of 6 case studies are presented that investigate the impact of shifting the time of use of washing machines and dishwashers with varying levels of user engagement. A range of issues and user perceptions of the technology are presented and discussed.

R. Shipman; M. Gillott; E. Naghiyev

2013-01-01T23:59:59.000Z

138

Demand side management using artificial neural networks in a smart grid environment  

Science Journals Connector (OSTI)

Abstract Smart grid deployment is a global trend, creating endless possibilities for the use of data generated by dynamic networks. The challenge is the transformation of this large volume of data into useful information for the electrical system. An example of this is the application of demand side management (DSM) techniques for the optimisation of power system management in real time. This article discusses the use of DSM in this new environment of electrical system and it presents a simulation that uses data acquired from digital meters, it creates patterns of load curves, uses these patterns load data to train and validate a ANN and uses this ANN to classify new data using these defined patters. The results obtained in this study show that the intelligent network environment facilitates the implementation of DSM and the use of ANN presented a satisfactory performance for the classification of load curves.

M.N.Q. Macedo; J.J.M. Galo; L.A.L. de Almeida; A.C. de C. Lima

2015-01-01T23:59:59.000Z

139

Optimal combined scheduling of generation and demand response with demand resource constraints  

Science Journals Connector (OSTI)

Demand response (DR) extends customer participation to power systems and results in a paradigm shift from simplex to interactive operation in power systems due to the advancement of smart grid technology. Therefore, it is important to model the customer characteristics in DR. This paper proposes customer information as the registration and participation information of DR, thus providing indices for evaluating customer response, such as DR magnitude, duration, frequency and marginal cost. The customer response characteristics are modeled from this information. This paper also introduces the new concept of virtual generation resources, whose marginal costs are calculated in the same manner as conventional generation marginal costs, according to customer information. Finally, some of the DR constraints are manipulated and expressed using the information modeled in this paper with various status flags. Optimal scheduling, combined with generation and DR, is proposed by minimizing the system operation cost, including generation and DR costs, with the generation and DR constraints developed in this paper.

Hyung-Geun Kwag; Jin-O Kim

2012-01-01T23:59:59.000Z

140

Modeling of Demand Side Management Options for Commercial Sector in Maharashtra  

Science Journals Connector (OSTI)

Abstract There has been an unbalance between demand and supply of electricity in Maharashtra, a shortage of 20% peak power was reported in year 2011-12. Demand side management (DSM) in the commercial sector (consuming about 12% of the state electricity) can help to bridge this gap. In this paper three DSM options namely global temperature adjustment (GTA), chilled water storage (CWS) and variable air volume system (VAVS) are evaluated to give potential energy savings and load shifting. Simulation of GTA model for a sample school building gave 21.3% saving in compressor work for a change of room settings from 23oC, 50% RH to 26oC, 40% RH. Model for CWS was simulated for an office building in Mumbai; the results showed a cooling load shifting of 1638TRh out of 2075TRh was possible with an optimum tank size of 450kl. Simulation of VAVS for a sample school building showed fan energy savings of 68% over CAVS.

Vishal Vadabhat; Rangan Banerjee

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The power of efficiency: Optimizing environmental and social benefits through demand-side-management  

Science Journals Connector (OSTI)

Abstract Substantial social and environmental benefits can be achieved through regional DSM (demand-side management) strategies. Here, three DSM scenarios that vary in capital investment costs of technology retrofits were tested for the contemporary Northeastern US. These resulted in an 8.3–16.5% decrease in summertime regional electricity consumption. The lower power consumption achieved through DSM was analyzed under an additional five SPR (strategic power reduction) scenarios to explore how the reduced electricity demand could be optimized through different modalities of thermoelectric power production that lower human health risks, thermal water pollution, carbon emissions or system costs (operation and maintenance) of power plants. SPR scenarios show potential to lower health risks to nearly two million people with corresponding avoided external costs of $11 billion per year, lower carbon emissions (31%, maximum) and thermal water pollution (37%, maximum). By internalizing external costs, some unfavorable investments (NPV (net present value)  0). Results show that integrating tradeoffs of DSM beyond the building scale unveil considerable social and environmental benefits that are ignored in typical financial valuations. This, in turn, can provide more holistic assessments and identify actionable policy alternatives of value to energy and environmental planners that aim to achieve sustainable development.

Ariel Miara; Craig Tarr; Rachel Spellman; Charles J. Vörösmarty; Jordan E. Macknick

2014-01-01T23:59:59.000Z

142

A cloud computing framework on demand side management game in smart energy hubs  

Science Journals Connector (OSTI)

Abstract The presence of energy hubs in the future vision of energy networks creates an opportunity for electrical engineers to move toward more efficient energy systems. At the same time, it is envisioned that smart grid can cover the natural gas network in the near future. This paper modifies the classic Energy Hub model to present an upgraded model in the smart environment entitling “Smart Energy Hub”. Supporting real time, two-way communication between utility companies and smart energy hubs, and allowing intelligent infrastructures at both ends to manage power consumption necessitates large-scale real-time computing capabilities to handle the communication and the storage of huge transferable data. To manage communications to large numbers of endpoints in a secure, scalable and highly-available environment, in this paper we provide a cloud computing framework for a group of smart energy hubs. Then, we use game theory to model the demand side management among the smart energy hubs. Simulation results confirm that at the Nash equilibrium, peak to average ratio of the total electricity demand reduces significantly and at the same time the hubs will pay less considerably for their energy bill.

Aras Sheikhi; Mohammad Rayati; Shahab Bahrami; Ali Mohammad Ranjbar; Sourena Sattari

2015-01-01T23:59:59.000Z

143

The Influence of Demand Resource Response Time in Balancing Wind and Load  

Science Journals Connector (OSTI)

The integration of demand response resources into wholesale electricity markets facilitates the growth in wind power integration. Available demand resources have different capabilities in terms of response time, as demonstrated by the variety of programs ... Keywords: demand response, wind integration, power spectral density

Judith Cardell; Lindsay Anderson

2013-01-01T23:59:59.000Z

144

Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction  

Science Journals Connector (OSTI)

Ireland is currently striving to achieve an ambitious target of supplying 40% of electricity demand with renewable energy by 2020. With the vast majority of this being met by wind energy, an intermittent and non-dispatchable energy source, it is inevitable that frequent substantial curtailment will occur during times of excessive generation. This paper investigates the potential for demand side management to limit the requirement for curtailment and further facilitate the integration of renewable energy by shifting the timing of electrical demand in response to various signals including pricing and wind availability. Using a domestic dishwasher as an example, significant increases in the amount of renewable electricity consumed are demonstrated with simultaneous financial savings for the consumer. Furthermore, secondary benefits such as peak-time demand reductions in excess of 60% are observed. The impact of employing demand side management based on imperfect day-ahead market predictions is also analysed and the resulting deficiencies are quantified.

P. Finn; M. O’Connell; C. Fitzpatrick

2013-01-01T23:59:59.000Z

145

Sustainable Energy Resources for Consumers (SERC)- On-Demand Tankless Water Heaters  

Broader source: Energy.gov [DOE]

This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters.

146

Linkages between demand-side management and congestion in the European electricity transmission system  

Science Journals Connector (OSTI)

Abstract We evaluate the possibility to reduce congestion in the transmission grid through large-scale implementation of demand-side management (DSM) in the form of load shifting for the EU-27 countries, Norway, and Switzerland for Year 2020. A linear, cost-minimising, dispatch model that includes a DC load-flow description of the transmission system and a general representation of load shifting is used. It is assumed that the EU Member States fulfil the targets for Year 2020 in their national renewable energy action plans. In the model calculations, a reference case without load shifting is compared with cases in which the load shifting is 5%, 10%, 15% or 20% of the load. The possibility to shift load in time is added exogenously and economic incentives for DSM are not evaluated. Three types of congestion are identified: peak-load-hour congestion, low-load-hour congestion and all-hour congestion. Peak-load-hour congestion is reduced as the DSM share of the load increases, whereas low-load-hour congestion, which is typically associated with a high level of wind generation, persists at all the DSM penetration levels investigated. We show that all-hour congestion occurs between systems that have large differences in supply structure, and that the impact of DSM on all-hour congestion is low.

Lisa Göransson; Joel Goop; Thomas Unger; Mikael Odenberger; Filip Johnsson

2014-01-01T23:59:59.000Z

147

Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems  

Science Journals Connector (OSTI)

Heat pumps are seen as a promising technology for load management in the built environment, in combination with the smart grid concept. They can be coupled with thermal energy storage (TES) systems to shift electrical loads from high-peak to off-peak hours, thus serving as a powerful tool in demand-side management (DSM). This paper analyzes heat pumps with radiators or underfloor heating distribution systems coupled with TES with a view to showing how a heat pump system behaves and how it influences the building occupants' thermal comfort under a DSM strategy designed to flatten the shape of the electricity load curve by switching off the heat pump during peak hours (16:00–19:00). The reference scenario for the analysis was Northern Ireland (UK). The results showed that the heat pump is a good tool for the purposes of DSM, also thanks to the use of TES systems, in particular with heating distribution systems that have a low thermal inertia, e.g. radiators. It proved possible to achieve a good control of the indoor temperature, even if the heat pump was turned off for 3 h, and to reduce the electricity bill if a “time of use” tariff structure was adopted.

A. Arteconi; N.J. Hewitt; F. Polonara

2013-01-01T23:59:59.000Z

148

Low-Interest Loans for Customer-Side Distributed Resources | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low-Interest Loans for Customer-Side Distributed Resources Low-Interest Loans for Customer-Side Distributed Resources Low-Interest Loans for Customer-Side Distributed Resources < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info Start Date 7/21/2005 State Connecticut Program Type State Loan Program Rebate Amount Varies Provider Banc of America Long-term financing is available to retail end-use customers for the installation of customer-side distributed resources. Customer-side distributed resources are defined by Conn. Gen. Stat. § 16-1 as "(A) the generation of electricity from a unit with a rating of not more than

149

Quantifying the Benefits of Resource Multiplexing in On-Demand Data Centers  

E-Print Network [OSTI]

of Massachusetts Amherst San Jose, CA {abhishek,shenoy}@cs.umass.edu goyalp@us.ibm.com ABSTRACT On-demand dataQuantifying the Benefits of Resource Multiplexing in On-Demand Data Centers Abhishek Chandra centers host multiple applications on server farms by dynamically provisioning resources in response

Massachusetts at Amherst, University of

150

Quantifying the Benefits of Resource Multiplexing in OnDemand Data Centers #  

E-Print Network [OSTI]

of Massachusetts Amherst San Jose, CA {abhishek,shenoy}@cs.umass.edu goyalp@us.ibm.com ABSTRACT On­demand dataQuantifying the Benefits of Resource Multiplexing in On­Demand Data Centers # Abhishek Chandra centers host multiple applications on server farms by dynamically provisioning resources in response

Chandra, Abhishek

151

Memorandum: Cost-effectiveness valuation framework for Demand Response Resources: Guidelines and Suggestions (DRAFT)  

E-Print Network [OSTI]

Memorandum: Cost-effectiveness valuation framework for Demand Response Resources: Guidelines and Suggestions (DRAFT) To: Pacific Northwest Demand Response Project Cost-Effectiveness Working Group From: Chuck Northwest Demand Response Project agreed to form three Working Groups to explore DR issues in more detail

152

An Open Architecture Platform for Demand Resources from AutoDR and MBCx:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Open Architecture Platform for Demand Resources from AutoDR and MBCx: An Open Architecture Platform for Demand Resources from AutoDR and MBCx: National Virtual Power Plant Speaker(s): Jung In Choi Date: December 20, 2013 - 2:00pm - 3:00pm Location: 90-3122 Seminar Host/Point of Contact: Philip Haves The presentation lays out the technology and business model for National Virtual Power Plant (NVPP). NAPP is a Korean initiative to develop a cluster of demand resources from consumers by peak reduction or energy saving. Demand resources from NVPP are collectively traded in the open architecture platform for energy market. The platform enables 3rd parties to develop new business models and applications through open API s. It will bring a long tail market for demand response and energy efficiency in small and medium size buildings as well as large ones. Automated Demand

153

Deployment of Demand Response as a Real-Time Resource in Organized Markets  

Open Energy Info (EERE)

Deployment of Demand Response as a Real-Time Resource in Organized Markets Deployment of Demand Response as a Real-Time Resource in Organized Markets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Deployment of Demand Response as a Real-Time Resource in Organized Markets Focus Area: Crosscutting Topics: Potentials & Scenarios Website: www.sciencedirect.com/science/article/pii/S1040619008000973 Equivalent URI: cleanenergysolutions.org/content/deployment-demand-response-real-time- Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning This article examines the use of demand response as a dispatchable resource

154

“Souls of the ancestor that knock us out” and other tales. A qualitative study to identify demand-side factors influencing malaria case management in Cambodia  

Science Journals Connector (OSTI)

Appropriate case management of suspected malaria in Cambodia is critical ... on Cambodian practices, aiming to understand the demand-side factors influencing treatment-seeking behaviour, including the...

Kathryn A O’Connell; Ghazaleh Samandari; Sochea Phok; Mean Phou…

2012-10-01T23:59:59.000Z

155

Low-flow appliances and household water demand: An evaluation of demand-side management policy in Albuquerque, New Mexico  

Science Journals Connector (OSTI)

Abstract Residential rebate programs for low-flow water devices have become increasingly popular as a means of reducing urban water demand. Although program specifics vary, low-flow rebates are available in most U.S. metropolitan areas, as well as in many smaller municipalities. Despite their popularity, few statistical analyses have been conducted regarding the effects of low-flow rebates on household water use. In this paper, we consider the effects of rebates from the Albuquerque Bernalillo County Water Utility Authority (ABCWUA). Using panel regression techniques with a database of rebate recipients, we estimate the marginal effects of various low-flow devices on household water demand. Results indicate a negative correlation between household water use and the presence of most low-flow devices, after controlling for water price and weather conditions. Low-flow toilets have the greatest impact on water use, while low-flow washing machines, dishwashers, showerheads, and xeriscape have smaller but significant effects. In contrast, air conditioning systems, hot water recirculators, and rain barrels have no significant impact on water use. We also test for possible rebound effects (i.e. whether low-flow appliances become less-effective over time due to poor rates of retention or behavioral changes) and compare the cost effectiveness of each rebate using levelised-costs. We find no evidence of rebound effects and substantial variation in levelised-costs, with low-flow showerheads being the most cost-effective device under the current ABCWUA rebate program. The latter result suggests that water providers can improve the efficiency of rebate programs by targeting the most cost-effective devices.

James I. Price; Janie M. Chermak; Jeff Felardo

2014-01-01T23:59:59.000Z

156

Evaluation of Conservation Voltage Reduction as a tool for demand side management.  

E-Print Network [OSTI]

??To ensure stability of the power grid, electricity supply and demand must remain in balance in real time. Traditionally utilities, call upon peaking power plants… (more)

Dorrody, Ali

2014-01-01T23:59:59.000Z

157

The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges  

Science Journals Connector (OSTI)

Abstract In recent years, demand response and load control automation has gained increased attention from regulators, system operators, utilities, market aggregators, and product vendors. It has become a cost-effective demand-side alternative to traditional supply-side generation technologies to balance the power grid, enable grid integration of renewable energy, and meet growing demands for electricity. There are several factors that have played a role in the development of demand response programs. Existing research are however limited on reviewing in a systematic approach how these factors work together to drive this development. This paper makes an attempt to fill this gap. It provides a comprehensive overview on how policy and regulations, electricity market reform, and technological advancement in the US and other countries have worked for demand response to become a viable demand-side resource to address the energy and environmental challenges. The paper also offers specific recommendations on actions needed to capture untapped demand response potentials in countries that have developed active demand response programs as well as countries that plan to pursue demand response.

Bo Shen; Girish Ghatikar; Zeng Lei; Jinkai Li; Greg Wikler; Phil Martin

2014-01-01T23:59:59.000Z

158

Population momentum and the demand on land and water resources  

Science Journals Connector (OSTI)

...Alterations of the carbon pools, changes in albedo and...of the availability of water resources and future...Gleick, P. (ed.) 1993 Water in crisis: a guide to...International Union for the Conservation of Nature and Natural...Shiklomanov, I. 1990 Global water resources. ature and...

1997-01-01T23:59:59.000Z

159

The BeyWatch Conceptual Model for Demand-Side Management  

Science Journals Connector (OSTI)

The BeyWatch project designs, develops and evaluates an innovative, energy-aware and user-centric solution, able to provide intelligent energy monitoring/control and power demand balancing at home/building and la...

Menelaos Perdikeas; Theodore Zahariadis…

2011-01-01T23:59:59.000Z

160

Controlling market power and price spikes in electricity networks: Demand-side bidding  

Science Journals Connector (OSTI)

...controlled data set with...competition on transmission lines connecting...demand from outages are ignored. Other...losses in transmission and any line constraints...14 days of data by level...when the transmission lines...

Stephen J. Rassenti; Vernon L. Smith; Bart J. Wilson

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

162

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

resources like wind and solar power [100, 19]. The goal ofof DFIG-based wind farms to power system short-termimpacts of wind generation on California power systems”. In:

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

163

DOE Hydrogen Analysis Repository: HyDRA: Hydrogen Demand and Resource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HyDRA: Hydrogen Demand and Resource Analysis Tool HyDRA: Hydrogen Demand and Resource Analysis Tool Project Summary Full Title: HyDRA: Hydrogen Demand and Resource Analysis Tool Project ID: 220 Principal Investigator: Johanna Levene Brief Description: HyDRA has evolved from a basic display of spatial data to a repository of over 100 datasets with dynamic data, querying, and interoperability with other models and spatial data repositories and over 350 registered users. Keywords: Hydrogen infrastructure; wind; solar; biomass; coal; natural gas Purpose Facilitate regional and geographical analyses of resources, demand, and infrastructure relevant to the implementation of hydrogen production, delivery, and dispensing. Performer Principal Investigator: Johanna Levene Organization: National Renewable Energy Laboratory (NREL)

164

Demand responsive programs - an emerging resource for competitive electricity markets?  

SciTech Connect (OSTI)

The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

Heffner, Grayson C. Dr.; Goldman, Charles A.

2001-06-25T23:59:59.000Z

165

Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support  

Science Journals Connector (OSTI)

Abstract Demand fluctuation in electric power systems is undesirable from many points of view; this has sparked an interest in demand-side strategies that try to establish mechanisms that allow for a flatter demand curve. Particularly interesting is load shifting, a strategy that considers the shifting of certain amounts of energy demand from some time periods to other time periods with lower expected demand, typically in response to price signals. In this paper, an optimization-based model is proposed to perform load shifting in the context of smart grids. In our model, we define agents that are responsible for load, generation and storage management; in particular, some of them are electric vehicle aggregators. An important feature of the proposed approach is the inclusion of electric vehicles with vehicle-to-grid capabilities; with this possibility, electric vehicles can provide certain services to the power grid, including load shifting and congestion management. Results are reported for a test system based on the IEEE 37-bus distribution grid; the effectiveness of the approach and the effect of the hourly energy prices on flattening the load curve are shown.

M.A. López; S. de la Torre; S. Martín; J.A. Aguado

2015-01-01T23:59:59.000Z

166

Hydrogeologists Tap Into Demand for an Irreplaceable Resource  

Science Journals Connector (OSTI)

...the strata, and probe water samples for their...treated for use as drinking water. Zeiler says he leaves most...successes led to cutbacks in remediation. Now, the focus has...finding and managing water resources while protecting...reinjecting water into the ground for storage) and carbon...

Robert Coontz

2008-08-08T23:59:59.000Z

167

Potentials of Demand Side Management Using Heat Pumps with Building Mass as a Thermal Storage  

Science Journals Connector (OSTI)

Abstract Within this work, load-shifting possibilities of heat pumps in residential buildings as well as its influencing and limiting factors are displayed. The intermediate storage is achieved by using the thermal mass of the building so the heat supply can be postponed from the heat demand for a certain period, depending on the characteristics of the building. No additional water storage is considered.

Charlotte Ellerbrok

2014-01-01T23:59:59.000Z

168

Analytical frameworks to incorporate demand response in long-term resource planning  

Science Journals Connector (OSTI)

Abstract Many utilities are obligated by state regulatory or legislative requirements to consider demand response (DR) as part of their resource planning process. There are several ways to incorporate DR into resource planning modeling and each has its advantages and disadvantages. We explore the current analytical frameworks for incorporating DR into long-term resource planning. We also consider whether current approaches accurately and realistically model DR resources in capacity expansion and production cost models and whether barriers exist to incorporating DR into resource planning models in a more robust fashion. We identify 10 specific recommendations for enhancing and expanding the current approaches.

Andrew Satchwell; Ryan Hledik

2014-01-01T23:59:59.000Z

169

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

SciTech Connect (OSTI)

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

170

Creating balanced energy market structures: equal valuation of supply and demand side initiatives  

Science Journals Connector (OSTI)

Now in its fifth year, the Bordeaux Energy Colloquium was originally created to bring together the voices of various industry constituents to engage in a series of dialogues regarding the creation of a competitive energy marketplace. Each year, Colloquium members consider key variables within various contexts and evaluate their effect on the global transition trend from regulation to competition in energy markets. Fall-2005 Colloquium members agreed that the fundamental imbalance between how supply and demand options are valued is a key stumbling block in the proper functioning of energy markets. Working under the auspices of the Bordeaux Energy Colloquium, 2005 members created a call for action paper that attempts to identify important points of leverage that can be used to further unleash the potential of energy systems in favour of new lines of development.

Kimberly E. Samaha; Thomas L. Welch; John A. Anderson; Thomas R. Casten; Cody Graves

2007-01-01T23:59:59.000Z

171

Coordination of Energy Efficiency and Demand Response: A Resource of the  

Open Energy Info (EERE)

Coordination of Energy Efficiency and Demand Response: A Resource of the Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Focus Area: Energy Efficiency Topics: Policy, Deployment, & Program Impact Website: www.epa.gov/cleanenergy/documents/suca/ee_and_dr.pdf Equivalent URI: cleanenergysolutions.org/content/coordination-energy-efficiency-and-de Language: English Policies: "Regulations,Deployment Programs" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Retrofits Regulations: Energy Standards

172

Handbook of evaluation of utility DSM programs. [Demand-Side Management (DSM)  

SciTech Connect (OSTI)

Program evaluation has become a central issue in the world of utility integrated resource planning. The DSM programs that utilities were operating to meet federal requirements or to improve customer relations are now becoming big business. DSM is being considered an important resource in a utility's portfolio of options. In the last five years, the amount of money that utilities have invested in DSM has grown exponentially in most regulatory jurisdictions. Market analysts are now talking about DSM being a $30 billion industry by the end of the decade. If the large volume of DSM-program investments was not enough to highlight the importance of evaluation, then the introduction of regulatory incentives has really focused the spotlight. This handbook was developed through a process that involved many of those people who represent the diverse constituencies of DSM-program evaluation. We have come to recognize the many technical disciplines that must be employed to evaluate DSM programs. An analysis might start out based on the principles of utility load research to find out what happened, but a combination of engineering and statistical methods must be used to triangulate'' an estimate of what would have happened without the program. The difference, of course, is that elusive but prized result of evaluation: what happened as the direct result of the DSM program. Technical performance of DSM measures is not the sole determinant of the answer, either. We also recognize the importance of such behavioral attributes of DSM as persistence and free ridership. Finally, DSM evaluation is meaningless without attention to planning an approach, communicating results to relevant decision-makers, and focusing as much on the process as the impacts of the program. These topics are all covered in this handbook.

Hirst, E.; Reed, J. (eds.); Bronfman, B.; Fitzpatrick, G.; Hicks, E.; Hirst, E.; Hoffman, M.; Keating, K.; Michaels, H.; Nadel, S.; Peters, J.; Reed, J.; Saxonis, W.; Schoen, A.; Violette, D.

1991-12-01T23:59:59.000Z

173

Impact on energy requirements and emissions of heat pumps and micro-cogenerators participating in demand side management  

Science Journals Connector (OSTI)

Abstract The potential impacts of participating in demand side management (DSM) on the performance of air source heat pumps (ASHP) and micro-combined heat and power (mCHP) units are considered by this study. As significant consumers and generators of electricity at the distribution level, large numbers of heat pumps and micro-cogenerators would provide considerable scope for participation in DSM systems. However, it is possible that operating regimes which are optimised for grid considerations will not achieve the maximum performance that is possible from the units. Modelling has been conducted to investigate the significance of this effect, considering the case where local distribution constraints are the main driver for demand side interventions. A model of domestic electrical demand has been adapted to consider a neighbourhood of 128 dwellings in order to identify when interventions are necessary. This has been combined with dynamic models of two combustion engine micro-cogenerators, a solid oxide fuel cell micro-cogenerator and two ASHPs. A simple thermal model of each building is combined with a range of user preferences in order to determine the preferred operating profiles of the heating units. The DSM scheme analysed here is likely to have minimal impact on the emissions and energy requirements associated with each heating unit. Its effect is similar to that which occurs without DSM if the control system gain is relaxed such that equivalent thermal comfort is achieved. DSM can reduce the peak electrical demand of the neighbourhood. However, in the scenarios investigated, it is unlikely that the peaks can be reduced sufficiently such that they do not exceed the capacity of the local distribution transformer if \\{ASHPs\\} are used in all dwellings. By using a combination of mCHP units with ASHPs, it is possible to supply heating to all dwellings without exceeding this capacity. In this case, the use of DSM can increase the ratio of \\{ASHPs\\} used. In the context of a low carbon grid electricity supply, this will reduce the average carbon emissions associated with the neighbourhood.

Samuel J.G. Cooper; Geoffrey P. Hammond; Marcelle C. McManus; John G. Rogers

2014-01-01T23:59:59.000Z

174

Incorporating Demand Resources into ISO New England’s Forward Capacity Market  

E-Print Network [OSTI]

, Massachusetts 757 MW, New Hampshire 74 MW, Rhode Island 99 MW, and Vermont 121 MW. Existing Resource Results ? Existing power plants in New England fulfilled the largest share, accounting for 30,239 MW of the required 32,305 MW total. ? Existing... 190 567 12,777 481 New Hampshire 10 64 4,083 54 Rhode Island 21 78 2,401 87 Vermont 50 71 900 30 Imports - - 934 - Total 626 1,188 31,173 1,366 Demand Resources Cleared Capacity (MW) Resource Type ME NH VT...

Winkler, E.

2008-01-01T23:59:59.000Z

175

Modeling and integration of demand response and demand side resources for smart grid application in distribution systems.  

E-Print Network [OSTI]

??Today’s electric grid is undergoing drastic changes to evolve into a smart grid. Deregulation of the integrated and monopolistic power system into genco, transco and… (more)

Venkatesan, Naveen.

2011-01-01T23:59:59.000Z

176

Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting  

Science Journals Connector (OSTI)

Abstract Worldwide implementation of demand side management (DSM) programs has had positive impacts on electrical energy consumption (EEC) and the examination of their effects on long-term forecasting is warranted. The objective of this study is to investigate the effects of historical DSM data on accuracy of EEC modeling and long-term forecasting. To achieve the objective, optimal artificial neural network (ANN) models based on improved particle swarm optimization (IPSO) and shuffled frog-leaping (SFL) algorithms are developed for EEC forecasting. For long-term EEC modeling and forecasting for the U.S. for 2010–2030, two historical data types used in conjunction with developed models include (i) EEC and (ii) socio-economic indicators, namely, gross domestic product, energy imports, energy exports, and population for 1967–2009 period. Simulation results from IPSO-ANN and SFL-ANN models show that using socio-economic indicators as input data achieves lower mean absolute percentage error (MAPE) for long-term EEC forecasting, as compared with EEC data. Based on IPSO-ANN, it is found that, for the U.S. EEC long-term forecasting, the addition of DSM data to socio-economic indicators data reduces MAPE by 36% and results in the estimated difference of 3592.8 MBOE (5849.9 TW h) in EEC for 2010–2030.

F.J. Ardakani; M.M. Ardehali

2014-01-01T23:59:59.000Z

177

2012 SG Peer Review - Interoperability of Demand Response Resources in New York - Andre Wellington, ConEd NY  

Broader source: Energy.gov (indexed) [DOE]

Interoperability of Demand Response Interoperability of Demand Response Resources in NY Andre Wellington Con Edison June 8, 2012 December 2008 Interoperability of Demand Resource Resources in NY Objective Life-cycle Funding ($M) FY08 - FY13 $6.8 million Technical Scope (Insert graphic here) Develop and demonstrate technology required to integrate customer owned resources into the electrical distribution system * Evaluate interconnection designs * Design and install thermal storage plant with enhanced capabilities * Develop AutoDR application for targeted distributed resources 2 December 2008 Needs and Project Targets Develop the technology required to integrate customer owned distributed resources into the distribution system to enable the of deferment capital investments. * Remote dispatch of customer resources

178

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

179

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

180

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Analytical Frameworks to Incorporate Demand Response in Long-term Resource Planning  

E-Print Network [OSTI]

Cost- effectiveness of Demand Response. ” Prepared for theon the National Action Plan on Demand Response, February.Role of Automated Demand Response. ” LBNL-4189E, November.

Satchwell, Andrew

2014-01-01T23:59:59.000Z

182

Electricity demand-side management for an energy efficient future in China : technology options and policy priorities  

E-Print Network [OSTI]

The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

Cheng, Chia-Chin

2005-01-01T23:59:59.000Z

183

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

184

FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS  

E-Print Network [OSTI]

resources resulting in water stress. Effective water management ­ a solution Supply side management Demand side management #12;Developing a regression equation based on cluster analysis for forecasting waterFORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil

Keller, Arturo A.

185

Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing  

Science Journals Connector (OSTI)

Abstract As the installed capacity of wind generation in Ireland continues to increase towards an overall goal of 40% of electricity from renewable sources by 2020, it is inevitable that the frequency of wind curtailment occurrences will increase. Using this otherwise discarded energy by strategically increasing demand at times that would otherwise require curtailment has the potential to reduce the installed capacity of wind required to meet the national 2020 target. Considering two industrial electricity consumers, this study analyses the potential for the implementation of price based demand response by an industrial consumer to increase their proportional use of wind generated electricity by shifting their demand towards times of low prices. Results indicate that while curtailing during peak price times has little or no benefit in terms of wind energy consumption, demand shifting towards low price times is likely to increase a consumer’s consumption of wind generation by approximately 5.8% for every 10% saved on the consumer’s average unit price of electricity.

Paddy Finn; Colin Fitzpatrick

2014-01-01T23:59:59.000Z

186

Commercial & Industrial Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

187

Optimal Management of Renewable Resources with Growing Demand and Stock Externalities  

E-Print Network [OSTI]

MAi\\IAGEMEJ. 'n' OF RENEWABLE RESOURCES WIlli GROWING DEMANDthe problem of a renewable resource is: -f" (x*) P*] (~p). ~MA. ? \\IAGEMENl' OF RENEWABLE RESOURCES WIlli GROWING

Berck, Peter

1979-01-01T23:59:59.000Z

188

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network [OSTI]

LBNL. Integrating Renewable Resources in California and thethe Integration of Renewable Resources David S. Watson,the Integration of Renewable Resources. California Energy

Watson, David S.

2013-01-01T23:59:59.000Z

189

Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response  

Science Journals Connector (OSTI)

Abstract The high penetration of both Distributed Energy Resources (DER) and Demand Response (DR) in modern power systems requires a sequence of advanced strategies and technologies for maintaining system reliability and flexibility. Real-time electricity markets (RTM) are the non-discriminatory transaction platforms for providing necessary balancing services, where the market clearing (nodal or zonal prices depending on markets) is very close to real time operations of power systems. One of the primary functions of \\{RTMs\\} in modern power systems is establishing an efficient and effective mechanism for small DER and DR to participate in balancing market transactions, while handling their meteorological or intermittent characteristics, facilitating asset utilization, and stimulating their active responses. Consequently, \\{RTMs\\} are dedicated to maintaining the flexibility and reliability of power systems. This paper reviews advanced typical \\{RTMs\\} respectively in the North America, Australia and Europe, focusing on their market architectures and incentive policies for integrating DER and DR in electricity markets. In this paper, \\{RTMs\\} are classified into three groups: Group I applies nodal prices implemented by optimal power flow, which clears energy prices every 5 min. Group II applies zonal prices, with the time resolution of 5-min. Group III is a general balancing market, which clears zonal prices intro-hourly. The various successful advanced RTM experiences have been summarized and discussed, which provides a technical overview of the present \\{RTMs\\} integrating DER and DR.

Qi Wang; Chunyu Zhang; Yi Ding; George Xydis; Jianhui Wang; Jacob Řstergaard

2015-01-01T23:59:59.000Z

190

Impact of a solar domestic hot water demand-side management program on an electric utility and its customers  

SciTech Connect (OSTI)

A methodology to assess the economic and environmental impacts of a large scale implementation of solar domestic hot water (SDHW) systems is developed. Energy, emission and demand reductions and their respective savings are quantified. It is shown that, on average, an SDHW system provides an energy reduction of about 3200 kWH, avoided emissions of about 2 tons and a capacity contribution of 0.7 kW to a typical Wisconsin utility that installs 5000 SDHW system. The annual savings from these reductions to utility is {dollar_sign}385,000, providing a return on an investment of over 20{percent}. It is shown that, on average, a consumer will save {dollar_sign}211 annually in hot water heating bills. 8 refs., 7 figs.

Trzeniewski, J.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.

1996-09-01T23:59:59.000Z

191

Abstract --Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed  

E-Print Network [OSTI]

to accurately estimate the transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies, where dynamics on time scales of seconds to minutes demand response. The aggregated model efficiently includes statistical information of the population

Zhang, Wei

192

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

McKane, Aimee T.

2009-01-01T23:59:59.000Z

193

Demand Based Hierarchical QoS Using Storage Resource Pools Ajay Gulati, Ganesha Shanmuganathan  

E-Print Network [OSTI]

Resource Pools (SRP). SRP supports the logical grouping of related VMs into hierarchical pools. SRP allows resource pools in the VMware ESX hyper- visor. Our results demonstrate that SRP provides hierar- chical

Mellor-Crummey, John

194

Comfort demand leading the optimization to energy supply from the Smart Grid  

E-Print Network [OSTI]

). The control of loads in the building, may also be a resource to the grid using the flexibilities in service of the grid in Demand Side Management (DSM) scenarios as so called Demand Response (DR) or Load Control (LC). (Callaway and Hiskens 2011) However... of energy management, building management, and comfort management have to be developed to anticipate on the coming possible changes on Demand Side Management by Demand Response (DR) and Load Control (LC). This study is a first step towards...

Aduba,K.; Zeiler,W.; Boxem,G.

2014-01-01T23:59:59.000Z

195

A Cooperative Demand Response Scheme Using Punishment Mechanism and Application to Industrial Refrigerated Warehouses  

E-Print Network [OSTI]

Garcia, “Autonomous demand-side management based on game-and D. Dietrich, “Demand side management: Demand re- sponse,

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

196

Incorporating Demand Response into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

response DSM – Demand Side Management EE – energy efficiencywith the development of demand-side management (DSM)-related

Satchwell, Andrew

2014-01-01T23:59:59.000Z

197

Integrating the cold load pickup effect of reserve supplying demand response resource in social cost minimization based system scheduling  

Science Journals Connector (OSTI)

Expansion of smart grids and aggregator business facilitates the utilization of reserve supplying demand response (RSDR) resources. One of the loads that are increasingly used for reserve provision is air-conditioning load (ACL) that have cold load pickup (CLPU) or “payback” characteristics. With larger scale utilization of RSDR resources, as an effect of increasing DR aggregation business, CLPU characteristics of ACL can affect system optimal operation. Actual utilization time and duration of RSDR resources are probabilistic and affected by system scheduling and contingency occurrence. Therefore the CLPU effect of RSDR resources is probabilistic. This creates extra burden on the system reliability maintenance that should be considered from social cost minimization point of view. This complexity is addressed in this paper by modeling the extra expected load not supplied (ELNS) that the probabilistic CLPU of RSDR can impose on system. Then the aggregated RSDR resources, with CLPU characteristics, are integrated into day-ahead simultaneous system scheduling with the objective function of social cost minimization. This study showed that CLPU can have considerable effects on system scheduling and RSDR effectiveness. The proposed method of this paper proved to be useful for reducing the negative effects of CLPU while using RSDR resources.

Mahdi Behrangrad; Hideharu Sugihara; Tsuyoshi Funaki

2012-01-01T23:59:59.000Z

198

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

199

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network [OSTI]

for DR and demand side management, along with operationalresponse), DSM (demand side management), DR strategy, air

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

200

Framework for formulating a performance-based incentive-rebate scale for the demand-side-energy management scheme for commercial buildings in Hong Kong  

Science Journals Connector (OSTI)

Many, but not all, rebate-type demand side management (DSM) programmes worldwide have met with success. The rebate rate offered is a critical factor to success but a rational rebate scale determination method that would help strike a proper balance between the incentive offered and the effectiveness of the programme is lacking. For the DSM programmes recently launched in Hong Kong, the rebate rates are disproportionate to the cost and performance of the promoted energy-saving measures, resulting in diverse participation rates among the programmes. This paper presents a conceptual framework for formulating the rebate scales for incentive-based DSM programmes for commercial buildings, which would attract participation of building owners and boost electricity saving. The establishment of the scale starts from developing a performance curve that relates the cost effectiveness and the long-term benefits of different energy-saving DSM measures. The rebate scale is set based on the premise that a proportionally higher rebate rate should be offered for the adoption of each additional measure, which would yield a diminished marginal rate of return. Analysis showed that replacing the current rebate scale by the proposed scale would lead to benefits, both to the building owners and the utility companies.

W.L. Lee; F.W.H. Yik

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

202

Optimal energy management of a micro-grid with renewable energy resources and demand response  

Science Journals Connector (OSTI)

With the introduction of smart energy grids and extensive penetration of renewable energy resources in distribution networks Micro-Grids (MGs) which are comprised of various alternative energy resources and Advanced Metering Infrastructure (AMI) systems for better implementation of DR programs are effectively employed. The design and development of Smart Energy Management Systems (SEMSs) for MGs are interesting and attractive research problems. In this paper a new SEMS architecture is presented to solve the multi-objective operation management and scheduling problem in a typical MG while considering different energy resource technologies Plug-in Hybrid Electric Vehicles (PHEVs) and DR programs. The energy management problem is formulated as a constrained mixed integer nonlinear multi-objective optimization problem in which the MG's total operating cost and net emissions must be minimized simultaneously. Three different optimization algorithms are used to solve the above mentioned problem and their outputs (Pareto optimal solutions) for the same problem are compared and analyzed.

M. Parvizimosaed; F. Farmani; A. Anvari-Moghaddam

2013-01-01T23:59:59.000Z

203

The alchemy of demand response: turning demand into supply  

SciTech Connect (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

204

Development of cold seawater air conditioning systems for application as a demand side management tool for Hawaii and other subtropical climates  

SciTech Connect (OSTI)

Because of the proximity to deep cold seawater for many coastal regions in Hawaii and the high demand for air conditioning in large buildings, seawater air conditioning (SWAC) is a major potential sustainable energy resource for Hawaii and other subtropical regions of the world. The basic concept of seawater air conditioning is the use deep cold seawater to cool the chilled water in one or more air conditioned buildings as opposed to using energy intensive refrigeration systems. The economic viability of the seawater air conditioning is determined by comparing the construction and operating costs of the seawater supply system to the construction and operating costs of conventional air conditioning systems. The State of Hawaii commissioned an analysis to identify the technical and economic opportunities and limitations in the use of SWAC in Hawaii. The result of this work is a feasibility analysis of SWAC systems in the state and the potential associated energy savings. The study looked at the prospects of installing such a system at a major new resort development on Oahu called West Beach.

Kaya, M.H. [State of Hawaii, Honolulu, HI (United States). Dept. of Business, Economic Development, and Tourism

1996-10-01T23:59:59.000Z

205

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network [OSTI]

fits into historical demand side management (DSM) concepts.response. Demand Side Management Energy Efficiency (Daily) -requirements and demand side management issues have also

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

206

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

perspective, a demand-side management framework with threethe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

207

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

2001. “Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

208

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

buildings. A demand-side management framework from buildingthe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

209

Resource Allocation with Unknown Constraints: An Extremum Seeking Control Approach and Applications to Demand Response  

E-Print Network [OSTI]

Z. Yang, and Y. Zhang, “Demand response manage- ment withS. H. Low, “Optimal demand response: Problem formulation andYang, and X. Guan, “Optimal demand response scheduling with

Ma, Kai; Hu, Guoqiang; Spanos, Costas

2014-01-01T23:59:59.000Z

210

Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products  

E-Print Network [OSTI]

A. Piette, Integrating Renewable Resources in California andEnable Integration of Renewable Resources,” February 2012.ntegration of Renewable Resources at 20% RPS,” CAISO, August

Kiliccote, Sila

2013-01-01T23:59:59.000Z

211

A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction  

SciTech Connect (OSTI)

Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

2014-03-01T23:59:59.000Z

212

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network [OSTI]

introduction of a demand-side management (DSM) framework forof building controls. Demand-Side Management Framework forDOE 2006). The demand-side management (DSM) framework

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

213

A Look Ahead at Demand Response in New England  

SciTech Connect (OSTI)

The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

2008-08-01T23:59:59.000Z

214

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

DR’s growing role in demand-side management activities andhow DR fits with demand-side management activities, DRemissions rates The demand-side management (DSM) framework

Kiliccote, Sila

2014-01-01T23:59:59.000Z

215

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the4. Status of Demand Side Management in Midwest ISO 5.

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

216

Advanced Demand Responsive Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

217

Quantifying flexibility of residential thermostatically controlled loads for demand response: a data-driven approach  

Science Journals Connector (OSTI)

Power systems are undergoing a paradigm shift due to the influx of variable renewable generation to the supply side. The resulting increased uncertainty has system operators looking to new resources, enabled by smart grid technologies, on the demand ... Keywords: demand response, inverse building model, load shedding, thermostatically controlled loads

Emre Can Kara; Michaelangelo D. Tabone; Jason S. MacDonald; Duncan S. Callaway; Sila Kiliccote

2014-11-01T23:59:59.000Z

218

Demand response implementation in a home area network: A conceptual hardware architecture  

Science Journals Connector (OSTI)

Demand response (DR) is an important demand-side resource that allows for lower electricity consumption when the system is under stress. This paper presents a DR framework that can be implemented within a home area network, as well as a conceptual hardware ...

M. Pipattanasomporn; M. Kuzlu; S. Rahman

2012-01-01T23:59:59.000Z

219

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

220

Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties  

Science Journals Connector (OSTI)

Abstract Due to the uncertain nature and limited predictability of wind and PV generated power, these resources participating in most of electricity markets are subject to significant deviation penalties during market settlements. In order to balance the unpredicted wind and PV power variations, system operators need to schedule additional reserves. This paper presents the optimal integrated participation model of wind and PV energy including demand response, storage devices, and dispatchable distributed generations in microgrids or virtual microgrids to increase their revenues in the intra-market. This market is considered 3–7 h before the delivered time, so that the amount of the contracted energy could be updated to reduce the produced power deviation of microgrid. A stochastic programming approach is considered in the development of the proposed bidding strategies for microgrid producers and loads. The optimization model is characterized by making the analysis of several scenarios and simultaneously treating three kinds of uncertainty including wind and PV power, intra-market, and imbalance prices. In order to predict these uncertainty variables, a neuro-fuzzy based approach has been applied. Historic data are used to forecast future prices and wind and PV power production in the adjustment markets. Also, a probabilistic approach based on the error of forecasted and real historic data is considered for estimating the future IM and imbalance prices of wind and PV produced power. Further, a test case is applied to example the microgrid using the Spanish market rules during one week, month, and year period to illustrate the potential benefits of the proposed joint biding strategy. The simulations results, carried out by MATLAB/optimization toolbox.

H. Shayeghi; B. Sobhani

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Survey of Western U.S. Electric Utility Resource Plans  

E-Print Network [OSTI]

and commercial demand-side management programmes. EnergyF.P. , 1992. Demand-side Management and Environmentalthrough 2020—before Demand Side Management. About two-thirds

Wilkerson, Jordan

2014-01-01T23:59:59.000Z

222

Water resources planning under climate change and variability  

E-Print Network [OSTI]

transfers or options. Demand-side management includes thepricing schemes, and demand-side management for urban water,of alternate demand side management, particularly

O'Hara, Jeffrey Keith

2007-01-01T23:59:59.000Z

223

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

224

Text and slides of presentation originally presented to the Nova Scotia Utility and Review Board regarding the province's Demand Side Management program,19 April 2010.  

E-Print Network [OSTI]

of a number of its thermal stations due to a lack of fuel, I cannot see how such energy reduction wedges in electrical consumption as shown in NSP's 2009 Integrated Resource Plan (IRP) energy reduction wedges affordability and availability, he said that if fuel oil became too expensive or unattainable, he'd shut off

Hughes, Larry

225

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network [OSTI]

Commission demand-side management energy efficiencyefficiency or other demand-side management programs (seeefficiency or other demand-side management programs (see

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

226

A Case Study of a Commissioning Process for Demand Side Energy Conservation of the Large Heat Source Plant in Kyoto Station Building-APCBC  

E-Print Network [OSTI]

-09-20 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 21 Total effect by turning for both substation and plant control (FY2011 vs FY2013) ? The electric power consumption compared for 3 years.... ? In the first year (FY2012), we carried out only the parameter tuning for substation control based on the data analysis. ? In the second year (FY2013), we carried out the control parameter tuning of the heat source side in addition to the tuning...

Matsushita, N.; Yoshida,H.

2014-01-01T23:59:59.000Z

227

Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator  

Science Journals Connector (OSTI)

Abstract This paper deals with how demand response can contribute to the better integration of renewable energy resources such as wind power, solar, small hydro, biomass and CHP. In particular, an economic evaluation performed by means of the micro-power optimization model HOMER Energy has been done, considering a micro-grid supplied by a biomass gasification power plant, operating isolated to the grid and in comparison with other generation technologies. Different scenarios have been simulated considering variations in the power production of the gasified biomass generator and different solutions to guarantee the balance generation/consumption are analyzed, demonstrating as using demand response resources is much more profitable than producing this energy by other conventional technologies by using fossil fuels.

Lina Montuori; Manuel Alcázar-Ortega; Carlos Álvarez-Bel; Alex Domijan

2014-01-01T23:59:59.000Z

228

Industrial DSM Programs: Low-Cost Resource and Smart Customer Service  

E-Print Network [OSTI]

Demand-side management (DSM) is a resource that helps utilities use their system more efficiently and/or postpone the need for expensive new plant construction. But demand-side management also has another function. By allowing utilities to become...

Jaussaud, D.

229

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

in the presence of renewable resources and on the amount ofprimarily from renewable resources, and to a limited extentintegration of renewable resources and deferrable demand. We

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

230

Primer on gas integrated resource planning  

SciTech Connect (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

231

Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

232

Role of Standard Demand Response Signals for Advanced Automated Aggregation  

SciTech Connect (OSTI)

Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

Lawrence Berkeley National Laboratory; Kiliccote, Sila

2011-11-18T23:59:59.000Z

233

Resources & Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Smart grid fact sheet Department of...

234

Optimal Sequential Resource Sharing and Exchange in Multi-Agent Systems  

E-Print Network [OSTI]

Works on Demand-Side Management . . . . . . . . .RelatedForesighted Demand Side Management . . . . . . . . . . TheRelated Works on Demand-Side Management. Comparisons With

Xiao, Yuanzhang

2014-01-01T23:59:59.000Z

235

World Energy Demand  

Science Journals Connector (OSTI)

A reliable forecast of energy resources, energy consumption, and population in the future is a ... So, instead of absolute figures about future energy demand and sources worldwide, which would become...3.1 correl...

Giovanni Petrecca

2014-01-01T23:59:59.000Z

236

Unlocking the potential for efficiency and demand response through advanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unlocking the potential for efficiency and demand response through advanced Unlocking the potential for efficiency and demand response through advanced metering Title Unlocking the potential for efficiency and demand response through advanced metering Publication Type Conference Paper LBNL Report Number LBNL-55673 Year of Publication 2004 Authors Levy, Roger, Karen Herter, and John Wilson Conference Name 2004 ACEEE Summer Study on Energy Efficiency in Buildings Date Published 06/2004 Publisher ACEEE Conference Location Pacific Grove, CA Call Number California Energy Commission Keywords demand response, demand response and distributed energy resources center, demand response research center, energy efficiency demand response advanced metering, rate programs & tariffs Abstract Reliance on the standard cumulative kilowatt-hour meter substantially compromises energy efficiency and demand response programs. Without advanced metering, utilities cannot support time-differentiated rates or collect the detailed customer usage information necessary to (1) educate the customer to the economic value of efficiency and demand response options, or (2) distribute load management incentives proportional to customer contribution. These deficiencies prevent the customer feedback mechanisms that would otherwise encourage economically sound demand-side investments and behaviors. Thus, the inability to collect or properly price electricity usage handicaps the success of almost all efficiency and demand response options.

237

Industrial Demand-Side Management in Texas  

E-Print Network [OSTI]

Cum. Peak Cum. MWH Cum. Peak Cum. MWH Participants MW Saved Saved MW incr. Increase 51 12.38 256 24 NA 1757 28.81 150,154 NA 25 300/yr 250/yr 200/yr 200/yr o 1.76 0 10,168 72 400 3.57 1.43 23,915 8,689 TNP TECH ASST on-going NA N... share of the dollar savings obtained through the installed measures. Request For Proposals (RFP) programs allow customers to submit specific conservation projects to utilities for funding. Bidding programs are similar. They differ from RFP...

Jaussaud, D.

238

The Concept of Demand-Side Management  

Science Journals Connector (OSTI)

The pattern of electricity consumption varies in the course of a day, typically reflecting the patterns of human activity — high during the day and low at night. This simple fact has fundamental implications o...

Veronika A. Rabl; Clark W. Gellings

1988-01-01T23:59:59.000Z

239

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

240

Solutions for Summer Electric Power Shortages: Demand Response andits Applications in Air Conditioning and Refrigerating Systems  

SciTech Connect (OSTI)

Demand response (DR) is an effective tool which resolves inconsistencies between electric power supply and demand. It further provides a reliable and credible resource that ensures stable and economical operation of the power grid. This paper introduces systematic definitions for DR and demand side management, along with operational differences between these two methods. A classification is provided for DR programs, and various DR strategies are provided for application in air conditioning and refrigerating systems. The reliability of DR is demonstrated through discussion of successful overseas examples. Finally, suggestions as to the implementation of demand response in China are provided.

Han, Junqiao; Piette, Mary Ann

2007-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Scenario Analysis of Peak Demand Savings for Commercial Buildings with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Title Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Publication Type Conference Paper LBNL Report Number LBNL-3636e Year of Publication 2010 Authors Yin, Rongxin, Sila Kiliccote, Mary Ann Piette, and Kristen Parrish Conference Name 2010 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center, demand shifting (pre-cooling), DRQAT Abstract This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30% using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

242

Facilitating Renewable Integration by Demand Response  

Science Journals Connector (OSTI)

Demand response is seen as one of the resources ... expected to incentivize small consumers to participate in demand response. This chapter models the involvement of small consumers in demand response programs wi...

Juan M. Morales; Antonio J. Conejo…

2014-01-01T23:59:59.000Z

243

Leveraging gamification in demand dispatch systems  

Science Journals Connector (OSTI)

Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grid's efficiency and a better utilization of renewable energy sources. ... Keywords: demand response, demand side management, direct load control, gamification, smart grid, sustainability

Benjamin Gnauk; Lars Dannecker; Martin Hahmann

2012-03-01T23:59:59.000Z

244

Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

245

The business value of demand response for balance responsible parties.  

E-Print Network [OSTI]

?? By using IT-solutions, the flexibility on the demand side in the electrical systems could be increased. This is called demand response and is part… (more)

Jonsson, Mattias

2014-01-01T23:59:59.000Z

246

Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011  

E-Print Network [OSTI]

7   4.2 Demand Side Management (DSM) Portfolioresponse programs. Demand Side Management – Strategiesof the demand side management (DSM) portfolio – projected

Satchwell, Andrew

2011-01-01T23:59:59.000Z

247

2013 IREP Symposium-Bulk Power System Dynamics and Control -IX (IREP), August 25-30, 2013, Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource  

E-Print Network [OSTI]

energy for discharge over periods of hours, such as large-scale battery storage, compressed air energy, Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource Economic system operators, policy makers and other grid stakeholders in the expanded utilization of energy storage

Gross, George

248

Resources  

Broader source: Energy.gov [DOE]

Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

249

Demand Response In California  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

250

Modeling renewable energy resources in integrated resource planning  

SciTech Connect (OSTI)

Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

1994-06-01T23:59:59.000Z

251

Energy Efficiency Resource Standard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Resource Standard Energy Efficiency Resource Standard Energy Efficiency Resource Standard < Back Eligibility Investor-Owned Utility Savings Category Other Program Info State Colorado Program Type Energy Efficiency Resource Standard Provider Colorado Public Utilities Commission The Colorado General Assembly passed a law ([http://www.leg.state.co.us/CLICS/CLICS2007A/csl.nsf/fsbillcont3/5EA2048E... HB 1037])in 2007 requiring the investor-owned electric and natural gas utilities to adopt demand-side management (DSM) programs that provide financial incentives for their customers to purchase more efficient equipment and processes, and to engage in demand response. The law provided minimum energy and demand savings targets but also authorized the Colorado Public Utilities Commission (PUC) to revise the goals and establish interim

252

Energy demand  

Science Journals Connector (OSTI)

The basic forces pushing up energy demand are population increase and economic growth. From ... of these it is possible to estimate future energy requirements.

Geoffrey Greenhalgh

1980-01-01T23:59:59.000Z

253

Strategic Pricing and Resource Allocation: Framework and Applications  

E-Print Network [OSTI]

Garcia, “Autonomous demand side management based on game-treating pricing-based demand-side management and the systemdesigning the demand-side management and data center opera-

Ren, Shaolei

2012-01-01T23:59:59.000Z

254

Demand Response | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

255

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

energy storage and demand management can complement solarwith energy storage to firm the resource, or solar thermaland solar generation. And demand response or energy storage

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

256

Energy Efficiency Resource Standard | Open Energy Information  

Open Energy Info (EERE)

Energy Efficiency Resource Standard Energy Efficiency Resource Standard Jump to: navigation, search Energy efficiency resource standards (EERS) are state policies that require utilities to meet specific targets for energy savings according to a set schedule. EERS policies establish separate reduction targets for electricity sales, peak electric demand and/or natural gas consumption. In most cases, utilities must achieve energy savings by developing demand-side management (DSM) programs, which typically provide financial incentives to customers to install energy-efficient equipment. An EERS policy is sometimes coupled with a state's renewables portfolio standard (RPS). In these cases, energy efficiency is typically included as a lower-tier resource. [1] Energy Efficiency Resource Standard Incentives

257

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

258

Mass Market Demand Response and Variable Generation Integration Issues: A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Market Demand Response and Variable Generation Integration Issues: A Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Title Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Cappers, Peter, Andrew D. Mills, Charles A. Goldman, Ryan H. Wiser, and Joseph H. Eto Pagination 76 Date Published 10/2011 Publisher LBNL City Berkeley Keywords demand response, electricity markets and policy group, energy analysis and environmental impacts department, renewable generation integration, smart grid Abstract The penetration of renewable generation technology (e.g., wind, solar) is expected to dramatically increase in the United States during the coming years as many states are implementing policies to expand this sector through regulation and/or legislation. It is widely understood, though, that large scale deployment of certain renewable energy sources, namely wind and solar, poses system integration challenges because of its variable and often times unpredictable production characteristics (NERC, 2009). Strategies that rely on existing thermal generation resources and improved wind and solar energy production forecasts to manage this variability are currently employed by bulk power system operators, although a host of additional options are envisioned for the near future. Demand response (DR), when properly designed, could be a viable resource for managing many of the system balancing issues associated with integrating large-scale variable generation (VG) resources (NERC, 2009). However, demand-side options would need to compete against strategies already in use or contemplated for the future to integrate larger volumes of wind and solar generation resources. Proponents of smart grid (of which Advanced Metering Infrastructure or AMI is an integral component) assert that the technologies associated with this new investment can facilitate synergies and linkages between demand-side management and bulk power system needs. For example, smart grid proponents assert that system-wide implementation of advanced metering to mass market customers (i.e., residential and small commercial customers) as part of a smart grid deployment enables a significant increase in demand response capability.1 Specifically, the implementation of AMI allows electricity consumption information to be captured, stored and utilized at a highly granular level (e.g., 15-60 minute intervals in most cases) and provides an opportunity for utilities and public policymakers to more fully engage electricity customers in better managing their own usage through time-based rates and near-real time feedback to customers on their usage patterns while also potentially improving the management of the bulk power system. At present, development of time-based rates and demand response programs and the installation of variable generation resources are moving forward largely independent of each other in state and regional regulatory and policy forums and without much regard to the complementary nature of their operational characteristics.2 By 2020, the electric power sector is expected to add ~65 million advanced meters3 (which would reach ~47% of U.S. households) as part of smart grid and AMI4 deployments (IEE, 2010) and add ~40-80 GW of wind and solar capacity (EIA, 2010). Thus, in this scoping study, we focus on a key question posed by policymakers: what role can the smart grid (and its associated enabling technology) play over the next 5-10 years in helping to integrate greater penetration of variable generation resources by providing mass market customers with greater access to demand response opportunities? There is a well-established body of research that examines variable generation integration issues as well as demand response potential, but the nexus between the two has been somewhat neglected by the industry. The studies that have been conducted are informative concerning what could be accomplished with strong broad-based support for the expansion of demand response opportunities, but typically do not discuss the many barriers that stand in the way of reaching this potential. This study examines how demand side resources could be used to integrate wind and solar resources in the bulk power system, identifies barriers that currently limit the use of demand side strategies, and suggests several factors that should be considered in assessing alternative strategies that can be employed to integrate wind and solar resources in the bulk power system. It is difficult to properly gauge the role that DR could play in managing VG integration issues in the near future without acknowledging and understanding the entities and institutions that govern the interactions between variable generation and mass market customers (see Figure ES-1). Retail entities, like load-serving entities (LSE) and aggregators of retail customers (ARC), harness the demand response opportunities of mass market customers through tariffs (and DR programs) that are approved by state regulatory agencies or local governing entities (in the case of public power). The changes in electricity consumption induced by DR as well as the changes in electricity production due to the variable nature of wind and solar generation technologies is jointly managed by bulk power system operators. Bulk power system operators function under tariffs approved by the Federal Energy Regulatory Commission (FERC) and must operate their systems in accordance with rules set by regional reliability councils. These reliability rules are derived from enforceable standards that are set by the North American Electric Reliability Corporation (NERC) and approved by federal regulators. Thus, the role that DR can play in managing VG integration issues is contingent on what opportunities state and local regulators are willing to approve and how customers' response to the DR opportunities can be integrated into the bulk power system both electrically (due to reliability rules) and financially (due to market rules).

259

Demand Response and Ancillary Services September 2008  

E-Print Network [OSTI]

Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

260

Home Network Technologies and Automating Demand Response  

SciTech Connect (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid  

E-Print Network [OSTI]

2010. [11] G. Strbac, “Demand side management: Benefits andGarcia, “Autonomous Demand Side Management Based on Game-and A. Y. Wang, “Demand side management for wind power

Taylor, Zachariah David

2014-01-01T23:59:59.000Z

262

Forecasting Energy Demand Using Fuzzy Seasonal Time Series  

Science Journals Connector (OSTI)

Demand side energy management has become an important issue for energy management. In order to support energy planning and policy decisions forecasting the future demand is very important. Thus, forecasting the f...

?Irem Uçal Sar?; Ba¸sar Öztay¸si

2012-01-01T23:59:59.000Z

263

Peer-to-peer aggregation for dynamic adjustments in power demand  

Science Journals Connector (OSTI)

Energy demand-side management becomes a well-established approach in the ... information is a critical operation performed by most demand-side energy management mechanisms as it provides information about the req...

Evangelos Pournaras; Martijn Warnier…

2014-01-01T23:59:59.000Z

264

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

265

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

266

Investigation of rolling horizon flexibility contracts in a supply chain under highly variable stochastic demand  

Science Journals Connector (OSTI)

......research-article Articles Demand Forecasting for Inventory Management Investigation of rolling...variable stochastic demand Patrick M. Walsh Peter...and supplier (CM) side of the RHF contract...the stochastic market demand. 3. Model description......

Patrick M. Walsh; Peter A. Williams; Cathal Heavey

2008-04-01T23:59:59.000Z

267

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

Pedram, Massoud

268

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

269

Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration  

SciTech Connect (OSTI)

Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

2014-01-31T23:59:59.000Z

270

Water demand management in Kuwait  

E-Print Network [OSTI]

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

271

Smart microgrid operational planning considering multiple demand response programs  

Science Journals Connector (OSTI)

Microgrid (MG) is one of the important blocks in the future smart distribution systems. The scheduling pattern of MGs affects distribution system operation. Also the optimal scheduling of MGs will result in reliable and economical operation of distribution system. In this paper an operational planning model of a MG which considers multiple demand response programs is proposed. In the proposed approach all types of loads can participate in demand response programs which will be considered in either energy or reserve scheduling. Also the renewable distributed generation uncertainty is covered by reserve provided by both Distributed Generations (DGs) and responsive loads. The novelty of this paper is the demand side participation in energy and reserve scheduling simultaneously. Furthermore the energy and reserve scheduling is proposed for day-ahead and real-time. The proposed model was tested on a typical MG system and the results show that running demand response programs will reduce total operation cost of MG and cause more efficient use of resources.

Alireza Zakariazadeh; Shahram Jadid

2014-01-01T23:59:59.000Z

272

Demand Response Research in Spain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

273

title Survey of Western U S Electric Utility Resource Plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans journal Energy Policy year month abstract p We review long term electric utility plans representing nbsp textquoteright of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy efficiency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in

274

Siding | Open Energy Information  

Open Energy Info (EERE)

search TODO: Add description List of Siding Incentives Retrieved from "http:en.openei.orgwindex.php?titleSiding&oldid267193" Category: Articles with outstanding TODO tasks...

275

Electricity demand analysis - unconstrained vs constrained scenarios  

Science Journals Connector (OSTI)

In India, the electricity systems are chronically constrained by shortage of both capital and energy resources. These result in rationing and interruptions of supply with a severely disrupted electricity usage pattern. From this background, we try to analyse the demand patterns with and without resource constraints. Accordingly, it is necessary to model appropriately the dynamic nature of electricity demand, which cannot be captured by methods like annual load duration curves. Therefore, we use the concept - Representative Load Curves (RLCs) - to model the temporal and structural variations in demand. As a case study, the electricity system of the state of Karnataka in India is used. Four years demand data, two unconstrained and two constrained, are used and RLCs are developed using multiple discriminant analysis. It is found that these RLCs adequately model the variations in demand and bring out distinctions between unconstrained and constrained demand patterns. The demand analysis attempted here helped to study the differences in demand patterns with and without constraints, and the success of rationing measures in reducing demand levels as well as greatly disrupting the electricity usage patterns. Multifactor ANOVA analyses are performed to find out the statistical significance of the ability of logically obtained factors in explaining overall variations in demand. The results showed that the factors that are taken into consideration accounted for maximum variations in demand at very high significance levels.

P. Balachandra; V. Chandru; M.H. Bala Subrahmanya

2003-01-01T23:59:59.000Z

276

TY JOUR T1 Survey of Western U S Electric Utility Resource Plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans JF Energy Policy A1 Jordan Wilkerson A1 Peter H Larsen A1 Galen L Barbose AB p We review long term electric utility plans representing nbsp of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy ef ciency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in peak demand by nbsp

277

i-Energy: Smart Demand-Side Energy Management  

Science Journals Connector (OSTI)

Much of the discussion concerning smart grids focuses on the potential benefits of technological advances to power suppliers. However, there are many possible advantages that may benefit consumers as electricity ...

Takashi Matsuyama

2014-01-01T23:59:59.000Z

278

Smart Grids Operation with Distributed Generation and Demand Side Management  

Science Journals Connector (OSTI)

The integration of Distributed Generation (DG) based on renewable sources in the Smart Grids (SGs) is considered a challenging task because of the problems arising for the intermittent nature of the sources (e.g....

C. Cecati; C. Citro; A. Piccolo; P. Siano

2012-01-01T23:59:59.000Z

279

Long Term Options for Energy Supply and Demand Side Management  

Science Journals Connector (OSTI)

A great deal has been said and written about future energy options and the need for responsibility and caution in protecting the world’s natural environment. Clearly, energy policies and environmental policies...

Tom Morron; Fred Denny

1993-01-01T23:59:59.000Z

280

Schumpeter Versus Keynes: Supply-Side Economics or Demand Management?  

Science Journals Connector (OSTI)

The year 1883 witnessed the birth of two great economists, Joseph Alois Schumpeter and John Maynard Keynes, and the death of another great economist, Karl Marx. Schumpeter, a devoted subject of the Austro-Hung...

Christian Seidl

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Impact on Implementing Demand Side Management in Residential Sector  

Science Journals Connector (OSTI)

Residential electricity consumption in Malaysia increased at a rate of 14% per year between 1993 to 1997. In 1998, over 60% of population lived in urban areas. The growth of urban population at a rate of 4% per a...

H. A. Rahman; M. S. Majid; M. Y. Hassan…

2001-01-01T23:59:59.000Z

282

Vom Demand-Side Management zum Strategischen Marktmanagement im Strommarkt  

Science Journals Connector (OSTI)

Die Deregulierung des Strommarktes wirkt sich in keinem anderen betrieblichen Funktionsbereich der Stromanbieter so radikal aus, wie im Marketing. Erforderlich sind nicht nur vielfältige Änderungen der Gestaltung...

Eberhard Kuhlmann

2001-01-01T23:59:59.000Z

283

A Demand-Side Management Experience in Existing Building Commissioning  

E-Print Network [OSTI]

guidelines, and performing due-diligence technical review. The structured program process follows the recommissioning phases and activities identified by PECI (ORNL 1999). The basic program phases include the Planning Phase, Investigation Phase... Laboratory (ORNL), Report No. ORNL/TM- 1999/34, April 1999. Kessler, Helen, Christopher Philbrick, Roger Hill and George Malek, Maintenance, Operations and Repairs (MORES) ? A Utility Recommissining Program, Proceedings of the 7th National Conference...

Franconi, E.; Selch, M.; Bradford, J.; Gruen, B.

2003-01-01T23:59:59.000Z

284

Industrial Rates and Demand-Side Management Programs  

E-Print Network [OSTI]

in Texas offer minimal industrial load management or conservation programs at this time, examples from other utilities may serve as a guide for further program improvements. The Bonneville Power Administration's Aluminum Smelter Conservation...,928,250 31.8% Texas Total 49,521 13,804 25.8% 93,847,494 36.9% wI Self-Gen 49,521 17,619 30.7% 119,841042 42.8% Note: Utilities are: TV Electric, Houston Lighting & Power, GulfStates Utilities, Central Power and Light, City Public Service (San Antonio...

Kasprowicz, L. M.; House, R.

285

Emerging Technologies for Industrial Demand-Side Management  

E-Print Network [OSTI]

this problem is to move the loads from peak to off-peak periods without changing overall electricity consumption. By using cool storage systems, energy consumption for businesses and industry can be shifted, reducing electricity costs to the consumer...

Neely, J. E.; Kasprowicz, L. M.

286

Demand Side Dispatching, Part 2: An Industrial Application  

E-Print Network [OSTI]

the operating policy of their plant utilities (boilers, turbines, chillers, etc.) in response to varying power costs. The main reason for these missed opportunities is a lack of suitable dispatching programs. A key component of successful DSM programs...

Nath, R.; Cerget, D. A.; Henderson, E. T.

287

Energy Efficiency Resource Standard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Resource Standard Energy Efficiency Resource Standard Energy Efficiency Resource Standard < Back Eligibility Investor-Owned Utility Savings Category Other Program Info State New Mexico Program Type Energy Efficiency Resource Standard Provider New Mexico Public Regulation Commission The Efficient Use of Energy Act requires investor-owned utilities in New Mexico to offer demand-side management and load management programs to their customers. The programs should be designed to achieve electricity savings totaling 5% of their 2005 retail sales by 2014, and 10% of their 2005 retail sales by 2020. All programs adopted by a utility must first be approved by the New Mexico Public Regulation Commission (PRC). Upon approval by the PRC, utilities are entitled to apply a [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NM09R&re...

288

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

289

Supply-side Resources & Planning Assumptions  

E-Print Network [OSTI]

with forecast escalation/deescalation. Capital cost expressed as "overnight" total plant cost; w 90% 100% 16% 55% 26% 10% 20% 30% 40% 50% 60% 70% 80% Cash expended Annual expenditure Cumulative expenditure (excl EDC & IDC) 1% 2% 0% 10% 1 2 3 4 5 Year 96/19/2013 Construction schedule & cash flow

290

Competitive Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Address 60 Church St Place Yalesville, Connecticut Zip 06492 Sector Efficiency Product Demand side management programs Website http://www.competitiveresource Coordinates 41.489499°, -72.811062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.489499,"lon":-72.811062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

IntSide: a web server for the chemical and biological examination of drug side effects  

Science Journals Connector (OSTI)

......brief-report Applications Note IntSide: a web server for the chemical and biological examination...remains. Here, we present IntSide, a web server that integrates chemical and biological...Availability and implementation: Our data and web resource are available online ( http......

Teresa Juan-Blanco; Miquel Duran-Frigola; Patrick Aloy

2014-11-01T23:59:59.000Z

292

The Summer of 2006: A Milestone in the Ongoing Maturation of Demand Response  

E-Print Network [OSTI]

2007) Figure 7. U.S. Demand Response Resources in 2005Proposals to Augment 2007 Demand Response Programs, Aug. 22,Efforts to Improve Demand Response Programs for State to

Hopper, Nicole; Goldman, Charles; Bharvirkar, Ranjit; Engel, Dan

2007-01-01T23:59:59.000Z

293

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

294

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

required by MRTU AS and energy markets. Both California ISOopening electricity markets to energy storage competition.energy, improvement of grid infrastructure, and market

Joseph, Eto

2014-01-01T23:59:59.000Z

295

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

5. Design of a Building Load Data Storage Platform Sub-taskand design of a building load data storage platform. Tasks5: Design of a Building Load Data Storage Platform xi xii

Joseph, Eto

2014-01-01T23:59:59.000Z

296

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

43 Figure 4: Tiefort Substation: Typical load on PLP testingsystems, and the substation feeder metering associated withThese use cases involved: substation automation, advanced

Joseph, Eto

2014-01-01T23:59:59.000Z

297

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

the Benefits and Costs of Smart Grid Demonstration Projects.the anticipated benefits of the Smart Grid, includinga thorough cost-benefit analysis for Smart Grid deployment.

Joseph, Eto

2014-01-01T23:59:59.000Z

298

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

es.pdf> California Energy Commission. Proceedings, StaffSacramento: California Energy Commission, 2008. Web. Energy Commission’s Public Interest

Joseph, Eto

2014-01-01T23:59:59.000Z

299

Smart Buildings and Demand Response  

Science Journals Connector (OSTI)

Advances in communications and control technology the strengthening of the Internet and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems in buildings. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto?DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (OpenADR). Basic building energy science and control issues in this approach begin with key building components systems end?uses and whole building energy performance metrics. The paper presents a framework about when energy is used levels of services by energy using systems granularity of control and speed of telemetry. DR when defined as a discrete event requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

2011-01-01T23:59:59.000Z

300

Residential Energy Demand Reduction Analysis and Monitoring Platform - REDRAMP  

Broader source: Energy.gov (indexed) [DOE]

Dramatic Peak Residential Dramatic Peak Residential Demand Reduction in the Desert Southwest Yahia Baghzouz Center for Energy Research University of Nevada, Las Vegas Golden, CO Overview * Project description * Subdivision energy efficiency features * Home energy monitoring * Demand side management * Feeder loading * Battery Energy Storage System * Future Work Team Members Project Objective and Methodology * The main objective is to reduce peak power demand of a housing subdivision by 65% (compared to housing development that is built to conventional code). * This objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side Management - Battery Energy Storage System Project schematic Diagram Project Physical Location: Las Vegas, NV Red Rock Hotel/Casino

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Date: June 12, 2007 To: Pacific Northwest Demand Response Project  

E-Print Network [OSTI]

Date: June 12, 2007 To: Pacific Northwest Demand Response Project From: Rich Sedano/RAP and Chuck, 2007 meeting of the Pacific Northwest Demand Response Project, we agreed to form three Working Groups for the evaluation of cost-effectiveness of Demand Response resources. One potential outcome would be for state

302

Fast Automated Demand Response to Enable the Integration of Renewable  

E-Print Network [OSTI]

LBNL-5555E Fast Automated Demand Response to Enable the Integration of Renewable Resources David S The work described in this report was coordinated by the Demand Response Research Center and funded ABSTRACT This study examines how fast automated demand response (AutoDR) can help mitigate grid balancing

303

Tools & Resources: Resource Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resource Directory Resource Directory The guidance documents and reports below have been used by Better Buildings Neighborhood Program partners to build their programs and guide them to early successes. The tools and calculators can be used by homeowners, business owners, and program designers to help determine energy savings and other benefits associated with energy efficiency upgrades. Guidance Documents and Reports Background Program Evaluation Program Updates and Lessons Learned Program Design Marketing and Driving Demand Financing and Incentives Workforce Development Partnering with Utilities Technical Resources Tools and Calculators For Homes For Commercial Buildings Emissions and Equivalency Calculators Guidance Documents and Reports Background Recovery Through Retrofit Report

304

Mass Market Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

305

A new wholesale bidding mechanism for enhanced demand response in smart grids  

E-Print Network [OSTI]

Calls to improve customer participation as a key element of smart grids have reinvigorated interest in demand-side features such as distributed generation, on-site storage and demand response. In the context of deregulated ...

Wang, Jiankang

306

Optimum Generation Scheduling Based Dynamic Price Making for Demand Response in a Smart Power Grid  

Science Journals Connector (OSTI)

Smart grid is a recently growing area of research including optimum and reliable operation of bulk power grid from production to end-user premises. Demand side activities like demand response (DR) for enabling co...

Nikolaos G. Paterakis; Ozan Erdinc…

2014-01-01T23:59:59.000Z

307

LEAPs and Bounds—an Energy Demand and Constraint Optimised Model of the Irish Energy System  

Science Journals Connector (OSTI)

This paper builds a model of energy demand and supply for Ireland with a focus on evaluating, and providing insights for, energy efficiency policies. The demand-side comprises sectoral sub-models, with a ... line...

Fionn Rogan; Caiman J. Cahill; Hannah E. Daly; Denis Dineen…

2014-06-01T23:59:59.000Z

308

Demand Response Assessment INTRODUCTION  

E-Print Network [OSTI]

Demand Response Assessment INTRODUCTION This appendix provides more detail on some of the topics raised in Chapter 4, "Demand Response" of the body of the Plan. These topics include 1. The features, advantages and disadvantages of the main options for stimulating demand response (price mechanisms

309

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing  

E-Print Network [OSTI]

i n f o Keywords: Climate change mitigation Transport demand management External costs Urban and potential impacts of travel demand management help to define policy instruments that mitigate the damaging. The paper investi- gates the role of demand elasticities and demonstrates that joint demand and supply-side

Kammen, Daniel M.

310

2010 Resource Program Executive Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

increase transmission flexibility * Directly involve electricity users through demand response programs BPA is actively pursuing all these areas. The Resource Program analysis...

311

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

of nearby solar, geothermal, and wind energy resources toenergy demand. Solar energy is the second largest resource,

Mills, Andrew D

2011-01-01T23:59:59.000Z

312

Coordination of Energy Efficiency and Demand Response  

SciTech Connect (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

313

Demand response enabling technology development  

E-Print Network [OSTI]

Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

2006-01-01T23:59:59.000Z

314

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

315

Demand Response Programs for Oregon  

E-Print Network [OSTI]

Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

316

Demand response enabling technology development  

E-Print Network [OSTI]

behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

317

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

318

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

319

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

320

Design and Valuation of Demand Response Mechanisms and Instruments for Integrating  

E-Print Network [OSTI]

Design and Valuation of Demand Response Mechanisms and Instruments for Integrating Renewable) research project titled "Design and Valuation of Demand Response Mechanisms and Instruments for Integrating resources. The increased reserve requirement can be met using the so-called demand response resources (DRRs

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Resource Adequacy INTRODUCTION  

E-Print Network [OSTI]

whether there are sufficient non-hydro resources available to meet loads when the "fuel" for hydroelectric the amount of water for hydroelectric generation) and temperature (which affects the demand for electricity

322

Coordination of Energy Efficiency and Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

323

Survey of Western U.S. Electric Utility Resource Plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Survey of Western U.S. Electric Utility Resource Plans Survey of Western U.S. Electric Utility Resource Plans Title Survey of Western U.S. Electric Utility Resource Plans Publication Type Journal Article Year of Publication 2014 Authors Wilkerson, Jordan, Peter H. Larsen, and Galen L. Barbose Journal Energy Policy Date Published 2014 Abstract We review long-term electric utility plans representing "' 90% of generation within the Western U.S. and Canadian provinces. We address what utility planners assume about future growth of electricity demand and supply; what types of risk they consider in their long-term resource planning; and the consistency in which they report resource planning-related data. The region is anticipated to grow by 2% annually by 2020 before Demand Side Management. About two-thirds of the utilities that provided an annual energy forecast also reported energy efficiency savings projections; in aggregate, they anticipate an average 6.4% reduction in energy and 8.6% reduction in peak demand by 2020. New natural gas-fired and renewable generation will replace retiring coal plants. Although some utilities anticipate new coal-fired plants, most are planning for steady growth in renewable generation over the next two decades. Most planned solar capacity will come online before 2020, with most wind expansion after 2020. Fuel mix is expected to remain "' 55% of total generation. Planners consider a wide range of risks but focus on future demand, fuel prices, and the possibility of GHG regulations. Data collection and reporting inconsistencies within and across electric utility resource plans lead to recommendations on policies to address this issue.

324

National Action Plan on Demand Response  

Broader source: Energy.gov (indexed) [DOE]

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

325

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

their renewable resources from solar energy; wind makes upenergy demand. Solar energy is the second largest resource,in this paper. Solar energy is the second largest resource,

Mills, Andrew

2010-01-01T23:59:59.000Z

326

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

327

Estimating Demand Response Market Potential | Open Energy Information  

Open Energy Info (EERE)

Estimating Demand Response Market Potential Estimating Demand Response Market Potential Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating Demand Response Market Potential Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.ieadsm.org/Files/Tasks/Task%20XIII%20-%20Demand%20Response%20Resou Equivalent URI: cleanenergysolutions.org/content/estimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Resource Integration Planning This resource presents demand response (DR) potential results from top-performing programs in the United States and Canada, as well as a DR

328

Reliability modeling of demand response considering uncertainty of customer behavior  

Science Journals Connector (OSTI)

Abstract Demand response (DR) has been considered as a generation alternative to improve the reliability indices of the system and load point. However, when the demand resources scheduled in the DR market fail to result in demand reductions, it can potentially bring new problems associated with maintaining a reliable supply. In this paper, a reliability model of the demand resource is constructed considering customers’ behaviors in the same form as conventional generation units, where the availability and unavailability are associated with the simple two-state model. The reliability model is generalized by a multi-state model. In the integrated power market with DR, market players provide the demand reduction and generation, which are represented by an equivalent multi-state demand response and generation, respectively. The reliability indices of the system and load point are evaluated using the optimal power flow by minimizing the summation of load curtailments with various constraints.

Hyung-Geun Kwag; Jin-O Kim

2014-01-01T23:59:59.000Z

329

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

330

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

331

RTP Customer Demand Response  

Science Journals Connector (OSTI)

This paper provides new evidence on customer demand response to hourly pricing from the largest and...real-time pricing...(RTP) program in the United States. RTP creates value by inducing load reductions at times...

Steven Braithwait; Michael O’Sheasy

2002-01-01T23:59:59.000Z

332

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

333

Large Consumer Electricity Acquisition Considering Time-of-Use Rates Demand Response Programs  

Science Journals Connector (OSTI)

The consumers try to obtain their electricity demand at minimum cost from different resources in restructured electricity markets. Hence more attention have been made on demand response programs (DRP) which aims ...

Sayyad Nojavan; Hadi Qesmati; Kazem Zare…

2014-12-01T23:59:59.000Z

334

Demand Response Architectures and Load Management Algorithms for Energy-Efficient Power Grids: A Survey  

Science Journals Connector (OSTI)

A power grid has four segments: generation, transmission, distribution and demand. Until now, utilities have been focusing on streamlining their generation, transmission and distribution operations for energy efficiency. While loads have traditionally ... Keywords: Smart grid, energy efficiency, demand-side load management, demand response, load shifting

Yee Wei Law; Tansu Alpcan; Vincent C. S. Lee; Anthony Lo; Slaven Marusic; Marimuthu Palaniswami

2012-11-01T23:59:59.000Z

335

Service facilities with Markovian demand and deterministic supply with an application in repair modelling  

Science Journals Connector (OSTI)

......calculus|supply and demand|transient analysis...SCILAB| IMA Journal of Management Mathematics (2010...facilities with Markovian demand and deterministic supply...result on deterministic demand and Markovian supply...event on the left-hand side of (2) can be rewritten......

Attila Csenki

2010-10-01T23:59:59.000Z

336

Cautious Risk-Takers: Investor Preferences and Demand for Active Management  

E-Print Network [OSTI]

Cautious Risk-Takers: Investor Preferences and Demand for Active Management Valery Polkovnichenko and Demand for Active Management Abstract Actively managed mutual funds have distinct return distributions from the equally important side of investor demand. We take funds returns as given and use them

O'Toole, Alice J.

337

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

338

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

339

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

340

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

SciTech Connect (OSTI)

The Pacific Gas and Electric Company (PG&E) is conducting a pilot program to investigate the technical feasibility of bidding certain demand response (DR) resources into the California Independent System Operator's (CAISO) day-ahead market for ancillary services nonspinning reserve. Three facilities, a retail store, a local government office building, and a bakery, are recruited into the pilot program. For each facility, hourly demand, and load curtailment potential are forecasted two days ahead and submitted to the CAISO the day before the operation as an available resource. These DR resources are optimized against all other generation resources in the CAISO ancillary service. Each facility is equipped with four-second real time telemetry equipment to ensure resource accountability and visibility to CAISO operators. When CAISO requests DR resources, PG&E's OpenADR (Open Automated DR) communications infrastructure is utilized to deliver DR signals to the facilities energy management and control systems (EMCS). The pre-programmed DR strategies are triggered without a human in the loop. This paper describes the automated system architecture and the flow of information to trigger and monitor the performance of the DR events. We outline the DR strategies at each of the participating facilities. At one site a real time electric measurement feedback loop is implemented to assure the delivery of CAISO dispatched demand reductions. Finally, we present results from each of the facilities and discuss findings.

Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish; Koch, Ed; Hennage, Dan; Hernandez, John; Chiu, Albert; Sezgen, Osman; Goodin, John

2009-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Where has Electricity Demand Growth Gon in PJM and What are the...  

U.S. Energy Information Administration (EIA) Indexed Site

economic conditions and environmental rules - New entry of combined cycle gas and demand response resources...will there be incentives for continued new entry? * Impending GHG...

342

Power system balancing with high renewable penetration : the potential of demand response .  

E-Print Network [OSTI]

??This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model… (more)

Critz, David Karl

2012-01-01T23:59:59.000Z

343

Demand Response - Policy: More Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demand Response - Policy: More Information Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the New England regional power markets. NEDRI's goal was to outline workable market rules, public policies, and regulatory criteria to incorporate customer-based demand response resources into New England's electricity markets and power systems. NEDRI promoted best practices and coordinated

344

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

345

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

346

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

347

Demand response compensation, net Benefits and cost allocation: comments  

SciTech Connect (OSTI)

FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

Hogan, William W.

2010-11-15T23:59:59.000Z

348

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

349

On a Rising Tide: The Future of U.S. Utility Customer-Funded Energy Efficiency Programs  

E-Print Network [OSTI]

Steven. 1992. Utility Demand-Side Management Experience andutility resource and demand-side management plans. Spendingcostly than supply; demand-side management plans; and long-

Goldman, Charles

2014-01-01T23:59:59.000Z

350

Economic evaluation of demand response in power systems with high wind power penetration  

Science Journals Connector (OSTI)

The penetration of wind power generation is expected to increase in power systems dramatically. The unpredictable nature of the wind generation poses an obstacle to high penetration of wind energy in the electric power systems. Demand response (DR) may be considered as an efficient approach to cope with the energy unbalances caused by the wind power intermittency. Fair mechanism for pricing of the DR may increase the demand-side participation which consequently facilitates wind power integration in the power systems. This paper focuses on the economic evaluation of the DR according to its potential for mitigating the wind power forecast error in the power system operation. Demand increase similar to the demand curtailment is considered as a DR resource and evaluated in this paper. For this purpose first an insight is provided into the power system operation under the high wind power penetration with the aim of extracting the DR benefits. Based on the DR benefits a mathematical model is developed to find the maximum monetary incentive for the DR that the system operator is willing to pay to the DR providers. In the proposed model DR's potential in reducing the cost of supplying load as well as its capability in reducing the cost of system reserve start up and shut down of units load shedding and wind power spillage are considered. The results of the proposed evaluation method provide valuable information for both the system operator and demand response providers. The proposed method is implemented on an example and a realistic case study and discussions on results are presented.

2014-01-01T23:59:59.000Z

351

ERCOT's Weather Sensitive Demand Response Pilot  

E-Print Network [OSTI]

ERCOT’s Weather Sensitive Demand Response Pilot CATEE 12-17-13 ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Disclaimer The information contained in this report has been obtained from... Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Weather Sensitive Loads Pilot CATEE 121313 - Tim Carter 713-646-5476 tim.carter@constellation.com4 Constellation's Integrated Power Products © 2013. Constellation Energy Resources, LLC...

Carter, T.

2013-01-01T23:59:59.000Z

352

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

353

Energy Demand Modeling  

Science Journals Connector (OSTI)

From the end of World War II until the early 1970s there was a strong and steady increase in the demand for energy. The abundant supplies of fossil and other ... an actual fall in the real price of energy of abou...

S. L. Schwartz

1980-01-01T23:59:59.000Z

354

A demand responsive bidding mechanism with price elasticity matrix in wholesale electricity pools ; A demand responsive bidding mechanism with price elasticity matrix .  

E-Print Network [OSTI]

??In the past several decades, many demand-side participation features have been applied in the electricity power systems. These features, such as distributed generation, on-site storage… (more)

Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

355

CERTS Microgrid Laboratory Test Bed  

E-Print Network [OSTI]

utility, allowing for demand-side management arrangements.resource planning, demand-side management, and building

Lasseter, R. H.

2010-01-01T23:59:59.000Z

356

The aesthetics of water and land: a promising concept for managing scarce water resources under climate change  

Science Journals Connector (OSTI)

...approach to water management Any strategy for managing...change) and the water demand side (e.g. adaptive...sustainable water management in the Jordan River...underestimation of the demand side of water management. Since fresh water...

2010-01-01T23:59:59.000Z

357

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

358

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

359

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

360

Resources on Water Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Efficiency » Resources on Water Efficiency Water Efficiency » Resources on Water Efficiency Resources on Water Efficiency October 8, 2013 - 10:03am Addthis Many helpful resources about water efficiency are available. Also see Contacts. Federal Resources Reverse Osmosis Optimization Technology Evaluation: -This FEMP technology evaluation assesses techniques for optimizing reverse osmosis systems to increase system performance and water efficiency. Side Stream Filtration for Cooling Towers (Full Report): Comprehensive document assessing side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. Technical Evaluation of Side Stream Filtration for Cooling Towers (Fact

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Computer resources Computer resources  

E-Print Network [OSTI]

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

362

Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems  

E-Print Network [OSTI]

Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable Resources Electric Energy System #12;#12;Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems benefits correspond to a real-world power system, as we use actual data on demand-response and wind

363

Water supply and demand in an energy supply model  

SciTech Connect (OSTI)

This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

Abbey, D; Loose, V

1980-12-01T23:59:59.000Z

364

Understanding and Analysing Energy Demand  

Science Journals Connector (OSTI)

This chapter introduces the concept of energy demand using basic micro-economics and presents the three-stage decision making process of energy demand. It then provides a set of simple ... (such as price and inco...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

365

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

366

Demand Charges | Open Energy Information  

Open Energy Info (EERE)

Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967"...

367

Resource Analysis  

Broader source: Energy.gov [DOE]

Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount...

368

ERCOT Demand Response Paul Wattles  

E-Print Network [OSTI]

ERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre;Definitions of Demand Response · `The short-term adjustment of energy use by consumers in response to price to market or reliability conditions.' (NAESB) #12;Definitions of Demand Response · The common threads

Mohsenian-Rad, Hamed

369

Pricing data center demand response  

Science Journals Connector (OSTI)

Demand response is crucial for the incorporation of renewable energy into the grid. In this paper, we focus on a particularly promising industry for demand response: data centers. We use simulations to show that, not only are data centers large loads, ... Keywords: data center, demand response, power network, prediction based pricing

Zhenhua Liu; Iris Liu; Steven Low; Adam Wierman

2014-06-01T23:59:59.000Z

370

Energy technologies and their impact on demand  

SciTech Connect (OSTI)

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

371

Rates and technologies for mass-market demand response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rates and technologies for mass-market demand response Rates and technologies for mass-market demand response Title Rates and technologies for mass-market demand response Publication Type Conference Paper LBNL Report Number LBNL-50626 Year of Publication 2002 Authors Herter, Karen, Roger Levy, John Wilson, and Arthur H. Rosenfeld Conference Name 2002 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response, demand response and distributed energy resources center, demand response research center, rate programs & tariffs Abstract Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory, system-operator controlled, contingency program, and (2) a voluntary, customer controlled, bill management program with rate-based incentives. Any demand response program based on this system could consist of either or both of these components. Ideally, these programs would be bundled, providing automatic load management through customer-programmed price response, plus up to 10 GW of emergency load shedding capability in California. Finally, we discuss options for and barriers to implementation of such a program in California.

372

Demand Response Spinning Reserve Demonstration -- Phase 2 Findings from the Summer of 2008  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneering demonstration showing that existing utility load-management assets can provide an important electricity system reliability resource known as spinning reserve. Using aggregated demand-side resources to provide spinning reserve as demonstrated in this project will give grid operators at the California Independent System Operator (CA ISO) and Southern California Edison (SCE) a powerful new tool to improve reliability, prevent rolling blackouts, and lower grid operating costs.In the first phase of this demonstration project, we target marketed SCE?s air-conditioning (AC) load-cycling program, called the Summer Discount Plan (SDP), to customers on a single SCE distribution feederand developed an external website with real-time telemetry for the aggregated loads on this feeder and conducted a large number of short-duration curtailments of participating customers? air-conditioning units to simulate provision of spinning reserve. In this second phase of the demonstration project, we explored four major elements that would be critical for this demonstration to make the transition to a commercial activity:1. We conducted load curtailments within four geographically distinct feeders to determine the transferability of target marketing approaches and better understand the performance of SCE?s load management dispatch system as well as variations in the AC use of SCE?s participating customers;2. We deployed specialized, near-real-time AC monitoring devices to improve our understanding of the aggregated load curtailments we observe on the feeders;3. We integrated information provided by the AC monitoring devices with information from SCE?s load management dispatch system to measure the time required for each step in the curtailment process; and4. We established connectivity with the CA ISO to explore the steps involved in responding to CA ISO-initiated requests for dispatch of spinning reserve.The major findings from the second phase of this demonstration are:1. Demand-response resources can provide full response significantly faster than required by NERC and WECC reliability rules.2. The aggregate impact of demand response from many small, individual sources can be estimated with varying degrees of reliability through analysis of distribution feeder loads.3. Monitoring individual AC units helps to evaluate the efficacy of the SCE load management dispatch system and better understand AC energy use by participating customers.4. Monitoring individual AC units provides an independent data source to corroborate the estimates of the magnitude of aggregate load curtailments and gives insight into results from estimation methods that rely solely on distribution feeder data.

Eto, Joseph H.; Nelson-Hoffman, Janine; Parker, Eric; Bernier, Clark; Young, Paul; Sheehan, Dave; Kueck, John; Kirby, Brendan

2009-04-30T23:59:59.000Z

373

The Quantum Side of Photosynthesis  

Science Journals Connector (OSTI)

The Quantum Side of Photosynthesis ... But evidence is mounting that photosynthetic organisms may, in fact, capitalize on quantum effects to harness the sun’s rays. ...

JYLLIAN KEMSLEY

2012-02-19T23:59:59.000Z

374

Better Buildings Neighborhood Program: Business Model Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Business Model Business Model Resources to someone by E-mail Share Better Buildings Neighborhood Program: Business Model Resources on Facebook Tweet about Better Buildings Neighborhood Program: Business Model Resources on Twitter Bookmark Better Buildings Neighborhood Program: Business Model Resources on Google Bookmark Better Buildings Neighborhood Program: Business Model Resources on Delicious Rank Better Buildings Neighborhood Program: Business Model Resources on Digg Find More places to share Better Buildings Neighborhood Program: Business Model Resources on AddThis.com... Getting Started Assess the Market Establish Goals & Objectives Develop Plans of Action Business Model Resources Driving Demand Financing Workforce Development Business Model Resources Business Models Workshop and Materials

375

Issues in investment risk : a supply-side and demand-side analysis of the Australian managed fund industry.  

E-Print Network [OSTI]

??The investment management industry has proven to be a fertile ground for theoretical and empirical research over the past forty years, particularly in relation to… (more)

Hallahan, T

2005-01-01T23:59:59.000Z

376

Overview of Demand Response  

Broader source: Energy.gov (indexed) [DOE]

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

377

Fueling America Through Renewable Resources Purdue extension  

E-Print Network [OSTI]

Fueling America Through Renewable Resources BioEnergy Purdue extension Meeting the ethanol demand to the anticipated market demand signals by planting more corn after corn. Livestock farmers have often had corn #12; Fueling America Through Renewable Crops BioEnergy Meeting the Ethanol Demand: Consequences

Holland, Jeffrey

378

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

379

Assisting Mexico in Developing Energy Supply and Demand Projections | Open  

Open Energy Info (EERE)

Assisting Mexico in Developing Energy Supply and Demand Projections Assisting Mexico in Developing Energy Supply and Demand Projections Jump to: navigation, search Name Assisting Mexico in Developing Energy Supply and Demand Projections Agency/Company /Organization Argonne National Laboratory Sector Energy Topics GHG inventory, Background analysis Resource Type Software/modeling tools Website http://www.dis.anl.gov/news/Me Country Mexico UN Region Latin America and the Caribbean References Assisting Mexico in Developing Energy Supply and Demand Projections[1] "CEEESA and the team of experts from Mexico analyzed the country's entire energy supply and demand system using CEEESA's latest version of the popular ENPEP-BALANCE software. The team developed a system representation, a so-called energy network, using ENPEP's powerful graphical user

380

Demand Response Programs, 6. edition  

SciTech Connect (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

Levy, Roger

2014-01-01T23:59:59.000Z

382

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

383

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

Levy, Roger

2014-01-01T23:59:59.000Z

384

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

385

Barrier Immune Radio Communications for Demand Response  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large Facilities,”Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

Rubinstein, Francis

2010-01-01T23:59:59.000Z

386

Home Network Technologies and Automating Demand Response  

E-Print Network [OSTI]

and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

McParland, Charles

2010-01-01T23:59:59.000Z

387

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

388

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

389

Option Value of Electricity Demand Response  

E-Print Network [OSTI]

Table 1. “Economic” demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

390

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

391

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

392

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

393

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

394

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

395

The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005  

Broader source: Energy.gov [DOE]

Report evaluating DG/CHP as wholesale power resources, installed on the utility side of the customer meter

396

Geoscientists in High Demand in the Oil Industry  

Science Journals Connector (OSTI)

...and did a summer internship at USGS. Watching...more of Earth's energy reserves. Those...incentive. But the current demand for new talent...now a professor of energy and mineral resources...Companies use internship programs as recruiting...companies bring in green staff, they are...

Lucas Laursen

2008-08-08T23:59:59.000Z

397

Provide Virtual Distributed Environments for Grid Computing on Demand  

E-Print Network [OSTI]

for security control and user delegation. · Resource management becomes a bottleneck for the Grid middleware]. An community- centric Grid application [9] certainly has a security control scheme distinct with a dataProvide Virtual Distributed Environments for Grid Computing on Demand Lizhe Wang , Gregor von

398

Harnessing the power of demand  

SciTech Connect (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

399

China, India demand cushions prices  

SciTech Connect (OSTI)

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

400

Agriculture in Developed Countries: Competition for Resources [and Discussion  

Science Journals Connector (OSTI)

...related to the supply and demand for agricultural products...countries. On the supply side, agriculture is dominated...need of the market, the demand for food being highly...technology and improved management and organization can...more favourable supply/demand balance for agricultural...

1973-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Honeywell Demonstrates Automated Demand Response Benefits for...  

Broader source: Energy.gov (indexed) [DOE]

Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

402

Automated Demand Response and Commissioning  

SciTech Connect (OSTI)

This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-04-01T23:59:59.000Z

403

Demand Activated Manufacturing Architecture  

SciTech Connect (OSTI)

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

404

Automated Demand Response Technologies and Demonstration in New York City  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Demonstration in New York City Technologies and Demonstration in New York City using OpenADR Title Automated Demand Response Technologies and Demonstration in New York City using OpenADR Publication Type Report LBNL Report Number LBNL-6470E Year of Publication 2013 Authors Kim, Joyce Jihyun, Sila Kiliccote, and Rongxin Yin Date Published 09/2013 Publisher LBNL/NYSERDA Abstract Demand response (DR) - allowing customers to respond to reliability requests and market prices by changing electricity use from their normal consumption pattern - continues to be seen as an attractive means of demand-side management and a fundamental smart-grid improvement that links supply and demand. Since October 2011, the Demand Response Research Center at Lawrence Berkeley National Laboratory and New York State Energy Research and Development Authority have conducted a demonstration project enabling Automated Demand Response (Auto-DR) in large commercial buildings located in New York City using Open Automated Demand Response (OpenADR) communication protocols. In particular, this project focuses on demonstrating how OpenADR can automate and simplify interactions between buildings and various stakeholders in New York State including the independent system operator, utilities, retail energy providers, and curtailment service providers. In this paper, we present methods to automate control strategies via building management systems to provide event-driven demand response, price response and demand management based on OpenADR signals. We also present cost control opportunities under day-ahead hourly pricing for large customers and Auto-DR control strategies developed for demonstration buildings. Lastly, we discuss the communication architecture and Auto-DR system designed for the demonstration project to automate price response and DR participation.

405

Demand Response & Smart Grid - State Legislative and Regulatory Policy  

Open Energy Info (EERE)

Demand Response & Smart Grid - State Legislative and Regulatory Policy Demand Response & Smart Grid - State Legislative and Regulatory Policy Actions: October 2008 to May 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demand Response & Smart Grid - State Legislative and Regulatory Policy Actions: October 2008 to May 2010 Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.demandresponsesmartgrid.org/Resources/Documents/State%20Policy%20S Equivalent URI: cleanenergysolutions.org/content/demand-response-smart-grid-state-legi Language: English Policies: Regulations Regulations: Enabling Legislation This report reviews the implementation of utility efficiency programs in the United States at both the state and federal levels. In addition, the updated report catalogues regulatory commission action, independent of

406

Water Utility Demand Management and the Financial, Social and Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Utility Demand Management and the Financial, Social and Environmental Water Utility Demand Management and the Financial, Social and Environmental Drivers Speaker(s): Allan J. Dietemann Date: February 19, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Camilla Whitehead At Seattle Public Utilities, Al Dietemann leads a team of 11 persons with a budget of $5 million a year implementing cost-effective resource conservation measures. In 2003, the Seattle area used less water than was used in 1950 on an annual basis. Seattle's demand management programs have been successful in holding total regional water use constant in our service area, despite an annual growth in population served. During this seminar he will speak to the following issues: 1) Water utility demand management and the financial, social and environmental drivers. 2)

407

Retail Demand Response in Southwest Power Pool | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demand Response in Southwest Power Pool Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region.

408

Effects of Demand Response on Retail and Wholesale Power Markets  

SciTech Connect (OSTI)

Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energy’s Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets is discussed with necessary and sufficient conditions on system controllability, observability and stability derived.

Chassin, David P.; Kalsi, Karanjit

2012-07-26T23:59:59.000Z

409

Side by Side Testing of Water Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Florida Florida A Research Institute of the University of Central Florida Side by Side Testing of Water Heating Systems Residential Energy Efficiency Stakeholder Meeting Austin , Texas March 1st, 2012 Carlos J. Colon carlos@fsec.ucf.edu FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Cocoa, Florida 3 2009 -Present (Currently in third testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Underground Circulation Loop * Solar circulation Loop 140+ feet of ½" copper tubing * Encased in PVC tubing with R-2.4 insulation * ICS to 50 gallon storage tank path need to

410

Marketing Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Reports, Publications, and Research Utility Toolkit Informational...

411

Value of Demand Response: Quantities from Production Cost Modeling (Presentation)  

SciTech Connect (OSTI)

Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind and solar power generation. However, managed loads in grid models are limited by data availability and modeling complexity. This presentation focuses on the value of co-optimized DR resources to provide energy and ancillary services in a production cost model. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves. In addition, the revenue is characterized by the capacity, energy, and units of DR enabled.

Hummon, M.

2014-04-01T23:59:59.000Z

412

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

413

Analysis of Residential Demand Response and Double-Auction Markets  

SciTech Connect (OSTI)

Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

2011-10-10T23:59:59.000Z

414

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

markets”. In: Electric Power Systems Research 78 (2008), pp.Gas and Electric Company Power Systems Engineering Research

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

415

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

markets”. In: Electric Power Systems Research 78 (2008), pp.Gas and Electric Company Power Systems Engineering Research

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

416

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

for the Study of Energy Markets, 2002. [10] S.D. Braithwait,for the Study of Energy Markets, Aug. 2009. [13] CAEC.in organized wholesale energy markets. Federal Energy

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

417

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

in organized wholesale energy markets. Federal Energyfor the Study of Energy Markets, 2002. [10] S.D. Braithwait,5.5.1 Direct participation in existing markets 5.5.2 Energy

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

418

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

Electric load data . . . . . . . . . . . . . . . . . . 2.2.2Electric Load Data . . . . . . . . . . . . . . . 2.3.1 Loadof 15-minute-interval load data. For example, in Figure 2.4,

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

419

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

index.cfm/mytopic=13090. [34] EERE. Results and methodology2011), pp. 411–419. [31] EERE. EnergyPlus energy simulationcfm/weather_data.cfm. [32] EERE. Estimating appliance and

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

420

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

ESTIMATION & CONTROL Load Manager! Distribution Substation!Distribution Substation! GlobalLevel! Distribution Substation! Semi-global Level! Local

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

in regulation and load following . . . . Wholesale energyloads to deliver load following and regulation, withcontrolled loads for load following”. In: Proceedings of the

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

422

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

in regulation and load following . . . . Wholesale energyclimate zone, while load following and arbitrage revenuesloads to deliver load following and regulation, with

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

423

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

storing thermal energy, much like a battery stores chemicalthe thermal energy stored in the TCL–much like a battery

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

424

Coordination of Energy Efficiency and Demand Response: A Resource...  

Open Energy Info (EERE)

cleanenergydocumentssucaeeanddr.pdf Equivalent URI: cleanenergysolutions.orgcontentcoordination-energy-efficiency-and-de Language: English Policies:...

425

Population momentum and the demand on land and water resources  

Science Journals Connector (OSTI)

...aggregate ecosystems classes 1 DESERT Cold and hot deserts, bare land, salt flats, etc. 2 GRASS Various...SHR\\FO Various types of scrubs and woodland 4 FOREST Various...glaciers, antarctic ice, polar deserts 12 TND\\TG Various tundra...

1997-01-01T23:59:59.000Z

426

2003 Pacific Northwest Loads and Resources Study.  

SciTech Connect (OSTI)

The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared to an expected level of total retail electricity consumption. The forecasted annual energy electricity retail load plus contract obligations are subtracted from the sum of the projected annual energy capability of existing resources and contract purchases to determine whether BPA and/or the region will be surplus or deficit. Surplus energy is available when resources are greater than loads. This energy could be marketed to increase revenues. Deficits occur when resources are less than loads. Energy deficits could be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of a load (i.e., due to economic conditions or closures), additional contract purchases, and/or new generating resources. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA). The PNCA defines the planning and operation of seventeen U.S. Pacific Northwest utilities and other parties with generating facilities within the region's hydroelectric (hydro) system. The hydroregulation study used for the 2003 White Book incorporates measures from the National Oceanographic and Atmospheric Administration Fisheries (NOAA Fisheries) Biological Opinion dated December 2000, and the U.S. Fish and Wildlife Service's 2000 Biological Opinion (2000 FCRPS BiOps) for the Snake River and Columbia River projects. These measures include: (1) Increased flow augmentation for juvenile fish migrations in the Snake and Columbia rivers in the spring and summer; (2) Mandatory spill requirements at the Lower Snake and Columbia dams to provide for non-turbine passage routes for juvenile fish migrants; and (3) Additional flows for Kootenai River white sturgeon in the spring. The hydroregulation criteria for this analysis includes: an updated Detailed Operation Plan for Treaty reservoirs for Operating Year (OY) 2004, updated PNCA planning criteria for OY 2003, and revised juvenile fish bypass spill levels for 2000 FCRPS BiOps implementation. The 2003 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information regarding marketer contracts is not detailed due to confidentiality agreements. The 2003 White Book analysis updates the December 2002 White Book. This analysis projects the yearly average energy consumption and resource availability

United States. Bonneville Power Administration.

2003-12-01T23:59:59.000Z

427

The impacts of stochastic programming and demand response on wind integration  

Science Journals Connector (OSTI)

Wind imposes costs on power systems due to uncertainty and variability of real-time resource availability. Stochastic programming and demand response are offered as two possible solutions to ... although both wil...

Seyed Hossein Madaeni; Ramteen Sioshansi

2013-06-01T23:59:59.000Z

428

Power system balancing with high renewable penetration : the potential of demand response  

E-Print Network [OSTI]

This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model was used to represent a version of ...

Critz, David Karl

2012-01-01T23:59:59.000Z

429

Safeguards Education and Training: Short Term Supply vs. Demand  

SciTech Connect (OSTI)

Much has been written and discussed in the past several years about the effect of the aging nuclear workforce on the sustainability of the U.S. safeguards and security infrastructure. This paper discusses the 10-15 year supply and demand forecast for nuclear material control and accounting specialists. The demand side of the review includes control and accounting of the materials at U.S. DOE and NRC facilities, and the federal oversight of those MC&A programs. The cadre of experts referred to as 'MC&A Specialists' available to meet the demand goes beyond domestic MC&A to include international programs, regulatory and inspection support, and so on.

Mathews, Carrie E.; Crawford, Cary E.

2004-07-16T23:59:59.000Z

430

Electricity demand and supply projections for Indian economy  

Science Journals Connector (OSTI)

The present paper deals with an econometric model to forecast future electricity requirements for various sectors of Indian economy. Following the analysis of time series of sectoral GDPs, number of consumers in various sectors and price indices of electricity, a logarithmic linear regression model has been developed to forecast long-term demand of electricity up to the year 2045. Using the historical GDP growth in various sectors and the corresponding electricity consumption for the period 1971-2005, it is predicted that the total electricity demand will be 5000 billion kWh, against a supply of 1500 billion kWh in the year 2045. This may lead to a disastrous situation for the country unless drastic policy measures are taken to improve the supply side as well as to reduce demand.

Subhash Mallah; N.K. Bansal

2009-01-01T23:59:59.000Z

431

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Market Demand Response and Mass Market Demand Response and Mass Market Demand Response and Mass Market Demand Response and Variable Generation Integration Issues: Variable Generation Integration Issues: Variable Generation Integration Issues: Variable Generation Integration Issues: A Scoping Study A Scoping Study Peter Cappers, Andrew Mills, Charles Goldman, Ryan Wiser, Joseph H. Eto Report Summary October 2011 Energy Analysis Department  Electricity Markets and Policy Group 1 1 Presentation Overview Presentation Overview  Objectives and Approach  Variable Generation Resources and the Bulk Power System  Demand Response Opportunities  Demand Response as a Strategy to Integrate p gy g Variable Generation Resources  Comparison of Various Strategies to Integrate Variable Generation  Conclusions Energy Analysis Department  Electricity Markets and Policy Group

432

On making energy demand and network constraints compatible in the last mile of the power grid  

Science Journals Connector (OSTI)

Abstract In the classical electricity grid power demand is nearly instantaneously matched by power supply. In this paradigm, the changes in power demand in a low voltage distribution grid are essentially nothing but a disturbance that is compensated for by control at the generators. The disadvantage of this methodology is that it necessarily leads to a transmission and distribution network that must cater for peak demand. So-called smart meters and smart grid technologies provide an opportunity to change this paradigm by using demand side energy storage to moderate instantaneous power demand so as to facilitate the supply-demand match within network limitations. A receding horizon model predictive control method can be used to implement this idea. In this paradigm demand is matched with supply, such that the required customer energy needs are met but power demand is moderated, while ensuring that power flow in the grid is maintained within the safe operating region, and in particular peak demand is limited. This enables a much higher utilisation of the available grid infrastructure, as it reduces the peak-to-base demand ratio as compared to the classical control methodology of power supply following power demand. This paper investigates this approach for matching energy demand to generation in the last mile of the power grid while maintaining all network constraints through a number of case studies involving the charging of electric vehicles in a typical suburban low voltage distribution network in Melbourne, Australia.

Iven Mareels; Julian de Hoog; Doreen Thomas; Marcus Brazil; Tansu Alpcan; Derek Jayasuriya; Valentin Müenzel; Lu Xia; Ramachandra Rao Kolluri

2014-01-01T23:59:59.000Z

433

Optimal Resource Adjustment Times in product development project  

E-Print Network [OSTI]

duration. This research suggested a way of improving project performance with resource allocation policies. Two managerial decisions were considered: 1) proportional or foresighted resource demand estimates; and 2) the delay of management, and delay...

Lee, Zee Woon

2012-06-07T23:59:59.000Z

434

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

435

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

436

Full Rank Rational Demand Systems  

E-Print Network [OSTI]

as a nominal income full rank QES. R EFERENCES (A.84)S. G. Donald. “Inferring the Rank of a Matrix. ” Journal of97-102. . “A Demand System Rank Theorem. ” Econometrica 57 (

LaFrance, Jeffrey T; Pope, Rulon D.

2006-01-01T23:59:59.000Z

437

Demand Forecasting of New Products  

E-Print Network [OSTI]

Keeping Unit or SKU) employing attribute analysis techniques. The objective of this thesis is to improve Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock

Sun, Yu

438

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5..., 2009 4 An Innovative Solution to Get the Ball Rolling ? Demand Response (DR) ? Monitoring Based Commissioning (MBCx) EnerNOC has a solution involving two complementary offerings. ESL-IC-09-11-05 Proceedings of the Ninth International Conference...

439

Pathway and Resource Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pathway and Resource Overview Pathway and Resource Overview Delivering Renewable Hydrogen Workshop - A Focus on Near-Term Applications Mark F. Ruth November 16, 2009 Palm Springs, CA NREL/PR-6A1-47108 National Renewable Energy Laboratory Innovation for Our Energy Future Definition and Presentation Outline Hydrogen pathway analysis is analysis of the total levelized cost (including return on investment), well-to- wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways. This presentation focuses on * Pathway analyses using the Macro-System Model (MSM) * Resource and pathway analysis using the Hydrogen Demand and Resource Analysis Tool (HyDRA) * Status of water-electrolysis technology

440

Page 6 T H E E N V I R O N M E N TA L F O R U M Managing Water Demand  

E-Print Network [OSTI]

as structural solutions, more emphasis on demand-side as well as supply-side management techniques, and a growPage 6 T H E E N V I R O N M E N TA L F O R U M Managing Water Demand: Price vs. Non-price demand management tech- niques." These would include actions such as requiring low-flow fixtures

Shapiro, Benjamin

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Agent-based coordination techniques for matching supply and demand in energy networks  

Science Journals Connector (OSTI)

There is a lot of effort directed toward realizing the power network of the future. The future power network is expected to depend on a large number of renewable energy resources connected directly to the low and medium voltage power network. Demand ... Keywords: Supply and demand matching, market and non-market algorithms, multi-agent systems

Rashad Badawy; Benjamin Hirsch; Sahin Albayrak

2010-12-01T23:59:59.000Z

442

Electric utility resource planning using Continuous-Discrete Modular Simulation and Optimization (CoDiMoSO)  

Science Journals Connector (OSTI)

Electric utility resource planning traditionally focuses on conventional energy supplies such as coal, natural gas, and oil. Nowadays, planning of renewable energy generation as well as its side necessity of storage capacities have become equally important due to the increasing growth in energy demand, insufficiency of natural resources, and newly established policies for low carbon footprint. In this study, we propose to develop a comprehensive simulation based decision making framework to determine the best possible combination of resource investments for electric power generation and storage capacities. The proposed tool involves a combined continuous-discrete modular modeling approach for processes of different nature that exist within this complex system, and will help the utility companies conduct resource planning via employed multiobjective optimization techniques in a realistic simulation environment. The distributed power system considered here has four major components including (1) energy generation via a solar farm, a wind farm, and a fossil fuel power station, (2) storage via compressed air energy storage system, and batteries, (3) transmission via a bus and two main substations, and (4) demand of industrial, commercial, residential and transportation sectors. The proposed approach has been successfully demonstrated for the electric utility resource planning at a scale of the state of Florida.

Juan Pablo Sáenz; Nurcin Celik; Shihab Asfour; Young-Jun Son

2012-01-01T23:59:59.000Z

443

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

approach to community micro hydro in Kalahandi, Orissa. Santechnologies, such as micro-hydro, biomass gasification,grids, such as many micro-hydro grids, will mainly concern

Harper, Meg

2014-01-01T23:59:59.000Z

444

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

Center for Appropriate Technology. Alice Springs, Australia.Report of Intermediate Technology Consultants to Overseasand Communication Technologies and Development. Atlanta, GA.

Harper, Meg

2014-01-01T23:59:59.000Z

445

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

Recolonising Africa on the Power Grid. Sterling, VA: HSRCRecolonising Africa on the Power Grid. Sterling, VA: HSRCRecolonising Africa on the Power Grid. Sterling, VA: HSRC

Harper, Meg

2014-01-01T23:59:59.000Z

446

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

from: www.devergy.com ESMAP. 2000. Mini-grid design manual.Valley photovoltaic-diesel mini-grid: System performance andon a renewable energy mini-grid in Bhutan. Environmental

Harper, Meg

2014-01-01T23:59:59.000Z

447

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

properly. On mini-grids with intermittent renewable energyservice provision on a renewable energy mini-grid in Bhutan.Development of Renewable Energy Mini-grids for Energy

Harper, Meg

2014-01-01T23:59:59.000Z

448

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

funds. The solar generation and storage systems areand limited storage, such as solar and wind, but may not betypically solar panels or wind turbines) and battery storage

Harper, Meg

2014-01-01T23:59:59.000Z

449

ECEEE 2005 SUMMER STUDY WHAT WORKS & WHO DELIVERS? 183 Local energy efficiency and demand-side  

E-Print Network [OSTI]

to actions. This paper compiles an inventory of the local EE activities in France in order to provide was made using criteria defined from the analysis of the theoretical context. The inventory also ena- bles at the actual trends. Introduction As soon as energy conservation programs were developed af- ter the oil crisis

Paris-Sud XI, Université de

450

Southwest Division, Naval Facilities Engineering Command, Demand Side Management Program Implementation  

E-Print Network [OSTI]

the many benefits of this program is the short time between initial audit and contract award. A project can be under construction within 60 days of completion of the audit. Light Emitting Diode (LED) Exit Signs - Over 9700 LED Exit Signs have been... the many benefits of this program is the short time between initial audit and contract award. A project can be under construction within 60 days of completion of the audit. Light Emitting Diode (LED) Exit Signs - Over 9700 LED Exit Signs have been...

Gates, G. G.

451

Distribution Load Modelling for Demand Side Management and End-Use Efficiency  

Science Journals Connector (OSTI)

The problem of electric load modelling for low aggregation levels is addressed in the paper, being the object to obtain good “response” behaviour models of any group of loads in an electric energy distribution...

C. Álvarez; A. Gabaldón

1994-01-01T23:59:59.000Z

452

The demand-side: functional management (using the method BiSL)  

Science Journals Connector (OSTI)

Over the last few years, our organization has entered into partnerships with companies in China and Poland. They want insight into our sales and we want the same into the status of our orders with them. That r...

2005-01-01T23:59:59.000Z

453

Development of robust building energy demand-side control strategy under uncertainty.  

E-Print Network [OSTI]

??The potential of carbon emission regulations applied to an individual building will encourage building owners to purchase utility-provided green power or to employ onsite renewable… (more)

Kim, Sean Hay

2011-01-01T23:59:59.000Z

454

Demand Side Management using VOLTAGE / DISTRIBUTION OPTIMIZATION Quality improvement & Peak reduction  

Science Journals Connector (OSTI)

In order to improve the quality of the electrical energy delivered at consumer households a Voltage Optimization Device (VOD) is introduced in each household. This device controls the output voltage accurately at...

N. H. M. Hofmeester; C. J. van de Water

1994-01-01T23:59:59.000Z

455

Demand Side Management in private homes by using LonWorks®  

Science Journals Connector (OSTI)

This paper presents a system to distribute power consumption in private homes uniformly over time as well as to reduce total power consumption to meet the interests of the energy producers. We proclaim autonom...

Peter Palensky; Ratko Posta

1997-01-01T23:59:59.000Z

456

Analysis of Demand Side Management Products at Residential Sites: Case of Pacific Northwest U.S.  

Science Journals Connector (OSTI)

This paper provides a quantitative approach to determine important product features that are to be included in smart thermostats. This approach is expected to help decision makers manage product design process...

Ibrahim Iskin…

2013-01-01T23:59:59.000Z

457

The Risks and Rewards of Participation in Demand Side Bidding Programs; an Energy Service Company Perspective  

E-Print Network [OSTI]

The purpose of this paper is to summarize from an ESCO viewpoint some of the risks and rewards of participating in DSM bidding programs before deciding to submit a bid....

Machold, W. D.

1994-01-01T23:59:59.000Z

458

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

power at any one time, whereas on energy-limited grids, such as wind andpower-limited, such as micro-hydro, and those that are also energy- limited, such as wind andsolar and wind mini-grids. Grids that are only power-limited

Harper, Meg

2014-01-01T23:59:59.000Z

459

Demand Side Dispatching, Part 1: A Novel Approach for Industrial Load Shaping Applications  

E-Print Network [OSTI]

comprises developing simple yet realistic mixed integer linear models of the customer's CHP and solving such models using proven Mixed Integer Linear Programming algorithms to determine globally optimum operating policies. This methodology in effect predicts...

Kumana, J. D.; Nath, R.

460

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

the 16th European Photovoltaic Solar Energy Conference andcontrol. 27th European Photovoltaic Solar Energy Conf. and

Harper, Meg

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Utility Demand Side Management- DSM Lessons: Experience is the Toughest Teacher  

E-Print Network [OSTI]

Most utilities first became actively involved with energy conservation in the early 1980s with the federally mandated Residential Conservation Service (RCS) program. Legislation mandating a similar effort directed toward commercial and apartment...

Gilbert, S. M.

462

ZONAL PRICING AND DEMAND-SIDE BIDDING IN THE NORWEGIAN ELECTRICITY MARKET  

E-Print Network [OSTI]

of the Program on Workable Energy Regulation (POWER). POWER is a program of the University of California Energy. University of California Energy Institute 2539 Channing Way Berkeley, California 94720-5180 www-ahead electricity market in Norway. We consider the hypothesis that generators are better able to exercise market

California at Berkeley. University of

463

Demand Side Energy Saving though Proper Construction Practices and Materials Selection  

E-Print Network [OSTI]

consumption. Figure 3. Temperature variations in cement production Finding ways to reduce both energy needs and reliance on fossil fuels is a top priority for cement companies. Although coal, petroleum coke, and other fossil fuels have been... or byproducts from other industries. Recovering their energy value in cement making is a safe and proven form of recycling. Fuels like coal and coke contain carbon and release tremendous quantities of heat when they?re burned. But coal and coke aren...

El-Hawary, M.

2010-01-01T23:59:59.000Z

464

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

low-power “heat storage cookers” for mini-grids withHolland et al. 2002). These cookers run at a low power forlow wattage rice cookers. Despite their functionality, these

Harper, Meg

2014-01-01T23:59:59.000Z

465

Global energy efficiency improvement in the long term: a demand- and supply-side perspective  

Science Journals Connector (OSTI)

This study assessed technical potentials for energy efficiency improvement in 2050 in a global ... The reference scenario is based on the World Energy Outlook of the International Energy Agency 2007 edition and a...

Wina Graus; Eliane Blomen; Ernst Worrell

2011-08-01T23:59:59.000Z

466

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

Framework, Dr. Daniel M. Violette, Summit Blue Consulting,Response Resources by Daniel M. Violette, Rachel Freeman andFramework, Dr. Daniel M. Violette, Summit Blue Consulting,

Heffner, Grayson

2010-01-01T23:59:59.000Z

467

National Action Plan on Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

468

Energy for water: coupled resources from the other viewpoint  

Science Journals Connector (OSTI)

In the study of interdependence of resource use, water and energy are readily recognized as closely coupled, particularly from the standpoint of water being required for acquisition and use of energy. The other side of the issue, the energy requirements of water provision, also has important aspects but has been much less studied. This is a brief description of a study of such energy requirements for the three most important energy-consuming facets of supplying water in the United States: provision of water for urban regions; sewage treatment, especially in urban areas; and irrigation. The study compares several localities for each of these three, present estimates of the energy used in the mid-1970s and projections of the energy demands for the year 2000.

R. Stephen Berry

1993-01-01T23:59:59.000Z

469

Demand Response Projects: Technical and Market Demonstrations  

E-Print Network [OSTI]

Demand Response Projects: Technical and Market Demonstrations Philip D. Lusk Deputy Director Energy Analyst #12;PLACE CAPTION HERE. #12;#12;#12;#12;City of Port Angeles Demand Response History energy charges · Demand charges during peak period only ­ Reduced demand charges for demand response

470

Managing Carbon Regulatory Risk in Utility Resource Planning:Current Practices in the Western United States  

SciTech Connect (OSTI)

Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. Assuch, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations

Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

2008-05-16T23:59:59.000Z

471

Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States  

SciTech Connect (OSTI)

Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations.

Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

2008-07-11T23:59:59.000Z

472

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

473

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network [OSTI]

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

474

The urban design of distributed energy resources  

E-Print Network [OSTI]

Distributed energy resources (DERs) are a considerable research focus for cities to reach emissions reduction goals and meet growing energy demand. DERs, consisting of local power plants and distribution infrastructure, ...

Sheehan, Travis (Travis P.)

2012-01-01T23:59:59.000Z

475

Demand response-enabled residential thermostat controls.  

E-Print Network [OSTI]

human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

2008-01-01T23:59:59.000Z

476

Value of Demand Response -Introduction Klaus Skytte  

E-Print Network [OSTI]

Value of Demand Response - Introduction Klaus Skytte Systems Analysis Department February 7, 2006 Energinet.dk, Ballerup #12;What is Demand Response? Demand response (DR) is the short-term response

477

World Energy Use — Trends in Demand  

Science Journals Connector (OSTI)

In order to provide adequate energy supplies in the future, trends in energy demand must be evaluated and projections of future demand developed. World energy use is far from static, and an understanding of the demand

Randy Hudson

1996-01-01T23:59:59.000Z

478

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

479

Balancing of Energy Supply and Residential Demand  

Science Journals Connector (OSTI)

Power demand of private households shows daily fluctuations and ... (BEV) and heat pumps. This additional demand, especially when it remains unmanaged, will ... to an increase in fluctuations. To balance demand,

Martin Bock; Grit Walther

2014-01-01T23:59:59.000Z

480

\\{HEMSs\\} and enabled demand response in electricity market: An overview  

Science Journals Connector (OSTI)

Abstract Traditional electricity grid offers demand side management (DSM) programs for industrial plants and commercial buildings; there is no such program for residential consumers because of the lack of effective automation tools and efficient information and communication technologies (ICTs). Smart Grid is, by definition, equipped with modern automation tools such as home energy management system (HEMS), and ICTs. HEMS is an intelligent system that performs planning, monitoring and control functions of the energy utilization within premises. It is intended to offer desirable demand response according to system conditions and price value signaled by the utility. HEMS enables smart appliances to counter demand response programs according to the comfort level and priority set by the consumer. Demand response can play a key role to ensure sustainable and reliable electricity supply by reducing future generation cost, electricity prices, CO2 emission and electricity consumption at peak times. This paper focuses on the review of \\{HEMSs\\} and enabled demand response (DR) programs in various scenarios as well as incorporates various DR architectures and models employed in the smart grid. A comprehensive case study along with simulations and numerical analysis has also been presented.

Aftab Ahmed Khan; Sohail Razzaq; Asadullah Khan; Fatima Khursheed; Owais

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand side resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ADB-Methods and Tools for Energy Demand Projection | Open Energy  

Open Energy Info (EERE)

ADB-Methods and Tools for Energy Demand Projection ADB-Methods and Tools for Energy Demand Projection Jump to: navigation, search Tool Summary Name: Methods and Tools for Energy Demand Projection Agency/Company /Organization: Asian Development Bank Sector: Energy Topics: Pathways analysis Resource Type: Presentation, Software/modeling tools Website: cdm-mongolia.com/files/2_Methods_Hoseok_16May2010.pdf Cost: Free Methods and Tools for Energy Demand Projection Screenshot References: Methods and Tools for Energy Demand Projection[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "Methods and Tools for Energy Demand Projection" Retrieved from "http://en.openei.org/w/index.php?title=ADB-Methods_and_Tools_for_Energy_Demand_Projection&oldid=398945" Categories:

482

Teacher Resource Center: Curricular Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curricular Resources Curricular Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides workshops and consultations on Mathematics and Science Curriculum development. Here are a list of resources for educators. See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Key Science Resources for Curriculum Planning Key Science Resources for Curriculum Planning

483

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

484

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

485

Turkey's energy demand and supply  

SciTech Connect (OSTI)

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

486

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

487

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

488

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

489

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's...

490

Sandia National Laboratories: demand response inverter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

491

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

Goldman, Charles

2010-01-01T23:59:59.000Z

492

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

493

Marketing & Driving Demand: Social Media Tools & Strategies ...  

Broader source: Energy.gov (indexed) [DOE]

Demand: Social Media Tools & Strategies - January 16, 2011 Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 January 16, 2011 Conference Call...

494

Marketing & Driving Demand Collaborative - Social Media Tools...  

Broader source: Energy.gov (indexed) [DOE]

Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the BetterBuildings...

495

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

496

Demand Response Opportunities and Enabling Technologies for Data Centers:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Opportunities and Enabling Technologies for Data Centers: Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Title Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Publication Type Report LBNL Report Number LBNL-5763E Year of Publication 2012 Authors Ghatikar, Girish, Venkata Ganti, Nance Matson, and Mary Ann Piette Publisher PG&E/SDG&E/CEC/LBNL Keywords communication and standards, control systems, data centers, demand response, enabling technologies, end-use technologies, load migration, market sectors, technologies Abstract The energy use in data centers is increasing and, in particular, impacting the data center energy cost and electric grid reliability during peak and high price periods. As per the 2007 U.S. Environmental Protection Agency (EPA), in the Pacific Gas and Electric Company territory, data centers are estimated to consume 500 megawatts of annual peak electricity. The 2011 data confirm the increase in data center energy use, although it is slightly lower than the EPA forecast. Previous studies have suggested that data centers have significant potential to integrate with supply-side programs to reduce peak loads. In collaboration with California data centers, utilities, and technology vendors, this study conducted field tests to improve the understanding of the demand response opportunities in data centers. The study evaluated an initial set of control and load migration strategies and economic feasibility for four data centers. The findings show that with minimal or no impact to data center operations a demand savings of 25% at the data center level or 10% to 12% at the whole building level can be achieved with strategies for cooling and IT equipment, and load migration. These findings should accelerate the grid-responsiveness of data centers through technology development, integration with the demand response programs, and provide operational cost savings.

497

Table A51. Number of Establishments by Sponsorship of Any Programs of Demand  

U.S. Energy Information Administration (EIA) Indexed Site

1. Number of Establishments by Sponsorship of Any Programs of Demand-Side Management through" 1. Number of Establishments by Sponsorship of Any Programs of Demand-Side Management through" " Electric Utility and Natural Gas Utility, by Industry Group and Selected Industries, 1994" ,," "," ",," "," ",," "," "," "," " ,," "," ","Any Programs"," "," ","Any Programs"," "," ",," " ,," "," of DSM Sponsored through Electric Utility(b)",,," of DSM Sponsored through Natural Gas Utility(c)",,,"RSE" "SIC"," ",,,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Sponsored","Not Sponsored","Don't Know","Sponsored","Not Sponsored","Don't Know","Factors"

498

Demand Response and Variable Generation Integration Scoping Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market and Policy Barriers for Demand Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Electricity Markets Peter Cappers, Jason MacDonald, Charles Goldman April 2013 Report Summary 1 Energy Analysis Department  Electricity Markets and Policy Group Presentation Overview  Objectives and Approach  Wholesale and Retail Market Environments  Market and Policy Barrier Typology  Prototypical Regional Barrier Assessment 2 Energy Analysis Department  Electricity Markets and Policy Group A Role for Demand Response to Provide Ancillary Services  Increasing penetration of renewable energy generation in U.S. electricity markets means that bulk power system operators will need to manage the variable and uncertain nature of many renewable resources

499

Energy Efficiency Funds and Demand Response Programs - National Overview  

Broader source: Energy.gov (indexed) [DOE]

Funds and Demand Funds and Demand Response Programs - National Overview Charles Goldman Lawrence Berkeley National Laboratory November 2, 2006 Federal Utility Partnership Working Group San Francisco CA Overview of Talk * National Overview * Energy Efficiency Programs and Funds * Demand Response Programs and Funds * FEMP Resources on Public Benefit Funds *Suggestions for Federal Customers DSM Spending is increasing! * 2006 Utility DSM and Public Benefit spending is ~$2.5B$ - $1B for C&I EE programs * CA utilities account for 35% of total spending 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1994 2000 2005 2006 Costs (in billion $) DSM Costs Load Management Gas EE Other States Electric EE California Electric EE EE Spending in 2006 (by State) $ Million < 1 (23) 1 - 10 (2) 11 - 50 (13) 51 - 100 (7) > 100 (5) 790 101 257

500

Assumptions to the Annual Energy Outlook 2000 - Electricity Market Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. The major assumptions are summarized below.