Sample records for demand renewables wind

  1. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  2. Using Wind and Solar to Reliably Meet Electricity Demand, Greening the Grid (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Final Report toWIND AND SOLAR

  3. Response to several FOIA requests - Renewable Energy. Demand...

    Office of Environmental Management (EM)

    Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

  4. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

  5. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the impacts of renewable resource integration, as we demon-Integration of renewable resources: Transmission andfor integrating renewable resources on the California ISO-

  6. Community Renewable Energy Success Stories: Wind Energy in Urban...

    Office of Environmental Management (EM)

    Community Renewable Energy Success Stories: Wind Energy in Urban Environments Webinar (text version) Community Renewable Energy Success Stories: Wind Energy in Urban Environments...

  7. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion...

  8. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...

    Open Energy Info (EERE)

    Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

  9. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  10. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    optimal management of wind generation. In Proceedings of thethe fluctuations of wind generation at the time when morningmoments of hourly wind generation. Due to the predominant

  11. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    order: cost comparison for the deep-simple, zero wind,expected wind supply, instead of averaging the cost savingsintegration of wind power. Cost, Utilization, Investment

  12. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

  13. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    The lattice model of renewable power supply and real-timerenewable power supply, by formulating a unit commitment model.model that can be used for assessing the impact of integrating renewable power

  14. Fast Automated Demand Response to Enable the Integration of Renewable

    E-Print Network [OSTI]

    LBNL-5555E Fast Automated Demand Response to Enable the Integration of Renewable Resources David S The work described in this report was coordinated by the Demand Response Research Center and funded ABSTRACT This study examines how fast automated demand response (AutoDR) can help mitigate grid balancing

  15. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    systems absorb large amounts of hydroelectric power. Duringthat snow melts and hydroelectric power supply increases andfrom hydroelectric dams or discards renewable power [53].

  16. Solar and Wind Energy Resource Assessment Programme's Renewable...

    Open Energy Info (EERE)

    Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource...

  17. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    8.1.1 The WECC Model . . . . . . . . . . . . . . . . .Generation mix of the WECC model . . . . . . . . . . . .Net load of WECC for each day type (not including wind power

  18. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the dispatch of flexible loads and generation resources bothof controllable generation and flexible demand. In the casecontrollable generation resources and flexible loads in the

  19. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Wind Power Project Repowering: History, Economics, and Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Project Repowering: History, Economics, and Demand Wind Exchange Webinar Eric Lantz January 21, 2015 NRELPR-6A20-63591 2 Presentation Overview 1. Background - Concepts...

  1. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    load profile for each type of day, that needs to be served by thermal generators and wind power,power production. We then generate a multi-period load response profile

  2. Field Testing of Automated Demand Response for Integration of Renewable

    E-Print Network [OSTI]

    LBNL-5556E Field Testing of Automated Demand Response for Integration of Renewable Resources responsibility for the accuracy, completeness, or usefulness of any information TCP/IP over CDMA CAISO Utility Aggregator NOC Proprietary Comm. EMS GridLink Loads Interval Meter

  3. Wind Power: A Clean and Renewable Supplement to the World's Energy Mix Michael Treadow

    E-Print Network [OSTI]

    Mauzerall, Denise

    in less developed regions, demand for energy is greater now than ever before and will continue to riseWind Power: A Clean and Renewable Supplement to the World's Energy Mix Michael Treadow May 8, 2006 contributor to the world's energy supply in years to come. Not only is it inexhaustible and free

  4. Hydro, Solar, Wind The Future of Renewable Energy

    E-Print Network [OSTI]

    Lavaei, Javad

    Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical. Hydropower Water has grown in previous years to become the most widely used form of renewable energy across years to come from Hydropower. It is considered to be a renewable energy source because it uses

  5. The strategic use of renewables to achieve demand-side management impact

    SciTech Connect (OSTI)

    Carlisle, N.; Hauser, S.; Potter, T.; Westby, R.

    1992-11-01T23:59:59.000Z

    According to both the Electric Power Research Institute (EPRI) and the Edison Electric Institute (EEI), utilities in the United States are now spending about $2 billion per year on demand-side management (DSM) activities. By the year 2000, EPRI and EEI predict that utilities will be spending $10 to $15 billion per year on DSM. If this expenditure is matched by consumers, total expenditures -- $30 billion a year -- will equal what the nation spent on power plant construction during the peak 1970s power plant building era. Historically, DSM programs at utilities utilize technologies that reduce the demand for electricity and energy used by their customers. This is accomplished primarily by increasing the efficacy of lighting, improving the conversion efficiency of heating, cooling, and process equipment, and reducing thermal losses through the building envelope. A broader definition of DSM -- one that incorporates renewable energy resources -- will greatly enhance the opportunity to impact customer loads. Renewable energy technologies use resources that are not depleted, such as heat and light from the sun, the force of winds, falling water, biomass, and geothermal heat from the earth. As related to utility systems, renewable technologies can contribute in three main ways: (1) the more traditional ``supply-side`` role as central generating plants or independent power producers, (2) as distributed generation (supply-side variation), and (3) as demand-side options. Distributed generation is being seriously studied by several utilities as a means of serving remote loads and reducing transmission and distribution costs, but is not discussed further in this paper. Demand-side renewable technologies (DSR) are technologies that utilize renewable energy to reduce the end-use load of a customer. In this paper we will describe specific DSR options, characterize their potential load impact, and recommend a method for effectively integrating them into current DSM programs.

  6. Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid

    E-Print Network [OSTI]

    Low, Steven H.

    Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid Libin Jiang and Steven Low manages user load through real-time demand response and purchases balancing power on the spot market and demand response in the presence of uncertain renewable supply and time-correlated demand. The overall

  7. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

  8. A Unit Commitment Model with Demand Response for the Integration of Renewable Energies

    E-Print Network [OSTI]

    Ikeda, Yuichi; Kataoka, Kazuto; Ogimoto, Kazuhiko

    2011-01-01T23:59:59.000Z

    The output of renewable energy fluctuates significantly depending on weather conditions. We develop a unit commitment model to analyze requirements of the forecast output and its error for renewable energies. Our model obtains the time series for the operational state of thermal power plants that would maximize the profits of an electric power utility by taking into account both the forecast of output its error for renewable energies and the demand response of consumers. We consider a power system consisting of thermal power plants, photovoltaic systems (PV), and wind farms and analyze the effect of the forecast error on the operation cost and reserves. We confirm that the operation cost was increases with the forecast error. The effect of a sudden decrease in wind power is also analyzed. More thermal power plants need to be operated to generate power to absorb this sudden decrease in wind power. The increase in the number of operating thermal power plants within a short period does not affect the total opera...

  9. Large-Scale Integration of Deferrable Demand and Renewable Energy Sources

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou. In order to accurately assess the impacts of renewable energy integration and demand response integration model for assessing the impacts of the large-scale integration of renewable energy sources

  10. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31T23:59:59.000Z

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  11. Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Culp, C.

    2008-01-01T23:59:59.000Z

    AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Energy Systems Laboratory p. 1 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System STATEWIDE AIR EMISSIONS CALCULATIONS FROM ENERGY EFFICIENCY, WIND...

  12. Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Culp, C.

    AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... variations in measured power vs base year power production in the OSP. Energy Systems Laboratory p. 4 Next, looked at hourly electricity produced vs NOAA wind data. Issue: too much scatter. Hourly Turbine Power vs. Wind Speed (On-site) 0 10 20 30...

  13. Winding Trail 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long...

  14. Wind Power Project Repowering: History, Economics, and Demand (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2015-01-01T23:59:59.000Z

    This presentation summarizes a related NREL technical report and seeks to capture the current status of wind power project repowering in the U.S. and globally, analyze the economic and financial decision drivers that surround repowering, and to quantify the level and timing of demand for new turbine equipment to supply the repowering market.

  15. Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar

    SciTech Connect (OSTI)

    Suzanne McSawby, Project Director

    2008-12-31T23:59:59.000Z

    Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

  16. Statewide Air Emissions Calculations from Wind and Other Renewable

    E-Print Network [OSTI]

    Haberl, Jeff; Baltazar, Juan Carlos; Bahman, Yazdani; Claridge, David; Mao, Chunliu; Sandeep, Kota

    -7 show the measured annual and OSP NOx emissions reductions from wind power in each county of Texas in 2011. Figure 1-4: Estimated 2008 Annual NOx Reductions from Wind Power in Texas Map Page July 2013 Energy Systems Laboratory... to obtain input from public/private stakeholders, and develop and use a methodology to annually report the energy savings from wind and other renewables. This report summarizes the work performed by the ESL on this project from September 2012 to July 2013...

  17. Clear Wind Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCielo Wind PowerWaterPower

  18. Wind Power Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia Jump to:Wind Power

  19. Examination of the Regional Supply and Demand Balance for Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shortfalls could be addressed through price signals that may accelerate development of renewable energy resources that are currently uneconomic. This is particularly true in...

  20. Power system balancing with high renewable penetration : the potential of demand response

    E-Print Network [OSTI]

    Critz, David Karl

    2012-01-01T23:59:59.000Z

    This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model was used to represent a version of ...

  1. A Dynamic Market Mechanism for Integration of Renewables and Demand Response

    E-Print Network [OSTI]

    Knudsen, Jesper

    2015-04-21T23:59:59.000Z

    The most formidable challenge in assembling a Smart Grid is the integration of a high penetration of renewables. Demand Response, a largely promising concept, is increasingly discussed as a means to cope with the intermittent ...

  2. Wind LCA Harmonization (Fact Sheet), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    NREL recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that provides more exact estimates of GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty. This involved a systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems in order to determine the causes of life cycle greenhouse gases (GHG) emissions and, where possible, reduce variability in GHG estimates.

  3. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16T23:59:59.000Z

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  4. Community Renewable Energy Success Stories: Wind Energy in Urban Environments Webinar (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Wind Energy in Urban Environments," originally presented on September 18, 2012.

  5. NREL: Renewable Resource Data Center - Wind Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The following solarWind Resource

  6. Potential of wind-powered renewable energy membrane systems for Ghana 

    E-Print Network [OSTI]

    Park, G.L.; Schäfer, Andrea; Richard, B.S.

    2009-01-01T23:59:59.000Z

    Areas of the world that lack fresh water often have an ample supply of wind or solar energy, making renewable energy an attractive option as a power source for desalination systems. Particularly, wind energy is attractive because of its relatively...

  7. Green Marketing, Renewables, and Free Riders: Increasing Customer Demand for a Public Good

    E-Print Network [OSTI]

    LBNL-40632 UC-1321 Green Marketing, Renewables, and Free Riders: Increasing Customer Demand Customers that They Can "Make a Difference" . . . . . . . . . . . . . . . . 22 Emphasize Customer Retention errors and/or omissions are, of course, the full responsibility of the authors. The work described

  8. Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory

    E-Print Network [OSTI]

    Huang, Jianwei

    Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory, Wind Power Integration, Markov Chain, Dynamic Potential Game Theory, Nash Equilibrium. I. INTRODUCTION the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast

  9. The Global Solar and Wind Atlas: a unique Global Spatial Data Infrastructure for all renewable energy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    @masdar.ac.ae Nicolas Fichaux International Renewable Energy Agency - IRENA Abu Dhabi United Arab Emirates NFichaux in the field of solar and wind energy. The initiative will be expanded to encompass all renewable energies by 2015, and will be the largest information source on renewable energy potentials ever created. It has

  10. Green marketing, renewables, and free riders: increasing customer demand for a public good

    SciTech Connect (OSTI)

    Wiser, R.; Pickle, S.

    1997-09-01T23:59:59.000Z

    Retail electricity competition will allow customers to select their own power suppliers and some customers will make purchase decisions based, in part, on their concern for the environment. Green power marketing targets these customers under the assumption that they will pay a premium for ``green`` energy products such as renewable power generation. But renewable energy is not a traditional product because it supplies public goods; for example, a customer supporting renewable energy is unable to capture the environmental benefits that their investment provides to non-participating customers. As with all public goods, there is a risk that few customers will purchase ``green`` power and that many will instead ``free ride`` on others` participation. By free riding, an individual is able to enjoy the benefits of the public good while avoiding payment. This report reviews current green power marketing activities in the electric industry, introduces the extensive academic literature on public goods, free riders, and collective action problems, and explores in detail the implications of this literature for the green marketing of renewable energy. Specifically, the authors highlight the implications of the public goods literature for green power product design and marketing communications strategies. They emphasize four mechanisms that marketers can use to increase customer demand for renewable energy. Though the public goods literature can also contribute insights into the potential rationale for renewable energy policies, they leave most of these implications for future work (see Appendix A for a possible research agenda).

  11. Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)

    SciTech Connect (OSTI)

    Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

    2010-06-01T23:59:59.000Z

    This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

  12. Renewable Energy RFPs: Solicitation Response and Wind Contract Prices

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark

    2005-01-01T23:59:59.000Z

    Energy RFPs: Solicitation Response and Wind Contract Pricesenergy capacity (especially wind). Though detailed information on bid prices

  13. Small Wind Turbine Testing Results from the National Renewable Energy Lab

    SciTech Connect (OSTI)

    Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D.; van Dam, J.; Smith, J.

    2009-07-01T23:59:59.000Z

    The independent testing project was established at the National Renewable Energy Laboratory to help reduce the barriers of wind energy expansion. Among these barriers is a lack of independent testing results for small turbines.

  14. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  15. Statewide Air Emissions Calculations from Wind and Other Renewables: Summary Report

    E-Print Network [OSTI]

    Chandrasekaran, Vivek; Turner, Dan; Yazdani, Bahman; Culp, Charles; Gilman, Don; Baltazar-Cervantes, Juan-Carlos; Liu, Zi; Haberl, Jeff S.

    Engineering Experiment Station or the Energy Systems Laboratory. Page August 2009 Energy Systems Laboratory, Texas A&M University System 3 SUMMARY REPORT Statewide Air Emissions Calculations from Wind and Other Renewables 1. EXECUTIVE SUMMARY...). The Energy Systems Laboratory, in fulfillment of its responsibilities under this Legislation, submits its third annual report, ?Statewide Air Emissions Calculations from Wind and Other Renewables,? to the Texas Commission on Environmental Quality...

  16. WInd engineering and Renewable Energy laboratory Gnie Mcanique

    E-Print Network [OSTI]

    Lausanne, Ecole Polytechnique Fédérale de

    turbine for heights comparable to the top-tip of the blades. The effect of wind farm layout on power and roughness to adjust the boundary layer. WIND TURBINE MODEL · 3-bladed GSW; D = diameter=152 mm; · h = hub in the WIRE group, consists in performing wind tunnel investigations on wind turbines with horizontal axis

  17. Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

  18. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    Piette, LBNL. Integrating Renewable Resources in Californiaprocurement from eligible renewable energy resources to 33%to Enable the Integration of Renewable Resources David S.

  19. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    LBNL. Integrating Renewable Resources in California and thethe Integration of Renewable Resources David S. Watson,the Integration of Renewable Resources. California Energy

  20. Optimal Management of Renewable Resources with Growing Demand and Stock Externalities

    E-Print Network [OSTI]

    Berck, Peter

    1979-01-01T23:59:59.000Z

    MAi\\IAGEMEJ. 'n' OF RENEWABLE RESOURCES WIlli GROWING DEMANDthe problem of a renewable resource is: -f" (x*) P*] (~p). ~MA. ? \\IAGEMENl' OF RENEWABLE RESOURCES WIlli GROWING

  1. Statewide Air Emissions Calculations from Wind and Other Renewable 

    E-Print Network [OSTI]

    Haberl, Jeff; Baltazar, Juan Carlos; Bahman, Yazdani; Claridge, David; Mao, Chunliu; Sandeep, Kota

    2013-01-01T23:59:59.000Z

    generation in 2008 using the developed method for those wind farms in the ERCOT region. The total measured wind power generation in 2011 is 27,970,096 MWh/yr., which is 1.98% less than what the same wind farms would have produced in 2008. Figure 1-3 shows... the same comparison but for the Ozone Season Period. The measured wind power generation in the OSP of 2011 is 57,928 MWh/day, which is 15.65% higher than the 2008 OSP baseline wind production. Especially for wind farms named BUFF_GAP_UNIT2 and SWEETWN3...

  2. CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

    In August 2008 the Texas State Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC...

  3. CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

    2008-01-01T23:59:59.000Z

    In August 2008 the Texas State Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC...

  4. FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.

    SciTech Connect (OSTI)

    RICH, LAUREN

    2013-09-30T23:59:59.000Z

    A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

  5. Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report

    E-Print Network [OSTI]

    Turner, W. D.; Haberl, J. S.; Yazdani, B.; Gilman, D.; Subbarao, K.; Baltazar-Cervantes, J. C.; Liu, Z.; Culp, C.

    2007-10-30T23:59:59.000Z

    ............................................................................................................................... 88 Page August 2007 Energy Systems Laboratory, Texas A&M University System 9 6.2 Single Turbine Analysis, Randall County. ................................................................................ 88 6.3 Wind Farm Analysis, Pecos... Engineering Experiment Station of the Texas A&M University System is pleased to provide its second annual report, “Statewide Emissions Calculations From Wind and Other Renewables,” as required by the 79 th Legislature. This work has been performed through...

  6. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    Consulting), and Dave Shroyer (SCG). Demand Response andOpen Automated Demand Response Opportunities for DataIAW Research Team, Demand Response Research Center, Lawrence

  7. Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report 

    E-Print Network [OSTI]

    Turner, W. D.; Haberl, J. S.; Yazdani, B.; Gilman, D.; Subbarao, K.; Baltazar-Cervantes, J. C.; Liu, Z.; Culp, C.

    2007-10-30T23:59:59.000Z

    The 79th Legislature, through Senate Bill 20, House Bill 2481 and House Bill 2129, amended Senate Bill 5 to enhance its effectiveness by adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind...

  8. Statewide Air Emissions Calculations from Wind and Other Renewables. Summary Report.

    E-Print Network [OSTI]

    Haberl, J.S.; Baltazar, J.C.; Yazdani, B.; Claridge, D.; Do, S.L.; Oh, S.

    , the capacity of installed wind turbine totals was 12,372 MW with another 7,582 MW announced for new projects by 2016. Figure 1-1 shows the growth pattern of the installed wind power capacity in Texas and their power generation in the ERCOT region from...ESL-TR-14-07-01 STATEWIDE AIR EMISSIONS CALCULATIONS FROM WIND AND OTHER RENEWABLES SUMMARY REPORT A Report to the Texas Commission on Environmental Quality For the Period January 2013 – December 2013 Jeff...

  9. Track 2: Sustainable Energy I. Renewable Energy: Wind and Wave

    E-Print Network [OSTI]

    turbines.!!!! Ocean Thermal Energy Technology Comes to Dry Land Jeremy Feakins, Ocean Engineering and Energy Systems !! Ocean Engineering and Energy Systems is scaling up ocean thermal energy conversion the sun to shine or the wind to blow. It extracts solar energy collected in tropical oceans and converts

  10. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Jacobson, Mark

    in order to follow the de- mand, wind and solar PV power output is largely determined by weather conditions Large-scale integration of renewable power generation Wind power generation Solar PV power generation Power transmission a b s t r a c t A future energy system is likely to rely heavily on wind and solar PV

  11. OWEMES -Offshore Wind And Other Marine Renewable Energies In Mediterranean And European Seas Civitavecchia (Italy), 20th

    E-Print Network [OSTI]

    Heinemann, Detlev

    OWEMES - Offshore Wind And Other Marine Renewable Energies In Mediterranean And European Seas Civitavecchia (Italy), 20th -22th April 2006 How to avoid Biases in Offshore Wind Power Forecasting Lueder von, adaptive system, Neural Network, single site forecast, systematic error Abstract Large-scale offshore wind

  12. Renewable Portfolio Standard (New Brunswick, Canada)

    Broader source: Energy.gov [DOE]

    NB Power currently sources 28 percent of its in-province electricity demand from wind, biomass and hydro resources. The Province will increase its commitment to pursue renewable energy by creating...

  13. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    None

    2012-02-11T23:59:59.000Z

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  14. UK Renewable Energy Policy Since Privatisation

    E-Print Network [OSTI]

    Pollitt, Michael G.

    -Calle (2008) and Junginger et al. (2008). 10 Section 2: Potential for Renewable energy in the UK A defining feature of the UK is the considerable potential it has for renewable energy relative to its demand. The UK has some of the best wind, tidal... supplied in 2008 was 380 TWh17. Table 1: Estimates of the potentials for different renewable technologies in UK Technology Category Technology Detail Annual Potential Wind power Onshore 50 TWh Offshore 100 TWh Bioenergy Biomass 41 TWh...

  15. Proceedings of the National Renewable Energy Laboratory Wind Energy Systems Engineering Workshop

    SciTech Connect (OSTI)

    Dykes, K.

    2014-12-01T23:59:59.000Z

    The second National Renewable Energy Laboratory (NREL) Wind Energy Systems Engineering Workshop was held in Broomfield, Colorado, from January 29 to February 1, 2013. The event included a day-and-a-half workshop exploring a wide variety of topics related to system modeling and design of wind turbines and plants. Following the workshop, 2 days of tutorials were held at NREL, showcasing software developed at Sandia National Laboratories, the National Aeronautics and Space Administration's Glenn Laboratories, and NREL. This document provides a brief summary of the various workshop activities and includes a review of the content and evaluation results from attendees.

  16. Suppressing the non-Gaussian statistics of Renewable Power from Wind and Solar

    E-Print Network [OSTI]

    Anvari, M; Tabar, M Reza Rahimi; Wächter, M; Milan, P; Heinemann, D; Peinke, Joachim; Lorenz, E

    2015-01-01T23:59:59.000Z

    The power from wind and solar exhibits a nonlinear flickering variability, which typically occurs at time scales of a few seconds. We show that high-frequency monitoring of such renewable powers enables us to detect a transition, controlled by the field size, where the output power qualitatively changes its behaviour from a flickering type to a diffusive stochastic behaviour. We find that the intermittency and strong non-Gaussian behavior in cumulative power of the total field, even for a country-wide installation still survives for both renewable sources. To overcome the short time intermittency, we introduce a time-delayed feedback method for power output of wind farm and solar field that can change further the underlying stochastic process and suppress their strong non- gaussian fluctuations.

  17. Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

    2004-05-01T23:59:59.000Z

    Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

  18. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    wind and solar power are intermittent and non-dispatchable, research shows that substantial increases in grid balancing

  19. Climate change impacts on renewable energy is it all hot air? Dr Gareth P Harrison and Dr A Robin Wallace

    E-Print Network [OSTI]

    Harrison, Gareth

    change and the potential implications for a range of renewable energy sources including hydropower, wind. While just over 20% of global demand is currently met by renewables (mostly hydropower) they could

  20. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    demand response is more environmentally friendly than fossil fueldemand response (DR) used in the commercial and industrial sectors is more environmentally friendly than fossil fuelfossil fuels are the predominant heating fuels for California’s commercial buildings, heating electricity demand

  1. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    Sodium Sulfur (NaS) Zinc- Air Battery Demand Response CostsSodium Sulfur (NaS) Zinc- Air Battery Low High AverageSodium Sulfur (NaS) Zinc- Air Battery Demand Response Costs

  2. Abstract--Wind energy is the fastest growing source of renewable energy in the power industry and it will continue to

    E-Print Network [OSTI]

    Tolbert, Leon M.

    1 Abstract--Wind energy is the fastest growing source of renewable energy in the power industry system operators, this increasing contribution of wind energy to the grid poses new challenges that need of energy. Wind energy is the fastest growing source of renewable energy in the power industry

  3. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect (OSTI)

    Stork, K.C.; Singh, M.K.

    1995-04-01T23:59:59.000Z

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  4. Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous

    E-Print Network [OSTI]

    Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for localized, independent energy harvesting capabilities for each node. In this paper, a method of remote area wind energy harvesting is presented, with a focus on an anemometer-based solution. By utilizing

  5. Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report: A Report to the Texas Commission on Environmental Quality for the Period September 2007 - August 2008

    E-Print Network [OSTI]

    Gilman, D.; Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.; Subbarao, K.; Culp, C.; Liu, Z.

    -wind renewables. This legislation also requires the Public Utilities Commission of Texas (PUCT) to establish a target of 10,000 megawatts of installed renewable capacity by 2025, and requires the Texas Commission on Environmental Quality (TCEQ) to develop...

  6. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and Its Application to the Wind Farms in the Texas ERCOT Region 

    E-Print Network [OSTI]

    Culp, C.; Haberl, J. S.; Liu, Z.; Subbarao, K.; Baltazar-Cervantes, J. C.; Yazdani, B.

    2007-01-01T23:59:59.000Z

    Recently Texas Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC) to establish a target...

  7. Small Wind Turbine Testing Results from the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D.; van Dam, J.; Smith, J.

    2010-04-01T23:59:59.000Z

    In 2008, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) began testing small wind turbines (SWTs) through the Independent Testing project. Using competitive solicitation, five SWTs were selected for testing at the National Wind Technology Center (NWTC). NREL's NWTC is accredited by the American Association of Laboratory Accreditation (A2LA) to conduct duration, power performance, safety and function, power quality, and noise tests to International Electrotechnical Commission (IEC) standards. Results of the tests conducted on each of the SWTs are or will be available to the public on the NREL website. The results could be used by their manufacturers in the certification of the turbines or state agencies to decide which turbines are eligible for state incentives.

  8. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    M. A. Piette, Integrating Renewable Resources in CaliforniaEnable Integration of Renewable Resources,” February 2012.P. Worhach, ”|ntegration of Renewable Resources at 20% RPS,”

  9. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    A. Piette, Integrating Renewable Resources in California andEnable Integration of Renewable Resources,” February 2012.ntegration of Renewable Resources at 20% RPS,” CAISO, August

  10. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  11. Wind energy, with an annual growth of about 30%, represents one of the fastest growing renewable energy sources. Continuous long-term monitoring of wind turbines can greatly reduce maintenance

    E-Print Network [OSTI]

    Stanford University

    Abstract Wind energy, with an annual growth of about 30%, represents one of the fastest growing Monitoring, Wind Turbines 1 Introduction Wind energy, considered to be safe, inexpensive and clean, is one of the fastest growing renewable energy resources (Bloomberg, 2011). According to the World Wind Energy

  12. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01T23:59:59.000Z

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  13. Renewable Energy ] (

    E-Print Network [OSTI]

    Firestone, Jeremy

    pro or con, and others may wish to evaluate for themselves the size and market value of a wind regimeRenewable Energy ] (

  14. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01T23:59:59.000Z

    to inform projected energy and demand reductions in regionaldown to reflect energy and demand savings due to spillover (market and estimate the energy and demand savings associated

  15. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    2004. International Wind Energy Development, World Market2005. International Wind Energy Development, World Market2004, March 2005. Canadian Wind Energy Association (CanWEA),

  16. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Wind Energy Development in China: Institutional Dynamics and Policyand Candles: Wind Power in China. Energy Policy, 28, 271-wind power development in the United States. Energy Policy.

  17. The worldwide demand for green energy systems is evident. In this context, wind energy converters will play a paramount role. Extending the service life of a

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT The worldwide demand for green energy systems is evident. In this context, wind energy with respect to the future energy supply. As a consequence, a massive demand for green energy systems becomes converters will play a paramount role. Extending the service life of a wind energy converter translates

  18. Renewable Energy Strategies for Sustainable Development Henrik Lund*

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Renewable Energy Strategies for Sustainable Development Henrik Lund* Department of Development of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development. Such strategies typically involve three major technological changes: energy savings on the demand side, efficiency

  19. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

  20. WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed

    E-Print Network [OSTI]

    Johnson, Eric E.

    Simulator Wind Turbine: PMSM, 3kW, 8.3A Wind Generator: PMSM, 3kW, 8.3A 3 AC/DC Converter & DC/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage Generator #1 3kW, 8.3A Wind Turbine #1 3kW, 8.3A Wind Turbine #2 3kW Wind Generator #2 3kW RS232

  1. Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs

    SciTech Connect (OSTI)

    Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

    1995-03-01T23:59:59.000Z

    The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

  2. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01T23:59:59.000Z

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  3. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    and Techniques for Demand Response”, May 2007. LBNL-59975 38the Role of Automated Demand Response, 2010. Watson, D. , N.Fast Automated Demand Response to Enable Integration of

  4. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Zeyer, Timo; Schramm, Stefan; Greiner, Martin; Jacobson, Mark Z

    2014-01-01T23:59:59.000Z

    Wind and solar PV generation data for the entire contiguous US are calculated, on the basis of 32 years of weather data with temporal resolution of one hour and spatial resolution of 40x40km$^2$, assuming site-suitability-based as well as stochastic wind and solar PV capacity distributions throughout the country. These data are used to investigate a fully renewable electricity system, resting primarily upon wind and solar PV power. We find that the seasonal optimal mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved compared to a wind only mix. The daily optimal mix lies at about 80% wind share due to the nightly gap in solar PV production. Picking this mix instead of solar only reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to their differing resour...

  5. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01T23:59:59.000Z

    Renewables 2025 Renewable Generation Wind Biomass (solidy sal es. • Renewable generation from biomass units appears20% RPS 2025 Renewable Generation Wind Biomass (solid fuel,

  6. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary

    SciTech Connect (OSTI)

    Hurlbut, D. J.; McLaren, J.; Gelman, R.

    2013-08-01T23:59:59.000Z

    This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

  7. Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis

    E-Print Network [OSTI]

    Andresen, Gorm Bruun; Greiner, Martin

    2014-01-01T23:59:59.000Z

    We present a new global high-resolution renewable energy atlas (REatlas) that can be used to calculate customised hourly time series of wind and solar PV power generation. In this paper, the atlas is applied to produce 32-year-long hourly model wind power time series for Denmark for each historical and future year between 1980 and 2035. These are calibrated and validated against real production data from the period 2000 to 2010. The high number of years allows us to discuss how the characteristics of Danish wind power generation varies between individual weather years. As an example, the annual energy production is found to vary by $\\pm10\\%$ from the average. Furthermore, we show how the production pattern change as small onshore turbines are gradually replaced by large onshore and offshore turbines. In most energy system analysis tools, fixed hourly time series of wind power generation are used to model future power systems with high penetrations of wind energy. Here, we compare the wind power time series fo...

  8. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01T23:59:59.000Z

    distributed generation facilities that have received ratepayer incentives toward the utility’distributed generation system owners to retain 100% of their renewable energy credits (RECs), and that utilities

  9. Statewide Air Emissions Calculations from Wind and Other Renewables. Summary Report. 

    E-Print Network [OSTI]

    Haberl, J.S.; Baltazar, J.C.; Yazdani, B.; Claridge, D.; Do, S.L.; Oh, S.

    2014-01-01T23:59:59.000Z

    the developed method for those wind farms in the ERCOT region. The total measured wind power generation in 2013 is 32,638,270 MWh/yr., which is 14.12% higher than what the same wind farms would have produced in 2008. Figure 1-3 shows the same comparison... but for the Ozone Season Period. The measured wind power generation in the OSP of 2013 is 57,622 MWh/day, which is 3.41% higher than the 2008 OSP baseline wind production. For the analysis of this year, the measured 2013 wind power generation is fairly higher...

  10. Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)

    SciTech Connect (OSTI)

    Sinclair, K.; Bowen, A.

    2008-06-01T23:59:59.000Z

    WindPower 2008 conference sponsored by AWEA held in Houston, Texas on June 1-4, 2008. This poster describes four small wind electric systems that were tested to IEC and AWEA standards at NREL's NWTC.

  11. World Energy Congress, Sydney, Australia September 5-9, 2004 OFFSHORE WIND POWER: EASING A RENEWABLE

    E-Print Network [OSTI]

    of wind energy are discussed. 2. Offshore wind energy potential Le potentiel de l'énergie éolienne When.0 0.2 0.4 0.6 0.8 1.0 1.2 Relativeenergy onshoreoffshore Figure 1: Wind energy potential at height 10019 th World Energy Congress, Sydney, Australia September 5-9, 2004 1 OFFSHORE WIND POWER: EASING

  12. Power Flow Controller for Renewables: Transformer-less Unified Power Flow Controller for Wind and Solar Power Transmission

    SciTech Connect (OSTI)

    None

    2012-02-08T23:59:59.000Z

    GENI Project: MSU is developing a power flow controller to improve the routing of electricity from renewable sources through existing power lines. The fast, innovative, and lightweight circuitry that MSU is incorporating into its controller will eliminate the need for a separate heavy and expensive transformer, as well as the construction of new transmission lines. MSU’s controller is better suited to control power flows from distributed and intermittent wind and solar power systems than traditional transformer-based controllers are, so it will help to integrate more renewable energy into the grid. MSU‘s power flow controller can be installed anywhere in the existing grid to optimize energy transmission and help reduce transmission congestion.

  13. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    2006. Transmission and Wind Energy: Capturing the Prevailingand Renewable Energy (Wind & Hydropower Technologiesand Renewable Energy Wind & Hydropower Technologies Program

  14. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    services market. Regulation energy is used to control systemfollowing and regulation, with application to wind energy,”from the campus energy manager for regulation tests at this

  15. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    potential on Hong Kong islands - an analysis of wind power and wind turbine characteristics, Renewable Energy,

  16. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  17. Statewide Air Emissions Calculations from Wind and Other Renewables: Summary Report 

    E-Print Network [OSTI]

    Chandrasekaran, Vivek; Turner, Dan; Yazdani, Bahman; Culp, Charles; Gilman, Don; Baltazar-Cervantes, Juan-Carlos; Liu, Zi; Haberl, Jeff S.

    2009-01-01T23:59:59.000Z

    region. The total measured wind power generation in 2007 is 8,752,498 MWh, which is 17% less than what the same wind farms would have produced in 1999. Figure 1-2 shows the same comparison but Page August 2009 Energy Systems Laboratory, Texas A...&M University System 5 for the Ozone Season Period. The measured wind power generation in the OSP of 2007 is 20,094 MWh/day, which is 25% lower than the estimated 1999 OSD wind production. This report also includes an uncertainty analysis...

  18. Statewide Air Emissions Calculations From Wind and Other Renewables: Summary Report 

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.; Culp, C.; Yazdani, B.; Claridge, D.; Do, S.

    2012-01-01T23:59:59.000Z

    . The total measured wind power generation in 2010 is 23,962,433 MWh/yr., which is 5% less than what the same wind farms would have produced in 2008. Figure 1-2 shows the same comparison but for the Ozone Season Period. The measured wind power generation... in the OSP of 2010 is 53,189MWh/day, which is 16.93% higher than the 2008 OSD baseline wind production. Page July 2012 Energy Systems Laboratory, The Texas A&M University System 5 This report also includes an uncertainty analysis...

  19. Wind Resource Estimation and Mapping at the National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind IndustryWindWindWind W

  20. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

  1. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 2

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Key, Thomas S [Electric Power Research Institute (EPRI); Deb, Rajat [LCG Consulting

    2009-05-01T23:59:59.000Z

    Electricity consumption in the Southeastern US, not including Florida, is approximately 24% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient long distant transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. It shows that development of wind resources will depend not only on available transmission capacity but also on electricity supply and demand factors.

  2. May 2013 PSERC Webinar: Managing Wind Variability with Self-Reserves and Responsive Demand

    Broader source: Energy.gov [DOE]

    The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar on managing wind variability in energy production. The webinar will be held Tuesday, May 7, 2013 from 2-3 p.m. No pre-registration is necessary.

  3. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  4. Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and the United Nations Environment Program (UNEP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The SWERA Programme provides easy access to credible renewable energy data to stimulate investment in, and development of, renewable energy technologies. The Solar and Wind Energy Resource Assessment (SWERA) started in 2001 to advance the large-scale use of renewable energy technologies by increasing the availability and accessibility of high-quality solar and wind resource information. SWERA began as a pilot project with funding from the Global Environment Facility (GEF) and managed by the United Nations Environment Programme's (UNEP) Division of Technology, Industry and Economics (DTIE) in collaboration with more than 25 partners around the world. With the success of the project in 13 pilot countries SWERA expanded in 2006 into a full programme. Its expanded mission is to provide high quality information on renewable energy resources for countries and regions around the world, along with the tools needed to apply these data in ways that facilitate renewable energy policies and investments.[from the SWERA Guide at http://swera.unep.net/index.php?id=sweraguide_chp1] DOE and, in particular, the National Renewable Energy Laboratory, has been a functioning partner from the beginning. NREL was part of the original technical team involved in mapping, database, and GIS activities. Solar, wind, and meteorological data for selected countries can be accessed through a variety of different tools and interfaces.

  5. October 11, 2011 Wind Generation

    E-Print Network [OSTI]

    Ford, Andrew

    ;#12;#12;#12;#12;#12;RPS: Renewable Portfolio Standard · Renewable: solar, biomass, geothermal, hydro, wind · 75% expected

  6. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect (OSTI)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  7. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and its Application to the Wind Farms in the Texas ERCOT Region 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Subbarao, K.; Culp, C.; Yazdani, B.

    2007-01-01T23:59:59.000Z

    -weather normalization procedure. The uncertainty analysis showed that the daily regression models are sufficiently reliable to allow for their use in projecting wind production into other weather base years. Energy Systems Laboratory 23 SUMMARYEMISSIONS REDUCTION...1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles...

  8. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

  9. Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)

    SciTech Connect (OSTI)

    Bowen, A.; Huskey, A.; Hur, J.; Jager, D.; van Dam, J.; Smith, J.

    2010-05-01T23:59:59.000Z

    Poster presented at the AWEA 2010 conference illustrates NREL's testing of five small wind turbines in the first round of its independent testing project. Tests include power performance, noise, duration, safety and function, and power quality (where applicable).

  10. Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies

    E-Print Network [OSTI]

    over the better wind areas within the whole supply area, connected with the demand centres via HVDC of renewable energy, in particular wind energy, via HVDC (High- Voltage Direct Current) is possible from some of the large-scale distribution and transport of energy with a HVDC overlay grid. Using such a grid on top

  11. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    at the National Renewable Energy Laboratory’s National WindGolden, CO: National Renewable Energy Laboratory. ElectricColorado: National Renewable Energy Laboratory. EnerNex

  12. Renewable Portfolio Standards in the United States - A Status Report with Data Through 2007

    E-Print Network [OSTI]

    Wiser, Ryan

    2008-01-01T23:59:59.000Z

    new transmission for renewable resources, particularly wind.to include 15% renewable resources in their electricity mixfor other favored renewable resource options, such as wind

  13. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  14. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  15. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    Unleashing the Potential of Renewable Energy in India.of Potential for Wind Farms in India, Renewable Energy (of Potential for Wind Farms in India, Renewable Energy (

  16. The Renewable Energy Footprint

    E-Print Network [OSTI]

    Outka, Uma

    2011-01-01T23:59:59.000Z

    With the shift toward renewable energy comes the potential for staggering land impacts – many millions of acres may be consumed to meet demand for electricity and fuel over the next 20 years. To conservationists’ dismay, the more renewable energy we...

  17. Renewable Energy Renaissance Zones

    Broader source: Energy.gov [DOE]

    For the purposes of renaissance zone designation, “renewable energy facility” means a facility that creates energy, fuels, or chemicals directly from the wind, the sun, trees, grasses, biosolids,...

  18. Renewable Energy System Exemption

    Broader source: Energy.gov [DOE]

    In March 2010, South Dakota established a new property tax incentive that replaced two existing property tax incentives for renewable energy. Facilities that generate electricity using wind, solar,...

  19. COMMISSION REPORT DEVELOPING RENEWABLE

    E-Print Network [OSTI]

    , state properties, photovoltaic, wind, biomass, geothermal, small hydro, storage, distributed renewable distributed generation ­ onsite or small energy systems located close to where

  20. Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    Renewable Energy (Wind & Hydropower Technologies Program) ofRenewable Energy Wind & Hydropower Technologies Program U.S.Renewable Energy (Wind & Hydropower Technologies Program) of

  1. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    produced renewable energy (wind, sun, water, biomass/gas).park. Renewable heat energy is usually produced in biomassrenewable local producers (wind-turbines, solar panels, water- turbines, biomass,

  2. OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU WIND INTEGRATION AND

  3. The Western Wind and Solar Integration Study Phase 2: Executive Summary, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth'sConnect,LLC THE WESTERN WIND AND SOLAR

  4. Grid-Connected Renewable Energy Generation Toolkit-Wind | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformation BestInformation Wind

  5. active renewable building: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  6. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, News, Renewable Energy, Wind Energy The following is from an article published in WindStats Newsletter Vol. 19, No. 4. The complete article is available from WindStats at:...

  7. Integrating Variable Renewable Energy: Challenges and Solutions

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.; Lew, D.

    2013-09-01T23:59:59.000Z

    In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

  8. Statewide Air Emissions Calculations from Wind and other Renewables, Summary Report

    E-Print Network [OSTI]

    Haberl, J.; Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Culp, C.; Yazdani, B.; Claridge, D.; Mao, C.; Sun, Y.; Narayanaswamy, A.; Do, S.; Kim, K

    O O D ? W O O D W R D 2 _ W O O D ? M W h /d a y W i n d F a r m s Wind Pow er Ge ner atio n in Oz one Se aso n P eri od i n Te xas 2 0 0 8 O S D M e a s u r e d M W h / d a y ( E R C O T O r i g i n a l D a t a ) 199 9 OSD Es t i m... . 3 4 . 5 % 1 2 5 . 1 - 1 . 9 % 1 3 9 . 3 9 . 2 % 60 160 In d i a n M e s a D e c - 0 2 4 8 . 0 5 5 . 9 1 6 . 5 % 4 2 . 1 - 1 2 . 2 % 6 6 . 0 3 7 . 5 % 84 8 2 . 5 D e l a w a r e D e c - 0 2 1 8 . 5 1 8 . 8 1 . 5 % 1 5 . 6 - 1 5 . 5 % 2 1 . 5 1 6 . 1...

  9. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01T23:59:59.000Z

    balancing, especially important in power systems with high penetrations of intermittent renewable resources like wind

  10. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    balancing, especially important in power systems with high penetrations of intermittent renewable resources like wind

  11. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  12. Florida Billboards Elevate Renewable Energy Education | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Florida Billboards Elevate Renewable Energy Education Florida Billboards Elevate Renewable Energy Education July 9, 2010 - 10:26am Addthis A wind turbine tops a Lamar Advertising...

  13. Sandia National Laboratories: clean and affordable renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clean and affordable renewable power SWiFT Commissioned to Study Wind Farm Optimization On July 29, 2013, in Energy, Facilities, News, News & Events, Partnership, Renewable Energy,...

  14. 25 APRIL 2014 VOL 344 SCIENCE www.sciencemag.org352 Tanks for the BatteriesThe need to store energy from wind, solar, and other renewable energy sources

    E-Print Network [OSTI]

    Cui, Yi

    from wind, solar, and other renewable energy sources could spark a revival of a dormant battery, for example, now have so-called renewable portfolio standards that require their energy mix to include as much25 APRIL 2014 VOL 344 SCIENCE www.sciencemag.org352 Tanks for the BatteriesThe need to store energy

  15. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31T23:59:59.000Z

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  17. Green energy: The implementation and utilization of renewable energy in the United States

    SciTech Connect (OSTI)

    Murry, N.L. [Coastal Contractors and Engineers, Inc., West Berlin, NJ (United States)

    1998-12-31T23:59:59.000Z

    Renewable energy has become a viable solution for the United States (US) increasing demand for energy. Often referred to as Green Energy, renewable energy uses the earth`s natural resources to create energy. The wind, sun, water, and the earth`s molten core each offer an attainable form of energy. Hydroelectricity uses running water, wind power uses high speed winds, solar panels collect solar energy as heat, and geothermal energy uses the earth`s molten core to heat water. The Department of Energy classifies Renewable Energy into the following sections: Geothermal Energy, Fuel from Biomass, and Solar Electric. Solar Electric is further subdivided into Solar Thermal Electric, Photovoltaics (Solar Cells), Wind/Windmills, Ocean Thermal Electric and Hydropower/Hydroelectric Dams. Currently, renewable energy provides only 12% of the US electricity supply. Approximately 10% of this is supplied by hydroelectric sources, 1% of this is supplied by hydroelectric sources, 1% is supplied by biomass, and less than 1% is supplied by geothermal, wind and solar combined. Nationally, the generating capacity of renewable energy has increased slightly during the 1990`s. Renewable energy generation contributes to approximately 94 thousand Megawatts of electricity compared to approximately 682 thousand Megawatts of electricity generated from nonrenewables in the year 1996. The continued implementation and utilization of renewable energy in the US are dependent upon several variables. These variables include: the support from Federal and State governments, utility purchase requirements if utility deregulation is passed, and consumer education on the environmental benefits of renewable energy.

  18. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of an Italian wind farm, Renewable and Sustainable Energyof size on energyy yield, Renewable and Sustainable EnergyPernambuco, Brazil, Renewable Energy, 35, 2705-2713. Lu,

  19. Renewable energy and telecommunications

    E-Print Network [OSTI]

    Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

  20. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01T23:59:59.000Z

    Renewable Energy (Wind & Hydropower Technologies Program) ofEnergy and the Wind & Hydropower Technologies Program OfficeRenewable Energy (Wind & Hydropower Technologies Program) of

  1. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  2. The U.S. wind production tax credit - evaluating its impact on wind deployment and assessing the cost of its renewal

    E-Print Network [OSTI]

    Ernst, Patrick C. (Patrick Charles)

    2013-01-01T23:59:59.000Z

    The desirability, viability, and cost effectiveness of policies designed to incentivize growth of the wind energy industry are subject to widespread debate within the U.S. government, wind industry groups, and the general ...

  3. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    renewable integration capability. Coordinating and integrating HECO and Hawaii Energy demand response related activities has the potential

  4. Moorhead Public Service Utility- Renewable Energy Incentive

    Broader source: Energy.gov [DOE]

    Moorhead Public Service (MPS) offers rebates for qualifying electricity producing solar or wind renewable energy systems. Wind rebates are not availble to residential customers. Rebates are for up...

  5. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Final Report

    SciTech Connect (OSTI)

    Key, Thomas S [Electric Power Research Institute (EPRI); Hadley, Stanton W [ORNL; Deb, Rajat [LCG Consulting

    2010-02-01T23:59:59.000Z

    Electricity consumption in the Southeastern US, including Florida, is approximately 32% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. We found that significant wind energy transfers, at the level of 30-60 GW, are expected to be economic in case of federal RPC or CO2 policy. Development of wind resources will depend not only on the available transmission capacity and required balancing resources, but also on electricity supply and demand factors.

  6. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy. Wiser, R. ; Lantz,Economics of Wind Energy. ” Renewable and Sustainable EnergyGolden, CO: National Renewable Energy Laboratory. Carbon

  7. Renewable energy annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  8. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  9. A Stochastic Unit Commitment Model for Integrating Renewable Supply

    E-Print Network [OSTI]

    Oren, Shmuel S.

    -optimization of generation and demand by the system operator, demand bids and coupling renewable resources with deferrable-optimizes the dispatch of demand- side resources, renewable supplies and generators. This is unrealistic in practice is coupling the operations of renewable resources with deferrable demand. The motivation of coupling renewable

  10. Comments on Jacobson et al.'s proposal for a wind, water, and solar energy future for New York State

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Forum Comments on Jacobson et al.'s proposal for a wind, water, and solar energy future for New April 2013 Accepted 2 May 2013 Keywords: Energy systems Renewable integration Global warming a b s t r of the energy demands in New York State with wind, solar, and water resources. In this forum we suggest

  11. Integrated Risk Framework for Gigawatt-Scale Deployments of Renewable Energy: The U.S. Wind Energy Case; October 2009

    SciTech Connect (OSTI)

    Ram, B.

    2010-04-01T23:59:59.000Z

    Assessing the potential environmental and human effects of deploying renewable energy on private and public lands, along our coasts, on the Outer Continental Shelf (OCS), and in the Great Lakes requires a new way of evaluating potential environmental and human impacts. The author argues that deployment of renewables requires a framework risk paradigm that underpins effective future siting decisions and public policies.

  12. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iNEMI Renewable Energy Workshop On May 18, 2011, in Energy, News, Renewable Energy, Wind Energy, Workshops The International Electronics Manufacturing Initiative (iNEMI) held a...

  13. assessment demand-side energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  14. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  15. Wind Webinar Presentation Slides | Department of Energy

    Office of Environmental Management (EM)

    Wind Webinar Presentation Slides Wind Webinar Presentation Slides Download presentation slides from the DOE Office of Indian Energy webinar on wind renewable energy. DOE Office of...

  16. Sandia Energy - Continuous Reliability Enhancement for Wind ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancement for Wind (CREW): Project Update Home Renewable Energy Energy News Wind Energy News & Events Systems Analysis Continuous Reliability Enhancement for Wind (CREW):...

  17. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    Sadeh, Norman M.

    not exacerbate the global warming problem. However, renewable energy is inherently intermittent and variableManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions

  18. Renewable Energy Approvals (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Renewable Energy Approvals (REA) regulation creates an approval and review process for all biomass, wind energy, and solar facilities. The Ministry of the Environment inspects, investigates...

  19. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News & Events, Renewable Energy, Wind Energy Sandia and partners from the University of Maine, Technical...

  20. Integration of renewable energy with urban design : based on the examples of the solar photovoltaics and micro wind turbines

    E-Print Network [OSTI]

    Zeng, Heshuang

    2011-01-01T23:59:59.000Z

    To deal with the challenge of climate change and energy security, renewable energy has been widely regarded as an increasingly important solution leading to a more sustainable future. Given the fact that more than half of ...

  1. Advanced Control Design and Testing for Wind Turbines at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable...

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  3. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    wind power development." Renewable Energy. 33(8): 1854–1867.support mechanisms for renewable energy technologies usingdistributions. ” Renewable Energy. 35(6): Ferrey, S. 2006. “

  4. accompany twenty-seventh renewal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  5. accompany twenty-first renewal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  6. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    of capacity factors of wind generation from a Vestas V112-demand is higher, while wind generation peaks at night andvalues of Tehachapi wind generation, Palm Springs solar

  7. Sandia National Laboratories: Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy and ClimateRenewable SystemsRenewable EnergyWind EnergyWind Plant Optimization Wind Plant Optimization swift21 swift20 swift19 swift18 swift17 swift16 swift15 swift14...

  8. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” Energy

  9. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Speed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” EnergyThe Economics of Wind Energy. ” Renewable and Sustainable

  10. assessment kotzebue wind: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  11. arctic wind technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  12. areal wind resource: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  13. aruba wind resource: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  14. Offshore Renewable Energy Solutions

    E-Print Network [OSTI]

    and sustainable energy supply. The UK is uniquely placed to harness its natural resources ­ wind, wave and tidal power ­ to meet its target of achieving 15% of energy consumption from renewable sources by 2020. CefasOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre

  15. Wind Energy Ordinances (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

  16. Barriers to CHP with Renewable Portfolio Standards, Draft White...

    Broader source: Energy.gov (indexed) [DOE]

    development of state renewable portfolio standards (RPS) has helped spur the growth of renewable energy projects, including solar, wind, and biomass power. This report aims to...

  17. Office of Energy Efficiency & Renewable Energy | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    wind turbines. Read more Energy Department Honors Outstanding Work at National Renewable Energy Lab Energy Department Honors Outstanding Work at National Renewable...

  18. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  19. Renewable energy annual 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  20. Renewable energy in Indian country

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    On June 25--27, 1995, at Mesa Verde National Park in southwestern Colorado, the Center for Resource Management (CRM), organized and sponsored a conference in conjunction with the Navajo Nation, EPA, and Bechtel Group, Inc., to deal with issues associated with developing renewable energy resources on Indian lands. Due to the remoteness of many reservation homes and the cost of traditional power line extensions, a large percentage of the Indian population is today without electricity or other energy services. In addition, while they continue to develop energy resources for export, seeing only minimal gain in their own economies, Indian people are also subject to the health and environmental consequences associated with proximity to traditional energy resource development. Renewable energy technologies, on the other hand, are often ideally suited to decentralized, low-density demand. These technologies--especially solar and wind power--have no adverse health impacts associated with generation, are relatively low cost, and can be used in applications as small as a single home, meeting power needs right at a site. Their minimal impact on the environment make them particularly compatible with American Indian philosophies and lifestyles. Unfortunately, the match between renewable energy and Indian tribes has been hampered by the lack of a comprehensive, coordinated effort to identify renewable energy resources located on Indian lands, to develop practical links between Indian people`s needs and energy producers, and to provide the necessary training for tribal leaders and members to plan, implement, and maintain renewable energy systems. Summaries of the presentations are presented.

  1. Robust Unit Commitment Problem with Demand Response and ...

    E-Print Network [OSTI]

    2010-10-31T23:59:59.000Z

    Oct 29, 2010 ... sion, both Demand Response (DR) strategy and intermittent renewable ... On the other hand, demand response, which enables customers to ...

  2. Analytical Frameworks to Incorporate Demand Response in Long-term Resource Planning

    E-Print Network [OSTI]

    Satchwell, Andrew

    2014-01-01T23:59:59.000Z

    Potential Role of Demand Response Resources in Maintaining Grid Stability and Integrating Variable Renewable Energy

  3. Information for the Commercialisation of Renewables in ASEAN (ICRA)

    E-Print Network [OSTI]

    . Renewable Energy Resources 4 3. Renewable Energy Policy Framework 8 3.1 Renewable Energy Policy Goals 8 3. INTRODUCTION Southeast Asia is endowed with abundant renewable energy resources such as wind energy, biomass in ASEAN 4 2. RENEWABLE ENERGY RESOURCES AND UTILIZATION The ASEAN is endowed with abundant renewable

  4. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Goldman, G. (2009) Retail demand response in Southwest PowerL. (2009) Renewable Demand Response (RDR): Financial &Northwest GridWise™ Demand Response and Variable Generation

  5. Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard

    E-Print Network [OSTI]

    Lunt, Robin J.

    2007-01-01T23:59:59.000Z

    Wind Energy Assoc. (1997), http:// www.awea.org/policy/ENERGY POLICY From the renewable generator's perspective, WindPolicy Act as *'electric energy generated from solar, wind,

  6. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    and Renewable Energy (Wind & Hydropower TechnologiesU.S. Department of Energy (Wind and Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

  7. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  8. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    U.S. Department of Energy (Wind and Hydropower Technologiesand Renewable Energy (Wind & Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

  9. An Operational Model for Optimal NonDispatchable Demand Response

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    FACTS, $ Demand Response Energy Storage HVDC Industrial Customer PEV Renewable Energy Source: U.S.-Canada Power

  10. Women of Wind Energy Leadership Forum

    Broader source: Energy.gov [DOE]

    The 2014 Women of Wind Energy Leadership Forum combines professional development with tools to advance renewable energy. Join professionals from across the country to discuss current renewable...

  11. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  12. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    approach to locating wind farms in the UK," RenewableV. G. Rau, "Optimum siting of wind turbine generators," IEEEoptimal planning for wind energy conver- sion systems over

  13. 2009 Renewable Energy Data Book, August 2010

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  14. 2011 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2012-10-01T23:59:59.000Z

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  15. 2012 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2013-10-01T23:59:59.000Z

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  16. 2010 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2011-10-01T23:59:59.000Z

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  17. 2013 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Esterly, S.

    2014-12-01T23:59:59.000Z

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  18. Renewable Energy Standard (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    On February 1, 2007, Nova Scotia's new Renewable Energy Standards took effect. By 2013, Nova Scotia will generate at least 18.5% of the Province's electricity through renewable energy -- wind,...

  19. Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWindEnergySystemSOLAR ON

  20. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center 58 Wind: Development Potential ­ Geyserville · Potential to collocate wind Renewable Energy Center Assessment of Co-located Renewable Generation Potential #12;California Renewable (Task 2, L.A. Basin) and regions (Task 5) with co-located resources · Assess resource potential

  1. Abstract--During the past few years a world-wide trend to-wards renewable and ecologically clean forms of energy has

    E-Print Network [OSTI]

    Wedde, Horst F.

    and balancing power capacities based on fossil, and thus predictable, energy sources. With growing renewable power feed-in the demand for reserve and balancing power grows over-proportionally. In 2005 the European. The remaining problem behind is that the largely unpredictable character of wind and solar power supply

  2. Renewable energy: Renewing the environment

    SciTech Connect (OSTI)

    Noun, R.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31T23:59:59.000Z

    During the past 20 years, the United States has enacted some of the world`s most comprehensive legislation to protect and preserve its environmental heritage. These regulations have spawned a $115-billion-per-year industry for {open_quotes}green{close_quotes} products and services, with more than 35,000 companies providing jobs for American workers. On the other hand, environmental regulations have placed heavy cost burdens on many U.S. businesses as they struggle to remain competitive in both domestic and foreign markets. How, then, can one reconcile the growing need for environmental protection with the desire for a stronger, healthier economy? Even as Congress debates the value of existing environmental legislation, new threats are appearing on the horizon. For example, extensive storm damage from Hurricane Andrew and other natural disasters has prompted members of the $650-billion insurance industry to begin studying the effects that global warming may have on future property damage claims. More and more people are realizing that the most efficient and economical way to control pollution is to avoid creating it in the first place. And that`s where renewable energy comes in. Technologies based on nonpolluting renewable energy sources such as sunlight and wind can help preserve our environmental heritage without a tangled web of regulations to burden industry. Renewable energy technologies can also help the United States become a world leader in a potential $400-billion-a-year global market for environmentally friendly products.

  3. Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

    E-Print Network [OSTI]

    supply and demand, including renewable energy resources and generating technologies, while representingDistributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity on recycled paper #12;Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

  4. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Economics, I. (2007) Wind Resources, Cost, and Performance (to higher generation costs than the Wind-heavy profile. The20% RPS, or Wind-heavy renewable profiles – cost increases

  5. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Wind Power Markets Summary Slides California: 20% by 2017 State renewable energy incentives Illinois: 15% by 2012 New York: 25% by 2013 Renewable portfolio standards (RPS) * 25...

  6. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    Assessment of Potential for Wind Farms in India, RenewableNetworks for Offshore Wind Farms, Bremen, Germany, 14-15Assessment of Potential for Wind Farms in India, Renewable

  7. Sandia National Laboratories: complex wind plant interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    complex wind plant interactions SWiFT Commissioned to Study Wind Farm Optimization On July 29, 2013, in Energy, Facilities, News, News & Events, Partnership, Renewable Energy,...

  8. Hull Wind: A Community Gets Green

    Energy Savers [EERE]

    Hull Wind A Community Gets Green Community Wind Power National Renewable Energy Laboratory September 18, 2012 Andrew Stern Executive Director Action for Clean Energy, Inc. www....

  9. Sandia National Laboratories: Vestas Wind Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vestas Wind Systems SWiFT Commissioned to Study Wind Farm Optimization On July 29, 2013, in Energy, Facilities, News, News & Events, Partnership, Renewable Energy, SWIFT, Systems...

  10. EMERGING RENEWABLES PROGRAM SYSTEMS VERIFICATION REPORT

    E-Print Network [OSTI]

    survey that measured customer experience in applying to the ERP, receiving utility interconnection, renewable energy, shading, solar, system performance, system verification, utility interconnection, wind #12

  11. Renewable Energy Production Tax Credits (Corporate)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  12. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  13. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01T23:59:59.000Z

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  14. Renewable Energy Sales and Use Tax Abatement

    Broader source: Energy.gov [DOE]

    The abatement applies to property used to generate electricity from renewable energy resources including solar, wind, biomass*, fuel cells, geothermal or hydro. Generation facilities must have a...

  15. Sandia National Laboratories: Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reciprocating engines normally operate. Unfortunately, much of emerging renewable-energy generation technologies run at lower speeds (e.g., wind turbines, oscillating wave-energy...

  16. Tribal Renewable Energy Solutions and Partnerships: Collaborating...

    Office of Environmental Management (EM)

    Program: Chris Tuttle, U.S. Department of Agriculture Renewable Energy and Transmission Potential in Indian Country Analysis: Robert Hegner, ICF International Wind Development:...

  17. The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Grid. 2006. Trans mission and Wind Energy: Capturing theour sample. 20% Wind Energy: Wind Deployment System (WinDS)and Renewable Energy (Wind & Hydropower Technologies

  18. A Spatial Hedonic Analysis of the Effects of Wind Energy Facilities on Surrounding Property Values in the United States

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy (Wind and Water PowerEnergy Efficiency and Renewable Energy Wind and Water PowerEnergy Efficiency and Renewable Energy (Wind and Water Power

  19. Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable Generator

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    1 Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable-- Renewable energy resources, such as wind and solar power, are rapidly becoming generation technologies-temporal variations, the integration of renewable energy resources is usually very challenging. Some of the previously

  20. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    Offshore Wind Power: Underlying Factors. Energy Policy. 35(Wind Development on Local Property Values. Renewable Energy Policy

  1. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    Offshore Wind Power: Underlying Factors. Energy Policy,Wind Development on Local Property Values. Renewable Energy Policy

  2. Renewable Energy Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Renewable Energy Training Federal Energy Management Program (FEMP) training is available on demand to help Federal agencies understand and meet Federal energy management...

  3. Statewide Air Emissions Calculations From Wind and Other Renewables Summary Report Draft, a Report to the TCEQ for the Period Sept. 2005 - August 2006

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Subbarao, K.; Verdict, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Fitzpatrick, T.; Turner, W. D.

    2006-10-25T23:59:59.000Z

    Taylor, 120MW, Buffalo Gap 2, 03/2007 29 Kenedy, 300MW, Gulf Wind, 07/2007 30 Culberson, 175MW, Delaware Mountain, 12/2007 31 Kenedy, 400MW, Penascal Wind Farm, 2007 32 Galveston, 150MW, Galveston Offshore Wind, 2010 SPP Region ? 161MW 33 Oldham... weather normalization procedure for a single wind turbine; ? proposed weather normalization procedure for a wind farm containing multiple wind turbines; ? testing of the models; ? weather data collection efforts, and ? proposed modifications...

  4. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31T23:59:59.000Z

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  5. STAFF REPORT RENEWABLE POWER IN

    E-Print Network [OSTI]

    , distributed generation, energy storage, environmental impacts, environmental justice, feedin tariff, solar photovoltaic, solar thermal, transmission, wind, workforce development. Please use Portfolio Standard requires utilities to increase the amount of renewable generation sold to customers

  6. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    produced renewable energy (wind, sun, water, biomass/gas).locally produced energy from wind, sun, or water poweredsource. “Wind and Sun won´t send an energy bill” as a

  7. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  8. International Data Base for the U.S. Renewable Energy Industry

    SciTech Connect (OSTI)

    none

    1986-05-01T23:59:59.000Z

    The International Data Base for the US Renewable Energy Industry was developed to provide the US renewable energy industry with background data for identifying and analyzing promising foreign market opportunities for their products and services. Specifically, the data base provides the following information for 161 developed and developing countries: (1) General Country Data--consisting of general energy indicators; (2) Energy Demand Data--covering commercial primary energy consumption; (3) Energy Resource Data--identifying annual average insolation, wind power, and river flow data; (4) Power System Data--indicating a wide range of electrical parameters; and (5) Business Data--including currency and credit worthiness data.

  9. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    SciTech Connect (OSTI)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06T23:59:59.000Z

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  10. Renewable Energy in Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    ENERGY END USE ACTIVITIES (ENERGY SERVICES) COAL, OIL, SOLAR, GAS POWER PLANT, REFINERIES REFINED OIL;Characteristics of Renewables Large, Inexhaustible source -Solar energy intercepted by earth 1.8*1011 MW Clean #12;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal

  11. Factors driving wind power development in the United States

    SciTech Connect (OSTI)

    Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

    2003-05-15T23:59:59.000Z

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

  12. New Renewable 1 Emerging Renewables

    E-Print Network [OSTI]

    Renewable Facilities disbursements include $6 million for the Agriculture Biomass-to-Energy Program. 5New Renewable Facilities 1 Emerging Renewables 2,3 Existing Renewable Facilities 4 Consumer,000,000)$ Appropriations Appropriation for PACE Reserve program per SB 77 (2010) 11 (50,000,000)$ RENEWABLE ENERGY PROGRAM

  13. Wind turbine composite blade manufacturing : the need for understanding defect origins, prevalence, implications and reliability.

    SciTech Connect (OSTI)

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Riddle, Trey (Montana State University, Bozeman, MT); Nelson, Jared (Montana State University, Bozeman, MT)

    2011-02-01T23:59:59.000Z

    Renewable energy is an important element in the US strategy for mitigating our dependence on non-domestic oil. Wind energy has emerged as a viable and commercially successful renewable energy source. This is the impetus for the 20% wind energy by 2030 initiative in the US. Furthermore, wind energy is important on to enable a global economy. This is the impetus for such rapid, recent growth. Wind turbine blades are a major structural element of a wind turbine blade. Wind turbine blades have near aerospace quality demands at commodity prices; often two orders of magnitude less cost than a comparable aerospace structure. Blade failures are currently as the second most critical concern for wind turbine reliability. Early blade failures typically occur at manufacturing defects. There is a need to understand how to quantify, disposition, and mitigate manufacturing defects to protect the current wind turbine fleet, and for the future. This report is an overview of the needs, approaches, and strategies for addressing the effect of defects in wind turbine blades. The overall goal is to provide the wind turbine industry with a hierarchical procedure for addressing blade manufacturing defects relative to wind turbine reliability.

  14. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01T23:59:59.000Z

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  15. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees...

  16. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  17. Alliant Energy Interstate Power and Light- Business and Farm Renewable Energy Rebates

    Broader source: Energy.gov [DOE]

    The Alliant Energy Renewable Cash-Back Rewards program offers rebates for solar photovoltaics (PV), wind, renewable biomass, and anaerobic digesters. Businesses and farms that are Alliant Energy...

  18. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    E-Print Network [OSTI]

    Nicolosi, Marco

    2011-01-01T23:59:59.000Z

    Austin. ERCOT (2010b): Wind generation and load in 2008,common to subtract wind generation from total demand to formquantity of additional wind generation to demonstrate how

  19. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-08-10T23:59:59.000Z

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  20. Storing Renewable Energy in Chemical Bonds

    ScienceCinema (OSTI)

    Helm, Monte; Bullock, Morris

    2014-06-13T23:59:59.000Z

    With nearly 7 billion people, the world's population is demanding more electricity every year. Improved technologies are bringing wind and solar power to our electrical grid. However, wind turbines and solar panels only work when the wind blows or the sun shines. PNNL scientists discuss catalysis approaches for storing and releasing energy on demand.

  1. Storing Renewable Energy in Chemical Bonds

    SciTech Connect (OSTI)

    Helm, Monte; Bullock, Morris

    2013-03-27T23:59:59.000Z

    With nearly 7 billion people, the world's population is demanding more electricity every year. Improved technologies are bringing wind and solar power to our electrical grid. However, wind turbines and solar panels only work when the wind blows or the sun shines. PNNL scientists discuss catalysis approaches for storing and releasing energy on demand.

  2. Renewable Energy Potential for Brownfield Redevelopment Strategies

    E-Print Network [OSTI]

    that must be met for a brownfield site to be considered as high potential for wind power redevelopmentRenewable Energy Potential for Brownfield Redevelopment Strategies Renewable energy resources to identify high-potential sites for renewable energy technologies and can help determine those technologies

  3. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    and Renewable Energy (Wind & Hydropower Technologiesfor Understanding Public Perceptions of Wind Energy.Wind Energy. 8(2): 125 - 139. Durbin, J. and Watson, G. S. (

  4. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Power, Exergy, U.S. Wind Force, Wind Capital Group,Developer enXco Navitas US Wind Force Atlantic Renewable

  5. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of the U.S. DOE’s Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

  6. Advancing Wind Technology, One Massive Blade at a Time | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the German government to renewable energy, with wind playing a pivotal role. While offshore wind usually makes the headlines here, low wind, onshore installations are...

  7. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    California o?shore wind energy potential. Renewable Energy,2008: Ex- ploring wind energy potential o? the Californiafor estimates of wind power potential. Journal of Applied

  8. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    Offshore Wind Power: Underlying Factors. Energy Policy. 35(Wind Development on Local Property Values. Renewable Energy Policy

  9. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    Coincidence of Demand and Wind Resource Diurnal PowerOutput Variations for Three Wind Regimes List of TablesCAPACITY CREDIT FOR WIND ARRAYS: THE PROBLEM . . . . . . .

  10. Fueling America Through Renewable Resources Purdue extension

    E-Print Network [OSTI]

    Holland, Jeffrey

    Fueling America Through Renewable Resources BioEnergy Purdue extension Meeting the ethanol demand #12; Fueling America Through Renewable Crops BioEnergy Meeting the Ethanol Demand: Consequences profitable than the corn- soybean rotation, even when relative commodity prices point to a preference

  11. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dutch University MOU Signing On May 18, 2011, in Energy, News, Renewable Energy, Wind Energy singlepic id632 w320 h240 floatrightINTERNATIONAL COLLABORATIONS - Sid Gutierrez,...

  12. Overview of the DOE Wind Vision Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Exchange Webinar July 15, 2015 Overview of the DOE Wind Vision Roadmap Ed DeMeo Renewable Energy Consulting Services, Inc. Why a Roadmap? * Continued wind expansion requires...

  13. A Review of Barriers to and Opportunities for the Integration of Renewable Energy in the Southeast

    SciTech Connect (OSTI)

    McConnell, Ben W [ORNL; Hadley, Stanton W [ORNL; Xu, Yan [ORNL

    2011-08-01T23:59:59.000Z

    The objectives of this study were to prepare a summary report that examines the opportunities for and obstacles to the integration of renewable energy resources in the Southeast between now and the year 2030. The report, which is based on a review of existing literature regarding renewable resources in the Southeast, includes the following renewable energy resources: wind, solar, hydro, geothermal, biomass, and tidal. The evaluation was conducted by the Oak Ridge National Laboratory for the Energy Foundation and is a subjective review with limited detailed analysis. However, the report offers a best estimate of the magnitude, time frame, and cost of deployment of renewable resources in the Southeast based upon the literature reviewed and reasonable engineering and economic estimates. For the purposes of this report, the Southeast is defined as the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia. In addition, some aspects of the report (wind and geothermal) also consider the extended Southeast, which includes Maryland, Missouri, Oklahoma, and Texas. A description of the existing base of renewable electricity installations in the region is given for each technology considered. Where available, the possible barriers and other considerations regarding renewable energy resources are listed in terms of availability, investment and maintenance costs, reliability, installation requirements, policies, and energy market. As stated above, the report is a comprehensive review of renewable energy resources in the southeastern region of United States based on a literature study that included information obtained from the Southern Bio-Power wiki, sources from the Energy Foundation, sources available to ORNL, and sources found during the review. The report consists of an executive summary, this introductory chapter describing report objectives, a chapter on analysis methods and the status of renewable resources, chapters devoted to each identified renewable resource, and a brief summary chapter. Chapter 2 on analysis methods and status summarizes the benefits of integrating renewable energy resources in the Southeast. The utilization of the existing fuels, both the fossil fuels and the renewable energy resources, is evaluated. The financial rewards of renewable resources are listed, which includes the amount of fuel imported from outside the Southeast to find the net benefit of local renewable generation, and both the typical and new green job opportunities that arise from renewable generation in the Southeast. With the load growth in the Southeast, the growth of transmission and fossil fuel generation may not meet the growing demands for energy. The load growth is estimated, and the benefits of renewable resources for solving local growing energy demands are evaluated. Chapters 3-7 discuss the key renewable energy resources in the Southeast. Six resources available in this region that are discussed are (1) wind, including both onshore and offshore; (2) solar, including passive, photovoltaic, and concentrating; (3) biomass energy, including switchgrass, biomass co-firing, wood, woody biomass, wood industry by-products (harvesting residues, mill waste, etc.), agricultural byproducts, landfill gas to energy and anaerobic digester gas; (4) hydro; and (5) geothermal. Because of limited development, ocean wave and tidal were not considered to be available in significant quantity before 2030 and are not presented in the final analysis. Estimates on the location of potential megawatt generation from these renewable resources in the Southeast are made. Each chapter will describe the existing base of the renewable electricity installations in the region now and, when available, the base of the existing manufacturing capacity in the region for renewable energy resources hardware and software. The possible barriers and considerations for renewable energy resources are presented.

  14. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01T23:59:59.000Z

    Policy Assumptions • Renewable Energy Credits can not be banked • Technologies that receive credit under RPS: Technology Wind

  15. Sandia National Laboratories: DOE Awards Wind Research Grants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind DOE Awards Wind Research Grants On May 18, 2011, in Energy, News, Renewable Energy, Wind Energy singlepic id633 w320 h240 floatrightALBUQUERQUE, N.M. - The Wind Energy...

  16. Understanding Trends in Wind Turbine Prices Over the Past Decade

    E-Print Network [OSTI]

    Bolinger, Mark

    2012-01-01T23:59:59.000Z

    Hand, A. Laxson. 2006. Wind Turbine Design Cost and Scalingof a Multi-MegaWatt Wind Turbine. ” Renewable Energy, vol.David. 2008. “Dissecting Wind Turbine Costs. ” WindStats

  17. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Energy with Less Weight On May 18, 2011, in Energy, News, Renewable Energy, Wind Energy The following is from an article published in WindStats Newsletter Vol. 19, No. 4. The...

  18. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect (OSTI)

    Denholm, P.

    2011-01-01T23:59:59.000Z

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  19. Programs in Renewable Energy

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  20. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and its Application to the Wind Farms in the Texas ERCOT Region

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Subbarao, K.; Culp, C.; Yazdani, B.

    Farms in Texas Wind Projects Completed: ERCOT Region ? 2903 MW 1 Culberson, 35 MW, Texas Wind Power, 01/1995 2 Howard, 34 MW, Big Spring Wind Power, 02/1999 3 Howard, 6.6 MW, Big Spring Wind Power, 07/1999 4 Upton, 75 MW, Southwest Mesa Wind, 06/1999... 5 Culberson, 30 MW, Delaware Mountain , 06/1999 6 Pecos, 82.5 MW, Indian Mesa I, 06/2001 7 Pecos, 160 MW, Woodward Mountain, 07/2001 8 Nolan, 150 MW, Trent Mesa, 11/2001 9 Pecos, 160 MW, Desert Sky (Indian Mesa II), 12/2001 10 Upton, 278...

  1. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

    2011-11-29T23:59:59.000Z

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  2. Transmission needs across a fully renewable European power system

    E-Print Network [OSTI]

    Rodriguez, Rolando A; Andresen, Gorm B; Heide, Dominik; Greiner, Martin

    2013-01-01T23:59:59.000Z

    The residual load and excess power generation of 27 European countries with a 100% penetration of variable renewable energy sources are explored in order to quantify the benefit of power transmission between countries. Estimates are based on extensive weather data, which allows for modelling of hourly mismatches between the demand and renewable generation from wind and solar photovoltaics. For separated countries, balancing is required to cover around 24% of the total annual energy consumption. This number can be reduced down to 15% once all countries are networked together with uncon- strained interconnectors. The reduction represents the maximum possible benefit of transmission for the countries. The total Net Transfer Capacity of the unconstrained interconnectors is roughly twelve times larger than current values. However, constrained interconnector capacities six times larger than the current values are found to provide 97% of the maximum possible benefit of cooperation. This motivates a detailed investig...

  3. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew D

    2011-01-01T23:59:59.000Z

    33% RE Renewable Energy (TWh/yr) Wind Solar Hydro Biomassrenewable technologies identified in WREZ hubs (wind, solar, geothermal, biomass,renewable energy targets, we found that the contributions of hydropower, biomass,

  4. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer

    2011-10-01T23:59:59.000Z

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  5. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Western Wind, and Midwest Wind Energy. Table 4. Merger andHorizon) Noble Power CPV Wind Catamount Western Wind EnergyCoastal Wind Energy LLC Tierra Energy, LLC Renewable

  6. Community Renewable Energy Success Stories Webinar: Renewable...

    Office of Environmental Management (EM)

    Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version) Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version)...

  7. OAHU Wind Integration And Transmission Study: Summary Report...

    Energy Savers [EERE]

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) OAHU Wind Integration And Transmission Study: Summary Report, NREL...

  8. Roadmap Prioritizes Barriers to the Deployment of Wind Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Laboratory (NREL) recently published a Built-Environment Wind Turbine Roadmap that outlines a strategy for providing consumers with safe, reliable small wind...

  9. SciTech Connect: Improved Wind Turbine Drivetrain Reliability...

    Office of Scientific and Technical Information (OSTI)

    and Renewable Energy Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 97 MATHEMATICS AND COMPUTING NONTORQUE LOADS; WIND TURBINE DRIVETRAIN;...

  10. Wind Powering America: FY09 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    The Wind Powering America FY09 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  11. Wind Powering America FY08 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    The Wind Powering America FY08 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  12. axis wind turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to note that these views Firestone, Jeremy 65 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE Renewable Energy Websites Summary: 1 WIND TURBINE...

  13. approaching wind turbines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to note that these views Firestone, Jeremy 40 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE Renewable Energy Websites Summary: 1 WIND TURBINE...

  14. axis wind turbines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to note that these views Firestone, Jeremy 65 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE Renewable Energy Websites Summary: 1 WIND TURBINE...

  15. Sandia Energy - Quantifying Offshore Wind Scour with Sandia's...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Environmental Fluid Dynamics Code (SNL---EFDC) Home Renewable Energy Energy News Wind Energy News & Events Computational Modeling & Simulation Quantifying Offshore Wind...

  16. Sandia National Laboratories: how wind turbines interact with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbines interact with one another SWiFT Commissioned to Study Wind Farm Optimization On July 29, 2013, in Energy, Facilities, News, News & Events, Partnership, Renewable...

  17. Sandia National Laboratories: Sandia/KAFB Wind Farm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and economic competitiveness. Tagged with: Energy * Renewable Energy * wind energy * Wind Farm Comments are closed. Last Updated: September 8, 2011 Go To Top Exceptional service...

  18. Liquid Hydrogen Production and Delivery from a Dedicated Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Dedicated Wind Power Plant Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant This May 2012 study assesses the costs and potential for remote renewable...

  19. Upcoming Funding Opportunity to Develop and Field Test Wind Energy...

    Energy Savers [EERE]

    and operating wind energy facilities in locations with sensitive bat species. As wind energy continues to grow as a renewable source of energy for communities throughout...

  20. Using Renewable Energy to Pump Water

    E-Print Network [OSTI]

    Enciso, J.; Mecke, M.

    Using Renewable Energy to Pump Water Juan Enciso and Michael Mecke* Wind power Wind is often used as an energy source to operate pumps and supply water to livestock. Because of the large amount of water needed for crops, wind power is rarely used... renewable energy sources ? such as solar or wind power ? for your home, for drip irrigation or for livestock water wells. Wind and solar energy can be excellent options in remote areas where the costs of extending transmission lines are high. Extending...

  1. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center California Off-shore Wind Technology Assessment #12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

  2. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    renewable energy-to-electricity costs of solar, wind, and biomassinto biomass-based hydrogen and other renewable methods suchBiomass Pyrolysis Liquids and Natural Gas, National Renewable

  3. Statewide Air Emissions Calculations From Wind and Other Renewables Summary Report Draft, a Report to the TCEQ for the Period Sept. 2005 - August 2006 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Subbarao, K.; Verdict, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Fitzpatrick, T.; Turner, W. D.

    2006-10-25T23:59:59.000Z

    This executive summary provides summaries of the key areas of accomplishment this year, including: • development of stakeholder’s meetings; • reporting of NOx emissions reductions from renewable energy generation in the 2005 report to the TCEQ...

  4. Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report: A Report to the Texas Commission on Environmental Quality for the Period September 2007 - August 2008 

    E-Print Network [OSTI]

    Gilman, D.; Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.; Subbarao, K.; Culp, C.; Liu, Z.

    2008-01-01T23:59:59.000Z

    . According to the developed models, the total MWh savings in the base year 1999 for the wind farms within the ERCOT region are 6,919,352 MWh and 15,269 MWh/day in the Ozone Season Period. The total NOx emissions reductions across all the counties amount... amounts of degradation could be observed in the measured power from Texas wind farms. Currently, the TCEQ uses a very conservative 5% degradation per year for the power output from a wind farm when making future projections from existing wind farms...

  5. Developing Government Renewable Energy Projects

    SciTech Connect (OSTI)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01T23:59:59.000Z

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  6. Renewable Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Diesel Process Co-feed Renewable Oils to Diesel Hydrotreater 150-2400 psi Hydrogen, 600-800F Normal reaction is sulfur removal (HDS) At HDS Conditions Fat...

  7. Holy Cross Energy- WE CARE Renewable Energy Generation Rebate Program

    Broader source: Energy.gov [DOE]

    Holy Cross Energy's WE CARE (With Efficiency, Conservation And Renewable Energy) Program offers a $1.50-per-watt DC incentive for renewable energy generation using wind, hydroelectric, photovoltaic...

  8. SGDP Report Now Available: Interoperability of Demand Response...

    Office of Environmental Management (EM)

    and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

  9. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Environmental Management (EM)

    and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

  10. Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks: A Two-stage Optimization Model-economical study of renewable energy on the other hand, investigates gradual implantation of Renewable Energy (RE of energy demand, available resources, anticipated renewable engineering cost re- ductions [13]. However

  11. After the Wind Storm 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    Solar and wind power can be economical and environmentally friendly ways to pump water for homes, irrigation and/or livestock water wells. This publication explains how these pumps work, the advantages and disadvantages of using renewable energy...

  12. A residential energy demand system for Spain

    E-Print Network [OSTI]

    Labandeira Villot, Xavier

    2005-01-01T23:59:59.000Z

    Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

  13. Dispersed power and renewables

    SciTech Connect (OSTI)

    O`Sullivan, J.B.

    1995-12-31T23:59:59.000Z

    Distributed power generation and renewable energy sources are discussed: The following topics are discussed: distributed resources, distributed generation, commercialization requirements, biomass power, location of existing biomass feedstocks, biomass business plan components, North Carolina BGCC partnership, New York biomass co-firing project, alfalfa for power and feed, Hawaii Pioneer Mill LOI project, next steps for biomass, wind power activity, photovoltaic modules and arrays, lead-acid batteries, superconducting magnetic energy storage, fuel cells, and electric power industry trends.

  14. Value of Demand Response -Introduction Klaus Skytte

    E-Print Network [OSTI]

    of wind power. #12;Perspectives ­ The System Operator Keep the balance Demand reduction = increased as indicator. #12;Motivations We want more wind power in the system. This require more flexibility of the rest plants and better use of wind power. Public goods / Externalities not measured in the markets #12

  15. Renewable Energy Resources and Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Explore the following renewable energy technology areas for resources and information focusing on Federal application opportunities. Solar Wind Geothermal Biomass Landfill Gas...

  16. Assessing How Renewables Affect Water Used for Thermoelectric...

    Office of Science (SC) Website

    changes in future water use caused by increased use of renewable technologies, such as wind, solar, geothermal, and nuclear. They found that at the national level, as the...

  17. Alliant Energy Interstate Power and Light- Residential Renewable Energy Rebates

    Broader source: Energy.gov [DOE]

    The Alliant Energy Renewable Cash-Back Rewards program offers its electricity customers rebates for solar photovoltaics (PV), wind, and solar thermal water heating systems. Natural gas customers...

  18. Integrating High Levels of Renewables into the Lanai Electric...

    Broader source: Energy.gov (indexed) [DOE]

    production and use on Lanai. Phase 1 of this report evaluated renewable energy potential to meet the existing load. The initial analysis used solar and wind resource...

  19. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and Its Application to the Wind Farms in the Texas ERCOT Region

    E-Print Network [OSTI]

    Culp, C.; Haberl, J. S.; Liu, Z.; Subbarao, K.; Baltazar-Cervantes, J. C.; Yazdani, B.

    ’s SIP credits. In the proposed method, the ASHRAE Inverse Model Toolkit (Kissock et al. 2003; Haberl et al. 2003) is used for weather normalization of the daily wind power generation to the base year selected by TCEQ (i.e., 1999). The US EPA...’s Emissions and Generations Resource Integrated Database (eGRID) is used for calculating annual and Ozone Season Day’s NOx emissions reductions from the wind energy programs 2 . METHODOLOGY To determine the performance of a wind farm in the 1999 base...

  20. RENEWABLE ENERGY RESEARCH August 2010

    E-Print Network [OSTI]

    . The demonstration will address the integration issues for new wind power, large-scale energy storage, demand, battery storage sized at 2 megawatt (MW), demand response initiatives, and solar thermal to generate up-and-play" energy resources. · Techniques for deploying smart grid battery storage and monitoring battery

  1. Policies and market factors driving wind power development in the United States

    SciTech Connect (OSTI)

    Bird, Lori; Parsons, Brian; Gagliano, Troy; Brown, Matthew; Wiser, Ryan; Bolinger, Mark

    2003-07-30T23:59:59.000Z

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,100 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states in which a substantial amount of wind energy capacity has been developed or planned. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

  2. Impacts of Providing Inertial Response on Dynamic Loads of Wind Turbine Drivetrains: Preprint

    SciTech Connect (OSTI)

    Girsang, I. P.; Dhupia, J.; Singh, M.; Gevorgian, V.; Muljadi, E.; Jonkman, J.

    2014-09-01T23:59:59.000Z

    There has been growing demand from the power industry for wind power plants to support power system operations. One such requirement is for wind turbines to provide ancillary services in the form of inertial response. When the grid frequency drops, it is essential for wind turbine generators (WTGs) to inject kinetic energy stored in their inertia into the grid to help arrest the frequency decline. However, the impacts of inertial response on the structural loads of the wind turbine have not been given much attention. To bridge this gap, this paper utilizes a holistic model for both fixed-speed and variable-speed WTGs by integrating the aeroelastic wind turbine model in FAST, developed by the National Renewable Energy Laboratory, with the electromechanical drivetrain model in SimDriveline and SimPowerSystems.

  3. The Role of Demand Response Policy Forum Series

    E-Print Network [OSTI]

    California at Davis, University of

    The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

  4. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    Fuel switching 'ß Biomass, etc. Wind power -0 Solar energy •15% for biomass and other renewable energy sources. The fuel

  5. Pathways to Decarbonization: Natural Gas and Renewable Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distributed generation from renewable resources and NG, energy efficiency, storage, and demand response contribute significant value to the power sector, and customers are at the...

  6. The role of renewable energy in climate stabilization: results from the EMF 27 scenarios

    SciTech Connect (OSTI)

    Luderer, Gunnar; Krey, Volker; Calvin, Katherine V.; Merrick, James; Mima, Silvana; Pietzcker, Robert; Van Vliet, Jasper; Wada, Kenichi

    2013-10-15T23:59:59.000Z

    This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the prospects of solar photovoltaics (PV) are highly contingent on the ambitiousness of climate policy. Bioenergy is an important and versatile energy carrier; however—with the exception of low temperature heat—there is less scope for renewables other than biomass for non-electric energy supply. Despite the important role of wind and solar power in climate change mitigation scenarios with full technology availability, limiting their deployment has a relatively small effect on mitigation costs, if nuclear and carbon capture and storage (CCS)—which can serve as substitutes in low-carbon power supply—are available. Limited bioenergy availability in combination with limited wind and solar power by contrast, results in a more substantial increase in mitigation costs. While a number of robust insights emerge, the results on renewable energy deployment levels vary considerably across the models. An in-depth analysis of a subset of EMF27 reveals substantial differences in modeling approaches and parameter assumptions. To a certain degree, differences in model results can be attributed to different assumptions about technology costs, resource potentials and systems integration.

  7. 2012 Renewable Energy Data Book

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The 2012 Renewable Energy Data Book is 128 pages of data in tables, figures and charts, and text. It provides a look at resources and usage for wind, solar, geothermal, hydro, hydrogen, and biopower. Developed at the National Renewable Energy Laboratory (NREL) for DOE's Office of Energy Efficiency and Renewable Energy (EERE), it was produced by Rachel Gelman, edited by Mike Meshek, and designed by Stacy Buchanan and Erica Augustine and released in October, 2013. Report number for this data book is DOE/GO-102013-4291.

  8. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    of Variable Renewable Generation The report is accompaniedit Relates to Wind-Powered Generation. LBNL-XXXX. Berkeley:with Increased Wind Generation. LBNL-XXXX. Berkeley:

  9. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01T23:59:59.000Z

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  10. Three Affliated Tribes Renewable Energy Feasibility Study

    SciTech Connect (OSTI)

    Belvin Pete; Kent Good; Krista Gordon; Ed McCarthy,

    2006-05-26T23:59:59.000Z

    The Three Affliated Tribes on the Fort Berthold Reservation studied the feasibility of a commercial wind facility on land selected and owned by the Tribes and examined the potential for the development of renewable energy resources on Tribal Lands.

  11. Using Renewable Energy to Pump Water 

    E-Print Network [OSTI]

    Mecke, Michael; Enciso, Juan

    2007-06-08T23:59:59.000Z

    Solar and wind power can be economical and environmentally friendly ways to pump water for homes, irrigation and/or livestock water wells. This publication explains how these pumps work, the advantages and disadvantages of using renewable energy...

  12. Using Renewable Energy to Pump Water

    E-Print Network [OSTI]

    Mecke, Michael; Enciso, Juan

    2007-06-08T23:59:59.000Z

    Solar and wind power can be economical and environmentally friendly ways to pump water for homes, irrigation and/or livestock water wells. This publication explains how these pumps work, the advantages and disadvantages of using renewable energy...

  13. Renewable Energy Tax Incentive Program (Texas)

    Broader source: Energy.gov [DOE]

    The Renewable Energy Tax Incentive Program provides various tax exemptions to businesses that either use or manufacture or install solar or wind energy. They can receive franchise tax deductions...

  14. Colorado Springs Utilities- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected solar-electric (PV) systems, wind systems, and solar water...

  15. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  16. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  17. Using Renewable Energy to Pump Water 

    E-Print Network [OSTI]

    Enciso, J.; Mecke, M.

    2004-01-01T23:59:59.000Z

    : Solar energy pro- duces more water in the summer, when water consumption is high. For wind power, the wind blows more during the spring, when the average monthly wind speed varies from 11.5 to 13.4 mph at a 33-foot height in West and Northwest Texas...Using Renewable Energy to Pump Water Juan Enciso and Michael Mecke* Wind power Wind is often used as an energy source to operate pumps and supply water to livestock. Because of the large amount of water needed for crops, wind power is rarely used...

  18. 20% Wind Energy by 2030

    SciTech Connect (OSTI)

    Not Available

    2008-07-01T23:59:59.000Z

    This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

  19. Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection

    E-Print Network [OSTI]

    Olsen, Daniel J.

    2014-01-01T23:59:59.000Z

    potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable

  20. Renewable Mongolia

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2005-12-07T23:59:59.000Z

    power. Wind farms are sprouting all across China, but especially on the grassy, breezy plains of Inner Mongolia. There are even schemes to plant wind farms in the oceans, just off China's crowded coasts, where the wind is steady and the real estate...

  1. Comprehensive Renewable Energy Feasibility Study for Sealaska Corporation

    SciTech Connect (OSTI)

    Robert Lynette; John Wade: Larry Coupe

    2006-06-30T23:59:59.000Z

    The purposes of this project were: (1) to conduct a comprehensive feasibility study to determine the potential sustainability of wind and/or small hydroelectric power plants on Southeast Alaska native village lands, and (2) to provide the villages with an understanding of the requirements, costs, and benefits of developing and operating wind or small hydroelectric power plants. The program was sponsored by the Tribal Energy program, Office of Energy Efficiency and Renewable Energy, US Department of Energy. The Contractor was Sealaska Corporation, the Regional Native Corporation for Southeast Alaska that includes 12 village/urban corporations. Most villages are isolated from any central electric transmission and use diesel-electric systems for power generation, making them prime candidates for deploying renewable energy sources. Wind Energy - A database was assembled for all of the candidate sites in SE Alaska, including location, demographics, electricity supply and demand, existing and planned transmission interties with central generation, topographical maps, macro wind data, and contact personnel. Field trips were conducted at the five candidate villages that were deemed most likely to have viable wind resources. Meetings were held with local village and utility leaders and the requirements, costs, and benefits of having local renewable energy facilities were discussed. Two sites were selected for anemometry based on their needs and the probability of having viable wind resources – Yakutat and Hoonah. Anemometry was installed at both sites and at least one year of wind resource data was collected from the sites. This data was compared to long-term data from the closest weather stations. Reports were prepared by meteorologist John Wade that contains the details of the measured wind resources and energy production projections. Preliminary financial analysis of hypothetical wind power stations were prepared to gauge the economic viability of installing such facilities at each site. The average wind resources measured at Yakutat at three sites were very marginal, with an annual average of 4.0 mps (9 mph) at 60 meters above ground level. At Hoonah, the average wind resources measured on the 1,417 ft elevation ridge above the village were very low, with a six-month average of 3.9 mps (8.7 mph) at 60 meters above ground level. The wind resources at both sites were not sufficient to justify installation of wind turbines. In summary, although there are several known windy spots in SE Alaska (e.g., Skagway), we were not able to identify any isolated Native American villages that utilize diesel-electric power generation that have commercially viable wind resources. Small Hydroelectric - The study focused on the communities associated with Sealaska Corporation that use diesel-electric for electricity and have a potential for hydroelectric power generation. Most of them have had at least an assessment of hydroelectric potential, and a few have had feasibility studies of potential hydroelectric projects. Although none of the sites examined are financially viable without substantial grant funding, Hoonah, Kake, and Yakutat appear to have the best potential for new hydro facilities.

  2. Renewable energy 1998: Issues and trends

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  3. Road Map for Renewables Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    for Storage, Additional Cost #12;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal Energy Solar Thermal Solar Photovoltaic Geothermal* #12;World Primary EnergyRoad Map for Renewables Rangan Banerjee Energy Systems Engineering IIT Bombay Talk delivered

  4. Postgraduate Programme Renewable Energy (PPRE) 1987 -2013

    E-Print Network [OSTI]

    Peinke, Joachim

    Meteorology & Storage Technologies Solar Energy Specialisation 2 h/week 2 CP Tutorials German Language Course & Society Biomass & Hydro Energy Wind Energy Energy Meteorology & Storage Technologies Solar Energy ModulesPostgraduate Programme Renewable Energy (PPRE) 1987 - 2013 Postgraduate Programme Renewable Energy

  5. Articles about Distributed Wind | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and is poised for future growth that could double the capacity of renewable electricity generation from resources like wind power by 2020. March 31, 2014 PNNL Reports Distributed...

  6. Improving Wind Turbine Gearbox Reliability: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; McNiff, B.

    2007-06-01T23:59:59.000Z

    This paper describes a new research and development initiative to improve gearbox reliability in wind turbines begun at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, USA.

  7. Searchlight Wind Energy Project FEIS Appendix B

    Office of Environmental Management (EM)

    Bird and Bat Conservation Strategy Searchlight BBCS i October 2012 Searchlight Wind Energy Project Bird and Bat Conservation Strategy Prepared for: Duke Energy Renewables 550...

  8. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Forecasting Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American...

  9. Oregon Department of Energy Webinar: Offshore Wind

    Broader source: Energy.gov [DOE]

    The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

  10. Sandia National Laboratories: wind turbine blade materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials Wind-Turbine Blade Materials and Reliability Progress On May 21, 2014, in Energy, Materials Science, News, News & Events, Partnership, Renewable Energy, Research &...

  11. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  12. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  13. Fueling America Through Renewable Resources Purdue extension

    E-Print Network [OSTI]

    Fueling America Through Renewable Resources BioEnergy Purdue extension The Value of distillers and global marketplaces as the price of corn increases to meet the ethanol demand. An estimated 1.4 to 1 Nutrient Digestibility and Availability #12; Fueling America Through Renewable Crops BioEnergy Variation

  14. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01T23:59:59.000Z

    would stimulate wind technology cost reductions on theprojections of renewable technology costs, fossil fuel priceavailability. Renewable technology cost: Reflects changes to

  15. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  16. Wind Energy Education and Outreach Project

    SciTech Connect (OSTI)

    David G. Loomis

    2011-04-15T23:59:59.000Z

    The purpose of Illinois State Universityâ??s wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

  17. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01T23:59:59.000Z

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  18. Nevada Renewable Energy Projects June 10, 2009

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nevada Renewable Energy Projects June 10, 2009 WASHOE ELKO HUMBOLDT EUREKA LANDER PERSHING Winnemucca Reno Carson City Tonopah Ely Las Vegas Pahrump Project Type and Dispostion Solar Energy ROW, Pending Wind Testing ROW, Authorized Wind Energy ROW, Pending Geothermal Energy Leases, Authorized

  19. US Renewable Futures in the GCAM

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.; Karas, Joseph F.; Nathan, Mayda

    2011-10-06T23:59:59.000Z

    This project examines renewable energy deployment in the United States using a version of the GCAM integrated assessment model with detailed a representation of renewables, the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sectoral detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long-distance transmission. We find that renewable generation levels grow over the century in all scenarios. As expected, renewable generation increases with lower renewable technology costs, more stringent climate policy, and if alternative low-carbon technology are not available. The availability of long distance transmission lowers policy costs and changes the renewable generation mix.

  20. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Wind power planning: assessing long-term costs and benefits, Energy Policy,wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation, Energy Policy,wind or solar power will singularly provide a majority of renewable generation in a future with energy policies

  1. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable

  2. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable!

  3. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01T23:59:59.000Z

    Keywords: Wind energy, renewable energy, cost trends,wind energy are projected to be relatively modest. Figure 6 shows the total estimated electric-sector costs

  4. Power Systems Engineering Research Center Renewable Electricity Futures

    E-Print Network [OSTI]

    Van Veen, Barry D.

    Power Systems Engineering Research Center Renewable Electricity Futures Trieu Mai Electricity of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity

  5. Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl 1 Small Wind PowerSmall Wind Sally Wright, PE Staff Engineer Renewable Energy Research Laboratory University of Massachusetts, Amherst A Presentation to Co-op Power Sally Wright, PE Staff Engineer Renewable Energy Research Laboratory

  6. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01T23:59:59.000Z

    Biomass Utility-scale Solar Customer-sited Solar RenewableFiring Utility-scale Solar Customer-sited Solar WinDS SEDSlandf ill Utility-scale Solar Customer-sited Solar Renewable

  7. Jobs and Renewable Energy Project

    SciTech Connect (OSTI)

    Sterzinger, George

    2006-12-19T23:59:59.000Z

    Early in 2002, REPP developed the Jobs Calculator, a tool that calculates the number of direct jobs resulting from renewable energy development under RPS (Renewable Portfolio Standard) legislation or other programs to accelerate renewable energy development. The calculator is based on a survey of current industry practices to assess the number and type of jobs that will result from the enactment of a RPS. This project built upon and significantly enhanced the initial Jobs Calculator model by (1) expanding the survey to include other renewable technologies (the original model was limited to wind, solar PV and biomass co-firing technologies); (2) more precisely calculating the economic development benefits related to renewable energy development; (3) completing and regularly updating the survey of the commercially active renewable energy firms to determine kinds and number of jobs directly created; and (4) developing and implementing a technology to locate where the economic activity related to each type of renewable technology is likely to occur. REPP worked directly with groups in the State of Nevada to interpret the results and develop policies to capture as much of the economic benefits as possible for the state through technology selection, training program options, and outreach to manufacturing groups.

  8. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01T23:59:59.000Z

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  9. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  10. Wind power forecasting : state-of-the-art 2009.

    SciTech Connect (OSTI)

    Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

    2009-11-20T23:59:59.000Z

    Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and uncertainty in wind power and to more efficiently operate power systems with large wind power penetrations. Moreover, in a market environment, the wind power contribution to the generation portofolio becomes important in determining the daily and hourly prices, as variations in the estimated wind power will influence the clearing prices for both energy and operating reserves. With the increasing penetration of wind power, WPF is quickly becoming an important topic for the electric power industry. System operators (SOs), generating companies (GENCOs), and regulators all support efforts to develop better, more reliable and accurate forecasting models. Wind farm owners and operators also benefit from better wind power prediction to support competitive participation in electricity markets against more stable and dispatchable energy sources. In general, WPF can be used for a number of purposes, such as: generation and transmission maintenance planning, determination of operating reserve requirements, unit commitment, economic dispatch, energy storage optimization (e.g., pumped hydro storage), and energy trading. The objective of this report is to review and analyze state-of-the-art WPF models and their application to power systems operations. We first give a detailed description of the methodologies underlying state-of-the-art WPF models. We then look at how WPF can be integrated into power system operations, with specific focus on the unit commitment problem.

  11. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    value of re- newable electricity; and customer surveys ofCalifornia or Northwestern electricity demand. This may bebetween wind speed and electricity demand," Solar Energy,

  12. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Broader source: Energy.gov (indexed) [DOE]

    Second Quarter 2012 edition of the Wind Program R&D Newsletter. The University of Colorado at Denver and the Wirth Chair awarded the Energy Department's National Renewable Energy...

  13. Opportunities and Challenges for Data Center Demand Response

    E-Print Network [OSTI]

    Wierman, Adam

    Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

  14. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliability TechnologyRenewal Individual Permit Renewal

  15. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable! Activities

  16. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In 2007, Minnesota legislation modified the state's existing non-mandated renewable energy objective, creating a mandatory renewable portfolio standard (RPS) called the Renewable Energy Standard ...

  17. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  18. The role of renewable energy in climate stabilization: results from the EMF27

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The role of renewable energy in climate stabilization: results from the EMF27 scenarios Gunnar the role of renewable energy in climate change mitigation. Renewables currently supply approximately 18, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive

  19. Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector

    E-Print Network [OSTI]

    Risø Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector technologies and fuels based on renewable energy sources. Primary renewable energy sources and their conversion With the prominent exception of biomass, renewable energy resources--solar, wind, ocean, hydro--and nu- clear power

  20. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01T23:59:59.000Z

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  1. Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models

    E-Print Network [OSTI]

    Delarue, E.

    In several regions of the world, the share of intermittent renewables (such as wind and solar PV) in electricity generation is rapidly increasing. The current share of these renewable energy sources (RES) can still more ...

  2. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  3. Commercial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    heaters. The use of wind energy is projected based on an estimate of existing distributed wind turbines and the potential endogenous penetration of wind turbines in the commercial...

  4. Energy Efficiency and Renewable Energy Impacts on Emission Reductions

    E-Print Network [OSTI]

    Haberl,J; Bahman,Y.

    2014-01-01T23:59:59.000Z

    RENEWABLES Wind Papalote Creek Wind Farm near Taft, TX. ESL-KT-14-11-43 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 p. 67 Completed, Announced, and Retired Wind Projects in Texas, as of Dec. 2013 WIND PROJECTS IN TEXAS (2013...) ESL-KT-14-11-43 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 p. 68 Completed, Announced, and Retired Wind Projects in Texas, as of Dec. 2013 WIND PROJECTS IN TEXAS (2013) Wind Farms in ERCOT ERCOT: Electric Reliability...

  5. Renewable Energy 101 (Presentation)

    SciTech Connect (OSTI)

    Walker, A.

    2012-03-01T23:59:59.000Z

    Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

  6. Final Report - Wind and Hydro Energy Feasibility Study - June 2011

    SciTech Connect (OSTI)

    Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

    2011-06-17T23:59:59.000Z

    This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

  7. Hybrid Renewable Energy Investment in Microgrid Hao Wang, Jianwei Huang

    E-Print Network [OSTI]

    Huang, Jianwei

    between the utility company and consumers for a better demand side management, and decen- tralized. In the second period, the operator coordinates the power supply and demand in the microgrid to minimize that the demand response saves 18% of the capital investment, and hybrid renewable energy investment reduces

  8. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  9. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  10. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  11. The RenewElec Project: Variable Renewable Energy and the Power System

    SciTech Connect (OSTI)

    Apt, Jay

    2014-02-14T23:59:59.000Z

    Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

  12. Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and

    E-Print Network [OSTI]

    Morik, Katharina

    Statkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in Düsseldorf we are currently looking to hire a System Manager Renewable Energy. Share our passion for renewable energy and be a part of tomorrow's energy world. Your department

  13. Renewable Energy and Climate Change

    SciTech Connect (OSTI)

    Chum, H. L.

    2012-01-01T23:59:59.000Z

    The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as their integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.

  14. Mainstreaming New Renewable Energy Technologies

    E-Print Network [OSTI]

    Neuhoff, Karsten; Sellers, Rick

    , Germany, Source: Sustainable energy venture capital ETAP conference ”Financial instruments for sustainable innovations” Amsterdam 21-22.10 2004, Tarja Teppo Helsinki University of Technology, Finland and Rolf Wuestenhagen, University of St. Gallen... accepted that governments need to support RD&D. RD&D support should assist (a) early-s tage renewable energy technologies, e.g. solar concentration, (b) fundamentally new design approaches for other energy technologies, e.g. wind turbines with more...

  15. Vertical axis wind turbine acoustics

    E-Print Network [OSTI]

    Pearson, Charlie

    2014-04-08T23:59:59.000Z

    change, there is a strong urge to move away from fossil fuel driven economies to a more sustainable energy supply with renewable power at its core. The UK has embodied its ambition for more green power generation in a series of legally binding obligations... in the UK over the last 12 years [Renewable UK, 2012b]. The UK has the best wind resource of any country in Europe [Renewable UK, 2012a, p.3] and, with the support of government subsidies, has seen rapid growth in the amount of installed wind generating...

  16. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  17. Utility Integrated Resource Planning: An Emerging Driver of NewRenewable Generation in the Western United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-09-25T23:59:59.000Z

    In the United States, markets for renewable generation--especially wind power--have grown substantially in recent years. This growth is typically attributed to technology improvements and resulting cost reductions, the availability of federal tax incentives, and aggressive state policy efforts. But another less widely recognized driver of new renewable generation is poised to play a major role in the coming years: utility integrated resource planning (IRP). Common in the late-1980s to mid-1990s, but relegated to lesser importance as many states took steps to restructure their electricity markets in the late-1990s, IRP has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions such as the western United States, where retail competition has failed to take root. As practiced in the United States, IRP is a formal process by which utilities analyze the costs, benefits, and risks of all resources available to them--both supply- and demand-side--with the ultimate goal of identifying a portfolio of resources that meets their future needs at lowest cost and/or risk. Though the content of any specific utility IRP is unique, all are built on a common basic framework: (1) development of peak demand and load forecasts; (2) assessment of how these forecasts compare to existing and committed generation resources; (3) identification and characterization of various resource portfolios as candidates to fill a projected resource deficiency; (4) analysis of these different ''candidate'' resource portfolios under base-case and alternative future scenarios; and finally, (5) selection of a preferred portfolio, and creation of a near-term action plan to begin to move towards that portfolio. Renewable resources were once rarely considered seriously in utility IRP. In the western United States, however, the most recent resource plans call for a significant amount of new wind power capacity. These planned additions appear to be motivated by the improved economics of wind power, an emerging understanding that wind integration costs are manageable, and a growing acceptance of wind by electric utilities. Equally important, utility IRPs are increasingly recognizing the inherent risks in fossil-based generation portfolios--especially natural gas price risk and the financial risk of future carbon regulation--and the benefits of renewable energy in mitigating those risks. This article, which is based on a longer report from Berkeley Lab,i examines how twelve investor-owned utilities (IOUs) in the western United States--Avista, Idaho Power, NorthWestern Energy (NWE), Portland General Electric (PGE), Puget Sound Energy (PSE), PacifiCorp, Public Service Company of Colorado (PSCo), Nevada Power, Sierra Pacific, Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E)--treat renewable energy in their most recent resource plans (as of July 2005). In aggregate, these twelve utilities supply approximately half of all electricity demand in the western United States. In reviewing these plans, our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable generation in the United States, and (2) to suggest possible improvements to the methods used to evaluate renewable generation as a resource option. As such, we begin by summarizing the amount and types of new renewable generation planned as a result of these twelve IRPs. We then offer observations about the IRP process, and how it might be improved to more objectively evaluate renewable resources.

  18. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15T23:59:59.000Z

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

  19. Purchasing Renewable Power | Department of Energy

    Energy Savers [EERE]

    Products & Technologies Renewable Energy Purchasing Renewable Power Purchasing Renewable Power Federal agencies can purchase renewable power or renewable energy certificates...

  20. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the

    E-Print Network [OSTI]

    Ciucu, Florin

    . Low, Fellow, IEEE Abstract--Renewable energy such as solar and wind generation will constitute sources to reduce the carbon footprint. A challenge, however, of solar and wind generation

  1. A preliminary benefit-cost study of a Sandia wind farm.

    SciTech Connect (OSTI)

    Ehlen, Mark Andrew; Griffin, Taylor; Loose, Verne W.

    2011-03-01T23:59:59.000Z

    In response to federal mandates and incentives for renewable energy, Sandia National Laboratories conducted a feasibility study of installing an on-site wind farm on Sandia National Laboratories and Kirtland Air Force Base property. This report describes this preliminary analysis of the costs and benefits of installing and operating a 15-turbine, 30-MW-capacity wind farm that delivers an estimated 16 percent of 2010 onsite demand. The report first describes market and non-market economic costs and benefits associated with operating a wind farm, and then uses a standard life-cycle costing and benefit-cost framework to estimate the costs and benefits of a wind farm. Based on these 'best-estimates' of costs and benefits and on factor, uncertainty and sensitivity analysis, the analysis results suggest that the benefits of a Sandia wind farm are greater than its costs. The analysis techniques used herein are applicable to the economic assessment of most if not all forms of renewable energy.

  2. Sandia National Laboratories: wind-turbine blade construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind-turbine blade construction Composite-Materials Fatigue Database Updated On January 22, 2014, in Energy, Materials Science, News, News & Events, Partnership, Renewable Energy,...

  3. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)...

    Office of Scientific and Technical Information (OSTI)

    Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is...

  4. Offshore Wind Jobs and Economic Development Impacts in the United...

    Broader source: Energy.gov (indexed) [DOE]

    early201202061111769109 Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A. (2012). 2010 Cost of Wind Energy Review. NRELTP-5000-52920. National Renewable...

  5. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from industry, trade organizations, and various level of government could foster university programs that prepare the work force for careers in wind and renewable energy technology...

  6. Sandia National Laboratories: Scaled Wind Farm Technologies Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Facility Scaled Wind Farm Technology Facility Baselining Project Accelerates Work On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership, Renewable...

  7. Exploring the Wind Manufacturing Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Energy Efficiency and Renewable Energy. Addthis Related Articles This map shows wind potential capacity for turbine hub heights at 140 meters. Mapping the Frontier of New...

  8. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Energy Savers [EERE]

    systems cost. Suzanne Tegen, National Renewable Energy Laboratory (NREL): Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios. This presentation...

  9. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01T23:59:59.000Z

    U.S. Department of Energy (DOE). 2008. “20% Wind Energy by2030: Increasing Wind Energy’s Contribution to U.S.targets. Keywords: Wind energy, renewable energy, cost

  10. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    Huei. 2005. Primer on Wind Power for Utility Applications.Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analysesof Long-Term Wind Power Data. National Renewable Energy Lab

  11. Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties

    E-Print Network [OSTI]

    Brown, Jason P.

    2014-01-01T23:59:59.000Z

    use requirements of modern wind power plants in the United2002. Economic impacts of wind power in Kittitas County:Office, 2004. Renewable energy: Wind power’s contribution to

  12. A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROM MAJOR TRANSMISSION PLANNING EFFORTS

    E-Print Network [OSTI]

    Mills, Andrew; Wiser, Ryan; Porter, Kevin

    2007-01-01T23:59:59.000Z

    179c/179c9e0086c0.pdf National Wind CoordinatingTransmission Planning and Wind Energy. Issue Brief. August.and Renewable Energy, Wind & Hydropower Technologies Program

  13. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30T23:59:59.000Z

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  14. Hydraulic Wind Power Transfer Technology Afshin Izadian

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Hydraulic Wind Power Transfer Technology Afshin Izadian Purdue School of Engineering and Technology of renewable energy tax credits in general and a gap in wind energy breakthroughs in particular have caused high cost of wind energy and technological dependency on countries such as China and Germany. Reducing

  15. Human dimensions perspectives on the impacts of coastal zone marine renewable energy

    E-Print Network [OSTI]

    Pomeroy, Caroline; Conway, Flaxen; Hall-Arber, Madeleine

    2013-01-01T23:59:59.000Z

    Continental Shelf Renewable Energy Space-Use Conflicts andpotential space-use conflicts between offshore renewablerenewable en- ergy, with their demand for extensive, exclusive space,

  16. Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    E-Print Network [OSTI]

    He, Miao; Zhang, Junshan

    2010-01-01T23:59:59.000Z

    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

  17. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Energy Savers [EERE]

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity,...

  18. Novera Renewable Energy formerly Novera Macquarie Renewable Energy...

    Open Energy Info (EERE)

    Novera Renewable Energy formerly Novera Macquarie Renewable Energy Limited NMRE Jump to: navigation, search Name: Novera Renewable Energy (formerly Novera Macquarie Renewable...

  19. DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable Natural Gas for Vehicles, and More DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

  20. Renewable Energy Certificate Program

    SciTech Connect (OSTI)

    Gwendolyn S. Andersen

    2012-07-17T23:59:59.000Z

    This project was primarily to develop and implement a curriculum which will train undergraduate and graduate students at the University seeking a degree as well as training for enrollees in a special certification program to prepare individuals to be employed in a broad range of occupations in the field of renewable energy and energy conservation. Curriculum development was by teams of Saint Francis University Faculty in the Business Administration and Science Departments and industry experts. Students seeking undergraduate and graduate degrees are able to enroll in courses offered within these departments which will combine theory and hands-on training in the various elements of wind power development. For example, the business department curriculum areas include economic modeling, finance, contracting, etc. The science areas include meteorology, energy conversion and projection, species identification, habitat protection, field data collection and analysis, etc.

  1. Federal Wind Energy Assistance through NREL (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

  2. CHALLENGES OF INTEGRATING LARGE AMOUNTS OF WIND Jonathan D. Rose

    E-Print Network [OSTI]

    Hiskens, Ian A.

    renewable source of energy. WIND: A NEW PLAYER The wind industry has seen explosive growth in the last eight congested. During times of heavy load (heavy electricity usage), power lines approach their operating limits

  3. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

  4. Western Employee Presents Wind Award to Minnkota | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Western Employee Presents Wind Award to Minnkota Western Employee Presents Wind Award to Minnkota April 7, 2011 - 2:47pm Addthis Randy Manion Director of Renewable Energy, Western...

  5. Summary Report of Wind Farm Data: September 2008

    SciTech Connect (OSTI)

    Wan, Y. H.

    2009-05-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) began a project to collect wind power plant output data from several large commercial wind plants during the spring of 2000. This data is summarized in this report.

  6. Wind farms, peatlands and aquatic fluxes of carbon,

    E-Print Network [OSTI]

    Heal, Kate

    of 100% of Scotland's own electricity from renewables by 2020" Whitelee wind farm #12;Impacts of wind Soluble reactive phosphorus SRP impacted in WL13 (Drumtee) Oct. 07- summer 2010 Good / High Poor Moderate

  7. Lessons Learned: Milwaukee’s Wind Turbine Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

  8. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    Policies for Renewable Energy-the example of China‘s windframework,? Energy Policy 32 (2004): ?PR China,? Global WindWind Power in China: Policy and development challenges,? Energy Policy

  9. Sandia National Laboratories: how wind-turbine wakes interact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy, SWIFT, Wind Energy One of the primary roles of Sandia's Scaled Wind Farm Technology (SWiFT) facility will be to conduct detailed experiments on turbine wakes...

  10. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account ...

  11. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to ...

  12. Communication Systems for Grid Integration of Renewable Energy Resources

    E-Print Network [OSTI]

    Yu, F Richard; Xiao, Weidong; Choudhury, Paul

    2011-01-01T23:59:59.000Z

    There is growing interest in renewable energy around the world. Since most renewable sources are intermittent in nature, it is a challenging task to integrate renewable energy resources into the power grid infrastructure. In this grid integration, communication systems are crucial technologies, which enable the accommodation of distributed renewable energy generation and play extremely important role in monitoring, operating, and protecting both renewable energy generators and power systems. In this paper, we review some communication technologies available for grid integration of renewable energy resources. Then, we present the communication systems used in a real renewable energy project, Bear Mountain Wind Farm (BMW) in British Columbia, Canada. In addition, we present the communication systems used in Photovoltaic Power Systems (PPS). Finally, we outline some research challenges and possible solutions about the communication systems for grid integration of renewable energy resources.

  13. Topic 5: Renewable Power 1Networking and Distributed Systems

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    . · Desired choices (Renewable Sources): · Marine: Wave and Tidal · PV: Solar · Wind · Hydro #12;Carbon Tax Dr: ·Are influenced by the alignment of the sun and moon. #12;Tidal Energ

  14. Effective Renewable Energy Policy: Leave It to the States?

    E-Print Network [OSTI]

    Weissman, Steven

    2011-01-01T23:59:59.000Z

    count large-scale hydroelectric power as renewable for theas large-scale hydroelectric, nuclear power, and natural gaspower is generated with solar heat, photovoltaics, wind, geothermal heat, small hydroelectric

  15. Eastern Renewable Generation Integration Study: Initial Results (Poster)

    SciTech Connect (OSTI)

    Bloom, A.; Townsend, A.; Hummon, M.; Weekley, A.; Clark, K.; King, J.

    2013-10-01T23:59:59.000Z

    This poster presents an overview of the Eastern Renewable Generation Integration Study, which aims to answer critical questions about the future of the Eastern Interconnection under high levels of solar and wind generation penetration.

  16. How to Estimate the Economic Impacts from Renewable Energy

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Technical Assistance Project (TAP) for state and local officials; Gail Mosey and Eric Lantz, National Renewable Energy Laboratory; Jobs and Economic Development Impacts (JEDI) Wind Model.

  17. AEP Ohio - Renewable Energy Technology Program | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    watt Wind: 0.275kWh (estimated annual performance) Provider AEP Ohio As part of the Renewable Energy Technology (RET) Program, AEP Ohio offers incentives to customers that...

  18. Idaho Power Develops Renewable Integration Tool for More Cost...

    Broader source: Energy.gov (indexed) [DOE]

    developed a Renewables Integration Tool (RIT) that enables grid operators to use wind energy more cost-effectively to serve electricity customers in Idaho and Oregon. The tool was...

  19. For more than 30 years, the National Renewable

    E-Print Network [OSTI]

    For more than 30 years, the National Renewable Energy Laboratory (NREL) has advanced the science and increase the performance and reliability of solar, wind, biomass, and geothermal systems; building

  20. The impacts of climate changes in the renewable energy resources in the Caribbean region

    SciTech Connect (OSTI)

    Erickson III, David J [ORNL

    2010-02-01T23:59:59.000Z

    Assessment of renewable energy resources such as surface solar radiation and wind current has great relevance in the development of local and regional energy policies. This paper examines the variability and availability of these resources as a function of possible climate changes for the Caribbean region. Global climate changes have been reported in the last decades, causing changes in the atmospheric dynamics, which affects the net solar radiation balance at the surface and the wind strength and direction. For this investigation, the future climate changes for the Caribbean are predicted using the parallel climate model (PCM) and it is coupled with the numerical model regional atmospheric modeling system (RAMS) to simulate the solar and wind energy spatial patterns changes for the specific case of the island of Puerto Rico. Numerical results from PCM indicate that the Caribbean basin from 2041 to 2055 will experience a slight decrease in the net surface solar radiation (with respect to the years 1996-2010), which is more pronounced in the western Caribbean sea. Results also indicate that the easterly winds have a tendency to increase in its magnitude, especially from the years 2070 to 2098. The regional model showed that important areas to collect solar energy are located in the eastern side of Puerto Rico, while the more intense wind speed is placed around the coast. A future climate change is expected in the Caribbean that will result in higher energy demands, but both renewable energy sources will have enough intensity to be used in the future as alternative energy resources to mitigate future climate changes.

  1. Intergrated Nox Emissions Reductions from Energy Efficiency and Renewable Energy (EE/RE) Programs across State Agencies in Texas

    E-Print Network [OSTI]

    Baltazar, J.C.; Haberl, J.; Yazdani, B.

    2014-01-01T23:59:59.000Z

    Landfill Gas McCommas Bluff Landfill, Dallas, TX Biomass Aspen Power Biomass Plant, Lufkin, TX Ground Source Heat Pump Geothermal SAVINGS FROM RENEWABLES Wind Green Mountain Energy Wind Farm, Fluvanna, Texas p. 12 INTERNATIONAL CONFERENCE FOR ENHANCED... Renewables: Biomass, Hydro, Landfill Gas, Solar, Wind Wind energy is the largest portion Solar has considerable increased over 2013 Biomass Solar Landfill Hydro Excluding Wind Steady in Landfill over 2013 Considerable decreased in hydro over 2013 Also...

  2. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14T23:59:59.000Z

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  3. Long-Term Wind Power Variability

    SciTech Connect (OSTI)

    Wan, Y. H.

    2012-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  4. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Systems On November 4, 2010, in Renewable Systems Renewable Energy Transportation Nuclear Fossil Energy Efficiency Publications Events News Renewable Systems The...

  5. Taking stock of renewables: NREL teaches farm and ranch appliations

    SciTech Connect (OSTI)

    Marsh, M.G. [NREL, Golden, CO (United States)

    1996-09-01T23:59:59.000Z

    NREL workshop leaders find a receptive audience for renewable energy technologies among farmers and ranchers. As an exhibitor/participant in Denver`s National Western Stock Show, the National Renewable Energy Laboratory (NREL) of Golden, Colorado sponsored an educational workshop to demonstrate applications of solar and wind energy on the farm and ranch, offering a very non-traditional energy approach to people who pride themselves in tradition. This article describes solar and wind energy applications to farms and ranches.

  6. Renewable energy in Hawaii--Lessons learned

    SciTech Connect (OSTI)

    Hubbard, H.M.; Totto, L.; Harvison, D. [Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-11-01T23:59:59.000Z

    Hawaii`s extensive renewable resources and limited access to conventional fuels has, in a sense, created a natural environment for the development and implementation of renewable energy processes, technologies, and materials. Aside from its traditional combustion of bagasse at sugar mills, Hawaii has invested in a wide range of renewable energy technologies, including municipal waste-to-energy incineration, hydropower, wind energy, solar photovoltaic (PV), small-scale solar, geothermal, and innovative hybrid wind/diesel and wind/pumped hydro systems. While regarded as a leader in the field of renewable energy, Hawaii`s pioneering approach has generally focused on research and development rather on implementation and commercialization. Despite being a front-runner in the utilization of a number of renewable energy resources, Hawaii`s dependence on petroleum continues to be among the highest in the United States. In 1990, petroleum constituted 92% of Hawaii`s energy supply in contrast to renewable energy`s contribution of 8%. The introduction of coal-fired electricity generation in 1992 has helped to diversify the energy base and decrease the share of oil. But, coal`s low fuel costs may also impact negatively on the prospects for renewable energy. The combination of the impending decline of sugarcane and the growing concerns for the islands` energy and environmental security is changing Hawaii`s energy landscape. While a number of traditional options may be phased out over the next few years, the emergence of new prospects holds considerable promise for an expanded role for renewable energy in the future.

  7. Renewable Power Options for Electricity Generation on Kauai...

    Energy Savers [EERE]

    this demand growth, however they are not modeled in HOMER. 2.6 Renewable Energy Model Development PV Size and Energy Storage Assumptions The cost of PV varies widely across the...

  8. San Antonio City Public Service (CPS Energy)- Renewables Portfolio Goal

    Broader source: Energy.gov [DOE]

    In 2003 San Antonio's municipal electric utility, City Public Service (CPS Energy) established a goal of meeting 15% of its electrical peak demand with renewable energy by 2020 under its Strategic...

  9. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    technology analysis Noon Lunch 1:15 California off-shore wind technology assessment 1:45 Technical assessmentRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

  10. Summary of RENEW seed grant awards September 12, 2014

    E-Print Network [OSTI]

    Krovi, Venkat

    of these emerging contaminants. Additional research will address the design and efficiency of ENMs for solar energy of renewable energy resources like wind and solar. The project will examine the development of laws that favorSummary of RENEW seed grant awards September 12, 2014 Collaborations for Understanding the Removal

  11. IPCC Special Report on Renewable Energy Sources and Climate Change

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Chapter 4 Geothermal Energy Chapter 5 Hydropower Chapter 6 Ocean Energy Chapter 7 Wind Energy Chapter 8#12;IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Edited Summary Chapter 1 Renewable Energy and Climate Change Chapter 2 Bioenergy Chapter 3 Direct Solar Energy

  12. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

  13. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

  14. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect (OSTI)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K.; Venkatech, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-30T23:59:59.000Z

    The Renewable Energy and Efficiency Modeling and Analysis Partnership (REMAP) sponsors ongoing workshops to discuss individual 'renewable' technologies, energy/economic modeling, and - to some extent - policy issues related to renewable energy. Since 2002, the group has organized seven workshops, each focusing on a different renewable technology (geothermal, solar, wind, etc.). These workshops originated and continue to be run under an informal partnership of the Environmental Protection Agency (EPA), the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE), the National Renewable Energy Laboratory (NREL), and the American Council on Renewable Energy (ACORE). EPA originally funded the activities, but support is now shared between EPA and EERE. REMAP has a wide range of participating analysts and models/modelers that come from government, the private sector, and academia. Modelers include staff from the Energy Information Administration (EIA), the American Council for an Energy-Efficient Economy (ACEEE), NREL, EPA, Resources for the Future (RFF), Argonne National Laboratory (ANL), Northeast States for Coordinated Air Use Management (NESCAUM), Regional Economic Models Inc. (REMI), ICF International, OnLocation Inc., and Boston University. The working group has more than 40 members, which also includes representatives from DOE, Lawrence Berkeley National Laboratory (LBNL), Union of Concerned Scientists (UCS), Massachusetts Renewable Energy Trust, Federal Energy Regulatory Commission (FERC), and ACORE. This report summarizes the activities and findings of the REMAP activity that started in late 2006 with a kickoff meeting, and concluded in mid-2008 with presentations of final results. As the project evolved, the group compared results across models and across technologies rather than just examining a specific technology or activity. The overall goal was to better understand how and why different energy models give similar and/or different answers in response to a set of focused energy-related questions. The focus was on understanding reasons for model differences, not on policy implications, even though a policy of high renewable penetration was used for the analysis. A group process was used to identify the potential question (or questions) to be addressed through the project. In late 2006, increasing renewable energy penetration in the electricity sector was chosen from among several options as the general policy to model. From this framework, the analysts chose a renewable portfolio standard (RPS) as the way to implement the required renewable energy market penetration in the models. An RPS was chosen because it was (i) of interest and represented the group's consensus choice, and (ii) tractable and not too burdensome for the modelers. Because the modelers and analysts were largely using their own resources, it was important to consider the degree of effort required. In fact, several of the modelers who started this process had to discontinue participation because of other demands on their time. Federal and state RPS policy is an area of active political interest and debate. Recognizing this, participants used this exercise to gain insight into energy model structure and performance. The results are not intended to provide any particular insight into policy design or be used for policy advocacy, and participants are not expected to form a policy stance based on the outcomes of the modeling. The goals of this REMAP project - in terms of the main topic of renewable penetration - were to: (1) Compare models and understand why they may give different results to the same question, (2) Improve the rigor and consistency of assumptions used across models, and (3) Evaluate the ability of models to measure the impacts of high renewable-penetration scenarios.

  15. renewable energy | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable energy renewable energy Leads No leads are available at this time. Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions. Abstract:...

  16. Climate change and renewable energy portfolios 

    E-Print Network [OSTI]

    Burnett, Dougal James

    2012-06-25T23:59:59.000Z

    The UK has a commitment to reduce greenhouse gases by at least 80% from 1990 levels by 2050. This will see the proportion of energy generated in the UK from renewable resources such as wind, solar, marine and bio-fuels ...

  17. RENEWABLE ENERGY SOURCES Antonia V. Herzog

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , Geothermal Energy, Hydropower, Wind Energy, Climate Change, Clean Energy Technologies, Learning Curve, Market Impacts 5.5. Conclusions 6. Geothermal Energy 6.1. Introduction 6.2. Capacity and Potential 61 RENEWABLE ENERGY SOURCES Antonia V. Herzog Timothy E. Lipman Daniel M. Kammen Energy

  18. PREPARED FOR: The National Renewable Energy Laboratory

    E-Print Network [OSTI]

    Wind and solar integration study May 2010 Prepared for NREL by GE Energy 1 River Road Schenectady, New York 12345PREPARED FOR: The National Renewable Energy Laboratory A national laboratory of the U.S. Department of Energy PREPARED BY: GE Energy MAY 2010 WESTERNWIND AND SOLAR INTEGRATION STUDY #12;#12;Western

  19. Analysis of recent projections of electric power demand

    SciTech Connect (OSTI)

    Hudson, D.V. Jr.

    1993-08-01T23:59:59.000Z

    This report reviews the changes and potential changes in the outlook for electric power demand since the publication of Review and Analysis of Electricity Supply Market Projections (B. Swezey, SERI/MR-360-3322, National Renewable Energy Laboratory). Forecasts of the following organizations were reviewed: DOE/Energy Information Administration, DOE/Policy Office, DRI/McGraw-Hill, North American Electric Reliability Council, and Gas Research Institute. Supply uncertainty was briefly reviewed to place the uncertainties of the demand outlook in perspective. Also discussed were opportunities for modular technologies, such as renewable energy technologies, to fill a potential gap in energy demand and supply.

  20. Satisfiability of Elastic Demand in the Smart Grid

    E-Print Network [OSTI]

    Tomozei, Dan-Cristian

    2010-01-01T23:59:59.000Z

    We study a stochastic model of electricity production and consumption where appliances are adaptive and adjust their consumption to the available production, by delaying their demand and possibly using batteries. The model incorporates production volatility due to renewables, ramp-up time, uncertainty about actual demand versus planned production, delayed and evaporated demand due to adaptation to insufficient supply. We study whether threshold policies stabilize the system. The proofs use Markov chain theory on general state space.

  1. NorthWinds Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View New PagesRiver

  2. Pathfinder Renewable Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits Pvt Ltd JumpPassadumkeag,Patchogue,

  3. Some Joules Are More Precious Than Others: Managing Renewable Energy in the Datacenter

    E-Print Network [OSTI]

    Shen, Kai

    Some Joules Are More Precious Than Others: Managing Renewable Energy in the Datacenter Christopher to data mining. Increasingly, these datacenters use renewable energy from wind tur- bines or solar panels not take full advantage of renewables. For instance, energy-efficient management may batch writes so disks

  4. A Method to Study the Effect of Renewable Resource Variability on Power System Dynamics

    E-Print Network [OSTI]

    Liberzon, Daniel

    1 A Method to Study the Effect of Renewable Resource Variability on Power System Dynamics Yu reliance on renewable resources, such as wind or solar. It is well known that the integration proposes a set-theoretic method to assess the effect of variability associated with renewable-based elec

  5. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix K RENEWABLE RESOURCE CONFIRMATION AGENDA

    E-Print Network [OSTI]

    RESOURCE CONFIRMATION AGENDA The renewable resource confirmation agenda is a set of coordinated research and wind resources. The activities include resource assessment, conflict resolution and renewable-power objectives. Table K-1 Status and Recommendations Regarding the Renewable Resources Confirmation Agenda

  6. Combining a Renewable Portfolio Standard with a Cap-and-Trade Policy: A General Equilibrium Analysis

    E-Print Network [OSTI]

    renewable sources such as wind, solar, and biomass. I use a computable general equilibrium (CGE) modelCombining a Renewable Portfolio Standard with a Cap-and-Trade Policy: A General Equilibrium, Technology and Policy Program #12;#12;3 Combining a Renewable Portfolio Standard with a Cap-and-Trade Policy

  7. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund Renewable energy Wind powerQ1 a b s t r a c t Large-scale sustainable energy systems will be necessary replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy

  8. Development of renewable energy Challenges for the electrical grids

    E-Print Network [OSTI]

    Canet, Léonie

    , Geothermal energy... · The Voice of the Renewable Energy sector for Government & public authorities, TSOs energy consumption · Electricity : new RES capacities ­ 19 000 MW onshore wind ­ 6 000 MW offshore wind #12;RES Development Objectives (Electricity) Objectif 2020 : RES in global energy consumption 2010

  9. DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

  10. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA Control Areas CO 2 Carbon Dioxide CHP Combined Heat and Power CPP Critical Peak Pricing DG Distributed Generation DOE Department of Energy DR Demand Response DRCC Demand...

  11. Please cite this article in press as: Hughes L, Meeting residential space heating demand with wind-generated electricity, Renewable Energy (2009), doi:10.1016/j.renene.2009.11.014

    E-Print Network [OSTI]

    Hughes, Larry

    2009-01-01T23:59:59.000Z

    supplier ranging from grid stability to resource scheduling (E.ON 2005, Georgilakis 2008). Intermittency

  12. Wind Turbine Drivetrain Condition Monitoring - An Overview

    SciTech Connect (OSTI)

    Sheng, S; Veers, P.

    2011-10-01T23:59:59.000Z

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  13. Webinar: Tapping Into Wind in Urban Environments

    Broader source: Energy.gov [DOE]

    This live webinar presented by DOE on "Community Renewable Energy Success Stories: Tapping into Wind in Urban Environments" will take place on Tuesday, September 18, 2012, from 3:00 – 4:15 p.m....

  14. REAP Islanded Grid Wind Power Conference

    Broader source: Energy.gov [DOE]

    Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments through expert panel discussions, stakeholder dialogue, and training.

  15. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  16. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  17. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  18. Purchasing Renewable Power

    Broader source: Energy.gov [DOE]

    Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited.

  19. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  20. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    for and receive production incentives, referred to as supplemental energy payments (SEPs), from the New RenewableCALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable

  1. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  2. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  3. Western Region Renewable Energy Markets: Implications for the Bureau of Land Management

    SciTech Connect (OSTI)

    Haase, S.; Billman, L.; Gelman, R.

    2012-01-01T23:59:59.000Z

    The purpose of this analysis is to provide the U.S. Department of the Interior (DOI) and the Bureau of Land Management (BLM) with an overview of renewable energy (RE) generation markets, transmission planning efforts, and the ongoing role of the BLM RE projects in the electricity markets of the 11 states (Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) that comprise the Western Electricity Coordinating Council (WECC) Region. This analysis focuses on the status of, and projections for, likely development of non-hydroelectric renewable electricity from solar (including photovoltaic [PV] and concentrating solar power [CSP]), wind, biomass and geothermal resources in these states. Absent new policy drivers and without the extension of the DOE loan guarantee program and Treasury's 1603 program, state RPS requirements are likely to remain a primary driver for new RE deployment in the western United States. Assuming no additional policy incentives are implemented, projected RE demand for the WECC states by 2020 is 134,000 GWh. Installed capacity to meet that demand will need to be within the range of 28,000-46,000 MW.

  4. Imperium Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatellite InterferometricImperium Renewables Jump

  5. The Impact of Climate Change on Electricity Demand in Thailand 

    E-Print Network [OSTI]

    Parkpoom, Suchao Jake

    2008-01-01T23:59:59.000Z

    Climate change is expected to lead to changes in ambient temperature, wind speed, humidity, precipitation and cloud cover. As electricity demand is closely influenced by these climatic variables, there is likely to be ...

  6. Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy an electricity storage for a 5000 inhabitants island supplied by both marine renewables (offshore wind and waves community. Key words: Wave energy, offshore wind turbines, marine energy 1 Introduction Marine renewables

  7. Foundations for an offshore wind turbine

    E-Print Network [OSTI]

    Kopp, Duncan Rath

    2010-01-01T23:59:59.000Z

    Worldwide energy demand is growing rapidly, and there is great interest in reducing the current reliance on fossil fuels for uses such as power generation, transportation, and manufacturing. Renewable energy sources, such ...

  8. Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,

    E-Print Network [OSTI]

    Shenoy, Prashant

    Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

  9. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  10. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  11. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewableAbout Key ActivitiesWhy EnergyWindPeer06 WindScience &

  12. The role of energy storage in accessing remote wind resources in the Midwest

    E-Print Network [OSTI]

    Jaramillo, Paulina

    with renewable energy could pro- vide part of the solution since most renewable technologies do not produce an increase in renewable capacity with incentives such as the federal production tax credit for wind power to 40% of generation coming from qualifying renewable resources (Database of State Incentives

  13. 22-10-071RES2020 Implementation of Wind power in

    E-Print Network [OSTI]

    22-10-071RES2020 Implementation of Wind power in RES2020-TIMES Poul Erik Grohnheit Systems Analysis costs ­ cost increase from wind · Elastic demand ­ consumer response to spot prices (cost of demand power: Use of time slices Analysis of hourly electricity demand and wind production for Denmark (east

  14. Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...

    Open Energy Info (EERE)

    Natural Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name: Natural Innovative Renewable Energy (formerly Northwest Iowa...

  15. American Institute of Aeronautics and Astronautics Wind Shear over Forested Areas

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    . Rogers* , James F. Manwell and Anthony F. Ellis Renewable Energy Research Laboratory, University The Renewable Energy Research Laboratory at the University of Massachusetts has been collecting data = wind speed at reference measurement height z = measurement height above ground zref = reference

  16. Optimal Power Procurement and Demand Response with Quality-of-Usage Guarantees

    E-Print Network [OSTI]

    Huang, Longbo

    1 Optimal Power Procurement and Demand Response with Quality-of-Usage Guarantees Longbo Huang, Jean the utility company to jointly perform power procurement and demand response so as to maximize the social are the inte- gration of renewable energy technologies [1] and the design of efficient user demand-response

  17. ECEEE 2005 SUMMER STUDY WHAT WORKS & WHO DELIVERS? 183 Local energy efficiency and demand-side

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ECEEE 2005 SUMMER STUDY ­ WHAT WORKS & WHO DELIVERS? 183 1,202 Local energy efficiency and demand be the basis for local energy policies and energy efficiency/demand-side management activities1, have been) activities in 1. DSM: Demand-Side Management; EE: energy efficiency (here, does not include renewable

  18. Multi-period Optimal Procurement and Demand Responses in the Presence of Uncertain Supply

    E-Print Network [OSTI]

    Low, Steven H.

    Smart Grid involves changes in both the demand side and supply side. On the supply side, more renewable energy will be integrated to reduce greenhouse gas emissions and other pollution. On the demand side, smarter demand management systems will be available to respond to the electricity price and improve

  19. Renewable Energy Powers Renewable Energy Lab, Employees

    E-Print Network [OSTI]

    electricity from wind-powered turbines near the Wyoming border. "We believe that wind power is a highly viable kilowatt Westinghouse turbine with a 142-foot rotor diameter. It is comparable in size to the turbines

  20. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.