Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

2

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

3

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

4

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

5

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

6

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

7

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

8

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

9

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

10

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

11

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

12

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

13

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

14

Residential Sector Demand Module 1998, Model Documentation  

Reports and Publications (EIA)

This is the fourth edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System (NEMS). It reflects changes made to themodule over the past year for the Annual Energy Outlook 1998. Since last year, severalnew end-use services were added to the module, including: Clothes washers,dishwashers, furnace fans, color televisions, and personal computers. Also, as with allNEMS modules, the forecast horizon has been extended to the year 2020.

John H. Cymbalsky

1998-01-01T23:59:59.000Z

15

Residential Sector Demand Module 1995, Model Documentation  

Reports and Publications (EIA)

This updated version of the NEMS Residential Module Documentation includes changesmade to the residential module for the production of the Annual Energy Outlook 1995.

John H. Cymbalsky

1995-03-01T23:59:59.000Z

16

Residential Sector Demand Module 2000, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

1999-12-01T23:59:59.000Z

17

Residential Sector Demand Module 2004, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2004-02-01T23:59:59.000Z

18

Residential Sector Demand Module 2001, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2000-12-01T23:59:59.000Z

19

Residential Sector Demand Module 2002, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2001-12-01T23:59:59.000Z

20

Residential Sector Demand Module 2005, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2005-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Residential Sector Demand Module 2003, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2003-01-01T23:59:59.000Z

22

Residential Sector Demand Module 2008, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2008-10-10T23:59:59.000Z

23

Residential Sector Demand Module 2006, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2006-03-01T23:59:59.000Z

24

Residential Sector Demand Module 2009, Model Documentation  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2009-05-01T23:59:59.000Z

25

Residential Sector Demand Module 1999, Model Documentation  

Reports and Publications (EIA)

This is the fifth edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System (NEMS). It reflects changes made to themodule over the past year for the Annual Energy Outlook 1999.

John H. Cymbalsky

1998-12-01T23:59:59.000Z

26

Residential Sector Demand Module 2007, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2007-04-26T23:59:59.000Z

27

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

28

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

29

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

30

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

31

Residential Demand Module of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

Residential Demand Module of the National Energy Modeling System: Model Documentation 2013 November 2013 Independent Statistics & Analysis ...

32

Industrial Demand Module (IDM) - 2002 EIA Models Directory  

U.S. Energy Information Administration (EIA)

The Industrial Demand Module incorporates three components: buildings; process and assembly; and boiler, steam, and cogeneration. Last Model Update:

33

Residential Sector Demand Module 1997, Model Documentation  

Reports and Publications (EIA)

This is the third edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System. It reflects changes made to the moduleover the past year for the Annual Energy Outlook 1997. Since last year, a subroutinewas added to the model which allows technology and fuel switching when space heaters,heat pump air conditioners, water heaters, stoves, and clothes dryers are retired in bothpre-1994 and post-1993 single-family homes. Also, a time-dependant function forcomputing the installed capital cost of equipment in new construction and the retail costof replacement equipment in existing housing was added.

John H. Cymbalsky

1997-01-01T23:59:59.000Z

34

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

35

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

36

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

37

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

38

Commercial Demand Module of the National Energy Modeling System ...  

U.S. Energy Information Administration (EIA)

Commercial Demand Module of the National Energy Modeling System: Model Documentation 2012 November 2012 . Independent Statistics & Analysis . www.eia.gov

39

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

40

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

42

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

43

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

44

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

45

Multi-processor including data flow accelerator module  

DOE Patents (OSTI)

An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

Davidson, George S. (Albuquerque, NM); Pierce, Paul E. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

46

Copper laser modulator driving assembly including a magnetic compression laser  

DOE Patents (OSTI)

A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.

Cook, Edward G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Ball, Don G. (Livermore, CA)

1994-01-01T23:59:59.000Z

47

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

48

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

49

Model Documentation Report: Residential Demand Module of the ...  

U.S. Energy Information Administration (EIA)

rebates used in demand-side management programs), can be modified at the equipment level. Housing ... Residential retired equipment efficiencies of 2005 stock

50

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006; 7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process 773,574 10 9 2,709 10 19 Process Heating

51

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

52

Industrial Demand Module 1999, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

1999-01-01T23:59:59.000Z

53

Industrial Demand Module 2005, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2005-05-01T23:59:59.000Z

54

Industrial Demand Module 2006, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2006-07-01T23:59:59.000Z

55

Industrial Demand Module 2009, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2009-05-20T23:59:59.000Z

56

Industrial Demand Module 2003, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2003-12-01T23:59:59.000Z

57

Industrial Demand Module 2007, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2007-03-21T23:59:59.000Z

58

Industrial Demand Module 2002, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2001-12-01T23:59:59.000Z

59

Industrial Demand Module 2001, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2000-12-01T23:59:59.000Z

60

Industrial Demand Module 2008, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Industrial Demand Module 2000, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2000-01-01T23:59:59.000Z

62

Industrial Demand Module 2004, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2004-02-01T23:59:59.000Z

63

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

64

Industrial Demand Module 1998, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description ofthe NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in supportof its models (Public Law 94-385, section 57.b2). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

T. Crawford Honeycutt

1998-01-01T23:59:59.000Z

65

Model documentation report: Residential sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

NONE

1998-01-01T23:59:59.000Z

66

Thin film solar cell including a spatially modulated intrinsic layer  

SciTech Connect

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

67

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

68

Photovoltaic module kit including connector assembly for non-penetrating array installation  

Science Conference Proceedings (OSTI)

A PV module kit for non-penetrating rooftop installation, including a plurality of PV modules and a plurality of connectors. Each of the PV modules includes a PV laminate and a frame forming a mounting region assembled thereto. The connectors include a male connector having a male fastener extending from a head, and a female connector having a female fastener assembled within a head. The heads are entirely formed of plastic. The kit provides a mounted array state including a junction at which the mounting region of at least two of the PV modules are aligned and interconnected by engagement of the male connector with the female connector. The so-formed junction is substantially electrically insulated. The plurality of connectors can further include a spacer connector including a head forming a bore sized to slidably receive the male fastener, with all of the connector heads being identical.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA); Culligan, Matthew (Berkeley, CA)

2011-11-22T23:59:59.000Z

69

Photovoltaic module kit including connector assembly for non-penetrating array installation  

DOE Patents (OSTI)

A PV module kit for non-penetrating rooftop installation, including a plurality of PV modules and a plurality of connectors. Each of the PV modules includes a PV laminate and a frame forming a mounting region assembled thereto. The connectors include a male connector having a male fastener extending from a head, and a female connector having a female fastener assembled within a head. The heads are entirely formed of plastic. The kit provides a mounted array state including a junction at which the mounting region of at least two of the PV modules are aligned and interconnected by engagement of the male connector with the female connector. The so-formed junction is substantially electrically insulated. The plurality of connectors can further include a spacer connector including a head forming a bore sized to slidably receive the male fastener, with all of the connector heads being identical.

Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

2012-10-23T23:59:59.000Z

70

Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING NNSA) FEDERAL EMPLOYEES Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING NNSA) FEDERAL EMPLOYEES The familiar level of this module is divided into two sections. In the first section, we will discuss the objective, requirements, and the responsibilities assigned to the heads of field elements. In the second section, we will discuss the content of attachment 1, Functional Area Requirements. We have provided examples and a practice to help familiarize you with the material. The practice will also help prepare you for the criterion test. DOE Order Self Study Modules - DOE O 440.1B, Worker Protection Management for DOE (Including the National Nuclear Security Administration) Federal

71

THERMOMECHANICS OF PV MODULES INCLUDING THE VISCOELASTICITY OF EVA Ulrich Eitner1,  

E-Print Network (OSTI)

in the cell distance is 170µm. Keywords: PV module, Encapsulation, Simulation, Reliability, Mechanics 1THERMOMECHANICS OF PV MODULES INCLUDING THE VISCOELASTICITY OF EVA Ulrich Eitner1, *, Matthias by a comparison to displacement experiments where the thermomechanical deformation of solar cells in a PV laminate

72

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3

73

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

74

Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

40.1B, WORKER PROTECTION PROGRAM FOR DOE 40.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING NNSA) FEDERAL EMPLOYEES Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING NNSA) FEDERAL EMPLOYEES The familiar level of this module is divided into two sections. In the first section, we will discuss the objective, requirements, and the responsibilities assigned to the heads of field elements. In the second section, we will discuss the content of attachment 1, Functional Area Requirements. We have provided examples and a practice to help familiarize you with the material. The practice will also help prepare you for the criterion test. DOE Order Self Study Modules - DOE O 440.1B, Worker Protection Management for DOE (Including the National Nuclear Security Administration) Federal Employees

75

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

76

Model documentation report: Residential sector demand module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1997-01-01T23:59:59.000Z

77

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

78

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

79

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

80

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

D:\assumptions_2001\assumptions2002\currentassump\demand.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Petroleum Market Module. . . . . . . . . . . . .

82

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

83

Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

NA NA 0.000 Diesel Engine II: integrated starteralternator with idle off and limited regenerative breaking 2005 1500.00 0.050 2005 1200.00 0.050 NA NA 0.000 Diesel Engine...

84

Residential Demand Module...................................................................................................................... 27  

E-Print Network (OSTI)

analytical agency within the U.S. Department of Energy. By law, EIAs data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

unknown authors

2013-01-01T23:59:59.000Z

85

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

86

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

87

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

88

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

89

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

90

Demand Trading: Building Liquidity  

Science Conference Proceedings (OSTI)

Demand trading holds substantial promise as a mechanism for efficiently integrating demand-response resources into regional power markets. However, regulatory uncertainty, the lack of proper price signals, limited progress toward standardization, problems in supply-side markets, and other factors have produced illiquidity in demand-trading markets and stalled the expansion of demand-response resources. This report shows how key obstacles to demand trading can be overcome, including how to remove the unce...

2002-11-27T23:59:59.000Z

91

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

92

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

93

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

94

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

95

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

96

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

97

DOE Order Self Study Modules - DOE O 440.1B, Worker Protection Management for DOE (Including the National Nuclear Security Administration) Federal Employees  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0.1B 0.1B WORKER PROTECTION PROGRAM FOR DOE (INCLUDING THE NATIONAL NUCLEAR SECURITY ADMINISTRATION) FEDERAL EMPLOYEES DOE O 440.1B Familiar Level June 2011 1 DOE O 440.1B WORKER PROTECTION MANAGEMENT FOR DOE (INCLUDING THE NATIONAL NUCLEAR SECURITY ADMINISTRATION) FEDERAL EMPLOYEES FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are the objectives of DOE O 440.1B? 2. What are the requirements that DOE elements must meet according to DOE O 440.1B? 3. What is the hazard prevention/abatement process that must be implemented according to DOE O 440.1B? 4. What are three responsibilities assigned by DOE O 440.1B for heads of field elements?

98

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

99

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

100

Solar in Demand | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's...

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electrical Demand Management  

E-Print Network (OSTI)

The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below the previous year's level and yielded $150,000 annual savings. These measures include rescheduling of selected operations and demand limiting techniques such as fuel switching to alternate power sources during periods of high peak demand. For example, by rescheduling the startup of five heat treat annealing ovens to second shift, 950 kW of load was shifted off peak. Also, retired, non-productive steam turbine chillers and a diesel air compressor have been effectively operated to displaced 1330 kW during peak periods each day. Installed metering devices have enabled the recognition of critical demand periods. The paper concludes with a brief look at future plans and long range objectives of the Demand Management Plan.

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

102

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

103

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

104

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

105

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

106

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

107

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

108

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

109

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

110

Automated Demand Response Today  

Science Conference Proceedings (OSTI)

Demand response (DR) has progressed over recent years beyond manual and semi-automated DR to include growing implementation and experience with fully automated demand response (AutoDR). AutoDR has been shown to be of great value over manual and semi-automated DR because it reduces the need for human interactions and decisions, and it increases the speed and reliability of the response. AutoDR, in turn, has evolved into the specification known as OpenADR v1.0 (California Energy Commission, PIER Program, C...

2012-03-29T23:59:59.000Z

111

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

112

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

113

Electricity Market Module of the National Energy Modeling System (Load And Demand Side Management Submodule Vol 2, Model Code, Model Documentation)  

Reports and Publications (EIA)

Volume II of the documentation contains the actual source code of the LDSM submodule, and the cross reference table of its variables. The code is divided into two parts. The first part contains the main part of thesource code. The second part lists the INCLUDE files referenced inside the main part of the code.

Joe Ayoub

114

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

115

NEMS integrating module documentation report  

Science Conference Proceedings (OSTI)

The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Not Available

1993-12-14T23:59:59.000Z

116

Demand Response Programs, 6. edition  

Science Conference Proceedings (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

117

Assumptions to the Annual Energy Outlook 1999 - Industrial Demand...  

Gasoline and Diesel Fuel Update (EIA)

industrial.gif (5205 bytes) The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing...

118

Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumption to the Annual Energy Outlook Petroleum Market Module Figure 8. Petroleum Administration for Defense Districts. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohols, ethers, and bioesters natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining

119

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 137 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

120

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 135 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

122

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

123

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

124

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

125

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

126

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

127

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers...

128

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

129

Module Configuration  

SciTech Connect

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D' Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

130

Assumptions to the Annual Energy Outlook 2002 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2002, DOE/EIA- M068(2002) January 2002. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

131

Assumptions to the Annual Energy Outlook 2001 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2001, DOE/EIA- M068(2001) January 2001. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

132

Solar in Demand | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar in Demand Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new study says U.S. developers are likely to install about 3,300 megawatts of solar panels in 2012 -- almost twice the amount installed last year. In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of

133

Forecasting the demand for commercial telecommunications satellites  

Science Conference Proceedings (OSTI)

This paper summarizes the key elements of a forecast methodology for predicting demand for commercial satellite services and the resulting demand for satellite hardware and launches. The paper discusses the characterization of satellite services into more than a dozen applications (including emerging satellite Internet applications) used by Futron Corporation in its forecasts. The paper discusses the relationship between demand for satellite services and demand for satellite hardware

Carissa Bryce Christensen; Carie A. Mullins; Linda A. Williams

2001-01-01T23:59:59.000Z

134

ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2  

SciTech Connect

ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

Pruess, K.

2011-04-01T23:59:59.000Z

135

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

136

Demand response participation in PJM wholesale markets  

Science Conference Proceedings (OSTI)

This paper provides an overview of demand response resource participation in PJM wholesale ancillary service markets which include: Day Ahead Scheduling Reserves, Synchronized Reserves and Regulation.

Peter L. Langbein

2012-01-01T23:59:59.000Z

137

Distillate Demand Strong in December 1999  

U.S. Energy Information Administration (EIA)

Total distillate demand includes both diesel and heating oil. These are similar products. Physically, diesel can be used in the heating oil market, but low sulfur ...

138

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

Water Supply Related Electricity Demand in California. CEC33 percent of our electricity demand in 2020 from renewablebuildings, heating electricity demand is not included in

Watson, David S.

2013-01-01T23:59:59.000Z

139

Demand Impacted by Weather  

U.S. Energy Information Administration (EIA)

When you look at demand, its also interesting to note the weather. The weather has a big impact on the demand of heating fuels, if its cold, consumers will use ...

140

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Demonstration of Demand Control Ventilation Technology  

Science Conference Proceedings (OSTI)

Demand Control Ventilation (DCV) is one of the control strategies that can be used modulate the amount of ventilation air for space conditioning in commercial buildings. DCV modulates the amount of ventilation air introduced into the heating, ventilation and air conditioning (HVAC) system based on carbon dioxide levels sensed in the areas served. The carbon dioxide level is a proxy for the number of people within the space, from which the required quantity of ventilation air is determined. By using this ...

2011-12-30T23:59:59.000Z

142

Demand Trading Toolkit  

Science Conference Proceedings (OSTI)

Download report 1006017 for FREE. The global movement toward competitive markets is paving the way for a variety of market mechanisms that promise to increase market efficiency and expand customer choice options. Demand trading offers customers, energy service providers, and other participants in power markets the opportunity to buy and sell demand-response resources, just as they now buy and sell blocks of power. EPRI's Demand Trading Toolkit (DTT) describes the principles and practice of demand trading...

2001-12-10T23:59:59.000Z

143

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

he International Energy Module determines changes in the world oil price and the supply prices of crude he International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

144

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers Publication Type...

145

Demand Dispatch-Intelligent  

NLE Websites -- All DOE Office Websites (Extended Search)

and energy efficiency throughout the value chain resulting in the most economical price for electricity. Having adequate quantities and capacities of demand resources is a...

146

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

147

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

148

U.S. Propane Demand  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

149

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

xxxv Option Value of Electricity Demand Response, Osmanelasticity in aggregate electricity demand. With these newii) reduction in electricity demand during peak periods (

Heffner, Grayson

2010-01-01T23:59:59.000Z

150

Distributed Intelligent Automated Demand Response (DIADR) Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributed Intelligent Automated Demand Distributed Intelligent Automated Demand Response (DIADR) Building Management System Distributed Intelligent Automated Demand Response (DIADR) Building Management System The U.S. Department of Energy (DOE) is currently conducting research into distributed intelligent-automated demand response (DIADR) building management systems. Project Description This project aims to develop a DIADR building management system with intelligent optimization and control algorithms for demand management, taking into account a multitude of factors affecting cost including: Comfort Heating, ventilating, and air conditioning (HVAC) Lighting Other building systems Climate Usage and occupancy patterns. The key challenge is to provide the demand response the ability to address more and more complex building systems that include a variety of loads,

151

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

152

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

153

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

154

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

155

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

156

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

internal conditions. Maximum Demand Saving Intensity [W/ft2]automated electric demand sheds. The maximum electric shed

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

157

Sensor-based demand controlled ventilation  

SciTech Connect

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

158

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

6, DOE/EIA- 6, DOE/EIA- M068(2006). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described. EMM Regions The supply regions used in EMM are based on the North American Electric Reliability Council regions and

159

Demand Response Database & Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Database & Demo Speaker(s): Mike Graveley William M. Smith Date: June 7, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Mary Ann Piette Infotility...

160

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ballasted photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

2011-11-29T23:59:59.000Z

162

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

163

California Independent System Operator demand response & proxy demand resources  

Science Conference Proceedings (OSTI)

Demand response programs are designed to allow end use customers to contribute to energy load reduction individually or through a demand response provider. One form of demand response can occur when an end use customer reduces their electrical usage ...

John Goodin

2012-01-01T23:59:59.000Z

164

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

time. 4 Reducing this peak demand through DR programs meansthat a 5% reduction in peak demand would have resulted insame 5% reduction in the peak demand of the US as a whole.

Shen, Bo

2013-01-01T23:59:59.000Z

165

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

166

Modular Communication Interface Specification for Demand Response  

Science Conference Proceedings (OSTI)

This report contains a technical specification for a modular interface for residential appliances that enables them to be compatible with any utility communication system through the use of customer-installable plug-in communication modules. This specification is the result of collaboration between utilities, appliance makers, communication system providers, demand response service providers, and trade organizations. The specification details the mechanical, electrical, and logical characteristics of a s...

2011-08-31T23:59:59.000Z

167

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

168

Travel Demand Modeling  

SciTech Connect

This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

169

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

170

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

171

Electricity Market Module  

Reports and Publications (EIA)

Documents the Electricity Market Module as it was used for the Annual Energy Outlook 2013. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

Jeff Jones

2013-07-24T23:59:59.000Z

172

NERSC Modules Software Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment » Modules Environment Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules, the MANPATH and related environment variables are automatically managed. Users simply ``load'' and ``unload'' modules to control their environment. The module utility consists of two parts: the module command itself and the modulefiles on which it operates. Module Command

173

On Demand Guarantees in Iran.  

E-Print Network (OSTI)

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

174

Transportation Demand Management Plan  

E-Print Network (OSTI)

Transportation Demand Management Plan FALL 2009 #12;T r a n s p o r t a t i o n D e m a n d M a n the transportation impacts the expanded enrollment will have. Purpose and Goal The primary goal of the TDM plan is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts

175

Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumption to the Annual Energy Outlook Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2004, DOE/EIA- M068(2004). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

176

Thermionic modules  

DOE Patents (OSTI)

Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

2002-06-18T23:59:59.000Z

177

Residential sector: the demand for energy services  

Science Conference Proceedings (OSTI)

The purpose of this report is to project the demand for residential services, and, thereby, the demand for energy into the future. The service demands which best represent a complete breakdown of residential energy consumption is identified and estimates of the amount of energy, by fuel type, used to satisfy each service demand for an initial base year (1978) are detailed. These estimates are reported for both gross (or input) energy use and net or useful energy use, in the residential sector. The various factors which affect the consumption level for each type of energy and each identified service demand are discussed. These factors include number of households, appliance penetration, choice of fuel type, technical conversion efficiency of energy using devices, and relative energy efficiency of the building shell (extent of insulation, resistance to air infiltration, etc.). These factors are discussed relative to both the present and expected future values, for the purpose of projections. The importance of the housing stock to service demand estimation and projection and trends in housing in Illinois are discussed. How the housing stock is projected based on population and household projections is explained. The housing projections to the year 2000 are detailed. The projections of energy consumption by service demand and fuel type are contrasted with the various energy demand projections in Illinois Energy Consumption Trends: 1960 to 2000 and explains how and why the two approaches differ. (MCW)

Not Available

1981-01-01T23:59:59.000Z

178

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

179

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

180

FERC sees huge potential for demand response  

Science Conference Proceedings (OSTI)

The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

NONE

2010-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On Demand Paging Using  

E-Print Network (OSTI)

The power consumption of the network interface plays a major role in determining the total operating lifetime of wireless handheld devices. On demand paging has been proposed earlier to reduce power consumption in cellular networks. In this scheme, a low power secondary radio is used to wake up the higher power radio, allowing the latter to sleep or remain off for longer periods of time. In this paper we present use of Bluetooth radios to serve as a paging channel for the 802.11 wireless LAN. We have implemented an on-demand paging scheme on a WLAN consisting of iPAQ PDAs equipped with Bluetooth radios and Cisco Aironet wireless networking cards. Our results show power saving ranging from 19% to 46% over the present 802.11b standard operating modes with negligible impact on performance.

Bluetooth Radios On; Yuvraj Agarwal; Rajesh K. Gupta

2003-01-01T23:59:59.000Z

182

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

183

Net Demand3 Production  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary The US DOE has identified a number of materials that are both used by clean energy technologies and are at risk of supply disruptions in the short term. Several of these materials, especially the rare earth elements (REEs) yttrium, cerium, and lanthanum were identified by DOE as critical (USDOE 2010) and are crucial to the function and performance of solid oxide fuel cells (SOFCs) 1. In addition, US DOE has issued a second Request For Information regarding uses of and markets for these critical materials (RFI;(USDOE 2011)). This report examines how critical materials demand for SOFC applications could impact markets for these materials and vice versa, addressing categories 1,2,5, and 6 in the RFI. Category 1 REE Content of SOFC Yttria (yttrium oxide) is the only critical material (as defined for the timeframe of interest for SOFC) used in SOFC 2. Yttrium is used as a dopant in the SOFCs core ceramic cells.. In addition, continuing developments in SOFC technology will likely further reduce REE demand for SOFC, providing credible scope for at least an additional 50 % reduction in REE use if desirable. Category 2 Supply Chain and Market Demand SOFC developers expect to purchase

J. Thijssen Llc

2011-01-01T23:59:59.000Z

184

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Natural Gas Demands..xi Annual natural gas demand for each alternativeused in natural gas demand projections. 34

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

185

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

186

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

187

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Minimum demand and Maximum demand incorporate assumptionslevels, or very minor Maximum demand household size, growthvehicles in Increasing Maximum demand 23 mpg truck share

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

188

Macroeconomic Activity Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 19 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook2011 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module.

189

Two market models for demand response in power networks  

E-Print Network (OSTI)

Abstract In this paper, we consider two abstract market models for designing demand response to match power supply and shape power demand, respectively. We characterize the resulting equilibria in competitive as well as oligopolistic markets, and propose distributed demand response algorithms to achieve the equilibria. The models serve as a starting point to include the appliance-level details and constraints for designing practical demand response schemes for smart power grids. I.

Lijun Chen; Na Li; Steven H. Low; John C. Doyle

2010-01-01T23:59:59.000Z

190

Dividends with Demand Response  

SciTech Connect

To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

2003-10-31T23:59:59.000Z

191

China End-Use Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

192

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

193

Chinese demand drives global deforestation Chinese demand drives global deforestation  

E-Print Network (OSTI)

Chinese demand drives global deforestation Chinese demand drives global deforestation By Tansa Musa zones and do not respect size limits in their quest for maximum financial returns. "I lack words economy. China's demand for hardwood drives illegal logging says "Both illegal and authorized

194

Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand  

E-Print Network (OSTI)

: Properties of the AIDS Generalized Maximum Entropy Estimator 24 #12;Estimating a Demand SystemEstimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand Amos Golan* Jeffrey with nonnegativity constraints is presented. This approach, called generalized maximum entropy (GME), is more

Perloff, Jeffrey M.

195

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

196

Photovoltaic module and interlocked stack of photovoltaic modules  

DOE Patents (OSTI)

One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

Wares, Brian S.

2012-09-04T23:59:59.000Z

197

Photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

2012-07-17T23:59:59.000Z

198

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 ..............................................................................3 Residential Forecast Comparison ..............................................................................................5 Nonresidential Forecast Comparisons

199

Demand Response Valuation Frameworks Paper  

Science Conference Proceedings (OSTI)

While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

Heffner, Grayson

2009-02-01T23:59:59.000Z

200

Demand Side Bidding. Final Report  

SciTech Connect

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Overview of Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

202

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

203

Photovoltaic Modules: Effect of Tilt Angle on Soiling.  

E-Print Network (OSTI)

??Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted (more)

Cano, Jose

2011-01-01T23:59:59.000Z

204

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

205

Assumptions to the Annual Energy Outlook 2002 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

206

Assumptions to the Annual Energy Outlook 2001 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

207

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

2007 EMCS EPACT ERCOT FCM FERC FRCC demand side managementEnergy Regulatory Commission (FERC). EPAct began the processin wholesale markets, which FERC Order 888 furthered by

Shen, Bo

2013-01-01T23:59:59.000Z

208

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

209

Demand Response - Policy: More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response - Policy: More Information Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the New England regional power markets. NEDRI's goal was to outline workable market rules, public policies, and regulatory criteria to incorporate customer-based demand response resources into New England's electricity markets and power systems. NEDRI promoted best practices and coordinated

210

PDSF Modules  

NLE Websites -- All DOE Office Websites (Extended Search)

Modules Modules Modules Modules Approach to Managing The Environment Modules is a system which you can use to specify what software you want to use. If you want to use a particular software package loading its module will take care of the details of modifying your environment as necessary. The advantage of the modules approach is that the you are not required to explicitly specify paths for different executable versions and try to keep their related man paths and environment variables coordinated. Instead you simply "load" and "unload" specific modules to control your environment. Getting Started with Modules If you're using the standard startup files on PDSF then you're already setup for using modules. If the "module" command is not available, please

211

Automated Demand Response and Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

and Commissioning Title Automated Demand Response and Commissioning Publication Type Conference Paper LBNL Report Number LBNL-57384 Year of Publication 2005 Authors Piette, Mary...

212

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

lvi Southern California Edison filed its SmartConnectinfrastructure (e.g. , Edison Electric Institute, DemandSouthern California Edison Standard Practice Manual

Heffner, Grayson

2010-01-01T23:59:59.000Z

213

Demand Uncertainty and Price Dispersion.  

E-Print Network (OSTI)

??Demand uncertainty has been recognized as one factor that may cause price dispersion in perfectly competitive markets with costly and perishable capacity. With the persistence (more)

Li, Suxi

2007-01-01T23:59:59.000Z

214

1995 Demand-Side Managment  

U.S. Energy Information Administration (EIA)

U.S. Electric Utility Demand-Side Management 1995 January 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels

215

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

energy efficiency and demand response programs and tariffs.energy efficiency and demand response program and tariffenergy efficiency and demand response programs and tariffs.

Goldman, Charles

2010-01-01T23:59:59.000Z

216

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Strategies Linking Demand Response and Energy Efficiency,Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

217

Demand Response Quick Assessment Tool (DRQAT)  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool (DRQAT) The opportunities for demand reduction and cost saving with building demand responsive control vary tremendously with building type...

218

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

219

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

220

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

222

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilitiesof Fully Automated Demand Response in Large Facilities,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

223

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

224

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Table 1. Economic demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

225

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

8 Figure 7: Maximum Demands Savings Intensity due toaddressed in this report. Maximum Demand Savings Intensity (Echelon Figure 7: Maximum Demands Savings Intensity due to

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

226

Commercial Demand Module of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

Commercial Buildings Energy Consumption Survey ... space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The market segment ...

227

Model Documentation Report: Residential Demand Module of the ...  

U.S. Energy Information Administration (EIA)

New home heating technology choice model log-linear parameter ?. ... Percent of homes meeting ENERGY STAR Home criteria or better by heating technology

228

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

229

Centralized and Decentralized Control for Demand Response  

Science Conference Proceedings (OSTI)

Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

2011-04-29T23:59:59.000Z

230

Harnessing the power of demand  

Science Conference Proceedings (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

231

China, India demand cushions prices  

SciTech Connect

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

232

Assessment of Residential Energy Management Systems for Demand Response Applications  

Science Conference Proceedings (OSTI)

This Technical Update provides a description of what a residential energy management system comprises, with a focus on demand response applications. It includes findings from a survey of residential energy management system technology vendors; system pricing and availability; an overview of technology components and features; customer load monitoring and control capabilities; utility demand response control functions; communications protocols and technologies supported; and options for demand response si...

2009-12-22T23:59:59.000Z

233

Demand Response for Ancillary Services  

Science Conference Proceedings (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

234

Water heater control module  

DOE Patents (OSTI)

An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

Hammerstrom, Donald J

2013-11-26T23:59:59.000Z

235

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

236

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

the average and maximum peak demand savings. The electricity1: Average and Maximum Peak Electric Demand Savings during

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

237

EIA-Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumptions to the Annual Energy Outlook 2007 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, load and demand electricity, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2007, DOE/EIA- M068(2007). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

238

EIA-Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2007 Petroleum Market Module Figure 9. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, and bioesters), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining

239

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

240

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

Model of the Global Crude Oil Market and the U.S. RetailNoureddine. 2002. World crude oil and natural gas: a demandanalysis of the demand for oil in the Middle East. Energy

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

242

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

243

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

Benenson, P.

2010-01-01T23:59:59.000Z

244

A Buildings Module for the Stochastic Energy Deployment System  

SciTech Connect

The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

2008-05-15T23:59:59.000Z

245

Warm Winters Held Heating Oil Demand Down While Diesel Grew  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: To understand the inventory situation, we must look the balance between demand and supply that drives inventories up or down. First consider demand. Most of the remaining charts deal with total distillate demand. Total distillate demand includes both diesel and heating oil. These are similar products physically, and prior to the low sulfur requirements for on-road diesel fuel, were used interchangeably. But even today, low sulfur diesel can be used in the heating oil market, but low sulfur requirements keep heating oil from being used in the on-road transportation sector. The seasonal increases and decreases in stocks stem from the seasonal demand in heating oil shown as the bottom red line. Heating oil demand increases by more than 50 percent from its low point to its high

246

China's Coal: Demand, Constraints, and Externalities  

Science Conference Proceedings (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

247

Demand Response Research in Spain  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

248

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

249

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart...

250

Demand for money in China .  

E-Print Network (OSTI)

??This research investigates the long-run equilibrium relationship between money demand and its determinants in China over the period 1952-2004 for three definitions of money (more)

Zhang, Qing

2006-01-01T23:59:59.000Z

251

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

252

Distillate Demand Strong Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Well, distillate fuel demand wasn't the reason that stocks increased in January 2001 and kept prices from going higher. As you will hear shortly, natural gas prices spiked...

253

Thermal Mass and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Mass and Demand Response Speaker(s): Gregor Henze Phil C. Bomrad Date: November 2, 2011 - 12:00pm Location: 90-4133 Seminar HostPoint of Contact: Janie Page The topic of...

254

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

255

Leslie Mancebo (7234) Transportation Demand &  

E-Print Network (OSTI)

Leslie Mancebo (7234) Transportation Demand & Marketing Coordinator 1 FTE, 1 HC Administrative Vice Chancellor Transportation and Parking Services Clifford A. Contreras (0245) Director 30.10 FTE Alternative Transportation & Marketing Reconciliation Lourdes Lupercio (4723) Michelle McArdle (7512) Parking

Hammock, Bruce D.

256

Demand Response Spinning Reserve Demonstration  

Science Conference Proceedings (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

257

Critical infrastructure security curriculum modules  

Science Conference Proceedings (OSTI)

Critical infrastructures have succumbed to the demands of greater connectivity. Although the scheme of connecting these critical equipment and devices to cyberspace has brought us tremendous convenience, it also enabled certain unimaginable risks and ... Keywords: SCADA, control systems, course modules, critical infrastructures, cybersecurity, programmable logic controllers, security, vulnerability

Guillermo A. Francia, III

2011-09-01T23:59:59.000Z

258

Proceedings: Demand-side management incentive regulation  

SciTech Connect

These proceedings document a workshop on Demand-Side Management Incentive Regulation, which was held in Denver, Colorado on August 16--17, 1989. The workshop provided a forum for discussion of current DSM programs and trends and their implications; fundamentals and rationale for incentive mechanisms; short- and long-term issues from the utility perspective; and approaches for enhancing the attractiveness of DSM incentive mechanisms. Attendees at this workshop included DSM managers, planners, and analysts.

Not Available

1990-05-01T23:59:59.000Z

259

Water is used for many purposes, includ-ing growing crops, producing copper,  

E-Print Network (OSTI)

WATER USES Water is used for many purposes, includ- ing growing crops, producing copper, generating electricity, watering lawns, keeping clean, drinking and recreation. Bal- ancing the water budget comes down of the water budget. Reducing demand involves re- ducing how much water each person uses, lim- iting the number

260

Installation and Commissioning Automated Demand Response Systems  

Science Conference Proceedings (OSTI)

Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

2008-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Application on demand system over the Internet  

E-Print Network (OSTI)

This paper describes the design and implementation of the ASP-NG system. The main modules of the ASP-NG system are the AoD service and the Web Portal. The ASP-NG Portal is a portal for providing the user with the necessary interface in order to access an Application on Demand (AoD) service. The ASP-NG portal is responsible for the interaction with the user of the AoD service. Using the AoD service the user rents an application for a limited time period at a fraction of the actual cost of the application. The AoD service is responsible for downloading the appropriate parts of the application according to the user's actions, while enforcing the mutually agreed frame between the user and the Application Service Provider (ASP). The implementation of the ASP-NG portal is based on the Web Services of the Java 2, Enterprise Edition platform and the implementation of the AoD module is based on CCCprogramming language. The ASP-NG portal offers to its users the capability to select and customize the language of the user interface in order to present information in their preferred language. Moreover the ASP-NG portal offers to the portal administrator the capability to customise the look and feel of the ASP-NG portal.

Ch Bouras Gkamas; Ch. Bouras A; A. Gkamas A; I. Nave B; D. Primpas A; A. Shani B; O. Sheory B; K. Stamos A; Y. Tzruya C

2004-01-01T23:59:59.000Z

262

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

263

Flat-Plate Photovoltaic Modules  

Energy.gov (U.S. Department of Energy (DOE))

Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame.

264

U.S. electric utility demand-side management 1993  

SciTech Connect

This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

NONE

1995-07-01T23:59:59.000Z

265

Automated electricity demand response - Tech Close-Up  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated electricity demand response - Tech Close-Up Click here to view this video Date: August 27, 2013 Presenter(s): Many, including EETD's Mary Ann Piette. A Tech Close-Up news...

266

2012 SG Peer Review - Dramatic Residential Demand Reduction in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2. Include PV on the residences. FY08 - FY13 (now FY15) 6948k 3. Develop a demand control system that gives the customer options and that is enhanced by an artificial...

267

Design of bioethanol supply chains including commodity market dynamics and multiple demand scenarios.  

E-Print Network (OSTI)

??The establishment of a bioethanol supply chain in northern Italy will be simulated in this work by evaluating its spatial explicit layout. The economic details (more)

Mazzetto, Filippo

2013-01-01T23:59:59.000Z

268

Inducing Order from Disordered Copolymers: On Demand Generation of Triblock Morphologies Including Networks  

Science Conference Proceedings (OSTI)

Disordered block copolymers are generally impractical in nanopatterning applications due to their inability to self-assemble into well-defined nanostructures. However, inducing order in low molecular weight disordered systems permits the design of periodic structures with smaller characteristic sizes. Here, we have induced nanoscale phase separation from disordered triblock copolymer melts to form well-ordered lamellae, hexagonally packed cylinders, and a triply periodic gyroid network structure, using a copolymer/homopolymer blending approach, which incorporates constituent homopolymers into selective block domains. This versatile blending approach allows one to precisely target multiple nanostructures from a single disordered material and can be applied to a wide variety of triblock copolymer systems for nanotemplating and nanoscale separation applications requiring nanoscale feature sizes and/or high areal feature densities.

Tureau, Mava S.; Kuan, Wei-Fan; Rong, Lixia; Hsiao, Benjamin S.; Epps, III, Thomas H. (Delaware); (SUNYB)

2012-10-26T23:59:59.000Z

269

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network (OSTI)

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

270

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network (OSTI)

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

271

Future demand for electricity in the Nassau--Suffolk region  

DOE Green Energy (OSTI)

Brookhaven National Laboratory established a new technology for load forecasting for the Long Island Lighting Company and prepared an independent forecast of the demand for electricity in the LILCO area. The method includes: demand for electricity placed in a total energy perspective so that substitutions between electricity and other fuels can be examined; assessment of the impact of conservation, new technology, gas curtailment, and other factors upon demand for electricity; and construction of the probability distribution of the demand for electricity. A detailed analysis of changing levels of demand for electricity, and other fuels, associated with these new developments is founded upon a disaggregated end-use characterization of energy utilization, including space heat, lighting, process energy, etc., coupled to basic driving forces for future demand, namely: population, housing mix, and economic growth in the region. The range of future events covers conservation, heat pumps, solar systems, storage resistance heaters, electric vehicles, extension of electrified rail, total energy systems, and gas curtailment. Based upon cost and other elements of the competition between technologies, BNL assessed the likelihood of these future developments. An optimistic view toward conservation leads to ''low'' demand for electricity, whereas rapid development of new technologies suggests ''high'' demand. (MCW)

Carroll, T.W.; Palmedo, P.F.; Stern, R.

1977-12-01T23:59:59.000Z

272

Successful demand-side management  

Science Conference Proceedings (OSTI)

This article is a brief summary of a series of case studies of five publicly-owned utilities that are noted for their success with demand-side management. These utilities are: (1) city of Austin, Texas, (2) Burlington Electric Department in Vermont, (3) Sacramento Municipal Utility District in California, (4) Seattle City Light, and (5) Waverly Light and Power in Iowa. From these case studies, the authors identified a number of traits associated with a successful demand-side management program. These traits are: (1) high rates, (2) economic factors, (3) environmental awareness, (4) state emphasis on integrated resource planning/demand side management, (5) local political support, (6) large-sized utilities, and (7) presence of a champion.

Hadley, S. [Oak Ridge National Laboratory, TN (United States); Flanigan, T. [Results Center, Aspen, CO (United States)

1995-05-01T23:59:59.000Z

273

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

274

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

275

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

276

Assumptions to the Annual Energy Outlook 2000 - Electricity Market Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. The major assumptions are summarized below.

277

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

residential electricity consumption, the flattening of the demand curves (except Maximum demand) reflects decreasing population growth ratesresidential electricity demand are described in Table 11. For simplicity, end use-specific UEC and saturation rates

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

278

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

percent of 2008 summer peak demand (FERC, 2008). Moreover,138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).non-coincident summer peak demand by 157 GW by 2030, or 14

Goldman, Charles

2010-01-01T23:59:59.000Z

279

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

pricing tariffs have a peak demand reduction potential ofneed to reduce summer peak demand that is used to set demandcustomers and a system peak demand of over 43,000 MW. SPPs

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

280

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

with total Statewide peak demand and on peak days isto examine the electric peak demand related to lighting inDaily) - TOU Savings - Peak Demand Charges - Grid Peak -Low

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tankless Demand Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heaters Tankless Demand Water Heaters August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is...

282

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

283

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

284

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

285

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1997 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

286

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

Regulatory Commission (FERC) 2006. Assessment of DemandRegulatory Commission (FERC) 2007. Assessment of DemandRegulatory Commission (FERC) 2008a. Wholesale Competition

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

287

EIA - Annual Energy Outlook 2009 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

data Rate of Electricity Demand Growth Slows, Following the Historical Trend Electricity demand fluctuates in the short term in response to business cycles, weather conditions,...

288

Demand Response as a System Reliability Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response as a System Reliability Resource Title Demand Response as a System Reliability Resource Publication Type Report Year of Publication 2012 Authors Eto, Joseph H.,...

289

Home Network Technologies and Automating Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in...

290

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

291

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 24, 2008al: Installation and Commissioning Automated Demand Response

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

292

Equity Capital Flows and Demand for REITs  

Science Conference Proceedings (OSTI)

This paper examines the shape of the market demand curve for ... Our results do not support a downward demand curve for ... Charleston, IL 61920, USA e-mail:...

293

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Oakland CA, December. PJM Demand Side Response WorkingPrice Response Program a PJM Economic Load Response ProgramLoad Response Statistics PJM Demand Response Working Group

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

294

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

29 5.6. Peak and hourly demand43 6.6. Peak and seasonal demandthe average percent of peak demand) significantly impact the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

295

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into the United States by export region. Changes in the oil price (WTI), which is defined as the price of light, low-sulfur crude oil delivered to Cushing, Oklahoma in

296

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 23 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes world oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into

297

Water demand management in Kuwait  

E-Print Network (OSTI)

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

298

Demand-Side Management Glossary  

Science Conference Proceedings (OSTI)

In recent years, demand-side management (DSM) programs have grown in significance within the U.S. electric power industry. Such rapid growth has resulted in new terms, standards, and vocabulary used by DSM professionals. This report is a first attempt to provide a consistent set of definitions for the expanding DSM terminology.

1992-11-01T23:59:59.000Z

299

Assumptions to the Annual Energy Outlook 2000 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below.100

300

Density Forecasting for Long-Term Peak Electricity Demand  

E-Print Network (OSTI)

Long-term electricity demand forecasting plays an important role in planning for future generation facilities and transmission augmentation. In a long-term context, planners must adopt a probabilistic view of potential peak demand levels. Therefore density forecasts (providing estimates of the full probability distributions of the possible future values of the demand) are more helpful than point forecasts, and are necessary for utilities to evaluate and hedge the financial risk accrued by demand variability and forecasting uncertainty. This paper proposes a new methodology to forecast the density of long-term peak electricity demand. Peak electricity demand in a given season is subject to a range of uncertainties, including underlying population growth, changing technology, economic conditions, prevailing weather conditions (and the timing of those conditions), as well as the general randomness inherent in individual usage. It is also subject to some known calendar effects due to the time of day, day of week, time of year, and public holidays. A comprehensive forecasting solution is described in this paper. First, semi-parametric additive models are used to estimate the relationships between demand and the driver variables, including temperatures, calendar effects and some demographic and economic variables. Then the demand distributions are forecasted by using a mixture of temperature simulation, assumed future economic scenarios, and residual bootstrapping. The temperature simulation is implemented through a new seasonal bootstrapping method with variable blocks. The proposed methodology has been used to forecast the probability distribution of annual and weekly peak electricity demand for South Australia since 2007. The performance of the methodology is evaluated by comparing the forecast results with the actual demand of the summer 20072008.

Rob J. Hyndman; Shu Fan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network (OSTI)

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

302

Demand Dispatch Intelligent Demand for a More Efficient Grid  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Demand Dispatch: Intelligent Demand for a More Efficient Grid

Keith Dodrill

2011-01-01T23:59:59.000Z

303

Barrier Immune Radio Communications for Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Barrier Immune Radio Communications for Demand Response Barrier Immune Radio Communications for Demand Response Title Barrier Immune Radio Communications for Demand Response Publication Type Report LBNL Report Number LBNL-2294e Year of Publication 2009 Authors Rubinstein, Francis M., Girish Ghatikar, Jessica Granderson, Paul Haugen, Carlos Romero, and David S. Watson Keywords technologies Abstract Various wireless technologies were field-tested in a six-story laboratory building to identify wireless technologies that can scale for future DR applications through very low node density power consumption, and unit cost. Data analysis included analysis of the signal-to-noise ratio (SNR), packet loss, and link quality at varying power levels and node densities. The narrowband technologies performed well, penetrating the floors of the building with little loss and exhibiting better range than the wideband technology. 900 MHz provided full coverage at 1 watt and substantially complete coverage at 500 mW at the test site. 900 MHz was able to provide full coverage at 100 mW with only one additional relay transmitter, and was the highest-performing technology in the study. 2.4 GHz could not provide full coverage with only a single transmitter at the highest power level tested (63 mW). However, substantially complete coverage was provided at 2.4 GHz at 63 mW with the addition of one repeater node.

304

The alchemy of demand response: turning demand into supply  

Science Conference Proceedings (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

305

Module Handbook Specialisation Photovoltaics  

E-Print Network (OSTI)

#12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Module name: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Section EUREC · Chemistry · Physics Target learning outcomes The module Photovoltaic Cell and Module Technology teaches

Habel, Annegret

306

New Zealand Energy Data: Electricity Demand and Consumption | OpenEI  

Open Energy Info (EERE)

Electricity Demand and Consumption Electricity Demand and Consumption Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). The sectors included are: agriculture, forestry and fishing; industrial (mining, food processing, wood and paper, chemicals, basic metals, other minor sectors); commercial; and residential. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago)

307

A Look Ahead at Demand Response in New England  

Science Conference Proceedings (OSTI)

The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

2008-08-01T23:59:59.000Z

308

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

309

Building Technologies Office: Integrated Predictive Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

310

Demand Response and Risk Management  

Science Conference Proceedings (OSTI)

For several decades, power companies have deployed various types of demand response (DR), such as interruptible contracts, and there is substantial ongoing research and development on sophisticated mechanisms for triggering DR. In this white paper, EPRI discusses the increasing use of electricity DR in the power industry and how this will affect the practice of energy risk management. This paper outlines 1) characteristics of a common approach to energy risk management, 2) the variety of types of DR impl...

2008-12-18T23:59:59.000Z

311

Demand Trading: Measurement, Verification, and Settlement (MVS)  

Science Conference Proceedings (OSTI)

With this report, EPRI's trilogy of publications on demand trading is complete. The first report (1006015), the "Demand Trading Toolkit," documented how to conduct demand trading based on price. The second report (1001635), "Demand Trading: Building Liquidity," focused on the problem of liquidity in the energy industry and developed the Demand Response Resource Bank concept for governing electricity markets based on reliability. The present report focuses on the emerging price/risk partnerships in electr...

2004-03-18T23:59:59.000Z

312

Proceedings: 1987 Annual Review of Demand-Side Planning Research  

Science Conference Proceedings (OSTI)

Recent EPRI research in demand-side planning (DSP) has focused on forecasting, end-use technology assessment, demand-side management (DSM), and innovative pricing. These 23 papers discuss vital DSP research, including customer response to interruptible rates, personal computer forecasting tools, integrated value-based planning, customer preference and behavior studies, and a database of end-use load shapes and DSM impacts.

None

1988-08-01T23:59:59.000Z

313

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

314

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

315

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

DEMAND . . . .Demand for Electricity and Power PeakDemand . . . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

Benenson, P.

2010-01-01T23:59:59.000Z

316

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

317

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network (OSTI)

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

318

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

319

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

14 Peak Demand Baselinewinter morning electric peak demand in commercial buildings.California to reduce peak demand during summer afternoons,

Kiliccote, Sila

2010-01-01T23:59:59.000Z

320

A. G. A. six-month gas demand forecast July-December, 1984  

Science Conference Proceedings (OSTI)

Estimates of the total gas demand for 1984 (including pipeline fuel) range from 18,226 to 19,557 trillion (TBtu). The second half of the year shows a slower recovery rate as economic recovery moderates. The forecast show both actual and projected demand by month, and compares it with 1983 demand and by market sector. 6 tables.

Not Available

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu  

E-Print Network (OSTI)

played a role during the crisis period. 1 Introduction The energy industry provides electrical powerA Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu , Anthony E. Brockwell of supply and demand equilibrium. The model includes latent supply and demand curves, which may vary over

322

Building Energy Software Tools Directory : Demand Response Quick...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool Back to Tool Demand response quick assessment tool screenshot Demand response quick assessment tool screenshot Demand response quick...

323

Price-elastic demand in deregulated electricity markets  

E-Print Network (OSTI)

by the amount of electricity demand that is settled forward.unresponsive demand side, electricity demand has to be metxed percentage of overall electricity demand. The ISO, thus,

Siddiqui, Afzal S.

2003-01-01T23:59:59.000Z

324

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network (OSTI)

Braun (Purdue). 2004. Peak demand reduction from pre-coolingthe average and maximum peak demand savings. The electricityuse charges, demand ratchets, peak demand charges, and other

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

325

Mounting support for a photovoltaic module  

DOE Patents (OSTI)

A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

2013-03-26T23:59:59.000Z

326

Implementation Proposal for The National Action Plan on Demand Response |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation Proposal for The National Action Plan on Demand Implementation Proposal for The National Action Plan on Demand Response Implementation Proposal for The National Action Plan on Demand Response August 1, 2011 - 3:54pm Addthis EXECUTIVE SUMMARY The staff of the Federal Energy Regulatory Commission (FERC) and the U.S. Department of Energy (DOE) developed this implementation proposal as required by section 529 of the Energy Independence and Security Act of 2007 (EISA).1 In particular, this proposal complies with EISA's mandate "to submit to Congress a proposal to implement the [National] Action Plan [on Demand Response], including specific proposed assignments of responsibility, proposed budget amounts, and any agreements secured for participation from State and other participants."2 The objective of the proposal is to implement the National Action Plan to

327

Unlocking the potential for efficiency and demand response throughadvanced metering  

Science Conference Proceedings (OSTI)

Reliance on the standard cumulative kilowatt-hour metersubstantially compromises energy efficiency and demand response programs.Without advanced metering, utilities cannot support time-differentiatedrates or collect the detailed customer usage information necessary to (1)educate the customer to the economic value of efficiency and demandresponse options, or (2) distribute load management incentivesproportional to customer contribution. These deficiencies prevent thecustomer feedback mechanisms that would otherwise encourage economicallysound demand-side investments and behaviors. Thus, the inability tocollect or properly price electricity usage handicaps the success ofalmost all efficiency and demand response options. Historically,implementation of the advanced metering infrastructure (AMI) necessaryfor the successful efficiency and demand response programs has beenprevented by inadequate cost-benefit analyses. A recent California efforthas produced an expanded cost-effectiveness methodology for AMI thatintroduces previously excluded benefits. In addition to utility-centriccosts and benefits, the new model includes qualitative and quantitativecosts and benefits that accrue to both customers and society.

Levy, Roger; Herter, Karen; Wilson, John

2004-06-30T23:59:59.000Z

328

MODELING THE DEMAND FOR E85 IN THE UNITED STATES  

SciTech Connect

How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2013-10-01T23:59:59.000Z

329

Automated Demand Response Technologies and Demonstration in New York City  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Demonstration in New York City Technologies and Demonstration in New York City using OpenADR Title Automated Demand Response Technologies and Demonstration in New York City using OpenADR Publication Type Report LBNL Report Number LBNL-6470E Year of Publication 2013 Authors Kim, Joyce Jihyun, Sila Kiliccote, and Rongxin Yin Date Published 09/2013 Publisher LBNL/NYSERDA Abstract Demand response (DR) - allowing customers to respond to reliability requests and market prices by changing electricity use from their normal consumption pattern - continues to be seen as an attractive means of demand-side management and a fundamental smart-grid improvement that links supply and demand. Since October 2011, the Demand Response Research Center at Lawrence Berkeley National Laboratory and New York State Energy Research and Development Authority have conducted a demonstration project enabling Automated Demand Response (Auto-DR) in large commercial buildings located in New York City using Open Automated Demand Response (OpenADR) communication protocols. In particular, this project focuses on demonstrating how OpenADR can automate and simplify interactions between buildings and various stakeholders in New York State including the independent system operator, utilities, retail energy providers, and curtailment service providers. In this paper, we present methods to automate control strategies via building management systems to provide event-driven demand response, price response and demand management based on OpenADR signals. We also present cost control opportunities under day-ahead hourly pricing for large customers and Auto-DR control strategies developed for demonstration buildings. Lastly, we discuss the communication architecture and Auto-DR system designed for the demonstration project to automate price response and DR participation.

330

Flat-Plate Photovoltaic Modules | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modules Flat-Plate Photovoltaic Modules August 20, 2013 - 4:25pm Addthis Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials,...

331

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network (OSTI)

response as: changes in electric usage by end-use customerselectric competition Typical rate design includes demand and/or volumetric distribution charges, with all commodity usage

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

332

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

333

Distillate Demand Strong in December 1999  

Gasoline and Diesel Fuel Update (EIA)

5% higher than in the prior year, due mainly to diesel demand growth, since warm weather kept heating oil demand from growing much. Last December, when stocks dropped below...

334

Demand Response - Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

over the last 11 years when interest in demand response increased. Demand response is an electricity tariff or program established to motivate changes in electric use by end-use...

335

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

336

Propane Demand by Sector - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In order to understand markets you also have to look at supply and demand. First, demand or who uses propane. For the most part, the major components of propane ...

337

Travel Behavior and Demand Analysis and Prediction  

E-Print Network (OSTI)

and Demand Analysis and Prediction Konstadinos G. Goulias University of California Santa Barbara, Santa Barbara, CA, USA

Goulias, Konstadinos G

2007-01-01T23:59:59.000Z

338

Optimal Demand Response with Energy Storage Management  

E-Print Network (OSTI)

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

339

Solar site test module. [DOE/NASA solar heating and cooling demonstration installations  

SciTech Connect

A solar site test module using the Rockwell AIM 65 micro-computer is described. The module is designed to work at any site where an IBM site data acquisition system (SDAS) is installed and is intended primarily as a troubleshooting tool for DOE/NASA commercial solar heating and cooling system demonstration installations. It collects sensor information (temperatures, flow rates, etc.) and displays or prints it immediately in calibrated engineering units. It will read one sensor on demand, periodically read up to 10 sensors or periodically read all sensors. Performance calculations can also be included with sensor data. Unattended operation is possible to, e.g., monitor a group of sensors once per hour. Work is underway to add a data acquisition system to the test module so that it can be used at sites which have no SDAS.

Kissel, R.R.; Scott, D.R.

1980-07-01T23:59:59.000Z

340

Photovoltaic module with adhesion promoter  

SciTech Connect

Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

2013-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Adjustable extender for instrument module  

DOE Patents (OSTI)

A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument.

Sevec, J.B.; Stein, A.D.

1975-11-01T23:59:59.000Z

342

Forecasting demand of commodities after natural disasters  

Science Conference Proceedings (OSTI)

Demand forecasting after natural disasters is especially important in emergency management. However, since the time series of commodities demand after natural disasters usually has a great deal of nonlinearity and irregularity, it has poor prediction ... Keywords: ARIMA, Demand forecasting, EMD, Emergency management, Natural disaster

Xiaoyan Xu; Yuqing Qi; Zhongsheng Hua

2010-06-01T23:59:59.000Z

343

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

344

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

345

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

346

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

347

FINAL STAFF FORECAST OF 2008 PEAK DEMAND  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

348

Leveraging gamification in demand dispatch systems  

Science Conference Proceedings (OSTI)

Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grid's efficiency and a better utilization of renewable energy sources. ... Keywords: demand response, demand side management, direct load control, gamification, smart grid, sustainability

Benjamin Gnauk; Lars Dannecker; Martin Hahmann

2012-03-01T23:59:59.000Z

349

Ups and downs of demand limiting  

SciTech Connect

Electric power load management by limiting power demand can be used for energy conservation. Methods for affecting demand limiting, reducing peak usage in buildings, particularly usage for heating and ventilating systems, and power pricing to encourage demand limiting are discussed. (LCL)

Pannkoke, T.

1976-12-01T23:59:59.000Z

350

Forecasting Uncertain Hotel Room Demand  

E-Print Network (OSTI)

Economic systems are characterized by increasing uncertainty in their dynamics. This increasing uncertainty is likely to incur bad decisions that can be costly in financial terms. This makes forecasting of uncertain economic variables an instrumental activity in any organization. This paper takes the hotel industry as a practical application of forecasting using the Holt-Winters method. The problem here is to forecast the uncertain demand for rooms at a hotel for each arrival day. Forecasting is part of hotel revenue management system whose objective is to maximize the revenue by making decisions regarding when to make rooms available for customers and at what price. The forecast approach discussed in this paper is based on quantitative models and does not incorporate management expertise. Even though, forecast results are found to be satisfactory for certain days, this is not the case for other arrival days. It is believed that human judgment is important when dealing with ...

Mihir Rajopadhye Mounir; Mounir Ben Ghaliay; Paul P. Wang; Timothy Baker; Craig V. Eister

2001-01-01T23:59:59.000Z

351

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

power system costs in the Pacific Northwest (See Figure 7) include wholesale market prices, plant availability, load growth

Heffner, Grayson

2010-01-01T23:59:59.000Z

352

Grid Integration of Aggregated Demand Response, Part 1: Load Availability  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Aggregated Demand Response, Part 1: Load Availability Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection Title Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection Publication Type Report LBNL Report Number LBNL-6417E Year of Publication 2013 Authors Olsen, Daniel, Nance Matson, Michael D. Sohn, Cody Rose, Junqiao Han Dudley, Sasank Goli, Sila Kiliccote, Marissa Hummon, David Palchak, Paul Denholm, Jennie Jorgenson, and Ookie Ma Date Published 09/2013 Abstract Demand response (DR) has the potential to improve electric grid reliability and reduce system operation costs. However, including DR in grid modeling can be difficult due to its variable and non-traditional response characteristics, compared to traditional generation. Therefore, efforts to value the participation of DR in procurement of grid services have been limited. In this report, we present methods and tools for predicting demand response availability profiles, representing their capability to participate in capacity, energy, and ancillary services. With the addition of response characteristics mimicking those of generation, the resulting profiles will help in the valuation of the participation of demand response through production cost modeling, which informs infrastructure and investment planning.

353

Load Reduction, Demand Response and Energy Efficient Technologies and Strategies  

SciTech Connect

The Department of Energys (DOEs) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

2008-11-19T23:59:59.000Z

354

Thai gas demand seen outstripping supply  

SciTech Connect

Thailand's demand for gas will outstrip supplies in the late 1990s as rapid economic growth continues. Gas will be a cornerstone for Thai energy policy throughout the growth, although sources in neighboring countries need development. Thai gas production will rise 25% from 1992 to average 1 bcfd by 1995. Including production from new discoveries, production could rise to 1.5 bcfd by 2000, up almost 90% from the 1992 level. Increased gas flow output in the mid-1990s will be due largely to development of Gulf of Thailand fields. By 1998, production from Gulf of Thailand fields will not be enough to offset the decline in today's fields. Thailand will need to import more than 1 bcfd by 2005 in the absence of future discoveries in the country. The paper discusses new pipelines and imports.

1993-05-03T23:59:59.000Z

355

Measurement and Verification for Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measurement and Verification for Measurement and Verification for Demand Response Prepared for the National Forum on the National Action Plan on Demand Response: Measurement and Verification Working Group AUTHORS: Miriam L. Goldberg & G. Kennedy Agnew-DNV KEMA Energy and Sustainability National Forum of the National Action Plan on Demand Response Measurement and Verification for Demand Response was developed to fulfill part of the Implementation Proposal for The National Action Plan on Demand Response, a report to Congress jointly issued by the U.S. Department of Energy (DOE) and the Federal Energy Regulatory Commission (FERC) in June 2011. Part of that implementation proposal called for a "National Forum" on demand response to be conducted by DOE and FERC. Given that demand response has matured, DOE and FERC decided that a "virtual" project

356

Are they equal yet. [Demand side management  

Science Conference Proceedings (OSTI)

Demand-side management (DSM) is considered an important tool in meeting the load growth of many utilities. Northwest regional and utility resource plans forecast demand-side resources to meet from one-half to two-thirds of additional electrical energy needs over the next 10 years. Numerous sources have stated that barriers, both regulatory and financial, exist to utility acquisition of demand-side resources. Regulatory actions are being implemented in Oregon to make demand-side investments competitive with supply-side investments. In 1989, the Oregon Public Utility Commission (PUC) took two actions regarding demand-side investments. The PUC's Order 89-1700 directed utilities to capitalize demand-side investments to properly match amortization expense with the multiyear benefits provided by DSM. The PUC also began an informal investigation concerning incentives for Oregon's regulated electric utilities to acquire demand-side resources.

Irwin, K.; Phillips-Israel, K.; Busch, E.

1994-05-15T23:59:59.000Z

357

Safeguards Education and Training: Short Term Supply vs. Demand  

SciTech Connect

Much has been written and discussed in the past several years about the effect of the aging nuclear workforce on the sustainability of the U.S. safeguards and security infrastructure. This paper discusses the 10-15 year supply and demand forecast for nuclear material control and accounting specialists. The demand side of the review includes control and accounting of the materials at U.S. DOE and NRC facilities, and the federal oversight of those MC&A programs. The cadre of experts referred to as 'MC&A Specialists' available to meet the demand goes beyond domestic MC&A to include international programs, regulatory and inspection support, and so on.

Mathews, Carrie E.; Crawford, Cary E.

2004-07-16T23:59:59.000Z

358

Model documentation: Electricity Market Module, Electricity Capacity Planning submodule  

SciTech Connect

The National Energy Modeling System (NEMS) is a computer modeling system developed by the Energy Information Administration (EIA). The NEMS produces integrated forecasts for energy markets in the United States by achieving a general equilibrium solution for energy supply and demand. Currently, for each year during the period from 1990 through 2010, the NEMS describes energy supply, conversion, consumption, and pricing. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The supply of electricity is a conversion activity since electricity is produced from other energy sources (e.g., fossil, nuclear, and renewable). The EMM represents the generation, transmission, and pricing of electricity. The EMM consists of four main submodules: Electricity Capacity Planning (ECP), Electricity Fuel Dispatching (EFD), Electricity Finance and Pricing (EFP), and Load and Demand-Side Management (LDSM). The ECP evaluates changes in the mix of generating capacity that are necessary to meet future demands for electricity and comply with environmental regulations. The EFD represents dispatching (i.e., operating) decisions and determines how to allocate available capacity to meet the current demand for electricity. Using investment expenditures from the ECP and operating costs from the EFD, the EFP calculates the price of electricity, accounting for state-level regulations involving the allocation of costs. The LDSM translates annual demands for electricity into distributions that describe hourly, seasonal, and time-of-day variations. These distributions are used by the EFD and the ECP to determine the quantity and types of generating capacity that are required to insure reliable and economical supplies of electricity. The EMM also represents nonutility suppliers and interregional and international transmission and trade. These activities are included in the EFD and the ECP.

1994-04-07T23:59:59.000Z

359

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

NE market through the Real-Time Price Response and Day-Aheadin the prices they pay and include real-time pricing,on a day-ahead or real-time basis. Prices are higher during

Shen, Bo

2013-01-01T23:59:59.000Z

360

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Photovoltaic concentrator module improvements study  

DOE Green Energy (OSTI)

This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

Levy, S.L.; Kerschen, K.A. (Black and Veatch, Kansas City, MO (United States)); Hutchison, G. (Solar Kinetics, Inc., Dallas, TX (United States)); Nowlan, M.J. (Spire Corp., Bedford, MA (United States))

1991-08-01T23:59:59.000Z

362

Pacific Northwest Demand Response Project Lee Hall, BPA Smart Grid Program Manager  

E-Print Network (OSTI)

, and challenging. Bonneville has previously reported to the Council on their role in the regional Smart Grid to reported to the Council on their role in the regional Smart Grid ich includes demand response in 10 to the Council on their role in the regional Smart Grid ich includes demand response in 10 participating

363

Greater fuel diversity needed to meet growing US electricity demand  

Science Conference Proceedings (OSTI)

Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

Burt, B.; Mullins, S. [Industrial Info Resources (United States)

2008-01-15T23:59:59.000Z

364

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

365

Assumptions to the Annual Energy Outlook 1999 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

petroleum.gif (4999 bytes) petroleum.gif (4999 bytes) The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below. 75

366

Marketing & Driving Demand: Social Media Tools & Strategies ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing & Driving Demand: Social Media Tools & Strategies January 16, 2011 Maryanne Fuller (MF): Hi there. This is Maryanne Fuller from Lawrence Berkeley National Laboratory....

367

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

368

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

for the most natural gas usage (33% and 51% of total demanddependence in natural gas usage, and consequently, Januarygas demand exhibits a strong winter peak in residential usage

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

369

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

Federspiel, Clifford

2010-01-01T23:59:59.000Z

370

Electric Utility Demand-Side Management  

U.S. Energy Information Administration (EIA)

Demand side management (DSM) activities in the electric power industry. The report presents a general discussion of DSM, its history, current issues, and a ...

371

Capitalize on Existing Assets with Demand Response  

E-Print Network (OSTI)

Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assetsat no cost and no risk. Demand response, the voluntary reduction of electric demand in response to grid instability, provides financial incentives to participating facilities that agree to conserve energy. With demand response, facilities also receive advance notice of potential blackouts and can proactively protect their equipment and machinery from sudden losses of power. A detailed case study, focusing on a sample industrial customers participation in demand response, will support the presentation.

Collins, J.

2008-01-01T23:59:59.000Z

372

Optimization of Demand Response Through Peak Shaving  

E-Print Network (OSTI)

Jul 5, 2013 ... Optimization of Demand Response Through Peak Shaving. G. Zakeri(g.zakeri *** at*** auckland.ac.nz) D. Craigie(David.Craigie ***at***...

373

Automated Demand Response Technology Demonstration Project for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings...

374

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages:...

375

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

California Energy Demand Scenario Projections to 2050 RyanResearch Program California Energy Commission November 7,Chris Kavalec. California Energy Commission. CEC (2003a)

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

376

Discrete Choice Analysis: Hydrogen FCV Demand Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Choice Analysis: H 2 FCV Demand Potential Cory Welch H 2 Scenario Analysis Workshop Washington, D.C. , January 31, 2007 2 Overview * Motivation for work * Methodology * Relative...

377

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

In Maximum demand, year 2050 electricity consumption reachesefficiency, year 2050 electricity consumption is 357 TWh,capita electricity consumption increases from 7,421 kWh/year

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

378

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

DOE/EIA-0589(97) Distribution Category UC-950 U.S. Electric Utility Demand-Side Management 1997 December 1998 Energy Information Administration Office of Coal ...

379

Northwest Open Automated Demand Response Technology Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA)...

380

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Home Network Technologies and Automating Demand Response  

E-Print Network (OSTI)

networks_in_the_home_the_new_growth_market.htm [12] NationalHome Network Technologies and Automating Demand Responsethe University of California. Home Network Technologies and

McParland, Charles

2010-01-01T23:59:59.000Z

382

A Model of Household Demand for Activity Participation and Mobility  

E-Print Network (OSTI)

household car ownership, car usage, and travel by differentownership demand, and car usage demand. Modal travel demand,mode), car ownership, and car usage for spatial aggregations

Golob, Thomas F.

1996-01-01T23:59:59.000Z

383

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network (OSTI)

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

384

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

Goli, Sasank

2012-01-01T23:59:59.000Z

385

Results and commissioning issues from an automated demand response pilot  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large Facilities"Management and Demand Response in Commercial Buildings", L Band Commissioning Issues from an Automated Demand Response.

Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

2004-01-01T23:59:59.000Z

386

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network (OSTI)

ofFullyAutomatedDemand ResponseinLargeFacilities. FullyAutomatedDemandResponseTestsinLargeFacilities. OpenAutomated DemandResponseCommunicationStandards:

Dudley, June Han

2009-01-01T23:59:59.000Z

387

Rates and technologies for mass-market demand response  

E-Print Network (OSTI)

Roger. 2002. Using Demand Response to Link Wholesale andfor advanced metering, demand response, and dynamic pricing.EPRI. 2001. Managing Demand-Response To Achieve Multiple

Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

2002-01-01T23:59:59.000Z

388

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

Goodin. 2009. Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

389

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network (OSTI)

Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

390

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

Piette, Mary Ann

2010-01-01T23:59:59.000Z

391

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

392

Scenarios for Consuming Standardized Automated Demand Response Signals  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

Koch, Ed

2009-01-01T23:59:59.000Z

393

Dynamic Pricing, Advanced Metering, and Demand Response in Electricity Markets  

E-Print Network (OSTI)

the New England ISO Demand Response Collaborative, a NYSERDACEC Staff. Selected Demand Response Pilots in California:New Principles for Demand Response Planning, Electric Power

Borenstein, Severin; Jaske, Michael; Rosenfeld, Arthur

2002-01-01T23:59:59.000Z

394

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. and Techniques for Demand Response. California Energy

Kiliccote, Sila

2010-01-01T23:59:59.000Z

395

Measurement and evaluation techniques for automated demand response demonstration  

E-Print Network (OSTI)

Development for Demand Response Calculation Findings andManagement and Demand Response in Commercial Buildings. of Fully Automated Demand Response in Large Facilities.

Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

2004-01-01T23:59:59.000Z

396

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network (OSTI)

and Techniques for Demand Response. May 2007. LBNL-59975.tofacilitateautomating demandresponseactionsattheInteroperable Automated Demand Response Infrastructure,

Piette, Mary Ann

2009-01-01T23:59:59.000Z

397

U.S. Propane Demand - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

398

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

55. Sample distribution of vehicle electricity demand forand distribution facilities that supply electricity demand.55. Sample distribution of vehicle electricity demand for

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

399

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

5. Average, minimum, and maximum demand reduction at eachshow the minimum and maximum demand reduction during the7. Average, minimum, and maximum demand reduction at each

Kiliccote, Sila

2010-01-01T23:59:59.000Z

400

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Figure 16 Annual peak electricity demand by sector. Tableincludes an hourly electricity demand (i.e. power) profileof aggregating sectoral electricity demands into a statewide

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network (OSTI)

with Residential Electricity Demand in India's Future - How2008). The Boom of Electricity Demand in the residential2005). Forecasting Electricity Demand in Developing

Letschert, Virginie

2010-01-01T23:59:59.000Z

402

Climate, extreme heat, and electricity demand in California  

E-Print Network (OSTI)

warming and electricity demand: A study of California.Extreme Heat, and Electricity Demand in California Norman L.high temperature and electricity demand for air-conditioned

Miller, N.L.

2008-01-01T23:59:59.000Z

403

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Statewide California Electricity Demand. [accessed June 22,fuel efficiency and electricity demand assumptions used into added vehicle electricity demand in the BAU (no IGCC)

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

404

Microgrid Dispatch for Macrogrid Peak-Demand Mitigation  

E-Print Network (OSTI)

Dispatch for Macrogrid Peak- Demand Mitigation NicholasDispatch for Macrogrid Peak-Demand Mitigation Nicholasdetermine whether the peak demand on the substation feeder

DeForest, Nicholas

2013-01-01T23:59:59.000Z

405

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

for Electricity and Power Peak Demand . . . . ELECTRICITYby Major Utility Service Area Projected Peak Demand for1977 Historical Peak Demand by Utility Service Area Weather-

Benenson, P.

2010-01-01T23:59:59.000Z

406

Climate, extreme heat, and electricity demand in California  

E-Print Network (OSTI)

projected extreme heat and peak demand for electricity areadequately kept up with peak demand, and electricity supplytrend in aggregate peak demand in California is expected to

Miller, N.L.

2008-01-01T23:59:59.000Z

407

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

408

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Table 22. Agricultural natural gas demand by planning area.23. Other sector natural gas demand by planning area.Projections Monthly natural gas demands are depicted in

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

409

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

Total Annual Energy Usage Peak Electric Demand Power UsageSetpoint (C) Peak Electric Demand Power Usage Effective-Total Annual Energy Usage Peak Electric Demand Scenario

Shehabi, Arman

2010-01-01T23:59:59.000Z

410

Robust Dynamic Traffic Assignment under Demand and Capacity Uncertainty  

E-Print Network (OSTI)

Assignment under Demand and Capacity Uncertainty ? Giuseppeworst-case sce- nario of demand and capacity con?gurations.uncertain demands and capacities are modeled as unknown-but-

Calafiore, Giuseppe; El Ghaoui, Laurent

2008-01-01T23:59:59.000Z

411

Rising Asian demand drives global coal consumption growth ...  

U.S. Energy Information Administration (EIA)

Global coal demand has almost doubled since 1980, driven by increases in Asia, where demand is up over 400% from 1980-2010. In turn, Asian demand is ...

412

Evolution of the Demand Side Management in the Smart Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Evolution of the Demand Side Management in the Smart Grid Evolution of the Demand Side Management in the Smart Grid Speaker(s): Nathan Ota Date: October 20, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page Smart grid technology has rapidly evolved over the course of the last five years. From a demand side management perspective this includes consumer-owned Home Area Networks (HAN), network-centric HAN gateways, and a leveraging of a multitier smart grid for a variety of DSM applications. In particular, smart meters enable the consumer with electricity price information and near-real time energy usage data, but they also are the devices that consumers will most often interact. The success or failure of the in-home device is therefore critical to the larger Smart Grid success. Today, distinct DSM product categories are leading to a variety of new

413

Assumptions to the Annual Energy Outlook 2000 - International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(99), (Washington, DC, February 1999).

414

Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.  

Science Conference Proceedings (OSTI)

Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

Starke, Michael R [ORNL; Kirby, Brendan J [ORNL; Kueck, John D [ORNL; Todd, Duane [Alcoa; Caulfield, Michael [Alcoa; Helms, Brian [Alcoa

2009-02-01T23:59:59.000Z

415

Unlocking the potential for efficiency and demand response throughadvanced metering  

SciTech Connect

Reliance on the standard cumulative kilowatt-hour meter substantially compromises energy efficiency and demand response programs. Without advanced metering, utilities cannot support time-differentiated rates or collect the detailed customer usage information necessary to (1)educate the customer to the economic value of efficiency and demand response options, or (2) distribute load management incentives proportional to customer contribution. These deficiencies prevent the customer feedback mechanisms that would otherwise encourage economically sound demand-side investments and behaviors. Thus, the inability to collect or properly price electricity usage handicaps the success of almost all efficiency and demand response options. Historically, implementation of the advanced metering infrastructure (AMI) necessary for the successful efficiency and demand response programs has been prevented by inadequate cost-benefit analyses. A recent California effort has produced an expanded cost-effectiveness methodology for AMI that introduces previously excluded benefits. In addition to utility-centric costs and benefits, the new model includes qualitative and quantitative costs and benefits that accrue to both customers and society.

Levy, Roger; Herter, Karen; Wilson, John

2004-06-30T23:59:59.000Z

416

Tandem resonator reflectance modulator  

DOE Patents (OSTI)

A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

Fritz, I.J.; Wendt, J.R.

1994-09-06T23:59:59.000Z

417

Tandem resonator reflectance modulator  

DOE Patents (OSTI)

A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

Fritz, Ian J. (Albuquerque, NM); Wendt, Joel R. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

418

Designing presentations for on-demand viewing  

Science Conference Proceedings (OSTI)

Increasingly often, presentations are given before a live audience, while simultaneously being viewed remotely and recorded for subsequent viewing on-demand over the Web. How should video presentations be designed for web access? How is video accessed ... Keywords: digital library, streaming media, video on-demand

Liwei He; Jonathan Grudin; Anoop Gupta

2000-12-01T23:59:59.000Z

419

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network (OSTI)

of the baseline defining a customer's load profile, and (2) PVs cannot be turned on at will for scheduled tests customers to curtail demand when needed to reduce risk of grid failure during times of peak loading load. The value of this credit may reach or exceed $100/kW/year [1] Demand response is typically

Perez, Richard R.

420

A distributed approach to taming peak demand  

Science Conference Proceedings (OSTI)

A significant portion of all energy capacity is wasted in over-provisioning to meet peak demand. The current state-of-the-art in reducing peak demand requires central authorities to limit device usage directly, and are generally reactive. We apply techniques ...

Michael Sabolish; Ahmed Amer; Thomas M. Kroeger

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Note: The Newsvendor Model with Endogenous Demand  

Science Conference Proceedings (OSTI)

This paper considers a firm's price and inventory policy when it faces uncertain demand that depends on both price and inventory level. The authors extend the classic newsvendor model by assuming that expected utility maximizing consumers choose between ... Keywords: Demand Uncertainty, Fill Rate Competition, Inventory, Newsvendor Model, Pricing, Service Levels, Service Rate Competition

James D. Dana; Nicholas C. Petruzzi

2001-11-01T23:59:59.000Z

422

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast. Miguel Garcia

423

Forecasting Electricity Demand by Time Series Models  

Science Conference Proceedings (OSTI)

Electricity demand is one of the most important variables required for estimating the amount of additional capacity required to ensure a sufficient supply of energy. Demand and technological losses forecasts can be used to control the generation and distribution of electricity more efficiently. The aim of this paper is to utilize time series model

E. Stoimenova; K. Prodanova; R. Prodanova

2007-01-01T23:59:59.000Z

424

OECD Crude Oil v Product Demand Seasonal Patterns  

Gasoline and Diesel Fuel Update (EIA)

6 Notes: The answer lies in separating crude oil demand from product demand. Crude oil demand should be a better indicator of pressures on crude oil price than product demand....

425

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network (OSTI)

concerns during system peak demand conditions, and failurerelative to national peak demand, was about 5.0% in 2006 [2]to a regions summer peak demand (see Fig. 2). Demand

Cappers, Peter

2009-01-01T23:59:59.000Z

426

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

the entire forecast period, primarily because both weather-adjusted peak and electricity consumption were forecast. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, conservation, California Solar Initiative. #12

427

Coordination of Energy Efficiency and Demand Response  

Science Conference Proceedings (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

428

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network (OSTI)

load and customer maximum demand are most commonly used as1) minimum and maximum amounts of demand reduction; (2)

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

429

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

residential and commercial electricity demand forecasts. The23 Electricity Demandand commercial electricity demand per census division from

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

430

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

431

Solar in Demand | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar,...

432

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

433

Opportunities for Energy Efficiency and Demand Response in the California  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Energy Efficiency and Demand Response in the California Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Title Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Publication Type Report LBNL Report Number LBNL-4849E Year of Publication 2010 Authors Olsen, Daniel, Sasank Goli, David Faulkner, and Aimee T. McKane Date Published 12/2010 Publisher CEC/LBNL Keywords cement industry, cement sector, demand response, electricity use, energy efficiency, market sectors, mineral manufacturing, technologies Abstract This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

434

? Market Simulation Activities ? Registration Process Overview ? Agreements ? Intro to Demand Response Provider Software ? Resource Data Template ? Pre-Market Meter Data Submission  

E-Print Network (OSTI)

By the end of this module, you will be able to: ? Describe the purpose of the Proxy Demand Resource project ? Identify the tabs in the Demand Response Provider software ? Identify three components of the Generator Resource Data Template and describe how they are used. ISO PUBLIC- 2010 CAISO 3

Jenny Pedersen; Senior Client Trainer; Iso Public Caiso

2010-01-01T23:59:59.000Z

435

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

436

TOB Module Assembly  

NLE Websites -- All DOE Office Websites (Extended Search)

SiTracker Home Page Participating Institutions and Principal Contacts Useful Links Notes Images TOB Module Assembly and Testing Project TOB Integration Data Tracker Offline DQM LHC Fluence Calculator Total US Modules Tested Graph Total US Modules Tested Graph Total US Modules Tested Total US Modules Tested US Modules Tested Graph US Modules Tested Graph US Modules Tested US Modules Tested Rod Assembly TOB Modules on a Rod TOB Rod Insertion Installation of a TOB Rod Completed TOB Completed Tracker Outer Barrel TOB Module Assembly and Testing Project All 5208 modules of the CMS Tracker Outer Barrel were assembled and tested at two production sites in the US: the Fermi National Accelerator Laboratory and the University of California at Santa Barbara. The modules were delivered to CERN in the form of rods, with the last shipment taking

437

Energy packet networks: smart electricity storage to meet surges in demand  

Science Conference Proceedings (OSTI)

When renewable energy is used either as a primary source, or as a back-up source to meet excess demand, energy storage becomes very useful. Simple examples of energy storage units include electric car batteries and uninterruptible power supplies. More ... Keywords: energy packet networks, network control of energy flow, on-demand energy dispatching, smart grid, store and forward energy, storing renewable energy

Erol Gelenbe

2012-03-01T23:59:59.000Z

438

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

439

National Action Plan on Demand Response, June 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand Response, June 2010 Action Plan on Demand Response, June 2010 National Action Plan on Demand Response, June 2010 The Federal Energy Regulatory Commission (FERC) is required to develop the National Action Plan on Demand Response (National Action Plan) as outlined in section 529 of the Energy Independence and Security Act of 2007 (EISA), entitled "Electricity Sector Demand Response." This National Action Plan is designed to meet three objectives: Identify "requirements for technical assistance to States to allow them to maximize the amount of demand response resources that can be developed and deployed." Design and identify "requirements for implementation of a national communications program that includes broad-based customer education and support."

440

Combined cycle meets Thailand's growing power demands  

SciTech Connect

This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Integrated Predictive Demand Response Controller Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

442

Software demonstration: Demand Response Quick Assessment Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. The Demand Response Quick Assessment Tools developed at LBNL will be demonstrated. The tool is built on EnergyPlus simulation and is able to evaluate and compare different DR strategies, such as global temperature reset, chiller cycling, supply air temperature reset, etc. A separate EnergyPlus plotting tool will also be demonstrated during this seminar. Users can use the tool to test EnergyPlus models, conduct parametric analysis, or compare multiple EnergyPlus simulation

443

NCEP_Demand_Response_Draft_111208.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Council on Electricity Policy: Electric Transmission Series for State Offi National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the

444

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

445

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

Regulatory Commission [FERC] (2008). Assessment of DemandRegulatory Commission [FERC] (2009). A National AssessmentEIS EMCS EMS EPA ESCO ESPC FERC GE HVAC ISO ISO-NE kW kWh MW

Goldman, Charles

2010-01-01T23:59:59.000Z

446

Demand response-enabled residential thermostat controls  

E-Print Network (OSTI)

from the utility. The electricity rates were generated basedat the different electricity rates and the users discomfortrates. Demand response measures have the effect of adding elasticity to the electricity

Chen, Xue; Jang, Jaehwi; Auslander, David; Peffer, Therese; Arens, Edward

2008-01-01T23:59:59.000Z

447

A residential energy demand system for Spain  

E-Print Network (OSTI)

Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

Labandeira Villot, Xavier

2005-01-01T23:59:59.000Z

448

Demand Response Enabled Appliance Development at GE  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Enabled Appliance Development at GE Speaker(s): David Najewicz Date: June 12, 2009 - 12:00pm Location: 90-3122 Dave Najewicz of GE Consumer and Appliances will...

449

Automated Demand Response for Critical Peak Pricing  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated Demand Response for Critical Peak Pricing Speaker(s): Naoya Motegi Date: June 9, 2005 - 12:00pm Location: Bldg. 90 California utilities have been exploring the use of...

450

Wireless Demand Response Controls for HVAC  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireless Demand Response Controls for HVAC Speaker(s): Clifford Federspiel Date: June 22, 2006 - 12:00pm Location: 90-3148 Seminar HostPoint of Contact: Richard Diamond Peng Xu We...

451

Geographically Based Hydrogen Demand & Infrastructure Analysis (Presentation)  

DOE Green Energy (OSTI)

Presentation given at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006, discusses potential future hydrogen demand and the infrastructure needed to support hydrogen vehicles.

Melendez, M.

2006-05-18T23:59:59.000Z

452

Software demonstration: Demand Response Quick Assessment Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal...

453

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

454

Demand response-enabled residential thermostat controls.  

E-Print Network (OSTI)

from the utility. The electricity rates were generated basedat the different electricity rates and the users discomfortrates. Demand response measures have the effect of adding elasticity to the electricity

Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

2008-01-01T23:59:59.000Z

455

Essays on exchange rates and electricity demand  

E-Print Network (OSTI)

This thesis examines two important issues in economic development: exchange rates and electricity demand and addresses methodological issues of using time series and panel data analysis to investigate important policy ...

Li, Xiangming, 1966-

1999-01-01T23:59:59.000Z

456

EIA - Annual Energy Outlook 2009 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

demand for renewable fuels increasing the fastestincluding E85 and biodiesel fuels for light-duty vehicles, biomass for co-firing at coal-fired electric power plants, and...

457

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and Demand Response Duke Energy is using the name Save-a-Energy Efficiency Division. Duke Energy describes all of itsPresident, and C.E.O. Duke Energy Kateri Callahan President

Goldman, Charles

2010-01-01T23:59:59.000Z

458

Better Buildings Neighborhood Program: Driving Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

even know they have. This section explains how you can use effective marketing to drive demand for energy upgrades in your community. Following the lead of many Better Buildings...

459

Proceedings: Demand-Side Management Incentive Regulation  

Science Conference Proceedings (OSTI)

These proceedings provide background information on proposed regulatory incentive mechanisms to encourage utilities to develop demand-side management programs. Attendees discussed and analyzed various proposals and techniques and developed lists of key attributes that incentive mechanisms should have.

None

1990-05-01T23:59:59.000Z

460

Micro economics for demand-side management  

E-Print Network (OSTI)

This paper aims to interpret Demand-Side Management (DSM) activity and to point out its problems, adopting microeconomics as an analytical tool. Two major findings follow. first, the cost-benefit analysis currently in use ...

Kibune, Hisao

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

function of real-time electricity prices (left) and windinflexible) demand and real-time prices. The case study inas a special case. The real-time price process is modeled as

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

462

Rapid increases in electricity demand challenge both ...  

U.S. Energy Information Administration (EIA)

... on April 1 was the steepest so far this year in SPP. The rate of increase in electricity demand peaked at 12.4% between 6 a.m. and 7 a.m. ...

463

Marketing & Driving Demand Collaborative - Social Media Tools...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Marketing and Demand Creation (1.5 hr video) - EarthAid & Efficiency 2.0 Facebook Social Plug-ins YouTube Google Tools - Adwords & Web Optimizer *...

464

Climate policy implications for agricultural water demand  

SciTech Connect

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy optionsone which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

2013-03-28T23:59:59.000Z

465

Measuring the capacity impacts of demand response  

Science Conference Proceedings (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

466

Tri-State Demand Response Framework  

Science Conference Proceedings (OSTI)

This report provides the results of a demand response framework development project of Tri-State Generation and Transmission, a wholesale provider to a number of rural electric associations in the Rocky Mountain west. Tri-State has developed an assortment of planned demand response and energy shaping products and services designed to both shave peak and shift consumption to off-peak hours. The applications, networks, and devices that will be needed to support these needs will involve many ...

2013-03-28T23:59:59.000Z

467

Evidence is growing on demand side of an oil peak  

SciTech Connect

After years of continued growth, the number of miles driven by Americans started falling in December 2007. Not only are the number of miles driven falling, but as cars become more fuel efficient, they go further on fewer gallons - further reducing demand for gasoline. This trend is expected to accelerate. Drivers include, along with higher-efficiency cars, mass transit, reversal in urban sprawl, biofuels, and plug-in hybrid vehicles.

NONE

2009-07-15T23:59:59.000Z

468

Integrating Energy Efficiency and Demand Response into Utility Resource Plans  

Science Conference Proceedings (OSTI)

This report investigates the methods in which utilities integrate their supply-side and demand-side resources to meet their generating resource requirements. The major steps in developing a resource plan are reviewed, including the alternative methods currently employed. Finally, the report presents the results of a short survey that was administered to the advisors in Energy Utilization. The results show that methods are more sophisticated than 20 years ago, but more could be accomplished in ...

2013-01-14T23:59:59.000Z

469

Paying for demand-side response at the wholesale level  

Science Conference Proceedings (OSTI)

The recent FERC Notice of Public Rulemaking regarding the payment to demand-side resources in wholesale markets has engendered a great deal of comments including FERC's obligation to ensure just and reasonable rates in the wholesale market and criteria for what FERC should do (on grounds of economic efficiency) without any real focus on what that commitment would really mean if FERC actually pursued it. (author)

Falk, Jonathan

2010-11-15T23:59:59.000Z

470

Management of Power Demand through Operations of Building Systems  

E-Print Network (OSTI)

In hot summers, the demand for electrical power is dominated by the requirements of the air-conditioning and lighting systems. Such systems account for more than 80% of the peak electrical demand in Kuwait. A study was conducted to explore the potential for managing the peak electrical demand through improved operation strategies for building systems. Two buildings with partial occupancy patterns and typical peak loads of 1 and 2.2 MW were investigated. Changes to the operation of building systems included utilizing the thermal mass to reduce cooling production and distribution during the last hour of occupancy, time-of-day control of chillers and auxiliaries, and de-lamping. The implemented operational changes led to significant reductions in building loads during the hours of national peak demand. The achieved savings reached 31% during the critical hour, and up to 47% afterwards. Daily energy savings of 13% represented an added benefit. Additional operational changes could lead to further savings in peak power when implemented.

ElSherbini, A. I.; Maheshwari, G.; Al-Naqib, D.; Al-Mulla, A.

2009-11-01T23:59:59.000Z

471

On demand responsiveness in additive cost sharing  

E-Print Network (OSTI)

Abstract. We propose two new axioms of demand responsiveness for additive cost sharing with variable demands. Group Monotonicity requires that if a group of agents increase their demands, not all of them pay less. Solidarity says that if agent i demands more, j should not pay more if k pays less. Both axioms are compatible in the partial responsibility theory postulating Strong Ranking, i.e., the ranking of cost shares should never contradict that of demands. The combination of Strong Ranking, Solidarity and Monotonicity characterizes the quasi-proportional methods, under which cost shares are proportional to rescaled demands. The alternative full responsibility theory is based on Separability, ruling out cross-subsidization when costs are additively separable. Neither the Aumann-Shapley nor the Shapley-Shubik method is group monotonic. On the other hand, convex combinations of nearby xed-path methods are group-monotonic: the subsidy-free serial method is the main example. No separable method meets Solidarity, yet restricting the axiom to submodular (or supermodular) cost functions leads to a characterization of the xed-ow methods, containing the Shapley-Shubik and serial methods. JEL Classication numbers: C 71, D 63.

Herv Moulin; Yves Sprumont

2005-01-01T23:59:59.000Z

472

Ethanol Demand in United States Gasoline Production  

SciTech Connect

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

473

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

Science Conference Proceedings (OSTI)

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

474

Optimal Design of Demand-Responsive Feeder Transit Services  

E-Print Network (OSTI)

The general public considers Fixed-Route Transit (FRT) to be inconvenient while Demand-Responsive Transit (DRT) provides much of the desired flexibility with a door-to-door type of service. However, FRT is typically more cost efficient than DRT to deploy. Therefore, there is an increased interest in flexible transit services including all types of hybrid services that combine FRT and pure DRT. The demand-responsive feeder transit, also known as Demand-Responsive Connector (DRC), is a flexible transit service because it operates in a demand-responsive fashion within a service area and moves customers to/from a transfer point that connects to a FRT network. In this research we develop analytical models, validated by simulation, to design the DRC system. Feeder transit services are generally operated with a DRC policy which might be converted to a traditional FRT policy for higher demand. By using continuous approximations, we provide an analytical modeling framework to help planners and operators in their choice of the two policies. We compare utility functions of the two policies to derive rigorous analytical and approximate closed-form expressions of critical demand densities. They represent the switching conditions, that are functions of the parameters of each considered scenario, such as the geometry of the service area, the vehicle speed and also the weights assigned to each term contributing to the utility function: walking time, waiting time and riding time. We address the problem faced by planners in determining the optimal number of zones for dividing a service area. We develop analytical models representing the total cost functions balancing customer service quality and vehicle operating cost. We obtain close-form expressions for the FRT and approximation formulas for the DRC to determine the optimal number of zones. Finally we develop a real-case application with collected customer demand data and road network data of El Cenizo, Texas. With our analytical formulas, we obtain the optimal number of zones, and the times for switching FRT and DRC policies during a day. Simulation results considering the road network of El Cenizo demonstrate that our analytical formulas provide good estimates for practical use.

Li, Xiugang

2009-08-01T23:59:59.000Z

475

Toward data-driven demand-response optimization in a campus microgrid  

Science Conference Proceedings (OSTI)

We describe and demonstrate a prototype software architecture to support data-driven demand response optimization (DR) in the USC campus microgrid, as part of the Los Angeles Smart Grid Demonstration Project. The architecture includes a semantic ...

Yogesh Simmhan; Viktor Prasanna; Saima Aman; Sreedhar Natarajan; Wei Yin; Qunzhi Zhou

2011-11-01T23:59:59.000Z

476

Operations Landscape for Integrating Demand Response in Wholesale Environments: A Primer on the Wholesale Operations Landscape for I ntegrating Retail Demand Response  

Science Conference Proceedings (OSTI)

The report depicts the electric power industry operations landscape, including the functions, systems, and information exchanges that support wholesale operations. It frames industry stakeholders and their respective uses for retail demand response (DR) in a structured fashion. It also elucidates opportunities, challenges, and strategies employed when integrating DR in wholesale environments.The project approach considers diverse functions, systems, and roles for demand-side resources ...

2012-12-31T23:59:59.000Z

477

DemandDirect | Open Energy Information  

Open Energy Info (EERE)

DemandDirect DemandDirect Jump to: navigation, search Name DemandDirect Place Woodbury, Connecticut Zip 6798 Sector Efficiency, Renewable Energy, Services Product DemandDirect provides demand response, energy efficiency, load management, and distributed generation services to end-use electricity customers in order to reduce electricity consumption, improve grid reliability, and promote renewable energy. Coordinates 44.440496°, -72.414991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.440496,"lon":-72.414991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

U.S. Coal Supply and Demand  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous Editions 2009 Review 2008 Review 2007 Review 2006 Review 2005 Review 2004 Review 2003 Review 2002 Review 2001 Review 2000 Review 1999 Review Data for: 2010 Released: May 2011 Next Release Date: April 2012 Table 3. Electric Power Sector Net Generation, 2009-2010 (Million Kilowatthours) New England Coal 14,378 14,244 -0.9 Hydroelectric 7,759 6,861 -11.6 Natural Gas 48,007 54,680 13.9 Nuclear 36,231 38,361 5.9 Other (1) 9,186 9,063 -1.3 Total 115,559 123,210 6.6 Middle Atlantic Coal 121,873 129,935 6.6 Hydroelectric 28,793 26,463 -8.1 Natural Gas 89,808 104,341 16.2 Nuclear 155,140 152,469 -1.7

479

Changing fuel formulations will boost hydrogen demand  

SciTech Connect

Refinery demand in the U.S. for on-purpose hydrogen will continue to increase by 5-10 %/year, depending on the extent of implementation of the 1990 U.S. Clean Air Act Amendments (CAAA) and other proposed environmental legislation. Although the debate on the economic wisdom of the legislation still rages, it is evident that refiners likely will see a large upswing in hydrogen demand while existing hydrogen production may decline. To better understand the potential impact various reformulation scenarios may have on the refining industry, and specifically, on the demand for hydrogen, Texaco analyzed the hydrogen supply/demand scenario in great detail. Two cases were studied in this analysis: mild and severe reformulation. The mild reformulation case is based on current CAAA legislation along with minor modifications to automobile hardware. The severe case is based on a nationwide implementation of Phase 2 of the CAAA and California's proposed reformulated fuels. The paper discusses the current capacity balance; growth in demand; reformulated gasoline; steam methane reforming; and partial oxidation technology.

Simonsen, K.A.; O' Keefe, L.F. (Texaco Inc., White Plains, N.Y. (United States)); Fong, W.F. (Texaco Development Corp., White Plains, N.Y. (United States))

1993-03-22T23:59:59.000Z

480

Transmaterialization: technology and materials demand cycles  

SciTech Connect

Recently concern has risen worldwide regarding the issue of declining materials demand which has been termed dematerialization. A summary of the issues involved appears in the proceedings of the recent conference on metals demand published in Materials and Society (1986). Dematerialization refers to the constant decline in use of materials as a percentage of total production. Dematerialization implies a structural change in an economy, indicating a reduced demand for materials and, therefore, a decline in overall industrial growth. This paper proposes that, instead of dematerialization in the US material markets, the demand change that has been occurring can be more aptly described as transmaterialization. Transmaterialization implies a recurring industrial transformation in the way that economic societies use materials, a process that has occurred regularly or cyclically throughout history. Instead of a once and for all structural change as implied by dematerialization, transmaterialization suggests that minerals demand experiences phases in which old, lower-quality materials linked to mature industries undergo replacement periodically by higher-quality or technologically-more-appropriate materials. The latter, as of recent, tend to be lighter materials with more robust technical properties than those being replaced.

Waddell, L.M.; Labys, W.C.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Assessment of Commercial Building Automation and Energy Management Systems for Demand Response Applications  

Science Conference Proceedings (OSTI)

This Technical Update is an overview of commercial building automation and energy management systems with a focus on their capabilities (current and future), especially in support of demand response (DR). The report includes background on commercial building automation and energy management systems; a discussion of demand response applications in commercial buildings, including building loads and control strategies; and a review of suppliers building automation and energy management systems to support d...

2009-12-14T23:59:59.000Z

482

EIA - Annual Energy Outlook 2008 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2008 with Projections to 2030 Energy Demand Figure 40. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 41. Primary energy use by fuel, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Average Energy Use per Person Levels Off Through 2030 Because energy use for housing, services, and travel in the United States is closely linked to population levels, energy use per capita is relatively stable (Figure 40). In addition, the economy is becoming less dependent on energy in general. Energy intensity (energy use per 2000 dollar of GDP) declines by an average

483

Demand Management Institute (DMI) | Open Energy Information  

Open Energy Info (EERE)

Demand Management Institute (DMI) Demand Management Institute (DMI) Jump to: navigation, search Name Demand Management Institute (DMI) Address 35 Walnut Street Place Wellesley, Massachusetts Zip 02481 Sector Buildings Product Provides analysis for buildings on reducing energy use Website http://www.dmiinc.com/ Coordinates 42.3256508°, -71.2530294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3256508,"lon":-71.2530294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Production Will Meet Demand Increase This Summer  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Production must meet increases in demand this year. Last year, increased imports met most of the summer demand increase, and increases in stock draws met almost all of the remainder. Production did not increase much. But this year, inventories will not be available, and increased imports seem unlikely. Thus, increases in production will be needed to meet increased demand. Imports availability is uncertain this summer. Imports in 1999 were high, and with Phase II RFG product requirements, maintaining this level could be challenging since not all refineries exporting to the U.S. will be able to meet the new gasoline specifications. Stocks will also contribute little supply this summer. Last year's high gasoline stocks allowed for a stock draw that was 58 MB/D higher than

485

Wireless Demand Response Controls for HVAC Systems  

Science Conference Proceedings (OSTI)

The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

Federspiel, Clifford

2009-06-30T23:59:59.000Z

486

Supply and demand of lube oils  

Science Conference Proceedings (OSTI)

Lube oil consumption in the world has reached about 40 million tonnes per year, of which 24 million tonnes is used outside the communist areas. There are large regional differences in annual consumption per head from one kilogramme (kg) in India to 35 kg in North America. A statistical analysis of historical data over twenty years in about ninety countries has lead to the conclusion that national income, measured as GDP per head, is the key determinant of total lube oil consumption per head. The functional relationship, however, is different in different countries. Starting from GDP projections until the year 2000, regional forecasts of lube oil demand have been made which show that the share of developing nations outside the communist area in world demand will grow. This will increase the regional imbalance between base oil capacity and demand.

Vlemmings, J.M.L.M.

1988-01-01T23:59:59.000Z

487

Photovoltaic-based Demand Response and Ancillary Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic-based Demand Response and Ancillary Services Photovoltaic-based Demand Response and Ancillary Services Speaker(s): Bill Vogel Date: June 22, 2012 - 1:00pm Location: 90-1099 Seminar Host/Point of Contact: David S. Watson This presentation describes innovations in intelligent micro inverters for use with photovoltaic (PV) systems. The micro-inverters enable remotely adjustable phase angles (+/- up to 45 degrees). The technology includes dynamic impedance matching and ultra-low cost dynamic reactive power management of digital power sources. These attributes can help mitigate grid balancing challenges introduced by most renewable generation resources as we strive to reach aggressive renewable portfolio standards and their associated needs for voltage support and ancillary services. The software-enabled device eliminates several pieces of heavy equipment needed

488

Demand-Side Management (DSM) Opportunities as Real-Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand-Side Management (DSM) Opportunities as Real-Options Demand-Side Management (DSM) Opportunities as Real-Options Speaker(s): Osman Sezgen Date: August 1, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare As some end-users of energy and aggregators are choosing to be exposed to real-time prices and energy price volatility, they are coming across new DSM opportunities that would not be feasible under typical utility rate structures. Effective evaluation of such opportunities requires a good understanding of the wholesale energy markets and the use of models based on recent financial techniques for option pricing. The speaker will give examples of such modeling approaches based on his experience in the retail-energy industry. Specific examples will include evaluation of distributed generation, load curtailment, dual-fuel cooling, and energy

489

Demand responsive programs - an emerging resource for competitive electricity markets?  

SciTech Connect

The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

Heffner, Grayson C. Dr.; Goldman, Charles A.

2001-06-25T23:59:59.000Z

490

World uranium supply and demand: Buyer`s banquet?  

Science Conference Proceedings (OSTI)

This articule reviews the present (end of 1993) world-wide uranium market and attempts to focus on the 1994-2004 market. Market forces discussed include: (1) reactor uranium demand, (2) natural uranium production (3) utility inventory drawdown, (4) reprocessing products, (5) the Russian stockpile, (6) loans, and (7) inventories of HEU. The following conclusions were reached: (1) reactor demand will be satisfied during this period, (2) Russia could be the single most important influence on the world uranium market, (3) there would be no need for new mine development is the Russian material is allowed into the market, and (4) the market will be in oversupply, so price increases will be limited.

NONE

1994-08-01T23:59:59.000Z

491

Enhanced oil recovery: major equipment and its projected demand  

Science Conference Proceedings (OSTI)

After years of research and pilot tests, the enhanced oil recovery (EOR) industry is taking major leaps forward in 1981. With the launching of several hundred new EOR pilot tests, the announcement of major CO/sub 2/ pipelines into W. Texas, and a $3.6-billion purchase of South Belridge heavy oil by Shell, oil companies are showing their confidence in this technologically-emerging area. While much research remains to be done to make these processes more efficient and economic, the important commercial stage of the EOR industry's growth has clearly been reached. Along with the growth of the EOR industry will come a major demand for equipment and facilities. This demand will include traditional requirements for steam generators and compressors, although on a scale many times larger than at present, as well as new requirements for gas separation, chemical storage, and special tubulars.

Kuuskraa, V.A.; Hammershaimb, E.C.; Wicks, D.E.

1981-09-01T23:59:59.000Z

492

Demand Responsive Lighting: A Scoping Study  

SciTech Connect

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

493

Demand Responsive Lighting: A Scoping Study  

SciTech Connect

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

494

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network (OSTI)

4 9 . Piette et at Automated Demand Response Strategies andDynamic Controls for Demand Response in New and ExistingFully Automated Demand Response Tests in Large Facilities"

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

495

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

off- site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%

Stadler, Michael

2011-01-01T23:59:59.000Z

496

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

as 15-minute minimum and maximum demand values are provided.8. Hourly average and maximum demand savings of McKinstry on9. Hourly average and maximum demand savings of McKinstry on

Kiliccote, Sila

2010-01-01T23:59:59.000Z

497

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

if the customers maximum demand has exceeded 999 kilowattswhose meter indicates a maximum demand of 200 kW or greater2) the customer's maximum billing demand has exceeded 499

Ghatikar, Girish

2010-01-01T23:59:59.000Z

498

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network (OSTI)

theaverage,minimumandmaximumdemandreductionforeachAverage, Minimum and Maximum Demand Reduction Based on 3/1016 Average, Minimum and Maximum Demand Reduction Based on

Dudley, June Han

2009-01-01T23:59:59.000Z

499

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network (OSTI)

ofthesmallcommercialpeakdemand. Themajorityofthelessthan200kWofpeakdemand,makeup20?25%of peakthesmallcommercial peakdemand. Atenpercentreduction

Dudley, June Han

2009-01-01T23:59:59.000Z

500

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

serves to partially fill off-peak demand troughs. If passivehigher before or after the peak demand hour when hydro powerare highest during off-peak demand hours, and are low at

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z