Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

2

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

3

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

4

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

5

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

6

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

7

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

8

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

9

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

10

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

11

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

12

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

13

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

14

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

15

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

16

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

17

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

18

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

19

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

20

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

22

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

23

Estimating Demand Response Market Potential | Open Energy Information  

Open Energy Info (EERE)

Estimating Demand Response Market Potential Estimating Demand Response Market Potential Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating Demand Response Market Potential Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.ieadsm.org/Files/Tasks/Task%20XIII%20-%20Demand%20Response%20Resou Equivalent URI: cleanenergysolutions.org/content/estimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Resource Integration Planning This resource presents demand response (DR) potential results from top-performing programs in the United States and Canada, as well as a DR

24

A Methodology for Estimating Large-Customer Demand Response Market Potential  

E-Print Network [OSTI]

Estimating Large-Customer Demand Response Market PotentialEstimating Large-Customer Demand Response Market PotentialSyracuse, NY ABSTRACT Demand response (DR) is increasingly

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2008-01-01T23:59:59.000Z

25

Estimating Demand Response with Panel Data  

Science Journals Connector (OSTI)

In this paper, we extend to panel data the iterated linear least squares estimator of Blundell and Robin (in J Appl Econometrics 14: 209232 1999). It is shown to be consistent when total expenditure and regre...

Sbastien Lecocq; Jean-Marc Robin

2006-11-01T23:59:59.000Z

26

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

27

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

28

Estimating Large-Customer Demand Response Market Potential: Integrating Price and Customer Behavior  

E-Print Network [OSTI]

Estimating Large-Customer Demand Response Market Potential:Syracuse, NY ABSTRACT Demand response (DR) is increasinglyestimated. Introduction Demand response (DR) is increasingly

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

29

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

of Program Participation Rates on Demand Response MarketTable 3-1. Methods of Estimating Demand Response PenetrationDemand Response

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

30

On the stock control performance of intermittent demand estimators  

Science Journals Connector (OSTI)

The purpose of this paper is to assess the empirical stock control performance of intermittent demand estimation procedures. The forecasting methods considered are the simple moving average, single exponential smoothing, Croston's method and a new method recently developed by the authors of this paper. We first discuss the nature of the empirical demand data set (3000 stock keeping units) and we specify the stock control model to be used for experimentation purposes. Performance measures are then selected to report customer service level and stock volume differences. The out-of-sample empirical comparison results demonstrate the superior stock control performance of the new intermittent demand forecasting method and enable insights to be gained into the empirical utility of the other estimators.

Aris A. Syntetos; John E. Boylan

2006-01-01T23:59:59.000Z

31

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

32

A Novel Harmony Search Algorithm for One-Year-Ahead Energy Demand Estimation Using Macroeconomic Variables  

Science Journals Connector (OSTI)

In this paper we tackle a problem of one-year ahead energy demand estimation from macroeconomic variables. A modified Harmony ... the proposed approach in a real problem of Energy demand estimation in Spain, from...

Sancho Salcedo-Sanz

2014-01-01T23:59:59.000Z

33

Estimating the Price Elasticity of Residential Water Demand: The Case of Phoenix, Arizona  

E-Print Network [OSTI]

Article Estimating the Price Elasticity of Residential Water Demand: The Case of Phoenix, Arizona to such changes requires understanding the responsiveness of water demand to price changes. We estimate the price://aepp.oxfordjournals.org/Downloadedfrom #12;measures. In this paper we apply a method for estimating the price elasticity of water demand

34

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

35

Model documentation report: Commercial sector demand module of the national energy modeling system  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1994-08-01T23:59:59.000Z

36

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

37

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

of price response (price elasticity of demand, substitutionprice elasticities, for estimating the market potential of demand responsedemand response market potential that account for customer behavior and prices through the use of price elasticities (

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

38

Demand for Electric Power in Norway : Estimating price and substitution elasticities.  

E-Print Network [OSTI]

??The main goal of this master thesis is to estimate how the prices of electricity and heating oil affect the aggregate demand for electric power (more)

yan, Ola Hagen

2010-01-01T23:59:59.000Z

39

Price elasticity reconsidered: Panel estimation of an agricultural water demand function  

E-Print Network [OSTI]

Price elasticity reconsidered: Panel estimation of an agricultural water demand function Karina, this paper estimates the price elasticity of irrigation water demand. Price elasticity is decomposed into the direct effect of water management and the indirect effect of water price on choice of output

Sadoulet, Elisabeth

40

Estimation and specification tests of count data recreation demand functions  

E-Print Network [OSTI]

in the truncated and untruncated Poisson models, suggesting that the negative binomial family of distributions are more appropriate models. The results also demonstrate that using the seemingly unrelated Poisson regression estimator with event count data instead...- parameter distribution with mean and variance of Yi equal to Xt. This distribution can be extended to a count regression model by letting the expected count, E(Y; ) =? X&, to vary according to (II. 2) 4 = exp(q'P), where x; and P are, respectively...

Gomez, Irma Adriana

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water  

Broader source: Energy.gov (indexed) [DOE]

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters June 14, 2012 - 7:38pm Addthis A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. What does this mean for me? Estimate the annual operating costs and compare several water heaters to determine whether it is worth investing in a more efficient

42

Differential Turbo Coded Modulation with APP Channel Estimation  

E-Print Network [OSTI]

Differential Turbo Coded Modulation with APP Channel Estimation Sheryl L. Howard and Christian, iterative decoding. I. INTRODUCTION With the advent of turbo codes [1], [2] and iterative de- coding in very high noise/low signal- to-noise ratio (SNR) environments. Turbo trellis coded modulation (TTCM

Howard, Sheryl

43

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

44

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

45

Estimating the energy consumption and power demand of small power equipment in office buildings  

Science Journals Connector (OSTI)

Abstract Small power is a substantial energy end-use in office buildings in its own right, but also significantly contributes to internal heat gains. Technological advancements have allowed for higher efficiency computers, yet current working practices are demanding more out of digital equipment. Designers often rely on benchmarks to inform predictions of small power consumption, power demand and internal gains. These are often out of date and fail to account for the variability in equipment speciation and usage patterns in different offices. This paper details two models for estimating small power consumption in office buildings, alongside typical power demand profiles. The first model relies solely on the random sampling of monitored data, and the second relies on a bottom-up approach to establish likely power demand and operational energy use. Both models were tested through a blind validation demonstrating a good correlation between metered data and monthly predictions of energy consumption. Prediction ranges for power demand profiles were also observed to be representative of metered data with minor exceptions. When compared to current practices, which often rely solely on the use of benchmarks, both proposed methods provide an improved approach to predicting the operational performance of small power equipment in offices.

A.C. Menezes; A. Cripps; R.A. Buswell; J. Wright; D. Bouchlaghem

2014-01-01T23:59:59.000Z

46

Modeling, Estimation, and Control in Energy Systems: Batteries & Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling, Modeling, Estimation, and Control in Energy Systems: Batteries & Demand Response Scott Moura Assistant Professor Civl & Environmental Engineering University of California, Berkeley EETD | LBNL Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 1 Source: Vaclav Smil Estimates from Energy Transitions Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 2 Energy Initiatives Denmark 50% wind penetration by 2025 Brazil uses 86% renewables China's aggressive energy/carbon intensity reduction EV Everywhere SunShot Green Button Zero emissions vehicle (ZEV) 33% renewables by 2020 Go Solar California Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 3 Energy Systems of Interest Energy storage Smart Grids (e.g., batteries) (e.g., demand response) Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 4 Energy

47

Closing Data Gaps for LCA of Food Products: Estimating the Energy Demand of Food Processing  

Science Journals Connector (OSTI)

Closing Data Gaps for LCA of Food Products: Estimating the Energy Demand of Food Processing ... To quantify the environmental impacts arising from food production, environmental assessment tools such as life cycle assessment (LCA) should be applied. ... Most of the published LCAs on food are assessing primary agricultural products, e.g., refs 4 and 5, whereas the number of studies available on processed food is lower, e.g., refs 6?8. ...

Neus Sanjun; Franziska Stoessel; Stefanie Hellweg

2013-12-17T23:59:59.000Z

48

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

2001. Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

49

Estimating Large-Customer Demand Response Market Potential: Integrating Price and Customer Behavior  

E-Print Network [OSTI]

of price response (price elasticity of demand, substitutionprice elasticity of demand was used to characterize customer response,

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

50

Estimate of federal relighting potential and demand for efficient lighting products  

SciTech Connect (OSTI)

The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

1993-11-01T23:59:59.000Z

51

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

52

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

53

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

54

Energy demand  

Science Journals Connector (OSTI)

The basic forces pushing up energy demand are population increase and economic growth. From ... of these it is possible to estimate future energy requirements.

Geoffrey Greenhalgh

1980-01-01T23:59:59.000Z

55

D:\assumptions_2001\assumptions2002\currentassump\demand.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Petroleum Market Module. . . . . . . . . . . . .

56

Does Marginal Price Matter? A Regression Discontinuity Approach to Estimating Water Demand  

E-Print Network [OSTI]

Groot, and Peter Nijkamp, Price and Income Elasticities ofJ. Espey and W. D. Shaw, Price Elasticity of ResidentialDavid J. Molina, A Note on Price Perception in Water Demand

Nataraj, Shanthi; Hanemann, W. Michael

2008-01-01T23:59:59.000Z

57

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

58

ACCURATE ESTIMATION OF TARGET AMOUNTS USING EXPANDED BASS MODEL FOR DEMAND?SIDE MANAGEMENT  

Science Journals Connector (OSTI)

The electricity demand in Korea has rapidly increased along with a steady economic growth since 1970s. Therefore Korea has positively propelled not only SSM (Supply?Side Management) but also DSM (Demand?Side Management) activities to reduce investment cost of generating units and to save supply costs of electricity through the enhancement of whole national energy utilization efficiency. However study for rebate which have influence on success or failure on DSM program is not sufficient. This paper executed to modeling mathematically expanded Bass model considering rebates which have influence on penetration amounts for DSM program. To reflect rebate effect more preciously the pricing function using in expanded Bass model directly reflects response of potential participants for rebate level.

Hyun?Woong Kim; Jong?Jin Park; Jin?O. Kim

2008-01-01T23:59:59.000Z

59

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

60

Estimation of a supply and demand model for the hired farm labor market in Texas  

E-Print Network [OSTI]

. Wage Elasticities of Hired Farm Labor Markets , , 3O 3. Order Condition of the Hypothesized Model 4. Estimated Model Coefficients for Texas Hired Farm Labor (1951-1975) 5. Wage El asti cities of Oemand and Immigration Elas- ticities of Supply 58...

Turley, Keith Pool

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

62

Residential Demand Module  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for EIA (SENTECH Incorporated, 2010). Wind: The Cost and Performance of Distributed Wind Turbines, 2010-35 (ICF International, 2010). 33 U.S. Energy Information Administration |...

63

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

Factors behind declining demand for oil include a shift fromfuel. In the industrial sector, oil demand will decrease dueto a falling demand for oil for chemical materials. In the

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

64

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

No.4 Japan's Long-term Energy Demand and Supply Scenario towe projected Japan's energy demand/supply and energy-relatedcrises (to cut primary energy demand per GDP ( T P E S / G D

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

65

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

66

Design, Implementation, and Formal Verification of On-demand Connection Establishment Scheme for TCP Module of MPICH2 Library  

E-Print Network [OSTI]

developed at Argonne National Laboratory. The scalability of MPI implementations is very important for building high performance parallel computing applications. The initial TCP (Transmission Control Protocol) network module developed for Nemesis...

Muthukrishnan, Sankara Subbiah

2012-10-19T23:59:59.000Z

67

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

68

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

69

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

70

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

71

LINEAR AND NON-LINEAR TECHNIQUES FOR ESTIMATING THE MONEY DEMAND FUNCTION: THE CASE OF SAUDI ARABIA  

E-Print Network [OSTI]

aggregates). The first approach is the conventional way, which is based on empirical literature where non-oil GDP is used as a measure for income. The second approach is the consumer demand approach to money demand. This approach emphasizes the use...

Alsahafi, Mamdooh

2009-07-31T23:59:59.000Z

72

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

73

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

74

Estimating Demand Response Load Impacts: Evaluation of BaselineLoad Models for Non-Residential Buildings in California  

SciTech Connect (OSTI)

Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load variability, all BLPmodels perform reasonably well in accuracy. - For customer accounts withhighly variable loads, we found that no BLP model produced satisfactoryresults, although averaging methods perform best in accuracy (but notbias). These types of customers are difficult to characterize withstandard BLP models that rely on historic loads and weather data.Implications of these results for DR program administrators andpolicymakersare: - Most DR programs apply similar DR BLP methods tocommercial and industrial sector customers. The results of our study whencombined with other recent studies (Quantum 2004 and 2006, Buege et al.,2006) suggests that DR program administrators should have flexibility andmultiple options for suggesting the most appropriate BLP method forspecific types of customers.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila

2008-01-01T23:59:59.000Z

75

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

to cut primary energy demand per GDP ( T P E S / G D P ) inhowever, primary energy supply per GDP decelerated a declineattention to primary energy supply per GDP, per capita GDP

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

76

Estimating fare and expenditure elasticities of demand for air travel in the U.S. domestic market  

E-Print Network [OSTI]

Page 21 Estimation Results of Leisure Travelers: Markets with Three Airlines??.. 88 22 Estimation Results of Business Travelers: Markets with Three Airlines?.... 91 23 Estimation Results of Leisure Travelers: Markets... of different modes of transportation. Mostly, mode-choice studies are conducted using the discrete choice model, and the estimation is carried out for a given volume of trips or traffic among modes. Also, the mode-choice elasticity does not consider...

Alwaked, Ahmad Abdelrahman Fahed

2007-04-25T23:59:59.000Z

77

Approved Module Information for EC211C, 2014/5 Module Title/Name: Estimation, Measurement & Scheduling Module Code: EC211C  

E-Print Network [OSTI]

practice and scheduling using planning and control tools and techniques to evaluate students? own work & Scheduling Module Code: EC211C School: Engineering and Applied Science Module Type: Standard Module New and practices of construction scheduling; * To develop an understanding of cost and time in construction

Neirotti, Juan Pablo

78

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

79

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

80

The artificial neural network model to estimate the photovoltaic modul efficiency for all regions of the Turkey  

Science Journals Connector (OSTI)

Abstract Artificial neural network (ANN) is a useful tool that using estimates behavior of the most of engineering applications. In the present study, ANN model has been used to estimate the temperature, efficiency and power of the Photovoltaic module according to outlet air temperature and solar radiation. An experimental system consisted photovoltaic module, heating and cooling sub systems, proportional integral derivative (PID) control unit was designed and built. Tests were realized at the outdoors for the constant ambient air temperatures of photovoltaic module. To preserve ambient air temperature at the determined constant values as 10, 20, 30 and 40C, cooling and heating subsystems which connected PID control unit were used in the test apparatus. Ambient air temperature, solar radiation, back surface of the photovoltaic module temperature was measured in the experiments. Obtained data were used to estimate the photovoltaic module temperature, efficiency and power with using ANN approach for all 7 region of the Turkey. The study dealing with this paper not only will beneficial for the limited region but also in all region of Turkey which will be thought established of photovoltaic panels by the manufacturer, researchers and etc.

?lhan Ceylan; Engin Gedik; Okan Erkaymaz; Ali Etem Grel

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Capacity estimation and code design principles for continuous phase modulation (CPM)  

E-Print Network [OSTI]

is represented as Y n = Sn + Zn 1 < n < Ns. The received signal is processed by the demodulator to produce the 12 symbol likelihoods (n) = [Prob(Xn = 0);Prob(Xn = 1);:::;Prob(Xn = M 1)] for each discrete time instant n 2 [1;2;:::;Ns]. The M-ary CPM modulator... the properties of the channel make it easy to find the distribution that maximizes the mutual information. For channels with memory the information theoretic definition of capacity is maximum of limn!1 1N I(XN1 ; Y N1 ) , over all possible distributions...

Ganesan, Aravind

2004-09-30T23:59:59.000Z

82

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

83

Non-data aided digital feedforward timing estimators for linear and nonlinear modulations  

E-Print Network [OSTI]

in Rx(1; ). For the square law estimator when there is no aliasing we have [20] ^ = 12 arg n ^ Rx(1; 0) o ; (3.6) Rx(k; ) = 1P Z 1=2 1=2 H(f)H(f + k=P)ej2 (f+k=P) df (3.7) = e j2 k T Z P=2T P=2T Hc(F)Hc(F + k=T)ej2 TF=P dF: 30 Consider... Control. 2 ( T=2;T=2]. (Our model is rather simple and we have not included e ects due to phase o set and multiplicative noise and other such e ects). Symbol timing recovery (STR) involves estimating this delay so that we can sample at the optimal sampling...

Sarvepalli, Pradeep Kiran

2004-09-30T23:59:59.000Z

84

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

85

Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

86

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

87

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

88

DSM Program Development. The demand-side resource options were developed using a combination of internal engineering estimates and external consulting services. The  

E-Print Network [OSTI]

DSM Program Development. The demand-side resource options were developed using a combination analysis. Screening Criteria. The DSM screening criteria were designed to assess a program's potential taken into consideration when looking at selecting DSM programs. · Programs will be cost-effective. From

89

Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response  

E-Print Network [OSTI]

S. Kiliccote. EstimatingDemandResponseLoad Impacts:inCalifornia. DemandResponseResearchCenter,LawrenceandTechniquesforDemandResponse. LBNLReport59975.

Kiliccote, Sila

2011-01-01T23:59:59.000Z

90

Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response Introduction..................................................................................................................................... 1 Demand Response in the Council's Fifth Power Plan......................................................................................................................... 3 Estimate of Potential Demand Response

91

Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies  

E-Print Network [OSTI]

2008. Estimating Demand Response Load Impacts: Evaluation ofK. C. Mares, and D. Shroyer. 2010. Demand Response andOpen Automated Demand Response Opportunities for Data

Ghatikar, Girish

2014-01-01T23:59:59.000Z

92

Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumption to the Annual Energy Outlook Petroleum Market Module Figure 8. Petroleum Administration for Defense Districts. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohols, ethers, and bioesters natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining

93

Commercial & Industrial Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

94

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

95

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 23 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes world oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into

96

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into the United States by export region. Changes in the oil price (WTI), which is defined as the price of light, low-sulfur crude oil delivered to Cushing, Oklahoma in

97

Micro-Based Estimatesof Demand Functions for Local School Expenditures  

E-Print Network [OSTI]

demand functions from individual qualitative responses to a survey. This leads to estimates of income and price elasticities

Bergstrom, Ted; Rubinfeld, Daniel L.; Shapiro, Perry

1982-01-01T23:59:59.000Z

98

Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection  

E-Print Network [OSTI]

is estimated. Keywords: Demand response, ancillary services,of Aggregated Demand Response, Part 1: Load Availabilityof Energy (DOE) Demand Response and Energy Storage

Olsen, Daniel J.

2014-01-01T23:59:59.000Z

99

Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin  

E-Print Network [OSTI]

the abated annual energy and demand expenditures, simplea/c annual abated energy and demand expenditures and presentof future abated energy and demand expenditures is estimated

Konopacki, Steven J.; Akbari, Hashem

2001-01-01T23:59:59.000Z

100

The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners  

E-Print Network [OSTI]

to inform projected energy and demand reductions in regionaldown to reflect energy and demand savings due to spillover (market and estimate the energy and demand savings associated

Vine, Edward

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Water demand management in Kuwait  

E-Print Network [OSTI]

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

102

Advanced Demand Responsive Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

103

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

104

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

105

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

106

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

107

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

108

Solar in Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar in Demand Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new study says U.S. developers are likely to install about 3,300 megawatts of solar panels in 2012 -- almost twice the amount installed last year. In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of

109

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

110

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

he International Energy Module determines changes in the world oil price and the supply prices of crude he International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

111

Mass Market Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

112

Demand Response Assessment INTRODUCTION  

E-Print Network [OSTI]

Demand Response Assessment INTRODUCTION This appendix provides more detail on some of the topics raised in Chapter 4, "Demand Response" of the body of the Plan. These topics include 1. The features, advantages and disadvantages of the main options for stimulating demand response (price mechanisms

113

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

114

Applying Bayesian Forecasting to Predict New Customers' Heating Oil Demand.  

E-Print Network [OSTI]

??This thesis presents a new forecasting technique that estimates energy demand by applying a Bayesian approach to forecasting. We introduce our Bayesian Heating Oil Forecaster (more)

Sakauchi, Tsuginosuke

2011-01-01T23:59:59.000Z

115

Coordination of Energy Efficiency and Demand Response  

SciTech Connect (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

116

Demand response enabling technology development  

E-Print Network [OSTI]

Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing SenSys 2003,

2006-01-01T23:59:59.000Z

117

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

118

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

119

Demand Response Programs for Oregon  

E-Print Network [OSTI]

Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

120

Demand response enabling technology development  

E-Print Network [OSTI]

behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

122

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

123

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

124

Overview of the PV Module Model in PVWatts (Presentation)  

SciTech Connect (OSTI)

Overview of the PV module model. PVWatts module power estimates were compared with those using the Sandia model for three modules and data sets.

Marion, B.

2010-09-22T23:59:59.000Z

125

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

126

Coordination of Energy Efficiency and Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

127

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

128

RTP Customer Demand Response  

Science Journals Connector (OSTI)

This paper provides new evidence on customer demand response to hourly pricing from the largest and...real-time pricing...(RTP) program in the United States. RTP creates value by inducing load reductions at times...

Steven Braithwait; Michael OSheasy

2002-01-01T23:59:59.000Z

129

World Energy Demand  

Science Journals Connector (OSTI)

A reliable forecast of energy resources, energy consumption, and population in the future is a ... So, instead of absolute figures about future energy demand and sources worldwide, which would become...3.1 correl...

Giovanni Petrecca

2014-01-01T23:59:59.000Z

130

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

131

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

132

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

133

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

134

Ethanol Demand in United States Gasoline Production  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

135

Changing Energy Demand Behavior: Potential of Demand-Side Management  

Science Journals Connector (OSTI)

There is a great theoretical potential to save resources by managing our demand for energy. However, demand-side management (DSM) programs targeting behavioral patterns of...

Dr. Sylvia Breukers; Dr. Ruth Mourik

2013-01-01T23:59:59.000Z

136

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

137

Demand Response In California  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

138

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

139

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

140

Energy Demand Modeling  

Science Journals Connector (OSTI)

From the end of World War II until the early 1970s there was a strong and steady increase in the demand for energy. The abundant supplies of fossil and other ... an actual fall in the real price of energy of abou...

S. L. Schwartz

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Privacy-Aware Architecture For Demand Response Systems Stephen Wicker, Robert Thomas  

E-Print Network [OSTI]

A Privacy-Aware Architecture For Demand Response Systems Stephen Wicker, Robert Thomas School architectures that realize the benefits of demand response without requiring that AMI data be centrally-based demand response efforts in the face of public outcry. We also show that Trusted Platform Modules can

Wicker, Stephen

142

A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing  

E-Print Network [OSTI]

1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real bills. Our focus is on a subset of this work that carries out demand response (DR) by modulating

Urgaonkar, Bhuvan

143

Assumptions to the Annual Energy Outlook 2001 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

144

Assumptions to the Annual Energy Outlook 2002 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

145

Gasoline demand in developing Asian countries  

SciTech Connect (OSTI)

This paper presents econometric estimates of motor gasoline demand in eleven developing countries of Asia. The price and GDP per capita elasticities are estimated for each country separately, and for several pooled combinations of the countries. The estimated elasticities for the Asian countries are compared with those of the OECD countries. Generally, one finds that the OECD countries have GDP elasticities that are smaller, and price elasticities that are larger (in absolute value). The price elasticities for the low-income Asian countries are more inelastic than for the middle-income Asian countries, and the GDP elasticities are generally more elastic. 13 refs., 6 tabs.

McRae, R. [Univ. of Calgary, Alberta (Canada)

1994-12-31T23:59:59.000Z

146

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

147

Macroeconomic Activity Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 19 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook2011 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module.

148

DOE DEMANDS SOLAR PATENTS  

Science Journals Connector (OSTI)

THE DEPARTMENT of Energy is claiming ownership of three patents awarded to Evergreen Solar and plans to prevent them from being sold to non-U.S. ... Even with the innovation, Evergreenlike U.S. solar firms Solyndra and SpectraWatt, which recently both declared bankruptcycould not compete with lower cost crystalline solar modules made in China. ...

MELODY BOMGARDNER

2011-10-17T23:59:59.000Z

149

Aviation fuel demand development in China  

Science Journals Connector (OSTI)

Abstract This paper analyzes the core factors and the impact path of aviation fuel demand in China and conducts a structural decomposition analysis of the aviation fuel cost changes and increase of the main aviation enterprises business profits. Through the establishment of an integrated forecast model for Chinas aviation fuel demand, this paper confirms that the significant rise in Chinas aviation fuel demand because of increasing air services demand is more than offset by higher aviation fuel efficiency. There are few studies which use a predictive method to decompose, estimate and analyze future aviation fuel demand. Based on a structural decomposition with indirect prediction, aviation fuel demand is decomposed into efficiency and total amount (aviation fuel efficiency and air transport total turnover). The core influencing factors for these two indexes are selected using path analysis. Then, univariate and multivariate models (ETS/ARIMA model and Bayesian multivariate regression) are used to analyze and predict both aviation fuel efficiency and air transport total turnover. At last, by integrating results, future aviation fuel demand is forecast. The results show that the aviation fuel efficiency goes up by 0.8% as the passenger load factor increases 1%; the air transport total turnover goes up by 3.8% and 0.4% as the urbanization rate and the per capita GDP increase 1%, respectively. By the end of 2015, Chinas aviation fuel demand will have increased to 28 million tonnes, and is expected to be 50 million tonnes by 2020. With this in mind, increases in the main aviation enterprises business profits must be achieved through the further promotion of air transport.

Jian Chai; Zhong-Yu Zhang; Shou-Yang Wang; Kin Keung Lai; John Liu

2014-01-01T23:59:59.000Z

150

Inventory Management of Perishable Goods under Demand Variability  

E-Print Network [OSTI]

science and economic parameters examining the impacts of different demand specifications on the cost minimization and profit maximization problem of fluid milk. The square root model from the food science literature is used to estimate the shelf...

Ayoub, Wisam Hanna

2013-08-01T23:59:59.000Z

151

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

152

Uranium 2014 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

153

Energy Demand and Supply  

Science Journals Connector (OSTI)

The world consumption of primary energy has been on the increase ever since the Industrial Revolution . The energy consumption in 1860 is estimated to have ... particularly marked since WWII when the sources of primary

Kimio Uno

1995-01-01T23:59:59.000Z

154

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Broader source: Energy.gov (indexed) [DOE]

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

155

Demand Response | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

156

Understanding and Analysing Energy Demand  

Science Journals Connector (OSTI)

This chapter introduces the concept of energy demand using basic micro-economics and presents the three-stage decision making process of energy demand. It then provides a set of simple ... (such as price and inco...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

157

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

158

Marketing Demand-Side Management  

E-Print Network [OSTI]

they the only game in town, enjoying a captive market. Demand-side management (DSM) again surfaced as a method for increasing customer value and meeting these competitive challenges. In designing and implementing demand-side management (DSM) programs we... have learned a great deal about what it takes to market and sell DSM. This paper focuses on how to successfully market demand-side management. KEY STEPS TO MARKETING DEMAND-SIDE MANAGEMENT Management Commitment The first key element in marketing...

O'Neill, M. L.

1988-01-01T23:59:59.000Z

159

Demand Charges | Open Energy Information  

Open Energy Info (EERE)

Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967"...

160

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

162

ERCOT Demand Response Paul Wattles  

E-Print Network [OSTI]

ERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre;Definitions of Demand Response · `The short-term adjustment of energy use by consumers in response to price to market or reliability conditions.' (NAESB) #12;Definitions of Demand Response · The common threads

Mohsenian-Rad, Hamed

163

Pricing data center demand response  

Science Journals Connector (OSTI)

Demand response is crucial for the incorporation of renewable energy into the grid. In this paper, we focus on a particularly promising industry for demand response: data centers. We use simulations to show that, not only are data centers large loads, ... Keywords: data center, demand response, power network, prediction based pricing

Zhenhua Liu; Iris Liu; Steven Low; Adam Wierman

2014-06-01T23:59:59.000Z

164

Overview of Demand Response  

Broader source: Energy.gov (indexed) [DOE]

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

165

MODELING THE DEMAND FOR E85 IN THE UNITED STATES  

SciTech Connect (OSTI)

How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

Liu, Changzheng [ORNL; Greene, David L [ORNL

2013-10-01T23:59:59.000Z

166

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

SciTech Connect (OSTI)

This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

2014-01-06T23:59:59.000Z

167

Examining the Short-Run Price Elasticity of Gasoline Demand in the United States.  

E-Print Network [OSTI]

??Estimating the consumer demand response to changes in the price of gasoline has important implications regarding fuel tax policies and environmental concerns. There are reasons (more)

Brannan, Michael

2012-01-01T23:59:59.000Z

168

Demand Response Programs, 6. edition  

SciTech Connect (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

169

PDSF Modules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modules Modules Modules Modules Approach to Managing The Environment Modules is a system which you can use to specify what software you want to use. If you want to use a particular software package loading its module will take care of the details of modifying your environment as necessary. The advantage of the modules approach is that the you are not required to explicitly specify paths for different executable versions and try to keep their related man paths and environment variables coordinated. Instead you simply "load" and "unload" specific modules to control your environment. Getting Started with Modules If you're using the standard startup files on PDSF then you're already setup for using modules. If the "module" command is not available, please

170

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

Levy, Roger

2014-01-01T23:59:59.000Z

171

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

172

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17

Levy, Roger

2014-01-01T23:59:59.000Z

173

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

174

Barrier Immune Radio Communications for Demand Response  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large Facilities,Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

Rubinstein, Francis

2010-01-01T23:59:59.000Z

175

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

176

Home Network Technologies and Automating Demand Response  

E-Print Network [OSTI]

and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

McParland, Charles

2010-01-01T23:59:59.000Z

177

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

Strategies Linking Demand Response and Energy Efficiency,Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

178

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Fully Automated Demand Response Tests in Large Facilitiesof Fully Automated Demand Response in Large Facilities,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

179

Option Value of Electricity Demand Response  

E-Print Network [OSTI]

Table 1. Economic demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

180

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

182

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

183

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

184

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

185

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

186

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

187

Simulating the impact of pricing policies on residential water demand: a Southern France case study  

E-Print Network [OSTI]

, with an estimated price elasticity of -0.2, is not yet very responsive to price variation. A regional water model water pricing. Keywords: demand elasticity, France, water pricing, residential water demand, simulationSimulating the impact of pricing policies on residential water demand: a Southern France case study

Paris-Sud XI, Université de

188

A MODEL FOR TIME-AND BUDGET-CONSTRAINED ACTIVITY DEMAND ANALYSIS  

E-Print Network [OSTI]

the derivation of a system of demands for activity participation by applying microeconomic theory in a time-price to be of discrete choices (e.g., Train et al. 1987); many models of jointly estimated demand responses lack-time demand elasticities, values of time, and other behavioral properties. METHODOLOGY Microeconomic

Kockelman, Kara M.

189

Abstract --Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed  

E-Print Network [OSTI]

to accurately estimate the transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies, where dynamics on time scales of seconds to minutes demand response. The aggregated model efficiently includes statistical information of the population

Zhang, Wei

190

Harnessing the power of demand  

SciTech Connect (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

191

China, India demand cushions prices  

SciTech Connect (OSTI)

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

192

DOE Hydrogen Analysis Repository: Hydrogen Demand and Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Demand and Infrastructure Deployment Hydrogen Demand and Infrastructure Deployment Project Summary Full Title: Geographically-Based Hydrogen Demand and Infrastructure Deployment Scenario Analysis Project ID: 189 Principal Investigator: Margo Melendez Keywords: Hydrogen fueling; infrastructure; fuel cell vehicles (FCV) Purpose This analysis estimates the spatial distribution of hydrogen fueling stations necessary to support the 5 million fuel cell vehicle scenario, based on demographic demand patterns for hydrogen fuel cell vehicles and strategy of focusing development on specific regions of the U.S. that may have high hydrogen demand. Performer Principal Investigator: Margo Melendez Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401-3393 Telephone: 303-275-4479

193

Honeywell Demonstrates Automated Demand Response Benefits for...  

Broader source: Energy.gov (indexed) [DOE]

Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

194

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

195

Automated Demand Response and Commissioning  

SciTech Connect (OSTI)

This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-04-01T23:59:59.000Z

196

Assumptions to the Annual Energy Outlook 2000 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below.100

197

The importance of food demand management for climate mitigation  

E-Print Network [OSTI]

and fertiliser, and the inclusion of climate change as a driver of yield changes and irrigation demand. This would enable estimation of how shortfalls in irrigation water availability might affect future food production. Bioenergy scenarios also lie outside... the scope of the current paper; unless food demand patterns change significantly, there seems to be little spare land for bioenergy developments without a reduction of food availability. However, it is important to note that the model results we present...

Bajelj, Bojana; Richards, Keith S.; Allwood, Julian M.; Smith, Pete; Dennis, John S.; Curmi, Elizabeth; Gilligan, Christopher A.

2014-08-31T23:59:59.000Z

198

Demand Activated Manufacturing Architecture  

SciTech Connect (OSTI)

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

199

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

200

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Demand Response Research in Spain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

202

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

203

Full Rank Rational Demand Systems  

E-Print Network [OSTI]

as a nominal income full rank QES. R EFERENCES (A.84)S. G. Donald. Inferring the Rank of a Matrix. Journal of97-102. . A Demand System Rank Theorem. Econometrica 57 (

LaFrance, Jeffrey T; Pope, Rulon D.

2006-01-01T23:59:59.000Z

204

Demand Forecasting of New Products  

E-Print Network [OSTI]

Keeping Unit or SKU) employing attribute analysis techniques. The objective of this thesis is to improve Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock

Sun, Yu

205

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5..., 2009 4 An Innovative Solution to Get the Ball Rolling ? Demand Response (DR) ? Monitoring Based Commissioning (MBCx) EnerNOC has a solution involving two complementary offerings. ESL-IC-09-11-05 Proceedings of the Ninth International Conference...

206

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

207

Industrial demand side management status report: Synopsis  

SciTech Connect (OSTI)

Industrial demand side management (DSM) programs, though not as developed or widely implemented as residential and commercial programs, hold the promise of significant energy savings-savings that will benefit industrial firms, utilities and the environment. This paper is a synopsis of a larger research report, Industrial Demand Side Management. A Status Report, prepared for the US Department of Energy. The report provides an overview of and rationale for DSM programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential electricity savings from industrial energy efficiency measures. Overcoming difficulties to effective program implementation is worthwhile, since rough estimates indicate a substantial potential for electricity savings. The report categorizes types of DSM programs, presents several examples of each type, and explores elements of successful programs. Two in-depth case studies (of Boise Cascade and of Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. Finally, the research report also includes a comprehensive bibliography, a description of technical assistance programs, and an example of a methodology for evaluating potential or actual savings from projects.

Hopkins, M.E.F.; Conger, R.L.; Foley, T.J.; Parker, J.W.; Placet, M.; Sandahl, L.J.; Spanner, G.E.; Woodruff, M.G.; Norland, D.

1995-08-01T23:59:59.000Z

208

National Action Plan on Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

209

Demand Response Projects: Technical and Market Demonstrations  

E-Print Network [OSTI]

Demand Response Projects: Technical and Market Demonstrations Philip D. Lusk Deputy Director Energy Analyst #12;PLACE CAPTION HERE. #12;#12;#12;#12;City of Port Angeles Demand Response History energy charges · Demand charges during peak period only ­ Reduced demand charges for demand response

210

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

211

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network [OSTI]

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

212

Module Configuration  

DOE Patents [OSTI]

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D'Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

213

Demand forecasting for multiple slow-moving items with short requests history and unequal demand variance  

Science Journals Connector (OSTI)

Modeling the lead-time demand for the multiple slow-moving inventory items in the case when the available requests history is very short is a challenge for inventory management. The classical forecasting technique, which is based on the aggregation of the stock keeping units to overcome the mentioned historical data peculiarity, is known to lead to very poor performance in many cases important for industrial applications. An alternative approach to the demand forecasting for the considered problem is based on the Bayesian paradigm, when the initially developed population-averaged demand probability distribution is modified for each item using its specific requests history. This paper follows this approach and presents a new model, which relies on the beta distribution as a prior for the request probability, and allows to account for disparity in variance of demand between different stock keeping units. To estimate the model parameters, a special computationally effective technique based on the generalized method of moments is developed. Simulation results indicate the superiority of the proposed model over the known ones, while the computational burden does not increase.

Alexandre Dolgui; Maksim Pashkevich

2008-01-01T23:59:59.000Z

214

Assumptions to the Annual Energy Outlook 2000 - Electricity Market Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. The major assumptions are summarized below.

215

Detailed Modeling and Response of Demand Response Enabled Appliances  

SciTech Connect (OSTI)

Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

Vyakaranam, Bharat; Fuller, Jason C.

2014-04-14T23:59:59.000Z

216

Facilitating Renewable Integration by Demand Response  

Science Journals Connector (OSTI)

Demand response is seen as one of the resources ... expected to incentivize small consumers to participate in demand response. This chapter models the involvement of small consumers in demand response programs wi...

Juan M. Morales; Antonio J. Conejo

2014-01-01T23:59:59.000Z

217

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

Joseph, Eto

2014-01-01T23:59:59.000Z

218

Demand response-enabled residential thermostat controls.  

E-Print Network [OSTI]

human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

2008-01-01T23:59:59.000Z

219

Value of Demand Response -Introduction Klaus Skytte  

E-Print Network [OSTI]

Value of Demand Response - Introduction Klaus Skytte Systems Analysis Department February 7, 2006 Energinet.dk, Ballerup #12;What is Demand Response? Demand response (DR) is the short-term response

220

World Energy Use Trends in Demand  

Science Journals Connector (OSTI)

In order to provide adequate energy supplies in the future, trends in energy demand must be evaluated and projections of future demand developed. World energy use is far from static, and an understanding of the demand

Randy Hudson

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

222

Balancing of Energy Supply and Residential Demand  

Science Journals Connector (OSTI)

Power demand of private households shows daily fluctuations and ... (BEV) and heat pumps. This additional demand, especially when it remains unmanaged, will ... to an increase in fluctuations. To balance demand,

Martin Bock; Grit Walther

2014-01-01T23:59:59.000Z

223

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 137 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

224

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 135 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

225

Estimating Hydrogen Demand Distribution Using Geographic Information Systems (GIS)  

E-Print Network [OSTI]

derived market penetration rates and population data. Thisthreshold, market penetration rate, buffer size, scenariosderived market penetration rates and population data. Under

Ni, Jason; Johnson, Nils; Ogden, Joan M; Yang, Christopher; Johnson, Joshua

2005-01-01T23:59:59.000Z

226

Estimating Costs and Efficiency of Storage, Demand, and Heat...  

Energy Savers [EERE]

the stored water compared to the heat content of the water (water heaters with storage tanks) Cycling losses - the loss of heat as the water circulates through a water heater...

227

Estimates of the supply and demand for pork in Argentina  

E-Print Network [OSTI]

Camas Estadisticas Basicas 1965, Buenos Aires, p. 15; for per capita G. N. P. :--from 1927 to 1934 ? U. N. , CFPAL, Desarrollo Economico de la Argentina, Buenos Aires, 1958, p. 15, ? from 1935 to 1965 ? Banco Central de la Republica Argentina, Origen... Camas Estadisticas Basicas 1965, Buenos Aires, p. 15; for per capita G. N. P. :--from 1927 to 1934 ? U. N. , CFPAL, Desarrollo Economico de la Argentina, Buenos Aires, 1958, p. 15, ? from 1935 to 1965 ? Banco Central de la Republica Argentina, Origen...

Pereira, Humberto Armando

2012-06-07T23:59:59.000Z

228

Estimating Hydrogen Demand Distribution Using Geographic Information Systems (GIS)  

E-Print Network [OSTI]

in the application of GIS to the study of environmental13) Figure 13 Interaction between GIS and Optimization ofEngineer Joshua Johnson 2 , GIS Specialist Institute of

Ni, Jason; Johnson, Nils; Ogden, Joan M; Yang, Christopher; Johnson, Joshua

2005-01-01T23:59:59.000Z

229

Nonlinear estimation of water network demands form limited measurement information  

E-Print Network [OSTI]

can be described by four factors; head, efficiency, power and the required net positive suction head (NPSH). The principal input parameters for the pump model are its start and end nodes and its pump curve which represents the relation between head...

Rabie, Ahmed Ibrahim El Said

2009-05-15T23:59:59.000Z

230

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

231

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

232

Turkey's energy demand and supply  

SciTech Connect (OSTI)

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

233

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

234

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

235

Using Utility Information to Calibrate Customer Demand Management Behavior Models  

E-Print Network [OSTI]

Using Utility Information to Calibrate Customer Demand Management Behavior Models Murat Fahrio ­ Madison Report PSerc 99­06 June 10, 1999 Abstract In times of stress customers can help a utility by means be optimized if the utility can estimate the outage or substitution costs of its customers. This report

236

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

for Demand Response Technology Development The objective ofin planning demand response technology RD&D by conductingNew and Emerging Technologies into the California Smart Grid

Joseph, Eto

2014-01-01T23:59:59.000Z

237

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

238

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's...

239

Sandia National Laboratories: demand response inverter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

240

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

Goldman, Charles

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

242

Marketing & Driving Demand: Social Media Tools & Strategies ...  

Broader source: Energy.gov (indexed) [DOE]

Demand: Social Media Tools & Strategies - January 16, 2011 Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 January 16, 2011 Conference Call...

243

Marketing & Driving Demand Collaborative - Social Media Tools...  

Broader source: Energy.gov (indexed) [DOE]

Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the BetterBuildings...

244

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

245

Smart Buildings and Demand Response  

Science Journals Connector (OSTI)

Advances in communications and control technology the strengthening of the Internet and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems in buildings. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto?DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (OpenADR). Basic building energy science and control issues in this approach begin with key building components systems end?uses and whole building energy performance metrics. The paper presents a framework about when energy is used levels of services by energy using systems granularity of control and speed of telemetry. DR when defined as a discrete event requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

2011-01-01T23:59:59.000Z

246

The alchemy of demand response: turning demand into supply  

SciTech Connect (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

247

Assessment of Demand Response and Advanced Metering  

E-Print Network [OSTI]

#12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

Tesfatsion, Leigh

248

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network [OSTI]

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

Perez, Richard R.

249

Demand Side Management in Rangan Banerjee  

E-Print Network [OSTI]

Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities ­ energy shortage and peak power shortage. Supply for Options ­ Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

Banerjee, Rangan

250

Industrial demand side management: A status report  

SciTech Connect (OSTI)

This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

Hopkins, M.F.; Conger, R.L.; Foley, T.J. [and others

1995-05-01T23:59:59.000Z

251

A New Market for an Old Food: the U.S. Demand for Olive Oil , Daniel Sumner  

E-Print Network [OSTI]

A New Market for an Old Food: the U.S. Demand for Olive Oil Bo Xiong , Daniel Sumner , William olive oil continues to be imported. Estimation of a demand system using monthly import data reveals that the income elasticity for virgin oils sourced from EU is above one, but demand for non-virgin oils is income

Schladow, S. Geoffrey

252

Building Technologies Office: Integrated Predictive Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

253

Incorporating Demand Response into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

Aggregator Programs. Demand Response Measurement andIncorporating Demand Response into Western Interconnection13 Demand Response Dispatch

Satchwell, Andrew

2014-01-01T23:59:59.000Z

254

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

255

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

256

Global energy demand to 2060  

SciTech Connect (OSTI)

The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a year 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.

Starr, C. (Electric Power Research Institute, Palo Alto, CA (USA))

1989-01-01T23:59:59.000Z

257

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

258

Table A19. Components of Total Electricity Demand by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region and" Components of Total Electricity Demand by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,1.4,1.3,1.9,0.5 "Value of Shipments and Receipts" "(million dollars)"

259

"Table A16. Components of Total Electricity Demand by Census Region, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Components of Total Electricity Demand by Census Region, Industry" 6. Components of Total Electricity Demand by Census Region, Industry" " Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Groups and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

260

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, and" Components of Total Electricity Demand by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,2.1,1.2,2,0.4 "Value of Shipments and Receipts"

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

World oil demands shift toward faster growing and less price-responsive products and regions  

Science Journals Connector (OSTI)

Using data for 19712008, we estimate the effects of changes in price and income on world oil demand, disaggregated by product transport oil, fuel oil (residual and heating oil), and other oil for six groups of countries. Most of the demand reductions since 197374 were due to fuel-switching away from fuel oil, especially in the OECD; in addition, the collapse of the Former Soviet Union (FSU) reduced their oil consumption substantially. Demand for transport and other oil was much less price-responsive, and has grown almost as rapidly as income, especially outside the OECD and FSU. World oil demand has shifted toward products and regions that are faster growing and less price-responsive. In contrast to projections to 2030 of declining per-capita demand for the world as a whole by the U.S. Department of Energy (DOE), International Energy Agency (IEA) and OPEC we project modest growth. Our projections for total world demand in 2030 are at least 20% higher than projections by those three institutions, using similar assumptions about income growth and oil prices, because we project rest-of-world growth that is consistent with historical patterns, in contrast to the dramatic slowdowns which they project.

Joyce M. Dargay; Dermot Gately

2010-01-01T23:59:59.000Z

262

Photovoltaic concentrator module improvements study  

SciTech Connect (OSTI)

This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

Levy, S.L.; Kerschen, K.A. (Black and Veatch, Kansas City, MO (United States)); Hutchison, G. (Solar Kinetics, Inc., Dallas, TX (United States)); Nowlan, M.J. (Spire Corp., Bedford, MA (United States))

1991-08-01T23:59:59.000Z

263

Residential energy demand modeling and the NIECS data base : an evaluation  

E-Print Network [OSTI]

The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

Cowing, Thomas G.

1982-01-01T23:59:59.000Z

264

ASSESSMENT OF ELECTRICITY DEMAND IN IRAN'S INDUSTRIAL SECTOR USING DIFFERENT INTELLIGENT OPTIMIZATION TECHNIQUES  

Science Journals Connector (OSTI)

This study presents application of particle swarm optimization (PSO) and genetic algorithm (GA) methods to estimate electricity demand in Iran's industrial sectors, based on economic indicators. The economic indicators used in this study are number of ...

M. A. Behrang; E. Assareh; M. R. Assari; A. Ghanbarzadeh

2011-04-01T23:59:59.000Z

265

Assumptions to the Annual Energy Outlook 1999 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

petroleum.gif (4999 bytes) petroleum.gif (4999 bytes) The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below. 75

266

Demand Side Bidding. Final Report  

SciTech Connect (OSTI)

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

267

Demand Response Opportunities and Enabling Technologies for Data Centers:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Opportunities and Enabling Technologies for Data Centers: Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Title Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Publication Type Report LBNL Report Number LBNL-5763E Year of Publication 2012 Authors Ghatikar, Girish, Venkata Ganti, Nance Matson, and Mary Ann Piette Publisher PG&E/SDG&E/CEC/LBNL Keywords communication and standards, control systems, data centers, demand response, enabling technologies, end-use technologies, load migration, market sectors, technologies Abstract The energy use in data centers is increasing and, in particular, impacting the data center energy cost and electric grid reliability during peak and high price periods. As per the 2007 U.S. Environmental Protection Agency (EPA), in the Pacific Gas and Electric Company territory, data centers are estimated to consume 500 megawatts of annual peak electricity. The 2011 data confirm the increase in data center energy use, although it is slightly lower than the EPA forecast. Previous studies have suggested that data centers have significant potential to integrate with supply-side programs to reduce peak loads. In collaboration with California data centers, utilities, and technology vendors, this study conducted field tests to improve the understanding of the demand response opportunities in data centers. The study evaluated an initial set of control and load migration strategies and economic feasibility for four data centers. The findings show that with minimal or no impact to data center operations a demand savings of 25% at the data center level or 10% to 12% at the whole building level can be achieved with strategies for cooling and IT equipment, and load migration. These findings should accelerate the grid-responsiveness of data centers through technology development, integration with the demand response programs, and provide operational cost savings.

268

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

269

Demand Response Programs Oregon Public Utility Commission  

E-Print Network [OSTI]

Demand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director;Demand Response Results, 2004 Load Control ­ Cool Keeper ­ ID Irrigation Load Control Price Responsive

270

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

271

ConservationandDemand ManagementPlan  

E-Print Network [OSTI]

; Introduction Ontario Regulation 397/11 under the Green Energy Act 2009 requires public agencies and implement energy Conservation and Demand Management (CDM) plans starting in 2014. Requirementsofthe ConservationandDemand ManagementPlan 2014-2019 #12

Abolmaesumi, Purang

272

Energy Demand Analysis at a Disaggregated Level  

Science Journals Connector (OSTI)

The purpose of this chapter is to consider energy demand at the fuel level or at the ... . This chapter first presents the disaggregation of energy demand, discusses the information issues and introduces framewor...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

273

Seasonal temperature variations and energy demand  

Science Journals Connector (OSTI)

This paper presents an empirical study of the relationship between residential energy demand and temperature. Unlike previous studies in this ... different regions and to the contrasting effects on energy demand ...

Enrica De Cian; Elisa Lanzi; Roberto Roson

2013-02-01T23:59:59.000Z

274

Module: Estimating Historical Emissions from Deforestation |...  

Open Energy Info (EERE)

be fulfilled as described in the 'Technical Guidance for the Development of a Terrestrial Carbon Monitoring System for REDD+ Framework' document. This is part of LEAF's Technical...

275

Decentralized demand management for water distribution  

E-Print Network [OSTI]

. Actual Daily Demand for Model 2 . . 26 4 Predicted vs. Actual Peak Hourly Demand for Model 1 27 5 Predicted vs. Actual Peak Hourly Demand for Model 2 28 6 Cumulative Hourly Demand Distribution 7 Bryan Distribution Network 8 Typical Summer Diurnal... locating and controlling water that has not been accounted for. The Ford Meter Box Company (1987) advises the testing and recalibration of existing water meters. Because operating costs in a distribution network can be quite substantial, a significant...

Zabolio, Dow Joseph

2012-06-07T23:59:59.000Z

276

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

277

Demand Response Resources in Pacific Northwest  

E-Print Network [OSTI]

Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

278

Leveraging gamification in demand dispatch systems  

Science Journals Connector (OSTI)

Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grid's efficiency and a better utilization of renewable energy sources. ... Keywords: demand response, demand side management, direct load control, gamification, smart grid, sustainability

Benjamin Gnauk; Lars Dannecker; Martin Hahmann

2012-03-01T23:59:59.000Z

279

Demand Response and Ancillary Services September 2008  

E-Print Network [OSTI]

Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

280

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

282

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

The current world-wide increase of energy demand cannot be matched by energy production and power grid updateModeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators

Paris-Sud XI, Université de

283

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes log demand in 1995. The composites board mills operating in Korea took advantage of flexibility environment changes on the production mix, some economic indications, statistics of demand and supply of wood

284

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 http with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board, statistics of demand and supply of wood, costs and competitiveness were analysed. The reactions

285

Energy demand forecasting: industry practices and challenges  

Science Journals Connector (OSTI)

Accurate forecasting of energy demand plays a key role for utility companies, network operators, producers and suppliers of energy. Demand forecasts are utilized for unit commitment, market bidding, network operation and maintenance, integration of renewable ... Keywords: analytics, energy demand forecasting, machine learning, renewable energy sources, smart grids, smart meters

Mathieu Sinn

2014-06-01T23:59:59.000Z

286

Smart Buildings Using Demand Response March 6, 2011  

E-Print Network [OSTI]

Smart Buildings Using Demand Response March 6, 2011 Sila Kiliccote Deputy, Demand Response Division Lawrence Berkeley National Laboratory Demand Response Research Center 1 #12;Presentation Outline Demand Response Research Center ­ DRRC Vision and Research Portfolio Introduction to Demand

Kammen, Daniel M.

287

Demand Response and Storage Integration Study: Markets Report Overview  

Broader source: Energy.gov (indexed) [DOE]

Andy Satchwell Andy Satchwell Scientific Engineering Associate Lawrence Berkeley National Laboratory National Association of Regulatory Utility Commissioners, ER&E Committee Meeting, July 24, 2012 Portland, OR Tools and Methods Working Group Energy Analysis and Environmental Impacts Department Outline of Presentation  Introduction and background: DR Estimation Tools and Methods Working Group  Working group members  Work plan  Identification of estimation tools and methods needs  Preliminary gap analysis  Next steps 2 Energy Analysis and Environmental Impacts Department Introduction and Background  Tools and techniques have been developed to help characterize demand response (DR) resources  Given diversity in types of DR programs and relative

288

Model documentation, Coal Market Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

NONE

1998-01-01T23:59:59.000Z

289

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

6, DOE/EIA- 6, DOE/EIA- M068(2006). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described. EMM Regions The supply regions used in EMM are based on the North American Electric Reliability Council regions and

290

Energy demand and population changes  

SciTech Connect (OSTI)

Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

Allen, E.L.; Edmonds, J.A.

1980-12-01T23:59:59.000Z

291

Electricity demand analysis - unconstrained vs constrained scenarios  

Science Journals Connector (OSTI)

In India, the electricity systems are chronically constrained by shortage of both capital and energy resources. These result in rationing and interruptions of supply with a severely disrupted electricity usage pattern. From this background, we try to analyse the demand patterns with and without resource constraints. Accordingly, it is necessary to model appropriately the dynamic nature of electricity demand, which cannot be captured by methods like annual load duration curves. Therefore, we use the concept - Representative Load Curves (RLCs) - to model the temporal and structural variations in demand. As a case study, the electricity system of the state of Karnataka in India is used. Four years demand data, two unconstrained and two constrained, are used and RLCs are developed using multiple discriminant analysis. It is found that these RLCs adequately model the variations in demand and bring out distinctions between unconstrained and constrained demand patterns. The demand analysis attempted here helped to study the differences in demand patterns with and without constraints, and the success of rationing measures in reducing demand levels as well as greatly disrupting the electricity usage patterns. Multifactor ANOVA analyses are performed to find out the statistical significance of the ability of logically obtained factors in explaining overall variations in demand. The results showed that the factors that are taken into consideration accounted for maximum variations in demand at very high significance levels.

P. Balachandra; V. Chandru; M.H. Bala Subrahmanya

2003-01-01T23:59:59.000Z

292

Measurement and Verification for Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Measurement and Verification for Measurement and Verification for Demand Response Prepared for the National Forum on the National Action Plan on Demand Response: Measurement and Verification Working Group AUTHORS: Miriam L. Goldberg & G. Kennedy Agnew-DNV KEMA Energy and Sustainability National Forum of the National Action Plan on Demand Response Measurement and Verification for Demand Response was developed to fulfill part of the Implementation Proposal for The National Action Plan on Demand Response, a report to Congress jointly issued by the U.S. Department of Energy (DOE) and the Federal Energy Regulatory Commission (FERC) in June 2011. Part of that implementation proposal called for a "National Forum" on demand response to be conducted by DOE and FERC. Given that demand response has matured, DOE and FERC decided that a "virtual" project

293

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes  

E-Print Network [OSTI]

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

Sastry, S. Shankar

294

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network [OSTI]

that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

295

Microsoft PowerPoint - FinalModule6.ppt  

Broader source: Energy.gov (indexed) [DOE]

6: Metrics, Performance 6: Metrics, Performance Measurements and Forecasting Prepared by: Module 6 - Metrics, Performance Measures and Forecasting 2 Prepared by: Booz Allen Hamilton Module 6: Metrics, Performance Measurements and Forecasting Welcome to Module 6. The objective of this module is to introduce you to the Metrics and Performance Measurement tools used, along with Forecasting, in Earned Value Management. The Topics that will be addressed in this Module include: * Define Cost and Schedule Variances * Define Cost and Schedule Performance Indices * Define Estimate to Complete (ETC) * Define Estimate at Completion (EAC) and Latest Revised Estimate (LRE) Module 6 - Metrics, Performance Measures and Forecasting 3 Prepared by: Booz Allen Hamilton Review of Previous Modules Let's quickly review what has been covered in the previous modules.

296

Estimating Methods  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.

1997-03-28T23:59:59.000Z

297

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

298

Assumptions to the Annual Energy Outlook 2000 - International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(99), (Washington, DC, February 1999).

299

Demand Analysis Concerning the Promised Land White and Chocolate Milk Brands in Texas  

E-Print Network [OSTI]

Nielsen homescan data. The demand functions were estimated using a tobit model to estimate the conditional and unconditional own-price and cross-price effects of Promised Land white and chocolate milk. 2. Assess the impacts of household demographic drivers...

Bingham, David Eldon

2013-05-03T23:59:59.000Z

300

OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS  

E-Print Network [OSTI]

i OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS John R. Mc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v SECTION ONE - OUTDOOR RECREATION DEMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Recreation Demand Methods

O'Laughlin, Jay

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

C. McParland, Open Automated Demand Response Communicationsand Open Automated Demand Response", Grid Interop Forum,Testing of Automated Demand Response for Integration of

Kiliccote, Sila

2014-01-01T23:59:59.000Z

302

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

Goli, Sasank

2012-01-01T23:59:59.000Z

303

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

304

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. and Techniques for Demand Response. California Energy

Kiliccote, Sila

2010-01-01T23:59:59.000Z

305

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network [OSTI]

and Techniques for Demand Response. May 2007. LBNL-59975.tofacilitateautomating demandresponseactionsattheInteroperable Automated Demand Response Infrastructure,

Piette, Mary Ann

2009-01-01T23:59:59.000Z

306

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network [OSTI]

ofFullyAutomatedDemand ResponseinLargeFacilities. FullyAutomatedDemandResponseTestsinLargeFacilities. OpenAutomated DemandResponseCommunicationStandards:

Dudley, June Han

2009-01-01T23:59:59.000Z

307

Scenarios for Consuming Standardized Automated Demand Response Signals  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

Koch, Ed

2009-01-01T23:59:59.000Z

308

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network [OSTI]

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

309

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

Piette, Mary Ann

2010-01-01T23:59:59.000Z

310

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

Goodin. 2009. Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

311

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

advanced metering and demand response in electricityGoldman, and D. Kathan. Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

312

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network [OSTI]

Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

313

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

McKane, Aimee T.

2009-01-01T23:59:59.000Z

314

The Role of Demand Response in Default Service Pricing  

E-Print Network [OSTI]

THE ROLE OF DEMAND RESPONSE IN DEFAULT SERVICE PRICING Galenfor providing much-needed demand response in electricitycompetitive retail markets, demand response often appears to

Barbose, Galen; Goldman, Chuck; Neenan, Bernie

2006-01-01T23:59:59.000Z

315

The Role of Demand Response in Default Service Pricing  

E-Print Network [OSTI]

and coordinated by the Demand Response Research Center onThe Role of Demand Response in Default Service Pricing Galenfor providing much-needed demand response in electricity

Barbose, Galen; Goldman, Charles; Neenan, Bernie

2008-01-01T23:59:59.000Z

316

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

Piette, Mary Ann

2009-01-01T23:59:59.000Z

317

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

Institute, Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

318

The world supply/demand outlook for minerals  

Science Journals Connector (OSTI)

Mining and agriculture are the fundamental industries that convert natural resources into useable forms. Mining and modern agriculture are inextricably interlinked because modern agriculture is heavily dependent upon the use of machinery power and fertilizers ? all of which are mineral based products and in some applications mineral and agricultural products are mutually substitutable. Steel production is common denominator for assessing demand for many minerals and in the last 21/2 decades world steel production has grown at an annual rate of about 51/2%. Currently the United States uses about 4 billion tons ? 40 000 pounds per person ? of new mineral supplies each year about equally divided between the mineral fuels and other mineral materials. The value of energy and processed materials of mineral origin used in the U.S. is estimated to exceed $270 billion per year. Rising world population coupled with aspirations for higher living standards points to steadily increasing world demand for mineral materials. Studies by the U.S. Bureau of Mines show that the ratio of recoverable world mineral reserves to cumulate demand over the next few decades is satisfactory for most mineral materials. However if world mineral production is to keep pace with demand there must be increased efforts to find mine beneficiate process and recycle mineral materials and there must also exist politico?economic climates that encourage long?term mineral development while also making appropriate provisions for humanitarian and envronmental concerns.

John D. Morgan Jr.

1976-01-01T23:59:59.000Z

319

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

320

Distributed Intelligent Automated Demand Response (DIADR) Building  

Broader source: Energy.gov (indexed) [DOE]

Distributed Intelligent Automated Demand Distributed Intelligent Automated Demand Response (DIADR) Building Management System Distributed Intelligent Automated Demand Response (DIADR) Building Management System The U.S. Department of Energy (DOE) is currently conducting research into distributed intelligent-automated demand response (DIADR) building management systems. Project Description This project aims to develop a DIADR building management system with intelligent optimization and control algorithms for demand management, taking into account a multitude of factors affecting cost including: Comfort Heating, ventilating, and air conditioning (HVAC) Lighting Other building systems Climate Usage and occupancy patterns. The key challenge is to provide the demand response the ability to address more and more complex building systems that include a variety of loads,

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

322

The Retail Planning Problem under Demand Uncertainty.  

E-Print Network [OSTI]

and Rajaram K. , (2000), Accurate Retail Testing of FashionThe Retail Planning Problem Under Demand Uncertainty GeorgeAbstract We consider the Retail Planning Problem in which

Georgiadis, G.; Rajaram, K.

2012-01-01T23:59:59.000Z

323

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

17 6. Barriers to Retail23 ii Retail Demand Response in SPP List of Figures and6 Table 3. SPP Retail DR Survey

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

324

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

water heaters with embedded demand responsive controls can be designed to automatically provide day-ahead and real-time response

Goldman, Charles

2010-01-01T23:59:59.000Z

325

Distributed Automated Demand Response - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore National Laboratory Contact LLNL About This Technology...

326

Demand Response (transactional control) - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest National Laboratory Contact PNNL About...

327

Regulation Services with Demand Response - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created...

328

Topics in Residential Electric Demand Response.  

E-Print Network [OSTI]

??Demand response and dynamic pricing are touted as ways to empower consumers, save consumers money, and capitalize on the smart grid and expensive advanced meter (more)

Horowitz, Shira R.

2012-01-01T23:59:59.000Z

329

Maximum-Demand Rectangular Location Problem  

E-Print Network [OSTI]

Oct 1, 2014 ... Demand and service can be defined in the most general sense. ... Industrial and Systems Engineering, Texas A&M University, September 2014.

Manish Bansal

2014-10-01T23:59:59.000Z

330

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

in the presence of renewable resources and on the amount ofprimarily from renewable resources, and to a limited extentintegration of renewable resources and deferrable demand. We

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

331

Basic Theory of Demand-Side Management  

Science Journals Connector (OSTI)

Demand-Side Management (DSM) is pivotal in Integrated Resource ... to realize sustainable development, and advanced energy management activity. A project can be implemented only...

Zhaoguang Hu; Xinyang Han; Quan Wen

2013-01-01T23:59:59.000Z

332

Demand response at the Naval Postgraduate School .  

E-Print Network [OSTI]

??The purpose of this MBA project is to assist the Naval Postgraduate School's Public Works department to assimilate into a Demand Response program that will (more)

Stouffer, Dean

2008-01-01T23:59:59.000Z

333

Demand response exchange in a deregulated environment .  

E-Print Network [OSTI]

??This thesis presents the development of a new and separate market for trading Demand Response (DR) in a deregulated power system. This market is termed (more)

Nguyen, DT

2012-01-01T23:59:59.000Z

334

Demand response exchange in a deregulated environment.  

E-Print Network [OSTI]

??This thesis presents the development of a new and separate market for trading Demand Response (DR) in a deregulated power system. This market is termed (more)

Nguyen, DT

2012-01-01T23:59:59.000Z

335

Geographically Based Hydrogen Demand and Infrastructure Rollout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

336

Exponential smoothing with covariates applied to electricity demand forecast  

Science Journals Connector (OSTI)

Exponential smoothing methods are widely used as forecasting techniques in industry and business. Their usual formulation, however, does not allow covariates to be used for introducing extra information into the forecasting process. In this paper, we analyse an extension of the exponential smoothing formulation that allows the use of covariates and the joint estimation of all the unknowns in the model, which improves the forecasting results. The whole procedure is detailed with a real example on forecasting the daily demand for electricity in Spain. The time series of daily electricity demand contains two seasonal patterns: here the within-week seasonal cycle is modelled as usual in exponential smoothing, while the within-year cycle is modelled using covariates, specifically two harmonic explanatory variables. Calendar effects, such as national and local holidays and vacation periods, are also introduced using covariates. [Received 28 September 2010; Revised 6 March 2011, 2 October 2011; Accepted 16 October 2011

José D. Bermúdez

2013-01-01T23:59:59.000Z

337

Assumptions to the Annual Energy Outlook 2002 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2002, DOE/EIA- M068(2002) January 2002. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

338

Assumptions to the Annual Energy Outlook 2001 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2001, DOE/EIA- M068(2001) January 2001. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

339

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

340

Demand Response and Electric Grid Reliability  

E-Print Network [OSTI]

Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

Wattles, P.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT  

E-Print Network [OSTI]

of the response of travelers to real-time pre- trip information. The demand simulator is an extension of dynamicDEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT Constantinos Antoniou, Moshe Ben-Akiva, Michel Bierlaire, and Rabi Mishalani Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract

Bierlaire, Michel

342

A Vision of Demand Response - 2016  

SciTech Connect (OSTI)

Envision a journey about 10 years into a future where demand response is actually integrated into the policies, standards, and operating practices of electric utilities. Here's a bottom-up view of how demand response actually works, as seen through the eyes of typical customers, system operators, utilities, and regulators. (author)

Levy, Roger

2006-10-15T23:59:59.000Z

343

SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

344

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, Industry" Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Group and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

345

Incorporating Demand Response into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

response DSM Demand Side Management EE energy efficiencywith the development of demand-side management (DSM)-related

Satchwell, Andrew

2014-01-01T23:59:59.000Z

346

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry the first critical link in the fuel supply chain for nuclear reactors is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

347

Strategies for Demand Response in Commercial Buildings  

SciTech Connect (OSTI)

This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-06-20T23:59:59.000Z

348

Encryption-on-Demand, [EOD-g8516] Page #-1 Encryption-On-Demand  

E-Print Network [OSTI]

Encryption-on-Demand, [EOD-g8516] Page #-1 Encryption-On-Demand: Practical and Theoretical be served by an 'encryption-on-demand' (EoD) service which will enable them to communicate securely with no prior preparations, and no after effects. We delineate a possible EoD service, and describe some of its

349

Prediction of demand trends of coking coal in China based on grey linear regression composition model  

Science Journals Connector (OSTI)

The scarce of coking coal resources in China results in its short supply. By establishing a grey linear regression composition model, this paper has greatly improved the inadequacy of grey system prediction model and regression analysis method in trend prediction and finished the prediction of demand trends of coking coal in China with this model. As result of the prediction, it is estimated that in the next decade, the demand for coking coal in China will experience a growth trend; China's demand for coking coal will reach more than 1.535 billion tons by 2015, reach the maximum of 1.639 billion tons by 2020 and drop in 2025.

Hai-Dong Zhou; Qiang Wu; Min Fang; Zhong-Bao Ren; Li-Fei Jin

2013-01-01T23:59:59.000Z

350

Workshop on Demand Response, Ballerup, 7. February 2006 1 Monte Carlo Simulations of the Nordic Power System  

E-Print Network [OSTI]

· Nordic power market · Time resolution: Hour · Simulates the electricity and heat markets based on: · Heat and electricity demand prognoses · Technical and economic data for power plants · Power and heat capacities · Fuel Power System · How to estimate the value of demand response? · Method · Model · Setup · Results Stine

351

Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard Schmalensee and Thomas M. Stoker*  

E-Print Network [OSTI]

development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per- capita GDP. Panel data covering up to 123 nations are employedEconomic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard

352

An econometric study of the demand for gasoline in the Gulf Cooperation Council countries  

SciTech Connect (OSTI)

Reliable and accurate estimation of price and income elasticities of demand for gasoline are important ingredients for long-run energy planning and policy formation. The purpose of this study is to develop and estimate a model for gasoline demand for Gulf Cooperation Council (GCC) countries (Bahrain, Kuwait, Oman, Oatar, Saufi Arabia, and the United Arab Emirates). The model is capable of producing short-run and long-run price and income elasticities. Since the first oil price hike in 1973, a great deal of attention has been directed toward the demand for gasoline, especially in the industrialized countries. Few studies have been directed toward the demand for gasoline in developing countries. In terms of primary energy consumption, the GCC`s energy needs are met by oil, natural gas, and electricity. Without any doubt, oil is the largest energy source consumed and gasoline is the most important oil product. However, very few studies have been directed toward analyzing GCC energy demand, and yet there has been not attempt to model and estimate GCC gasoline demand. This study attempts to address this gap.

Eltony, M.N.

1994-12-31T23:59:59.000Z

353

TOB Module Assembly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SiTracker Home Page Participating Institutions and Principal Contacts Useful Links Notes Images TOB Module Assembly and Testing Project TOB Integration Data Tracker Offline DQM LHC Fluence Calculator Total US Modules Tested Graph Total US Modules Tested Graph Total US Modules Tested Total US Modules Tested US Modules Tested Graph US Modules Tested Graph US Modules Tested US Modules Tested Rod Assembly TOB Modules on a Rod TOB Rod Insertion Installation of a TOB Rod Completed TOB Completed Tracker Outer Barrel TOB Module Assembly and Testing Project All 5208 modules of the CMS Tracker Outer Barrel were assembled and tested at two production sites in the US: the Fermi National Accelerator Laboratory and the University of California at Santa Barbara. The modules were delivered to CERN in the form of rods, with the last shipment taking

354

Demand Response This is the first of the Council's power plans to treat demand response as a resource.1  

E-Print Network [OSTI]

Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

355

Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences  

E-Print Network [OSTI]

This paper presents estimates of the statewide electricity and electric demand savings achieved from the adoption of the International Energy Conservation Code (IECC) for single-family residences in Texas and includes the corresponding increase...

Kim, H.; Baltazar, J.C.; Haberl, J.

2011-01-01T23:59:59.000Z

356

Risk Estimation; Background Radiation (Natural and Artificial )  

E-Print Network [OSTI]

-threshold mode estimate the response at lower doses. · The Committee on Biological Effects of Ionizing RadiationModule 9 Risk Estimation; Background Radiation (Natural and Artificial ) · sources of background radiation · various risk models. · estimating risk and on the sources of background radiation, both

Massey, Thomas N.

357

Health Care Demand, Empirical Determinants of  

Science Journals Connector (OSTI)

Abstract Economic theory provides a powerful but incomplete guide to the empirical determinants of health care demand. This article seeks to provide guidance on the selection and interpretation of demand determinants in empirical models. The author begins by introducing some general rules of thumb derived from economic and statistical principles. A brief review of the recent empirical literature next describes the range of current practices. Finally, a representative example of health care demand is developed to illustrate the selection, use, and interpretation of empirical determinants.

S.H. Zuvekas

2014-01-01T23:59:59.000Z

358

NCEP_Demand_Response_Draft_111208.indd  

Broader source: Energy.gov (indexed) [DOE]

National Council on Electricity Policy: Electric Transmission Series for State Offi National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the

359

National Action Plan on Demand Response  

Broader source: Energy.gov (indexed) [DOE]

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

360

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Demand Controlled Ventilation and Classroom Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

362

China End-Use Energy Demand Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

363

Integrated Predictive Demand Response Controller Research Project |  

Broader source: Energy.gov (indexed) [DOE]

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

364

Software demonstration: Demand Response Quick Assessment Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. The Demand Response Quick Assessment Tools developed at LBNL will be demonstrated. The tool is built on EnergyPlus simulation and is able to evaluate and compare different DR strategies, such as global temperature reset, chiller cycling, supply air temperature reset, etc. A separate EnergyPlus plotting tool will also be demonstrated during this seminar. Users can use the tool to test EnergyPlus models, conduct parametric analysis, or compare multiple EnergyPlus simulation

365

Power Consumption Analysis of Architecture on Demand  

Science Journals Connector (OSTI)

Abstract (40-Word Limit): Recently proposed Architecture on Demand (AoD) node shows considerable flexibility benefits against traditional ROADMs. We study the power consumption of AoD...

Garrich, Miquel; Amaya, Norberto; Zervas, Georgios; Giaccone, Paolo; Simeonidou, Dimitra

366

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

States. Annex 8 provides a list of software tools for analysing various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of...

367

Capitalize on Existing Assets with Demand Response  

E-Print Network [OSTI]

Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assetsat no cost and no risk. Demand response, the voluntary...

Collins, J.

2008-01-01T23:59:59.000Z

368

SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY  

Broader source: Energy.gov [DOE]

As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy...

369

Global Energy: Supply, Demand, Consequences, Opportunities  

SciTech Connect (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2008-08-14T23:59:59.000Z

370

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect (OSTI)

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

371

Global Energy: Supply, Demand, Consequences, Opportunities  

ScienceCinema (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2010-01-08T23:59:59.000Z

372

Demand Controlled Ventilation and Classroom Ventilation  

E-Print Network [OSTI]

columnsindicatetheenergyandcostsavingsfor demandclasssize. (Theenergycosts ofclassroomventilationTotal Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

373

Transportation energy demand: Model development and use  

Science Journals Connector (OSTI)

This paper describes work undertaken and sponsored by the Energy Commission to improve transportation energy demand forecasting and policy analysis for California. Two ... , the paper discusses some of the import...

Chris Kavalec

1998-06-01T23:59:59.000Z

374

Measuring the capacity impacts of demand response  

SciTech Connect (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

375

Real-Time Demand Side Energy Management  

E-Print Network [OSTI]

Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology Espaa, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs Demand-Side Energy Management. Learn how process manufacturers assess energy...

Victor, A.; Brodkorb, M.

2006-01-01T23:59:59.000Z

376

Electric Utility Demand-Side Evaluation Methodologies  

E-Print Network [OSTI]

"::. ELECTRIC UTILITY DEMAND-SIDE EVALUATION METHODOLOGIES* Nat Treadway Public Utility Commission of Texas Austin, Texas ABSTRACT The electric. util ity industry's demand-side management programs can be analyzed ?from various points... of view using a standard benefit-cost methodology. The methodology now in use by several. electric utilities and the Public Utility Commlsslon of Texas includes measures of efficiency and equity. The nonparticipant test as a measure of equity...

Treadway, N.

377

Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands  

Science Journals Connector (OSTI)

A synchronized and responsive flow of materials, information, funds, processes and services is the goal of supply chain planning. Demand planning, which is the very first step of supply chain planning, determines the effectiveness of manufacturing and logistic operations in the chain. Propagation and magnification of the uncertainty of demand signals through the supply chain, referred to as the bullwhip effect, is the major cause of ineffective operation plans. Therefore, a flexible and robust supply chain forecasting system is necessary for industrial planners to quickly respond to the volatile demand. Appropriate demand aggregation and statistical forecasting approaches are known to be effective in managing the demand variability. This paper uses the bivariate VAR(1) time series model as a study vehicle to investigate the effects of aggregating, forecasting and disaggregating two interrelated demands. Through theoretical development and systematic analysis, guidelines are provided to select proper demand planning approaches. A very important finding of this research is that disaggregation of a forecasted aggregated demand should be employed when the aggregated demand is very predictable through its positive autocorrelation. Moreover, the large positive correlation between demands can enhance the predictability and thus result in more accurate forecasts when statistical forecasting methods are used.

Argon Chen; Jakey Blue

2010-01-01T23:59:59.000Z

378

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

other refinery inputs including alcohols, ethers, bioesters, other refinery inputs including alcohols, ethers, bioesters, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining activities in the five Petroleum Area Defense Districts (PADDs) (Figure 9). The model is created by aggregating individual refineries into one linear programmming representation for each PADD. This representation provides the marginal costs of production for a number of conventional and new petroleum products. In order to interact with other NEMS modules with different regional representations, certain PMM inputs and outputs are converted from PADD regions to other regional structures and vice versa. The linear programming results are used to determine

379

An Operational Model for Optimal NonDispatchable Demand Response  

E-Print Network [OSTI]

An Operational Model for Optimal NonDispatchable Demand Response for Continuous PowerintensiveFACTS, $ Demand Response Energy Storage HVDC Industrial Customer PEV Renewable Energy Source: U.S.-Canada Power: To balance supply and demand of a power system, one can manipulate both: supply and demand demand response

Grossmann, Ignacio E.

380

DemandDirect | Open Energy Information  

Open Energy Info (EERE)

DemandDirect DemandDirect Jump to: navigation, search Name DemandDirect Place Woodbury, Connecticut Zip 6798 Sector Efficiency, Renewable Energy, Services Product DemandDirect provides demand response, energy efficiency, load management, and distributed generation services to end-use electricity customers in order to reduce electricity consumption, improve grid reliability, and promote renewable energy. Coordinates 44.440496°, -72.414991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.440496,"lon":-72.414991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

U.S. Coal Supply and Demand  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous Editions 2009 Review 2008 Review 2007 Review 2006 Review 2005 Review 2004 Review 2003 Review 2002 Review 2001 Review 2000 Review 1999 Review Data for: 2010 Released: May 2011 Next Release Date: April 2012 Table 3. Electric Power Sector Net Generation, 2009-2010 (Million Kilowatthours) New England Coal 14,378 14,244 -0.9 Hydroelectric 7,759 6,861 -11.6 Natural Gas 48,007 54,680 13.9 Nuclear 36,231 38,361 5.9 Other (1) 9,186 9,063 -1.3 Total 115,559 123,210 6.6 Middle Atlantic Coal 121,873 129,935 6.6 Hydroelectric 28,793 26,463 -8.1 Natural Gas 89,808 104,341 16.2 Nuclear 155,140 152,469 -1.7

382

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network [OSTI]

LABORATORY Coordination of Retail Demand Response withXXXXX Coordination of Retail Demand Response with MidwestAC02-05CH11231. Coordination of Retail Demand Response with

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

383

Analysis of Open Automated Demand Response Deployments in California  

E-Print Network [OSTI]

LBNL-6560E Analysis of Open Automated Demand Response Deployments in California and Guidelines The work described in this report was coordinated by the Demand Response Research. #12; #12;Abstract This report reviews the Open Automated Demand Response

384

PIER: Demand Response Research Center Director, Mary Ann Piette  

E-Print Network [OSTI]

1 PIER: Demand Response Research Center Director, Mary Ann Piette Program Development and Outreach Response Research Plan #12;2 Demand Response Research Center Objective Scope Stakeholders Develop, prioritize, conduct and disseminate multi- institutional research to facilitate Demand Response. Technologies

385

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network [OSTI]

4 9 . Piette et at Automated Demand Response Strategies andDynamic Controls for Demand Response in New and ExistingFully Automated Demand Response Tests in Large Facilities"

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

386

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network [OSTI]

, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand...

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

387

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

DRs growing role in demand-side management activities andhow DR fits with demand-side management activities, DRemissions rates The demand-side management (DSM) framework

Kiliccote, Sila

2014-01-01T23:59:59.000Z

388

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the4. Status of Demand Side Management in Midwest ISO 5.

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

389

A Survey on Privacy in Residential Demand Side Management Applications  

Science Journals Connector (OSTI)

Demand Side Management (DSM) is an auspicious concept for ... on privacy energy issues and potential solutions in Demand Response systems. For this we give an ... the BSI and indicate three technical types of Demand

Markus Karwe; Jens Strker

2014-01-01T23:59:59.000Z

390

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network [OSTI]

EPRI). 1984. Demand Side Management. Vol. 1:Overview of Key1993. Industrial Demand-Side Management Programs: WhatsJ. Kulick. 2004. Demand side management and energy e?ciency

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

391

Commercial Fleet Demand for Alternative-Fuel Vehicles in California  

E-Print Network [OSTI]

Precursors of demand for alternative-fuel vehicles: resultsFLEET DEMAND FOR ALTERNATIVE-FUEL VEHICLES IN CALIFORNIA*AbstractFleet demand for alternative-fuel vehicles (AFVs

Golob, Thomas F; Torous, Jane; Bradley, Mark; Brownstone, David; Crane, Soheila Soltani; Bunch, David S

1996-01-01T23:59:59.000Z

392

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

393

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network [OSTI]

Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

Stadler, Michael

2011-01-01T23:59:59.000Z

394

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network [OSTI]

iv Chapter 5: National energy demand and potential energyAs Figure 1-2 shows, HVAC energy demand is comparable to thefor reducing this high energy demand reaches beyond

Shehabi, Arman

2010-01-01T23:59:59.000Z

395

Cost Estimator  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a senior cost and schedule estimator who is responsible for preparing life-cycle cost and schedule estimates and analyses associated with the...

396

NERSC Modules Software Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environment » Modules Environment Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules, the MANPATH and related environment variables are automatically managed. Users simply ``load'' and ``unload'' modules to control their environment. The module utility consists of two parts: the module command itself and the modulefiles on which it operates. Module Command

397

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

398

Production Will Meet Demand Increase This Summer  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Production must meet increases in demand this year. Last year, increased imports met most of the summer demand increase, and increases in stock draws met almost all of the remainder. Production did not increase much. But this year, inventories will not be available, and increased imports seem unlikely. Thus, increases in production will be needed to meet increased demand. Imports availability is uncertain this summer. Imports in 1999 were high, and with Phase II RFG product requirements, maintaining this level could be challenging since not all refineries exporting to the U.S. will be able to meet the new gasoline specifications. Stocks will also contribute little supply this summer. Last year's high gasoline stocks allowed for a stock draw that was 58 MB/D higher than

399

EIA - Annual Energy Outlook 2008 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2008 with Projections to 2030 Energy Demand Figure 40. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 41. Primary energy use by fuel, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Average Energy Use per Person Levels Off Through 2030 Because energy use for housing, services, and travel in the United States is closely linked to population levels, energy use per capita is relatively stable (Figure 40). In addition, the economy is becoming less dependent on energy in general. Energy intensity (energy use per 2000 dollar of GDP) declines by an average

400

International Oil Supplies and Demands. Volume 1  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy demand simulation for East European countries  

Science Journals Connector (OSTI)

The analysis and created statistical models of energy consumption tendencies in the European Union (EU25), including new countries in transition, are presented. The EU15 market economy countries and countries in transition are classified into six clusters by relative indicators of Gross Domestic Product (GDP/P) and energy demand (W/P) per capita. The specified statistical models of energy intensity W/GDP non-linear stochastic tendencies have been discovered with respect to the clusters of classified countries. The new energy demand simulation models have been developed for the demand management in time??territory hierarchy in various scenarios of short-term and long-term perspective on the basis of comparative analysis methodology. The non-linear statistical models were modified to GDP, W/P and electricity (E/P) final consumption long-term forecasts for new associated East European countries and, as an example, for the Baltic Countries, including Lithuania.

Jonas Algirdas Kugelevicius; Algirdas Kuprys; Jonas Kugelevicius

2007-01-01T23:59:59.000Z

402

International Oil Supplies and Demands. Volume 2  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

403

Demand Management Institute (DMI) | Open Energy Information  

Open Energy Info (EERE)

Demand Management Institute (DMI) Demand Management Institute (DMI) Jump to: navigation, search Name Demand Management Institute (DMI) Address 35 Walnut Street Place Wellesley, Massachusetts Zip 02481 Sector Buildings Product Provides analysis for buildings on reducing energy use Website http://www.dmiinc.com/ Coordinates 42.3256508°, -71.2530294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3256508,"lon":-71.2530294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Enhanced heat transfer for thermionic power modules  

SciTech Connect (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

405

Modulational effects in accelerators  

SciTech Connect (OSTI)

We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

Satogata, T.

1997-12-01T23:59:59.000Z

406

The Differential Effects of Oil Demand and Supply Shocks on the Global Economy  

E-Print Network [OSTI]

We employ a set of sign restrictions on the generalized impulse responses of a Global VAR model, estimated for 38 countries/regions over the period 1979Q2.2011Q2, to discriminate between supply-driven and demand-driven oil-price shocks and to study...

Cashin, Paul; Mohaddes, Kamiar; Raissi, Maziar; Raissi, Mehdi

2012-11-01T23:59:59.000Z

407

Rice Supply, Demand and Related Government Programs.  

E-Print Network [OSTI]

, 1930-55 Year Weighted Year Weighted beginning average price beginning average price August per cwt. August per cwt. Dollars Dollars 'Includes an allowance for unredeemed loans. response to the strengthening of foreign demand, rice prices by 1952... 91 percent of the average parity price during 1935-54, with !he 4 years of World War I1 omitted. The elasticity of demand was assumed to be about -.2. The annually derived price based on the assumed elasticity and the percentage change in price...

Kincannon, John A.

1957-01-01T23:59:59.000Z

408

Demand Response Initiatives at CPS Energy  

E-Print Network [OSTI]

Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSEs DR Program DR... than the military bases and Toyota combined. Schools & Universities contributed 6 MWs of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

Luna, R.

2013-01-01T23:59:59.000Z

409

Demand Response and Smart Metering Policy Actions Since the Energy...  

Broader source: Energy.gov (indexed) [DOE]

Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the...

410

Overview of Demand Side Response | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Energy Officials Need to Know High Electric Demand Days: Clean Energy Strategies for Improving Air Quality Demand Response in U.S. Electricity Markets: Empirical Evidence...

411

Robust Unit Commitment Problem with Demand Response and ...  

E-Print Network [OSTI]

Oct 29, 2010 ... sion, both Demand Response (DR) strategy and intermittent renewable ... Key Words: unit commitment, demand response, wind energy, robust...

2010-10-31T23:59:59.000Z

412

National Action Plan on Demand Response | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Action Plan on Demand Response National Action Plan on Demand Response Presentation-given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008...

413

ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES  

E-Print Network [OSTI]

ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES BY ANUPAMA SUNIL KOWLI B of consumers - called demand response resources (DRRs) - whose role has become increasingly important

Gross, George

414

The business value of demand response for balance responsible parties.  

E-Print Network [OSTI]

?? By using IT-solutions, the flexibility on the demand side in the electrical systems could be increased. This is called demand response and is part (more)

Jonsson, Mattias

2014-01-01T23:59:59.000Z

415

Aggregator-Assisted Residential Participation in Demand Response Program.  

E-Print Network [OSTI]

??The demand for electricity of a particular location can vary significantly based on season, ambient temperature, time of the day etc. High demand can result (more)

Hasan, Mehedi

2012-01-01T23:59:59.000Z

416

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

energy storage and demand management can complement solarwith energy storage to firm the resource, or solar thermaland solar generation. And demand response or energy storage

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

417

BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES  

E-Print Network [OSTI]

............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSsLBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey

418

Modeling, Analysis, and Control of Demand Response Resources.  

E-Print Network [OSTI]

??While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can plan an active role in (more)

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

419

Modeling, Analysis, and Control of Demand Response Resources.  

E-Print Network [OSTI]

?? While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can plan an active role (more)

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

420

Response to several FOIA requests - Renewable Energy. Demand...  

Energy Savers [EERE]

Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg251500.pdf....

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called...

422

Chapter 3: Demand-Side Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

: Demand-Side Resources Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called...

423

Tool Improves Electricity Demand Predictions to Make More Room...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 -...

424

Time-of-use pricing and electricity demand response: evidence from a sample of Italian industrial customers  

Science Journals Connector (OSTI)

The introduction of real time pricing in many wholesale market as well as the liberalisation process involving the retail market poses the attention over the measurement of demand response to time differentiated price signals. This paper shows an example of how to estimate elasticities of substitution across time using a sample of Italian industrial customers facing time-of-use (TOU) pricing schemes. The model involves the estimation of a nested constant elasticity of substitution (CES) input demand function, which allows estimating substitutability of electricity usage across hourly intervals within a month and across different months.

Graziano Abrate

2008-01-01T23:59:59.000Z

425

SHORT-RUN MONEY DEMAND Laurence Ball  

E-Print Network [OSTI]

SHORT-RUN MONEY DEMAND Laurence Ball Johns Hopkins University August 2002 I am grateful with Goldfeld's partial adjustment model. A key innovation is the choice of the interest rate in the money on "near monies" -- close substitutes for M1 such as savings accounts and money market mutual funds

Niebur, Ernst

426

Indianapolis Offers a Lesson on Driving Demand  

Broader source: Energy.gov [DOE]

Successful program managers know that understanding the factors that drive homeowners to make upgrades is critical to the widespread adoption of energy efficiency. What better place to learn about driving demand for upgrades than in Indianapolis, America's most famous driving city?

427

Senior Center Network Redesign Under Demand Uncertainty  

E-Print Network [OSTI]

Senior Center Network Redesign Under Demand Uncertainty Osman Y. ¨Ozaltin Department of Industrial of Massachusetts Boston, Boston, MA 02125-3393, USA, michael.johnson@umb.edu Andrew J. Schaefer Department. In response, we propose a two-echelon network of senior centers. We for- mulate a two-stage stochastic

Schaefer, Andrew

428

PUBLISH ON DEMAND Recasting the Textbook  

E-Print Network [OSTI]

of history helped students evaluate the sources of information and better understand the perspectives from which history is written? WHAT WE SET OUT TO DO We recast the history textbook as an edited on- demand- source documents and interactive technology. WHAT WE FOUND High school students accessed our database

Das, Rhiju

429

Energy technologies and their impact on demand  

SciTech Connect (OSTI)

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

430

Industry continues to cut energy demand  

Science Journals Connector (OSTI)

The U.S.'s 10 most energy-intensive industries are continuing to reduce their energy demand, with the chemical industry emerging as a leader in industrial energy conservation, says the Department of Energy in a report to Congress.The chemical industry is ...

1981-01-12T23:59:59.000Z

431

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

SciTech Connect (OSTI)

Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

Goli, Sasank; McKane, Aimee; Olsen, Daniel

2011-06-14T23:59:59.000Z

432

Decentralized demandsupply matching using community microgrids and consumer demand response: A scenario analysis  

Science Journals Connector (OSTI)

Abstract Developing countries constantly face the challenge of reliably matching electricity supply to increasing consumer demand. The traditional policy decisions of increasing supply and reducing demand centrally, by building new power plants and/or load shedding, have been insufficient. Locally installed microgrids along with consumer demand response can be suitable decentralized options to augment the centralized grid based systems and plug the demandsupply gap. The objectives of this paper are to: (1) develop a framework to identify the appropriate decentralized energy options for demandsupply matching within a community, and, (2) determine which of these options can suitably plug the existing demandsupply gap at varying levels of grid unavailability. A scenario analysis framework is developed to identify and assess the impact of different decentralized energy options at a community level and demonstrated for a typical urban residential community Vijayanagar, Bangalore in India. A combination of LPG based CHP microgrid and proactive demand response by the community is the appropriate option that enables the Vijayanagar community to meet its energy needs 24/7 in a reliable, cost-effective manner. The paper concludes with an enumeration of the barriers and feasible strategies for the implementation of community microgrids in India based on stakeholder inputs.

Kumudhini Ravindra; Parameshwar P. Iyer

2014-01-01T23:59:59.000Z

433

The Role of Demand Response Policy Forum Series  

E-Print Network [OSTI]

The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

California at Davis, University of

434

A Simulation Study of Demand Responsive Transit System Design  

E-Print Network [OSTI]

A Simulation Study of Demand Responsive Transit System Design Luca Quadrifoglio, Maged M. Dessouky changed the landscape for demand responsive transit systems. First, the demand for this type of transit experiencing increased usage for demand responsive transit systems. The National Transit Summaries and Trends

Dessouky, Maged

435

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis  

E-Print Network [OSTI]

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis CERTH, University Hegde, Laurent Massouli´e Technicolor Paris Research Lab Paris, France Abstract-- Demand response (DR the alternative option of dynamic demand adaptation. In this direction, demand response (DR) programs provide

436

Autonomous Demand Response in Heterogeneous Smart Grid Topologies  

E-Print Network [OSTI]

1 Autonomous Demand Response in Heterogeneous Smart Grid Topologies Hamed Narimani and Hamed-mails: narimani-hh@ec.iut.ac.ir and hamed@ee.ucr.edu Abstract--Autonomous demand response (DR) is scalable and has demand response systems in heterogeneous smart grid topologies. Keywords: Autonomous demand response

Mohsenian-Rad, Hamed

437

Climate, extreme heat, and electricity demand in California  

E-Print Network [OSTI]

demand responses to climate change: Methodology and application to the Commonwealth of Massachusetts.

Miller, N.L.

2008-01-01T23:59:59.000Z

438

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network [OSTI]

storage and its potential impact on the electric utilities and introduces the demand side plant concept....

Michel, M.

1989-01-01T23:59:59.000Z

439

Global food demand and the sustainable intensification of agriculture  

Science Journals Connector (OSTI)

...analyzed crop demand (utilization...ZZQQhy2007 per capita real (inflation-adjusted) GDP (Table S1...nut oil, an energy dense commodity...future crop demand that we present...nation the mean per capita crop demands...per capita GDP). Crop Demand...

David Tilman; Christian Balzer; Jason Hill; Belinda L. Befort

2011-01-01T23:59:59.000Z

440

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

industrial demand response (DR) with energy efficiency (EE) to most effectively use electricity and natural gas

McKane, Aimee T.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reducing Energy Demand: What Are the Practical Limits?  

Science Journals Connector (OSTI)

Reducing Energy Demand: What Are the Practical Limits? ... Global demand for energy could be reduced by up to 73% through practical efficiency improvements passive systems, the last technical components in each energy chain. ... This paper aims to draw attention to the opportunity for major reduction in energy demand, by presenting an analysis of how much of current global energy demand could be avoided. ...

Jonathan M. Cullen; Julian M. Allwood; Edward H. Borgstein

2011-01-12T23:59:59.000Z

442

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network [OSTI]

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

443

Assessment of the theoretical demand response potential in Europe  

Science Journals Connector (OSTI)

Abstract DR (Demand response) measures typically aim at an improved utilization of power plant and grid capacities. In energy systems mainly relying on photovoltaic and wind power, DR may furthermore contribute to system stability and increase the renewable energy share. In this paper, an assessment of the theoretical DR potential in Europe is presented. Special attention is given to temporal availability and geographic distribution of flexible loads. Based on industrial production and electricity consumption statistics, as well as periodic and temperature-dependent load profiles, possible load reduction and increase is estimated for each hour of the year. The analysis identifies substantial DR potentials in all consumer sectors. They add up to a minimum load reduction of 61GW and a minimum load increase of 68GW, available in every hour of the year. The overall potential features significant variations during the year, which are characteristic for specific consumers and countries.

Hans Christian Gils

2014-01-01T23:59:59.000Z

444

module 4 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

module 4 module 4 HR5 TRANSITION BRIEFING module 4 More Documents & Publications Microsoft Word - Rev5functionalaccountabilityimplementationplan..doc Management (WFP) DEPARTMENT OF...

445

Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030  

Science Journals Connector (OSTI)

Natural gas is the primary source for electricity production in Turkey. However, Turkey does not have indigenous resources and imports more than 98.0% of the natural gas it consumes. In 2011, more than 20.0% of Turkey's annual trade deficit was due to imported natural gas, estimated at US$ 20.0 billion. Turkish government has very ambitious targets for the country's energy sector in the next decade according to the Vision 2023 agenda. Previously, we have estimated that Turkey's annual electricity demand would be 530,000GWh at the year 2023. Considering current energy market dynamics it is almost evident that a substantial amount of this demand would be supplied from natural gas. However, meticulous analysis of the Vision 2023 goals clearly showed that the information about the natural gas sector is scarce. Most importantly there is no demand forecast for natural gas in the Vision 2023 agenda. Therefore, in this study the aim was to generate accurate forecasts for Turkey's natural gas demand between 2013 and 2030. For this purpose, two semi-empirical models based on econometrics, gross domestic product (GDP) at purchasing power parity (PPP) per capita, and demographics, population change, were developed. The logistic equation, which can be used for long term natural gas demand forecasting, and the linear equation, which can be used for medium term demand forecasting, fitted to the timeline series almost seamlessly. In addition, these two models provided reasonable fits according to the mean absolute percentage error, MAPE %, criteria. Turkey's natural gas demand at the year 2030 was calculated as 76.8 billion m3 using the linear model and 83.8 billion m3 based on the logistic model. Consequently, found to be in better agreement with the official Turkish petroleum pipeline corporation (BOTAS) forecast, 76.4 billion m3, than results published in the literature.

Mehmet Melikoglu

2013-01-01T23:59:59.000Z

446

Further exploring the potential of residential demand response programs in electricity distribution  

Science Journals Connector (OSTI)

Abstract Smart grids play a key role in realizing climate ambitions. Boosting consumption flexibility is an essential measure in bringing the potential gains of smart grids to fruition. The collective scientific understanding of demand response programs argues that time-of-use tariffs have proven its merits. The findings upon which this conclusion rests are, however, primarily derived from studies covering energy-based time-of-use rates over fairly short periods of time. Hence, this empirical study set out with the intention of estimating the extent of response to a demand-based time-of-use electricity distribution tariff among Swedish single-family homes in the long term. The results show that six years after the implementation households still respond to the price signals of the tariff by cutting demand in peak hours and shifting electricity consumption from peak to off-peak hours. Studies conducted in the Nordic countries commonly include only homeowners and so another aim of the study was to explore the potential of demand response programs among households living in apartment buildings. The demand-based tariff proved to bring about similar, but not as marked, effects in rental apartments, whereas there are virtually no corresponding evidences of demand response in condominium apartments.

Cajsa Bartusch; Karin Alvehag

2014-01-01T23:59:59.000Z

447

Advanced silicon photonic modulators  

E-Print Network [OSTI]

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

448

Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Markets  

E-Print Network [OSTI]

Wholesale Electricity Demand Response Program Comparison,J. (2009) Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services.

Cappers, Peter

2014-01-01T23:59:59.000Z

449

A Cooperative Demand Response Scheme UsingPunishment Mechanism and Application to IndustrialRefrigerated Warehouses  

E-Print Network [OSTI]

Garcia, Autonomous demand-side management based on game-and D. Dietrich, Demand side management: Demand re- sponse,

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

450

Comparison of Predictive Models for Photovoltaic Module Performance: Preprint  

SciTech Connect (OSTI)

This paper examines three models used to estimate the performance of photovoltaic (PV) modules when the irradiances and PV cell temperatures are known. The results presented here were obtained by comparing modeled and measured maximum power (Pm) for PV modules that rely on different technologies.

Marion, B.

2008-05-01T23:59:59.000Z

451

The National Energy Modeling System: An Overview 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). Figure 19. Coal Market Module Demand Regions Figure 20. Coal Market Module Supply Regions

452

Data centres power profile selecting policies for Demand Response: Insights of Green Supply Demand Agreement  

Science Journals Connector (OSTI)

Abstract Demand Response mechanisms serve to preserve the stability of the power grid by shedding the electricity load of the consumers during power shortage situations in order to match power generation to demand. Data centres have been identified as excellent candidates to participate in such mechanisms. Recently a novel supply demand agreement have been proposed to foster power adaptation collaboration between energy provider and data centres. In this paper, we analyse the contractual terms of this agreement by proposing and studying different data centres power profile selecting policies. To this end, we setup a discrete event simulation and analysed the power grids state of a German energy provider. We believe that our analysis provides insight and knowledge for any energy utility in setting up the corresponding demand supply agreements.

Robert Basmadjian; Lukas Mller; Hermann De Meer

2015-01-01T23:59:59.000Z

453

Managing Energy Demand With Standards and Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Managing Energy Demand With Standards and Information Managing Energy Demand With Standards and Information Speaker(s): Sebastien Houde Date: September 13, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Christopher Payne The goal of this talk is to discuss two interrelated research projects that aim to assess the welfare effects of energy policies that rely on standards and information. The first project focuses on the Energy Star certification program. Using unique micro-data on the US refrigerator market, I first show that consumers respond to certification in different ways. Some consumers appear to rely heavily on Energy Star and pay little attention to electricity costs, others are the reverse, and still others appear to be insensitive to both electricity costs and Energy Star. I then develop a

454

Is Demand-Side Management Economically Justified?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Is Demand-Side Management Economically Justified? With billions of dollars being spent on demand-side management programs in the U.S. every year, the rationale for and performance of these programs are coming under increasing scrutiny. Three projects in the Energy Analysis Program are making significant contributions to the DSM debate. *Total Resource Cost Test Ratio = ratio of utility avoided costs (i.e., benefits) divided by total cost of program (i.e., Administrative Cost + Incentive Cost + Consumer Cost) In May, Joe Eto, Ed Vine, Leslie Shown, Chris Payne, and I released the first in a series of reports we authored from the Database on Energy Efficiency Programs (DEEP) project. The objective of DEEP is to document the measured cost and performance of utility-sponsored energy-efficiency

455

System Demand-Side Management: Regional results  

SciTech Connect (OSTI)

To improve the Bonneville Power Administration's (Bonneville's) ability to analyze the value and impacts of demand-side programs, Pacific Northwest Laboratory (PNL) developed and implemented the System Demand-Side Management (SDSM) model, a microcomputer-based model of the Pacific Northwest Public Power system. This document outlines the development and application of the SDSM model, which is an hourly model. Hourly analysis makes it possible to examine the change in marginal revenues and marginal costs that accrue from the movement of energy consumption from daytime to nighttime. It also allows a more insightful analysis of programs such as water heater control in the context of hydroelectric-based generation system. 7 refs., 10 figs., 10 tabs.

Englin, J.E.; Sands, R.D.; De Steese, J.G.; Marsh, S.J.

1990-05-01T23:59:59.000Z

456

Home Network Technologies and Automating Demand Response  

SciTech Connect (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

457

Demand Response Opportunities in Industrial Refrigerated Warehouses in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Response Opportunities in Industrial Refrigerated Warehouses in Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California Publication Type Conference Paper LBNL Report Number LBNL-4837E Year of Publication 2011 Authors Goli, Sasank, Aimee T. McKane, and Daniel Olsen Conference Name 2011 ACEEE Summer Study on Energy Efficiency in Industry Date Published 08/2011 Conference Location Niagara Falls, NY Keywords market sectors, openadr, refrigerated warehouses Abstract Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

458

What is a High Electric Demand Day?  

Broader source: Energy.gov [DOE]

This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

459

Only tough choices in Meeting growing demand  

SciTech Connect (OSTI)

U.S. electricity demand is not growing very fast by international or historical standards. Yet meeting this relatively modest growth is proving difficult because investment in new capacity is expected to grow at an even slower pace. What is more worrisome is that a confluence of factors has added considerable uncertainties, making the investment community less willing to make the long-term commitments that will be needed during the coming decade.

NONE

2007-12-15T23:59:59.000Z

460

ERCOT's Weather Sensitive Demand Response Pilot  

E-Print Network [OSTI]

ERCOTs Weather Sensitive Demand Response Pilot CATEE 12-17-13 ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Disclaimer The information contained in this report has been obtained from... Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Weather Sensitive Loads Pilot CATEE 121313 - Tim Carter 713-646-5476 tim.carter@constellation.com4 Constellation's Integrated Power Products 2013. Constellation Energy Resources, LLC...

Carter, T.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Modulating lignin in plants  

SciTech Connect (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

462

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

Lekov, Alex

2009-01-01T23:59:59.000Z

463

Barrier Immune Radio Communications for Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Barrier Immune Radio Communications for Demand Response Barrier Immune Radio Communications for Demand Response Title Barrier Immune Radio Communications for Demand Response Publication Type Report LBNL Report Number LBNL-2294e Year of Publication 2009 Authors Rubinstein, Francis M., Girish Ghatikar, Jessica Granderson, Paul Haugen, Carlos Romero, and David S. Watson Keywords technologies Abstract Various wireless technologies were field-tested in a six-story laboratory building to identify wireless technologies that can scale for future DR applications through very low node density power consumption, and unit cost. Data analysis included analysis of the signal-to-noise ratio (SNR), packet loss, and link quality at varying power levels and node densities. The narrowband technologies performed well, penetrating the floors of the building with little loss and exhibiting better range than the wideband technology. 900 MHz provided full coverage at 1 watt and substantially complete coverage at 500 mW at the test site. 900 MHz was able to provide full coverage at 100 mW with only one additional relay transmitter, and was the highest-performing technology in the study. 2.4 GHz could not provide full coverage with only a single transmitter at the highest power level tested (63 mW). However, substantially complete coverage was provided at 2.4 GHz at 63 mW with the addition of one repeater node.

464

Chinese Oil Demand: Steep Incline Ahead  

U.S. Energy Information Administration (EIA) Indexed Site

Chinese Oil Demand: Chinese Oil Demand: Steep Incline Ahead Malcolm Shealy Alacritas, Inc. April 7, 2008 Oil Demand: China, India, Japan, South Korea 0 2 4 6 8 1995 2000 2005 2010 Million Barrels/Day China South Korea Japan India IEA China Oil Forecast 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 16.3 mbd 12.7 mbd IEA China Oil Forecasts 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 WEO 2006 WEO 2004 WEO 2002 Vehicle Sales in China 0 2 4 6 8 10 1990 1995 2000 2005 2010 Million Vehicles/Year Vehicle Registrations in China 0 10 20 30 40 50 1990 1995 2000 2005 2010 Million Vehicles/Year Vehicle Density vs GDP per Capita 0 20 40 60 80 100 120 140 160 180 200 0 4,000 8,000 12,000 16,000 GDP per capita, 2005$ PPP Vehicles per thousand people Taiwan South Korea China Vehicle Density vs GDP per Capita

465

A hybrid inventory management system respondingto regular demand and surge demand  

SciTech Connect (OSTI)

This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

2014-06-01T23:59:59.000Z

466

Influence of Tangent Pinch Points on the Energy Demand of Batch Distillations: Development of a Conceptual Model for Binary Mixtures  

Science Journals Connector (OSTI)

Influence of Tangent Pinch Points on the Energy Demand of Batch Distillations: Development of a Conceptual Model for Binary Mixtures ... The algorithm requires the evaluation of a series of points (x0,f0), (x1,f1), ..., (xn,fn), and it demands the smallest number of function evaluations in comparison with other methods as a consequence of using the information from previous iterations to generate greater order estimations of the inverse function (lineal, quadratic, etc.). ...

Karina Andrea Torres; Jose? Espinosa

2011-04-08T23:59:59.000Z

467

Estimation of Wind Speed in Connection to a Wind Turbine  

E-Print Network [OSTI]

horizontal axis wind power plant with rated power 750 KW. The plant has a three bladed rotor and an automatic is shown in Figure 1 demand Drive train Generator Rotor Wind speed Power demand Grid Power Controller PitchEstimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner

468

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

469

Building Energy Software Tools Directory: Demand Response Quick Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Quick Assessment Tool Demand Response Quick Assessment Tool Demand response quick assessment tool image The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. This assessment tool will predict the energy and demand savings, the economic savings, and the thermal comfort impact for various demand responsive strategies. Users of the tool will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tool will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points

470

A Monte Carlo approach to forecasting the demand for offshore supply vessels  

Science Journals Connector (OSTI)

In the near future, the demand for offshore supply vessels in Brazil will be driven by the activities induced by the bids carried out by the regulatory agency, ANP. The likely tendency is to increase the number of bids and consequently, the demand for vessels in the coming years. The proposed model consists of a Monte Carlo simulation of the offshore oil exploration and production projects. The model considers some parameters that aim at capturing the effect of the operators patterns, water depth, duration of seismic research and exploration and drilling work, number of wells, geographic location and geological risk. An estimate is obtained for the additional offshore supply vessels demand, for the period of 2006-2008.

Jr">Floriano C.M. Pires Jr; Augusto R. Antoun

2012-01-01T23:59:59.000Z

471

Regional Differences in the Price-Elasticity of Demand for Energy  

SciTech Connect (OSTI)

At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

Bernstein, M. A.; Griffin, J.

2006-02-01T23:59:59.000Z

472

Household demand and willingness to pay for hybrid vehicles  

Science Journals Connector (OSTI)

Abstract This paper quantitatively evaluates consumers' willingness to pay for hybrid vehicles by estimating the demand of hybrid vehicles in the U.S. market. Using micro-level data on consumer purchases of hybrid and non-hybrid vehicles from National Household Travel Survey 2009, this paper formulates a mixed logit model of consumers' vehicle choices. Parameter estimates are then used to evaluate consumers' willingness to pay for hybrids. Results suggest that households' willingness to pay for hybrids ranges from $963 to $1718 for different income groups, which is significantly lower than the average price premium (over $5000) of hybrid vehicles, even when taking the fuel costs savings of hybrid vehicles into consideration. The differences reveal that although the market has shown increasing interest in hybrid vehicles, consumers' valuation of the hybrid feature is still not high enough to compensate for the price premium when they make new purchases. Policy simulations are conducted to examine the effects of raising federal tax incentives on the purchase of hybrid vehicles.

Yizao Liu

2014-01-01T23:59:59.000Z

473

Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumption to the Annual Energy Outlook Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2004, DOE/EIA- M068(2004). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

474

LNG demand, shipping will expand through 2010  

SciTech Connect (OSTI)

The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

True, W.R.

1998-02-09T23:59:59.000Z

475

Model documentation: Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

Not Available

1994-04-01T23:59:59.000Z

476

Barrier Immune Radio Communications for Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

94E 94E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J. Granderson, D. Watson Lawrence Berkeley National Laboratory P. Haugen, C. Romero Lawrence Livermore National Laboratory February 2009 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

477

Demand Controlled Filtration in an Industrial Cleanroom  

SciTech Connect (OSTI)

In an industrial cleanroom, significant energy savings were realized by implementing two types of demand controlled filtration (DCF) strategies, one based on particle counts and one on occupancy. With each strategy the speed of the recirculation fan filter units was reduced to save energy. When the control was based on particle counts, the energy use was 60% of the baseline configuration of continuous fan operation. With simple occupancy sensors, the energy usage was 63% of the baseline configuration. During the testing of DCF, no complaints were registered by the operator of the cleanroom concerning processes and products being affected by the DCF implementation.

Faulkner, David; DiBartolomeo, Dennis; Wang, Duo

2007-09-01T23:59:59.000Z

478

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

area (Energy Use Intensity or EUI) is 5.38 kWh/ft 2 -yr. Toforecast that the lighting EUI would slowly improve due to2025, we estimate that the lighting EUI would improve by 5%.

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

479

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

Although lignite composes 16% of Chinas coal reserves bys coal reserves are estimated to be 16% lignite by volume.reserves are classified as bituminous coal by volume, versus 29% sub-bituminous and 16% lignite.

Aden, Nathaniel

2010-01-01T23:59:59.000Z

480

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 129 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the pattern in the previous year, coupled

Note: This page contains sample records for the topic "demand module estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas Transmission and Distribution Module This  

Gasoline and Diesel Fuel Update (EIA)

This This page inTenTionally lefT blank 127 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the

482

National Action Plan on Demand Response  

Broader source: Energy.gov (indexed) [DOE]

6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 ACTUAL FORECAST National Action Plan on Demand Response the feDeRal eneRgy RegulatoRy commission staff 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 National Action Plan on Demand Response THE FEDERAL ENERGY REGULATORY COMMISSION STAFF June 17, 2010 Docket No. AD09-10 Prepared with the support of The Brattle Group * GMMB * Customer Performance Group Definitive Insights * Eastern Research Group The opinions and views expressed in this staff report do not necessarily represent those of the Federal Energy Regulatory Commission, its Chairman, or individual Commissioners, and are not binding on the Commission.

483

Modeling supermarket refrigeration energy use and demand  

SciTech Connect (OSTI)

A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

1991-07-01T23:59:59.000Z

484

Optimal Demand Response with Energy Storage Management  

E-Print Network [OSTI]

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

485

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

these trends lead to declining natural gas consumption byNatural gas demand has been rising in California and this trendnatural gas demands regionally, to account for variability in energy usage trends

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

486

Strategic dynamic vehicle routing with spatio-temporal dependent demands  

E-Print Network [OSTI]

Dynamic vehicle routing problems address the issue of determining optimal routes for a set of vehicles, to serve a given set of demands that arrive sequentially in time. Traditionally, demands are assumed to be generated ...

Feijer, Diego (Diego Francisco Feijer Rovira)

2011-01-01T23:59:59.000Z

487

Demand Response Analysis in Smart Grids Using Fuzzy Clustering Model  

Science Journals Connector (OSTI)

This paper focuses on an analysis of demand response in a smart grid context, presenting the ... A fuzzy subtractive clustering method is applied to demand response on several domestic consumption scenarios and r...

R. Pereira; A. Fagundes; R. Melcio

2013-01-01T23:59:59.000Z

488

Optimization of Demand Response Through Peak Shaving , D. Craigie  

E-Print Network [OSTI]

Optimization of Demand Response Through Peak Shaving G. Zakeri , D. Craigie , A. Philpott , M. Todd for the demand response of such a consumer. We will establish a monotonicity result that indicates fuel supply

Todd, Michael J.

489

Quantifying the Variable Effects of Systems with Demand Response Resources  

E-Print Network [OSTI]

Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

Gross, George

490

Software components for demand side integration at a container terminal  

Science Journals Connector (OSTI)

Local energy management and demand response are established methods to raise energy ... in industrial enterprises the intelligent use of power demand draws significantly increased importance. Due to the ... energ...

Norman Ihle; Serge Runge; Claas Meyer-Barlag

2014-11-01T23:59:59.000Z

491

Research on the Demand Side Management Under Smart Grid  

Science Journals Connector (OSTI)

From the 1970 of the twentieth century demand side management has gradually become standardized management mode in electric power industry in developed ... coverage, full collection, full prepayment to demand-side

Litong Dong; Jun Xu; Haibo Liu; Ying Guo

2014-01-01T23:59:59.000Z

492

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Fuel Future Oil Demands Enhanced Oil Recovery to Fuel Future Oil Demands Trevor Kirsten 2013.10.02 I'm Trevor Kirsten and I lead a team of GE researchers that investigate a...

493

The Energy Demand Forecasting System of the National Energy Board  

Science Journals Connector (OSTI)

This paper presents the National Energy Boards long term energy demand forecasting model in its present state of ... results of recent research at the NEB. Energy demand forecasts developed with the aid of this....

R. A. Preece; L. B. Harsanyi; H. M. Webster

1980-01-01T23:59:59.000Z

494

Competitive Technologies, Equipment Vintages and the Demand for Energy  

Science Journals Connector (OSTI)

Macroeconometric modelling of energy demand resorts to two approaches leading to models ... of view. The first approach specifies the demand of a group of consumers for a single form of energy, independent of the...

F. Carlevaro

1988-01-01T23:59:59.000Z

495

Forecasting Energy Demand Using Fuzzy Seasonal Time Series  

Science Journals Connector (OSTI)

Demand side energy management has become an important issue for energy management. In order to support energy planning and policy decisions forecasting the future demand is very important. Thus, forecasting the f...

?Irem Ual Sar?; Basar ztaysi

2012-01-01T23:59:59.000Z

496

Indianapolis Offers a Lesson on Driving Demand | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Indianapolis Offers a Lesson on Driving Demand Indianapolis Offers a Lesson on Driving Demand The flier for EcoHouse, with the headline 'Save energy, save money, improve your home'...

497

An Analysis of the Price Elasticity of Demand for Household Appliances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Price Elasticity of Demand for Household Appliances the Price Elasticity of Demand for Household Appliances Title An Analysis of the Price Elasticity of Demand for Household Appliances Publication Type Report LBNL Report Number LBNL-326E Year of Publication 2008 Authors Dale, Larry L., and Sydny K. Fujita Document Number LBNL-326E Pagination 19 Date Published 02/2008 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This article summarizes our study of the price elasticity of demand1 for home appliances, including refrigerators, clothes washers and dishwashers. In the context of increasingly stringent appliance standards, we are interested in what kind of impact the increased manufacturing costs caused by higher efficiency requirements will have on appliance sales. We chose to study this particular set of appliances because data for the elasticity calculation was more readily available for refrigerators, clothes washers, and dishwashers than for other appliances. We begin with a review of the existing economics literature describing the impact of economic variables on the sale of durable goods. We then describe the market for home appliances and changes in it over the past 20 years. We conclude with summary and interpretation of the results of our regression analysis and present estimates of the price elasticity of demand for the three appliances.

498

Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities  

E-Print Network [OSTI]

and Demand Response History Energy Management Activities o #and Demand Response History Energy Management Activities

Olsen, Daniel

2013-01-01T23:59:59.000Z

499

Analytical Frameworks to Incorporate Demand Response in Long-term Resource Planning  

E-Print Network [OSTI]

management system demand-side management energy efficiencyresource plans and demand side management (DSM) program

Satchwell, Andrew

2014-01-01T23:59:59.000Z

500

Demand or No Demand: Electrical Rates for Standard 90.1-2010  

SciTech Connect (OSTI)

ASHRAE is developing the 2010 version of Standard 90.1 with the goal of reaching 30% savings beyond the 2004 edition of the standard. Economics are used to inform the process of setting criteria and the assumed electricity rates are crucial to these calculations. Previously the committee used national average electrical rates in the criteria setting but recently a number of voices have been heard in support of using demand rates instead. This article explores the issues surrounding the use of a pure consumption rate vs. the use of demand rates and looks at the implications for HVAC equipment efficiency.

Jarnagin, Ronald E.; McBride, Merle F.; Trueman, Cedric; Liesen, Richard J.

2008-04-30T23:59:59.000Z