Sample records for demand module estimates

  1. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  2. Commercial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    heaters. The use of wind energy is projected based on an estimate of existing distributed wind turbines and the potential endogenous penetration of wind turbines in the commercial...

  3. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters March 10, 2015 -...

  4. A Methodology for Estimating Large-Customer Demand Response Market Potential

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2008-01-01T23:59:59.000Z

    Estimating Large-Customer Demand Response Market PotentialEstimating Large-Customer Demand Response Market PotentialSyracuse, NY ABSTRACT Demand response (DR) is increasingly

  5. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  6. Estimation of Random-Coefficient Demand Models: Two Empiricists' Perspective

    E-Print Network [OSTI]

    Metaxoglou, Konstantinos

    We document the numerical challenges we experienced estimating random-coefficient demand models as in Berry, Levinsohn, and Pakes (1995) using two well-known data sets and a thorough optimization design. The optimization ...

  7. Assumption to the Annual Energy Outlook 2014 - Commercial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are thereDemand Module This

  8. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    of Program Participation Rates on Demand Response MarketTable 3-1. Methods of Estimating Demand Response PenetrationDemand Response

  9. Estimating Large-Customer Demand Response Market Potential: Integrating Price and Customer Behavior

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Estimating Large-Customer Demand Response Market Potential:Syracuse, NY ABSTRACT Demand response (DR) is increasinglyestimated. Introduction Demand response (DR) is increasingly

  10. Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads

    SciTech Connect (OSTI)

    Denholm, P.; Ong, S.; Booten, C.

    2012-05-01T23:59:59.000Z

    This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

  11. Estimation and specification tests of count data recreation demand functions

    E-Print Network [OSTI]

    Gomez, Irma Adriana

    1991-01-01T23:59:59.000Z

    is ultimately used to compute consumer surplus for natural resource policy analysis. Data from population-wide surveys, although not collected quite as frequently as user survey data, are also useful for estimating recreation demand functions. However, data... of distributions. They specify the mean and variance of the Katz distribution under the alternative to be p. ; and (lt; + u p. ; ), 2-k respectively. In this case, the Poisson estimator is obtain when u = 0. This suggest that a test for the null against...

  12. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  13. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  14. Assumption to the Annual Energy Outlook 2014 - Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are thereDemand

  15. Assumption to the Annual Energy Outlook 2014 - Residential Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil and Gas SupplyDemand

  16. Confidence Intervals for OD Demand Estimation Yingying Chen, Fernando Ordo~nez

    E-Print Network [OSTI]

    Ordóñez, Fernando

    Confidence Intervals for OD Demand Estimation Yingying Chen, Fernando Ord´o~nez , and Kurt Palmer Representative origin-destination (OD) demand tables are a crucial part of making many transportation models relevant to practice. However estimating these OD tables is a challenging problem, even more so determining

  17. Nonlinear estimation of water network demands form limited measurement information

    E-Print Network [OSTI]

    Rabie, Ahmed Ibrahim El Said

    2009-05-15T23:59:59.000Z

    the simulator EPANET using 3 case studies. In the second phase, the estimation formulation was tested using the same 3 case studies with different sensor configurations. In each of the case studies, estimation results are reasonable with fewer sensors than...

  18. Estimating Demand Response Market Potential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation IncentivesEshone EnergyEstero,Demand

  19. Differential Turbo Coded Modulation with APP Channel Estimation

    E-Print Network [OSTI]

    Howard, Sheryl

    Differential Turbo Coded Modulation with APP Channel Estimation Sheryl L. Howard and Christian, iterative decoding. I. INTRODUCTION With the advent of turbo codes [1], [2] and iterative de- coding in very high noise/low signal- to-noise ratio (SNR) environments. Turbo trellis coded modulation (TTCM

  20. Advanced EL inspection with predictive estimation of module power loss

    E-Print Network [OSTI]

    with no relation to its significance on potential power degradation 7pi4_robotics GmbH #12;The idea: Estimate power photovoltaic modules due to micro-cracks" #12;Three step approach to estimate power loss PL1 : power loss

  1. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  2. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  3. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    2001. Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

  4. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  5. Optimization-based Design of Plant-Friendly Input Signals for Model-on-Demand Estimation and Model Predictive Control

    E-Print Network [OSTI]

    Mittelmann, Hans D.

    is shown by applying it to a case study involving composition control of a binary distillation column. I is demonstrated in a binary high-purity distillation column case study by Weischedel and McAvoy [7], a demandingOptimization-based Design of Plant-Friendly Input Signals for Model-on-Demand Estimation and Model

  6. Estimate of federal relighting potential and demand for efficient lighting products

    SciTech Connect (OSTI)

    Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

    1993-11-01T23:59:59.000Z

    The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

  7. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    demand response options, or benchmarking, are probably not all that meaningful. The best practices

  8. A Probabilistic Deformation Demand Model and Fragility Estimates for Asymmetric Offshore Jacket Platforms

    E-Print Network [OSTI]

    Fallon, Michael Brooks

    2012-11-12T23:59:59.000Z

    to assess the deformation demand on asymmetric offshore jacket platforms subject to wave and current loadings. The probabilistic model is constructed by adding correction terms and a model error to an existing deterministic deformation demand model...

  9. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    demand response, participation can imply: (1) customer enrollment in voluntary programs and tariffs, or (2) the retention

  10. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect (OSTI)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  11. Estimation of the urban household demand for water in the United States

    E-Print Network [OSTI]

    Foster, Henry Sessam

    1977-01-01T23:59:59.000Z

    only apparenl: fa&. tor in septic 'ark area S?para ie demarrd equal;i ons for sums&sr prinkling &tom&'nstrated that sp:insLing demand ha. s significaritly greater: price elasticity Lhr-n domo;tic demand. 77ry r&estorn areas oxhibite0 a, price ela. r...

  12. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    choices in the face of real options, or surveys can beoptions may differ from their actual behavior when faced with realReal-Time Demand Response (RTDR) program offers customers two advance-notice options:

  13. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    industrial sector, oil demand will decrease due particularlyand commercial sectors, oil demand will decline on a shifttransportation sector, oil demand will shrink on a fall in

  14. Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Buildings in California

    E-Print Network [OSTI]

    Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

    2008-01-01T23:59:59.000Z

    commercialbuildingsparticipatinginademand?response(buildingsparticipatinginanAutomatedDemandResponsebuildings participating in an event?driven demand?response (

  15. Modules for estimating solid waste from fossil-fuel technologies

    SciTech Connect (OSTI)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01T23:59:59.000Z

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

  16. Estimation of a supply and demand model for the hired farm labor market in Texas

    E-Print Network [OSTI]

    Turley, Keith Pool

    1977-01-01T23:59:59.000Z

    labor in Texas increased from -0. 8 in 1951 to -2. 8 in 1975, while the long run wage elasticity of demand increased from -1. 0 to -3. 5 during the same time period. The hypothesis that Mexican immigration has had a direct influence on the supply... be expected to cause a 0. 3 per- cent short-run increase in the supply of hired farm labor in Texas, and a 0. 1 percent short-run decrease in the farm wage rate, while the long-run effect on the wage rate would be a 0. 4 percent decrease from the 1975...

  17. Industrial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    (NAICS 332) Bulk chemicals Machinery (NAICS 333) Inorganic (NAICS 32512- 32518) Computer and electronic products (NAICS 334) Other agricultural production (NAICS 112, 113,...

  18. Residential Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    to the way they now behave. The intensity of end uses will change moderately in response to price changes. Electric end uses will continue to expand, but at a decreasing rate...

  19. Residential Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    to the way they now behave. The intensity of end-uses will change moderately in response to price changes. Electric end uses will continue to expand, but at a decreasing...

  20. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    No.4 Japan's Long-term Energy Demand and Supply Scenario towe projected Japan's energy demand/supply and energy-relatedcrises (to cut primary energy demand per GDP ( T P E S / G D

  1. Single channel speech enhancement using MMSE estimation of short-time modulation magnitude spectrum

    E-Print Network [OSTI]

    Single channel speech enhancement using MMSE estimation of short-time modulation magnitude spectrum.wojcicki@gmail.com Abstract In this paper we investigate the enhancement of speech by ap- plying MMSE short-time spectral domain spectral subtraction. Index Terms: speech enhancement, MMSE short-time spectral magnitude

  2. Speech enhancement using a minimum mean-square error short-time spectral modulation magnitude estimator

    E-Print Network [OSTI]

    Speech enhancement using a minimum mean-square error short-time spectral modulation magnitude In this paper we investigate the enhancement of speech by applying MMSE short-time spectral magnitude estimation on the quality of enhanced speech, and find that this method works better with speech uncertainty. Finally we

  3. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department of EnergyEstimating

  4. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

  5. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  6. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  7. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    sjstems (ITS) Electricity Sector Promoting nuclear useindustrial and electricity generation sectors (Table 4-2).In the industrial sector, electricity demand will increase,

  8. LINEAR AND NON-LINEAR TECHNIQUES FOR ESTIMATING THE MONEY DEMAND FUNCTION: THE CASE OF SAUDI ARABIA

    E-Print Network [OSTI]

    Alsahafi, Mamdooh

    2009-07-31T23:59:59.000Z

    aggregates). The first approach is the conventional way, which is based on empirical literature where non-oil GDP is used as a measure for income. The second approach is the consumer demand approach to money demand. This approach emphasizes the use...

  9. Approved Module Information for EC211C, 2014/5 Module Title/Name: Estimation, Measurement & Scheduling Module Code: EC211C

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    & Scheduling Module Code: EC211C School: Engineering and Applied Science Module Type: Standard Module New Address s.h.park@aston.ac.uk Telephone Number Not Specified Office Not Specified Additional Module Tutor practice and scheduling using planning and control tools and techniques to evaluate students? own work

  10. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    of coal and LNG-fired power generation efficiency (to a drop in coal thermal power generation, and improvementsDemand for steaming coal for power generation is expected to

  11. Capacity estimation and code design principles for continuous phase modulation (CPM)

    E-Print Network [OSTI]

    Ganesan, Aravind

    2004-09-30T23:59:59.000Z

    Modulation (CPM) system and also describe techniques for design of codes for this system. We note that the CPM modulator can be decomposed into a trellis code followed by a memoryless modulator. This decomposition enables us to perform iterative demodulation...

  12. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  13. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect (OSTI)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01T23:59:59.000Z

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  14. Retrospective Estimation of the Quality of Intensity-Modulated Radiotherapy Plans for Lung Cancer

    E-Print Network [OSTI]

    Koo, Jihye; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01T23:59:59.000Z

    This study estimated the planning quality of intensity-modulated radiotherapy in 42 lung cancer cases to provide preliminary data for the development of a planning quality assurance algorithm. Organs in or near the thoracic cavity (ipsilateral lung, contralateral lung, heart, liver, esophagus, spinal cord, and bronchus) were selected as organs at risk (OARs). Radiotherapy plans were compared using the conformity index (CI), coverage index (CVI), and homogeneity index (HI) of the planning target volume (PTV), OAR-PTV distance and OAR-PTV overlap volume, and the V10Gy, V20Gy, and equivalent uniform dose (EUD) of the OARs. The CI, CVI, and HI of the PTV were 0.54 - 0.89 , 0.90 - 1.00 , and 0.11 - 0.41, respectively. The mean EUDs (V10Gy, V20Gy) of the ipsilateral lung, contralateral lung, esophagus, cord, liver, heart, and bronchus were 8.07 Gy (28.06, 13.17), 2.59 Gy (6.53, 1.18), 7.02 Gy (26.17, 12.32), 3.56 Gy (13.56, 4.48), 0.72 Gy (2.15, 0.91), 5.14 Gy (19.68, 8.62), and 10.56 Gy (36.08, 19.79), respectivel...

  15. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    SciTech Connect (OSTI)

    Dooley, James J.

    2013-08-05T23:59:59.000Z

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deep geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity global geologic CO2 storage capacity could be: 35,300 GtCO2 of theoretical capacity; 13,500 GtCO2 of effective capacity; 3,900 GtCO2, of practical capacity; and 290 GtCO2 of matched capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a lack of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.

  16. Parameter estimation of binary compact objects with LISA: Effects of time-delay interferometry, Doppler modulation, and frequency evolution

    E-Print Network [OSTI]

    Aaron Rogan; Sukanta Bose

    2006-05-01T23:59:59.000Z

    We study the limits on how accurately LISA will be able to estimate the parameters of low-mass compact binaries, comprising white dwarfs (WDs), neutron stars (NSs) or black holes (BHs), while battling the amplitude, frequency, and phase modulations of their signals. We show that Doppler-phase modulation aids sky-position resolution in every direction, improving it especially for sources near the poles of the ecliptic coordinate system. However, it increases the frequency estimation error by a factor of over 1.5 at any sky position, and at f=3 mHz. Since accounting for Doppler-phase modulation is absolutely essential at all LISA frequencies and for all chirp masses in order to avoid a fractional loss of signal-to-noise ratio (SNR) of more than 30%, LISA science will be simultaneously aided and limited by it. For a source with f > 2.5mHz, searching for its frequency evolution for 1 year worsens the error in the frequency estimation by a factor of over 3.5 relative to that of sources with f < 1mHz. Increasing the integration time to 2 years reduces this relative error factor to about 2, which still adversely affects the resolvability of the galactic binary confusion noise. Thus, unless the mission lifetime is increased several folds, the only other recourse available for reducing the errors is to exclude the chirp parameter from ones search templates. Doing so improves the SNR-normalized parameter estimates. This works for the lightest binaries since their SNR itself does not suffer from that exclusion. However, for binaries involving a neutron star, a black hole, or both, the SNR and, therefore, the parameter estimation, can take a significant hit, thus, severely affecting the ability to resolve such members in LISA's confusion noise.

  17. Estimating the Energy, Demand and Cost Savings from a Geothermal Heat Pump ESPC Project at Fort Polk, LA Through Utility Bill Analysis.

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL

    2006-01-01T23:59:59.000Z

    Energy savings performance contracts (ESPCs) are a method of financing energy conservation projects using the energy cost savings generated by the conservation measures themselves. Ideally, reduced energy costs are visible as reduced utility bills, but in fact this is not always the case. On large military bases, for example, a single electric meter typically covers hundreds of individual buildings. Savings from an ESPC involving only a small number of these buildings will have little effect on the overall utility bill. In fact, changes in mission, occupancy, and energy prices could cause substantial increases in utility bills. For this reason, other, more practical, methods have been developed to measure and verify savings in ESPC projects. Nevertheless, increasing utility bills--when ESPCs are expected to be reducing them--are problematic and can lead some observers to question whether savings are actually being achieved. In this paper, the authors use utility bill analysis to determine energy, demand, and cost savings from an ESPC project that installed geothermal heat pumps in the family housing areas of the military base at Fort Polk, Louisiana. The savings estimates for the first year after the retrofits were found to be in substantial agreement with previous estimates that were based on submetered data. However, the utility bills also show that electrical use tended to increase as time went on. Since other data show that the energy use in family housing has remained about the same over the period, the authors conclude that the savings from the ESPC have persisted, and increases in electrical use must be due to loads unassociated with family housing. This shows that under certain circumstances, and with the proper analysis, utility bills can be used to estimate savings from ESPC projects. However, these circumstances are rare and over time the comparison may be invalidated by increases in energy use in areas unaffected by the ESPC.

  18. DSM Program Development. The demand-side resource options were developed using a combination of internal engineering estimates and external consulting services. The

    E-Print Network [OSTI]

    for the determination of the optimum program level to be included in the IRP. The demand-side management options wereDSM Program Development. The demand-side resource options were developed using a combination Practices Manual: Economic Analysis of Demand-side Programs and Projects.2 The proposed DSM programs

  19. Travel Demand Modeling

    SciTech Connect (OSTI)

    Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

    2011-01-01T23:59:59.000Z

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  20. Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response Introduction..................................................................................................................................... 1 Demand Response in the Council's Fifth Power Plan......................................................................................................................... 3 Estimate of Potential Demand Response

  1. Field Test Results of Automated Demand Response in a Large Office Building

    E-Print Network [OSTI]

    Han, Junqiao

    2008-01-01T23:59:59.000Z

    and Techniques for Demand Response, LBNL-59975, May 2007 [Protocol Development for Demand Response Calculation Findsand S. Kiliccote, Estimating Demand Response Load Impacts:

  2. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    S. Kiliccote. EstimatingDemandResponseLoad Impacts:inCalifornia. DemandResponseResearchCenter,LawrenceandTechniquesforDemandResponse. LBNLReport59975.

  3. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to toxics release inventory: Estimating releases (EPCRA section 313; 40 CFR part 372). Updated as of November 1995

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The module provides an overview of general techniques that owners and operators of reporting facilities may use to estimate their toxic chemical releases. It exlains the basic release estimation techniques used to determine the chemical quantities reported on the Form R and uses those techniques, along with fundamental chemical or physical principles and properties, to estimate releases of listed toxic chemicals. It converts units of mass, volume, and time. It states the rules governing significant figures and rounding techniques, and references general and industry-specific estimation documents.

  4. Non-data aided digital feedforward timing estimators for linear and nonlinear modulations

    E-Print Network [OSTI]

    Sarvepalli, Pradeep Kiran

    2004-09-30T23:59:59.000Z

    Pre ltered Pulse That Has Symmetry Around 1=2T (P = 4) : : : : : 15 5 Implementation of ML Estimator : : : : : : : : : : : : : : : : : : : : 16 6 H(f) and H(f + 1=P) for P=4 : : : : : : : : : : : : : : : : : : : : : 19 7 Implementation of [21...:9 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29 10 H(f) and H(f + 1=P) for P=4 : : : : : : : : : : : : : : : : : : : : : 30 11 H(f)H(f + 1=P) for P=4 : : : : : : : : : : : : : : : : : : : : : : : : 31 12 H(f) and H(f + 1=P) for P=2 : : : : : : : : : : : : : : : : : : : : : 32 13 H(f)H(f + 1=P...

  5. In-Situ Measurement of Crystalline Silicon Modules Undergoing Potential-Induced Degradation in Damp Heat Stress Testing for Estimation of Low-Light Power Performance

    SciTech Connect (OSTI)

    Hacke, P.; Terwilliger, K.; Kurtz, S.

    2013-08-01T23:59:59.000Z

    The extent of potential-induced degradation of crystalline silicon modules in an environmental chamber is estimated using in-situ dark I-V measurements and applying superposition analysis. The dark I-V curves are shown to correctly give the module power performance at 200, 600 and 1,000 W/m2 irradiance conditions, as verified with a solar simulator. The onset of degradation measured in low light in relation to that under one sun irradiance can be clearly seen in the module design examined; the time to 5% relative degradation measured in low light (200 W/m2) was 28% less than that of full sun (1,000 W/m2 irradiance). The power of modules undergoing potential-induced degradation can therefore be characterized in the chamber, facilitating statistical analyses and lifetime forecasting.

  6. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    for demand controlled ventilation in commercial buildings.The energy costs of classroom ventilation and some financialEstimating potential benefits of increased ventilation

  7. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  8. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  9. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01T23:59:59.000Z

    to inform projected energy and demand reductions in regionaldown to reflect energy and demand savings due to spillover (market and estimate the energy and demand savings associated

  10. Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin

    E-Print Network [OSTI]

    Konopacki, Steven J.; Akbari, Hashem

    2001-01-01T23:59:59.000Z

    the abated annual energy and demand expenditures, simplea/c annual abated energy and demand expenditures and presentof future abated energy and demand expenditures is estimated

  11. Water demand management in Kuwait

    E-Print Network [OSTI]

    Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

  12. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA Control Areas CO 2 Carbon Dioxide CHP Combined Heat and Power CPP Critical Peak Pricing DG Distributed Generation DOE Department of Energy DR Demand Response DRCC Demand...

  13. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  14. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  15. A database for estimating organ dose for coronary angiography and brain perfusion CT scans for arbitrary spectra and angular tube current modulation

    SciTech Connect (OSTI)

    Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos; Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States); Division of Imaging and Applied Mathematics (OSEL/CDRH), US Food and Drug Administration, Silver Spring, Maryland 20905 (United States); Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States)

    2012-09-15T23:59:59.000Z

    Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tables of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.

  16. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  17. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  18. A residential energy demand system for Spain

    E-Print Network [OSTI]

    Labandeira Villot, Xavier

    2005-01-01T23:59:59.000Z

    Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

  19. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    Japans 2007 primary plastics demand of 107.95 kilograms perChina reaches a lower plastic demand level of 75 kilogramsper capita primary plastics demand was used to estimate per

  20. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  1. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

  2. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  3. A Spatio-Temporal Point Process Model for Ambulance Demand

    E-Print Network [OSTI]

    Woodard, Dawn B.

    (EMS) managers need accurate demand estimates to mini- mize response times to emergencies and keep. Several studies have modeled aggregate ambulance demand as a temporal process. Channouf et al. (2007) use by combining a dynamic latent factor structure with integer time series models. Other aggregate demand studies

  4. Opportunities for Automated Demand Response in Wastewater Treatment

    E-Print Network [OSTI]

    ;CHAPTER 4: Facility Baseline Analysis Net Plant Demand Figure 5: Average load profile for net plant demand characteristics and estimated shed potential for six submetered centrifuge Lift Pumps #12;Figure 7: Daily profile on event days compared to average dry season demand Partial-day complete plant shutdown Table 5: Load sheds

  5. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01T23:59:59.000Z

    behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

  6. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

  7. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing SenSys 2003,

  8. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

  9. Assessing the demand for phytosterol-enriched products

    E-Print Network [OSTI]

    Yuan, Yan

    2009-05-15T23:59:59.000Z

    . Cross-price elasticities also suggest that consumers tend to treat Benecol and Take Control separately from the other margarine brands. We also used the estimated demand system, along with a Nash-Bertrand model of competition to indirectly estimate...

  10. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused,000 2,000 3,000 4,000 5,000 6,000 7,000 2007 USChina #12;Overview:Overview: Key Energy Demand DriversKey Energy Demand Drivers · 290 million new urban residents 1990-2007 · 375 million new urban residents 2007

  11. Demand Response In California

    Broader source: Energy.gov [DOE]

    Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

  12. New Demand for Old Food: the U.S. Demand for Olive Oil

    E-Print Network [OSTI]

    Bo Xiong; William Matthews; Daniel Sumner

    U.S. consumption of olive oil has tripled over the past twenty years, but nearly all olive oil continues to be imported. Estimation of demand parameters using monthly import data reveals that demand for non-virgin oil is income inelastic, but virgin oils have income elasticities above one. Moreover, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly substitutable with each other but not with other vegetable oils. News about the health and culinary benefits of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand in the United States.

  13. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    NONE

    2010-04-15T23:59:59.000Z

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  14. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  15. Estimating the Energy Use and Efficiency Potential of U.S. Data Centers

    E-Print Network [OSTI]

    Masanet, EricR.

    2014-01-01T23:59:59.000Z

    Keywords: data centers; energy demand modeling; energyof U.S. data center energy demand under different efficiencyfor estimation of energy demand in different data center

  16. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24T23:59:59.000Z

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  17. A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real bills. Our focus is on a subset of this work that carries out demand response (DR) by modulating

  18. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    An Exploration of Australian Petrol Demand: Unobserv- ableRelative Prices: Simulating Petrol Con- sumption Behavior.habit stock variable in a petrol demand regression, they

  19. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  20. Optimal Demand Response Libin Jiang

    E-Print Network [OSTI]

    Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 #12;Outline Caltech smart grid research Optimal demand response #12;Global trends 1

  1. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  2. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01T23:59:59.000Z

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  3. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  4. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  5. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28T23:59:59.000Z

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy optionsone which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

  6. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations,Demand

  7. Uranium 2014 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  8. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  9. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  10. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

  11. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1: Statewide Electricity Demand, End-User Natural Gas Demand, and Energy Efficiency The California Energy Demand 2014-2024 Preliminary Forecast, Volume 1: Statewide Electricity Demand

  12. Electrical Demand Control

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1984-01-01T23:59:59.000Z

    to the reservoir. Util i ties have iiting for a number of years. d a rebate for reducing their When the utility needs to shed is sent to turn off one or mnre mer's electric water heater or equipment. wges have enticed more and more same strategies... an increased need for demand 1 imiting. As building zone size is reduced, total instal led tonnage increases due to inversfty. Each compressor is cycled by a space thermostat. There is no control system to limit the number of compressors running at any...

  13. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs...

  14. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

  15. MODELING THE DEMAND FOR E85 IN THE UNITED STATES

    SciTech Connect (OSTI)

    Liu, Changzheng [ORNL; Greene, David L [ORNL

    2013-10-01T23:59:59.000Z

    How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

  16. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  17. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06T23:59:59.000Z

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  18. Abstract --Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed

    E-Print Network [OSTI]

    Zhang, Wei

    to accurately estimate the transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies, where dynamics on time scales of seconds to minutes demand response. The aggregated model efficiently includes statistical information of the population

  19. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  20. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  1. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utilitythe 2006-2016 Forecast. Commercial natural gas demand isforecasts and demand scenarios. Electricity planning area Natural gas

  2. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  3. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  4. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Fully Automated Demand Response Tests in Large Facilitiesof Fully Automated Demand Response in Large Facilities,was coordinated by the Demand Response Research Center and

  5. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

  6. Home Network Technologies and Automating Demand Response

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01T23:59:59.000Z

    and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

  7. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities,Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

  8. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Strategies Linking Demand Response and Energy Efficiency,Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

  9. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

  10. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  11. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlledindicate the energy and cost savings for demand controlled24) (California Energy Commission 2008), demand controlled

  12. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    ofenergyandenvironmentalbenefitsofdemandcontrolledindicatetheenergyandcostsavingsfor demandcontrolled24)(CaliforniaEnergy Commission2008),demandcontrolled

  13. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    integrating HECO and Hawaii Energy demand response relatedpotential. Energy efficiency and demand response efforts areBoth energy efficiency and demand response should

  14. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  15. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

  16. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    and best practices to guide HECO demand response developmentbest practices for DR renewable integration Technically demand responseof best practices. This is partially because demand response

  17. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  18. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

  19. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

  20. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

  1. NEMS integrating module documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-12-14T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  2. Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

  3. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01T23:59:59.000Z

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  4. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

  5. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  6. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  7. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

  8. Assumption to the Annual Energy Outlook 2014 - Transportation Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil and Gas

  9. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  10. GREET Pretreatment Module

    SciTech Connect (OSTI)

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01T23:59:59.000Z

    A wide range of biofuels and biochemicals can be produced from biomass via different pretreatment technologies that yield sugars. This report documents the material and energy flows that occur when fermentable sugars from four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar) are produced via dilute acid pretreatment and ammonia fiber expansion. These flows are documented for inclusion in the pretreatment module of the Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. Process simulations of each pretreatment technology were developed in Aspen Plus. Material and energy consumption data from Aspen Plus were then compiled in the GREET pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  11. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

  12. UBC STUDENT HOUSING DEMAND STUDY

    E-Print Network [OSTI]

    Ollivier-Gooch, Carl

    UBC STUDENT HOUSING DEMAND STUDY Presented by Nancy Knight and Andrew Parr FEBRUARY 5, 2010 #12;PURPOSE To determine the need/demand for future on- campus student housing To address requests from A survey of students, and analysis of housing markets, and preparation of a forecast The timeline

  13. Harnessing the power of demand

    SciTech Connect (OSTI)

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15T23:59:59.000Z

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  14. ERCOT Demand Response Paul Wattles

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    changes or incentives.' (FERC) `Changes in electric use by demand-side resources from their normalERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre thermostats -- Other DLC Possible triggers: Real-time prices, congestion management, 4CP response paid

  15. Module Configuration

    DOE Patents [OSTI]

    Oweis, Salah (Ellicott City, MD); D'Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

    2002-06-04T23:59:59.000Z

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  16. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01T23:59:59.000Z

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  17. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

    2013-01-01T23:59:59.000Z

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  18. Emittance growth from electron beam modulation

    SciTech Connect (OSTI)

    Blaskiewicz, M.

    2009-12-01T23:59:59.000Z

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  19. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

  20. Marketing Demand-Side Management

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01T23:59:59.000Z

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  1. Community Water Demand in Texas

    E-Print Network [OSTI]

    Griffin, Ronald C.; Chang, Chan

    Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

  2. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Monitoring in an Agent-Based Smart Home, Proceedings of theConference on Smart Homes and Health Telematics, September,Smart Meter Motion sensors Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home.

  3. Overview of Demand Side Response

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingdiscusses the utility PJM's demand side response (DSR) capabilities, including emergency and economic responses.

  4. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01T23:59:59.000Z

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  5. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

  6. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01T23:59:59.000Z

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  7. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  8. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  9. A dynamic model of industrial energy demand in Kenya

    SciTech Connect (OSTI)

    Haji, S.H.H. [Gothenburg Univ. (Sweden)

    1994-12-31T23:59:59.000Z

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  10. Detailed Modeling and Response of Demand Response Enabled Appliances

    SciTech Connect (OSTI)

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14T23:59:59.000Z

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  11. Demand response-enabled residential thermostat controls.

    E-Print Network [OSTI]

    Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

    2008-01-01T23:59:59.000Z

    human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

  12. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01T23:59:59.000Z

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

  13. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  14. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  15. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

  16. National Action Plan on Demand Response

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingdiscusses the National Assessment of Demand Response study, the National Action Plan for Demand Response, and demand response as related to the energy outlook.

  17. Trends in Regional Electricity Demands 1995-2012

    E-Print Network [OSTI]

    to Department of Energy in EIA form 861. Council staff takes annual reported retail sales by each utility. Street lighting sales are not metered but rather estimated . 10 #12;Losses are Defined as Energy LoadsTrends in Regional Electricity Demands 1995-2012 January 29, 2014 #12;In Today's Conversation

  18. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  19. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  20. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 24, 2008al: Installation and Commissioning Automated Demand Response

  1. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  2. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officedemandcontrolled ventilationsystems,DennisDiBartolomeothedemandcontrolledventilationsystemincreasedtherate

  3. Supply chain planning decisions under demand uncertainty

    E-Print Network [OSTI]

    Huang, Yanfeng Anna

    2008-01-01T23:59:59.000Z

    Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

  4. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    sector, the demand response potential of California buildinga demand response event prohibit a buildings participationdemand response strategies in California buildings are

  5. Sandia National Laboratories: demand response inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

  6. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  7. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01T23:59:59.000Z

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  8. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  9. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  10. A New Market for an Old Food: the U.S. Demand for Olive Oil , Daniel Sumner

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    A New Market for an Old Food: the U.S. Demand for Olive Oil Bo Xiong , Daniel Sumner , William olive oil continues to be imported. Estimation of a demand system using monthly import data reveals that the income elasticity for virgin oils sourced from EU is above one, but demand for non-virgin oils is income

  11. Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard Schmalensee and Thomas M. Stoker*

    E-Print Network [OSTI]

    Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption of the demands for commercial energy in its various forms and of the technologies that will be used to meet those

  12. Nonlinear estimation of water network demands form limited measurement information

    E-Print Network [OSTI]

    Rabie, Ahmed Ibrahim El Said

    2009-05-15T23:59:59.000Z

    ). Further research intended to either improve the solution quality (Fujiwara and De Silva 1990), consider reliability (Fujiwara and Tung 1991; Kapelan et al. 2005), and include water sources of different qualities (Ostfeld and Salomons 2004...

  13. Analysis Procedures to Estimate Seismic Demands of Structures | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT SAmes LabSystems Analysis »Department ofof

  14. Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

    2012-01-01T23:59:59.000Z

    This paper focuses on the estimate of electricity reduction and electric demand savings from the adoption energy codes for single-family residences in Texas, 2002-2009, corresponding increase in cnstruction costs and estimates of the statewide...

  15. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01T23:59:59.000Z

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  16. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

  17. Revelation on Demand Nicolas Anciaux

    E-Print Network [OSTI]

    is willing to reveal the aggregate response (according to his company's policy) to the customer dataRevelation on Demand Nicolas Anciaux 1 Mehdi Benzine1,2 Luc Bouganim1 Philippe Pucheral1 time to support epidemiological studies. In these and many other situations, aggregate data or partial

  18. obesity demands more than just

    E-Print Network [OSTI]

    Qian, Ning

    #12;The World That Makes Us Fat ***** ***** ***** Overcoming obesity demands more than just. By Melinda Wenner Moyer Illustrations by A. Richard Allen 27 #12;ON ONE LEVEL, of course, obesity has a sim to pollutants. Their research suggests that to solve the problem of obesity--and, ultimately, to prevent it from

  19. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01T23:59:59.000Z

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  20. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    DEMAND . . . .Demand for Electricity and Power PeakDemand . . . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

  1. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

  2. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  3. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  4. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  5. Demand Side Management in Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities energy shortage and peak power shortage. Supply for Options Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

  6. Industrial demand side management: A status report

    SciTech Connect (OSTI)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J. [and others

    1995-05-01T23:59:59.000Z

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  7. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect (OSTI)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14T23:59:59.000Z

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  8. Residential energy demand modeling and the NIECS data base : an evaluation

    E-Print Network [OSTI]

    Cowing, Thomas G.

    1982-01-01T23:59:59.000Z

    The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

  9. Economic development and the structure of the demand for commerial energy

    E-Print Network [OSTI]

    Judson, Ruth A.; Schmalensee, Richard.; Stoker, Thomas M.

    To deepen understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

  10. Economic development and the structure of the demand for commerial energy

    E-Print Network [OSTI]

    Judson, Ruth A.

    To deepen the understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

  11. Forecasting the demand for electric vehicles: accounting for attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    prediction, transportation, attitudes and perceptions, hybrid choice models, fractional factorial design: survey design, model estimation and forecasting. We develop a stated preferences (SP) survey with issues related to the application of models designed to forecast demand for new alternatives, most

  12. Model documentation, Coal Market Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

  13. Thermionic modules

    DOE Patents [OSTI]

    King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

    2002-06-18T23:59:59.000Z

    Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

  14. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  15. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22T23:59:59.000Z

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy optionsone which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  16. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  17. Application of CO{sub 2}-based demand-controlled ventilation using ASHRAE Standard 62: Optimizing energy use and ventilation

    SciTech Connect (OSTI)

    Schell, M.B. [Engelhard Sensor Technologies, Santa Barbara, CA (United States); Turner, S.; Shim, R.O. [Chelsea Group, Ltd., Delray Beach, FL (United States)

    1998-12-31T23:59:59.000Z

    CO{sub 2}-based demand-controlled ventilation (DCV), when properly applied in spaces where occupancies vary below design occupancy, can reduce unnecessary overventilation while implementing target per-person ventilation rates. A recent interpretation of ANSI/ASHRAE Standard 62-1989, Interpretation 1C 62-1989-27, has affirmed that carbon dioxide (CO{sub 2})-based demand-controlled ventilation (DCV) systems can use CO{sub 2} as an occupancy indicator to modulate ventilation below the maximum total outdoor air intake rate while still maintaining the required ventilation rate per person, provided that certain conditions are met. This paper, co-written by the author of the interpretation, provides guidelines on the application of CO{sub 2}-based DCV. In addition, a method is presented that allows reasonable estimates of the actual ventilation rate per person being effectively delivered to the space, based on comparing predicted CO{sub 2} ventilation levels with CO{sub 2} levels logged in an occupied space. Finally, a model is presented to evaluate various CO{sub 2}-based DCV strategies to predict their delivery of target per-person ventilation rates within the lag times required by the standard.

  18. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    in Demand Response for Wholesale Ancillary Services Silain Demand Response for Wholesale Ancillary Services Silasuccessfully in the wholesale non- spinning ancillary

  19. Physically-based demand modeling

    E-Print Network [OSTI]

    Calloway, Terry Marshall

    1980-01-01T23:59:59.000Z

    Transactions on Automatic Control, vol. AC-19, December 1974, pp. 887-893. L3] |4] LS] [6] [7] LB] C. W. Brice and S. K. Jones, MPhysically-Based Demand Modeling, d EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, October 1978.... C. W. Br ice and 5, K, Jones, MStochastically-Based Physical Load Models Topical Report, " EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, May 1979. S. K. Jones and C. W. Brice, "Point Process Models for Power System...

  20. Justice and the demands of realism

    E-Print Network [OSTI]

    Munro, Daniel K., 1972-

    2006-01-01T23:59:59.000Z

    The dissertation examines how concerns about the demands of realism should be addressed in political theories of justice. It asks whether the demands of realism should affect the construction of principles of justice and, ...

  1. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  2. Trends in demand for retail and wholesale cuts of meat

    E-Print Network [OSTI]

    Holloway, David Wayne

    1990-01-01T23:59:59.000Z

    data from 1965 to 1985 were used. The aggregate system used beef, pork, and chicken, and then disaggregated beef into hamburger and table cuts, and chicken into parts/processed products for the second system. Additional variables in the estimation... shift in demand for beef and pork during the period, and broilers were found to be a strong substitute for beef in the second period. Implications are that there was a structural change in the meat sector during the period, and the decline...

  3. Marketing & Driving Demand Collaborative - Social Media Tools...

    Energy Savers [EERE]

    drivingdemandsocialmedia010611.pdf More Documents & Publications Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 Social Media for Natural...

  4. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    renewable integration capability. Coordinating and integrating HECO and Hawaii Energy demand response related activities has the potential

  5. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    temperature-based demand response in buildings that havedemand response advantages of global zone temperature setup in buildings

  6. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

  7. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  8. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  9. Demand Response Resources in Pacific Northwest

    E-Print Network [OSTI]

    Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

  10. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

  11. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  12. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

  13. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

  14. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  15. Demand Side Bidding. Final Report

    SciTech Connect (OSTI)

    Spahn, Andrew

    2003-12-31T23:59:59.000Z

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  16. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01T23:59:59.000Z

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  17. Thermoelectric module

    DOE Patents [OSTI]

    Kortier, William E. (Columbus, OH); Mueller, John J. (Columbus, OH); Eggers, Philip E. (Columbus, OH)

    1980-07-08T23:59:59.000Z

    A thermoelectric module containing lead telluride as the thermoelectric mrial is encapsulated as tightly as possible in a stainless steel canister to provide minimum void volume in the canister. The lead telluride thermoelectric elements are pressure-contacted to a tungsten hot strap and metallurgically bonded at the cold junction to iron shoes with a barrier layer of tin telluride between the iron shoe and the p-type lead telluride element.

  18. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

    2012-07-17T23:59:59.000Z

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  19. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27T23:59:59.000Z

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  20. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  1. Patterns of crude demand: Future patterns of demand for crude oil as a func-

    E-Print Network [OSTI]

    Langendoen, Koen

    #12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion schemes, and/or change quality of the feedstock (crude). Demand for crude oil is growing, especially perspective. This thesis aims pre- cisely at understanding the quality of oil from a demand side perspective

  2. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Kirby, Brendan J [ORNL; Kueck, John D [ORNL; Todd, Duane [Alcoa; Caulfield, Michael [Alcoa; Helms, Brian [Alcoa

    2009-02-01T23:59:59.000Z

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

  3. Estimating Methods

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.

  4. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response. May 2007. LBNL-59975.tofacilitateautomating demandresponseactionsattheInteroperable Automated Demand Response Infrastructure,

  5. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    for the Open Automated Demand Response (OpenADR) StandardsControl for Automated Demand Response, Grid Interop, 2009. [C. McParland, Open Automated Demand Response Communications

  6. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. and Techniques for Demand Response. California Energy

  7. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

  8. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  9. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Goli, Sasank

    2012-01-01T23:59:59.000Z

    and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

  10. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    Goodin. 2009. Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. InOpen Automated Demand Response Demonstration Project. LBNL-

  11. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    advanced metering and demand response in electricityGoldman, and D. Kathan. Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

  12. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

  13. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

  14. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  15. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    ofFullyAutomatedDemand ResponseinLargeFacilities. FullyAutomatedDemandResponseTestsinLargeFacilities. OpenAutomated DemandResponseCommunicationStandards:

  16. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

  17. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Institute, Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

  18. Sandia National Laboratories: How a Grid Manager Meets Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand (Load) How a Grid Manager Meets Demand (Load) In the "historical" electric grid, power-generating plants fell into three categories: No daily electrical demand data plot...

  19. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

  20. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal...

  1. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response.Building Systems and DR Strategies 16 Demand ResponseDemand Response Systems. Proceedings, 16 th National Conference on Building

  2. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    in California. DEMAND RESPONSE AND COMMERCIAL BUILDINGSload and demand response against other buildings and alsoDemand Response and Energy Efficiency in Commercial Buildings",

  3. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Keywords:demandresponse,buildings,electricityuse,Interface AutomatedDemandResponse BuildingAutomationofdemandresponsein commercialbuildings. Onekey

  4. Results and commissioning issues from an automated demand response pilot

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-01-01T23:59:59.000Z

    Management and Demand Response in Commercial Buildings", L BAutomated Demand Response National Conference on BuildingAutomated Demand Response National Conference on Building

  5. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  6. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    Demand ResponseforSmallCommercialBuildings. CEC?500?automateddemandresponse Forsmallcommercialbuildings,AUTOMATED DEMAND RESPONSE FOR SMALL COMMERCIAL BUILDINGS

  7. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsDemand Response Strategies and National Conference on BuildingDemand Response Strategies and Commissioning Commercial Building

  8. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. Inbased demand response information to building controlDemand Response Standard for the Residential Sector. California Energy Commission, PIER Buildings

  9. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    is manual demand response where building staff receive acommercial buildings demand response technologies andBuilding Control Strategies and Techniques for Demand Response.

  10. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  11. Supported PV module assembly

    DOE Patents [OSTI]

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15T23:59:59.000Z

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  12. Lead -- supply/demand outlook

    SciTech Connect (OSTI)

    Schnull, T. [Noranda, Inc., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    As Japan goes--so goes the world. That was the title of a recent lead article in The Economist that soberly discussed the potential of much more severe global economic problems occurring, if rapid and coordinated efforts were not made to stabilize the economic situation in Asia in general, and in Japan in particular. During the first 6 months of last year, commodity markets reacted violently to the spreading economic problems in Asia. More recent currency and financial problems in Russia have exacerbated an already unpleasant situation. One commodity after another--including oil, many of the agricultural commodities, and each of the base metals--have dropped sharply in price. Many are now trading at multiyear lows. Until there is an overall improvement in the outlook for these regions, sentiment will likely continue to be negative, and metals prices will remain under pressure. That being said, lead has maintained its value better than many other commodities during these difficult times, finding support in relatively strong fundamentals. The author takes a closer look at those supply and demand fundamentals, beginning with consumption.

  13. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  14. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20T23:59:59.000Z

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

  15. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    2 -based demand controlled ventilation using ASHRAE Standardoptimizing energy use and ventilation. ASHRAE TransactionsWJ, Grimsrud DT, et al. 2011. Ventilation rates and health:

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    Drivers of demand: urbanization, heavy industry, and risingdemand: urbanization, heavy industry, and rising income Theprocesses of urbanization, heavy industry growth, and rising

  17. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Commission (FERC) 2008a. Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets, (URL:1 2. Wholesale and Retails Electricity Markets in

  18. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

  19. Optimization of Demand Response Through Peak Shaving

    E-Print Network [OSTI]

    2013-06-19T23:59:59.000Z

    Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user...

  20. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    peak demand management. Photo sensors for daylight drivenare done by local photo-sensors and control hardwaresensing device in a photo sensor is typically a photodiode,

  1. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

  2. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  3. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  4. Natural Gas Demand Markets in the Northeast

    Broader source: Energy.gov (indexed) [DOE]

    Providing a Significant Opportunity for New and Expanding Natural Gas Demand Markets in the Northeast Prepared for: America's Natural Gas Alliance (ANGA) Prepared by: Bentek...

  5. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  6. Wastewater plant takes plunge into demand response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission and the Bonneville Power Administration, the Eugene-Springfield Water Pollution Control Facility in Eugene, Ore., was put through a series of demand response tests....

  7. Robust newsvendor problem with autoregressive demand

    E-Print Network [OSTI]

    2014-05-19T23:59:59.000Z

    May 19, 2014 ... business decision problems, in fields such as managing booking and ...... Q? having available the demand historical records for t = 1, ..., T. 2.

  8. Honeywell Demonstrates Automated Demand Response Benefits for...

    Broader source: Energy.gov (indexed) [DOE]

    Honeywell's Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardwaresoftware platform for automated demand response (ADR). This project...

  9. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

  10. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the dispatch of flexible loads and generation resources bothof controllable generation and flexible demand. In the casecontrollable generation resources and flexible loads in the

  11. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  12. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Energy Savers [EERE]

    Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program...

  13. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  14. Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.

    2011-01-01T23:59:59.000Z

    This paper presents estimates of the statewide electricity and electric demand savings achieved from the adoption of the International Energy Conservation Code (IECC) for single-family residences in Texas and includes the corresponding increase...

  15. A maximum entropy-least squares estimator for elastic origin-destination trip matrix estimation

    E-Print Network [OSTI]

    Kockelman, Kara M.

    A maximum entropy-least squares estimator for elastic origin- destination trip matrix estimation propose a combined maximum entropy-least squares (ME-LS) estimator, by which O- D flows are distributed-destination trip table; elastic demand; maximum entropy; least squares; subnetwork analysis; convex combination

  16. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  17. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  18. Optimal Trading Strategy Supply/Demand Dynamics

    E-Print Network [OSTI]

    Gabrieli, John

    prices through the changes in their supply/demand.2 Thus, to study how market participants trade can have interesting implications on the observed behavior of intraday volume, volatility and prices: November 15, 2004. This Draft: April 8, 2006 Abstract The supply/demand of a security in the market

  19. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    . It may also be implemented by means of customer-sited emergency power generation (e.g., diesel generators the case that distributed PV generation deserves a substantial portion of the credit allotted to demand response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing

  20. Demand Response Programs Oregon Public Utility Commission

    E-Print Network [OSTI]

    , Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currentlyDemand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director 33 MW, building to 90 MW) Irrigation load control, Idaho (35 MW summer, 2004) Lighting load control

  1. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry the first critical link in the fuel supply chain for nuclear reactors is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  2. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    SciTech Connect (OSTI)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01T23:59:59.000Z

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  3. Demand Response This is the first of the Council's power plans to treat demand response as a resource.1

    E-Print Network [OSTI]

    Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

  4. Ballasted photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

    2011-11-29T23:59:59.000Z

    A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

  5. High-Speed Link Modeling: Analog/Digital Equalization and Modulation Techniques

    E-Print Network [OSTI]

    Lee, Keytaek

    2012-07-16T23:59:59.000Z

    -DFE) to improve low target BER estimation. Based on statistical modeling, this work surveys the impact of insufficient equalization, jitter and crosstalk on modulation selection among two and four level pulse amplitude modulation (PAM-2 and PAM-4, respectively...

  6. Enhanced heat transfer for thermionic power modules

    SciTech Connect (OSTI)

    Johnson, D.C.

    1981-07-01T23:59:59.000Z

    The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

  7. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28T23:59:59.000Z

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  8. Demand Side Dispatching, Part 1: A Novel Approach for Industrial Load Shaping Applications

    E-Print Network [OSTI]

    Kumana, J. D.; Nath, R.

    ) systems fo commercial HVAC applications. Load co trol generally involves scheduling the use of electrotechnologies (e.g. air compression, pumping) during off-peak periods only, an shutting them off during on-peak periods. In order to provide... incentives to the custom r to modulate his demand, most DSM progranis combine the foregoing technologies with l1ime of-Use rate structures, capital cost subsidies (rebates), and technical support services. 317 ESL-IE-93-03-45 Proceedings from...

  9. Approved Module Information for CS4670, 2014/5 Module Title/Name: Software Process and Management Module Code: CS4670

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    control, assurance and management systems; quality models and metrics; software management ? testing management: software cost estimation, software, COCOMO model Quality management: nature of quality; qualityApproved Module Information for CS4670, 2014/5 Module Title/Name: Software Process and Management

  10. Capitalize on Existing Assets with Demand Response

    E-Print Network [OSTI]

    Collins, J.

    2008-01-01T23:59:59.000Z

    Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assetsat no cost and no risk. Demand response, the voluntary...

  11. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    account for the most natural gas usage (33% and 51% of totalseasonal dependence in natural gas usage, and consequently,Natural gas demand exhibits a strong winter peak in residential usage

  12. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Arun Majumdar

    2010-01-08T23:59:59.000Z

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  13. Micro economics for demand-side management

    E-Print Network [OSTI]

    Kibune, Hisao

    1991-01-01T23:59:59.000Z

    This paper aims to interpret Demand-Side Management (DSM) activity and to point out its problems, adopting microeconomics as an analytical tool. Two major findings follow. first, the cost-benefit analysis currently in use ...

  14. Response to changes in demand/supply

    E-Print Network [OSTI]

    Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes operating by some Korean paper companies for acquiring needed pulpwood as a first step for the construction

  15. Demand Controlled Ventilation for Improved Humidity Control

    E-Print Network [OSTI]

    Rogers, J. K.

    1996-01-01T23:59:59.000Z

    Demand Controlled Ventilation for Improved Humidity Control James K. Rogers, P.E. One Blacksmith Road Chelmsford, Massachusetts ABSTRACT Recently introduced technology makes it possible to continuously monitor for humidity in numerous... is brought in for ventilation. The high "latent load" inherent in this hot, humid outside air is often the reason for installing excess chiller capacity and the cause of peak power demands. Recent concerns over poor indoor air quality (IAQ) due...

  16. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15T23:59:59.000Z

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  17. Real-Time Demand Side Energy Management

    E-Print Network [OSTI]

    Victor, A.; Brodkorb, M.

    2006-01-01T23:59:59.000Z

    Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology Espaa, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs Demand-Side Energy Management. Learn how process manufacturers assess energy...

  18. Seasonal demand and supply analysis of turkeys

    E-Print Network [OSTI]

    Blomo, Vito James

    1972-01-01T23:59:59.000Z

    SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Ma)or Sub...)ect: Agricultural Economics SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Approved as to style and content by: (Chairman of C mmittee) (Head of Department) (Member) (Member) ( ber) (Memb er) May 1972 ABSTRACT Seasonal...

  19. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012 includes three full scenarios: a high energy demand case, a low energy demand case, and a mid energy demand

  20. Projected electric power demands for the Potomac Electric Power Company. Volume 1

    SciTech Connect (OSTI)

    Estomin, S.; Kahal, M.

    1984-03-01T23:59:59.000Z

    This three-volume report presents the results of an econometric forecast of peak and electric power demands for the Potomac Electric Power Company (PEPCO) through the year 2002. Volume I describes the methodology, the results of the econometric estimations, the forecast assumptions and the calculated forecasts of peak demand and energy usage. Separate sets of models were developed for the Maryland Suburbs (Montgomery and Prince George's counties), the District of Columbia and Southern Maryland (served by a wholesale customer of PEPCO). For each of the three jurisdictions, energy equations were estimated for residential and commercial/industrial customers for both summer and winter seasons. For the District of Columbia, summer and winter equations for energy sales to the federal government were also estimated. Equations were also estimated for street lighting and energy losses. Noneconometric techniques were employed to forecast energy sales to the Northern Virginia suburbs, Metrorail and federal government facilities located in Maryland.

  1. Scoping Study for Demand Respose DFT II Project in Morgantown, WV

    SciTech Connect (OSTI)

    Lu, Shuai; Kintner-Meyer, Michael CW

    2008-06-06T23:59:59.000Z

    This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

  2. Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)

    SciTech Connect (OSTI)

    Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

    2010-06-01T23:59:59.000Z

    This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

  3. Analysis of Open Automated Demand Response Deployments in California

    E-Print Network [OSTI]

    LBNL-6560E Analysis of Open Automated Demand Response Deployments in California and Guidelines The work described in this report was coordinated by the Demand Response Research. #12; #12;Abstract This report reviews the Open Automated Demand Response

  4. PIER: Demand Response Research Center Director, Mary Ann Piette

    E-Print Network [OSTI]

    1 PIER: Demand Response Research Center Director, Mary Ann Piette Program Development and Outreach Response Research Plan #12;2 Demand Response Research Center Objective Scope Stakeholders Develop, prioritize, conduct and disseminate multi- institutional research to facilitate Demand Response. Technologies

  5. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    4 9 . Piette et at Automated Demand Response Strategies andDynamic Controls for Demand Response in New and ExistingFully Automated Demand Response Tests in Large Facilities"

  6. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01T23:59:59.000Z

    El-Saadany. A summary of demand response in electricityadvanced metering and demand response in electricityWolak. When it comes to demand response is FERC is own worst

  7. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

  8. Demand Control Utilizing Energy Management Systems - Report of Field Tests

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01T23:59:59.000Z

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  9. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

  10. CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

  11. Learning Energy Demand Domain Knowledge via Feature Transformation

    E-Print Network [OSTI]

    Povinelli, Richard J.

    Learning Energy Demand Domain Knowledge via Feature Transformation Sanzad Siddique Department -- Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method knowledge substantially improves energy demand forecasting accuracy. However, domain knowledge may differ

  12. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    iv Chapter 5: National energy demand and potential energyEnergyDemandsandEfficiencyStrategies inDataCenterAC02?05CH11231. Energy Demands and Efficiency Strategies

  13. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the4. Status of Demand Side Management in Midwest ISO 5.

  14. Demand-Side Management and Energy Efficiency Revisited

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

    2007-01-01T23:59:59.000Z

    EPRI). 1984. Demand Side Management. Vol. 1:Overview of Key1993. Industrial Demand-Side Management Programs: WhatsJ. Kulick. 2004. Demand side management and energy e?ciency

  15. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    for Demand Response in a New Commercial Building in NewDemand Response and Energy Efficiency in Commercial Buildings.Demand Response Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar Lawrence Berkeley National Laboratory Building

  16. Smart Buildings Using Demand Response March 6, 2011

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Smart Buildings Using Demand Response March 6, 2011 Sila Kiliccote Deputy, Demand Response Research Center Program Manager, Building Technologies Department Environmental Energy Technologies only as needed) · Energy Efficiency strategies are permanent (occur daily) 4 #12;Demand-Side

  17. The Differential Effects of Oil Demand and Supply Shocks on the Global Economy

    E-Print Network [OSTI]

    Cashin, Paul; Mohaddes, Kamiar; Raissi, Maziar; Raissi, Mehdi

    2012-11-01T23:59:59.000Z

    We employ a set of sign restrictions on the generalized impulse responses of a Global VAR model, estimated for 38 countries/regions over the period 1979Q2.2011Q2, to discriminate between supply-driven and demand-driven oil-price shocks and to study...

  18. Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid

    E-Print Network [OSTI]

    Energy Demand in Urban China: Accounting for regional prices and rapid income change Article Type and changing demographics. We estimate income and price elasticities for these energy types using a two effects into account, we find that total energy is price-inelastic for all income groups. For individual

  19. The Influence of Air-Conditioning Efficiency in the Peak Load Demand for Kuwait

    E-Print Network [OSTI]

    Ali, A. A.; Maheshwari, G. P.

    2007-01-01T23:59:59.000Z

    in reduction in peak load demand and savings of KD 2,301 million in capital expenditures are possible for the years between 2001 and 2025 if the PR of AC systems are improved to 1.2 kW/RT from its present level of 2.0 kW/RT. Also, it is estimated that extent...

  20. Workshop on Demand Response, Ballerup, 7. February 2006 1 Monte Carlo Simulations of the Nordic Power System

    E-Print Network [OSTI]

    Power System How to estimate the value of demand response? Method Model Setup Results Stine the value of extreme events and not only averages Estimates the benefit of DR in the Nordic power system 2006 9 The Nordic power system Total available power capacity is 80,000 MW. Interconnections exist

  1. Module Handbook Specialisation Photovoltaics

    E-Print Network [OSTI]

    Habel, Annegret

    Module Handbook Specialisation Photovoltaics 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Northumbria Specialisation Provider: Photovoltaics #12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL

  2. Implementation Proposal for the National Action Plan on Demand...

    Broader source: Energy.gov (indexed) [DOE]

    and the Department of Energy. Implementation Proposal for the National Action Plan on Demand Response - July 2011 More Documents & Publications National Action Plan on Demand...

  3. FERC Presendation: Demand Response as Power System Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as...

  4. Robust Unit Commitment Problem with Demand Response and ...

    E-Print Network [OSTI]

    2010-10-31T23:59:59.000Z

    Oct 29, 2010 ... sion, both Demand Response (DR) strategy and intermittent renewable ... On the other hand, demand response, which enables customers to...

  5. ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES

    E-Print Network [OSTI]

    Gross, George

    ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES BY ANUPAMA SUNIL KOWLI B of consumers - called demand response resources (DRRs) - whose role has become increasingly important

  6. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utility2013 Forecast, these trends lead to declining natural gasthe 2006-2016 Forecast. Commercial natural gas demand is

  7. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officethe demand controlled ventilation system increased the ratedemand controlled ventilation systems will, because of poor

  8. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    seasonal dependence in natural gas usage. January typicallyindustrial fuels usage. Natural gas demand has been risingnatural gas demands regionally, to account for variability in energy usage

  9. Energy Upgrade California Drives Demand From Behind the Wheel...

    Energy Savers [EERE]

    Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and...

  10. Reducing Energy Demand in Buildings Through State Energy Codes...

    Energy Savers [EERE]

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  11. Response to several FOIA requests - Renewable Energy. Demand...

    Office of Environmental Management (EM)

    Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

  12. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    and fuel-related electricity demands grow, so do the numberelectricity demands are unlikely to affect capacity additions and procurement decisions until they grow

  13. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    LBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey ............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSs

  14. assessing workforce demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand...

  15. air passenger demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: 1 Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Wei Zhang, Member, IEEE Abstract--Demand response is playing an...

  16. air cargo demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: 1 Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Wei Zhang, Member, IEEE Abstract--Demand response is playing an...

  17. Flexible Demand Management under Time-Varying Prices

    E-Print Network [OSTI]

    Liang, Yong

    2012-01-01T23:59:59.000Z

    Management System Flexible Appliances Distributed Flexible Demand Management under Time-Varying Prices by YongYing-Ju Chen Spring 2013 Flexible Demand Management under

  18. FACULTY OF ENGINEERING MODULE DESCRIPTION FORM

    E-Print Network [OSTI]

    Mottram, Nigel

    Engineering and coastal processes 2. Wave Kinematics; linear wave theory 3. Wave Dynamics; wave transformation: 5 Prerequisites: Water Engineering 2 Module Format and Delivery (hours): Lecture Tutorial in coastal management. Ability to use data sources to assess wave conditions, estimate tidal streams

  19. International Oil Supplies and Demands. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  20. Centralized and Decentralized Control for Demand Response

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29T23:59:59.000Z

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  1. Uranium 2007 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01T23:59:59.000Z

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  2. Uranium 2011 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01T23:59:59.000Z

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the Red Book, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  3. International Oil Supplies and Demands. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  4. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30T23:59:59.000Z

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  5. Modulating lignin in plants

    DOE Patents [OSTI]

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29T23:59:59.000Z

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  6. Market Response ModelsMarket Response Models Demand CreationDemand Creation

    E-Print Network [OSTI]

    Brock, David

    Market Response ModelsMarket Response Models andand Demand CreationDemand Creation Dominique MImportance of Marketing Investments Need for a Market Response focusNeed for a Market Response focus Digital data enriched acquisition and retention costsasymmetry between acquisition and retention costs In both cases, longIn both

  7. Reviving'demand+pull'perspec2ves:' The'effect'of'demand'uncertainty'and'

    E-Print Network [OSTI]

    Sussex, University of

    / Daniele&Rotolo& D.Rotolo@sussex.ac.uk/ Associate(Editors& Area& Florian&Kern& Energy& F.Kern@sussex.ac.ukReviving'demand+pull'perspec2ves:' The'effect'of'demand'uncertainty'and' stagnancy'on'R&D'strategy'which'case'the'Associate'Editors'may'decide'to'skip'internal'review'process.' Website' SWPS:'www.sussex.ac.uk

  8. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03T23:59:59.000Z

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  9. ERCOT's Weather Sensitive Demand Response Pilot

    E-Print Network [OSTI]

    Carter, T.

    2013-01-01T23:59:59.000Z

    ERCOTs Weather Sensitive Demand Response Pilot CATEE 12-17-13 ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Disclaimer The information contained in this report has been obtained from... services along with other information about our business is available online at constellation.com. ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Demand Response in ERCOT CATEE 121313 - Tim Carter...

  10. Demand Response Initiatives at CPS Energy

    E-Print Network [OSTI]

    Luna, R.

    2013-01-01T23:59:59.000Z

    Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSEs DR Program DR... than the military bases and Toyota combined. Schools & Universities contributed 6 MWs of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

  11. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect (OSTI)

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21T23:59:59.000Z

    Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

  12. Identification of demand in differentiated products markets

    E-Print Network [OSTI]

    Megerdichian, Aren

    2010-01-01T23:59:59.000Z

    Characteristics . . . . . . . OLS and CX Estimates, Product-2.3 Conditional Exogeneity (CX) . . . . . . . . iv Models ofAIDS CX . . . . . . . . . Simulation . . . . . . . . Merger

  13. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14T23:59:59.000Z

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  14. A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30T23:59:59.000Z

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide deep demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-to-building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov- March) and a steam absorption chiller for use in the warm months (April-October). Lighting in the open office areas is provided by direct-indirect luminaries with Building Management System-based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-based DR controller (dubbed the Central Load-Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the buildings plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-tune the strategies accordingly.

  15. Response to changes in demand/supply

    E-Print Network [OSTI]

    , distribution channels, differentiation of quality, price, specification, etc., of the products. Primary wood with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board;112 distribution channels, differentiation of quality, price, specification, etc., of the products. Primary wood

  16. MTBE demand as a oxygenated fuel additive

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

  17. INVENTORY MANAGEMENT WITH PARTIALLY OBSERVED NONSTATIONARY DEMAND

    E-Print Network [OSTI]

    Ludkovski, Mike

    INVENTORY MANAGEMENT WITH PARTIALLY OBSERVED NONSTATIONARY DEMAND ERHAN BAYRAKTAR AND MICHAEL LUDKOVSKI Abstract. We consider a continuous-time model for inventory management with Markov mod- ulated non inventory level. We then solve this equivalent formulation and directly characterize an optimal inventory

  18. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    Energy Commission's preliminary forecasts for 2014­2024 electricity consumption and peak: Electricity Demand by Utility Planning Area MAY 2013 CEC-200-2013-004-SD-V2 Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  19. Global Climate Change and Demand for Energy

    E-Print Network [OSTI]

    Subramanian, Venkat

    -CARES) Washington University in St. Louis #12;9 Jun Jul Aug Temperature Anomaly Distribution Frequency of air and water temperatures Losses of ice from Greenland and Antarctica Sea-level rise Energy demands 169 390 327 90 16 H2O, CO2, O3 Earth receives visible light from hot Sun and Earth radiates to space

  20. Value of Demand Response -Introduction Klaus Skytte

    E-Print Network [OSTI]

    of wind power. #12;Perspectives The System Operator Keep the balance Demand reduction = increased as indicator. #12;Motivations We want more wind power in the system. This require more flexibility of the rest plants and better use of wind power. Public goods / Externalities not measured in the markets #12

  1. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  2. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  3. A Simulation Study of Demand Responsive Transit System Design

    E-Print Network [OSTI]

    Dessouky, Maged

    A Simulation Study of Demand Responsive Transit System Design Luca Quadrifoglio, Maged M. Dessouky changed the landscape for demand responsive transit systems. First, the demand for this type of transit experiencing increased usage for demand responsive transit systems. The National Transit Summaries and Trends

  4. The Role of Demand Response Policy Forum Series

    E-Print Network [OSTI]

    California at Davis, University of

    The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

  5. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  6. Flexible Demand Management under Time-Varying Prices

    E-Print Network [OSTI]

    Liang, Yong

    2012-01-01T23:59:59.000Z

    planning, multi-periods procurement, optimal stopping problem, the demand management for the Smart Grid

  7. The TRANSIMS Approach to Emission Estimation

    SciTech Connect (OSTI)

    Barth, M.J.; Smith, L.; Thayer, G.R.; Williams, M.D.

    1999-02-01T23:59:59.000Z

    Transportation systems play a significant role in urban air quality, energy consumption and carbon-dioxide emissions. Recently, it has been found that current systems for estimating emissions of pollutants from transportation devices lead to significant inaccuracies. Most of the existing emission modules use very aggregate representations of traveler behavior and attempt to estimate emissions on typical driving cycles. However, recent data suggests that typical driving cycles produce relatively low emissions with most emissions coming from off-cycle driving, cold-starts, malfunctioning vehicles, and evaporative emissions. TRANSIMS is a simulation system for the analysis of transportation options in metropolitan areas. It's major functional components are: (1) a population disaggregation module, (2) a travel planning module, (3) a regional microsimulation module, and (4) an environmental module. In addition to the major functional components, it includes a strong underpining of simulation science and an analyst's tool box. The purpose of the environmental module is to translate traveler behavior into consequent air quality. The environmental module uses information from the TRANSIMS planner and the microsimulation and it supports the analyst's toolbox. The TRANSIMS system holds the promise of a more complete description of the role of heterogeneity in transportation in emission estimation.

  8. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

  9. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01T23:59:59.000Z

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  10. Seismic fragility estimates for reinforced concrete framed buildings

    E-Print Network [OSTI]

    Ramamoorthy, Sathish Kumar

    2007-04-25T23:59:59.000Z

    story drift given the spectral acceleration at the fundamental period of the building. The unknown parameters of the demand models are estimated using the simulated response data obtained from nonlinear time history analyses of the structural models...

  11. New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand

  12. Hydrogen demand, production, and cost by region to 2050.

    SciTech Connect (OSTI)

    Singh, M.; Moore, J.; Shadis, W.; Energy Systems; TA Engineering, Inc.

    2005-10-31T23:59:59.000Z

    This report presents an analysis of potential hydrogen (H{sub 2}) demand, production, and cost by region to 2050. The analysis was conducted to (1) address the Energy Information Administration's (EIA's) request for regional H{sub 2} cost estimates that will be input to its energy modeling system and (2) identify key regional issues associated with the use of H{sub 2} that need further study. Hydrogen costs may vary substantially by region. Many feedstocks may be used to produce H{sub 2}, and the use of these feedstocks is likely to vary by region. For the same feedstock, regional variation exists in capital and energy costs. Furthermore, delivery costs are likely to vary by region: some regions are more rural than others, and so delivery costs will be higher. However, to date, efforts to comprehensively and consistently estimate future H{sub 2} costs have not yet assessed regional variation in these costs. To develop the regional cost estimates and identify regional issues requiring further study, we developed a H{sub 2} demand scenario (called 'Go Your Own Way' [GYOW]) that reflects fuel cell vehicle (FCV) market success to 2050 and allocated H{sub 2} demand by region and within regions by metropolitan versus non-metropolitan areas. Because we lacked regional resource supply curves to develop our H{sub 2} production estimates, we instead developed regional H{sub 2} production estimates by feedstock by (1) evaluating region-specific resource availability for centralized production of H{sub 2} and (2) estimating the amount of FCV travel in the nonmetropolitan areas of each region that might need to be served by distributed production of H{sub 2}. Using a comprehensive H{sub 2} cost analysis developed by SFA Pacific, Inc., as a starting point, we then developed cost estimates for each H{sub 2} production and delivery method by region and over time (SFA Pacific, Inc. 2002). We assumed technological improvements over time to 2050 and regional variation in energy and capital costs. Although we estimate substantial reductions in H{sub 2} costs over time, our cost estimates are generally higher than the cost goals of the U.S. Department of Energy's (DOE's) hydrogen program. The result of our analysis, in particular, demonstrates that there may be substantial variation in H{sub 2} costs between regions: as much as $2.04/gallon gasoline equivalent (GGE) by the time FCVs make up one-half of all light-vehicle sales in the GYOW scenario (2035-2040) and $1.85/GGE by 2050 (excluding Alaska). Given the assumptions we have made, our analysis also shows that there could be as much as a $4.82/GGE difference in H{sub 2} cost between metropolitan and non-metropolitan areas by 2050 (national average). Our national average cost estimate by 2050 is $3.68/GGE, but the average H{sub 2} cost in metropolitan areas in that year is $2.55/GGE and that in non-metropolitan areas is $7.37/GGE. For these estimates, we assume that the use of natural gas to produce H{sub 2} is phased out. This phase-out reflects the desire of DOE's Office of Hydrogen, Fuel Cells and Infrastructure Technologies (OHFCIT) to eliminate reliance on natural gas for H{sub 2} production. We conducted a sensitivity run in which we allowed natural gas to continue to be used through 2050 for distributed production of H{sub 2} to see what effect changing that assumption had on costs. In effect, natural gas is used for 66% of all distributed production of H{sub 2} in this run. The national average cost is reduced to $3.10/GGE, and the cost in non-metropolitan areas is reduced from $7.37/GGE to $4.90, thereby reducing the difference between metropolitan and non-metropolitan areas to $2.35/GGE. Although the cost difference is reduced, it is still substantial. Regional differences are similarly reduced, but they also remain substantial. We also conducted a sensitivity run in which we cut in half our estimate of the cost of distributed production of H{sub 2} from electrolysis (our highest-cost production method). In this run, our national average cost estimate is reduced even further, to

  13. Demand management : a cross-industry analysis of supply-demand planning

    E-Print Network [OSTI]

    Tan, Peng Kuan

    2006-01-01T23:59:59.000Z

    Globalization increases product variety and shortens product life cycles. These lead to an increase in demand uncertainty and variability. Outsourcing to low-cost countries increases supply lead-time and supply uncertainty ...

  14. Approved Module Information for EE4017, 2014/5 Module Title/Name: Realtime Communication Networks Module Code: EE4017

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Module Code: EE4017 School: Engineering and Applied Science Module Type: Standard Module New Module development #12;Indicative Module Content: Telecommunication systems: Network structures; national & Teaching Rationale: Lectures, tutorials and directed reading. Module Assessment Methods of Assessment

  15. Identification of demand in differentiated products markets

    E-Print Network [OSTI]

    Megerdichian, Aren

    2010-01-01T23:59:59.000Z

    1997) Matching as an Econometric Evaluation Estimator:Treatment Effects, and Econometric Policy Evaluation. T. Spiller. (1996) Econometric Market De- lineation.

  16. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01T23:59:59.000Z

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  17. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect (OSTI)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01T23:59:59.000Z

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  18. Only tough choices in Meeting growing demand

    SciTech Connect (OSTI)

    NONE

    2007-12-15T23:59:59.000Z

    U.S. electricity demand is not growing very fast by international or historical standards. Yet meeting this relatively modest growth is proving difficult because investment in new capacity is expected to grow at an even slower pace. What is more worrisome is that a confluence of factors has added considerable uncertainties, making the investment community less willing to make the long-term commitments that will be needed during the coming decade.

  19. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  20. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24T23:59:59.000Z

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  1. FASTBUS Snoop Diagnostic Module

    SciTech Connect (OSTI)

    Walz, H.V.; Downing, R.

    1980-11-01T23:59:59.000Z

    Development of the FASTBUS Snoop Module, undertaken as part of the prototype program for the new interlaboratory data bus standard, is described. The Snoop Module resides on a FASTBUS crate segment and provides diagnostic monitoring and testing capability. Communication with a remote host computer is handled independent of FASTBUS through a serial link. The module consists of a high-speed ECL front-end to monitor and single-step FASTBUS cycles, a master-slave interface, and a control microprocessor with serial communication ports. Design details and performance specifications of the prototype module are reported. 9 figures, 1 table.

  2. Regional Differences in the Price-Elasticity of Demand for Energy

    SciTech Connect (OSTI)

    Bernstein, M. A.; Griffin, J.

    2006-02-01T23:59:59.000Z

    At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

  3. Approved Module Information for CE4020, 2014/5 Module Title/Name: Advanced Mass Trasfer Module Code: CE4020

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CE4020 School: Engineering and Applied Science Module Type: Standard Module New Module? No ModuleApproved Module Information for CE4020, 2014/5 Module Title/Name: Advanced Mass Trasfer Module Code Credits: 10 Module Management Information Module Leader Name Qingchun Yuan Email Address q

  4. Approved Module Information for CS1240, 2014/5 Module Title/Name: Internet Computing Module Code: CS1240

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CS1240 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module and applications for working with them. Module Learning Outcomes: At the end of the module, students should be ableApproved Module Information for CS1240, 2014/5 Module Title/Name: Internet Computing Module Code

  5. Approved Module Information for LT1307, 2014/5 Module Title/Name: Principles of Economics Module Code: LT1307

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: LT1307 School: Engineering and Applied Science Module Type: Standard Module New Module? No ModuleApproved Module Information for LT1307, 2014/5 Module Title/Name: Principles of Economics Module Credits: 10 Module Management Information Module Leader Name David Carpenter Email Address d

  6. Approved Module Information for ME3039, 2014/5 Module Title/Name: Design Failure Analysis Module Code: ME3039

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: ME3039 School: Engineering and Applied Science Module Type: Standard Module New Module? No ModuleApproved Module Information for ME3039, 2014/5 Module Title/Name: Design Failure Analysis Module Credits: 10 Module Management Information Module Leader Name David Upton Email Address uptondp

  7. Approved Module Information for CS1320, 2014/5 Module Title/Name: Problem Solving Module Code: CS1320

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    1320 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module CreditsApproved Module Information for CS1320, 2014/5 Module Title/Name: Problem Solving Module Code: CS: 10 Module Management Information Module Leader Name Errol Thompson Email Address thompel1@aston

  8. Approved Module Information for LT3315, 2014/5 Module Title/Name: International Trade Law Module Code: LT3315

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: LT3315 School: Engineering and Applied Science Module Type: Standard Module New Module? No ModuleApproved Module Information for LT3315, 2014/5 Module Title/Name: International Trade Law Module Credits: 10 Module Management Information Module Leader Name David Carpenter Email Address d

  9. Approved Module Information for PH4705, 2014/5 Module Title/Name: Interprofessional Learning Module Code: PH4705

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: PH4705 School: Life and Health Sciences Module Type: Standard Module New Module? No ModuleApproved Module Information for PH4705, 2014/5 Module Title/Name: Interprofessional Learning Module Credits: 10 Module Management Information Module Leader Name Fiona Lacey Email Address f

  10. Approved Module Information for CS4810, 2014/5 Module Title/Name: Enterprise Computing Systems Module Code: CS4810

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Module Code: CS4810 School: Engineering and Applied Science Module Type: Standard Module New ModuleApproved Module Information for CS4810, 2014/5 Module Title/Name: Enterprise Computing Systems? No Module Credits: 15 Module Management Information Module Leader Name Albert Hai Zhuge Email Address zhugeh

  11. Demand-based Optimal Control to Save Energy: A Case-Study in a Medical Center

    E-Print Network [OSTI]

    Joo, I. S.; Song, L.; Liu, M.; Carico, M.

    the conditioned air through two parallel air ducts. Terminal boxes modulate either the hot ESL-HH-08-12-16 Proceedings of the Sixteenth Symposium on Improving Building Systems in Hot and Humid Climates, Plano, TX, December 15-17, 2008 airflow or the cold... and pressure required for the ESL-HH-08-12-16 Proceedings of the Sixteenth Symposium on Improving Building Systems in Hot and Humid Climates, Plano, TX, December 15-17, 2008 unit. Therefore, there are many ways to read the demand of equipment and buildings...

  12. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, Jurgen (Palo Alto, CA)

    1994-01-01T23:59:59.000Z

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  13. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01T23:59:59.000Z

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  14. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, J.

    1994-03-15T23:59:59.000Z

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  15. Empirical analysis of the spot market implications ofprice-elastic demand

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Bartholomew, Emily S.; Marnay, Chris

    2004-07-08T23:59:59.000Z

    Regardless of the form of restructuring, deregulated electricity industries share one common feature: the absence of any significant, rapid demand-side response to the wholesale (or, spotmarket) price. For a variety of reasons, electricity industries continue to charge most consumers an average cost based on regulated retail tariff from the era of vertical integration, even as the retailers themselves are forced to purchase electricity at volatile wholesale prices set in open markets. This results in considerable price risk for retailers, who are sometimes forbidden by regulators from signing hedging contracts. More importantly, because end-users do not perceive real-time (or even hourly or daily) fluctuations in the wholesale price of electricity, they have no incentive to adjust their consumption in response to price signals. Consequently, demand for electricity is highly inelastic, and electricity generation resources can be stretched to the point where system stability is threatened. This, then, facilitates many other problems associated with electricity markets, such as market power and price volatility. Indeed, economic theory suggests that even modestly price-responsive demand can remove the stress on generation resources and decrease spot prices. To test this theory, we use actual generator bid data from the New York control area to construct supply stacks, and intersect them with demand curves of various slopes to approximate different levels of demand elasticity. We then estimate the potential impact of real-time pricing on the equilibrium spot price and quantity. These results indicate the immediate benefits that could be derived from a more price-elastic demand. Such analysis can provide policymakers with a measure of how effective price-elastic demand can potentially reduce prices and maintain consumption within the capability of generation resources.

  16. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    Automated Demand Response in Commercial Buildings. Demand Response Infrastructure for Commercial Buildings.

  17. Scenarios of Global Municipal Water-Use Demand Projections over the 21st Century

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Chaturvedi, Vaibhav; Davies, Evan; Eom, Jiyong

    2013-03-06T23:59:59.000Z

    This paper establishes three future projections of global municipal water use to the end of the 21st century: A reference business-as usual (BAU) scenario, a High Technological Improvement (High Tech) scenario and a Low Technological Improvement (Low Tech) scenario. A global municipal water demand model is constructed using global water use statistics at the country-scale, calibrated to the base year of 2005, and simulated to the end of the 21st century. Since the constructed water demand model hinges on socioeconomic variables (population, income), water price, and end-use technology and efficiency improvement rates, projections of those input variables are adopted to characterize the uncertainty in future water demand estimates. The water demand model is linked to the Global Change Assessment Model (GCAM), a global change integrated assessment model. Under the reference scenario, the global total water withdrawal increases from 466 km3/year in 2005 to 941 km3/year in 2100,while withdrawals in the high and low tech scenarios are 321 km3/ year and 2000 km3/ year, respectively. This wide range (321-2000 km3/ year) indicates the level of uncertainty associated with such projections. The simulated global municipal demand projections are most sensitive to population and income projections, then to end-use technology and efficiency projections, and finally to water price. Thus, using water price alone as a policy measure to reduce municipal water use may substantiate the share of municipal water price of peoples annual incomes.

  18. Task-demand modulation of activation in Broca's area Tracy Love,a

    E-Print Network [OSTI]

    construction [OR] (relatively difficult to process): e.g., The girl who the boy saw went into the classroom. Two English sentence constructions which are standardly reported to differ in processing difficulty but which are matched on all other grounds were examined: Subject relative construction [SR] (relatively

  19. Photovoltaic module and interlocked stack of photovoltaic modules

    SciTech Connect (OSTI)

    Wares, Brian S.

    2014-09-02T23:59:59.000Z

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  20. ModuleModuleModuleModule NameNameNameName : Biostatistics Module NumberModule NumberModule NumberModule Number : 210235

    E-Print Network [OSTI]

    for the above types of confidence intervals and tests. Contribution to Program Learning Outcomes). Learning Outcomes:Learning Outcomes:Learning Outcomes:Learning Outcomes: On completing this module, student:Contribution to Program Learning Outcomes:Contribution to Program Learning Outcomes:Contribution to Program Learning

  1. LNG demand, shipping will expand through 2010

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09T23:59:59.000Z

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  2. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01T23:59:59.000Z

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  3. Demand Controlled Filtration in an Industrial Cleanroom

    SciTech Connect (OSTI)

    Faulkner, David; DiBartolomeo, Dennis; Wang, Duo

    2007-09-01T23:59:59.000Z

    In an industrial cleanroom, significant energy savings were realized by implementing two types of demand controlled filtration (DCF) strategies, one based on particle counts and one on occupancy. With each strategy the speed of the recirculation fan filter units was reduced to save energy. When the control was based on particle counts, the energy use was 60% of the baseline configuration of continuous fan operation. With simple occupancy sensors, the energy usage was 63% of the baseline configuration. During the testing of DCF, no complaints were registered by the operator of the cleanroom concerning processes and products being affected by the DCF implementation.

  4. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

    2013-01-01T23:59:59.000Z

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  5. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    13 taxation on the use of energy.6 This is in addition to taxation of the profits of energy companies and taxes on the production of oil and gas in the North Sea. Any migration of energy demand from heavily taxed liquid fuels to currently lightly... also be substituted for energy expenditure in the future (e.g. solar panels as part of a new roof). The figure shows that substantial amount of expenditure on transport where expenditure on vehicles and on their repair exceeds expenditure on fuel...

  6. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDayton Power & LightDemand Management

  7. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations,DemandEnergy

  8. Demand Response and Smart Metering Policy Actions Since the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response...

  9. Quantifying the Variable Effects of Systems with Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

  10. Grid Integration of Aggregated Demand Response, Part I: Load Availability

    E-Print Network [OSTI]

    LBNL-6417E Grid Integration of Aggregated Demand Response, Part I: Load Availability Profiles Resources 4 #12;#12;#12;CHAPTER 3: Results: DR Profiles 3.1 Projected Demand Response Availability in 2020

  11. Optimization of Demand Response Through Peak Shaving , D. Craigie

    E-Print Network [OSTI]

    Todd, Michael J.

    Optimization of Demand Response Through Peak Shaving G. Zakeri , D. Craigie , A. Philpott , M. Todd for the demand response of such a consumer. We will establish a monotonicity result that indicates fuel supply

  12. HVAC EFFICIENCY BUSINESS CASE DEMAND CONTROL KITCHEN VENTILATION

    E-Print Network [OSTI]

    California at Davis, University of

    HVAC EFFICIENCY BUSINESS CASE DEMAND CONTROL KITCHEN VENTILATION Selecting, financing ventilation (DCKV) for kitchen exhaust hoods. Implementation can be relatively simple in either new of demand control kitchen ventilation (DCKV) in many small, medium, and large kitchen exhaust hood

  13. Electric Demand Cost Versus Labor Cost: A Case Study

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost...

  14. A National Forum on Demand Response: Results on What Remains...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Cost-Effectiveness Working Group A National Forum on Demand Response: Results on What...

  15. Washington: Sustainability Training for Realtors in High Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Training for Realtors in High Demand March 6, 2014 - 5:50pm Addthis Demand has been high for a free and accredited Sustainability Training for Accredited Real...

  16. Indianapolis Offers a Lesson on Driving Demand | Department of...

    Energy Savers [EERE]

    Indianapolis Offers a Lesson on Driving Demand Indianapolis Offers a Lesson on Driving Demand The flier for EcoHouse, with the headline 'Save energy, save money, improve your home'...

  17. Using Mobile Applications to Generate Customer Demand Peer Exchange...

    Energy Savers [EERE]

    Using Mobile Applications to Generate Customer Demand Peer Exchange Call Using Mobile Applications to Generate Customer Demand Peer Exchange Call March 12, 2015 3:00PM to 4:3...

  18. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever...

  19. California: Geothermal Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Plant to Help Meet High Lithium Demand California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the...

  20. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    USA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity DemandUSA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity Demand

  1. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    demand response programs identifies three clusters of industries as the key participants: petroleum, plastic,Demand Response Potential from Audit Database Top 25 Industries by Average kW Table 1 3344 Semiconductors & Electronics 3261 Plastic

  2. Measurement and evaluation techniques for automated demand response demonstration

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. Highdemand-response technologies in large commercial and institutional buildings.building method California Independent System Operator (Cal ISO)s Demand Response

  3. atmospheric water demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Public Water Demand in the United States Texas A&M University - TxSpace Summary: -run demand response is not shown to be statistically significant. The quasidifference price...

  4. airline demand schedules: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Smart Grid Engineering Websites Summary: 1 Smart (In-home) Power Scheduling for Demand Response on the Smart Grid Gang Xiong, Chen Chen consumption are part of demand...

  5. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    January 2008. Biography Mary Ann Piette is a Staff ScientistAutomated Demand Response Mary Ann Piette, Sila Kiliccote,

  6. An Operational Model for Optimal NonDispatchable Demand Response

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    FACTS, $ Demand Response Energy Storage HVDC Industrial Customer PEV Renewable Energy Source: U.S.-Canada Power

  7. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

  8. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    procurement process at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather

  9. Assessing the Control Systems Capacity for Demand Response in

    E-Print Network [OSTI]

    LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand Response Research Center and funded by the California Energy of the Demand Response Research Center Industrial Controls Experts Working Group: · Jim Filanc, Southern

  10. Examining Synergies between Energy Management and Demand Response: A

    E-Print Network [OSTI]

    LBNL-5719E Examining Synergies between Energy Management and Demand Response: A Case Study at Two Summary #12;Introduction Energy Management · · · · · · · · · · #12;Demand Response #12;#12;Bentley Prince-Project Personnel Changes #12;Enablement of Demand Response Capabilities due to Energy Management Improvement

  11. Fast Automated Demand Response to Enable the Integration of Renewable

    E-Print Network [OSTI]

    LBNL-5555E Fast Automated Demand Response to Enable the Integration of Renewable Resources David S The work described in this report was coordinated by the Demand Response Research Center and funded ABSTRACT This study examines how fast automated demand response (AutoDR) can help mitigate grid balancing

  12. Optimal Demand Response Based on Utility Maximization in Power Networks

    E-Print Network [OSTI]

    Low, Steven H.

    Optimal Demand Response Based on Utility Maximization in Power Networks Na Li, Lijun Chen different appliances including PHEVs and batteries and propose a demand response approach based on utility. The utility company can thus use dynamic pricing to coordinate demand responses to the benefit of the overall

  13. A Successful Implementation with the Smart Grid: Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

  14. Factors Influencing Productivity and Operating Cost of Demand Responsive Transit

    E-Print Network [OSTI]

    Dessouky, Maged

    Factors Influencing Productivity and Operating Cost of Demand Responsive Transit Kurt Palmer Maged of the Americans with Disabilities Act in 1991 operating expenses for Demand Responsive Transit have more than and practices upon productivity and operating cost. ii #12;1 Introduction Demand Responsive Transit (DRT

  15. Optimal demand response: problem formulation and deterministic case

    E-Print Network [OSTI]

    Low, Steven H.

    Optimal demand response: problem formulation and deterministic case Lijun Chen, Na Li, Libin Jiang load through real-time demand response and purchases balancing power on the spot market to meet, optimal demand response reduces to joint scheduling of the procurement and consumption decisions

  16. Demand Response Opportunities in Industrial Refrigerated Warehouses in

    E-Print Network [OSTI]

    LBNL-4837E Demand Response Opportunities in Industrial Refrigerated Warehouses in California Sasank thereof or The Regents of the University of California. #12;Demand Response Opportunities in Industrial centralized control systems can be excellent candidates for Automated Demand Response (Auto- DR) due

  17. Opportunities, Barriers and Actions for Industrial Demand Response in

    E-Print Network [OSTI]

    LBNL-1335E Opportunities, Barriers and Actions for Industrial Demand Response in California A.T. Mc of Global Energy Partners. This work described in this report was coordinated by the Demand Response Demand Response in California. PIER Industrial/Agricultural/Water EndUse Energy Efficiency Program. CEC

  18. Opportunities and Challenges for Data Center Demand Response

    E-Print Network [OSTI]

    Wierman, Adam

    Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

  19. Date: June 12, 2007 To: Pacific Northwest Demand Response Project

    E-Print Network [OSTI]

    Date: June 12, 2007 To: Pacific Northwest Demand Response Project From: Rich Sedano/RAP and Chuck, 2007 meeting of the Pacific Northwest Demand Response Project, we agreed to form three Working Groups for the evaluation of cost-effectiveness of Demand Response resources. One potential outcome would be for state

  20. An Integrated Architecture for Demand Response Communications and Control

    E-Print Network [OSTI]

    Gross, George

    An Integrated Architecture for Demand Response Communications and Control Michael LeMay, Rajesh for the MGA and ZigBee wireless communications. Index Terms Demand Response, Advanced Meter Infrastructure. In principle this can be done with demand response techniques in which electricity users take measures

  1. Towards Continuous Policy-driven Demand Response in Data Centers

    E-Print Network [OSTI]

    Shenoy, Prashant

    Towards Continuous Policy-driven Demand Response in Data Centers David Irwin, Navin Sharma, and Prashant Shenoy University of Massachusetts, Amherst {irwin,nksharma,shenoy}@cs.umass.edu ABSTRACT Demand response (DR) is a technique for balancing electricity sup- ply and demand by regulating power consumption

  2. Demand Response Providing Ancillary A Comparison of Opportunities and

    E-Print Network [OSTI]

    LBNL-5958E Demand Response Providing Ancillary Services A Comparison of Opportunities Government or any agency thereof or The Regents of the University of California. #12;Demand Response System Reliability, Demand Response (DR), Electricity Markets, Smart Grid Abstract Interest in using

  3. Opportunities for Demand Response in California Agricultural Irrigation: A

    E-Print Network [OSTI]

    LBNL-6108E Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study was sponsored in part by the Demand Response Research Center which is funded by the California .................................. 2 Best Opportunities for Demand Response and Permanent Load Shifting Programs.............. 3

  4. Occupancy Based Demand Response HVAC Control Strategy Varick L. Erickson

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Occupancy Based Demand Response HVAC Control Strategy Varick L. Erickson University of California an efficient demand response HVAC control strategy, actual room usage must be considered. Temperature and CO2 are used for simulations but not for predictive demand response strategies. In this paper, we develop

  5. Opportunities for Energy Efficiency and Demand Response in the California

    E-Print Network [OSTI]

    LBNL-4849E Opportunities for Energy Efficiency and Demand Response in the California Cement in this report was coordinated by the Demand Response Research Center and funded by the California Energy. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial

  6. Two Market Models for Demand Response in Power Networks

    E-Print Network [OSTI]

    Low, Steven H.

    Two Market Models for Demand Response in Power Networks Lijun Chen, Na Li, Steven H. Low and John C-- In this paper, we consider two abstract market models for designing demand response to match power supply as oligopolistic markets, and propose distributed demand response algorithms to achieve the equilibria. The models

  7. Optimal Power Flow Based Demand Response Offer Price Optimization

    E-Print Network [OSTI]

    Lavaei, Javad

    Optimal Power Flow Based Demand Response Offer Price Optimization Zhen Qiu 1 Introduction-time energy balance. Demand response programs are offered by the utility companies to reduce the load response cost in exchange for load reduction. A considerable amount of papers have discussed the demand

  8. STATE OF CALIFORNIA DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE CEC-MECH-6A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-6A NA7.5.5 Demand Control Ventilation Systems DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE CEC-MECH-6A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

  9. INVENTORY SYSTEMS WITH ADVANCE DEMAND INFORMATION AND RANDOM REPLENISHMENT TIMES

    E-Print Network [OSTI]

    Karaesmen, Fikri

    INVENTORY SYSTEMS WITH ADVANCE DEMAND INFORMATION AND RANDOM REPLENISHMENT TIMES Fikri Karaesmen@ku.edu.tr Abstract: Advance demand information, when used effectively, improves the performance of produc- tion/inventory of random supply lead times on a single-stage inventory system with advance demand information. It is found

  10. Graphical language for identification of control strategies allowing Demand Response

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Graphical language for identification of control strategies allowing Demand Response David DA SILVA. This will allow the identification of the electric appliance availability for demand response control strategies to be implemented in terms of demand response for electrical appliances. Introduction An important part

  11. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  12. Alberta's Energy Reserves 2007 and Supply/Demand Outlook

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008-2017 0 ST98-2008 Energy Resources RESOURCES CONSERVATION BOARD ST98-2008: Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008: Reserves Andy Burrowes, Rick Marsh, Nehru Ramdin, and Curtis Evans; Supply/Demand and Economics

  13. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the planning process. Electricity demand is forecast to grow from 20,080 average megawatts in 2000 to 25 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  14. Intelligent Building Automation: A Demand Response Management Perspective

    E-Print Network [OSTI]

    Qazi, T.

    2010-01-01T23:59:59.000Z

    the energy consumption in response to energy price fluctuations, demand charges, or a direct request to reduce demand when the power grid reaches critical levels. However, in order for a demand response regime to be effective the building will need to have a...

  15. Optimal Demand Response Capacity of Automatic Lighting Control

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    . To remedy this problem, different demand side management programs have been proposed to shape the energy prior studies have extensively studied the capacity of offering demand response in buildings and office buildings. Keywords: Demand response, automatic lighting control, commercial and office buildings

  16. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

  17. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    demand-side management activities and commercial buildingsdemand-side management (DSM) framework presented in Figure 1 provides continuous energy management concepts for shaping electric loads in buildings,demand-side management activities, DR methods and levels of automation. We highlight OpenADR as a standard for commercial buildings

  18. Field Demonstration of Automated Demand Response for Both Winter and

    E-Print Network [OSTI]

    ) is a demand-side management strategy to reduce electricity use during times of high peak electric loads;1 Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings of a series of field test of automated demand response systems in large buildings in the Pacific Northwest

  19. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01T23:59:59.000Z

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  20. Falling MTBE demand bursts the methanol bubble

    SciTech Connect (OSTI)

    Wiesmann, G.; Cornitius, T.

    1995-03-01T23:59:59.000Z

    Methanol spot markets in Europe and the US have been hit hard by weakening demand from methyl tert-butyl ether (MTBE) producers. In Europe, spot prices for domestic T2 product have dropped to DM620-DM630/m.t. fob from early-January prices above DM800/m.t. and US spot prices have slipped to $1.05/gal fob from $1.35/gal. While chemical applications for methanol show sustained demand, sharp methanol hikes during 1994 have priced MTBE out of the gasoline-additive market. {open_quotes}We`ve learned an important lesson. We killed [MTBE] applications in the rest of the world,{close_quotes} says one European methanol producer. Even with methanol currently at DM620/m.t., another manufacturer points out, MTBE production costs still total $300/m.t., $30/m.t. more than MTBE spot prices. Since late 1994, Europe`s 3.3-million m.t./year MTBE production has been cut back 30%.

  1. Water heater control module

    DOE Patents [OSTI]

    Hammerstrom, Donald J

    2013-11-26T23:59:59.000Z

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  2. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01T23:59:59.000Z

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  3. Approved Module Information for PD1803, 2014/5 Module Title/Name: Engineering Principles Module Code: PD1803

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: PD1803 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module.i.smith@aston.ac.uk Telephone Number 3610 Office MB156C Additional Module Tutor(s): Michael David Peters. David Barry. LevelApproved Module Information for PD1803, 2014/5 Module Title/Name: Engineering Principles Module

  4. Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code: CH2107

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CH2107 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module. ----- [Part 2: Physical Chemistry Laboratory]; Building on material from a number of modules in the 1st and 2Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code

  5. Approved Module Information for EM4003, 2014/5 Module Title/Name: Project Management Module Code: EM4003

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : EM4003 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module. Links to Research: The module will link to the work of the Project and Supply Chain Management ResearchApproved Module Information for EM4003, 2014/5 Module Title/Name: Project Management Module Code

  6. Approved Module Information for LT1312, 2014/5 Module Title/Name: Literature Review Project Module Code: LT1312

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: LT1312 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Rationale: Lectures/tutorials Guided reading according to issue chosen Module Assessment MethodsApproved Module Information for LT1312, 2014/5 Module Title/Name: Literature Review Project Module

  7. Approved Module Information for ME1601, 2014/5 Module Title/Name: Engineering Science Module Code: ME1601

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for ME1601, 2014/5 Module Title/Name: Engineering Science Module Code: ME1601 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module@aston.ac.uk Telephone Number Not Specified Office Not Specified Additional Module Tutor(s): David Smith. Abul Hossain

  8. Approved Module Information for PD2003, 2014/5 Module Title/Name: Engineering Principles 2 Module Code: PD2003

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for PD2003, 2014/5 Module Title/Name: Engineering Principles 2 Module Code: PD2003 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module.i.smith@aston.ac.uk Telephone Number 3610 Office MB156C Additional Module Tutor(s): Michael David Peters. David Barry. Level

  9. Approved Module Information for CS4840, 2014/5 Module Title/Name: Software Architecture Module Code: CS4840

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CS4840 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module, directed reading, formative assignments, practical project-based work Module Assessment MethodsApproved Module Information for CS4840, 2014/5 Module Title/Name: Software Architecture Module Code

  10. Approved Module Information for ME3011, 2014/5 Module Title/Name: Thermodynamics and Fluids Module Code: ME3011

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: ME3011 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Modules/ Exempt from Anonymous Marking Details Assessment Weight EXAM TOTAL Closed Book 2:00hrs - 80Approved Module Information for ME3011, 2014/5 Module Title/Name: Thermodynamics and Fluids Module

  11. EM algorithm estimation of TCM scheme over multipath fading

    E-Print Network [OSTI]

    Gunawan, Wiedy

    1997-01-01T23:59:59.000Z

    The performance of Trellis Coded Modulation scheme via Expectation-Maximization algorithm utilizing a Kalman filter over multipath fading is presented. EM algorithm offers an easier computation than the classical ML estimation does. To get a better...

  12. Spectral jitter modeling and estimation Miltiadis Vasilakis a,b,

    E-Print Network [OSTI]

    Stylianou, Yannis

    Spectral jitter modeling and estimation Miltiadis Vasilakis a,b, *, Yannis Stylianou a modulation is referred to as jitter. During sustained vowel phonation, both modulations can be defined amplitude and the glottal pitch period, for shimmer and jitter, respectively.1 Since an unperturbed quasi

  13. Determination of Thermoelectric Module Efficiency A Survey

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; McCarty, Robin [Marlow Industries, Inc; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yamamoto, Atsushi [AIST, Japan; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany

    2014-01-01T23:59:59.000Z

    The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

  14. Math 115 Excel Group Project 3 Worksheet Price Elasticity of Demand: U.S. Demand for Gasoline

    E-Print Network [OSTI]

    Newberger, Florence

    Math 115 Excel Group Project 3 Worksheet Price Elasticity of Demand: U.S. Demand for Gasoline 1 for Gasoline 2 4. Consider the two price-demand graphs below. The labels give the x-value. Which graph for Gasoline 3 6. Jewelry This quote is from the article "Americans Snap Up Gold Jewelry as Metal's Price Sinks

  15. The Demand Reduction Potential of Smart Appliances in U.S. Homes

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Parker, Graham B.

    2013-08-14T23:59:59.000Z

    The widespread deployment of demand respond (DR) enabled home appliances is expected to have significant reduction in the demand of electricity during peak hours. The work documented in this paper focuses on estimating the energy shift resulting from the installation of DR enabled smart appliances in the U.S. This estimation is based on analyzing the market for smart appliances and calculating the total energy demand that can potentially be shifted by DR control in appliances. Appliance operation is examined by considering their sub components individually to identify their energy consumptions and savings resulting from interrupting and shifting their load, e.g., by delaying the refrigerator defrost cycle. In addition to major residential appliances, residential pool pumps are also included in this study given their energy consumption profiles that make them favorable for DR applications. In the market analysis study documented in this paper, the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS) and National Association of Home Builders (NAHB) databases are used to examine the expected life of an appliance, the number of appliances installed in homes constructed in 10 year intervals after 1940 and home owner income. Conclusions about the effectiveness of the smart appliances in reducing electrical demand have been drawn and a ranking of appliances in terms of their contribution to load shift is presented. E.g., it was concluded that DR enabled water heaters result in the maximum load shift; whereas, dishwashers have the highest user elasticity and hence the highest potential for load shifting through DR. This work is part of a larger effort to bring novel home energy management concepts and technologies to reduce energy consumption, reduce peak electricity demand, integrate renewables and storage technology, and change homeowner behavior to manage and consume less energy and potentially save consumer energy costs.

  16. Absorbance modulation optical lithography

    E-Print Network [OSTI]

    Tsai, Hsin-Yu Sidney

    2007-01-01T23:59:59.000Z

    In this thesis, the concept of absorbance-modulation optical lithography (AMOL) is described, and the feasibility experimentally verified. AMOL is an implementation of nodal lithography, which is not bounded by the diffraction ...

  17. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19T23:59:59.000Z

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  18. Broken Isotropy from a Linear Modulation of the Primordial Perturbations

    E-Print Network [OSTI]

    Christopher Gordon

    2006-10-30T23:59:59.000Z

    A linear modulation of the primordial perturbations is proposed as an explanation for the observed asymmetry between the northern and southern hemispheres of the Wilkinson Microwave Anisotropy Probe (WMAP) data. A cut sky, reduced resolution third year "Internal Linear Combination" (ILC) map was used to estimate the modulation parameters. A foreground template and a modulated plus unmodulated monopole and dipole were projected out of the likelihood. The effective chi squared is reduced by nine for three extra parameters. The mean Galactic colatitude and longitude, of the modulation, with 68%, 95% and 99.7% confidence intervals were 56^{+17 +36 +65}_{-17 -35 -51} and 63^{+28 +59 +105}_{-26 -58 -213}. The mean percentage change of the variance, across the pole's of the modulation, was 62^{+18 +35 +57}_{-18 -35 -47}. Implications of these results and possible generating mechanisms are discussed.

  19. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19T23:59:59.000Z

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  20. Dynamic Demand Control with Differentiated QoS in User-in-the-Loop Controlled Cellular Networks

    E-Print Network [OSTI]

    Yanikomeroglu, Halim

    for data rate due to smart mobile devices and laptop dongles with an estimated traffic growth of almost 100 and energy-efficiency. In this paper the temporal user-in-the-loop (UIL) control ap- proach is assumed. This user-centric model implements demand shaping by incentives in form of a dynamic usage-based tariff