Sample records for demand dishwasher dryer

  1. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributes including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)

  2. (Solar clothes dryer and wastewater heat exchanger). Final report

    SciTech Connect (OSTI)

    Baer, B.F.

    1984-12-04T23:59:59.000Z

    The first project investigated the technical possibilities of adapting a domestic electric clothes dryer to utilize solar-heated water as the heat source, replacing electric resistance heat. The second project attempted to extract wastewater heat from a commercial dishwasher to preheat fresh water to be used in the next dish washing cycle. It is felt that the clothes dryer project has met all of intended goals. Although a solar application has some real-world practical problems, the application of a dryer connected directly to the home heating system will prove to be cost-beneficial over the life of a dryer. The additional cost of a heat exchanger is not excessive, and the installation cost, if installed with the initial house plumbing is less than $100. From a practical point of view, the complexity of installing a wastewater heat extracter is considered impractical. The environment in which such equipment must operate is difficult at best, and most restaurants prefer to maintain as simple an operation as possible. If problems were to occur in this type of equipment, the kitchen would effectively be crippled. In conclusion, further research in the concept is not recommended. Recent advances in commercial dishwashers have also considerably reduced the heat losses which accompanied equipment only a few years old.

  3. Residential Dishwashers, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Performance and purchasing specifications for residential dishwashers under the FEMP-designated product program.

  4. ISSUANCE 2014-12-11: Energy Conservation Program: Energy Conservation Standards for Residential Dishwashers, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Residential Dishwashers, Notice of Proposed Rulemaking

  5. Clothes Dryer Automatic Termination Sensor Evaluation

    SciTech Connect (OSTI)

    TeGrotenhuis, Ward E.

    2014-10-01T23:59:59.000Z

    Volume 1: Characterization of Energy Use in Residential Clothes Dryers. The efficacy and energy efficiency of clothes dryers are studied in this evaluation.

  6. Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

  7. DOE Closes Investigation of ASKO Dishwasher | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project forDepartment of EnergyASKO Dishwasher

  8. Clothes Dryer Automatic Termination Evaluation

    SciTech Connect (OSTI)

    TeGrotenhuis, Ward E.

    2014-10-01T23:59:59.000Z

    Volume 2: Improved Sensor and Control Designs Many residential clothes dryers on the market today provide automatic cycles that are intended to stop when the clothes are dry, as determined by the final remaining moisture content (RMC). However, testing of automatic termination cycles has shown that many dryers are susceptible to over-drying of loads, leading to excess energy consumption. In particular, tests performed using the DOE Test Procedure in Appendix D2 of 10 CFR 430 subpart B have shown that as much as 62% of the energy used in a cycle may be from over-drying. Volume 1 of this report shows an average of 20% excess energy from over-drying when running automatic cycles with various load compositions and dryer settings. Consequently, improving automatic termination sensors and algorithms has the potential for substantial energy savings in the U.S.

  9. Residential Clothes Dryers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    dryerappendixdv1.1.xlsx More Documents & Publications Illuminated Exit Signs Beverage Vending Machines Residential Clothes Dryer (Appendix D2...

  10. High Efficiency, High Performance Clothes Dryer

    SciTech Connect (OSTI)

    Peter Pescatore; Phil Carbone

    2005-03-31T23:59:59.000Z

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.

  11. Proposal for a novel chemical heat pump dryer

    SciTech Connect (OSTI)

    Ogura, Hironao; Mujumdar, A.S.

    2000-05-01T23:59:59.000Z

    A new chemical heat pump (CHP) system for ecofriendly effective utilization of thermal energy in drying is proposed from the viewpoints of energy saving and environmental impact. CHPs can store thermal energy in the form of chemical energy by an endothermic reaction and release it at various temperature levels for heat demands by exo/endothermic reactions. CHPs have potential for heat recovery and dehumidification in the drying process by heat storage and high/low temperature heat release. In this study, the authors estimate the potential of the CHP application to drying systems for industrial use. Some combined systems of CHPs and dryers are proposed as chemical heat pump dryers (CHPD). The potential for commercialization of CHPDs is discussed.

  12. IMPROVING THE ENERGY PERFORMANCE OF RESIDENTIAL CLOTHES DRYERS

    E-Print Network [OSTI]

    Hekmat, D.; Fisk, W.J.

    2008-01-01T23:59:59.000Z

    dryer with a heat pump and an optional air-to-air heatair in a closed loop through the dryer and a heat pump (air from the dryer passes through the evaporator coil of the heat pump

  13. Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Preliminary measured drying time of fabric sample using ultrasonic...

  14. Centrifugal dryers keep pace with the market

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-03-15T23:59:59.000Z

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  15. An ergonomically designed dishwasher for the ambulatory and wheelchair-bound elderly

    E-Print Network [OSTI]

    Faulkner, DeAun

    1985-01-01T23:59:59.000Z

    by the participants while loading the dishwashers were evaluated by measuring the body angles at the most extreme positions ? reaching to place a dish into the dishwasher. The videotape was stopped and the angles measured from the television screen itself using a... which allows the dishes to air dry if desired. The soap dispenser should be located so as not to require the user to stoop to fill it. The dispenser should also have a large surface that can be pressed against to facilitate closing as opposed...

  16. Test of a solar crop dryer Danish Technological Institute

    E-Print Network [OSTI]

    Test of a solar crop dryer Danish Technological Institute Danish Institute of Agricultural Sciences Aidt Miljø A/S SEC-R-6 #12;Test of a solar crop dryer Søren Østergaard Jensen Danish Technological/S January 2001 #12;Preface The report describes the tests carried out on a solar crop dryer. The work

  17. A New Concept in Dryer Control

    E-Print Network [OSTI]

    Robinson, J. W.

    A new drying model originally derived for thin-wood veneer and successfully applied to the control of a veneer Jet Dryer may be extended for use in controlling the drying of such diverse products as textiles, dog food, pulp and paper, sawdust...

  18. EA-0386: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Energy Conservation Standards for Consumer Products: Dishwashers, Clothes Washers, and Clothes Dryers

  19. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    E-Print Network [OSTI]

    Meyers, Stephen P.

    2008-01-01T23:59:59.000Z

    and Heat Pumps Room Air Conditioners Water Heaters Gas Furnaces Clothes Washers Clothes Dryers Dishwashers COMMERCIAL

  20. Residential Clothes Dryer (Appendix D2) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clothes Dryer Appendix D2 - v1.0.xlsx More Documents & Publications Water Heaters (Storage Oil) Metal Halide Lamp Ballast and Fixture Commercial Refrigeration Equipment...

  1. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    E-Print Network [OSTI]

    Meyers, Steve

    2011-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Do Heat Pump Clothes Dryers Make Senseof California. Do Heat Pump Clothes Dryers Make Sense forCalifornia ABSTRACT Heat pump clothes dryers (HPCDs) can be

  2. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    E-Print Network [OSTI]

    Meyers, Steve

    2011-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Do Heat Pump Clothes Dryers Make SenseUniversity of California. Do Heat Pump Clothes Dryers MakeCalifornia ABSTRACT Heat pump clothes dryers (HPCDs) can be

  3. Microcomputer aided calculations of parameters for spray dryer operation

    SciTech Connect (OSTI)

    Yeh, J.T.; Gyorke, D.F.; Pennline, H.W.; Drummond, C.J.

    1985-01-01T23:59:59.000Z

    This paper provides a series of practical microcomputer programs that can be used as a tool by engineers and researchers working with spray dryers for combustion process effluent control. The microcomputer programs calculate flue gas composition (CO/sub 2/, N/sub 2/, O/sub 2/, H/sub 2/O, and SO/sub 2/) from the composition of the fuel. The residence time of the flue gas in a spray dryer can be estimated, and using values provided by the user for the flow of water and absorbent slurry in the spray dryer, the program recalculates the flue gas composition and heat capacity at the exit of the spray dryer without accounting for any SO/sub 2/ removal that could occur in the spray dryer. From these values and the system pressure, the dew point and flue gas temperature at the spray dryer exit are calculated, providing the approach to saturation resulting from this choice of operating parameters. This computer code would enable a process engineer to quickly evaluate effects of important process parameters, such as flue gas temperature at the inlet to the spray dryer, atomizer water feed rate, and absorbent slurry concentration and feed rate, on the operation of a spray dryer.

  4. Alternative Heat Recovery Options for Single-Stage Spray Dryers

    E-Print Network [OSTI]

    Wagner, J. R.

    1984-01-01T23:59:59.000Z

    Many powdered products are dried to their final moisture content by use of spray dryers. A basic spray dryer mixes an aqueous feedstock with heated air, vaporizing the water in the feedstock and producing the final dried powder in a single stage...

  5. Steam generator with integral downdraft dryer

    SciTech Connect (OSTI)

    Hochmuth, F.W.

    1992-02-01T23:59:59.000Z

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  6. Advanced control strategies for fluidized bed dryers

    SciTech Connect (OSTI)

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01T23:59:59.000Z

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  7. Modeling and experimental studies on a domestic solar dryer A. Saleh a,

    E-Print Network [OSTI]

    Natural circulation solar dryer Sun tracking Thin-layer drying models Drying characteristics a b s t r a cModeling and experimental studies on a domestic solar dryer A. Saleh a, *, I. Badran b Q1 t A domestic solar dryer with transparent external surfaces was designed, built and tested. Thin-layer drying

  8. SPATIAL DATA ON ENERGY, ENVIRONMENTAL, SOCIOECONOMIC, HEALTH AND DEMOGRAPHIC THEMES AT LAWRENCE BERKELEY LABORATORY: 1978 INVENTORY

    E-Print Network [OSTI]

    Burkhart Ed., B.R.

    2012-01-01T23:59:59.000Z

    house heating fuel, water heating fuel, clothes washer and dryer, dishwasher, home freezer, television sets, battery-house heating fuel, water heating fuel, clothes washer and dryer, dishwasher, home freezer, television sets, battery-house heating fuel, water heating fuel, clothes washer and dryer, dishwasher, home freezer, television sets, battery-

  9. [DELTA T dryer/moisture control system]. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    Drying Technology, Inc. was awarded a grant for the purpose of extending DELTA T dryer/moisture control technology into additional industries. Ultimate purpose of the grant was to save energy and improve efficiency in the process industries. Results indicate that these objectives have been met and will continue as this new technology is duplicated in the present industries and also is extended into other industries as well.

  10. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  11. Improving Dryer and Press Efficiencies Through Combustion of Hydrocarbon Emissions

    SciTech Connect (OSTI)

    Sujit Banerjee

    2005-10-31T23:59:59.000Z

    Emission control devices on dryers and presses have been legislated into the industry, and are now an integral part of the drying system. These devices consume large quantities of natural gas and electricity and down-sizing or eliminating them will provide major energy savings. The principal strategy taken here focuses on developing process changes that should minimize (and in some cases eliminate) the need for controls. A second approach is to develop lower-cost control options. It has been shown in laboratory and full-scale work that Hazardous Air Pollutants (HAPs) emerge mainly at the end of the press cycle for particleboard, and, by extension, to other prod-ucts. Hence, only the air associated with this point of the cycle need be captured and treated. A model for estimating terpene emissions in the various zones of veneer dryers has been developed. This should allow the emissions to be concentrated in some zones and minimized in others, so that some of the air could be directly released without controls. Low-cost catalysts have been developed for controlling HAPs from dryers and presses. Catalysts conventionally used for regenerative catalytic oxidizers can be used at much lower temperatures for treating press emissions. Fluidized wood ash is an especially inexpensive mate-rial for efficiently reducing formaldehyde in dryer emissions. A heat transfer model for estimating pinene emissions from hot-pressing strand for the manufacture of flakeboard has been constructed from first principles and validated. The model shows that most of the emissions originate from the 1-mm layer of wood adjoining the platen surface. Hence, a simple control option is to surface a softwood mat with a layer of hardwood prior to pressing. Fines release a disproportionate large quantity of HAPs, and it has been shown both theo-retically and in full-scale work that particles smaller than 400 ���µm are principally responsible. Georgia-Pacific is considering green-screening their furnish at several of their mills in order to remove these particles and reduce their treatment costs.

  12. Steam generator with integral downdraft dryer. Final project report

    SciTech Connect (OSTI)

    Hochmuth, F.W.

    1992-02-01T23:59:59.000Z

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  13. Spray dryer/baghouse system testing - CRADA 92-001. Final report

    SciTech Connect (OSTI)

    Pennline, H.W. [Dept. of Energy, Pittsburgh Energy Technology Center, PA (United States)]|[Air Products and Chemicals, Inc., Allentown, PA (United States)

    1992-04-28T23:59:59.000Z

    A series of seven tests were conducted to evaluate the effectiveness of scrubbing both NO{sub 2} and SO{sub 2} in a spray dryer/baghouse system. The operating conditions specified were a high spray dryer inlet temperature (500{degrees}F), and a high spray dryer outlet temperature (250 to 300 {degrees}F). The data required to adequately evaluate the effectiveness of this technology is enclosed. Discussion of some of the variables as well as an itemized list of the testing information is part of the report.

  14. Press and Dryer Roll Surgaces and Web Transfer Systems for Ultra High Paper Maching Speeds

    SciTech Connect (OSTI)

    T. F. Patterson

    2004-03-15T23:59:59.000Z

    The objective of the project was to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls and dryer cylinders.

  15. Dishwasher | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy

  16. An Analysis of the Price Elasticity of Demand for Household Appliances

    SciTech Connect (OSTI)

    Fujita, Kimberly; Dale, Larry; Fujita, K. Sydny

    2008-01-25T23:59:59.000Z

    This report summarizes our study of the price elasticity of demand for home appliances, including refrigerators, clothes washers, and dishwashers. In the context of increasingly stringent appliance standards, we are interested in what kind of impact the increased manufacturing costs caused by higher efficiency requirements will have on appliance sales. We begin with a review of existing economics literature describing the impact of economic variables on the sale of durable goods.We then describe the market for home appliances and changes in this market over the past 20 years, performing regression analysis on the shipments of home appliances and relevant economic variables including changes to operating cost and household income. Based on our analysis, we conclude that the demand for home appliances is price inelastic.

  17. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    SciTech Connect (OSTI)

    Meyers, Steve; Franco, Victor; Lekov, Alex; Thompson, Lisa; Sturges, Andy

    2010-05-14T23:59:59.000Z

    Heat pump clothes dryers (HPCDs) can be as much as 50percent more energy-efficient than conventional electric resistance clothes dryers, and therefore have the potential to save substantial amounts of electricity. While not currently available in the U.S., there are manufacturers in Europe and Japan that produce units for those markets. Drawing on analysis conducted for the U.S. Department of Energy's (DOE) current rulemaking on amended standards for clothes dryers, this paper evaluates the cost-effectiveness of HPCDs in American homes, as well as the national impact analysis for different market share scenarios. In order to get an accurate measurement of real energy savings potential, the paper offers a new energy use calculation methodology that takes into account the most current data on clothes washer cycles, clothes dryer usage frequency, remaining moisture content, and load weight per cycle, which is very different from current test procedure values. Using the above methodology along with product cost estimates developed by DOE, the paper presents the results of a life-cycle cost analysis of the adoption of HPCDs in a representative sample of American homes. The results show that HPCDs have positive economic benefits only for households with high clothes dryer usage or for households with high electricity prices and moderately high utilization.

  18. Demonstration of energy conservation for multi-deck board dryers: Phase I. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    A study to determine the feasibility of recovering and reusing heat from a large multi-deck dryer used in the manufacture of roof insulation board is described. Pilot scale tests and analyses show that heat recovery designs utilizing several types of heat exchange equipment are feasible. These include: indirect contact air-to-air heat exchangers for preheating combustion air for the dryer furnaces; direct contact air-to-water heat exchangers using water sprays to heat process water; and indirect contact air-to-liquid heat exchangers to heat recirculating liquid in a plant building heating system. (MCW)

  19. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    of electric or gas water heater EFFIC Average householdfreezers, clothes dryers, water heaters, clothes washers,Freezers Refrigerators Water Heaters Dishwashers Clothes

  20. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    heat pump technologies where applicable models exist (electric water heaters,Heat Pumps for AC Electric Clothes Dryers Electric Secondary Space Heaters Dishwashers Electric Water Heaters (

  1. Design and measured performance of a solar chimney for natural circulation solar energy dryers

    SciTech Connect (OSTI)

    Ekechukwu, O.V. [Univ. of Nigeria, Naukka (Nigeria). Energy Research Centre; Norton, B. [Univ. of Ulster, Newtownabbey (Ireland)

    1996-02-01T23:59:59.000Z

    An experimental solar chimney consisted of a cylindrical polyethylene-clad vertical chamber supported by steel framework and draped internally with a selectively absorbing surface. The performance of the chimney which was monitored extensively is reported. Issues related to the design and construction of solar chimneys for natural circulation solar energy dryers are discussed.

  2. Demonstration of energy conservation for multi-deck board dryers. Phase I. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-02-08T23:59:59.000Z

    A study was made to determine the feasibility of recover and reuse of low level heat from the exhausts of multi-deck dryers used to dry boards in the building materials industry. There are approximately 1000 dryers of this type in the USA, with no heat recovery equipment. These dryers are used in the manufacture of: roof insulation board, ceiling tile and panel stock, wood fiber sheathing, gypsum board, and veneer plywood. Pilot scale tests and analyses show that heat recovery designs utilizing several types of heat exchange equipment are feasible. These include the following: indirect contact air-to-air heat exchangers for preheating combustion air for the dryer furnaces; direct contact air-to-water heat exchangers using water sprays to heat process water; and indirect contact air-to-liquid heat exchangers to heat recirculating liquid in a plant building heating system. The systems recommended for design and installation at the Rockdale plant include all three of the types of heat exchangers. The preliminary estimate for the installed cost for these systems at the Rockdale plant is $565,000 (1979 dllars). Annual heat recovery of 186,000 million Btu is projected with a value of $545,000 using gas costs of $3.00 per million Btu. Payback based on a discounted cash flow analysis using ten year depreciation is about two years.

  3. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  4. Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577

    SciTech Connect (OSTI)

    Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M. [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)] [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)

    2013-07-01T23:59:59.000Z

    Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

  5. Smart Finite State Devices: A Modeling Framework for Demand Response Technologies

    E-Print Network [OSTI]

    Turitsyn, Konstantin; Ananyev, Maxim; Chertkov, Michael

    2011-01-01T23:59:59.000Z

    We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the following four types: (a) optional loads that can be shed, e.g. light dimming; (b) deferrable loads that can be delayed, e.g. dishwashers; (c) controllable loads with inertia, e.g. thermostatically-controlled loads, whose task is to maintain an auxiliary characteristic (temperature) within pre-defined margins; and (d) storage devices that can alternate between charging and generating. Our analysis of the devices seeks to find their optimal price-taking control strategy under a given stochastic model of the distribution market.

  6. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  7. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    DOE Patents [OSTI]

    Loth, John L. (Morgantown, WV); Smith, William C. (Morgantown, WV); Friggens, Gary R. (Morgantown, WV)

    1982-01-01T23:59:59.000Z

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  8. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA Control Areas CO 2 Carbon Dioxide CHP Combined Heat and Power CPP Critical Peak Pricing DG Distributed Generation DOE Department of Energy DR Demand Response DRCC Demand...

  9. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect (OSTI)

    Roy Scandrol

    2003-10-01T23:59:59.000Z

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  10. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect (OSTI)

    Roy Scandrol

    2003-04-01T23:59:59.000Z

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  11. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  12. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  13. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  14. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  15. Residential Dishwashers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments |FossilThisDepartment of EnergyCraigThe

  16. The Demand Reduction Potential of Smart Appliances in U.S. Homes

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Parker, Graham B.

    2013-08-14T23:59:59.000Z

    The widespread deployment of demand respond (DR) enabled home appliances is expected to have significant reduction in the demand of electricity during peak hours. The work documented in this paper focuses on estimating the energy shift resulting from the installation of DR enabled smart appliances in the U.S. This estimation is based on analyzing the market for smart appliances and calculating the total energy demand that can potentially be shifted by DR control in appliances. Appliance operation is examined by considering their sub components individually to identify their energy consumptions and savings resulting from interrupting and shifting their load, e.g., by delaying the refrigerator defrost cycle. In addition to major residential appliances, residential pool pumps are also included in this study given their energy consumption profiles that make them favorable for DR applications. In the market analysis study documented in this paper, the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS) and National Association of Home Builders (NAHB) databases are used to examine the expected life of an appliance, the number of appliances installed in homes constructed in 10 year intervals after 1940 and home owner income. Conclusions about the effectiveness of the smart appliances in reducing electrical demand have been drawn and a ranking of appliances in terms of their contribution to load shift is presented. E.g., it was concluded that DR enabled water heaters result in the maximum load shift; whereas, dishwashers have the highest user elasticity and hence the highest potential for load shifting through DR. This work is part of a larger effort to bring novel home energy management concepts and technologies to reduce energy consumption, reduce peak electricity demand, integrate renewables and storage technology, and change homeowner behavior to manage and consume less energy and potentially save consumer energy costs.

  17. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  18. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

  19. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01T23:59:59.000Z

    behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

  20. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  1. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

  2. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings”, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

  3. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused,000 2,000 3,000 4,000 5,000 6,000 7,000 2007 USChina #12;Overview:Overview: Key Energy Demand DriversKey Energy Demand Drivers · 290 million new urban residents 1990-2007 · 375 million new urban residents 2007

  4. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  5. Demand Response In California

    Broader source: Energy.gov [DOE]

    Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

  6. Comparison of thermoelectric and permeation dryers for sulfur dioxide removal during sample conditioning of wet gas streams

    SciTech Connect (OSTI)

    Dunder, T.A. [Entropy, Inc., Research Triangle Park, NC (United States). Research Div.; Leighty, D.A. [Perma Pure, Inc., Toms River, NJ (United States)

    1997-12-31T23:59:59.000Z

    Flue gas conditioning for moisture removal is commonly performed for criteria pollutant measurements, in particular for extractive CEM systems at combustion sources. An implicit assumption is that conditioning systems specifically remove moisture without affecting pollutant and diluent concentrations. Gas conditioning is usually performed by passing the flue gas through a cold trap (Peltier or thermoelectric dryer) to remove moisture by condensation, which is subsequently extracted by a peristaltic pump. Many air pollutants are water-soluble and potentially susceptible to removal in a condensation dryer from gas interaction with liquid water. An alternative technology for gas conditioning is the permeation dryer, where the flue gas passes through a selectively permeable membrane for moisture removal. In this case water is transferred through the membrane while other pollutants are excluded, and the gas does not contact condensed liquid. Laboratory experiments were performed to measure the relative removal of a water-soluble pollutant (sulfur dioxide, SO{sub 2}) by the two conditioning techniques. A wet gas generating system was used to create hot, wet gas streams of known composition (15% and 30% moisture, balance nitrogen) and flow rate. Pre-heated SO{sub 2} was dynamically spiked into the wet stream using mass flow meters to achieve concentrations of 20, 50, and 100 ppm. The spiked gas was directed through a heated sample line to either a thermoelectric or a permeation conditioning system. Two gas analyzers (Western Research UV gas monitor, KVB/Analect FTIR spectrometer) were used to measure the SO{sub 2} concentration after conditioning. Both analytic methods demonstrated that SO{sub 2} is removed to a significantly greater extent by the thermoelectric dryer. These results have important implications for SO{sub 2} monitoring and emissions trading.

  7. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  8. Characterization of NO[sub 2] and SO[sub 2] removals in a spray dryer/baghouse system

    SciTech Connect (OSTI)

    O'Dowd, W.J.; Markussen, J.M.; Pennline, H.W. (Dept. of Energy, Pittsburgh, PA (United States)); Resnik, K.P. (Gilbert/Commonwealth, Inc., Library, PA (United States))

    1994-11-01T23:59:59.000Z

    Oxidation of NO to NO[sub 2] has been proposed as a method for enhancing NO[sub x] removals in conventional flue gas desulfurization (FGD) processes. This experimental investigation characterizes the removals of NO[sub 2] and SO[sub 2] in a 1.1 m[sup 3](standard)/min spray dryer/baghouse system. Flue gas was generated by burning a No. 2 fuel oil, which was subsequently spiked upstream of the spray dryer with NO[sub 2] or SO[sub 2] or both. Lime slurry was injected via a rotary atomizer into the spray dryer. Variables studied include the approach to the adiabatic saturation temperature, stoichiometric ratio, SO[sub 2] concentration, and NO[sub 2] concentration. Significant quantities of NO[sub 2] are scrubbed in this system, and over half of the total removal (at inlet NO[sub 2] > 400 ppm) occurs in the baghouse. Increasing NO[sub 2] concentrations enhance the amount of NO[sub x] removed in the system. Also, the presence of significant quantities of NO[sub 2] enhances the baghouse SO[sub 2] removal. Although up to 72% NO[sub 2] removals were obtained, concentrations of NO[sub 2] that exited the system were greater than 50 ppm for all conditions investigated.

  9. California DREAMing: the design of residential demand responsive technology with people in mind

    E-Print Network [OSTI]

    Peffer, Therese E.

    2009-01-01T23:59:59.000Z

    household  energy  consumption  Energy consumption  from the top  consuming appliances  Current  price of  electricity electricity Approximate price per load (i.e. , for dishwasher, clothes washer) Total household

  10. Experimental study of the performance of solar dryers with pebble beds

    SciTech Connect (OSTI)

    Helwa, N.H.; Rehim, Z.S.A. [National Research Center, Cairo (Egypt)

    1997-07-01T23:59:59.000Z

    Major problems of the arid region are transportation of agricultural products and losses due to spoilage of the products, especially in summer. This work presents the performance of a solar drying system consisting of an air heater and a dryer chamber connected to a greenhouse. The drying system is designed to dry a variety of agricultural products. The effect of air mass flow rate on the drying process is studied. Composite pebbles, which are constructed from cement and sand, are used to store energy for night operation. The pebbles are placed at the bottom of the drying chamber and are charged during the drying process itself. A separate test is done using a simulator, a packed bed storage unit, to find the thermal characteristics of the pebbles during charging and discharging modes with time. Accordingly, the packed bed is analyzed using a heat transfer model with finite difference technique described before and during the charging and discharging processes. Graphs are presented that depict the thermal characteristics and performance of the pebble beds and the drying patterns of different agricultural products. The results show that the amount of energy stored in the pebbles depends on the air mass flow rate, the inlet air temperature, and the properties of the storage materials. The composite pebbles can be used efficiently as storing media.

  11. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  12. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  13. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    An Exploration of Australian Petrol Demand: Unobserv- ableRelative Prices: Simulating Petrol Con- sumption Behavior.habit stock variable in a petrol demand regression, they

  14. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  15. Optimal Demand Response Libin Jiang

    E-Print Network [OSTI]

    Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 #12;Outline Caltech smart grid research Optimal demand response #12;Global trends 1

  16. Travel Demand Modeling

    SciTech Connect (OSTI)

    Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

    2011-01-01T23:59:59.000Z

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  17. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  18. Felix Storch: Proposed Penalty (2010-CE-03/04/0613)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Felix Storch, Inc. failed to certify a variety of residential dishwashers, clothes washers and dryers as compliant with the applicable energy conservation standards.

  19. ASKO Appliances: Proposed Penalty (2010-CE-04/0614)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that ASKO Appliances, Inc. failed to certify a variety of residential dishwashers and clothes dryers as compliant with the applicable energy conservation standards.

  20. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  1. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  2. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect (OSTI)

    Milton Wu; Paul Yuran

    2006-12-31T23:59:59.000Z

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant availability and throughput capacity and to produce quality lightweight aggregate for use in commercial applications.

  3. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations,Demand

  4. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

  5. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1: Statewide Electricity Demand, End-User Natural Gas Demand, and Energy Efficiency The California Energy Demand 2014-2024 Preliminary Forecast, Volume 1: Statewide Electricity Demand

  6. Electrical Demand Control

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1984-01-01T23:59:59.000Z

    to the reservoir. Util i ties have iiting for a number of years. d a rebate for reducing their When the utility needs to shed is sent to turn off one or mnre mer's electric water heater or equipment. wges have enticed more and more same strategies... an increased need for demand 1 imiting. As building zone size is reduced, total instal led tonnage increases due to inversfty. Each compressor is cycled by a space thermostat. There is no control system to limit the number of compressors running at any...

  7. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs...

  8. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

  9. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  10. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  11. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  12. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utilitythe 2006-2016 Forecast. Commercial natural gas demand isforecasts and demand scenarios. Electricity planning area Natural gas

  13. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  14. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  15. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

  16. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

  17. Home Network Technologies and Automating Demand Response

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01T23:59:59.000Z

    and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

  18. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities,”Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

  19. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

  20. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

  1. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  2. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlledindicate the energy and cost savings for demand controlled24) (California Energy Commission 2008), demand controlled

  3. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlled indicate the energy and cost savings for  demand controlled 24) (California Energy  Commission 2008), demand controlled 

  4. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    integrating HECO and Hawaii Energy demand response relatedpotential. Energy efficiency and demand response efforts areBoth  energy  efficiency  and  demand  response  should  

  5. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  6. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

  7. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

  8. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  9. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

  10. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

  11. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

  12. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    SciTech Connect (OSTI)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01T23:59:59.000Z

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

  13. Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

  14. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

  15. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  16. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  17. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

  18. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  19. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

  20. List of Dishwasher Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouse SolarIListsource HistoryList

  1. Dishwasher: 1; Human: 0 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit EdisonCity, Arizona, SiteDiscussion on

  2. UBC STUDENT HOUSING DEMAND STUDY

    E-Print Network [OSTI]

    Ollivier-Gooch, Carl

    UBC STUDENT HOUSING DEMAND STUDY Presented by Nancy Knight and Andrew Parr FEBRUARY 5, 2010 #12;PURPOSE · To determine the need/demand for future on- campus student housing · To address requests from · A survey of students, and analysis of housing markets, and preparation of a forecast · The timeline

  3. Harnessing the power of demand

    SciTech Connect (OSTI)

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15T23:59:59.000Z

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  4. ERCOT Demand Response Paul Wattles

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    changes or incentives.' (FERC) · `Changes in electric use by demand-side resources from their normalERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre thermostats -- Other DLC Possible triggers: Real-time prices, congestion management, 4CP response paid

  5. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01T23:59:59.000Z

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  6. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

    2013-01-01T23:59:59.000Z

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  7. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

  8. Marketing Demand-Side Management

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01T23:59:59.000Z

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  9. Community Water Demand in Texas

    E-Print Network [OSTI]

    Griffin, Ronald C.; Chang, Chan

    Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

  10. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Monitoring in an Agent-Based Smart Home, Proceedings of theConference on Smart Homes and Health Telematics, September,Smart Meter Motion sensors Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home.

  11. Overview of Demand Side Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the utility PJM's demand side response (DSR) capabilities, including emergency and economic responses.

  12. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01T23:59:59.000Z

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  13. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

  14. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01T23:59:59.000Z

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  15. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  16. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  17. Demand response-enabled residential thermostat controls.

    E-Print Network [OSTI]

    Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

    2008-01-01T23:59:59.000Z

    human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

  18. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01T23:59:59.000Z

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

  19. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  20. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  1. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

  2. National Action Plan on Demand Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the National Assessment of Demand Response study, the National Action Plan for Demand Response, and demand response as related to the energy outlook.

  3. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  4. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  5. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

  6. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  7. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officedemand controlled  ventilation systems, Dennis DiBartolomeo the demand controlled ventilation system increased the rate 

  8. Supply chain planning decisions under demand uncertainty

    E-Print Network [OSTI]

    Huang, Yanfeng Anna

    2008-01-01T23:59:59.000Z

    Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

  9. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    sector, the demand response potential of California buildinga demand response event prohibit a building’s participationdemand response strategies in California buildings are

  10. Sandia National Laboratories: demand response inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

  11. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  12. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01T23:59:59.000Z

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  13. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  14. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  15. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01T23:59:59.000Z

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  16. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

  17. Revelation on Demand Nicolas Anciaux

    E-Print Network [OSTI]

    is willing to reveal the aggregate response (according to his company's policy) to the customer dataRevelation on Demand Nicolas Anciaux 1 · Mehdi Benzine1,2 · Luc Bouganim1 · Philippe Pucheral1 time to support epidemiological studies. In these and many other situations, aggregate data or partial

  18. Water demand management in Kuwait

    E-Print Network [OSTI]

    Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

  19. obesity demands more than just

    E-Print Network [OSTI]

    Qian, Ning

    #12;The World That Makes Us Fat ***** ***** ***** Overcoming obesity demands more than just. By Melinda Wenner Moyer Illustrations by A. Richard Allen 27 #12;ON ONE LEVEL, of course, obesity has a sim to pollutants. Their research suggests that to solve the problem of obesity--and, ultimately, to prevent it from

  20. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

  1. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

  2. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  3. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

  4. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  5. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  6. Demand Side Management in Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities ­ energy shortage and peak power shortage. Supply for Options ­ Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

  7. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  8. Dehumidification Grain Dryer

    SciTech Connect (OSTI)

    Lula, J.W.; Bohnert, G.W.

    1998-05-13T23:59:59.000Z

    A new technique developed during this project dries grain with mildly heated, dehumidified air in a closed-loop process. This proposed technique uses about one-tenth the energy and dries grain at a lower temperature, producing less damage to the kernels.Approximately 250 million automotive and truck tires are discarded each year in the U.S. The very properties that ensure a safe ride and long service life make the disposal of these scrap tires difficult. In spite of this, scrap tire recycling/reuse has rapidly grown from 10% in 1985 to over 90% today. The majority of scrap tires that are recycled/reused are burned for fuel in power plants and cement kilns. Since tires have somewhat higher heating value than coal, this would at first seem to be an acceptable option. But burning scrap tires recovers only 25% of the energy originally used to manufacture the rubber. An alternative is to use the scrap tires in the form of crumb rubber, by which 98% of the original energy is recovered. This project sought to explore potential formulations of crumb rubber with various thermoplastic binders, with one goal being developing a material for a low-cost, high-performance roofing composition. What was the state-of-the-art of the product/process prior to initiation of the project? Why was the project needed (e.g., performance, quality, cost, time to market)? Describe the strengths and interests of each party and how they are complementary with respect to the project. What KCP expertise was needed and how did it complement the partner's capabilities?

  9. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    in Demand Response for Wholesale Ancillary Services Silain Demand Response for Wholesale Ancillary Services Silasuccessfully in the wholesale non- spinning ancillary

  10. Physically-based demand modeling 

    E-Print Network [OSTI]

    Calloway, Terry Marshall

    1980-01-01T23:59:59.000Z

    Transactions on Automatic Control, vol. AC-19, December 1974, pp. 887-893. L3] |4] LS] [6] [7] LB] C. W. Brice and S. K. Jones, MPhysically-Based Demand Modeling, d EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, October 1978.... C. W. Br ice and 5, K, Jones, MStochastically-Based Physical Load Models Topical Report, " EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, May 1979. S. K. Jones and C. W. Brice, "Point Process Models for Power System...

  11. Justice and the demands of realism

    E-Print Network [OSTI]

    Munro, Daniel K., 1972-

    2006-01-01T23:59:59.000Z

    The dissertation examines how concerns about the demands of realism should be addressed in political theories of justice. It asks whether the demands of realism should affect the construction of principles of justice and, ...

  12. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  13. Marketing & Driving Demand Collaborative - Social Media Tools...

    Energy Savers [EERE]

    drivingdemandsocialmedia010611.pdf More Documents & Publications Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 Social Media for Natural...

  14. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    renewable integration capability. Coordinating and integrating HECO and Hawaii Energy demand response related activities has the potential

  15. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    temperature-based demand response in buildings that havedemand response advantages of global zone temperature setup in buildings

  16. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

  17. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  18. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  19. Demand Response Resources in Pacific Northwest

    E-Print Network [OSTI]

    Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

  20. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

  1. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  2. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

  3. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

  4. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  5. Demand Side Bidding. Final Report

    SciTech Connect (OSTI)

    Spahn, Andrew

    2003-12-31T23:59:59.000Z

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  6. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01T23:59:59.000Z

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  7. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  8. Patterns of crude demand: Future patterns of demand for crude oil as a func-

    E-Print Network [OSTI]

    Langendoen, Koen

    #12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion schemes, and/or change quality of the feedstock (crude). Demand for crude oil is growing, especially perspective. This thesis aims pre- cisely at understanding the quality of oil from a demand side perspective

  9. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

  10. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    for the Open Automated Demand Response (OpenADR) StandardsControl for Automated Demand Response, Grid Interop, 2009. [C. McParland, Open Automated Demand Response Communications

  11. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. ”and Techniques for Demand Response. California Energy

  12. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

  13. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  14. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Goli, Sasank

    2012-01-01T23:59:59.000Z

    and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

  15. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

  16. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    advanced metering and demand response in electricityGoldman, and D. Kathan. “Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

  17. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

  18. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

  19. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  20. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

  1. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

  2. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

  3. Sandia National Laboratories: How a Grid Manager Meets Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand (Load) How a Grid Manager Meets Demand (Load) In the "historical" electric grid, power-generating plants fell into three categories: No daily electrical demand data plot...

  4. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

  5. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal...

  6. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response.Building Systems and DR Strategies 16 Demand ResponseDemand Response Systems. ” Proceedings, 16 th National Conference on Building

  7. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    in California. DEMAND RESPONSE AND COMMERCIAL BUILDINGSload and demand response against other buildings and alsoDemand Response and Energy Efficiency in Commercial Buildings",

  8. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Keywords: demand response, buildings, electricity use, Interface  Automated Demand Response  Building Automation of demand response in  commercial buildings.   One key 

  9. Results and commissioning issues from an automated demand response pilot

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-01-01T23:59:59.000Z

    Management and Demand Response in Commercial Buildings", L BAutomated Demand Response National Conference on BuildingAutomated Demand Response National Conference on Building

  10. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  11. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    Demand  Response for Small Commercial Buildings.   CEC?500?automated demand response  For small commercial buildings, AUTOMATED DEMAND RESPONSE FOR SMALL COMMERCIAL BUILDINGS

  12. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsDemand Response Strategies and National Conference on BuildingDemand Response Strategies and Commissioning Commercial Building

  13. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. Inbased demand response information to building controlDemand Response Standard for the Residential Sector. California Energy Commission, PIER Buildings

  14. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    is manual demand response where building staff receive acommercial buildings’ demand response technologies andBuilding Control Strategies and Techniques for Demand Response.

  15. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  16. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  17. Lead -- supply/demand outlook

    SciTech Connect (OSTI)

    Schnull, T. [Noranda, Inc., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    As Japan goes--so goes the world. That was the title of a recent lead article in The Economist that soberly discussed the potential of much more severe global economic problems occurring, if rapid and coordinated efforts were not made to stabilize the economic situation in Asia in general, and in Japan in particular. During the first 6 months of last year, commodity markets reacted violently to the spreading economic problems in Asia. More recent currency and financial problems in Russia have exacerbated an already unpleasant situation. One commodity after another--including oil, many of the agricultural commodities, and each of the base metals--have dropped sharply in price. Many are now trading at multiyear lows. Until there is an overall improvement in the outlook for these regions, sentiment will likely continue to be negative, and metals prices will remain under pressure. That being said, lead has maintained its value better than many other commodities during these difficult times, finding support in relatively strong fundamentals. The author takes a closer look at those supply and demand fundamentals, beginning with consumption.

  18. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  19. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    2 -based demand controlled ventilation using ASHRAE Standardoptimizing energy use and ventilation. ASHRAE TransactionsWJ, Grimsrud DT, et al. 2011. Ventilation rates and health:

  20. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    for demand controlled ventilation in commercial buildings.The energy costs of classroom ventilation and some financialEstimating potential benefits of increased ventilation

  1. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    Drivers of demand: urbanization, heavy industry, and risingdemand: urbanization, heavy industry, and rising income Theprocesses of urbanization, heavy industry growth, and rising

  2. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Commission (FERC) 2008a. “Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets,” (URL:1 2. Wholesale and Retails Electricity Markets in

  3. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

  4. Optimization of Demand Response Through Peak Shaving

    E-Print Network [OSTI]

    2013-06-19T23:59:59.000Z

    Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user ...

  5. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    peak demand management. Photo sensors for daylight drivenare done by local photo-sensors and control hardwaresensing device in a photo sensor is typically a photodiode,

  6. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

  7. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  8. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  9. Natural Gas Demand Markets in the Northeast

    Broader source: Energy.gov (indexed) [DOE]

    Providing a Significant Opportunity for New and Expanding Natural Gas Demand Markets in the Northeast Prepared for: America's Natural Gas Alliance (ANGA) Prepared by: Bentek...

  10. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  11. Wastewater plant takes plunge into demand response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission and the Bonneville Power Administration, the Eugene-Springfield Water Pollution Control Facility in Eugene, Ore., was put through a series of demand response tests....

  12. Robust newsvendor problem with autoregressive demand

    E-Print Network [OSTI]

    2014-05-19T23:59:59.000Z

    May 19, 2014 ... business decision problems, in fields such as managing booking and ...... Q? having available the demand historical records for t = 1, ..., T. 2.

  13. Honeywell Demonstrates Automated Demand Response Benefits for...

    Broader source: Energy.gov (indexed) [DOE]

    Honeywell's Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardwaresoftware platform for automated demand response (ADR). This project...

  14. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

  15. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the dispatch of flexible loads and generation resources bothof controllable generation and flexible demand. In the casecontrollable generation resources and flexible loads in the

  16. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  17. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Energy Savers [EERE]

    Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program...

  18. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  19. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  20. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  1. Optimal Trading Strategy Supply/Demand Dynamics

    E-Print Network [OSTI]

    Gabrieli, John

    prices through the changes in their supply/demand.2 Thus, to study how market participants trade can have interesting implications on the observed behavior of intraday volume, volatility and prices: November 15, 2004. This Draft: April 8, 2006 Abstract The supply/demand of a security in the market

  2. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    . It may also be implemented by means of customer-sited emergency power generation (e.g., diesel generators the case that distributed PV generation deserves a substantial portion of the credit allotted to demand response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing

  3. Demand Response Programs Oregon Public Utility Commission

    E-Print Network [OSTI]

    , Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currentlyDemand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director 33 MW, building to 90 MW) Irrigation load control, Idaho (35 MW summer, 2004) Lighting load control

  4. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  5. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  6. Demand Response This is the first of the Council's power plans to treat demand response as a resource.1

    E-Print Network [OSTI]

    Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

  7. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28T23:59:59.000Z

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  8. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    NONE

    2010-04-15T23:59:59.000Z

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  9. Capitalize on Existing Assets with Demand Response

    E-Print Network [OSTI]

    Collins, J.

    2008-01-01T23:59:59.000Z

    Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary...

  10. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    account for the most natural gas usage (33% and 51% of totalseasonal dependence in natural gas usage, and consequently,Natural gas demand exhibits a strong winter peak in residential usage

  11. A residential energy demand system for Spain

    E-Print Network [OSTI]

    Labandeira Villot, Xavier

    2005-01-01T23:59:59.000Z

    Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

  12. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Arun Majumdar

    2010-01-08T23:59:59.000Z

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  13. Micro economics for demand-side management

    E-Print Network [OSTI]

    Kibune, Hisao

    1991-01-01T23:59:59.000Z

    This paper aims to interpret Demand-Side Management (DSM) activity and to point out its problems, adopting microeconomics as an analytical tool. Two major findings follow. first, the cost-benefit analysis currently in use ...

  14. Response to changes in demand/supply

    E-Print Network [OSTI]

    Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes operating by some Korean paper companies for acquiring needed pulpwood as a first step for the construction

  15. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28T23:59:59.000Z

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

  16. Demand Controlled Ventilation for Improved Humidity Control

    E-Print Network [OSTI]

    Rogers, J. K.

    1996-01-01T23:59:59.000Z

    Demand Controlled Ventilation for Improved Humidity Control James K. Rogers, P.E. One Blacksmith Road Chelmsford, Massachusetts ABSTRACT Recently introduced technology makes it possible to continuously monitor for humidity in numerous... is brought in for ventilation. The high "latent load" inherent in this hot, humid outside air is often the reason for installing excess chiller capacity and the cause of peak power demands. Recent concerns over poor indoor air quality (IAQ) due...

  17. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15T23:59:59.000Z

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  18. Real-Time Demand Side Energy Management

    E-Print Network [OSTI]

    Victor, A.; Brodkorb, M.

    2006-01-01T23:59:59.000Z

    Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology España, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs – “Demand-Side Energy Management.” Learn how process manufacturers assess energy...

  19. Seasonal demand and supply analysis of turkeys

    E-Print Network [OSTI]

    Blomo, Vito James

    1972-01-01T23:59:59.000Z

    SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Ma)or Sub...)ect: Agricultural Economics SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Approved as to style and content by: (Chairman of C mmittee) (Head of Department) (Member) (Member) ( ber) (Memb er) May 1972 ABSTRACT Seasonal...

  20. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24T23:59:59.000Z

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  1. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012 includes three full scenarios: a high energy demand case, a low energy demand case, and a mid energy demand

  2. Building Simulation Modelers Are we big data ready?

    E-Print Network [OSTI]

    Tennessee, University of

    · Plugs · Lights · Range · Washer · Radiated heat · Dryer · Refrigerator · Dishwasher · Heat pump air flow buildings during the development process. Fleet of Residential `Test Buildings' Two Light Commercial `Test Buildings' #12;7 Real demonstration facilities Residential homes 2800 ft2 residence 269 sensors @ 15-minutes

  3. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    savings come primarily from commercial and industrial equipment and residential water heaters. · Savings Ballasts Water Heaters Small Electric Motors Central Air Conditioners and Heat Pumps Clothes Dryers Clothes Incandescent Reflector Lamps Direct Heating Equipment Pool Heaters Clothes Washers, Commercial Dishwashers

  4. Mathematical modelling for the drying method and smoothing drying rate using cubic spline for seaweed Kappaphycus Striatum variety Durian in a solar dryer

    SciTech Connect (OSTI)

    M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my; Wong, J., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my [Unit Penyelidikan Rumpai Laut (UPRL), Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia); Sulaiman, J., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my; Yasir, S. Md., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my [Program Matematik dengan Ekonomi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia)

    2014-06-19T23:59:59.000Z

    The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.

  5. New Demand for Old Food: the U.S. Demand for Olive Oil

    E-Print Network [OSTI]

    Bo Xiong; William Matthews; Daniel Sumner

    U.S. consumption of olive oil has tripled over the past twenty years, but nearly all olive oil continues to be imported. Estimation of demand parameters using monthly import data reveals that demand for non-virgin oil is income inelastic, but virgin oils have income elasticities above one. Moreover, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly substitutable with each other but not with other vegetable oils. News about the health and culinary benefits of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand in the United States.

  6. Analysis of Open Automated Demand Response Deployments in California

    E-Print Network [OSTI]

    LBNL-6560E Analysis of Open Automated Demand Response Deployments in California and Guidelines The work described in this report was coordinated by the Demand Response Research. #12; #12;Abstract This report reviews the Open Automated Demand Response

  7. PIER: Demand Response Research Center Director, Mary Ann Piette

    E-Print Network [OSTI]

    1 PIER: Demand Response Research Center Director, Mary Ann Piette Program Development and Outreach Response Research Plan #12;2 Demand Response Research Center Objective Scope Stakeholders Develop, prioritize, conduct and disseminate multi- institutional research to facilitate Demand Response. Technologies

  8. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    4 9 . Piette et at Automated Demand Response Strategies andDynamic Controls for Demand Response in New and ExistingFully Automated Demand Response Tests in Large Facilities"

  9. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01T23:59:59.000Z

    El-Saadany. “A summary of demand response in electricityadvanced metering and demand response in electricityWolak. When it comes to demand response is FERC is own worst

  10. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

  11. Demand Control Utilizing Energy Management Systems - Report of Field Tests

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01T23:59:59.000Z

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  12. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

  13. CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

  14. Learning Energy Demand Domain Knowledge via Feature Transformation

    E-Print Network [OSTI]

    Povinelli, Richard J.

    Learning Energy Demand Domain Knowledge via Feature Transformation Sanzad Siddique Department -- Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method knowledge substantially improves energy demand forecasting accuracy. However, domain knowledge may differ

  15. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    iv Chapter 5: National energy demand and potential energyEnergy Demands and Efficiency Strategies   in Data Center AC02?05CH11231.   Energy Demands and Efficiency Strategies

  16. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the4. Status of Demand Side Management in Midwest ISO 5.

  17. Demand-Side Management and Energy Efficiency Revisited

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

    2007-01-01T23:59:59.000Z

    EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

  18. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    for Demand Response in a New Commercial Building in NewDemand Response and Energy Efficiency in Commercial Buildings.Demand Response Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar Lawrence Berkeley National Laboratory Building

  19. Smart Buildings Using Demand Response March 6, 2011

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Smart Buildings Using Demand Response March 6, 2011 Sila Kiliccote Deputy, Demand Response Research Center Program Manager, Building Technologies Department Environmental Energy Technologies only as needed) · Energy Efficiency strategies are permanent (occur daily) 4 #12;Demand-Side

  20. Implementation Proposal for the National Action Plan on Demand...

    Broader source: Energy.gov (indexed) [DOE]

    and the Department of Energy. Implementation Proposal for the National Action Plan on Demand Response - July 2011 More Documents & Publications National Action Plan on Demand...

  1. FERC Presendation: Demand Response as Power System Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as...

  2. Robust Unit Commitment Problem with Demand Response and ...

    E-Print Network [OSTI]

    2010-10-31T23:59:59.000Z

    Oct 29, 2010 ... sion, both Demand Response (DR) strategy and intermittent renewable ... On the other hand, demand response, which enables customers to ...

  3. ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES

    E-Print Network [OSTI]

    Gross, George

    ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES BY ANUPAMA SUNIL KOWLI B of consumers - called demand response resources (DRRs) - whose role has become increasingly important

  4. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utility2013 Forecast, these trends lead to declining natural gasthe 2006-2016 Forecast. Commercial natural gas demand is

  5. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officethe demand controlled ventilation system increased the ratedemand controlled ventilation systems will, because of poor

  6. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    seasonal dependence in natural gas usage. January typicallyindustrial fuels usage. Natural gas demand has been risingnatural gas demands regionally, to account for variability in energy usage

  7. Energy Upgrade California Drives Demand From Behind the Wheel...

    Energy Savers [EERE]

    Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and...

  8. Reducing Energy Demand in Buildings Through State Energy Codes...

    Energy Savers [EERE]

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  9. Response to several FOIA requests - Renewable Energy. Demand...

    Office of Environmental Management (EM)

    Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

  10. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    and fuel-related electricity demands grow, so do the numberelectricity demands are unlikely to affect capacity additions and procurement decisions until they grow

  11. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters March 10, 2015 -...

  12. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    LBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey ............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSs

  13. assessing workforce demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand...

  14. air passenger demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: 1 Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Wei Zhang, Member, IEEE Abstract--Demand response is playing an...

  15. air cargo demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: 1 Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Wei Zhang, Member, IEEE Abstract--Demand response is playing an...

  16. Flexible Demand Management under Time-Varying Prices

    E-Print Network [OSTI]

    Liang, Yong

    2012-01-01T23:59:59.000Z

    Management   System Flexible   Appliances   Distributed  Flexible Demand Management under Time-Varying Prices by YongYing-Ju Chen Spring 2013 Flexible Demand Management under

  17. International Oil Supplies and Demands. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  18. Uranium 2014 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  19. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  20. Centralized and Decentralized Control for Demand Response

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29T23:59:59.000Z

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  1. Uranium 2007 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01T23:59:59.000Z

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  2. Uranium 2011 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01T23:59:59.000Z

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  3. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  4. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01T23:59:59.000Z

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  5. International Oil Supplies and Demands. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  6. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30T23:59:59.000Z

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  7. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06T23:59:59.000Z

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  8. Market Response ModelsMarket Response Models Demand CreationDemand Creation

    E-Print Network [OSTI]

    Brock, David

    Market Response ModelsMarket Response Models andand Demand CreationDemand Creation Dominique MImportance of Marketing Investments Need for a Market Response focusNeed for a Market Response focus Digital data enriched acquisition and retention costsasymmetry between acquisition and retention costs In both cases, longIn both

  9. Reviving'demand+pull'perspec2ves:' The'effect'of'demand'uncertainty'and'

    E-Print Network [OSTI]

    Sussex, University of

    / Daniele&Rotolo& D.Rotolo@sussex.ac.uk/ Associate(Editors& Area& Florian&Kern& Energy& F.Kern@sussex.ac.ukReviving'demand+pull'perspec2ves:' The'effect'of'demand'uncertainty'and' stagnancy'on'R&D'strategy'which'case'the'Associate'Editors'may'decide'to'skip'internal'review'process.' Website' SWPS:'www.sussex.ac.uk

  10. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03T23:59:59.000Z

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  11. ERCOT's Weather Sensitive Demand Response Pilot

    E-Print Network [OSTI]

    Carter, T.

    2013-01-01T23:59:59.000Z

    ERCOT’s Weather Sensitive Demand Response Pilot CATEE 12-17-13 ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Disclaimer The information contained in this report has been obtained from... services along with other information about our business is available online at constellation.com. ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Demand Response in ERCOT CATEE 121313 - Tim Carter...

  12. Demand Response Initiatives at CPS Energy

    E-Print Network [OSTI]

    Luna, R.

    2013-01-01T23:59:59.000Z

    Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSE’s DR Program • DR... than the military bases and Toyota combined. • Schools & Universities contributed 6 MW’s of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

  13. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect (OSTI)

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21T23:59:59.000Z

    Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

  14. Covered Product Category: Commercial Dishwashers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department ofU.S.forCategories »

  15. Covered Product Category: Residential Dishwashers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013DepartmentEnterprise

  16. DOE Energy Star Testing Reveals Inefficient ASKO Dishwasher | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project| DepartmentAdvisory Committee |Energy

  17. Response to changes in demand/supply

    E-Print Network [OSTI]

    , distribution channels, differentiation of quality, price, specification, etc., of the products. Primary wood with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board;112 distribution channels, differentiation of quality, price, specification, etc., of the products. Primary wood

  18. MTBE demand as a oxygenated fuel additive

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

  19. INVENTORY MANAGEMENT WITH PARTIALLY OBSERVED NONSTATIONARY DEMAND

    E-Print Network [OSTI]

    Ludkovski, Mike

    INVENTORY MANAGEMENT WITH PARTIALLY OBSERVED NONSTATIONARY DEMAND ERHAN BAYRAKTAR AND MICHAEL LUDKOVSKI Abstract. We consider a continuous-time model for inventory management with Markov mod- ulated non inventory level. We then solve this equivalent formulation and directly characterize an optimal inventory

  20. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    Energy Commission's preliminary forecasts for 2014­2024 electricity consumption and peak: Electricity Demand by Utility Planning Area MAY 2013 CEC-200-2013-004-SD-V2 Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  1. Global Climate Change and Demand for Energy

    E-Print Network [OSTI]

    Subramanian, Venkat

    -CARES) Washington University in St. Louis #12;9 Jun ­ Jul ­ Aug Temperature Anomaly Distribution Frequency of air and water temperatures Losses of ice from Greenland and Antarctica Sea-level rise Energy demands 169 390 327 90 16 H2O, CO2, O3 Earth receives visible light from hot Sun and Earth radiates to space

  2. Value of Demand Response -Introduction Klaus Skytte

    E-Print Network [OSTI]

    of wind power. #12;Perspectives ­ The System Operator Keep the balance Demand reduction = increased as indicator. #12;Motivations We want more wind power in the system. This require more flexibility of the rest plants and better use of wind power. Public goods / Externalities not measured in the markets #12

  3. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  4. A Simulation Study of Demand Responsive Transit System Design

    E-Print Network [OSTI]

    Dessouky, Maged

    A Simulation Study of Demand Responsive Transit System Design Luca Quadrifoglio, Maged M. Dessouky changed the landscape for demand responsive transit systems. First, the demand for this type of transit experiencing increased usage for demand responsive transit systems. The National Transit Summaries and Trends

  5. The Role of Demand Response Policy Forum Series

    E-Print Network [OSTI]

    California at Davis, University of

    The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

  6. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  7. Flexible Demand Management under Time-Varying Prices

    E-Print Network [OSTI]

    Liang, Yong

    2012-01-01T23:59:59.000Z

    planning, multi-periods procurement, optimal stopping problem, the demand management for the Smart Grid

  8. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

  9. New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand

  10. Demand management : a cross-industry analysis of supply-demand planning

    E-Print Network [OSTI]

    Tan, Peng Kuan

    2006-01-01T23:59:59.000Z

    Globalization increases product variety and shortens product life cycles. These lead to an increase in demand uncertainty and variability. Outsourcing to low-cost countries increases supply lead-time and supply uncertainty ...

  11. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01T23:59:59.000Z

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  12. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect (OSTI)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01T23:59:59.000Z

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  13. Only tough choices in Meeting growing demand

    SciTech Connect (OSTI)

    NONE

    2007-12-15T23:59:59.000Z

    U.S. electricity demand is not growing very fast by international or historical standards. Yet meeting this relatively modest growth is proving difficult because investment in new capacity is expected to grow at an even slower pace. What is more worrisome is that a confluence of factors has added considerable uncertainties, making the investment community less willing to make the long-term commitments that will be needed during the coming decade.

  14. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  15. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    Automated  Demand  Response  in  Commercial  Buildings.  Demand  Response  Infrastructure  for   Commercial  Buildings.  

  16. LNG demand, shipping will expand through 2010

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09T23:59:59.000Z

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  17. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01T23:59:59.000Z

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  18. Demand Controlled Filtration in an Industrial Cleanroom

    SciTech Connect (OSTI)

    Faulkner, David; DiBartolomeo, Dennis; Wang, Duo

    2007-09-01T23:59:59.000Z

    In an industrial cleanroom, significant energy savings were realized by implementing two types of demand controlled filtration (DCF) strategies, one based on particle counts and one on occupancy. With each strategy the speed of the recirculation fan filter units was reduced to save energy. When the control was based on particle counts, the energy use was 60% of the baseline configuration of continuous fan operation. With simple occupancy sensors, the energy usage was 63% of the baseline configuration. During the testing of DCF, no complaints were registered by the operator of the cleanroom concerning processes and products being affected by the DCF implementation.

  19. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

    2013-01-01T23:59:59.000Z

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  20. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    13 taxation on the use of energy.6 This is in addition to taxation of the profits of energy companies and taxes on the production of oil and gas in the North Sea. Any migration of energy demand from heavily taxed liquid fuels to currently lightly... also be substituted for energy expenditure in the future (e.g. solar panels as part of a new roof). The figure shows that substantial amount of expenditure on transport where expenditure on vehicles and on their repair exceeds expenditure on fuel...

  1. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDayton Power & LightDemand Management

  2. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations,DemandEnergy

  3. Demand Response and Smart Metering Policy Actions Since the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response...

  4. Quantifying the Variable Effects of Systems with Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

  5. Grid Integration of Aggregated Demand Response, Part I: Load Availability

    E-Print Network [OSTI]

    LBNL-6417E Grid Integration of Aggregated Demand Response, Part I: Load Availability Profiles Resources 4 #12;#12;#12;CHAPTER 3: Results: DR Profiles 3.1 Projected Demand Response Availability in 2020

  6. Optimization of Demand Response Through Peak Shaving , D. Craigie

    E-Print Network [OSTI]

    Todd, Michael J.

    Optimization of Demand Response Through Peak Shaving G. Zakeri , D. Craigie , A. Philpott , M. Todd for the demand response of such a consumer. We will establish a monotonicity result that indicates fuel supply

  7. HVAC EFFICIENCY BUSINESS CASE DEMAND CONTROL KITCHEN VENTILATION

    E-Print Network [OSTI]

    California at Davis, University of

    HVAC EFFICIENCY BUSINESS CASE DEMAND CONTROL KITCHEN VENTILATION Selecting, financing ventilation (DCKV) for kitchen exhaust hoods. Implementation can be relatively simple in either new of demand control kitchen ventilation (DCKV) in many small, medium, and large kitchen exhaust hood

  8. Electric Demand Cost Versus Labor Cost: A Case Study

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost...

  9. A National Forum on Demand Response: Results on What Remains...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Cost-Effectiveness Working Group A National Forum on Demand Response: Results on What...

  10. Washington: Sustainability Training for Realtors in High Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Training for Realtors in High Demand March 6, 2014 - 5:50pm Addthis Demand has been high for a free and accredited Sustainability Training for Accredited Real...

  11. Indianapolis Offers a Lesson on Driving Demand | Department of...

    Energy Savers [EERE]

    Indianapolis Offers a Lesson on Driving Demand Indianapolis Offers a Lesson on Driving Demand The flier for EcoHouse, with the headline 'Save energy, save money, improve your home'...

  12. Using Mobile Applications to Generate Customer Demand Peer Exchange...

    Energy Savers [EERE]

    Using Mobile Applications to Generate Customer Demand Peer Exchange Call Using Mobile Applications to Generate Customer Demand Peer Exchange Call March 12, 2015 3:00PM to 4:3...

  13. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever...

  14. California: Geothermal Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Plant to Help Meet High Lithium Demand California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the...

  15. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    USA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity DemandUSA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity Demand

  16. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    demand response programs identifies three clusters of industries as the key participants: • petroleum, plastic,Demand Response Potential from Audit Database Top 25 Industries by Average kW Table 1 3344 Semiconductors & Electronics 3261 Plastic

  17. Measurement and evaluation techniques for automated demand response demonstration

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. ” Highdemand-response technologies in large commercial and institutional buildings.building method California Independent System Operator (Cal ISO)’s Demand Response

  18. atmospheric water demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Public Water Demand in the United States Texas A&M University - TxSpace Summary: -run demand response is not shown to be statistically significant. The quasidifference price...

  19. airline demand schedules: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Smart Grid Engineering Websites Summary: 1 Smart (In-home) Power Scheduling for Demand Response on the Smart Grid Gang Xiong, Chen Chen consumption are part of demand...

  20. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    January 2008. Biography Mary Ann Piette is a Staff ScientistAutomated Demand Response Mary Ann Piette, Sila Kiliccote,

  1. An Operational Model for Optimal NonDispatchable Demand Response

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    FACTS, $ Demand Response Energy Storage HVDC Industrial Customer PEV Renewable Energy Source: U.S.-Canada Power

  2. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

  3. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    procurement process at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather

  4. Assessing the Control Systems Capacity for Demand Response in

    E-Print Network [OSTI]

    LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand Response Research Center and funded by the California Energy of the Demand Response Research Center Industrial Controls Experts Working Group: · Jim Filanc, Southern

  5. Examining Synergies between Energy Management and Demand Response: A

    E-Print Network [OSTI]

    LBNL-5719E Examining Synergies between Energy Management and Demand Response: A Case Study at Two Summary #12;Introduction Energy Management · · · · · · · · · · #12;Demand Response #12;#12;Bentley Prince-Project Personnel Changes #12;Enablement of Demand Response Capabilities due to Energy Management Improvement

  6. Fast Automated Demand Response to Enable the Integration of Renewable

    E-Print Network [OSTI]

    LBNL-5555E Fast Automated Demand Response to Enable the Integration of Renewable Resources David S The work described in this report was coordinated by the Demand Response Research Center and funded ABSTRACT This study examines how fast automated demand response (AutoDR) can help mitigate grid balancing

  7. Optimal Demand Response Based on Utility Maximization in Power Networks

    E-Print Network [OSTI]

    Low, Steven H.

    Optimal Demand Response Based on Utility Maximization in Power Networks Na Li, Lijun Chen different appliances including PHEVs and batteries and propose a demand response approach based on utility. The utility company can thus use dynamic pricing to coordinate demand responses to the benefit of the overall

  8. A Successful Implementation with the Smart Grid: Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

  9. Factors Influencing Productivity and Operating Cost of Demand Responsive Transit

    E-Print Network [OSTI]

    Dessouky, Maged

    Factors Influencing Productivity and Operating Cost of Demand Responsive Transit Kurt Palmer Maged of the Americans with Disabilities Act in 1991 operating expenses for Demand Responsive Transit have more than and practices upon productivity and operating cost. ii #12;1 Introduction Demand Responsive Transit (DRT

  10. Optimal demand response: problem formulation and deterministic case

    E-Print Network [OSTI]

    Low, Steven H.

    Optimal demand response: problem formulation and deterministic case Lijun Chen, Na Li, Libin Jiang load through real-time demand response and purchases balancing power on the spot market to meet, optimal demand response reduces to joint scheduling of the procurement and consumption decisions

  11. Demand Response Opportunities in Industrial Refrigerated Warehouses in

    E-Print Network [OSTI]

    LBNL-4837E Demand Response Opportunities in Industrial Refrigerated Warehouses in California Sasank thereof or The Regents of the University of California. #12;Demand Response Opportunities in Industrial centralized control systems can be excellent candidates for Automated Demand Response (Auto- DR) due

  12. Opportunities, Barriers and Actions for Industrial Demand Response in

    E-Print Network [OSTI]

    LBNL-1335E Opportunities, Barriers and Actions for Industrial Demand Response in California A.T. Mc of Global Energy Partners. This work described in this report was coordinated by the Demand Response Demand Response in California. PIER Industrial/Agricultural/Water EndUse Energy Efficiency Program. CEC

  13. Opportunities and Challenges for Data Center Demand Response

    E-Print Network [OSTI]

    Wierman, Adam

    Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

  14. Date: June 12, 2007 To: Pacific Northwest Demand Response Project

    E-Print Network [OSTI]

    Date: June 12, 2007 To: Pacific Northwest Demand Response Project From: Rich Sedano/RAP and Chuck, 2007 meeting of the Pacific Northwest Demand Response Project, we agreed to form three Working Groups for the evaluation of cost-effectiveness of Demand Response resources. One potential outcome would be for state

  15. An Integrated Architecture for Demand Response Communications and Control

    E-Print Network [OSTI]

    Gross, George

    An Integrated Architecture for Demand Response Communications and Control Michael LeMay, Rajesh for the MGA and ZigBee wireless communications. Index Terms Demand Response, Advanced Meter Infrastructure. In principle this can be done with demand response techniques in which electricity users take measures

  16. Towards Continuous Policy-driven Demand Response in Data Centers

    E-Print Network [OSTI]

    Shenoy, Prashant

    Towards Continuous Policy-driven Demand Response in Data Centers David Irwin, Navin Sharma, and Prashant Shenoy University of Massachusetts, Amherst {irwin,nksharma,shenoy}@cs.umass.edu ABSTRACT Demand response (DR) is a technique for balancing electricity sup- ply and demand by regulating power consumption

  17. Demand Response Providing Ancillary A Comparison of Opportunities and

    E-Print Network [OSTI]

    LBNL-5958E Demand Response Providing Ancillary Services A Comparison of Opportunities Government or any agency thereof or The Regents of the University of California. #12;Demand Response System Reliability, Demand Response (DR), Electricity Markets, Smart Grid Abstract Interest in using

  18. Opportunities for Demand Response in California Agricultural Irrigation: A

    E-Print Network [OSTI]

    LBNL-6108E Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study was sponsored in part by the Demand Response Research Center which is funded by the California .................................. 2 Best Opportunities for Demand Response and Permanent Load Shifting Programs.............. 3

  19. Occupancy Based Demand Response HVAC Control Strategy Varick L. Erickson

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Occupancy Based Demand Response HVAC Control Strategy Varick L. Erickson University of California an efficient demand response HVAC control strategy, actual room usage must be considered. Temperature and CO2 are used for simulations but not for predictive demand response strategies. In this paper, we develop

  20. Opportunities for Energy Efficiency and Demand Response in the California

    E-Print Network [OSTI]

    LBNL-4849E Opportunities for Energy Efficiency and Demand Response in the California Cement in this report was coordinated by the Demand Response Research Center and funded by the California Energy. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial

  1. Two Market Models for Demand Response in Power Networks

    E-Print Network [OSTI]

    Low, Steven H.

    Two Market Models for Demand Response in Power Networks Lijun Chen, Na Li, Steven H. Low and John C-- In this paper, we consider two abstract market models for designing demand response to match power supply as oligopolistic markets, and propose distributed demand response algorithms to achieve the equilibria. The models

  2. Optimal Power Flow Based Demand Response Offer Price Optimization

    E-Print Network [OSTI]

    Lavaei, Javad

    Optimal Power Flow Based Demand Response Offer Price Optimization Zhen Qiu 1 Introduction-time energy balance. Demand response programs are offered by the utility companies to reduce the load response cost in exchange for load reduction. A considerable amount of papers have discussed the demand

  3. STATE OF CALIFORNIA DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE CEC-MECH-6A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-6A NA7.5.5 Demand Control Ventilation Systems DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE CEC-MECH-6A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

  4. A Spatio-Temporal Point Process Model for Ambulance Demand

    E-Print Network [OSTI]

    Woodard, Dawn B.

    (EMS) managers need accurate demand estimates to mini- mize response times to emergencies and keep. Several studies have modeled aggregate ambulance demand as a temporal process. Channouf et al. (2007) use by combining a dynamic latent factor structure with integer time series models. Other aggregate demand studies

  5. INVENTORY SYSTEMS WITH ADVANCE DEMAND INFORMATION AND RANDOM REPLENISHMENT TIMES

    E-Print Network [OSTI]

    Karaesmen, Fikri

    INVENTORY SYSTEMS WITH ADVANCE DEMAND INFORMATION AND RANDOM REPLENISHMENT TIMES Fikri Karaesmen@ku.edu.tr Abstract: Advance demand information, when used effectively, improves the performance of produc- tion/inventory of random supply lead times on a single-stage inventory system with advance demand information. It is found

  6. Graphical language for identification of control strategies allowing Demand Response

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Graphical language for identification of control strategies allowing Demand Response David DA SILVA. This will allow the identification of the electric appliance availability for demand response control strategies to be implemented in terms of demand response for electrical appliances. Introduction An important part

  7. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  8. Alberta's Energy Reserves 2007 and Supply/Demand Outlook

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008-2017 0 ST98-2008 Energy Resources RESOURCES CONSERVATION BOARD ST98-2008: Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008: Reserves Andy Burrowes, Rick Marsh, Nehru Ramdin, and Curtis Evans; Supply/Demand and Economics

  9. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the planning process. Electricity demand is forecast to grow from 20,080 average megawatts in 2000 to 25 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  10. Opportunities for Automated Demand Response in Wastewater Treatment

    E-Print Network [OSTI]

    ;CHAPTER 4: Facility Baseline Analysis Net Plant Demand Figure 5: Average load profile for net plant demand characteristics and estimated shed potential for six submetered centrifuge Lift Pumps #12;Figure 7: Daily profile on event days compared to average dry season demand Partial-day complete plant shutdown Table 5: Load sheds

  11. Intelligent Building Automation: A Demand Response Management Perspective

    E-Print Network [OSTI]

    Qazi, T.

    2010-01-01T23:59:59.000Z

    the energy consumption in response to energy price fluctuations, demand charges, or a direct request to reduce demand when the power grid reaches critical levels. However, in order for a demand response regime to be effective the building will need to have a...

  12. Optimal Demand Response Capacity of Automatic Lighting Control

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    . To remedy this problem, different demand side management programs have been proposed to shape the energy prior studies have extensively studied the capacity of offering demand response in buildings and office buildings. Keywords: Demand response, automatic lighting control, commercial and office buildings

  13. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

  14. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    demand-side management activities and commercial buildings’demand-side management (DSM) framework presented in Figure 1 provides continuous energy management concepts for shaping electric loads in buildings,demand-side management activities, DR methods and levels of automation. We highlight OpenADR as a standard for commercial buildings

  15. Field Demonstration of Automated Demand Response for Both Winter and

    E-Print Network [OSTI]

    ) is a demand-side management strategy to reduce electricity use during times of high peak electric loads;1 Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings of a series of field test of automated demand response systems in large buildings in the Pacific Northwest

  16. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01T23:59:59.000Z

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  17. Falling MTBE demand bursts the methanol bubble

    SciTech Connect (OSTI)

    Wiesmann, G.; Cornitius, T.

    1995-03-01T23:59:59.000Z

    Methanol spot markets in Europe and the US have been hit hard by weakening demand from methyl tert-butyl ether (MTBE) producers. In Europe, spot prices for domestic T2 product have dropped to DM620-DM630/m.t. fob from early-January prices above DM800/m.t. and US spot prices have slipped to $1.05/gal fob from $1.35/gal. While chemical applications for methanol show sustained demand, sharp methanol hikes during 1994 have priced MTBE out of the gasoline-additive market. {open_quotes}We`ve learned an important lesson. We killed [MTBE] applications in the rest of the world,{close_quotes} says one European methanol producer. Even with methanol currently at DM620/m.t., another manufacturer points out, MTBE production costs still total $300/m.t., $30/m.t. more than MTBE spot prices. Since late 1994, Europe`s 3.3-million m.t./year MTBE production has been cut back 30%.

  18. Math 115 Excel Group Project 3 Worksheet Price Elasticity of Demand: U.S. Demand for Gasoline

    E-Print Network [OSTI]

    Newberger, Florence

    Math 115 Excel Group Project 3 Worksheet Price Elasticity of Demand: U.S. Demand for Gasoline 1 for Gasoline 2 4. Consider the two price-demand graphs below. The labels give the x-value. Which graph for Gasoline 3 6. Jewelry This quote is from the article "Americans Snap Up Gold Jewelry as Metal's Price Sinks

  19. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01T23:59:59.000Z

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

  20. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19T23:59:59.000Z

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  1. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01T23:59:59.000Z

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  2. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30T23:59:59.000Z

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

  3. Demand Response For Power System Reliability: FAQ

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-12-01T23:59:59.000Z

    Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

  4. Industrial demand side management: A status report

    SciTech Connect (OSTI)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J. [and others

    1995-05-01T23:59:59.000Z

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  5. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01T23:59:59.000Z

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  6. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    SciTech Connect (OSTI)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30T23:59:59.000Z

    The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP) Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was met—sorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO® Hg-LH, Calgon FLUEPAC®-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.5–2.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The results of this project also filled a data gap for plants firing PRB coal and configured with an SCR, SDA, and FF, as many new plants are being designed today. Another goal of the project was to evaluate, on a short-term basis, the mercury removal associated with coal additives and coal blending with western bituminous coal. The additive test showed that, at this site, the coal additive known as KNX was affective at increasing mercury removal while decreasing sorbent usage. Coal blending was conducted with two different western bituminous coals, and West Elk coal increased native capture from nominally 10% to 50%. Two additional co-benefits were discovered at this site. First, it was found that native capture increased from nominally 10% at full load to 50% at low load. The effect is believed to be due to an increase in mercury oxidation across the SCR caused by a corresponding decrease in ammonia injection when the plant reduces load. Less ammonia means more active oxidation sites in the SCR for the mercury. The second co-benefit was the finding that high ammonia concentrations can have a negative impact on mercury removal by powdered activated carbon. For a period of time, the plant operated with a high excess of ammonia injection necessitated by the plugging of one-third of the SCR. Under these conditions and at high load, the mercury control system could not maintain 90% removal even at the maximum feed rate of 3.5 lb/MMacf (pounds of mercury per million actual cubic feet). The plant was able to demonstrate that mercury removal was directly related to the ammonia injection rate in a series of tests where the ammonia rate was decreased, causing a corresponding increase in mercury removal. Also, after the SCR was refurbished and ammonia injection levels returned to normal, the mercury removal performance also returned to normal. Another goal of the project was to install a commercial-grade activated carbon injection (ACI) system and integrate it with new-generation continuous emissions monitors for mercury (Hg-CEMs) to allow automatic feedback control on outlet me

  7. Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response Introduction..................................................................................................................................... 1 Demand Response in the Council's Fifth Power Plan......................................................................................................................... 3 Estimate of Potential Demand Response

  8. Demand for gasoline is more price-inelastic than commonly thought

    E-Print Network [OSTI]

    Havranek, Tomas; Irsova, Zuzana; Janda, Karel

    2011-01-01T23:59:59.000Z

    demand and distillate fuel oil demand. ” Energy Economics 7(demand and consumer price expectations: An empirical investigation of the consequences from the recent oil

  9. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    hydro facility or demand response aggregator to provide theOperator Demand Response Mass-Market Customers Aggregator ofDemand Response Resources Mass Market Customers Aggregator

  10. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01T23:59:59.000Z

    of California Statewide Aggregator Demand Response Programs.Analysis of AMP Aggregator Demand Response Program. Preparedof California Statewide Aggregator Demand Response Programs.

  11. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    of Program Participation Rates on Demand Response MarketTable 3-1. Methods of Estimating Demand Response PenetrationDemand Response

  12. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Goldman, G. (2009) Retail demand response in Southwest PowerL. (2009) Renewable Demand Response (RDR): Financial &Northwest GridWise™ Demand Response and Variable Generation

  13. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    and Open Automated Demand Response. In Grid Interop Forum.Berkeley National Laboratory. Demand Response ResearchCenter, Demand Response Research Center PIER Team Briefing,

  14. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. ” In2010. “Open Automated Demand Response Dynamic Pricing2009. “Open Automated Demand Response Communications

  15. What China Can Learn from International Experiences in Developing a Demand Response Program

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    K.C. Mares, D. Shroyer. , 2010. Demand Response andOpen Automated Demand Response Opportunities for DataProcessing Industry Demand Response Participation: A Scoping

  16. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01T23:59:59.000Z

    Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

  17. Demand response-enabled autonomous control for interior space conditioning in residential buildings.

    E-Print Network [OSTI]

    Chen, Xue

    2008-01-01T23:59:59.000Z

    Demand Response Autonomous Controlssystem under the context of demand response for residential10] E. Arens et al. , Demand response enabling technology

  18. Design and Implementation of an Open, Interoperable Automated Demand Response Infrastructure

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2008-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities. CEC-Fully Automated Demand Response Tests in Large Facilities.Management and Demand Response in Commercial Building. ,

  19. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    E-Print Network [OSTI]

    Page, Janie

    2012-01-01T23:59:59.000Z

    2010 Assessment of Demand Response and  Advanced Metering:  Development for Demand Response  Calculation ? Findings and Energy  Efficiency and  Demand Response with Communicating 

  20. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    and techniques for demand response,” Lawrence BerkeleyNational action plan on demand response,” Prepared with the3] G. He?ner, “Demand response valuation frameworks paper,”

  1. Field Test Results of Automated Demand Response in a Large Office Building

    E-Print Network [OSTI]

    Han, Junqiao

    2008-01-01T23:59:59.000Z

    and Techniques for Demand Response, LBNL-59975, May 2007 [Protocol Development for Demand Response Calculation – Findsand S. Kiliccote, Estimating Demand Response Load Impacts:

  2. Estimating Large-Customer Demand Response Market Potential: Integrating Price and Customer Behavior

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Estimating Large-Customer Demand Response Market Potential:Syracuse, NY ABSTRACT Demand response (DR) is increasinglyestimated. Introduction Demand response (DR) is increasingly

  3. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    Laboratory. Berkeley. Demand Response Research Center,and Automated Demand Response in Wastewater TreatmentLaboratory. Berkeley. Demand Response Research Center,

  4. Architecture Concepts and Technical Issues for an Open, Interoperable Automated Demand Response Infrastructure

    E-Print Network [OSTI]

    Koch, Ed; Piette, Mary Ann

    2008-01-01T23:59:59.000Z

    energy efficiency and demand response in large facilities.was sponsored by the Demand Response Research Center whichInteroperable Automated Demand Response Infrastructure Ed

  5. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Open Automated Demand Response Demonstration Project” LBNL-2009a). “Open Automated Demand Response Communications inand Actions for Industrial Demand Response in California. ”

  6. A Methodology for Estimating Large-Customer Demand Response Market Potential

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2008-01-01T23:59:59.000Z

    Estimating Large-Customer Demand Response Market PotentialEstimating Large-Customer Demand Response Market PotentialSyracuse, NY ABSTRACT Demand response (DR) is increasingly

  7. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    S.  Kiliccote.   Estimating Demand Response Load  Impacts: in California.   Demand Response Research Center, Lawrence and Techniques for Demand Response.  LBNL Report 59975.  

  8. Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot

    E-Print Network [OSTI]

    Herter, Karen

    2010-01-01T23:59:59.000Z

    Martin Aspen. 2006. Demand Response Enabling TechnologiesDon. 2007. “Pricing for Demand Response from Residential andthe Level of Demand Response,” Power Point Presentation, 24

  9. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    Consulting), and Dave Shroyer (SCG). Demand Response andOpen Automated Demand Response Opportunities for DataIAW Research Team, Demand Response Research Center, Lawrence

  10. Demand Response Spinning Reserve Demonstration -- Phase 2 Findings from the Summer of 2008

    E-Print Network [OSTI]

    Eto, Joseph H.

    2010-01-01T23:59:59.000Z

    A. Barat, D. Watson. 2007. Demand Response Spinning ReserveN ATIONAL L ABORATORY Demand Response Spinning Reserveemployer. LBNL-XXXXX Demand Response Spinning Reserve

  11. When it comes to Demand Response, is FERC its Own Worst Enemy?

    E-Print Network [OSTI]

    Bushnell, James; Hobbs, Benjamin; Wolak, Frank A.

    2009-01-01T23:59:59.000Z

    made between traditional demand response (DR) programs andpricing. Traditional demand response programs typically payFor overviews of demand response technologies and program

  12. COMBINING DIVERSE DATA SOURCES FOR CEDSS, AN AGENT-BASED MODEL OF DOMESTIC ENERGY DEMAND

    E-Print Network [OSTI]

    Gotts, Nicholas Mark; Polhill, Gary; Craig, Tony; Galan-Diaz, Carlos

    2014-01-01T23:59:59.000Z

    Model CEDSS (Community Energy Demand Social Simulator) wasthe determinants of domestic energy demand and covering fivescenarios of domestic energy demand to 2050, and for its

  13. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    on the forecast of total energy demand. Based on this, weIndustrialization and Energy Demand Scenarios Nathaniel T.adjustment spurred energy demand for construction of new

  14. Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network

    E-Print Network [OSTI]

    Paudel, Subodh; Elmtiri, Mohamed; Kling, Wil L; Corre, Olivier Le; Lacarriere, Bruno

    2014-01-01T23:59:59.000Z

    R. Satake, Prediction of energy demands using neural networkof Building Heating Energy Demand Using Artificial Neuralknow energy flows and energy demand of the buildings for the

  15. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01T23:59:59.000Z

    favorable economically, energy demand, and particularly oil3 Energy Policies and Energy Demand in Northeastissue of whether rising energy demand generates new security

  16. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01T23:59:59.000Z

    of Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response under

  17. Analytical Frameworks to Incorporate Demand Response in Long-term Resource Planning

    E-Print Network [OSTI]

    Satchwell, Andrew

    2014-01-01T23:59:59.000Z

    Integration of Energy Efficiency and Demand Response Intohttp://www.cpuc.ca.gov/PUC/energy/Demand+Response/Cost-Utilization of Energy Efficiency and Demand Response as

  18. Automated Demand Response Technologies and Demonstration in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2014-01-01T23:59:59.000Z

    customers need to reduce energy demand during expensiveadditive) $11.42 / kW-max demand Energy Delivery Charges Alltype, floor space, peak demand, energy supplier, DR program

  19. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    perspective, a demand-side management framework with threethe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  20. Load-side Demand Management in Buildings using Controlled Electric Springs

    E-Print Network [OSTI]

    Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

    2014-01-01T23:59:59.000Z

    The concept of demand-side management for electricand simulation of demand-side management potential in urbanin smart grids, demand side management has been a keen topic

  1. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    2001. “Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

  2. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    buildings. A demand-side management framework from buildingthe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  3. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

  4. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. ” InAutomated Demand Response for Small Commercial Buildings. ”in automated demand response programs with building control

  5. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    account  demand  response  signals,  building?integrated of Automated Demand Response in Commercial Buildings.  and Demand Response in Commercial  Buildings. , LBNL 

  6. Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    demand response and energy ef?ciency in commercial buildings,”building control strategies and techniques for demand response,”building electricity use with application to demand response,”

  7. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

  8. Design and Implementation of an Open, Interoperable Automated Demand Response Infrastructure

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2008-01-01T23:59:59.000Z

    is manual demand response -- where building staff receives aand Demand Response in Commercial Building. ,April, LBNL-Keywords: Demand response, automation, commercial buildings,

  9. Development and evaluation of fully automated demand response in large facilities

    E-Print Network [OSTI]

    Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

    2004-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. ” LBNL Reportautomated Demand Response (DR) technologies in buildings.Automated Demand Response is initiated at a building or

  10. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    high.  Demand response helps to manage building electricity Building  Control Strategies and Techniques for Demand Response.  Non?Residential Building in California.   Demand Response 

  11. Machine to machine (M2M) technology in demand responsive commercial buildings

    E-Print Network [OSTI]

    Watson, David S.; Piette, Mary Ann; Sezgen, Osman; Motegi, Naoya; ten Hope, Laurie

    2004-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. ” Highoperate buildings to maximize demand response and minimizeDemand Response Demonstration”, 2004 ACEEE Summer Study on Energy Efficiency in Buildings.

  12. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    implement demand-response programs involving buildingthan the building envelope in demand response effectiveness.demand response, thermal mass, hot climates, office buildings

  13. Architecture Concepts and Technical Issues for an Open, Interoperable Automated Demand Response Infrastructure

    E-Print Network [OSTI]

    Koch, Ed; Piette, Mary Ann

    2008-01-01T23:59:59.000Z

    is manual demand response -- where building staff receives aKeywords: Demand response, automation, commercial buildings,buildings, especially as it applies to Demand Response

  14. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    E-Print Network [OSTI]

    Page, Janie

    2012-01-01T23:59:59.000Z

    Demand Response for Small Commercial Buildings.   Lawrence small?medium buildings’ roles in demand response  efforts.  demand response for small? medium commercial buildings 

  15. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response.of Automated Demand Response in a Large Office Building.there demand response potential in commercial building that

  16. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    and Demand Response in Commercial Building,” Report No.Demand Response Infrastructure for Commercial Buildings MaryDemand Response Infrastructure for Commercial Buildings Mary

  17. Cooperative Demand Response Using Repeated Game for Price-Anticipating Buildings in Smart Grid

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    1. Demand response with price-anticipating buildings. C.one-stage demand response because all the building managersbuilding electricity use, with application to demand response,”

  18. Demand Shifting With Thermal Mass in Large Commercial Buildings: Field Tests, Simulation and Audits

    E-Print Network [OSTI]

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-01-01T23:59:59.000Z

    implement demand response programs involving buildingbased demand response (DR) technologies in real buildings.BUILDING AUDITS Introduction Customers’ attitudes to prospective utility demand response

  19. Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices

    E-Print Network [OSTI]

    Motegi, N.

    2011-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsBuilding Control Strategies and Techniques for Demand Response -Building Control Strategies and Techniques for Demand Response

  20. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Automated Demand Response for Small Commercial Buildings. ”Demand Response Strategies and Commissioning Commercial Buildingfor Automated Demand Response in Commercial Buildings Sila

  1. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish; Koch, Ed; Hennage, Dan; Hernandez, John; Chiu, Albert; Sezgen, Osman; Goodin, John

    2009-11-06T23:59:59.000Z

    The Pacific Gas and Electric Company (PG&E) is conducting a pilot program to investigate the technical feasibility of bidding certain demand response (DR) resources into the California Independent System Operator's (CAISO) day-ahead market for ancillary services nonspinning reserve. Three facilities, a retail store, a local government office building, and a bakery, are recruited into the pilot program. For each facility, hourly demand, and load curtailment potential are forecasted two days ahead and submitted to the CAISO the day before the operation as an available resource. These DR resources are optimized against all other generation resources in the CAISO ancillary service. Each facility is equipped with four-second real time telemetry equipment to ensure resource accountability and visibility to CAISO operators. When CAISO requests DR resources, PG&E's OpenADR (Open Automated DR) communications infrastructure is utilized to deliver DR signals to the facilities energy management and control systems (EMCS). The pre-programmed DR strategies are triggered without a human in the loop. This paper describes the automated system architecture and the flow of information to trigger and monitor the performance of the DR events. We outline the DR strategies at each of the participating facilities. At one site a real time electric measurement feedback loop is implemented to assure the delivery of CAISO dispatched demand reductions. Finally, we present results from each of the facilities and discuss findings.

  2. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B. (Barakat and Chamberlin, Inc., Oakland, CA (United States))

    1992-01-01T23:59:59.000Z

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state's progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  3. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B. [Barakat and Chamberlin, Inc., Oakland, CA (United States)] [Barakat and Chamberlin, Inc., Oakland, CA (United States)

    1992-01-01T23:59:59.000Z

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state`s progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  4. Satisfiability of Elastic Demand in the Smart Grid

    E-Print Network [OSTI]

    Tomozei, Dan-Cristian

    2010-01-01T23:59:59.000Z

    We study a stochastic model of electricity production and consumption where appliances are adaptive and adjust their consumption to the available production, by delaying their demand and possibly using batteries. The model incorporates production volatility due to renewables, ramp-up time, uncertainty about actual demand versus planned production, delayed and evaporated demand due to adaptation to insufficient supply. We study whether threshold policies stabilize the system. The proofs use Markov chain theory on general state space.

  5. Using Partnerships to Drive Demand and Provide Services in Communities...

    Energy Savers [EERE]

    and Discussion Summary More Documents & Publications Strategies for Marketing and Driving Demand for Commercial Financing Products Information Technology Tools for Multifamily...

  6. Strategies for Marketing and Driving Demand for Commercial Financing...

    Energy Savers [EERE]

    Slides and Discussion Summary More Documents & Publications Using Partnerships to Drive Demand and Provide Services in Communities Financial Vehicles within an Integrated Energy...

  7. Geographically-Based Hydrogen Demand & Infrastructure Rollout Scenario Analysis (Presentation)

    SciTech Connect (OSTI)

    Melendez, M.

    2007-05-17T23:59:59.000Z

    This presentation by Margo Melendez at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Hydrogen Demand & Infrastructure Rollout Scenario Analysis.

  8. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    of capacity factors of wind generation from a Vestas V112-demand is higher, while wind generation peaks at night andvalues of Tehachapi wind generation, Palm Springs solar

  9. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    in Demand Response for Wholesale Ancillary Services. ” Incan be used to link wholesale and retail real-time prices.11 Wholesale Electricity Market Information

  10. Robust Unit Commitment Problem with Demand Response and ...

    E-Print Network [OSTI]

    Long Zhao

    2010-10-31T23:59:59.000Z

    Oct 31, 2010 ... Abstract: To improve the efficiency in power generation and to reduce the greenhouse gas emission, both Demand Response (DR) strategy ...

  11. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Coordination of Energy Efficiency and...

  12. Residential Energy Demand Reduction Analysis and Monitoring Platform...

    Broader source: Energy.gov (indexed) [DOE]

    development that is built to conventional code). * This objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side...

  13. Amplified Demand for Solar Trackers to Boost Market Growth in...

    Open Energy Info (EERE)

    Amplified Demand for Solar Trackers to Boost Market Growth in Middle East and Africa Home > Groups > Solar Permitting Roadmap Development Wayne31jan's picture Submitted by...

  14. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    s natural gas and electricity sectors within the timeframeto California’s electricity sector led to rolling blackoutsimpacts on the electricity sector is the hourly demand

  15. NWPPA showcases demand response in Port Angeles, upgrades at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commitment to demand-side management and recent improvements at the Dworshak National Fish Hatchery that's saving energy and benefiting fish. A pair of BPA-supported projects...

  16. SGDP Report Now Available: Interoperability of Demand Response...

    Office of Environmental Management (EM)

    and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

  17. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Environmental Management (EM)

    and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

  18. Structuring Rebate and Incentive Programs for Sustainable Demand...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Exchange Call: Structuring Rebate and Incentive Programs for Sustainable Demand, call slides and discussion summary, August 18, 2011. Call Slides and Discussion Summary More...

  19. Wind Power Project Repowering: History, Economics, and Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Project Repowering: History, Economics, and Demand Wind Exchange Webinar Eric Lantz January 21, 2015 NRELPR-6A20-63591 2 Presentation Overview 1. Background - Concepts...

  20. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    E-Print Network [OSTI]

    Mortensen, Dorthe K.

    2012-01-01T23:59:59.000Z

    for residential ventilation systems, 2009. CEN, EN15251:The demand controlled ventilation system operated at a lowthe whole house ventilation system that implicitly assumes

  1. Natural Gas Infrastructure Implications of Increased Demand from...

    Broader source: Energy.gov (indexed) [DOE]

    the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased...

  2. The Role of Enabling Technologies in Demand Response

    SciTech Connect (OSTI)

    NONE

    2007-09-15T23:59:59.000Z

    The report provides a study of the technologies that are crucial to the success of demand response programs. It takes a look at the historical development of demand response programs and analyzes how new technology is needed to enable demand response to make the transition from a small scale pilot operation to a mass market means of improving grid reliability. Additionally, the report discusses the key technologies needed to enable a large scale demand response effort and evaluates current efforts to develop and integrate these technologies. Finally, the report provides profiles of leading developers of these key technologies.

  3. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

  4. The imperfect price-reversibility of world oil demand

    SciTech Connect (OSTI)

    Gately, D. [New York Univ., NY (United States)

    1993-12-31T23:59:59.000Z

    This paper examines the price-reversibility of world oil demand, using price-decomposition methods employed previously on other energy demand data. We conclude that the reductions in world oil demand following the oil price increases of the 1970s will not be completely reversed by the price cuts of the 1980s. The response to price cuts in the 1980s is perhaps only one-fifth that for price increases in the 1970s. This has dramatic implications for projections of oil demand, especially under low-price assumptions. We also consider the effect on demand of a price recovery (sub-maximum increase) in the 1990s - due either to OPEC or to a carbon tax-specifically whether the effects would be as large as for the price increases of the 1970s or only as large as the smaller demand reversals of the 1980s. On this the results are uncertain, but a tentative conclusion is that the response to a price recovery would lie midway between the small response to price cuts and the larger response to increases in the maximum historical price. Finally, we demonstrate two implications of wrongly assuming that demand is perfectly price-reversible. First, such an assumption will grossly overestimate the demand response to price declines of the 1980s. Secondly, and somewhat surprisingly, it causes an underestimate of the effect of income growth on future demand. 21 refs., 11 figs., 1 tab.

  5. An Econometric Model of the Demand for Food and Nutrition

    E-Print Network [OSTI]

    LaFrance, Jeffrey T.

    1999-01-01T23:59:59.000Z

    Holland, 1978. Blundell, R. “Econometric Approaches to theDemand Behavior. ” Econometric Reviews 5(1986): 89-146. . “Harvey, A. C. The Econometric Analysis of Time Series,

  6. Researcher explores economics of U.S. urban water demand

    E-Print Network [OSTI]

    Wythe, Kathy

    2009-01-01T23:59:59.000Z

    Story by Kathy Wythe tx H2O | pg. 24 Researcher explores economics of U.S. urban water demand Photo by: Danielle Supercinski tx H2O | pg. 25 With projected demands for future water supplies becoming more critical, understand- ing urban... contributing to urban water demand in the United States. They analyzed how water use is affected by water prices in nearly 200 U.S. cities. ?It?s interesting that many people still buy into the myth that water demand is not price- sensitive, even though...

  7. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

  8. Trucking Industry Demand for Urban Shared Use Freight Terminals

    E-Print Network [OSTI]

    Regan, Amelia C.; Golob, Thomas F.

    2003-01-01T23:59:59.000Z

    for Urban Shared Use Terminals Taniguchi, E. , M. Noritake,of public logistics terminals. Transportation Research –Demand for Urban Shared Use Terminals References Aitchison,

  9. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    M T E P 06 - The Midwest ISO Transmission Expansion Plan,Demand Response in Midwest ISO Market," Presentation at MISODemand Response with Midwest ISO Wholesale Markets Ranjit

  10. achieve demand reduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Websites Summary: 1 Achieving Optimality and Fairness in Autonomous Demand Response: Benchmarks and Billing Member, IEEE, and Hamed Mohsenian-Rad, Member,...

  11. aviation fuel demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copyright 2002, Lawrence Erlbaum Associates, Inc Kaber, David B. 96 Optimization of Demand Response Through Peak Shaving , D. Craigie Computer Technologies and Information...

  12. aircraft power demands: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molten salt pool, which also functions ... Codd, Daniel Shawn 2011-01-01 5 Retail Demand Response in Southwest Power Pool University of California eScholarship Repository...

  13. aggregate electricity demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: LBNL-6417E Grid Integration of Aggregated Demand Response, Part I: Load Availability Profiles Resources 4 12;12;12;CHAPTER 3:...

  14. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    program, demand  response aggregator, demand response  vii WITH AN AGGREGATOR USING OPEN AUTOMATED DEMAND RESPONSE ThisWith an Aggregator Using Open Automated Demand Response is 

  15. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann

    2005-01-01T23:59:59.000Z

    driven building response. Demand Side Management Energybuildings. Table 1 outlines how DR fits into historical demand side management (

  16. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    and water pumping sectors. Mark Ciminelli forecasted energy for transportation, communication and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast

  17. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01T23:59:59.000Z

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  18. Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    2008 Abstract The relationship between gasoline prices and the demand for vehicle fuel efficiencyAutomobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We

  19. Control Mechanisms for Residential Electricity Demand in SmartGrids

    E-Print Network [OSTI]

    Snyder, Larry

    Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

  20. UK Energy Research Centre Demand Reduction Theme, University of Oxford

    E-Print Network [OSTI]

    UK Energy Research Centre Demand Reduction Theme, University of Oxford The Experience of Carbon Energy Research Centre ­ Demand Reduction Theme Environmental Change Institute Oxford University Centre for the Environment South Parks Road Oxford OX1 3QY www.eci.ox.ac.uk www.ukerc.ac.uk #12;UK Energy Research Centre 2 1