National Library of Energy BETA

Sample records for demand coke plants

  1. Demand for superpremium needle cokes on upswing

    SciTech Connect (OSTI)

    Acciarri, J.A.; Stockman, G.H. )

    1989-12-01

    The authors discuss how recent supply shortages of super-premium quality needle cokes, plus the expectation of increased shortfalls in the future, indicate that refiners should consider upgrading their operations to fill these demands. Calcined, super-premium needle cokes are currently selling for as much as $550/metric ton, fob producer, and increasing demand will continue the upward push of the past year. Needle coke, in its calcined form, is the major raw material in the manufacture of graphite electrodes. Used in steelmaking, graphite electrodes are the electrical conductors that supply the heat source, through arcing electrode column tips, to electric arc steel furnaces. Needle coke is commercially available in three grades - super premium, premium, and intermediate. Super premium is used to produce electrodes for the most severe electric arc furnace steelmaking applications, premium for electrodes destined to less severe operations, and intermediate for even less critical needs.

  2. COKEMASTER: Coke plant management system

    SciTech Connect (OSTI)

    Johanning, J.; Reinke, M.

    1996-12-31

    To keep coke utilization in ironmaking as competitive as possible, the potential to improve the economics of coke production has to be utilized. As one measure to meet this need of its customers, Krupp Koppers has expanded its existing ECOTROL computer system for battery heating control to a comprehensive Coke Plant Management System. Increased capacity utilization, lower energy consumption, stabilization of plant operation and ease of operation are the main targets.

  3. The waste water free coke plant

    SciTech Connect (OSTI)

    Schuepphaus, K.; Brink, N.

    1995-12-01

    Apart from coke which is the actual valuable material a coke oven plant also produces a substantial volume of waste water. These effluent water streams are burdened with organic components (e.g. phenols) and inorganic salts (e.g. NH{sub 4}Cl); due to the concentration of the constituents contained therein these effluent waters must be subjected to a specific treatment before they can be introduced into public waters. For some years a lot of separation tasks have been solved successfully by applying the membrane technology. It was especially the growing number of membrane facilities for cleaning of landfill leakage water whose composition can in fact be compared with that of coking plant waste waters (organic constituents, high salt fright, ammonium compounds) which gave Thyssen Still Otto Anlagentechnik the idea for developing a process for coke plant effluent treatment which contains the membrane technology as an essential component.

  4. Unmanned operation of the coke guides at Hoogovens IJmuiden Coke Plant 1

    SciTech Connect (OSTI)

    Vos, D.; Mannes, N.; Poppema, B.

    1995-12-01

    Due to the bad condition of batteries and many ovens under repair, Hoogovens was forced to partially repair and rebuild the Coke plant No. 1. The production of coke at Coke plant No. 1 is realized in 3 production blocks subdivided in 6 batteries. Besides a renovated installation, all coke oven machines were renewed. A total of five identical machine sets are available. Each consists of a pusher machine, larry car, coke guide and quench car with diesel locomotive. A complete automated control system was implemented. The main objectives were a highly regular coking and pushing process, automated traveling and positioning and a centrally coordinated interlocking of machine functions. On each operational machine however an operator performed the supervisory control of the automated machine functions. After years of good experience with the automated system, economical reasons urged further personnel reduction from 1994 on. Totally 375 people were involved, including the maintenance department. To reduce the occupation at coke plant No. 1, the coke guide was the first machine to be fully automated because of the isolated and uncomfortable working place.

  5. Cyanide treatment options in coke plants

    SciTech Connect (OSTI)

    Minak, H.P.; Lepke, P.

    1997-12-31

    The paper discusses the formation of cyanides in coke oven gas and describes and compares waste processing options. These include desulfurization by aqueous ammonia solution, desulfurization using potash solution, desulfurization in oxide boxes, decomposition of NH{sub 3} and HCN for gas scrubbing. Waste water treatment methods include chemical oxidation, precipitation, ion exchange, reverse osmosis, and biological treatment. It is concluded that biological treatment is the most economical process, safe in operation and requires a minimum of manpower.

  6. Table 38. Coal Stocks at Coke Plants by Census Division

    Gasoline and Diesel Fuel Update (EIA)

    Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Census Division June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June 30) 2014 versus 2013 Middle Atlantic 547 544 857 -36.2 East North Central 1,130 963 1,313 -13.9 South Atlantic

  7. The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience

    SciTech Connect (OSTI)

    Strunk, J.

    1996-12-31

    At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

  8. How to implement a quality program in a coking plant. The AHMSA experience

    SciTech Connect (OSTI)

    Reyes M, M.A.; Perez, J.L.; Garza, C. de la; Morales, M.

    1995-12-01

    AHMSA (Altos Hornos de Mexico) is the largest integrated Steel Plant in Mexico, with its 3.1 MMMT of Liquid Steel production program for 1995. AHMSA operates two coke plants which began operations in 1955 and 1976. Total coke monthly production capacity amounts to as much as 106,000 Metric Tons (MT). The coke plants working philosophy was discussed and established in 1986 as part of the Quality Improvement Program, where its ultimate goal is to give the best possible coke quality to its main client--the blast furnaces. With this goal in mind, a planned joint effort with their own coal mines was initiated. This paper deals with the implementation process of the Quality Program, and the results of this commitment at the coal mines, coke plants and blast furnaces. The coke quality improvement is shown since 1985 to 1994, as well as the impact on the blast furnace operation.

  9. Ammonia removal process upgrade to the Acme Steel Coke Plant

    SciTech Connect (OSTI)

    Harris, J.L.

    1995-12-01

    The need to upgrade the ammonia removal process at the Acme Steel Coke Plant developed with the installation of the benzene NESHAP (National Emission Standard for Hazardous Air Pollutants) equipment, specifically the replacement of the final cooler. At Acme Steel it was decided to replace the existing open cooling tower type final cooler with a closed loop direct spray tar/water final cooler. This new cooler has greatly reduced the emissions of benzene, ammonia, hydrogen sulfide and hydrogen cyanide to the atmosphere, bringing them into environmental compliance. At the time of its installation it was not fully recognized as to the effect this would have on the coke oven gas composition. In the late seventies the decision had been made at Acme Steel to stop the production of ammonia sulfate salt crystals. The direction chosen was to make a liquid ammonia sulfate solution. This product was used as a pickle liquor at first and then as a liquid fertilizer as more markets were developed. In the fall of 1986 the ammonia still was brought on line. The vapors generated from the operation of the stripping still are directed to the inlet of the ammonia absorber. At that point in time it was decided that an improvement to the cyclical ammonia removal process was needed. The improvements made were minimal yet allowed the circulation of solution through the ammonia absorber on a continuous basis. The paper describes the original batch process and the modifications made which allowed continuous removal.

  10. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W.

    1997-12-31

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  11. Teamwork in planning and carrying out the first inspection of the coke dry quenching (CDQ) plant of the Kaiserstuhl Coking Facility

    SciTech Connect (OSTI)

    Burchardt, G.

    1996-12-31

    The coke plant Kaiserstuhl operates a coke dry quenching (CDQ) plant with a downstream installed waste heat boiler to satisfy statutory pollution control rules and requirements. This CDQ which went on stream in March 1993 cools the whole coke production output from the Kaiserstuhl coke plant in counterflow to an inert cooling gas. This brief overview on the whole CDQ plant should elucidate the complex of problems posed when trying to make an exact plant revision plan. After all it was impossible to evaluate or to assess all the interior process technology relevant components during the planning stage as the plant was in operation. The revision data for the first interior check was determined and fixed by the statutory rule for steam boilers and pressure vessels. The relevant terms for this check are mandatorily prescribed. In liaison with the testing agency (RW TUEV) the date for the first revision was fixed for April 1995, that means two years after the first commissioning.

  12. Light oil yield improvement project at Granite City Division Coke/By-Product Plant

    SciTech Connect (OSTI)

    Holloran, R.A.

    1995-12-01

    Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

  13. Who lives near coke plants and oil refineries An exploration of the environmental inequity hypothesis

    SciTech Connect (OSTI)

    Graham, J.D.; Beaulieu, N.D.; Sussman, D.; Sadowitz, M.; Li, Y.C. )

    1999-04-01

    Facility-specific information on pollution was obtained for 36 coke plants and 46 oil refineries in the US and matched with information on populations surrounding these 82 facilities. These data were analyzed to determine whether environmental inequities were present, whether they were more economic or racial in nature, and whether the racial composition of nearby communities has changed significantly since plants began operations. The Census tracts near coke plants have a disproportionate share of poor and nonwhite residents. Multivariate analyses suggest that existing inequities are primarily economic in nature. The findings for oil refineries are not strongly supportive of the environmental inequity hypothesis. Rank ordering of facilities by race, poverty, and pollution produces limited (although not consistent) evidence that the more risky facilities tend to be operating in communities with above-median proportions of nonwhite residents (near coke plants) and Hispanic residents (near oil refineries). Over time, the radical makeup of many communities near facilities has changed significantly, particularly in the case of coke plants sited in the early 1900s. Further risk-oriented studies of multiple manufacturing facilities in various industrial sectors of the economy are recommended.

  14. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect (OSTI)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  15. Petroleum-derived additive reduces coke on hydrotreating catalyst

    SciTech Connect (OSTI)

    Not Available

    1993-12-27

    Upgrading heavy oils is becoming increasingly important as the world crude slate gets heavier and demand for light products increases. But most upgrading processes must contend with problems related to coke formation during hydrotreating. Three researchers have found that materials having high radical-scavenging ability can reduce coke formation when applied to hydrotreating heavy oils. And these materials can be produced from heavy petroleum fractions. The paper discusses coke formation, the research program, and the pilot plant.

  16. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  17. Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant

    SciTech Connect (OSTI)

    Goshe, A.J.; Nodianos, M.J.

    1995-12-01

    Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

  18. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  19. Heating control methodology in coke oven battery at Rourkela Steel Plant

    SciTech Connect (OSTI)

    Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

    1996-12-31

    A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

  20. California: Geothermal Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Plant to Help Meet High Lithium Demand California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the...

  1. California: Geothermal Plant to Help Meet High Lithium Demand | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Geothermal Plant to Help Meet High Lithium Demand California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the American Recovery and Reinvestment Act of 2009, EERE's Geothermal Technologies Office is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. Simbol has the potential to power 300,000-600,000 electric vehicles

  2. Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation

    SciTech Connect (OSTI)

    Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

    1995-12-01

    The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

  3. Clean Production of Coke from Carbonaceous Fines

    SciTech Connect (OSTI)

    Craig N. Eatough

    2004-11-16

    In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

  4. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Energy Savers [EERE]

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from

  5. Using Coke Oven Gas in a Blast Furnace Saves Over $6 Million Annually at a Steel Mill (U.S. Steel Edgar Thompson Plant)

    SciTech Connect (OSTI)

    2000-12-01

    Like most steel companies, U.S. Steel (USS) had been using coke oven gas (COG), a by-product of coke manufacturing, as a fuel in their coke ovens, boilers, and reheat furnaces.

  6. The correlation between reactivity and ash mineralogy of coke

    SciTech Connect (OSTI)

    Kerkkonen, O.; Mattila, E.; Heiniemi, R.

    1996-12-31

    Rautaruukki is a modern integrated Finnish steel works having a production of 2.4 mil. t/year of flat products. The total fuel consumption of the two blast furnaces in 1994 was 435 kg/t HM. Coke used was 345 kg/t HM and oil injection was 90 kg/t HM. The coking plant was taken in to operation in 1987 and is the only one in Finland, which means that the coking tradition is very short. Coke production is 0.9 mil. t/year. The coking blends include 70--80% medium volatile coals having a wide range of total dilatation. From time to time disturbances in the operation of the blast furnaces have occurred in spite of the fact that the reactivity of the coke used has remained constant or even decreased. It was thought necessary to investigate the factors affecting coke reactivity, in order to better understand the results of the reactivity test. This paper deals with carbonization tests done in a 7 kg test oven using nine individual coals having volatile-matter contents of 17--36% (dry) and seven blends made from these coals. Coke reactivity with CO{sub 2} at 1100 C (CRI) and coke strength after reaction (CSR) were determined using the test developed by the Nippon Steel Corporation. The influence of coke carbon form, porosity and especially ash mineralogy on the coke reactivity were examined. The effects of some additives; petroleum coke (pet coke), the spillage material from the coke ovens and oxidized coal, on coke quality were also studied. Typical inorganic minerals found in coals were added to one of the high volatile coals, which was then coked to determine the affect of the minerals on the properties of the coke produced.

  7. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2003-09-26

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  8. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2004-09-26

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  9. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid ...

  10. Blast furnace coke quality in relation to petroleum coke addition

    SciTech Connect (OSTI)

    Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J.; Sirgado, M.

    1995-12-01

    The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

  11. Western Canadian coking coals -- Thermal rheology and coking quality

    SciTech Connect (OSTI)

    Leeder, W.R.; Price, J.T.; Gransden, J.F.

    1997-12-31

    Methods of predicting coke strength developed from the thermal rheological properties of Carboniferous coals frequently indicate that Cretaceous coals would not make high quality coke -- yet both types of coals produce coke suitable for the iron blast furnace. This paper will discuss the reasons why Western Canadian coals exhibit lower rheological values and how to predict the strength of coke produced from them.

  12. Factors affecting coking pressures in tall coke ovens

    SciTech Connect (OSTI)

    Grimley, J.J.; Radley, C.E.

    1995-12-01

    The detrimental effects of excessive coking pressures, resulting in the permanent deformation of coke oven walls, have been recognized for many years. Considerable research has been undertaken worldwide in attempts to define the limits within which a plant may safely operate and to quantify the factors which influence these pressures. Few full scale techniques are available for assessing the potential of a coal blend for causing wall damage. Inference of dangerous swelling pressures may be made however by the measurement of the peak gas pressure which is generated as the plastic layers meet and coalesce at the center of the oven. This pressure is referred to in this report as the carbonizing pressure. At the Dawes Lane cokemaking plant of British Steel`s Scunthorpe Works, a large database has been compiled over several years from the regulator measurement of this pressure. This data has been statistically analyzed to provide a mathematical model for predicting the carbonizing pressure from the properties of the component coals, the results of this analysis are presented in this report.

  13. Coking and gasification process

    DOE Patents [OSTI]

    Billimoria, Rustom M. (Houston, TX); Tao, Frank F. (Baytown, TX)

    1986-01-01

    An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

  14. High coking value pitch

    SciTech Connect (OSTI)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  15. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H.

    1995-12-01

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  16. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk Jr; Keith Wisecarver

    2005-10-01

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking. The following deliverables are scheduled from the two projects of the three-year JIP: (1) A novel method for enhancing liquid yields from delayed cokers and data that provide insight as to the optimum temperature to remove hydrogen sulfide from furnace gases. (2) An understanding of what causes foaming in c

  17. Coke from coal and petroleum

    DOE Patents [OSTI]

    Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

    1981-01-01

    A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

  18. Development of advanced technology of coke oven gas drainage treatment

    SciTech Connect (OSTI)

    Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

    1996-12-31

    In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

  19. Inhibition of coke formation in pyrolysis furnaces

    SciTech Connect (OSTI)

    Tong, Y.; Poindexter, M.K.; Rowe, C.T.

    1995-12-31

    Coke formation in pyrolysis furnaces, which thermally convert hydrocarbons to ethylene as well as other useful products, adversely affects product yields, causes furnace down time for coke removal, and shortens furnace coil life. A phosphorus-based chemical treatment program was developed to inhibit the coke formation. The anticoking performance of the phosphorus-based treatment program was studied using a bench scale coking rate measurement apparatus. The programs`s influence on coke morphology and reactor surface was addressed using SEM/EDX surface characterization techniques. For comparison, similar studies were carried out with sulfur-containing species which are conventionally used in industrial practice as furnace additives. The present work demonstrated that the phosphorus-based treatment program provided an efficient and durable surface passivation against coke formation.

  20. Mathematical modeling of clearance between wall of coke oven and coke cake

    SciTech Connect (OSTI)

    Nushiro, K.; Matsui, T.; Hanaoka, K.; Igawa, K.; Sorimachi, K.

    1995-12-01

    A mathematical model was developed for estimating the clearance between the wall of the coke oven and the coke cake. The prediction model is based on the balance between the contractile force and the coking pressure. A clearance forms when the contractile force exceeds the coking pressure in this model. The contractile force is calculated in consideration of the visco-elastic behavior of the thermal shrinkage of the coke. The coking pressure is calculated considering the generation and dispersion of gas in the melting layer. The relaxation time off coke used in this model was obtained with a dilatometer under the load application. The clearance was measured by the laser sensor, and the internal gas pressure was measured in a test oven. The clearance calculated during the coking process were in good agreement with the experimental results, which supported the validity of the mathematical model.

  1. Coke cake behavior under compressive forces

    SciTech Connect (OSTI)

    Watakabe, S.; Takeda, T.; Itaya, H.; Suginobe, H.

    1997-12-31

    The deformation of the coke cake and load on the side wall during pushing were studied using an electric furnace equipped with a movable wall. Coke cake was found to deform in three stages under compressive forces. The coke cake was shortened in the pushing direction in the cake deformation stage, and load was generated on the side walls in the high wall load stage. Secondary cracks in the coke cake were found to prevent load transmission on the wall. The maximum load transmission rate was controlled by adjusting the maximum fluidity and mean reflectance of the blended coal.

  2. Collector main replacement at Indianapolis Coke

    SciTech Connect (OSTI)

    Sickle, R.R. Van

    1997-12-31

    Indianapolis Coke is a merchant coke producer, supplying both foundry and blast furnace coke to the industry. The facility has three coke batteries: two 3 meter batteries, one Wilputte four divided and one Koppers Becker. Both batteries are underjet batteries and are producing 100% foundry coke at a net coking time of 30.6 hours. This paper deals with the No. 1 coke battery, which is a 72 oven, gun fired, 5 meter Still battery. No. 1 battery produces both foundry and blast furnace coke at a net coking rate of 25.4 hours. No. 1 battery was commissioned in 1979. The battery is equipped with a double collector main. Although many renovations have been completed to the battery, oven machinery and heating system, to date no major construction projects have taken place. Deterioration of the collector main was caused in part from elevated levels of chlorides in the flushing liquor, and temperature fluctuations within the collector main. The repair procedures are discussed.

  3. Coke County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype B. Places in Coke County, Texas Blackwell, Texas Bronte, Texas Robert Lee, Texas Retrieved from "http:en.openei.orgwindex.php?titleCokeCounty,Texas&oldid...

  4. Simulation of industrial coking -- Phase 1

    SciTech Connect (OSTI)

    Todoschuk, T.W.; Price, J.T.; Gransden, J.F.

    1997-12-31

    Two statistically designed experimental programs using an Appalachian and a Western Canadian coal blend were run in CANMET`s 460mm (18 inch) movable wall oven. Factors included coal grind, moisture, oil addition, carbonization rate and final coke temperature. Coke quality parameters including CSR, coal charge characteristics and pressure generation were analyzed.

  5. Coke formation in visbreaking process

    SciTech Connect (OSTI)

    Yan, T.Y. )

    1987-04-01

    Visbreaking is a mild cracking process primarily used to reduce residual oil viscosity and thus decrease the amount of cutter stock required for blending to heavy fuels specification. It can also be used to produce incremental quantities of gasoline, middle distillates and catalytic cracker feeds. This process was widely used in the 1930s and 1940s and became obsolete until a few years ago. When the need for increased conversion of residues to light products became desirable, visbreaking offered economic advantages to many refining schemes - especially in Western Europe. Between 1978-1981, Exxon brought on stream seven visbreakers ranging from 1900 to 9100 tons/SD capacity. In January 1983, the world-wide visbreaking capacity was over 2 MM B/SD. The visbreaking process and its application in refinery operations have been well described. In general, the process economics improve as the process severity is increased but it is limited by coke formation in the process. For this reason, they have studied the kinetics of coke formation in the visbreaking process.

  6. Rheology of petroleum coke-water slurry

    SciTech Connect (OSTI)

    Prasad, M.; Mall, B.K.; Mukherjee, A.; Basu, S.K.; Verma, S.K.; Narasimhan, K.S.

    1998-07-01

    This paper reports the results of the studies carried out on the optimization of particle size distribution, the rheological characteristics and stability of highly loaded petroleum coke-water slurry using three additives. The solids loading achieved in the slurries were in the range of 65% to 75.6% depending on the additives used. Slurry viscosity varied between 267 to 424 mPas at 128 s{sup {minus}} shear rate. The petroleum coke-water slurries exhibited pseudoplastic characteristics with yield tending towards Bingham plastic as the solids loading progressively increased. The effect of addition of petroleum coke to the extent of 25% in coal-water slurry prepared from low ash Ledo coal of Makum field in Assam was also examined. The slurry containing coal-petroleum coke blend showed better stability, having shelf life of 7 days as compared to 5 days in the case of petroleum coke-water slurry.

  7. An overview of crisis management in the coke industry

    SciTech Connect (OSTI)

    Saunders, D.A.

    1995-12-01

    Members of the American Coke and Coal Chemicals Institute (ACCCI), as responsible corporate citizens, have embraced the concepts of crisis management and progress down the various paths of planning and preparation, monitoring, media communications, community outreach, emergency response, and recovery. Many of the concepts outlined here reflect elements of crisis management guidelines developed by the Chemical Manufacturers Association (CMA). At a coke plant, crises can take the form of fires, chemical releases, labor strikes, feedstock supply disruptions, and excessive snowfall, just to name a few. The CMA defines a crisis as: ``an unplanned event that has the potential to significantly impact a company`s operability or credibility, or to pose a significant environment, economic or legal liability``; and crisis management as: ``those activities undertaken to anticipate or prevent, prepare for, respond to and recover from any incident that has the potential to greatly affect the way a company conducts its business.

  8. Heteroatom incorporated coke for electrochemical cell electrode

    DOE Patents [OSTI]

    Lewis, Irwin Charles (Strongsville, OH); Greinke, Ronald Alfred (Medina, OH)

    1997-01-01

    This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (i) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (ii) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns. (b) a binder This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode.

  9. Heteroatom incorporated coke for electrochemical cell electrode

    DOE Patents [OSTI]

    Lewis, I.C.; Greinke, R.A.

    1997-06-17

    This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (1) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (2) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns and (b) a binder. This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode. 5 figs.

  10. Mozambique becomes a major coking coal exporter?

    SciTech Connect (OSTI)

    Ruffini, A.

    2008-06-15

    In addition to its potential role as a major international supplier of coking coal, Mozambique will also become a major source of power generation for southern Africa. 3 figs.

  11. New additive retards coke formation in ethylene furnace tubes

    SciTech Connect (OSTI)

    Not Available

    1994-05-09

    Adding relatively small amounts of a new additive to the feed stream of a steam cracker can inhibit coke formation on the metal surfaces of processing equipment and increase furnace run time. The additive comprises a variable mixture of four to six inorganic salts in aqueous solution. The components of the additive mixture can be varied, as needed, for processing heavy feed materials such as heavy naphtha and gas oil. The process was first tested at a Korean petrochemical plant and is now operating successfully at a commercial facility in Russia. The results of the Korean trial are presented here.

  12. Rheology of petroleum coke-water slurry

    SciTech Connect (OSTI)

    Prasad, M.; Mall, B.K.; Mukherjee, A.

    1998-04-01

    This paper reports the results of the studies carried out on the optimization of particle size distribution, the theological characteristics and stability of highly loaded petroleum coke-water slurry using three additives. The solids loading achieved in the slurries were in the range of 65% to 75.6% depending on the additives used. Slurry viscosity varied between 267 to 424 mPas at 128 s{sup -1} shear rate. The petroleum coke-water slurries exhibited pseudoplastic characteristics with yield tending towards Bingham plastic as the solids loading progressively increased.

  13. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

  14. RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS

    SciTech Connect (OSTI)

    John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

    2002-05-01

    The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

  15. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect (OSTI)

    Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

    1999-09-01

    Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

  16. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  17. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P.; Cunningham, R.; Hockings, K.

    1997-12-31

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  18. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect (OSTI)

    1998-09-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  19. Improvement of coke quality by utilization of hydrogenation residue

    SciTech Connect (OSTI)

    Meckel, J.F. ); Wairegi, T. )

    1993-01-01

    Hydrogenation residue is the product left over when petroleum residue feedstocks (or coal) are treated by, e.g. the Veba Combi Cracking (VCC) process. Many tests in semitechnical and full-sized coke ovens were carried out with hydrogenation residue (HR) as an additive in coking coal blends for the production of blast furnace coke or foundry coke. The results of the investigations reported in this paper demonstrate that HR is a very promising alternative for enlarging the coking coal basis compared to other processes or the use of other additives. The application of HR on an industrial scale did not indicate any negative impact on the handling of the hydrogenation residue or on the operation of the coke oven battery.

  20. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect (OSTI)

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  1. Reducing power production costs by utilizing petroleum coke. Annual report

    SciTech Connect (OSTI)

    Galbreath, K.C.

    1998-07-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  2. Nippon Coke and Engineering Sumitomo Corp JV | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Nippon Coke and Engineering & Sumitomo Corp JV Place: Tokyo, Japan Zip: 135-6007 Product: Japan-based natural graphite base anode materials joint...

  3. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

  4. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    Broader source: Energy.gov [DOE]

    Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

  5. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    SciTech Connect (OSTI)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee; Piette, Mary Ann

    2010-08-20

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions of 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.

  6. Table 16. U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    6. U.S. Coke Exports (short tons) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 151,884 301,843 315,628 553,020 599,779 -7.8 Canada* 137,062 273,140 229,301 477,799 380,794 25.5 Mexico 14,476 28,404 85,930 74,273 217,777 -65.9 Other** 346 299 397 948 1,208 -21.5 South America Total 298 - 39 376 1,151 -67.3 Other** 298 - 39 376 1,151 -67.3 Europe Total 19 140 184 35,581 1,450 NM Other**

  7. Table 21. U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    1. U.S. Coke Imports (short tons) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 26,442 2,184 1,212 30,661 39,596 -22.6 Canada 26,442 2,184 1,212 30,661 39,596 -22.6 South America Total 16,976 322 10,544 17,298 10,544 64.1 Colombia 16,976 322 10,544 17,298 10,544 64.1 Europe Total 29,060 6,280 61 35,354 62 NM Czech Republic - 5,300 - 5,300 - - France - 15 - 15 - - Germany, Federal Republic of

  8. System to acquire and monitor operating machinery positions for horizontal coke oven batteries

    SciTech Connect (OSTI)

    Bierbaum, D.; Teschner, W.

    1980-02-26

    In a horizontal coke oven battery with at least one coke receiving device movable along one longitudinal side of the battery and at least one coke driving device movable along an opposite longitudinal side of the battery, an apparatus is disclosed for determining the relative position of the coke receiving device with respect to the coke driving device and for activating the coke driving device when its position corresponds with that of the coke receiving device. A first wheel is mounted on the coke receiving device for rotation with the movement of the coke receiving device, a first angle encoder is connected to the first wheel for producing a first signal corresponding to the location of the first wheel and the position of the coke receiving device along the coke oven, and an input storage in the form of a magnetic disc is connected to the first angle encoder for recording and storing the signal. A second wheel is mounted on the coke driving device for rotation with the movement of the coke driving device and a second angle encoder is connected thereto for producing a second signal which corresponds to the rotation of the second wheel and the position of the coke driving device along the coke oven. A comparator is connected to the second signal encoder for receiving the second signal and a data link is provided between the comparator and the input storage of the coke receiving device so that the first signal from the coke receiving device can be impressed on the comparator. An activator is connected to the comparator for activating the coke driving device when the first signal corresponds to the second signal indicating a corresponding positional relationship between the coke receiving device and the coke driving device.

  9. New process to avoid emissions: Constant pressure in coke ovens

    SciTech Connect (OSTI)

    Giertz, J.; Huhn, F.; Hofherr, K.

    1995-12-01

    A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

  10. RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: WRI COKING INDEXES

    SciTech Connect (OSTI)

    John F. Schabron; Joseph F. Rovani, Jr.; Francis P. Miknis; Thomas F. Turner

    2003-06-01

    Pyrolysis experiments were conducted with three residua at 400 C (752 F) at various residence times. The wt % coke and gaseous products were measured for the product oils. The Western Research Institute (WRI) Coking Indexes were determined for the product oils. Measurements were made using techniques that might correlate with the Coking Indexes. These included spin-echo proton nuclear magnetic resonance spectroscopy, heat capacity measurements at 280 C (536 F), and ultrasonic attenuation. The two immiscible liquid phases that form once coke formation begins were isolated and characterized for a Boscan residuum pyrolyzed at 400 C (752 F) for 55 minutes. These materials were analyzed for elemental composition (CHNS), porphyrins, and metals (Ni,V) content.

  11. Application of process safety management to the coke industry

    SciTech Connect (OSTI)

    Mentzer, W.P. (USX Corp., Clairton, PA (United States))

    1994-09-01

    OSHA's Process Safety Management (PSM) standard went into effect on May 26, 1992. Explosions at various industrial facilities that claimed the lives of workers over the past several years were the catalyst for the new federal regulations. The new PSM standard deals with 130 specific chemicals along with flammable liquids and gases used at nearly 25,000 worksites. The performance-based PSM standard consists of 14 elements that establish goals and describe basic program elements to fulfill these goals. The PSM standard requires employers to conduct a process hazard analysis to examine potential problems and determine what preventative measures should be taken. Key elements include employee training, written operating procedures, safety reviews and maintenance requirements to insure the mechanical integrity of critical components. The presentation will cover the evolution of OSHA's PSM standard, the requirements of the 14 elements in the PSM standard and discuss the significant achievements in the development and implementation of the PSM process at US Steel's Clairton coke plant.

  12. Methods for retarding coke formation during pyrolytic hydrocarbon processing

    SciTech Connect (OSTI)

    Not Available

    1993-06-22

    A method is described for inhibiting the formation and deposition of pyrolytic coke on the heated metal surfaces in contact with a hydrocarbon feedstock which is undergoing pyrolytic processing to produce lower hydrocarbon fractions and said metal surfaces having a temperature of about 1,400 F or higher, consisting essentially of adding to said hydrocarbon feedstock being pyrolytically processed a coke inhibiting amount of hydroquinone.

  13. Water Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... How to Partner Small Business Vouchers Pilot at ... Power generating plants are often located near large sources ... energy-related uses: Hydroelectric power generation ...

  14. Demand Response

    Office of Environmental Management (EM)

    Demand Response Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE

  15. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  16. Study on rheological characteristics of petroleum coke residual oil slurry

    SciTech Connect (OSTI)

    Shou Weiyi; Xu Xiaoming; Cao Xinyu

    1997-07-01

    We have embarked on a program to develop petroleum coke residual oil slurry (POS) as an alternative fuel for existing oil-fired boilers. The industrial application of petroleum coke residual oil slurry requires full knowledge of its flow behavior. This paper will present the results of an experimental investigation undertaken to study the Theological properties using a rotating viscometer at shear rate up to 996 s{sup -1}. The effects of temperature, concentration, particle size distribution and additives are also investigated. The experiments show that petroleum coke residual oil slurry exhibits pseudoplastic behavior, which has favorable viscosity property under a certain condition and has broad prospect to be applied on oil-fired boilers.

  17. The evaluation of the Nippon Steel Corporation reactivity and post-reaction-strength test for coke

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    A systematic investigation was made of the factors influencing the reactivity of coke, including test temperature, coke structural properties, mineral inclusions and additives, and the inert content of the charge.

  18. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect (OSTI)

    Munekane, Fuminori; Yamaguchi, Yukio; Tanioka, Seiichi

    1997-12-31

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  19. New packing in absorption systems for trapping benzene from coke-oven gas

    SciTech Connect (OSTI)

    V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev

    2009-07-15

    The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

  20. Process for converting coal into liquid fuel and metallurgical coke

    DOE Patents [OSTI]

    Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  1. A coke/soot formation model for multiphase reacting flow simulation

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q. |

    1997-03-01

    Coke is a by-product in petroleum fluid catalytic cracking (FCC) processes. The concentration of coke in an FCC riser reactor is a critical parameter used to evaluate the riser performance. A coke formation and transport model was developed. It was incorporated into a computational fluid dynamic (CFD) computer code, ICRKFLO, to simulate the coke formation processes in an FCC riser reactor. Based on a similar process, a soot formation model can be derived from the coke formation model and used for diesel combustion processes, where soot is emitted as one of the primary pollutants.

  2. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  3. Integrated coke, asphalt and jet fuel production process and apparatus

    DOE Patents [OSTI]

    Shang, Jer Y. (McLean, VA)

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  4. Low-coke rate operation under high PCI at Kobe No. 3 BF

    SciTech Connect (OSTI)

    Matsuo, Tadasu; Kanazuka, Yasuo; Hoshino, Koichi; Yoshida, Yasuo; Kitayama, Syuji; Ishiwaki, Shiro

    1997-12-31

    Kobe No. 3 blast furnace (BF) suffered tremendous damage when the Great Hanshin-Awaji Earthquake rocked the area on January 17, 1995. However, working as quickly as possible to dig out of the burden and rehabilitate various facilities, the company managed to restart the No. 3 BF on April 2. After the restart, which went smoothly, production was shifted into the low coke rate operation which was being promoted before the disaster. In October, 1995, only seven months after the restart, the nation record of 296 kg/t low coke rate could be achieved. Subsequently, in January, 1996, coke rate reached 290 kg/t and the low coke rate operation was renewed. Since that time the same level of coke rate has been maintained. The paper discusses how low coke rate operation was achieved.

  5. Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens

    SciTech Connect (OSTI)

    Ellis, C.E.; Pruitt, C.W.

    1995-12-01

    Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

  6. Integration of stripping of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W. (Chester, NJ)

    1980-01-01

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  7. Use of selective oxidation of petroleum residue for production of low-sulfur coke

    SciTech Connect (OSTI)

    Hairudinov, I.R.; Kul`chitskaya, O.V.; Imashev, U.B.

    1995-12-10

    The chemical nature of liquid-phase oxidation of sulfurous petroleum residues by cumene hydroperoxide was studied by a tracer technique. Sulfur compounds are selectively oxidized in the presence of catalytic additives of molybdenum salts. Desulfurization of distillate products and coke during coking of preoxidized raw materials was revealed.

  8. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  9. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    SciTech Connect (OSTI)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.

  10. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  11. Table 17. Average Price of U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    7. Average Price of U.S. Coke Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 234.67 253.60 264.43 252.47 261.48 -3.4 Canada* 209.80 247.54 287.72 243.43 285.74 -14.8 Mexico 460.37 307.48 200.84 305.69 217.48 40.6 Other** 643.59 666.50 577.54 640.63 545.34 17.5 South America Total 135.27 - 465.18 252.87 154.98 63.2 Other** 135.27 - 465.18 252.87 154.98 63.2

  12. Table 22. Average Price of U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    2. Average Price of U.S. Coke Imports (dollars per short ton) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 120.37 192.95 189.61 131.75 96.81 36.1 Canada 120.37 192.95 189.61 131.75 96.81 36.1 South America Total 201.39 274.73 223.17 202.76 223.17 -9.1 Colombia 201.39 274.73 223.17 202.76 223.17 -9.1 Europe Total 120.34 302.86 363.18 153.02 397.65 -61.5 Czech Republic - 288.36 - 288.36 - -

  13. STEO December 2012 - coal demand

    Gasoline and Diesel Fuel Update (EIA)

    coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in 2012 for the fourth year in a row. Domestic coal consumption is on track to total 829 million tons this year. That's the lowest level since 1992, according to the U.S. Energy Information Administration's new monthly energy forecast. Utilities and power plant operators are choosing to burn more lower-priced natural gas

  14. Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998

    SciTech Connect (OSTI)

    1998-08-15

    The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

  15. Glass-coating and cleaning system to prevent carbon deposition on coke oven walls

    SciTech Connect (OSTI)

    Takahira, Takuya; Ando, Takeshi; Kasaoka, Shizuki; Yamauchi, Yutaka

    1997-12-31

    The new technology for protecting the coking chamber bricks from damage by hard-pushing is described. The technology consists of the glass coating on the wall bricks and a wall cleaner to blow deposited carbon. For the glass coating, a specially developed glaze is sprayed onto the wall bricks by a spraying device developed to completely spray one coking chamber in a few minutes. The wall cleaner is installed on a pusher ram in the facility to automatically blow air at a sonic speed during coke pushing. The life of the glazed layer is estimated to be over two years.

  16. Organophosphorus compounds as coke inhibitors during naphtha pyrolysis. Effect of benzyl diethyl phosphite and triphenylphosphine sulfide

    SciTech Connect (OSTI)

    Das, P.; Prasad, S.; Kunztu, D.

    1992-09-01

    This paper reports that significant reduction in the rate of coke formation during naphtha pyrolysis was achieved by adding benzyl diethyl phosphite or triphenylphosphine sulfide to the feed. Although the yield of carbon oxides was reduced, there was no effect of these additives on the hydrocarbon yields. Addition of these organophosphorus compounds significantly reduced the concentration of metals, such as iron, nickel, and chromium, incorporated in the coke. A previously proposed model for coke inhibition due to the formation of a passivating metal-phosphorus complex could satisfactorily correlate the data.

  17. Demand Response Analysis Tool

    SciTech Connect (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  18. Demand Response Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  19. An investigation of the properties of pitch coke modified by chemically active additives

    SciTech Connect (OSTI)

    Kulakov, V.V.; Fedeneva, E.N.; Neproshin, E.I.

    1984-01-01

    The results of an investigation are presented of the influence of chemically active additives on the yield and properties of coke from hard-coal pitch. A comparison has been made of the efficacy of the influence of these additives.

  20. The Videofil probe, a novel instrument to extend the coke oven service life

    SciTech Connect (OSTI)

    Gaillet, J.P.; Isler, D.

    1997-12-31

    To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

  1. Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W. (Chester, NJ)

    1981-01-01

    In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

  2. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  3. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547

  4. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  5. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and deep debate on Demand Dispatch led by the National Action Plan (NAP) Coalition ... new policy and regulation to value the price difference between the "point of ...

  6. Residential Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in-home displays with controllable home area network capabilities and thermal storage devices for home heating. Goals and objectives: Reduce the City's NCP demand above...

  7. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the ... Etiquette 4 Workplace Charging Challenge Carrie Giles carrie.giles@icfi.com Learn More: ...

  8. Modification of environmental control of cokemaking plant

    SciTech Connect (OSTI)

    Katoh, H.; Yasuno, M.; Gotch, T.; Yoshida, F.

    1993-01-01

    Recently, global environmental protection has been a great concern in the world. In the United States of America, the Clean Air Act (CAA) has been revised to control emissions strictly. Especially in the field of cokemaking, the restriction of fume emission from a coke oven is so severe that old coke ovens will stop operation with the application of CAA. In Japan, it is expected that more severe protection measures are going to be requested for keeping environmental quality. In this situation, it is indispensable to strengthen environmental protection measures for cokemaking plants to continue coke production in the 21st century. In Chiba Works, Kawasaki Steep Corp., the Ironmaking Department has been struggling for the improvement of environmental measures for. These activities for coke ovens are described in this report. The paper describes fume emission control from the coke oven door and dust emission control measures, including the dust monitoring system, prevention of secondary dust scattering from coke ovens, replacement of dedusters, and fume and dust control of stack emission.

  9. Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility

    SciTech Connect (OSTI)

    Banerjee, K.; O`Toole, T.J.

    1995-12-01

    A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

  10. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to reduce the energy and carbon intensity of the calcined coke production process.

  11. Demand Response- Policy

    Broader source: Energy.gov [DOE]

    Demand response is an electricity tariff or program established to motivate changes in electric use by end-use customers, designed to induce lower electricity use typically at times of high market prices or when grid reliability is jeopardized.

  12. Demand Response Dispatch Tool

    SciTech Connect (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  13. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand Dispatch-Intelligent Demand for a More Efficient Grid 10 August 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

  14. Effect of coal and coke qualities on blast furnace injection and productivity at Taranto

    SciTech Connect (OSTI)

    Salvatore, E.; Calcagni, M.; Eichinger, F.; Rafi, M.

    1995-12-01

    Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

  15. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L.

    1997-12-31

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  16. Demand Response Dispatch Tool

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  17. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  18. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  19. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  20. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  1. travel-demand-modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Demand Modeling for a Small sized MPO Using TRANSIMS Mohammad Sharif Ullah Champaign County Regional Planning Commission 1776 E Washington Street, Urbana, IL 61802 Phone: 217 328 3313 Ext 124 Email: This email address is being protected from spambots. You need JavaScript enabled to view it. List of Authors ================ Mohammad Sharif Ullah, Senior Transportation Engineer, CCRPC, Urbana, IL Asadur Rahman, PhD student, IIT, Chicago, IL Rita Morocoima-Black, Planning & Comm.

  2. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  3. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    DOE Patents [OSTI]

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  4. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  5. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

  6. Process safety management (OSHA) and process risk management (CAA) application. Application to a coke plant

    SciTech Connect (OSTI)

    Graeser, W.C.; Mentzer, W.P.

    1995-12-01

    Risk Management Programs for Chemical Accidental Release Prevention is the name of the proposed rule for the RMP Risk Management Program. The RMP was written in response to several catastrophic releases of hazardous substances. The rule is applicable to facilities that store, process or use greater than threshold quantities of 62 listed flammable chemicals and another 100 listed toxic substances. Additionally, a Risk Management Plan is registered with the EPA, Chemical Safety and Hazardous Investigation Board, state governments and the local emergency planning commission. The Clean Air Act Amendments of 1990 (specifically Section 112r) required the EPA to develop a three phase Risk Management Plan for industry: prevention program; hazard assessment; and emergency response program. The Prevention Program closely follows the OSHA`s Process Safety Management Standard. The Hazard Assessment section requires facilities to develop plans for a worst case scenario. The Emergency Response section defines the steps the facility and each employee will take if a release occurs. This section also needs to be coordinated with the Local Emergency Planning Commission. These regulations are described using Clairton Works as an example of compliance.

  7. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect (OSTI)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  8. Incorporation of deuterium in coke formed on an acetylene hydrogenation catalyst

    SciTech Connect (OSTI)

    Larsson, M.; Jansson, J.; Asplund, S.

    1996-09-01

    In selective hydrogenation of acetylene in excess ethylene, considerable amounts of coke or {open_quotes}green oils{close_quotes} are formed and accumulate on the catalyst. A fraction of the acetylene undergoes oligomerization reactions producing C{sub 4}`s and larger hydrocarbons. Compounds larger than C{sub 8} are retained on the catalysts surface or as a condensed phase in the pore system. The reaction mechanism is largely unknown but several authors have postulated that oligomerization occurs through dissociatively adsorbed acetylene (2), i.e., C{sub 2}H(ads) and C{sub 2}(ads). In this paper a novel method of studying the coke formation on a catalyst is introduced. Deuterium is incorporated in the coke during hydrogenation of acetylene, and during temperature-programmed oxidation (TPO) experiments the deuterium content is analyzed. The objective is to shed some light on the mechanism for oligomer formation in this system. The catalyst, Pd/{alpha}-Al{sub 2}O{sub 3}, was prepared by the impregnation of {alpha}-alumina (Sued-Chemie) with a solution of Pd(NO{sub 3}){sub 2} in 30% HNO{sub 3}. 8 refs., 4 figs.

  9. Demand Response Research Center and Open Automated Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...penAutomatedDemandResponse Signaling-conInuous,2-way, ... Dedicated Display Cell Phone Web TV SmartMeter (ItronorSilverSpring) ...

  10. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  11. Relational contracting and the law and economics of vertical integration: a study of the economics of petroleum coking, processing, and consumption

    SciTech Connect (OSTI)

    Erickson, J.R.

    1981-01-01

    The basis for this study was an antitrust suit brought by the Federal Trade Commission against the Great Lakes Carbon Corp., a processor and reseller of green petroleum coke, and eight petroleum refiners. The respondents in this case were accused of using long-term contracts to foreclose the markets for both green and processed petroleum coke. Chapter 1 develops a theory of exchange and the contracts governing exchange. Chapter 2 describes the petroleum-coke industry and the nature of green coke exchange. It explains the reasons for the highly concentrated structure of the green-coke market in terms of the technology of petroleum-coke production and consumption and the physical and byproduct nature of petroleum coke. Chapter 3 takes a large number of green-coke contracts and breaks them down into their various relevant provisions. These provisions are then grouped according to their purpose and the characteristics of the firms employing them and shows that differences between the contracts can be explained by differences in the risks to firms of engaging in green coke exchange. Chapter 4 discusses the implications of vertical restrictions from the point of view of relational contracting using the data adduced in Chapter 3.

  12. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings and workshops convened to develop content for the Demand Response Technology Roadmap. The project team has developed this companion document in the interest of providing...

  13. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  14. Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001

    SciTech Connect (OSTI)

    Jin, H.G.; Sun, S.; Han, W.; Gao, L.

    2009-09-15

    This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

  15. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, ...

  16. Demand Response for Ancillary Services

    Broader source: Energy.gov [DOE]

    Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and implement a methodology to construct detailed temporal and spatial representations of demand response resources and to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to assess economic value of the realizable potential of demand response for ancillary services.

  17. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  18. Petroleum Coke

    Gasoline and Diesel Fuel Update (EIA)

    82,516 82,971 84,053 85,190 84,889 85,527 1986-2014 East Coast (PADD 1) 10,887 9,316 9,766 9,003 7,430 8,048 1986-2014 Midwest (PADD 2) 15,507 16,480 16,834 17,611 17,597 16,837 1986-2014 Gulf Coast (PADD 3) 41,042 43,341 42,186 42,614 43,692 44,599 1986-2014 Rocky Mountain (PADD 4) 3,332 3,342 3,474 3,380 3,476 3,418 1986-2014 West Coast (PADD 5) 11,748 10,492 11,793 12,582 12,694 12,625

  19. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  20. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  1. Oxygenate Supply/Demand Balances

    Gasoline and Diesel Fuel Update (EIA)

    Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand *

  2. Drivers of Future Energy Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption Transportation

  3. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Sheldon Kramer

    2003-09-01

    This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

  4. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  5. Table 7.8 Coke Overview, 1949-2011 (Thousand Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke Overview, 1949-2011 (Thousand Short Tons) Year Production Trade Stock Change 2 Consumption 3 Imports Exports Net Imports 1 1949 63,637 279 548 -269 176 63,192 1950 72,718 438 398 40 -659 73,417 1951 79,331 162 1,027 -865 372 78,094 1952 68,254 313 792 -479 419 67,356 1953 78,837 157 520 -363 778 77,696 1954 59,662 116 388 -272 269 59,121 1955 75,302 126 531 -405 -1,248 76,145 1956 74,483 131 656 -525 634 73,324 1957 75,951 118 822 -704 814 74,433 1958 53,604 122 393 -271 675 52,658 1959

  6. EIA projections of coal supply and demand

    SciTech Connect (OSTI)

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  7. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  8. Modernization of the iron making plant at SOLLAC FOS

    SciTech Connect (OSTI)

    Crayelynghe, M. van; Dufour, A.; Soland, J.; Feret, J.; Lebonvallet, J.

    1995-12-01

    When the blast furnaces at SOLLAC/FOS were relined, the objective being to ensure a worklife of 15 years, it was decided that the iron making plant would be modernized at the same time: the coking plant has been overhauled and renovated and its coking time increased to ensure a worklife of at least 34 years. The surface area of the sinter strand was increased from 400 to 520 m{sup 2}, the burden preparation circuit were simplified, and pig iron production capacity increased from 4.2 to 4.5 million metric tons per year. Coal injection was developed so as to obtain 170 kg/t of pig iron, an expert system was added to ensure more efficient blast furnace operation, and new measures have been carried out for environmental protection. Since these heavy investments have been completed, SOLLAC/FOS is a high-performance iron making plant, allowing it to face new challenges in the future.

  9. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% − 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  10. Commercial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  11. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  12. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  13. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Office of Environmental Management (EM)

    Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text...

  14. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's ...

  15. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    Demand Management Institute (DMI) Jump to: navigation, search Name: Demand Management Institute (DMI) Address: 35 Walnut Street Place: Wellesley, Massachusetts Zip: 02481 Region:...

  16. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  17. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  18. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific petroleum coke characteristics at a refinery affect the design of the Gasification and Acid Gas Removal (AGR) subsystems. Knowing the petroleum coke composition provides the necessary data to proceed to the EECP Phase III engineering design of the gasification process. Based on ChevronTexaco's experience, the EECP team ranked the technical, economic, and overall risks of the petroleum coke composition related to the gasification subsystem as low. In Phase I of the EECP Project, the Motiva Port Arthur Refinery had been identified as the potential EECP site. As a result of the merger between Texaco and Chevron in October 2001, Texaco was required to sell its interest in the Motiva Enterprises LLC joint venture to Shell Oil Company and Saudi Refining Inc. To assess the possible impact of moving the proposed EECP host site to a ChevronTexaco refinery, samples of petroleum coke from two ChevronTexaco refineries were sent to MTC for bench-scale testing. The results of the analysis of these samples were compared to the Phase I EECP Gasification Design Basis developed for Motiva's Port Arthur Refinery. The analysis confirms that if the proposed EECP is moved to a new refinery site, the Phase I EECP Gasification Design Basis would have to be updated. The lower sulfur content of the two samples from the ChevronTexaco refineries indicates that if one of these sites were selected, the Sulfur Recovery Unit (SRU) might be sized smaller than the current EECP design. This would reduce the capital expense of the SRU. Additionally, both ChevronTexaco samples have a higher hydrogen to carbon monoxide ratio than the Motiva Port Arthur petroleum coke. The higher hydrogen to carbon monoxide ratio could give a slightly higher F-T products yield from the F-T Synthesis Reactor. However, the EECP Gasification Design Basis can not be updated until the site for the proposed EECP site is finalized. Until the site is finalized, the feedstock (petroleum coke) characteristics are a low risk to the EECP project.

  19. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect (OSTI)

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  20. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito

    2008-05-15

    Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

  1. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  2. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  3. Regulatory risks paralyzing power industry while demand grows

    SciTech Connect (OSTI)

    Maize, K.; Peltier, R.

    2008-01-15

    2008 will be the year the US generation industry grapples with CO{sub 2} emission. Project developers are suddenly coal-shy, mostly flirting with new nuclear plants waiting impatiently in line for equipment manufacturers to catch up with the demand for wind turbines, and finding gas more attractive again. With no proven greenhouse gas sequestration technology on the horizon, utilities will be playing it safe with energy-efficiency ploys rather than rushing to contract for much-needed new generation.

  4. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Broader source: Energy.gov (indexed) [DOE]

    phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop...

  5. California Geothermal Power Plant to Help Meet High Lithium Demand

    Broader source: Energy.gov [DOE]

    Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

  6. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process. ...

  7. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  8. NCEP_Demand_Response_Draft_111208.indd

    Office of Environmental Management (EM)

    National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric

  9. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  10. Demand Response in the ERCOT Markets

    SciTech Connect (OSTI)

    Patterson, Mark

    2011-10-25

    ERCOT grid serves 85% of Texas load over 40K+ miles transmission line. Demand response: voluntary load response, load resources, controllable load resources, and emergency interruptible load service.

  11. Marketing & Driving Demand Collaborative - Social Media Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the Better Buildings webinar on January 6, 2011. PDF icon Marketing & Driving ...

  12. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid ...

  13. Fabricate-on-Demand Vacuum Insulating Glazings

    Broader source: Energy.gov [DOE]

    PPG is working to design a fabricate-on-demand process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulating glazings (VIGs).

  14. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  15. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  16. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  17. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  18. Regulation Services with Demand Response - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created ...

  19. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  20. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest ...

  1. Generating Demand for Multifamily Building Upgrades

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Generating Demand for Multifamily Building Upgrades, call slides and discussion summary, May 14, 2015.

  2. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China

    SciTech Connect (OSTI)

    Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen

    2006-08-01

    A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

  3. 2010 Assessment of Demand Response and Advanced Metering - Staff...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and ...

  4. Study of trajectories and combustion of fuel-oil droplets in the combustion chamber of a power-plant boiler with the use of a mathematical model

    SciTech Connect (OSTI)

    Enyakin, Yu.P.; Usman, Yu.M.

    1988-03-01

    A mathematical model was developed to permit study of the behavior of fuel-oil droplets in a combustion chamber, and results are presented from a computer calculation performed for the 300-MW model TGMP-314P boiler of a power plant. The program written to perform the calculations was organized so that the first stage would entail calculation of the combustion (vaporization) of a droplet of liquid fuel. The program then provided for a sudden decrease in the mass of the fuel particle, simulating rupture of the coke shell and ejection of some of the liquid. The program then considered the combustion of a hollow coke particle. Physicochemical parameters characteristic of fuel oil M-100 were introduced in the program in the first stage of computations, while parameters characteristic of the coke particle associated with an unburned fuel-oil droplet were included in the second stage.

  5. Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant

    SciTech Connect (OSTI)

    Gambert, G.

    1996-12-31

    When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

  6. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  7. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  8. U.S. Coal Supply and Demand

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous Editions 2009 Review 2008 Review 2007 Review 2006 Review 2005 Review 2004 Review 2003 Review 2002 Review 2001 Review 2000 Review 1999 Review Data for: 2010 Released: May 2011 Next Release Date: April 2012 Table 3. Electric Power Sector Net Generation, 2009-2010 (Million Kilowatthours) New England Coal 14,378 14,244 -0.9

  9. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    2010-04-15

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  10. Electricity demand in a developing country. [Paraguay

    SciTech Connect (OSTI)

    Westley, G.D.

    1984-08-01

    This study analyzes the residential and commercial demand for electricity in ten regions in Paraguay for 1970-1977. Models that are both linear and nonlinear in the parameters are estimated. The nonlinear model takes advantage of prior information on the nature of the appliances being utilized and simultaneously deals with the demand discontinuities caused by appliance indivisibility. Three dynamic equations, including a novel cumulative adjustment model, all indicate rapid adjustment to desired appliance stock levels. Finally, the multiproduct surplus loss obtained from an estimated demand equation is used to measure the welfare cost of power outages. 15 references.

  11. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  12. The operation results with the modified charging equipment and ignition furnace at Kwangyang No. 2 sinter plant

    SciTech Connect (OSTI)

    Lee, K.J.; Pi, Y.J.; Kim, J.R.; Lee, J.N.

    1996-12-31

    There will be another blast furnace, the production capacity of which is 3.0 million tonnes per year in 1999 and mini mill plant, the production capacity of which is 1.8 million tonnes per year in 1996 at Kwangyang Works. Therefore, the coke oven gas and burnt lime will be deficient and more sinter will be needed. To meet with these situations, the authors modified the charging equipment and ignition furnace at Kwangyang No. 2 sinter plant in April 1995. After the modification of the charging equipment and ignition furnace, the consumption of burnt lime and coke oven gas could be decreased and the sinter productivity increased in spite of the reduction of burnt lime consumption. This report describes the operation results with the modification of the charging equipment and ignition furnace in No. 2 sinter plant Kwangyang works.

  13. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  14. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Majumdar, Arun

    2010-01-08

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  15. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands. 

  16. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  17. Geographically Based Hydrogen Demand and Infrastructure Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon melendez_geo_h2_demand.pdf More Documents & Publications 2010 - 2025 Scenario Analysis Meeting Agenda for August 9 - 10, 2006 Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

  18. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  19. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  20. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect (OSTI)

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  1. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  2. International Oil Supplies and Demands. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  3. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  4. Centralized and Decentralized Control for Demand Response

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  5. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  6. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs of treating the water to meet the locally applicable environmental standards. This option may require expensive chemicals and treatment facilities. EECP Phase II included tests conducted to confirm the viability of integrating F-T water in the slurry feed for the gasifier. Testing conducted at ChevronTexaco's Montebello Technology Center (MTC) included preparing slurries made using petroleum coke with F-T water collected at the LaPorte Alternative Fuels Development Unit (AFDU). The work included bench scale tests to determine the slurry ability of the petroleum coke and F-T water. The results of the tests show that F-T water does not adversely affect slurries for the gasifier. There are a few cases where in fact the addition of F-T water caused favorable changes in viscosity of the slurries. This RD&T task was executed in Phase II and results are reported herein.

  7. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  8. Diagnostics on Demand | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The "Diagnostics on Demand" Infectious Disease Test Kit Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The "Diagnostics on Demand" Infectious Disease Test Kit GE's lead researcher, David Moore, shows how this paper-based instrument, the size of a deck of playing cards, enables field-based testing

  9. Chinese Oil Demand: Steep Incline Ahead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Oil Demand: Steep Incline Ahead Malcolm Shealy Alacritas, Inc. April 7, 2008 Oil Demand: China, India, Japan, South Korea 0 2 4 6 8 1995 2000 2005 2010 Million Barrels/Day China South Korea Japan India IEA China Oil Forecast 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 16.3 mbd 12.7 mbd IEA China Oil Forecasts 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 WEO 2006 WEO 2004 WEO 2002 Vehicle Sales in

  10. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

    2010-03-17

    The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

  11. Washington: Sustainability Training for Realtors in High Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Training for Realtors in High Demand Washington: Sustainability Training for Realtors in High Demand March 6, 2014 - 5:50pm Addthis Demand has been high for a free ...

  12. Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry

    SciTech Connect (OSTI)

    Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape

    2005-12-01

    High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

  13. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

    U.S. Energy Information Administration (EIA) Indexed Site

    Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," ","

  14. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," ","

  15. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  16. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    SciTech Connect (OSTI)

    Liu, Zongyuan; Ducho?, Tomáš; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolín, Vladimir; Stacchiola, Dario J.; Rodriguez, José A.; Senanayake, Sanjaya D.

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO2-x(111) at varying Ce³? concentrations (CeO1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni? is the active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni?C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.

  17. Mechanistic insights of ethanol steam reforming over Ni-CeOx(111): The importance of hydroxyl groups for suppressing coke formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zongyuan; Senanayake, Sanjaya D.; Duchon, Tomas; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolin, Vladimir; Stacchiola, Dario J.; et al

    2015-07-10

    We have studied the reaction of ethanol and water over Ni–CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO2-x(111) at varying Ce³? concentrations (CeO1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni? is themore »active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni?C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.« less

  18. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolín, Vladimir; Stacchiola, Dario J.; Rodriguez, José A.; et al

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO2-x(111) at varying Ce³⁺ concentrations (CeO1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni⁰ is themore » active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.« less

  19. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in ... More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review ...

  20. Structuring Rebate and Incentive Programs for Sustainable Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structuring Rebate and Incentive Programs for Sustainable Demand Structuring Rebate and Incentive Programs for Sustainable Demand Better Buildings Neighborhood Program Peer...

  1. Using Mobile Applications to Generate Customer Demand | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Mobile Applications to Generate Customer Demand Using Mobile Applications to Generate Customer Demand Better Buildings Residential Network Peer Exchange Call Series: Using...

  2. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy ...

  3. Natural Gas Infrastructure Implications of Increased Demand from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector This...

  4. Strategies for Marketing and Driving Demand for Commercial Financing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing and Driving Demand for Commercial Financing Products Strategies for Marketing and Driving Demand for Commercial Financing Products Better Buildings Neighborhood Program ...

  5. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  6. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Office of Environmental Management (EM)

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's...

  7. Analysis Procedures to Estimate Seismic Demands of Structures...

    Office of Environmental Management (EM)

    to Estimate Seismic Demands of Structures Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon Analysis Procedures to Estimate Seismic Demands of...

  8. Agreement Template for Energy Conservation and Demand Side Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement ...

  9. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY ...

  10. Implementation Proposal for the National Action Plan on Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation Proposal for the National Action Plan on DemandResponse - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to ...

  11. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  12. SGDP Report Now Available: Interoperability of Demand Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response ...

  13. FERC Presendation: Demand Response as Power System Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy ...

  14. Retail Demand Response in Southwest Power Pool | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retail Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) ...

  15. Using Partnerships to Drive Demand and Provide Services in Communities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships to Drive Demand and Provide Services in Communities Using Partnerships to Drive Demand and Provide Services in Communities Better Buildings Neighborhood Program...

  16. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  17. Expected international demand for woody and herbaceous feedstock

    SciTech Connect (OSTI)

    Lamers, Patrick; Jacobson, Jacob; Mohammad, Roni; Wright, Christopher

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  18. A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-­based DR controller (dubbed the Central Load-­Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-­cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-­tune the strategies accordingly.

  19. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  20. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  1. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe      SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid Utilities need to balance the load on the grid for stability Business want lower their operating expenses. Business want remote control over their facilities How can bring these different users together to accomplish these goals Transformative Wave | 1012 Central Ave S Kent, WA 98032 |

  2. Retail Demand Response in Southwest Power Pool

    Energy Savers [EERE]

    LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was

  3. Price-responsive demand management for a smart grid world

    SciTech Connect (OSTI)

    Chao, Hung-po

    2010-01-15

    Price-responsive demand is essential for the success of a smart grid. However, existing demand-response programs run the risk of causing inefficient price formation. This problem can be solved if each retail customer could establish a contract-based baseline through demand subscription before joining a demand-response program. (author)

  4. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect (OSTI)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  5. Dramatic Demand Reduction In The Desert Southwest

    SciTech Connect (OSTI)

    Boehm, Robert; Hsieh, Sean; Lee, Joon; Baghzouz, Yahia; Cross, Andrew; Chatterjee, Sarah

    2015-07-06

    This report summarizes a project that was funded to the University of Nevada Las Vegas (UNLV), with subcontractors Pulte Homes and NV Energy. The project was motivated by the fact that locations in the Desert Southwest portion of the US demonstrate very high peak electrical demands, typically in the late afternoons in the summer. These high demands often require high priced power to supply the needs, and the large loads can cause grid supply problems. An approach was proposed through this contact that would reduce the peak electrical demands to an anticipated 65% of what code-built houses of the similar size would have. It was proposed to achieve energy reduction through four approaches applied to a development of 185 homes in northwest part of Las Vegas named Villa Trieste. First, the homes would all be highly energy efficient. Secondly, each house would have a PV array installed on it. Third, an advanced demand response technique would be developed to allow the resident to have some control over the energy used. Finally, some type of battery storage would be used in the project. Pulte Homes designed the houses. The company considered initial cost vs. long-term savings and chose options that had relatively short paybacks. HERS (Home Energy Rating Service) ratings for the homes are approximately 43 on this scale. On this scale, code-built homes rate at 100, zero energy homes rate a 0, and Energy Star homes are 85. In addition a 1.764 Wp (peak Watt) rated PV array was used on each house. This was made up of solar shakes that were in visual harmony with the roofing material used. A demand response tool was developed to control the amount of electricity used during times of peak demand. While demand response techniques have been used in the utility industry for some time, this particular approach is designed to allow the customer to decide the degree of participation in the response activity. The temperature change in the residence can be decided by the residents by adjusting settings. In a sense the customer can choose between greater comfort and greater money savings during demand response circumstances. Finally a battery application was to be considered. Initially it was thought that a large battery (probably a sodium-sulfur type) would be installed. However, after the contract was awarded, it was determined that a single, centrally-located battery system would not be appropriate for many reasons, including that with the build out plan there would not be any location to put it. The price had risen substantially since the budget for the project was put together. Also, that type of battery has to be kept hot all the time, but its use was only sought for summer operation. Hence, individual house batteries would be used, and these are discussed at the end of this report. Many aspects of the energy use for climate control in selected houses were monitored before residents moved in. This was done both to understand the magnitude of the energy flows but also to have data that could be compared to the computer simulations. The latter would be used to evaluate various aspects of our plan. It was found that good agreement existed between actual energy use and computed energy use. Hence, various studies were performed via simulations. Performance simulations showed the impact on peak energy usage between a code built house of same size and shape compared to the Villa Trieste homes with and without the PV arrays on the latter. Computations were also used to understand the effect of varying orientations of the houses in this typical housing development, including the effect of PV electrical generation. Energy conservation features of the Villa Trieste homes decreased the energy use during peak times (as well as all others), but the resulting decreased peak occurred at about the same time as the code-built houses. Consideration of the PV generation decreases the grid energy use further during daylight hours, but did not extend long enough many days to decrease the peak. Hence, a demand response approach, as planned, was needed. With participation of the residents in the demand response program developed does enable the houses to reduce the peak demand between 66% and 72%, depending on the built years. This was addressed fully in the latter part the study and is described in the latter part of this report.

  6. Electricity pricing as a demand-side management strategy: Western lessons for developing countries

    SciTech Connect (OSTI)

    Hill, L.J.

    1990-12-01

    Electric utilities in the Western world have increasingly realized that load commitments can be met not only by constructing new generating plants but also by influencing electricity demand. This demand-side management (DSM) process requires that electric utilities promote measures on the customer's side of the meter to directly or indirectly influence electricity consumption to meet desired load objectives. An important demand-side option to achieve these load objectives is innovative electricity pricing, both by itself and as a financial incentive for other demand-site measures. This study explores electricity pricing as a DSM strategy, addressing four questions in the process: What is the Western experience with DSM in general and electricity pricing in particular Do innovative pricing strategies alter the amount and pattern of electricity consumption Do the benefits of these pricing strategies outweigh the costs of implementation What are future directions in electricity pricing Although DSM can be used to promote increases in electricity consumption for electric utilities with excess capacity as well as to slow demand growth for capacity-short utilities, emphasis here is placed on the latter. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand.

  7. FERC Presendation: Demand Response as Power System Resources, October 29,

    Office of Environmental Management (EM)

    2010 | Department of Energy FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 PDF icon Demand Response as Power System Resources More Documents & Publications A National Forum on Demand Response: Results on What Remains to

  8. Chapter 3 Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    Demand-Side Resources Chapter 3 Demand-Side Resources Demand-side resources serve resource adequacy needs by reducing load, which reduces the need for additional generation. Typically, these resources result from one of two methods of reducing load: energy efficiency or demand response / load management. The energy efficiency method designs and deploys technologies and design practices that reduce energy use while delivering the same service. PDF icon Chapter 3 Demand-Side Resources More

  9. Demand Response - Policy: More Information | Department of Energy

    Office of Environmental Management (EM)

    Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the

  10. LNG demand, shipping will expand through 2010

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  11. Taxonomy for Modeling Demand Response Resources

    SciTech Connect (OSTI)

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael; Dunn, Laura; Piette, Mary, A

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed a modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.

  12. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  13. Emerging Trends in US Vehicle Travel Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trends in US Vehicle Travel Demand www.travelbehavior.us 2014 EIA Energy Conference Nancy McGuckin Travel Behavior Analyst * Historic pattern of VMT per capita * Differences in changes since 2007 by State * Private and Commercial VMT in context * Why Millenials? www.travelbehavior.us 8,000 8,500 9,000 9,500 10,000 10,500 VMT/Capita per Year www.travelbehavior.us VMT per capita: an unprecedented change: Source: McGuckin's analysis of Census Population (Jul 1) and HPMS Historic VM-1 Tables

  14. Economic Rebalancing and Electricity Demand in China

    SciTech Connect (OSTI)

    He, Gang; Lin, Jiang; Yuan, Alexandria

    2015-11-01

    Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts for electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.

  15. National Action Plan on Demand Response

    Office of Environmental Management (EM)

    6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 ACTUAL FORECAST National Action Plan on Demand Response the feDeRal eneRgy RegulatoRy commission staff 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 National Action Plan on Demand Response THE FEDERAL ENERGY REGULATORY COMMISSION

  16. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called demand-side resources), some for more than two decades. According to one source, U.S. electric utilities spent $14.7 billion on demand-side programs between 1989 and 1999, an average of $1.3 billion per year. PDF icon Draft Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3: Demand-Side

  17. East Coast blizzard cuts into gasoline demand, but home electricity demand rises

    Gasoline and Diesel Fuel Update (EIA)

    East Coast blizzard cuts into gasoline demand, but home electricity demand rises U.S. monthly gasoline consumption declined in January, as the big winter storm that shut down many East Coast cities kept people in their homes and off the road. In its new monthly forecast, the U.S. Energy Information Administration said monthly gasoline consumption dropped 230,000 barrels per day in January compared to year-ago levels and that marked the first year-over-year decline in monthly gasoline use since

  18. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Environmental Management (EM)

    Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also...

  19. Demand Response: Lessons Learned with an Eye to the Future |...

    Energy Savers [EERE]

    Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia ...

  20. Industrial demand side management: A status report

    SciTech Connect (OSTI)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J.

    1995-05-01

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  1. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  2. Marketing & Driving Demand Collaborative - Social Media Tools & Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy & Driving Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the Better Buildings webinar on January 6, 2011. PDF icon Marketing & Driving Demand Collaborative More Documents & Publications Using Social Media for Long-Term Branding Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Generating

  3. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jim Turnure, Director Office of Energy Consumption & Efficiency Analysis, EIA EIA Conference: Asian Energy Demand July 14, 2014 | Washington, DC International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China Dawn of new global oil market paradigm? 2 Jim Turnure, EIA Conference July 14, 2014 * Conventional wisdom has centered around $100-120/barrel oil and 110-115 million b/d global liquid fuel demand in the long term (2030-2040) * Demand in non-OECD may push

  4. Hydrogen Demand and Resource Analysis (HyDRA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cost and availability, hydrogen production potential, hydrogen production cost, resource consumption, hydrogen demand, infrastructure, and results from integration with other...

  5. Response to several FOIA requests - Renewable Energy. Demand for Fossil

    Energy Savers [EERE]

    Fuels | Department of Energy Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg_251_500.pdf. Demand for Fossil Fuels. Renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities

  6. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of Energy

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy bills. The city partnered with CPS Energy, a municipally owned utility, to offer the CPS Energy Savers Program. Using $10 million in seed funding from the U.S.

  7. Impacts of Demand-Side Resources on Electric Transmission Planning |

    Office of Environmental Management (EM)

    Department of Energy Impacts of Demand-Side Resources on Electric Transmission Planning Impacts of Demand-Side Resources on Electric Transmission Planning Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, the study reviews the results of

  8. Implementation Proposal for the National Action Plan on Demand Response -

    Office of Environmental Management (EM)

    July 2011 | Department of Energy Implementation Proposal for the National Action Plan on Demand Response - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to Congress prepared by the staff of the Federal Energy Regulatory Commission (FERC) and the Department of Energy. PDF icon Implementation Proposal for the National Action Plan on Demand Response - July 2011 More Documents & Publications National Action Plan on Demand Response, June

  9. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  10. Strategies for Aligning Program Demand with Contractor's Seasonal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluctuations | Department of Energy Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program Workforce Peer Exchange Call: Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations, Call Slides and Discussion Summary, June 7, 2012. PDF icon Call Slides and Discussion Summary More Documents & Publications Spotlight on Rutland County, Vermont: How

  11. Turkey opens electricity markets as demand grows

    SciTech Connect (OSTI)

    McKeigue, J.; Da Cunha, A.; Severino, D. [Global Business Reports (United States)

    2009-06-15

    Turkey's growing power market has attracted investors and project developers for over a decade, yet their plans have been dashed by unexpected political or financial crises or, worse, obstructed by a lengthy bureaucratic approval process. Now, with a more transparent retail electricity market, government regulators and investors are bullish on Turkey. Is Turkey ready to turn the power on? This report closely examine Turkey's plans to create a power infrastructure capable of providing the reliable electricity supplies necessary for sustained economic growth. It was compiled with on-the-ground research and extensive interview with key industrial and political figures. Today, hard coal and lignite account for 21% of Turkey's electricity generation and gas-fired plants account for 50%. The Alfin Elbistan-B lignite-fired plant has attracted criticism for its lack of desulfurization units and ash dam facilities that have tarnished the industry's image. A 1,100 MW hard-coal fired plant using supercritical technology is under construction. 9 figs., 1 tab.

  12. Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    : Demand-Side Resources Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called demand-side resources), some for more than two decades. According to one source, U.S. electric utilities spent $14.7 billion on DSM programs between 1989 and 1999, an average of $1.3 billion per year. PDF icon Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3 Demand-Side Resources Draft Chapt

  13. Planning for the 400,000 tons/year AISI ironmaking demonstration plant

    SciTech Connect (OSTI)

    Aukrust, E. . AISI Direct Steelmaking Program)

    1993-01-01

    The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

  14. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  15. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  16. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B.

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state`s progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  17. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B. )

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state's progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  18. OUT Success Stories: Solar Trough Power Plants

    DOE R&D Accomplishments [OSTI]

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  19. Investigation of structural changes in residential electricity demand

    SciTech Connect (OSTI)

    Chern, W.S.; Bouis, H.E.

    1982-09-23

    The purpose of this study was to investigate the stability of aggregate national residential electricity demand coefficients over time. The hypothesis is maintained that the aggregate residential demand is the sum of various end-use demand components. Since the end-use composition changes over time, the demand relationship may change as well. Since the end-use composition differs among regions, the results obtained from this study can be used for making inferences about regional differences in electricity demand relationships. There are two additional sources for a possible structural change. One is that consumers may react differently to declining and rising prices, secondly, the impact of the 1973 oil embargo may have shifted demand preferences. The electricity demand model used for this study is presented. A moving regression method was employed to investigate changes in residential electricity demand over time. The statistical results show a strikingly consistent pattern of change for most of the structural variables. The most important finding of this study is that the estimated structure of residential electricity demand changes systematically over time as a result of changes in the characteristics (both durability and saturation level) of the stock of appliances. Furthermore, there is not strong evidence that the structural changes in demand occurred due to either the reversal of the declining trend of electricity prices or the impact of the 1973 oil embarge. (LCL)

  20. Opportunities for Automated Demand Response in California Agricultural Irrigation

    SciTech Connect (OSTI)

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  1. In-plant recycling of ironmaking waste materials at Pohang Works

    SciTech Connect (OSTI)

    Kim, C.H.; Jung, S.

    1997-12-31

    The regulations for pollution control are being strengthened more year by year. Therefore, waste materials containing iron oxides are being increasingly used in the sinter plant. As a result, waste materials recycling in the sintering process not only reduces costs by eliminating waste disposal costs and utilizing Fe bearing by-products to replace iron ores and flux materials, but gives fuel rate benefits to the sintering process through heat of oxidizing of Fe bearing materials and combustion of coke fines carried with Fe Bearing by-products.

  2. Plant Operational Status - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Operational Status Plant Operational Status Page Content Shift 1 - Day The Pantex Plant is open for normal Day Shift operations. Plant personnel are to report as assigned. Personnel may call 477-3000, Option 1 for additional details. Shift 2 - Swing The Pantex Plant is open for normal Swing Shift operations. Plant personnel are to report as assigned. Personnel may call 477-3000, Option 1 for additional details. Shift 3 - Grave The Pantex Plant is open for normal Graveyard Shift operations.

  3. SGDP Report: Interoperability of Demand Response Resources Demonstration in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NY (February 2015) | Department of Energy SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) The Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the Recovery Act. The objective of the project was to develop and demonstrate

  4. Agreement Template for Energy Conservation and Demand Side Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services | Department of Energy Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement between a federal agency and a utility company for the implementation of energy conservation measures and demand side management services. A detailed description of the template is also available below. PDF icon Template Agreement PDF icon Model Agreement Explanation More Documents

  5. Strategies for Marketing and Driving Demand for Commercial Financing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products | Department of Energy Marketing and Driving Demand for Commercial Financing Products Strategies for Marketing and Driving Demand for Commercial Financing Products Better Buildings Neighborhood Program Financing and Commercial Peer Exchange Call: Strategies for Marketing and Driving Demand for Commercial Financing Products, Call Slides and Discussion Summary, February 2, 2012. PDF icon Call Slides and Discussion Summary More Documents & Publications Using Partnerships to Drive

  6. Using Mobile Applications to Generate Customer Demand | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mobile Applications to Generate Customer Demand Using Mobile Applications to Generate Customer Demand Better Buildings Residential Network Peer Exchange Call Series: Using Mobile Applications to Generate Customer Demand, Call Slides and Discussion Summary, March 12, 2015. PDF icon Call Slides and Discussion Summary More Documents & Publications Better Buildings Network View | October 2014 Incorporating Behavior Change Efforts Into Energy Efficiency Programs Staged Upgrades as a

  7. Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o

  8. Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless

    Energy Savers [EERE]

    Water Heaters | Department of Energy On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters. PDF icon serc_webinar_presentation_20111004.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot

  9. Indianapolis Offers a Lesson on Driving Demand | Department of Energy

    Energy Savers [EERE]

    Indianapolis Offers a Lesson on Driving Demand Indianapolis Offers a Lesson on Driving Demand The flier for EcoHouse, with the headline 'Save energy, save money, improve your home' and the text 'EcoHouse can help' below. U Successful program managers know that understanding the factors that drive homeowners to make upgrades is critical to the widespread adoption of energy efficiency. What better place to learn about driving demand for upgrades than in Indianapolis, America's most famous driving

  10. Executive Order 13693 Training Now Available On Demand | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Executive Order 13693 Training Now Available On Demand Executive Order 13693 Training Now Available On Demand January 4, 2016 - 8:00am Addthis Executive Order (E.O.) 13693: Recent Developments, Implementation Updates, and Opportunities Training is now available on-demand. The seminar covers the major goals of E. O. 13693 and offers examples of technologies and concepts the U.S. Department of Energy and other federal agencies are using to meet these goals. Addthis Related Articles

  11. Monitoring SERC Technologies: On-Demand Tankless Water Heaters | Department

    Office of Environmental Management (EM)

    of Energy Weatherization Assistance Program » Pilot Projects » Monitoring SERC Technologies: On-Demand Tankless Water Heaters Monitoring SERC Technologies: On-Demand Tankless Water Heaters On Oct. 4, 2011, Ethan MacCormick, VP for Services to Energy Businesses at Performance Systems Development, presented a Webinar about On-Demand Tankless Water Heaters and how to properly monitor their installation. View the webinar presentation. More Information Some resources and tools mentioned in the

  12. Washington: Sustainability Training for Realtors in High Demand |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sustainability Training for Realtors in High Demand Washington: Sustainability Training for Realtors in High Demand March 6, 2014 - 5:50pm Addthis Demand has been high for a free and accredited Sustainability Training for Accredited Real Estate Professionals (S.T.A.R.) course. Offered in partnership with RePower Kitsap, EERE's Better Buildings Initiative, the Washington State University Energy Program, and Conservation Services Group, the S.T.A.R. course prepares real

  13. Demand Response National Trends: Implications for the West? | Department of

    Office of Environmental Management (EM)

    Energy National Trends: Implications for the West? Demand Response National Trends: Implications for the West? Committee on Regional Electric Power Cooperation. San Francisco, CA. March 25, 2004 PDF icon Demand Response National Trends: Implications for the West? More Documents & Publications Demand Response in U.S. Electricity Markets: Empirical Evidence Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Transmission

  14. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Broader source: Energy.gov [DOE]

    Renewable integration studies have evaluated many challenges associated with deploying large amounts of variable wind and solar generation technologies. These studies can evaluate operational impacts associated with variable generation, benefits of improved wind and solar resource forecasting, and trade-offs between institutional changes, including increasing balancing area cooperation and technical changes such as installing new flexible generation. Demand response (DR) resources present a potentially important source of grid flexibility and can aid in integrating variable generation; however, integration analyses have not yet incorporated these resources explicitly into grid simulation models as part of a standard toolkit for resource planners.

  15. Demand Response Energy Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    Response Energy Consulting LLC Jump to: navigation, search Name: Demand Response & Energy Consulting LLC Place: Delanson, New York Zip: NY 12053 Sector: Efficiency Product:...

  16. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  17. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Broader source: Energy.gov (indexed) [DOE]

    have a higher purchase price. Determining Energy Efficiency of Storage, Demand, and Heat Pump Water Heaters Use the energy factor to determine the energy efficiency of a storage,...

  18. Assumption to the Annual Energy Outlook 2014 - Commercial Demand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    chosen to meet the projected service demands for the seven major end uses. Once technologies are chosen, the energy consumed by the equipment stock (both existing and purchased...

  19. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition to driving demand for energy upgrades with traditional marketing and incentive ... efficiency measures recommended by the online tool or through a professional, in-person ...

  20. Structuring Rebate and Incentive Programs for Sustainable Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary More Documents & Publications What Is the Right Rate? Loan Rates and Demand Peer Exchange Call on Financing and Revenue: Bond Funding Marketing and Communications Plan

  1. Oil, gas tanker industry responding to demand, contract changes

    SciTech Connect (OSTI)

    True, W.R.

    1998-03-02

    Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

  2. Global GPS Phones Market Size, Segmentation, Demand Forecast...

    Open Energy Info (EERE)

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  3. South Korea-ANL Distributed Energy Resources and Demand Side...

    Open Energy Info (EERE)

    is part of a team that assists the Korean government in analyzing the economic and environmental benefits of distributed resources and demand side management (DSM). DSM has...

  4. Electricity demand as frequency controlled reserves, ForskEL...

    Open Energy Info (EERE)

    ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ForskEL Country Denmark Coordinates 56.26392,...

  5. Electricity demand as frequency controlled reserves, ENS (Smart...

    Open Energy Info (EERE)

    ENS (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ENS Country Denmark Coordinates 56.26392, 9.501785...

  6. Amplified Demand for Solar Trackers to Boost Market Growth in...

    Open Energy Info (EERE)

    Amplified Demand for Solar Trackers to Boost Market Growth in Middle East and Africa Home > Groups > Solar Permitting Roadmap Development Wayne31jan's picture Submitted by...

  7. China-Transportation Demand Management in Beijing: Mitigation...

    Open Energy Info (EERE)

    demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in...

  8. Opportunities for Mass Market Demand Response to Provide Ancillary Services

    SciTech Connect (OSTI)

    Pratt, Rob; Najewicz, Dave

    2011-10-01

    Discusses what is meant by mass market demand response to provide ancillary services and outlines opportunities for adoption, and barriers to adoption.

  9. U.S. Electric Utility Demand-Side Management

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  10. Hydrogen Demand and Resource Assessment Tool | Open Energy Information

    Open Energy Info (EERE)

    Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool AgencyCompany Organization: National Renewable...

  11. Using Partnerships to Drive Demand and Provide Services in Communities

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Multifamily and Low-Income Peer Exchange Call: Using Partnerships to Drive Demand and Provide Services in Communities, February 2, 2012.

  12. EnergySolve Demand Response | Open Energy Information

    Open Energy Info (EERE)

    Demand Response Place: Somerset, New Jersey Product: Somerset-based utility bill outsourcing company that provides electronic utility bill auditing, tariff analysis, late fee...

  13. ,"Table 4.B Winter Net Internal Demand, Capacity Resources,...

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region," ,"2001-2010 Actual, 2011-2015 Projected" ...

  14. Experts Meeting: Behavioral Economics as Applied to Energy Demand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... from the Existing Economic Methodology used in the NEMS Demand Models - ... the UK?" Science and Technology Policy Research Unit (SPRU), Freeman Centre, University ...

  15. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program Workforce Peer Exchange Call: Strategies for Aligning Program ...

  16. Calculating Impacts of Energy Standards on Energy Demand in U...

    Office of Scientific and Technical Information (OSTI)

    Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings with Uncertainty in an Integrated Assessment Model Citation Details In-Document Search Title: Calculating ...

  17. Benefits of Demand Response in Electricity Markets and Recommendations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 ...

  18. Automated Demand Response Benefits California Utilities and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy |September 2014 Automated Demand Response Benefits California Utilities and Commercial & Industrial Customers Page 1 Under the American Recovery and ...

  19. Network-Driven Demand Side Management Website | Open Energy Informatio...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentnetwork-driven-demand-side-management Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  20. Estimating Demand Response Market Potential | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentestimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  1. Structuring Rebate and Incentive Programs for Sustainable Demand

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Peer Exchange Call: Structuring Rebate and Incentive Programs for Sustainable Demand, call slides and discussion summary, August 18, 2011.

  2. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  3. File

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke Plant","Truck",87126 2013,1,"Alabama","Alabama","Industrial Plants Excluding Coke","Truck",267108 2013,1,"Alabama","Indiana","Coke Plant","Railroad",164223 ...

  4. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building Technologies Office's Program Peer Review PDF icon bldgcodes03_guttman_040213.pdf More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review Atmospheric Pressure Deposition for Electrochromic Windows Building America System Research

  5. Interoperability of Demand Response Resources Demonstration in NY

    SciTech Connect (OSTI)

    Wellington, Andre

    2014-03-31

    The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

  6. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  7. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect (OSTI)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  8. Comments on the Glen Canyon Dam EIS treatment of demand-side management

    SciTech Connect (OSTI)

    Cavallo, J.D.

    1992-10-08

    The Glen Canyon Dam EIS has developed a substantial body of research on the economic consequences of altering the dam and plant operation. The following comments deals only with the electric power planning aspects of the study in general and the demand-side management estimates in particular. Most of the material in the report Power System Impacts of Potential Changes in Glen Canyon Power Plant Operations'' is outside the area of DSM/C RE, but appears reasonable. In particular, the input assumptions relating to the potential costs of power plants for capacity expansion planning are not unlike the costs Argonne is using in its studies and those which are used by others when comparison are made to DSM program choices. Statement of Major Concerns. The central concerns of the DSM/C RE results shown in the Glen Canyon study are as follows: (1) The assumption that DSM will penetrate the systems of Western's customers to a level which would reduce peak demand by 10 percent in the baseline alternative is overly optimistic given (a) the current reductions from the C RE programs, (b) the economic incentives faced by Western's customers, and (c) the current manner in which Western's power is used by its customers. (2) The result that DSM will reduce load by the same amount in each alternative is suspicious and unlikely.

  9. Comments on the Glen Canyon Dam EIS treatment of demand-side management

    SciTech Connect (OSTI)

    Cavallo, J.D.

    1992-10-08

    The Glen Canyon Dam EIS has developed a substantial body of research on the economic consequences of altering the dam and plant operation. The following comments deals only with the electric power planning aspects of the study in general and the demand-side management estimates in particular. Most of the material in the report ``Power System Impacts of Potential Changes in Glen Canyon Power Plant Operations`` is outside the area of DSM/C&RE, but appears reasonable. In particular, the input assumptions relating to the potential costs of power plants for capacity expansion planning are not unlike the costs Argonne is using in its studies and those which are used by others when comparison are made to DSM program choices. Statement of Major Concerns. The central concerns of the DSM/C&RE results shown in the Glen Canyon study are as follows: (1) The assumption that DSM will penetrate the systems of Western`s customers to a level which would reduce peak demand by 10 percent in the baseline alternative is overly optimistic given (a) the current reductions from the C&RE programs, (b) the economic incentives faced by Western`s customers, and (c) the current manner in which Western`s power is used by its customers. (2) The result that DSM will reduce load by the same amount in each alternative is suspicious and unlikely.

  10. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

  11. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    John Anderson; Charles Schrader

    2004-01-26

    In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The decision to proceed with Phase III centers on locating a new site and favorable commercial and economic factors.

  12. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  13. Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b)

    U.S. Energy Information Administration (EIA) Indexed Site

    5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Electricity-Only Plants 11<//td> 1989 767,378,330 25,574,094 241,960,194 3,460 517,385 270,124,673

  14. Demand for oil and energy in developing countries

    SciTech Connect (OSTI)

    Wolf, C. Jr.; Relles, D.A.; Navarro, J.

    1980-05-01

    How much of the world's oil and energy supply will the non-OPEC less-developed countries (NOLDCs) demand in the next decade. Will their requirements be small and thus fairly insignificant compared with world demand, or large and relatively important. How will world demand be affected by the economic growth of the NOLDCs. In this report, we try to develop some reasonable forecasts of NOLDC energy demands in the next 10 years. Our focus is mainly on the demand for oil, but we also give some attention to the total commercial energy requirements of these countries. We have tried to be explicit about the uncertainties associated with our forecasts, and with the income and price elasticities on which they are based. Finally, we consider the forecasts in terms of their implications for US policies concerning the NOLDCs and suggest areas of future research on NOLDC energy issues.

  15. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  16. Impacts of Demand-Side Resources on Electric Transmission Planning

    SciTech Connect (OSTI)

    Hadley, Stanton W.; Sanstad, Alan H.

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  17. Open Automated Demand Response Communications Specification (Version 1.0)

    SciTech Connect (OSTI)

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

    2009-02-28

    The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

  18. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer AG Agriculture, Mining and Construction CP Coke Plant EG Electric Generation EX Export Coal MF Manufacturing (Except Coke Plants) NC Not a Consumer RC Residential...

  19. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,085 670...

  20. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,982 679...

  1. U.S. Energy Information Administration | Annual Coal Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total...

  2. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total...

  3. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  4. File

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Plants Excluding Coke","Railroad",14493 2013,1,"Alabama","Alabama","Industrial Plants Excluding Coke","Truck",267108 2013,1,"Alabama","Colorado","Electric Power ...

  5. o_al_05.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination by Method of Transportation Electricity Generation Coke Plants Industrial Plants (Except Coke) Residential and Commercial Total Alabama 770 851 1,739 * 3,360 Railroad...

  6. A Look Ahead at Demand Response in New England

    SciTech Connect (OSTI)

    Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

    2008-08-01

    The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

  7. Demand response compensation, net Benefits and cost allocation: comments

    SciTech Connect (OSTI)

    Hogan, William W.

    2010-11-15

    FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

  8. Tool Improves Electricity Demand Predictions to Make More Room for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewables | Department of Energy Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 - 12:49pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. A new tool is available to help integrate wind and solar power into the electric grid by predicting the ranges in which power demand could increase or decrease in the immediate

  9. Tankless Demand Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold

  10. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also known as demand-type or instantaneous water heaters, provide hot water only as it is needed. They don't produce the standby energy losses associated with storage water heaters, which can save you money. Here you'll find basic information about how they work, whether a tankless water heater might be right for your home, and what

  11. EERE Success Story-California: Geothermal Plant to Help Meet High Lithium

    Office of Environmental Management (EM)

    Demand | Department of Energy Geothermal Plant to Help Meet High Lithium Demand EERE Success Story-California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the American Recovery and Reinvestment Act of 2009, EERE's Geothermal Technologies Office is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. Simbol has the potential to

  12. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    SciTech Connect (OSTI)

    Ghatikar, Girish; Piette, Mary Ann; Fujita, Sydny; McKane, Aimee; Dudley, Junqiao Han; Radspieler, Anthony; Mares, K.C.; Shroyer, Dave

    2009-12-30

    This study examines data center characteristics, loads, control systems, and technologies to identify demand response (DR) and automated DR (Open Auto-DR) opportunities and challenges. The study was performed in collaboration with technology experts, industrial partners, and data center facility managers and existing research on commercial and industrial DR was collected and analyzed. The results suggest that data centers, with significant and rapidly growing energy use, have significant DR potential. Because data centers are highly automated, they are excellent candidates for Open Auto-DR. 'Non-mission-critical' data centers are the most likely candidates for early adoption of DR. Data center site infrastructure DR strategies have been well studied for other commercial buildings; however, DR strategies for information technology (IT) infrastructure have not been studied extensively. The largest opportunity for DR or load reduction in data centers is in the use of virtualization to reduce IT equipment energy use, which correspondingly reduces facility cooling loads. DR strategies could also be deployed for data center lighting, and heating, ventilation, and air conditioning. Additional studies and demonstrations are needed to quantify benefits to data centers of participating in DR and to address concerns about DR's possible impact on data center performance or quality of service and equipment life span.

  13. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  14. Demand charge schedule data | OpenEI Community

    Open Energy Info (EERE)

    Demand charge schedule data Home > Groups > Utility Rate Hi, I'm a new user of this database,so first, thanks for creating it, and apologies if this question is answered in...

  15. Response to several FOIA requests - Renewable Energy. Demand...

    Broader source: Energy.gov (indexed) [DOE]

    Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that ...

  16. Detailed Modeling and Response of Demand Response Enabled Appliances

    SciTech Connect (OSTI)

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  17. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  18. MODELING THE DEMAND FOR E85 IN THE UNITED STATES

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2013-10-01

    How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

  19. Demand response medium sized industry consumers (Smart Grid Project...

    Open Energy Info (EERE)

    demand and regulation power in Danish Industry consumers via a price and control signal from the supplier of electricity. The aim is to develop a valuable solution for the...

  20. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Majumdar, Arun

    2011-04-28

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  1. National Action Plan on Demand Response, June 2010

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is required to develop the National Action Plan on Demand Response (National Action Plan) as outlined in section 529 of the Energy Independence and...

  2. Value of Demand Response: Quantities from Production Cost Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Value of Demand Response: Quantities from Production Cost Modeling Marissa Hummon PLMA Spring 2014 April 15-16, 2014 Denver, CO NRELPR-6A20-61815 2 Background DOE-led, multiple ...

  3. Tankless or Demand-Type Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a demand water heater at each hot water outlet. ENERGY STAR estimates that a typical family can save 100 or more per year with an ENERGY STAR qualified tankless water heater....

  4. Behavioral Economics Applied to Energy Demand Analysis: A Foundation

    Gasoline and Diesel Fuel Update (EIA)

    Behavioral Economics Applied to Energy Demand Analysis: A Foundation October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Behavioral Economics Applied to Energy Demand Analysis i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  5. Reducing Logistics Footprints and Replenishment Demands: Nano-engineered

    Office of Scientific and Technical Information (OSTI)

    Silica Aerogels a Proven Method for Water Treatment (Technical Report) | SciTech Connect Technical Report: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Rapid deployment and the use of objective force aggressively reduce logistic footprints and

  6. AVTA: PHEV Demand and Energy Cost Demonstration Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy PHEV Demand and Energy Cost Demonstration Report AVTA: PHEV Demand and Energy Cost Demonstration Report The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from a

  7. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For EIA Conference July 15, 2014 | Washington, DC By Trisha Hutchins, Office of Energy Consumption and Efficiency Analysis Light-duty vehicle energy demand, demographics, and travel behavior Examining changes in light-duty vehicle travel trends 2 EIA Conference: Light-duty vehicle energy demand, demographics, and travel behavior July 15, 2014 * Recent data indicate possible structural shift in travel behavior, measured as vehicle miles traveled (VMT) - VMT per licensed driver, vehicles per

  8. Discrete Choice Analysis: Hydrogen FCV Demand Potential | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Discrete Choice Analysis: Hydrogen FCV Demand Potential Discrete Choice Analysis: Hydrogen FCV Demand Potential Presentation by Cory Welch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon scenario_analysis_welch1_07.pdf More Documents & Publications HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Hydrogen Policy and Analyzing the Transition Status and Prospects of the Global

  9. Benefits of Demand Response in Electricity Markets and Recommendations for

    Energy Savers [EERE]

    Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006) | Department of Energy Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006) Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section

  10. Expert Panel: Forecast Future Demand for Medical Isotopes | Department of

    Office of Environmental Management (EM)

    Energy Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and

  11. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  12. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  13. Kodak: Optimizing the Pumping System Saves Energy and Reduces Demand Charges at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2005-06-01

    This two-page performance spotlight describes how, in 2003, Kodak's facilities in Rochester, New York, significantly improved the energy efficiency of its two lake-water pumping stations to save more than $100,000 annually in energy and maintenance costs. The project reduced energy use by more than 1 million kilowatt-hours per year and allowed fewer pumps to operate at any one time, while maintaining previous pumping performance levels. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial system assessment that resulted in this project.

  14. "Table A25. Components of Total Electricity Demand by Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    W "," W ",6962,1829,64877,9.5 2011," Meat Packing Plants",3924,0,6,0,3930,20.9 ... W "," W ",6583,13.2 2011," Meat Packing Plants",147,0,0,0,147,43.4 2033," ...

  15. Evaluating the economic effectiveness of a cogeneration plant

    SciTech Connect (OSTI)

    Korik, L.; Yeaple, D.: Hajosy, M.

    1996-08-01

    Economic considerations constitute the major factor in the decision to build a cogeneration plant and to its eventual design - topics which have been the focus of many studies and papers. These economic concerns continue when the plant is built and on-line, thus plant operation must be geared to provide the customers` demand in the most economically effective manner possible. Unfortunately, the complexity of and high degree of interaction between the disparate components of a cogeneration plant oftentimes, make it difficult to conceptualize the plant configuration required to maximize plant economic performance for a given demand, Indeed, actions taken to increase the thermal performance of individual plant components can actually decrease the overall economic effectiveness of the plant as a whole in the context of converting fuels to sendouts. What is needed, then, is a way to meld the performance of individual plant components into a total plant performance index that accurately measures the economic effectiveness of the plant. This paper details such a method developed by the Cogeneration Management Company to accomplish the performance evaluation of its Medical Area Total Energy Plant which supplies electricity, steam, and chilled water to the Longwood. Medical Area in Boston, This method - which is easily adapted to a variety of cogeneration designs - addresses the aforementioned complexities in the assessing of a cogeneration plant`s effectiveness and results in simple-to-understand plant performance quantifications which have proved to be of great utility in ensuring the economically sound operation of MATEP.

  16. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  17. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect (OSTI)

    Starke, Michael R; Kirby, Brendan J; Kueck, John D; Todd, Duane; Caulfield, Michael; Helms, Brian

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

  18. Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads

    SciTech Connect (OSTI)

    Denholm, P.; Ong, S.; Booten, C.

    2012-05-01

    This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

  19. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  20. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect (OSTI)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  1. Table 11.1 Electricity: Components of Net Demand, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Electricity: Components of Net Demand, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 75,652 21 5,666 347 80,993 3112 Grain and Oilseed Milling 16,620 0 3,494 142 19,972 311221 Wet Corn Milling 7,481 0 3,213 14 10,680 31131 Sugar Manufacturing

  2. Table 11.2 Electricity: Components of Net Demand, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Electricity: Components of Net Demand, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Electricity Components; Unit: Million Kilowatthours. Sales and Net Demand Economic Total Onsite Transfers for Characteristic(a) Purchases Transfers In(b) Generation(c) Offsite Electricity(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 91,909 Q 1,406 194 93,319 20-49 86,795 81 2,466 282 89,060 50-99 90,115 215 2,593 1,115

  3. Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy

    Office of Environmental Management (EM)

    Fabricate-on-Demand Vacuum Insulating Glazings Fabricate-on-Demand Vacuum Insulating Glazings 1 of 3 PPG developed and commercialized the Intercept® Spacer System that revolutionized the manufacture of double-pane insulated glazing units (IGUs) 25 years ago. Over 125 PPG-licensed Intercept® Spacer System lines are in operation in the US. Currently in use in more than 600 million residential windows, the Intercept® Spacer System is the top-selling product of its kind in North America. Image:

  4. Demand Response in U.S. Electricity Markets: Empirical Evidence |

    Office of Environmental Management (EM)

    Department of Energy in U.S. Electricity Markets: Empirical Evidence Demand Response in U.S. Electricity Markets: Empirical Evidence The work described in this paper was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. The authors are solely responsible for any omissions or errors contained herein. PDF icon Demand Response in U.S. Electricity Markets: Empirical Evidence

  5. Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995

    Reports and Publications (EIA)

    1994-01-01

    Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gasoline in a number of U.S. metropolitan areas. This article discusses the effects of the new regulations on the motor gasoline market and the refining industry.

  6. Wind Power Project Repowering: History, Economics, and Demand (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2015-01-01

    This presentation summarizes a related NREL technical report and seeks to capture the current status of wind power project repowering in the U.S. and globally, analyze the economic and financial decision drivers that surround repowering, and to quantify the level and timing of demand for new turbine equipment to supply the repowering market.

  7. Aggregate Model for Heterogeneous Thermostatically Controlled Loads with Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Kalsi, Karanjit; Fuller, Jason C.; Elizondo, Marcelo A.; Chassin, David P.

    2012-07-22

    Due to the potentially large number of Distributed Energy Resources (DERs) – demand response, distributed generation, distributed storage - that are expected to be deployed, it is impractical to use detailed models of these resources when integrated with the transmission system. Being able to accurately estimate the fast transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies. On the other hand, a less complex model is more amenable to design feedback control strategies for the population of devices to provide ancillary services. The main contribution of this paper is to develop aggregated models for a heterogeneous population of Thermostatic Controlled Loads (TCLs) to accurately capture their collective behavior under demand response and other time varying effects of the system. The aggregated model efficiently includes statistical information of the population and accounts for a second order effect necessary to accurately capture the collective dynamic behavior. The developed aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D (an open source distribution simulation software) under both steady state and severe dynamic conditions caused due to temperature set point changes.

  8. Demand Response and Energy Storage Integration Study- Past Workshops

    Broader source: Energy.gov [DOE]

    The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project team.

  9. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect (OSTI)

    Burt, B.; Mullins, S.

    2008-01-15

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  10. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    SciTech Connect (OSTI)

    Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

    2011-05-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

  11. Automation systems for Demand Response, ForskEL (Smart Grid Project...

    Open Energy Info (EERE)

    systems for Demand Response, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Automation systems for Demand Response, ForskEL Country Denmark Coordinates...

  12. Property:OpenEI/UtilityRate/DemandChargePeriod1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Pages using the property "OpenEIUtilityRateDemandChargePeriod1"...

  13. Property:OpenEI/UtilityRate/DemandRatchetPercentage | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Ratchet Percentage Pages using the property "OpenEIUtilityRateDemandRatchetPercentag...

  14. Using Community-Based Social Marketing to Drive Demand for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Slides presented in the ...

  15. ADB-Methods and Tools for Energy Demand Projection | Open Energy...

    Open Energy Info (EERE)

    ADB-Methods and Tools for Energy Demand Projection Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methods and Tools for Energy Demand Projection AgencyCompany...

  16. Bioenergy Demand in a Market Driven Forest Economy (U.S. South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to model supply over time * Then look at the impact of various demand scenarios * Pellet demand scenarios and carbon consequences dominate current research - biofuels not so...

  17. Optical manufacturing requirements for an AVLIS plant

    SciTech Connect (OSTI)

    Primdahl, K.; Chow, R.; Taylor, J.R.

    1997-07-14

    A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

  18. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect (OSTI)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considered subject to demand concerns, supply concerns, or both demand and supply concerns.

  19. Lessons learned in implementing a demand side management contract at the Presidio of San Francisco

    SciTech Connect (OSTI)

    Sartor, D.; Munn, M.

    1998-06-01

    The National Park Service (NSP) recently completed the implementation phase of its Power Saving Partners (PSP) Demand Side Management (DSM) contract with the local utility, Pacific Gas and Electric (PG&E). Through the DSM contract, NPS will receive approximately $4.1 million over eight years in payment for saving 61 kW of electrical demand, 179,000 km of electricity per year, and 1.1 million therms of natural gas per year. These payments are for two projects: the installation of high-efficiency lighting systems at the Thoreau Center for Sustainability and the replacement of an old central boiler plant with new, distributed boilers. Although these savings and payments are substantial, the electrical savings and contract payments fall well short of the projected 1,700 kW of electrical demand, 8 million kwh of annual electricity savings, and $11 million in payments, anticipated at the project's onset. Natural gas savings exceeded the initial forecast of 800,000 therms per year. The DSM contract payments did not meet expectations for a variety of reasons which fall into two broad categories: first, many anticipated projects were not constructed, and second, some of the projects that were constructed were not included in the program because the cost of implementing the DSM program's measurement and verification (M&V) requirements outweighed anticipated payments. This paper discusses the projects implemented, and examines the decisions made to withdraw some of them from the DSM contract. It also presents the savings that were realized and documented through M&V efforts. Finally, it makes suggestions relative to M&V protocols to encourage all efficiency measures, not just those that are easy to measure.

  20. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  1. "Table A16. Components of Total Electricity Demand by Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...roducts","W","W",5743,988,55273,7.2 2011," Meat Packing Plants",3410,0,71,0,3481,9.5 ... Products",5443,0,352,58,5737,12.1 2011," Meat Packing Plants",141,0,0,0,141,25.5 2033," ...

  2. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Chuck; Neenan, Bernie

    2006-03-10

    Dynamic retail electricity pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response often appears to be an afterthought. But that may be changing as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period, during which utilities were required to offer a default or ''standard offer'' generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached, or are nearing, the end of their transitional period and several states have adopted an RTP-type default service for large commercial and industrial (C&I) customers. Are these initiatives motivated by the desire to induce greater demand response, or is RTP being called upon to serve a different role in competitive markets? Surprisingly, we found that in most cases, the primary reason for adopting RTP as the default service was not to encourage demand response, but rather to advance policy objectives related to the development of competitive retail markets. However, we also find that, if efforts are made in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This paper, which draws from a lengthier report, describes the experience to date with default RTP in the U.S., identifying findings related to its actual and potential role as an instrument for cultivating price responsive demand [1]. For each of the five states currently with default RTP, we conducted a detailed review of the regulatory proceedings leading to its adoption. To further understand the intentions and expectations of those involved in its design and implementation, we also interviewed regulatory staff and utilities in each state, as well as eight of the most prominent competitive retail suppliers operating in these markets which, together, comprised about 60-65% of competitive C&I sales in the U.S. in 2004 [2].

  3. Climate, extreme heat, and electricity demand in California

    SciTech Connect (OSTI)

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

  4. Demand Response in the West: Lessons for States and Provinces

    SciTech Connect (OSTI)

    Douglas C. Larson; Matt Lowry; Sharon Irwin

    2004-06-29

    OAK-B135 This paper is submitted in fulfillment of DOE Grant No. DE-FG03-015F22369 on the experience of western states/provinces with demand response (DR) in the electricity sector. Demand-side resources are often overlooked as a viable option for meeting load growth and addressing the challenges posed by the region's aging transmission system. Western states should work together with utilities and grid operators to facilitate the further deployment of DR programs which can provide benefits in the form of decreased grid congestion, improved system reliability, market efficiency, price stabilization, hedging against volatile fuel prices and reduced environmental impacts of energy production. This report describes the various types of DR programs; provides a survey of DR programs currently in place in the West; considers the benefits, drawbacks and barriers to DR; and presents lessons learned and recommendations for states/provinces.

  5. Effects of Demand Response on Retail and Wholesale Power Markets

    SciTech Connect (OSTI)

    Chassin, David P.; Kalsi, Karanjit

    2012-07-26

    Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energy’s Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets is discussed with necessary and sufficient conditions on system controllability, observability and stability derived.

  6. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  7. Market and energy demand analysis of a US maglev system

    SciTech Connect (OSTI)

    Vyas, A.D.; Rote, D.M.

    1993-06-01

    High-speed magnetically levitated (maglev) vehicles can provide an alternative mode of transportation for intercity travel, particularly for short- and medium-distance trips between 100 to 600 mi (160 and 960 km). The patterns of growth and the underlying factors affecting that growth In the year 2010 are evaluated to determine the magnitude of US Intercity travel that would become the basis for maglev demand. A methodology that is sensitive to the travelers` socioeconomic attributes was developed to Forecast intercity travel. Travel between 78 major metropolitan areas by air and highway modes is projected, and 12 high-density travel corridors are Identified and selected. The potential for a maglev system to substitute for part or that travel is calculated by using a model that estimates the extent of diversion from highway and air to maglev. Energy demand is estimated on the basis of energy usage during acceleration and cruise phases for each corridor and corridor connections.

  8. Market and energy demand analysis of a US maglev system

    SciTech Connect (OSTI)

    Vyas, A.D.; Rote, D.M.

    1993-01-01

    High-speed magnetically levitated (maglev) vehicles can provide an alternative mode of transportation for intercity travel, particularly for short- and medium-distance trips between 100 to 600 mi (160 and 960 km). The patterns of growth and the underlying factors affecting that growth In the year 2010 are evaluated to determine the magnitude of US Intercity travel that would become the basis for maglev demand. A methodology that is sensitive to the travelers' socioeconomic attributes was developed to Forecast intercity travel. Travel between 78 major metropolitan areas by air and highway modes is projected, and 12 high-density travel corridors are Identified and selected. The potential for a maglev system to substitute for part or that travel is calculated by using a model that estimates the extent of diversion from highway and air to maglev. Energy demand is estimated on the basis of energy usage during acceleration and cruise phases for each corridor and corridor connections.

  9. Evidence is growing on demand side of an oil peak

    SciTech Connect (OSTI)

    2009-07-15

    After years of continued growth, the number of miles driven by Americans started falling in December 2007. Not only are the number of miles driven falling, but as cars become more fuel efficient, they go further on fewer gallons - further reducing demand for gasoline. This trend is expected to accelerate. Drivers include, along with higher-efficiency cars, mass transit, reversal in urban sprawl, biofuels, and plug-in hybrid vehicles.

  10. Apparatus producing constant cable tension for intermittent demand

    DOE Patents [OSTI]

    Lauritzen, T.

    1984-05-23

    This invention relates to apparatus for producing constant tension in cable or the like when it is unreeled and reeled from a drum or spool under conditions of intermittent demand. The invention is particularly applicable to the handling of superconductive cable, but the invention is also applicable to the unreeling and reeling of other strands, such as electrical cable, wire, cord, other cables, fish line, wrapping paper and numerous other materials.

  11. Behavioral Economics Applied to Energy Demand Analysis: A Foundation -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration Appendix A Behavioral Economics Applied to Energy Demand Analysis: A Foundation Release date: October 15, 2014 Neoclassical economics has shaped our understanding of human behavior for several decades. While still an important starting point for economic studies, neoclassical frameworks have generally imposed strong assumptions, for example regarding utility maximization, information, and foresight, while treating consumer preferences as given or external to

  12. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Charles; Neenan, Bernie

    2005-11-09

    Dynamic retail pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response has been an afterthought, and in some cases not given any weight at all. But that may be changing, as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period during which utilities were required to offer a default or standard offer generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached the end of their transitional period, and several have adopted or are actively considering an RTP-type default service for large commercial and industrial (C&I) customers. In most cases, the primary reason for adopting RTP as the default service has been to advance policy objectives related to the development of competitive retail markets. However, if attention is paid in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This article, which draws from a lengthier report, describes experience to date with RTP as a default service, focusing on its role as an instrument for cultivating price responsive demand.1 As of summer 2005, default service RTP was in place or approved for future implementation in five U.S. states: New Jersey, Maryland, Pennsylvania, New York, and Illinois. For each of these states, we conducted a detailed review of the regulatory proceedings leading to adoption of default RTP and interviewed regulatory staff and utilities in these states, as well as eight competitive retail suppliers active in these markets.

  13. Reducing Energy Demand in Buildings Through State Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism

  14. ECIS-Princeton Power Systems, Inc.: Demand Response Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Power Systems, Inc.: Demand Response Inverter - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  15. Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis | Department of Energy Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon scenario_analysis_melendez1_07.pdf More Documents & Publications Hydrogen Policy and Analyzing the Transition Hydrogen Transition Study Lessons and Challenges for Early Hydrogen Refueling

  16. Demand Response Performance and Communication Strategy: AHRI and CEE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Demand Response Performance and Communication Strategy: AHRI and CEE DOE Building Technologies Office Conference NREL, Golden, Colorado, May 1, 2014 | 2 A Growing Crisis: Peak Utility Load Source: DOE workshop, Southern California Edison, 4/22/2008 Outdoor Ambient Utility Load Although many utilities seek HVAC equipment with high efficiency at peak load conditions, that is a very costly solution that customers won't buy. The best solution is not efficiency at occasional peak load conditions;

  17. Tribal Facilities Retrofits: Freeing Up Resources through Reduced Demand

    Energy Savers [EERE]

    up resources through reduced demand" Elias Duran - Facilities Manager ¡ Day to day operations of facilities ¡ Budget control over facilities ¡ Project needs for future space requirements ¡ Maintenance ¡ Capital improvements ¡ Brief history of the Tlingit & Haida Tribes ¡ Tour of our existing facilities ¡ Historical utility cost data ¡ Summary of Project Objectives ¡ Expected cost and emission reductions ¡ Strategic planning for future implementation Two separate Tribes United

  18. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands March 23, 2015 Analysis and Sustainability Peer Review Drs. Indrajeet Chaubey and Ben Gramig Purdue University This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * Overall goal is to conduct a watershed-scale sustainability assessment of multiple energy crops and removal of crop residues * Assessment conducted in two watersheds representative of

  19. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect (OSTI)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  20. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  1. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses. The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  2. Electricity Demand Evolution Driven by Storm Motivated Population Movement

    SciTech Connect (OSTI)

    Allen, Melissa R; Fernandez, Steven J; Fu, Joshua S; Walker, Kimberly A

    2014-01-01

    Managing the risks posed by climate change to energy production and delivery is a challenge for communities worldwide. Sea Level rise and increased frequency and intensity of natural disasters due to sea surface temperature rise force populations to move locations, resulting in changing patterns of demand for infrastructure services. Thus, Infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Combining climate predictions and agent based population movement models shows promise for exploring the universe of these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these patterns. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. This work suggests that the importance of established evacuation routes that move large populations repeatedly through convergence points as an indicator may be under recognized.

  3. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  4. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    SciTech Connect (OSTI)

    Lawrence Berkeley National Laboratory; Kiliccote, Sila

    2011-11-18

    Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

  5. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  6. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  7. LPG export growth will exceed demand by 2000

    SciTech Connect (OSTI)

    True, W.R.

    1994-08-08

    LPG supplies for international trade will increase sharply through 2000 and begin to outstrip demand by 1997 or 1998. This outlook depends on several production projects proceeding as planned. Leading the way to increased volumes are projects in Algeria, Nigeria, and Australia, among others. Purvin and Gertz, Dallas, projected this trend earlier this year at an international LPG seminar near Houston. Representatives from LPG-supplying countries also presented information to support this view and subsequently supplied more specifics to OGJ in response to questions. This paper discusses this information. Trends in Africa, Australia, North America, and South America are forecast.

  8. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  9. EDS coal liquefaction process development. Phase V. EDS commercial plant study design update. Illinois coal. Volume 1. Main report

    SciTech Connect (OSTI)

    Epperly, W. R.

    1981-03-01

    The objectives of the Study Design Update (SDU) were to identify the technical issues facing a potential commercial-size EDS plant design; to provide a reliable basis for estimating the cost of EDS products; and to furnish research guidance to the EDS Project. The SDU consists of two distinct studies in which different processing schemes are used to produce the hydrogen and fuel gas required by the plant. These studies are referred to as the Base Case and the Market Flexibility Sensitivity Case. In the Base Case, hydrogen is generated by steam reforming of the light hydrocarbon gases produced in the plant. Fuel gas is generated by feeding the bottoms stream from the liquefaction section vacuum pipestill to a FLEXICOKING unit. In the FLEXICOKING unit reactor, the bottoms stream is converted to coke; additional liquid product is also recovered. The coke is converted to low-Btu fuel gas in the FLEXICOKING unit gasifier. In the Market Flexibility Sensitivity (MFS) Case, the bottoms stream from the vacuum pipestill is split, and about half is sent to the FLEXICOKING unit for recovery of additional liquid product and production of fuel gas. The remainder of the bottoms stream is converted to hydrogen in a Partial Oxidation Unit. Hence the MFS Case does not consume light hydrocarbon gases produced and they are available for sale. The study of these two cases has demonstrated the importance of bottoms process selection to the economics and thermal efficiency of an EDS plant. Volume 1 - Main Report has been developed to be a stand-alone document. Both the Base Case and Market Flexibility Sensitivity (MFS) Case are covered. This volume includes an overview and detailed case summaries. It also covers economics, product recovery factors, material and energy balances, cost estimates and enviromental considerations.

  10. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

  11. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

  12. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  13. The Impact of Uncertain Physical Parameters on HVAC Demand Response

    SciTech Connect (OSTI)

    Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai; Fuller, Jason C.

    2014-03-01

    HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units. These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.

  14. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  15. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  16. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  17. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect (OSTI)

    Chiu, C.H.

    1997-11-24

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  18. Bibliography of the Maryland Power Plant Research Program, fifteenth edition

    SciTech Connect (OSTI)

    McLean, R.I.

    1994-02-01

    The Power Plant Siting Act of 1971 established the Power Plant Research Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed tranmission line routes, assessing the impact of existing generation facilities, and investigating generic issues related to power plant site evaluation and associated environmental and land use considerations. The bibliography is a compilation of all the studies performed for and or by the Power Plant and Environmental Review Division since its inception.

  19. Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant

    Office of Environmental Management (EM)

    Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant Project Description Beacon Power will design, build, and operate a utility-scale 20MW flywheel plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for the plant owner/operator, Hazle Spindle LLC The plant will provide frequency regulation services to grid operator PJM Interconnection. The Beacon Power technology uses flywheels to recycle energy from the grid in response to changes in demand and grid

  20. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    SciTech Connect (OSTI)

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  1. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect (OSTI)

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls strategies that are 'hardened' and pre-programmed into facility's software and hardware; More affordable because automation can help reduce labor costs associated with manual DR strategies initiated by facility staff and can be used for long-term.

  2. U Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the atmosphere through evaporation or through plant transpiration which includes the process of plant photosynthesis (where plants release oxygen and water through small...

  3. Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 1 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth1"...

  4. Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy...

    Open Energy Info (EERE)

    1 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 11 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth11" Showing 2...

  5. Property:OpenEI/UtilityRate/FixedDemandChargeMonth2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 2 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth2"...

  6. Property:OpenEI/UtilityRate/FixedDemandChargeMonth3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 3 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth3"...

  7. Property:OpenEI/UtilityRate/FixedDemandChargeMonth6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 6 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth6"...

  8. Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 8 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth8"...

  9. Property:OpenEI/UtilityRate/FixedDemandChargeMonth7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 7 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth7"...

  10. US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool HYDRA Program PDF icon...

  11. Property:OpenEI/UtilityRate/FixedDemandChargeMonth9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 9 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth9"...

  12. Property:OpenEI/UtilityRate/FixedDemandChargeMonth5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 5 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth5"...

  13. Property:OpenEI/UtilityRate/FixedDemandChargeMonth4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 4 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth4"...

  14. Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy...

    Open Energy Info (EERE)

    2 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 12 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth12" Showing 2...

  15. Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy...

    Open Energy Info (EERE)

    0 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 10 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth10" Showing 2...

  16. Bioenergy Demand in a Market Driven Forest Economy (U.S. South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Breakout Session 1A: Biomass Feedstocks for the...

  17. FEMP Presents Its Newest On-Demand eTraining Course on Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents Its Newest On-Demand eTraining Course on Building Automation Systems FEMP Presents Its Newest On-Demand eTraining Course on Building Automation Systems November 19, 2013 - ...

  18. A National Forum on Demand Response: What Remains to Be Done...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential In July ...

  19. Value of Demand Response: Quantities from Production Cost Modeling (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind and solar power generation. However, managed loads in grid models are limited by data availability and modeling complexity. This presentation focuses on the value of co-optimized DR resources to provide energy and ancillary services in a production cost model. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves. In addition, the revenue is characterized by the capacity, energy, and units of DR enabled.

  20. Pilot Testing of Commercial Refrigeration-Based Demand Response

    SciTech Connect (OSTI)

    Hirsch, Adam; Clark, Jordan; Deru, Michael; Trenbath, Kim; Doebber, Ian; Studer, Daniel

    2015-10-08

    Supermarkets potentially offer a substantial demand response (DR) resource because of their high energy intensity and use patterns. This report describes a pilot project conducted to better estimate supermarket DR potential. Previous work has analyzed supermarket DR using heating, ventilating, and air conditioning (HVAC), lighting, and anti-condensate heaters. This project was concerned with evaluating DR using the refrigeration system and quantifying the DR potential inherent in supermarket refrigeration systems. Ancillary aims of the project were to identify practical barriers to the implementation of DR programs in supermarkets and to determine which high-level control strategies were most appropriate for achieving certain DR objectives. The scope of this project does not include detailed control strategy development for DR or development of a strategy for regional implementation of DR in supermarkets.

  1. Demand for petrochem feedstock to buoy world LPG industry

    SciTech Connect (OSTI)

    Not Available

    1992-05-18

    This paper reports that use of liquefied petroleum gas as petrochemical feedstock will increase worldwide, providing major growth opportunities for LPG producers. World exports of liquefied petroleum gas will increase more slowly than production as producers choose to use LPG locally as chemical feedstock and export in value added forms such as polyethylene. So predicts Poten and Partners Inc., New York. Poten forecasts LPG production in exporting countries will jump to 95 million tons in 2010 from 45 million tons in 1990. However, local and regional demand will climb to 60 million tons/year from 23 million tons/year during the same period. So supplies available for export will rise to 35 million tons in 2010 from 22 million tons in 1990.

  2. OPEC production: Untapped reserves, world demand spur production expansion

    SciTech Connect (OSTI)

    Ismail, I.A.H. )

    1994-05-02

    To meet projected world oil demand, almost all members of the Organization of Petroleum Exporting Countries (OPEC) have embarked on ambitious capacity expansion programs aimed at increasing oil production capabilities. These expansion programs are in both new and existing oil fields. In the latter case, the aim is either to maintain production or reduce the production decline rate. However, the recent price deterioration has led some major OPEC producers, such as Saudi Arabia and Iran, to revise downward their capacity plans. Capital required for capacity expansion is considerable. Therefore, because the primary source of funds will come from within each OPEC country, a reasonably stable and relatively high oil price is required to obtain enough revenue for investing in upstream projects. This first in a series of two articles discusses the present OPEC capacity and planned expansion in the Middle East. The concluding part will cover the expansion plans in the remaining OPEC countries, capital requirements, and environmental concerns.

  3. Market and Policy Barriers for Demand Response Providing Ancillary Services

    Broader source: Energy.gov [DOE]

    In this study, we attempt to provide a comprehensive examination of various market and policy barriers to demand response providing ancillary services in both ISO/RTO and non-ISO/RTO regions, especially at the program provider level. It is useful to classify barriers in order to create a holistic understanding and identify parties that could be responsible for their removal. This study develops a typology of barriers focusing on smaller customers that must rely on a program provider (i.e., electric investor owned utility or IOU, ARC) to create an aggregated DR resource in order to bring ancillary services to the balancing authority. The barriers were identified through examinations of regulatory structures, market environments, and product offerings; and discussions with industry stakeholders and regulators.

  4. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Energy Savers [EERE]

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  5. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications (EIA)

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  6. Report: Impacts of Demand-Side Resources on Electric Transmission Planning

    Energy Savers [EERE]

    | Department of Energy Report: Impacts of Demand-Side Resources on Electric Transmission Planning Report: Impacts of Demand-Side Resources on Electric Transmission Planning This report assesses the relationship between high levels of demand-side resources (including end-use efficiency, demand response, and distributed generation) and investment in new transmission or utilization of existing transmission. It summarizes the extensive modeling of transmission scenarios done through DOE-funded

  7. The Future of U.S. Natural Gas: Supply, Demand & Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developments | Department of Energy The Future of U.S. Natural Gas: Supply, Demand & Infrastructure Developments The Future of U.S. Natural Gas: Supply, Demand & Infrastructure Developments This analysis forecasts natural gas supply, demand, and infrastructure developments through 2030 using an inventory and cell model. After introduction of methodology and market approach, the analysis describes expectations of production and supply and demand. This includes how production shifts in

  8. Rehabilitation and life extension -- Vojany fossil power plant

    SciTech Connect (OSTI)

    Kudlovsk, J.

    1998-07-01

    The article briefly describes an example of two plants' unit's rehabilitation and reconstruction, which operate in the Slovak Republic power system. The goals to be achieved for these power plants: enable further operation of the power plants (EVO 1, EVO 2) as the significant electricity supply elements in the Eastern part of the Slovak Republic and at the same time as important power plants which are able to meet primary and secondary power output demands and frequency regulation demands; assure the EVO units compliance with the new environmental legislation valid in the Slovak Republic for air quality protection; trends of the expected emission and nominal emission amount is shown; upgrade the unit's obsolete control system for the boilers.

  9. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  10. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  11. Solana Generating Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  12. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  13. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

    2009-08-01

    Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was conducted using three different baseline models for estimation peak load reductions. One was three-in-ten baseline, which is based on the site electricity consumption from 7 am to 10 am for the three days with the highest consumption of the previous ten business days. The second model, the LBNL outside air temperature (OAT) regression baseline model, is based on OAT data and site electricity consumption from the previous ten days, adjusted using weather regressions from the fifteen-minute electric load data during each DR test event for each site. A third baseline that simply averages the available load data was used for sites less with less than 10 days of historical meter data. The evaluation also included surveying sites regarding any problems or issues that arose during the DR test events. Question covered occupant comfort, control issues and other potential problems.

  14. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

  15. Direct versus Facility Centric Load Control for Automated Demand Response

    SciTech Connect (OSTI)

    Koch, Ed; Piette, Mary Ann

    2009-11-06

    Direct load control (DLC) refers to the scenario where third party entities outside the home or facility are responsible for deciding how and when specific customer loads will be controlled in response to Demand Response (DR) events on the electric grid. Examples of third parties responsible for performing DLC may be Utilities, Independent System Operators (ISO), Aggregators, or third party control companies. DLC can be contrasted with facility centric load control (FCLC) where the decisions for how loads are controlled are made entirely within the facility or enterprise control systems. In FCLC the facility owner has more freedom of choice in how to respond to DR events on the grid. Both approaches are in use today in automation of DR and both will continue to be used in future market segments including industrial, commercial and residential facilities. This paper will present a framework which can be used to differentiate between DLC and FCLC based upon where decisions are made on how specific loads are controlled in response to DR events. This differentiation is then used to compare and contrast the differences between DLC and FCLC to identify the impact each has on:(1)Utility/ISO and third party systems for managing demand response, (2)Facility systems for implementing load control, (3)Communications networks for interacting with the facility and (4)Facility operators and managers. Finally a survey of some of the existing DR related specifications and communications standards is given and their applicability to DLC or FCLC. In general FCLC adds more cost and responsibilities to the facilities whereas DLC represents higher costs and complexity for the Utility/ISO. This difference is primarily due to where the DR Logic is implemented and the consequences that creates. DLC may be more certain than FCLC because it is more predictable - however as more loads have the capability to respond to DR signals, people may prefer to have their own control of end-use loads and FCLC systems. Research is needed to understand the predictability of FCLC which is related to the perceived value of the DR from the facility manager or home owner's perspective.

  16. Part 2: Performance of the THERMOSELECT{reg_sign} plant at Fondotoce, Italy: Product quality and distribution of chemical elements in the material flow

    SciTech Connect (OSTI)

    Stahlberg, R.

    1996-12-31

    Results of an extended and complete investigation period at the Thermoselect{reg_sign} solid waste demonstration plant in Fondotoce, Italy, will be discussed. The demonstration plant is an in-line process for commingled wastes combining a compression step, coking oven, and high temperature gasification using oxygen to achieve total decomposition of solid waste and simultaneous production of pollutant-free energy rich synthesis gas, inert and non-toxic vitrified mineral product, and the recovery of metals from the solid wastes. The process air emissions are by a significant margin below the current European and proposed USEPA, NSPS emission standards for MWCs. All processing water and that from the solid waste is recovered, cleaned in-house and reused by the process.

  17. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

  18. Real-time Pricing Demand Response in Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Marinovici, Maria C.; Berliner, Teri; Graves, Alan

    2012-07-26

    Abstract—Dynamic pricing schemes have been implemented in commercial and industrial application settings, and recently they are getting attention for application to residential customers. Time-of-use and critical-peak-pricing rates are in place in various regions and are being piloted in many more. These programs are proving themselves useful for balancing energy during peak periods; however, real-time (5 minute) pricing signals combined with automation in end-use systems have the potential to deliver even more benefits to operators and consumers. Besides system peak shaving, a real-time pricing system can contribute demand response based on the locational marginal price of electricity, reduce load in response to a generator outage, and respond to local distribution system capacity limiting situations. The US Department of Energy (DOE) is teaming with a mid-west electricity service provider to run a distribution feeder-based retail electricity market that negotiates with residential automation equipment and clears every 5 minutes, thus providing a signal for lowering or raising electric consumption based on operational objectives of economic efficiency and reliability. This paper outlines the capability of the real-time pricing system and the operational scenarios being tested as the system is rolled-out starting in the first half of 2012.

  19. Buildings sector demand-side efficiency technology summaries

    SciTech Connect (OSTI)

    Koomey, J.G.; Johnson, F.X.; Schuman, J.

    1994-03-01

    This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

  20. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  1. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  2. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  3. Apparatus producing constant cable tension for intermittent demand

    DOE Patents [OSTI]

    Lauritzen, Ted (Lafayette, CA)

    1985-01-01

    The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement.

  4. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    SciTech Connect (OSTI)

    Kirby, Brendan J

    2006-07-01

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

  5. Waste fuel, EMS may save plant $1M yearly

    SciTech Connect (OSTI)

    Barber, J.

    1982-05-24

    A mixture of paper trash and coal ash fueling an Erie, Pa. General Electric plant and a Network 90 microprocessor-based energy-management system (EMS) to optimize boiler efficiency will cost about $3 million and have a three-to-four-year payback. Over half the savings will come from the avoided costs of burning plant-generated trash. The EMS system will monitor fuel requirements in the boiler and compensate for changes in steam demand. It will also monitor plant electrical needs and control the steam diverted for cogeneration. (DCK)

  6. The start-up of the DIOS pilot plant (DIOS Project)

    SciTech Connect (OSTI)

    Sawada, Terutoshi

    1995-12-01

    The DIOS process has been successfully developed as an 8-year project commenced in April 1988. Based on the results of the element studies reported at the previous conference and at other meetings, the pilot plant, with a designed capacity of 500 t/d, was constructed and started up in october 1993. After the starting operation with the single smelting reduction furnace in the beginning of the first campaign, the pilot plant has been principally operated in integration, that is, with the smelting reduction furnace connected with the preheating and prereduction furnaces. So far five campaigns have been successfully conducted on schedule. The operation has been improved gradually and the designed performance has been achieved. New processes are targeted at the direct use of coal and iron ore fines to eliminate not only the problematic coke ovens but also pellet and sinter plants. The direct smelting reduction processes currently at the most advanced stage of development are the DIOS in Japan, the AISI in the USA and the HIsmelt in Australia.

  7. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  8. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2002-06-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's fourth quarterly technical progress report. It covers the period performance from January 1, 2002 through March 31, 2002.

  9. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  10. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  11. A National Forum on Demand Response: What Remains to Be Done to Achieve Its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential | Department of Energy A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential In July 2011, the Federal Energy Regulatory Commission's (FERC) staff and the Department of Energy (DOE) jointly submitted to Congress a required "Implementation Proposal for the National Action Plan on Demand Response." The Implementation Proposal was for FERC's June 2010

  12. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007 PDF icon deer08_shore.pdf More Documents & Publications Before the Subcommittee on Energy and Power - Committee on Energy and Commerce Drop In Fuels: Where the Road Leads Before the House Energy and Commerce Subcommittee on Energy and Power

  13. Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nebraska Company Expands to Meet Demand for Hydrogen Fuel Nebraska Company Expands to Meet Demand for Hydrogen Fuel February 25, 2014 - 12:00am Addthis The Energy Department recently posted a blog about Hexagon Lincoln, a company that creates carbon fiber composite fuel tanks used to transport hydrogen across the country. Read Nebraska Company Expands to Meet Demand for Hydrogen Fuel to learn more about the company's expansion. Addthis Related Articles Hexagon Lincoln develops carbon

  14. Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nebraska Company Expands to Meet Demand for Hydrogen Fuel Nebraska Company Expands to Meet Demand for Hydrogen Fuel February 4, 2014 - 12:06pm Addthis Hexagon Lincoln develops carbon fiber composite fuel tanks that help deliver hydrogen to fleets throughout the country. The company has more than doubled its workforce to accommodate growing demand for the tanks. | Photo courtesy of Hexagon Lincoln Hexagon Lincoln develops carbon fiber composite fuel tanks that help deliver hydrogen to

  15. Marketing & Driving Demand: Social Media Tools & Strategies - January 16,

    Office of Environmental Management (EM)

    2011 (Text Version) | Department of Energy Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) January 16, 2011 Conference Call transcript: "Marketing & Driving Demand: Social Media Tools & Strategies," from the U.S. Department of Energy. PDF icon Conference call transcript More Documents & Publications Using Social

  16. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-01-01

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  17. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Boolean. Name: Enable Demand Charge Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  18. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  19. What Is the Right Rate? Loan Rates and Demand | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Structuring Rebate and Incentive Programs for Sustainable Demand Peer Exchange Call on Financing and Revenue: Bond Funding Financing Small Business...

  20. Property:OpenEI/UtilityRate/DemandChargePeriod3FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...