National Library of Energy BETA

Sample records for demand capacity resources

  1. Capacity Demand Power (GW)

    E-Print Network [OSTI]

    California at Davis, University of

    Capacity Demand Power (GW) Hour of the Day The "Dip" Electricity Demand in Electricity Demand Every weekday, Japan's electricity use dips about 6 GW at 12 but it also shows that: · Behavior affects naHonal electricity use in unexpected ways

  2. Incorporating Demand Resources into ISO New England’s Forward Capacity Market 

    E-Print Network [OSTI]

    Winkler, E.

    2008-01-01

    of 2007 that defined 6,102 megawatts (MW) of new demand- and supply-side resources now eligible to compete in the market. Approximately 40 percent—or 2,483 MW—of the new, qualified projects are demand-side resources such as demand response, energy...

  3. Stochastic capacity modeling to support demand/capacity gap planning

    E-Print Network [OSTI]

    Niles, Augusta (Augusta L.)

    2014-01-01

    Capacity strategy has established methods of dealing with uncertainty in future demand. This project advances the concept of capacity strategy under conditions of uncertainty in cases where capacity is the primary source ...

  4. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  5. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  6. ,"Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by9" ,"Released:3a. January Monthly Peak HourB

  7. Sixth Northwest Conservation and Electric Power Plan Chapter 12: Capacity and Flexibility Resources

    E-Print Network [OSTI]

    ..................................................................................................................................... 2 Power System Requirements: Capacity, Energy, and FlexibilitySixth Northwest Conservation and Electric Power Plan Chapter 12: Capacity and Flexibility Resources................................................... 2 Capacity: Meeting Peak Demand

  8. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  9. Optimal Demand Response Capacity of Automatic Lighting Control

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    1 Optimal Demand Response Capacity of Automatic Lighting Control Seyed Ataollah Raziei and Hamed-mails: razieis1@udayton.edu and hamed@ee.ucr.edu Abstract--Demand response programs seek to ad- just the normal prior studies have extensively studied the capacity of offering demand response in buildings

  10. Assessing the Control Systems Capacity for Demand Response in

    E-Print Network [OSTI]

    LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand Response Research Center and funded by the California Energy of the Demand Response Research Center Industrial Controls Experts Working Group: · Jim Filanc, Southern

  11. Demand Response Resources in Pacific Northwest

    E-Print Network [OSTI]

    Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

  12. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  13. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February...

  14. ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES

    E-Print Network [OSTI]

    Gross, George

    ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES BY ANUPAMA SUNIL KOWLI B of consumers - called demand response resources (DRRs) - whose role has become increasingly important

  15. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning Reserveand B. Kirby. 2012. The Demand Response Spinning Reserve

  16. National Decentralized Water Resources Capacity Development Project

    E-Print Network [OSTI]

    Gold, Art

    National Decentralized Water Resources Capacity Development Project Mapping Onsite Treatment Needs Onsite Treatment Needs, Pollution Risks, and Management Options Using GIS Submitted by the University. Wastewater Planning Handbook: Mapping Onsite Treatment Needs, Pollution Risks, and Management Options Using

  17. FERC Presendation: Demand Response as Power System Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as...

  18. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

  19. Quantifying the Variable Effects of Systems with Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

  20. A Successful Implementation with the Smart Grid: Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

  1. Healthcare Facility Location and Capacity Configuration under Stochastic Demand 

    E-Print Network [OSTI]

    Han, Xue

    2014-12-18

    This dissertation addresses two topics. The first topic is strategic dynamic supply chain reconfiguration (DSCR) problem, in which the proposed capacity configuration network is employed in the second topic: healthcare facility location and capacity...

  2. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Broader source: Energy.gov (indexed) [DOE]

    Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the...

  3. Sustainable Energy Resources for Consumers (SERC) - On-Demand...

    Broader source: Energy.gov (indexed) [DOE]

    aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters....

  4. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  5. Cogeneration System Size Optimization Constant Capacity and Constant Demand Models 

    E-Print Network [OSTI]

    Wong-Kcomt, J. B.; Turner, W. C.

    1993-01-01

    is made up by auxiliary boilers. 2. Isolated Operation, Thermal Load Following: the system is sized to match or exceed the maximum thermal load. Any electrical load deficit is made up by auxiliary generator. 3. Electrically Baseloaded, the system... is sized to meet - or slightly exceed the minimum electrical demand. 4. Thermally Baseloaded, the system is sized to meet - or slightly exceed the minimum thermal demand. 5. Maximum Legal System Size, as determined by the Public Utilities...

  6. On-Demand Based Wireless Resources Trading for Green Communications

    E-Print Network [OSTI]

    Cheng, Wenchi; Zhang, Hailin; Wang, Qiang

    2011-01-01

    The purpose of Green Communications is to reduce the energy consumption of the communication system as much as possible without compromising the quality of service (QoS) for users. An effective approach for Green Wireless Communications is On-Demand strategy, which scales power consumption with the volume and location of user demand. Applying the On-Demand Communications model, we propose a novel scheme -- Wireless Resource Trading, which characterizes the trading relationship among different wireless resources for a given number of performance metrics. According to wireless resource trading relationship, different wireless resources can be consumed for the same set of performance metrics. Therefore, to minimize the energy consumption for given performance metrics, we can trade the other type of wireless resources for the energy resource under the demanded performance metrics. Based on the wireless resource trading relationship, we derive the optimal energy-bandwidth and energy-time wireless resource trading ...

  7. Interoperability of Demand Response Resources Demonstration in NY

    SciTech Connect (OSTI)

    Wellington, Andre

    2014-03-31

    The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

  8. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

  9. Incorporating endogenous demand dynamics into long-term capacity expansion power system models for Developing countries

    E-Print Network [OSTI]

    Jordan, Rhonda LeNai

    2013-01-01

    This research develops a novel approach to long-term power system capacity expansion planning for developing countries by incorporating endogenous demand dynamics resulting from social processes of technology adoption. ...

  10. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann

    2008-10-01

    This report summarizes San Diego Gas& Electric Company?s collaboration with the Demand Response Research Center to develop and test automation capability for the Capacity Bidding Program in 2007. The report describes the Open Automated Demand Response architecture, summarizes the history of technology development and pilot studies. It also outlines the Capacity Bidding Program and technology being used by an aggregator that participated in this demand response program. Due to delays, the program was not fully operational for summer 2007. However, a test event on October 3, 2007, showed that the project successfully achieved the objective to develop and demonstrate how an open, Web?based interoperable automated notification system for capacity bidding can be used by aggregators for demand response. The system was effective in initiating a fully automated demand response shed at the aggregated sites. This project also demonstrated how aggregators can integrate their demand response automation systems with San Diego Gas& Electric Company?s Demand Response Automation Server and capacity bidding program.

  11. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Control of Distributed Energy Resources and Demand ResponseControl of Distributed Energy Resources and Demand Responseinstalled distribution energy resources (DER) in the form of

  12. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Optimal Control of Distributed Energy Resources and DemandRenewable Energy, former Distributed Energy Program of theOptimal Control of Distributed Energy Resources and Demand

  13. Coordinated Aggregation of Distributed Demand-Side Resources

    E-Print Network [OSTI]

    community control. It includes renewable micro-generation, storage, combined heat and power, and highlyCoordinated Aggregation of Distributed Demand-Side Resources Final Project Report Power Systems@cornell.edu Phone: 607-255-7156 Power Systems Engineering Research Center The Power Systems Engineering

  14. Coordinated Aggregation of Distributed Demand-Side Resources

    E-Print Network [OSTI]

    control. It includes renewable micro-generation, storage, combined heat and power, and highly adjustableCoordinated Aggregation of Distributed Demand-Side Resources Final Project Report Power Systems@cornell.edu Phone: 607-255-7156 Power Systems Engineering Research Center The Power Systems Engineering

  15. Using heat demand prediction to optimise Virtual Power Plant production capacity

    E-Print Network [OSTI]

    Hurink, Johann

    1 Using heat demand prediction to optimise Virtual Power Plant production capacity Vincent Bakker that generate electricity (and heat) at the kilowatt level, which allows them to be installed in households distributed electricity generation (micro-generation e.g. solar cells, micro Combined Heat and Power (micro

  16. Author's personal copy Congestion and emissions mitigation: A comparison of capacity, demand,

    E-Print Network [OSTI]

    Bertini, Robert L.

    Keywords: Congestion mitigation Emissions reductions Vehicle emissions Traffic management a b s t r a c t Capacity, demand, and vehicle based emissions reduction strategies are compared for sev- eral pollutants congested arterials. Advanced-efficiency vehicles with emissions rates that are less sensitive to congestion

  17. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  18. POWERTECH 2009, JUNE 28 -JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response Resources in

    E-Print Network [OSTI]

    Gross, George

    POWERTECH 2009, JUNE 28 - JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response, IEEE, Abstract--The use of demand-side resources, in general, and demand response resources (DRRs concerns. Integration of demand response resources in the competitive electricity markets impacts resource

  19. Assessing the Control Systems Capacity for Demand Response in California Industries

    SciTech Connect (OSTI)

    Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

    2012-01-18

    California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

  20. Resource Allocation With Non-Deterministic Demands and Profits

    E-Print Network [OSTI]

    Preece, Alun

    100000$ Appeld'offrespublic 1 Demanded'approvisionnement 25000$àDemanded'approvisionnementet Appeld'offresurinvitationou 3soumissions 2 5000$àDemanded'approvisionnementet Appeld services reliés Services de professionnels 3000$àDemanded'approvisionnementet 1soumission 2 4

  1. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  2. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    Energy and power capacity of 1,000 heterogeneous ACs or heatthe hourly energy and power capacity for 1,000 heterogeneousparticipating in wholesale energy, capacity, and ancillary

  3. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    Energy and power capacity of 1,000 heterogeneous ACs or heatthe hourly energy and power capacity for 1,000 heterogeneousparticipating in wholesale energy, capacity, and ancillary

  4. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 Federal Register /1 PiotrDraft3: Demand-Side

  5. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    SciTech Connect (OSTI)

    Dooley, James J.

    2013-08-05

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deep geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity – global geologic CO2 storage capacity could be: 35,300 GtCO2 of “theoretical” capacity; 13,500 GtCO2 of “effective” capacity; 3,900 GtCO2, of “practical” capacity; and 290 GtCO2 of “matched” capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a “lack” of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.

  6. Distributed Algorithms for Control of Demand Response and Distributed Energy Resources

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    Distributed Algorithms for Control of Demand Response and Distributed Energy Resources Alejandro D networks. These algorithms are relevant for load curtailment control in demand response programs, and also is currently achieved through demand response programs in which participants, i.e., demand re- sponse resources

  7. Museum-on-Demand: Dynamic management of resources

    E-Print Network [OSTI]

    Celentano, Augusto

    A DEMAND-DRIVEN APPROACH FOR EFFICIENT INTERPROCEDURAL DATA FLOW ANALYSIS by Evelyn Duesterwald M Duesterwald 1996 ii #12;A DEMAND-DRIVEN APPROACH FOR EFFICIENT INTERPROCEDURAL DATA FLOW ANALYSIS Evelyn to interprocedural data ow analysis that is demand-driven rather than exhaus- tive. Demand-driven analysis reduces

  8. US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool HYDRA Program hydrajoseck.pdf...

  9. Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Yazdani, B.

    2011-01-01

    ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE IMPLEMENTATION OF IECC CODE IN TEXAS: ANALYSIS FOR SINGLE?FAMILY RESIDENCES 11th International Conference for Enhanced Building Operations New York City, October 18 ? 20, 2011 Hyojin Kim Research... Statewide Electricity and Demand Savings from the IECC Code in TX 11th ICEBO Conference Oct. 18 ? 20, 2011 2 Outline Introduction Methodology Base?Case Building Results Summary Statewide Electricity and Demand Savings from the IECC Code in TX 11th...

  10. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    Impacts of Reduced Electricity Demand. Part 1. MethodologyImpacts of Reduced Electricity Demand. Part 1. MethodologyFigure 3: Commercial electricity demand with and without the

  11. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    pdf. ———. 2011b. Residential Demand Module of the Nationaland the Commercial and Residential Demand Modules (DOE EIAcommercial and residential electricity demand projections

  12. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01

    S.  Kiliccote.   Estimating Demand Response Load  Impacts: in California.   Demand Response Research Center, Lawrence and Techniques for Demand Response.  LBNL Report 59975.  

  13. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01

    program, demand  response aggregator, demand response  vii WITH AN AGGREGATOR USING OPEN AUTOMATED DEMAND RESPONSE ThisWith an Aggregator Using Open Automated Demand Response is 

  14. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    in emissions, primary energy, capacity and composition ofin primary energy use, emissions and capacity and the changei.e. energy, upper plots) and capacity variables. The plots

  15. Assessing the Control Systems Capacity for Demand Response in California Industries

    E-Print Network [OSTI]

    Ghatikar, Girish

    2013-01-01

    5: Periods of Elevated Electricity Demand 8am-12pm 12pm-2pmC-8: Diurnal Variations in Electricity Demand Figure C-9:Variations in Electricity Demand Figure C-10: Seasonal

  16. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    that pre-cool, rebound, or otherwise shift energy use to theexhibit almost no rebound and save some energy on DR days,min) Rebound (kW) Daily peak demand (%) Daily energy (%)

  17. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    that pre-cool, rebound, or otherwise shift energy use to theexhibit almost no rebound and save some energy on DR days,min) Rebound (kW) Daily peak demand (%) Daily energy (%)

  18. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01

    Protocol for Building Automation and Control  Networks.  Protocol for Building Automation and Control  Networks, Demand Response Automation Server  Demand Response Research 

  19. Memorandum: Cost-effectiveness valuation framework for Demand Response Resources: Guidelines and Suggestions (DRAFT)

    E-Print Network [OSTI]

    Memorandum: Cost-effectiveness valuation framework for Demand Response Resources: Guidelines and Suggestions (DRAFT) To: Pacific Northwest Demand Response Project Cost-Effectiveness Working Group From: Chuck Northwest Demand Response Project agreed to form three Working Groups to explore DR issues in more detail

  20. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    balancing, especially important in power systems with high penetrations of intermittent renewable resources like wind

  1. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    balancing, especially important in power systems with high penetrations of intermittent renewable resources like wind

  2. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    E.1 ACs . . . . . . E.2 Heat pumps . . E.3 Water heaters .heterogeneous ACs or heat pumps. Resource duration curvesas air conditioners, heat pumps, electric water heaters, and

  3. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    E.1 ACs . . . . . . E.2 Heat pumps . . E.3 Water heaters .heterogeneous ACs or heat pumps. Resource duration curvesas air conditioners, heat pumps, electric water heaters, and

  4. Capacity expansion planning of alternative resources Formulation of a new mechanism to

    E-Print Network [OSTI]

    McCalley, James D.

    Capacity expansion planning of alternative resources ­ Formulation of a new mechanism to procure · Gap between net revenues produced by energy markets and the capital costs of investing in new capacity GENERATING CAPACITY, MIT 2006 . FTI Consulting, "Evaluation of the New York Capacity Market", March 2013

  5. Hydrogen Demand and Resource Assessment Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,Fuel

  6. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    ngcc nuclear coal ngcc nuclear other peaking renewable otherpeaking renewable Terawatt- hours Terawatt-hoursnuclear other peaking renewable Marginal Capacity Starting

  7. Resource demand growth and sustainability due to increased world consumption

    SciTech Connect (OSTI)

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially needed immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.

  8. Resource demand growth and sustainability due to increased world consumption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially neededmore »immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.« less

  9. Hydrogen Demand and Resource Analysis (HyDRA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartment ofPowerScenario Analysis Model (HDSAM)

  10. SGDP Report Now Available: Interoperability of Demand Response Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard Rutland County DataBuildingDemonstration in NY (February

  11. Impacts of Demand-Side Resources on Electric Transmission Planning |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards andEnergy Illinois StateEnergyDepartment

  12. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    SciTech Connect (OSTI)

    Kirby, Brendan J

    2006-07-01

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

  13. Distributed Algorithms for Control of Demand Response and Distributed Energy Resources

    E-Print Network [OSTI]

    Liberzon, Daniel

    Distributed Algorithms for Control of Demand Response and Distributed Energy Resources Alejandro D algorithms for control and coordination of loads and distributed energy resources (DERs) in distribution) integration of distributed energy resources (DERs), e.g., photovoltaics (PV); and iii) new storage

  14. Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 MoresteelmakingRenewable EnergyMaintenanceMaximizing<EnergyWater

  15. Chapter 3 Demand-Side Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to 13.1 - Purchase

  16. Chapter 3: Demand-Side Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to 13.1 -Chapter 3 of the

  17. FERC Presendation: Demand Response as Power System Resources, October 29,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 2011 CX-006821:for EnergyEnergyDepartment2010 |

  18. SGDP Report: Interoperability of Demand Response Resources Demonstration in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION J APPENDIX ADepartment of Energy SG NetworkNY

  19. On Production and Subcontracting Strategies for Manufacturers with Limited Capacity and Backlog-Dependent Demand

    E-Print Network [OSTI]

    Tan, Barli

    We study a manufacturing firm that builds a product to stock to meet a random demand. If there is a positive surplus of finished goods, the customers make their purchases without delay and leave. If there is a backlog, the ...

  20. Unexpected consequences of demand response : implications for energy and capacity price level and volatility

    E-Print Network [OSTI]

    Levy, Tal Z. (Tal Ze'ev)

    2014-01-01

    Historically, electricity consumption has been largely insensitive to short term spot market conditions, requiring the equating of supply and demand to occur almost exclusively through changes in production. Large scale ...

  1. Demand Response This is the first of the Council's power plans to treat demand response as a resource.1

    E-Print Network [OSTI]

    . WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding. Demand response as defined here does not include involuntary curtailment imposed on electricity users to conditions in wholesale power markets, its electricity demand is not. This situation has a number of adverse

  2. 1993 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 2, Book 2, Capacity.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    Monthly totals of utility loads and capacities extrapolated as far as 2009 with a probability estimate of enough water resources for hydro power.

  3. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    follows: • EDemand t : electricity demand during day t (incost of reducing electricity demand (in $/MWh e ) • HRDCost:maximum fraction of electricity demand to be met by demand

  4. Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid

    E-Print Network [OSTI]

    growth, China's energy consumption is rising at one of the fastest rates in the world, almost 8% per year, in particular, household electricity use rose by 12.6% per year, and natural gas by 19.5% in the last decade1Environmental and Resource Economics Household Energy Demand in Urban China: Accounting

  5. Location, location, location: The variable value of renewable energy and demand-side efficiency resources

    E-Print Network [OSTI]

    Fowlie, Meredith

    and renewable energy resources. We eval- uate renewable energy (RE) and energy efficiency (EE) technologiesLocation, location, location: The variable value of renewable energy and demand-side efficiency mitigation efforts in the electricity sector emphasize accelerated deployment of energy efficiency measures

  6. Simultaneous Production and Maintenance Planning for a Single Capacitated Resource facing both a Dynamic Demand and

    E-Print Network [OSTI]

    Weber, Stefan

    and maintenance operations for a capacitated resource facing a dynamic demand for different types of products operations for the remaining time in between the maintenance activities. Many practitioners and academics as different forms of interaction between maintenance and setup operations. The lot-sizing part of our generic

  7. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01

    Water Supply Related Electricity Demand in California. CECbuildings, heating electricity demand is not included incenter-related electricity demand, or 573.4 MW, corresponds

  8. Analytical Frameworks to Incorporate Demand Response in Long-term Resource Planning

    E-Print Network [OSTI]

    Satchwell, Andrew

    2014-01-01

    Cost- effectiveness of Demand Response. ” Prepared for theon the National Action Plan on Demand Response, February.Role of Automated Demand Response. ” LBNL-4189E, November.

  9. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01

    Consulting), and Dave Shroyer (SCG). Demand Response andOpen Automated Demand Response Opportunities for DataIAW Research Team, Demand Response Research Center, Lawrence

  10. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  11. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01

    California Energy Demand 2010 2020 Adopted Forecast presentsEnergy Commission, Demand Analysis Office. Ag and Water Pumping Energy Forecasts (

  12. Application analysis of Monte Carlo to estimate the capacity of geothermal resources in Lawu Mount

    SciTech Connect (OSTI)

    Supriyadi, E-mail: supriyadi-uno@yahoo.co.nz [Physics, Faculty of Mathematics and Natural Sciences, University of Jember, Jl. Kalimantan Kampus Bumi Tegal Boto, Jember 68181 (Indonesia); Srigutomo, Wahyu [Complex system and earth physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Munandar, Arif [Kelompok Program Penelitian Panas Bumi, PSDG, Badan Geologi, Kementrian ESDM, Jl. Soekarno Hatta No. 444 Bandung 40254 (Indonesia)

    2014-03-24

    Monte Carlo analysis has been applied in calculation of geothermal resource capacity based on volumetric method issued by Standar Nasional Indonesia (SNI). A deterministic formula is converted into a stochastic formula to take into account the nature of uncertainties in input parameters. The method yields a range of potential power probability stored beneath Lawu Mount geothermal area. For 10,000 iterations, the capacity of geothermal resources is in the range of 139.30-218.24 MWe with the most likely value is 177.77 MWe. The risk of resource capacity above 196.19 MWe is less than 10%. The power density of the prospect area covering 17 km{sup 2} is 9.41 MWe/km{sup 2} with probability 80%.

  13. Hawaii demand-side management resource assessment. Final report: DSM opportunity report

    SciTech Connect (OSTI)

    1995-08-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

  14. North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power development

    E-Print Network [OSTI]

    Meju, Max

    North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power University wide research, aims to develop a system to promote the exploitation of hydro power in North with regard to hydro schemes Reviewing and re-formulating ill defined requirements for environmental

  15. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-04-01

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprint under different variable generation penetrations.

  16. Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis

    SciTech Connect (OSTI)

    1995-04-01

    This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

  17. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01

    and thus available for irrigation pump-based demand responseeach) and booster pumps used in crop irrigation also make up

  18. Abstract --Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed

    E-Print Network [OSTI]

    Zhang, Wei

    to accurately estimate the transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies, where dynamics on time scales of seconds to minutes demand response. The aggregated model efficiently includes statistical information of the population

  19. Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.

    2011-01-01

    This paper presents estimates of the statewide electricity and electric demand savings achieved from the adoption of the International Energy Conservation Code (IECC) for single-family residences in Texas and includes the corresponding increase...

  20. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect (OSTI)

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  1. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    Solution Procedure for SDP Energy Prices We use electricityLondon for assistance with energy price modeling. Siddiquiof DER under uncertain energy prices with demand response

  2. A COMPLEX ADAPTIVE SYSTEMS ANALYSIS TO EXPLORE OPTIMAL SUPPLY-SIDE AND DEMAND-SIDE MANAGEMENT STRATEGIES FOR URBAN WATER RESOURCES 

    E-Print Network [OSTI]

    Aljanabi, Hassan

    2012-05-04

    Urban water management specifies both supply-side and demand-side strategies to balance water supply and demands for social and environmental systems. As the sustainability of water resources depends on the dynamic interactions among the consumers...

  3. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  4. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01

    Piette, LBNL. Integrating Renewable Resources in Californiaprocurement from eligible renewable energy resources to 33%to Enable the Integration of Renewable Resources David S.

  5. DSM Program Development. The demand-side resource options were developed using a combination of internal engineering estimates and external consulting services. The

    E-Print Network [OSTI]

    for the determination of the optimum program level to be included in the IRP. The demand-side management options wereDSM Program Development. The demand-side resource options were developed using a combination Practices Manual: Economic Analysis of Demand-side Programs and Projects.2 The proposed DSM programs

  6. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: Energy.gov [DOE]

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

  7. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01

    DR and Traditional Energy Storage for Grid Services Energya grid resource integrated with renewable and energy storagegrid, whereas DR resources do not. Examples of these energy storage

  8. Quantifying the Benefits of Resource Multiplexing in OnDemand Data Centers #

    E-Print Network [OSTI]

    Chandra, Abhishek

    centers host multiple applications on server farms by dynamically provisioning resources in response is dependent on several factors --- the gran­ ularity and frequency of reallocation, the number of applications and storage resources. In such environments, customers pay for data center resources and in turn are provided

  9. Quantifying the Benefits of Resource Multiplexing in On-Demand Data Centers

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    centers host multiple applications on server farms by dynamically provisioning resources in response is dependent on several factors -- the gran- ularity and frequency of reallocation, the number of applications and storage resources. In such environments, customers pay for data center resources and in turn are provided

  10. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01

    and Techniques for Demand Response”, May 2007. LBNL-59975 38the Role of Automated Demand Response, 2010. Watson, D. , N.Fast Automated Demand Response to Enable Integration of

  11. Resource Allocation with Unknown Constraints: An Extremum Seeking Control Approach and Applications to Demand Response

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas

    2014-01-01

    Z. Yang, and Y. Zhang, “Demand response manage- ment withS. H. Low, “Optimal demand response: Problem formulation andYang, and X. Guan, “Optimal demand response scheduling with

  12. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  13. Scenario Planning as the Development of Leadership Capability and Capacity; and Virtual Human Resource Development 

    E-Print Network [OSTI]

    McWhorter, Rochell 1963-

    2011-08-03

    and the conduciveness of these environments for innovative developmental activities to build leadership capability and capacity. Data sources included 1) fifty semi-structured interviews with five expert-practitioners purposively selected for their experience in both...

  14. Motor proteins traffic regulation by supply-demand balance of resources

    E-Print Network [OSTI]

    Luca Ciandrini; I. Neri; Jean-Charles Walter; O. Dauloudet; A. Parmeggiani

    2014-09-24

    In cells and in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow chamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerised tubulin heterodimers). We present analytical results for the density profiles of bound motors, the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir.

  15. Report: Impacts of Demand-Side Resources on Electric Transmission Planning

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A Wholesale Power Rate ScheduleSHERMANDepartment of Energy|

  16. US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateofEnergy FuelFEDERALDepartmentNovemberFederal3U.S.

  17. South Korea-ANL Distributed Energy Resources and Demand Side Management |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin Jump to:SolkarSectorCompanyInformation

  18. US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009, AnnualEnergy A.I.D. HigherULDepartment of

  19. Coordination of Energy Efficiency and Demand Response: A Resource of the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L P JumpFarm Tool

  20. Deployment of Demand Response as a Real-Time Resource in Organized Markets

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGridDeepiSolar and Wind JumpEnergy| Open

  1. A Look Ahead at Demand Response in New England

    SciTech Connect (OSTI)

    Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

    2008-08-01

    The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

  2. 2013 IREP Symposium-Bulk Power System Dynamics and Control -IX (IREP), August 25-30, 2013, Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource

    E-Print Network [OSTI]

    Gross, George

    , Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource Economic (ES) and demand response resources (DRRs) to address power system economic and environmental concerns the utilization of demand response (DR) and ES resources (ESRs) to reliably and effectively meet the supply

  3. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

  4. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  5. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect (OSTI)

    Heffner, Grayson C.

    2002-09-01

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  6. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  7. A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-01

    Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

  8. Statewide Electricity and Demand Capacity Savings from the International Energy Conservation Code (IECC) Adoption for Single-Family Residences in Texas (2002-2011) 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J. S.; Yazdani, B.

    2013-01-01

    This report is the continuation of the previous 2011 Statewide Electricity Savings report from code-compliant, single-family residences built between 2002 and 2009. Statewide electricity and electric demand savings achieved from the adoption...

  9. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01

    M. A. Piette, Integrating Renewable Resources in CaliforniaEnable Integration of Renewable Resources,” February 2012.P. Worhach, ”|ntegration of Renewable Resources at 20% RPS,”

  10. Self-adaptive Cloud Capacity Planning Yexi Jiang, Chang-shing Perng, Tao Li, Rong Chang

    E-Print Network [OSTI]

    Li, Tao

    Self-adaptive Cloud Capacity Planning Yexi Jiang, Chang-shing Perng, Tao Li, Rong Chang School}@us.ibm.com Abstract--The popularity of cloud service spurs the increas- ing demands of cloud resources to the cloud a new method for cloud capacity planning with the goal of fully utilizing the physical resources, as we

  11. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  12. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  13. New coal plant technologies will demand more water

    SciTech Connect (OSTI)

    Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

    2008-04-15

    Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

  14. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as wind, solar, and electric vehicles as well as dispatchable loads and microgrids. Many of these resources will be "behind-the-meter" (i.e., demand resources) and...

  15. Demand Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  16. Implications of Model Configurations on Capacity Planning Decisions: Scenario Case Studies of the Western Interconnection and Colorado Region using the Resource Planning Model

    Broader source: Energy.gov [DOE]

    In this report, we analyze the impacts of model configuration and detail in capacity expansion models, computational tools used by utility planners looking to find the least cost option for planning the system and by researchers or policy makers attempting to understand the effects of various policy implementations. The present analysis focuses on the importance of model configurations—particularly those related to capacity credit, dispatch modeling, and transmission modeling—to the construction of scenario futures. Our analysis is primarily directed toward advanced tools used for utility planning and is focused on those impacts that are most relevant to decisions with respect to future renewable capacity deployment. To serve this purpose, we develop and employ the NREL Resource Planning Model to conduct a case study analysis that explores 12 separate capacity expansion scenarios of the Western Interconnection through 2030.

  17. Demand Response Aggregated Demand Response Pilot

    E-Print Network [OSTI]

    · Owns and operates over 1,300 megawatts of nuclear, hydroelectric, solar, and wind generation assets · Increasingly less capacity and flexibility of its hydroelectric resources · EN's Pilot provides BPA 35 MW

  18. Algorithms Demands and Bounds Applications of Flow

    E-Print Network [OSTI]

    Kabanets, Valentine

    2/28/2014 1 Algorithms ­ Demands and Bounds Applications of Flow Networks Design and Analysis of Algorithms Andrei Bulatov Algorithms ­ Demands and Bounds 12-2 Lower Bounds The problem can be generalized) capacities (ii) demands (iii) lower bounds A circulation f is feasible if (Capacity condition) For each e E

  19. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping of any forecast of electricity demand and developing ways to reduce the risk of planning errors

  20. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    E-Print Network [OSTI]

    Heffner, Grayson C.

    2002-01-01

    MARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDMARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDend-users they serve. Demand Response Programs, once called

  1. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    electricity. In this manner, demand side management is directly integrated into the wholesale capacity marketcapacity market U.S. Federal Energy Regulatory Commission Florida Reliability Coordinating Council incremental auctions independent electricity

  2. Global GPS Phones Market Size, Segmentation, Demand Forecast...

    Open Energy Info (EERE)

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  3. TPWRS-00322-2007.R2 1 Short-Term Resource Adequacy in

    E-Print Network [OSTI]

    Gross, George

    of the system to meet the aggregate customer demand with the appropriate quality [1]. Resource adequacy and the demand bids of price-responsive buyers. The regulatory framework of the vertically integrated utility in terms of a price-sensitive demand curve. The program gives incentives for providing capacity to markets

  4. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  5. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  6. Hawaii demand-side management resource assessment. Final report, Reference Volume 4: The DBEDT DSM assessment model user`s manual

    SciTech Connect (OSTI)

    1995-04-01

    The DBEDT DSM Assessment Model (DSAM) is a spreadsheet model developed in Quattro Pro for Windows that is based on the integration of the DBEDT energy forecasting model, ENERGY 2020, with the output from the building energy use simulation model, DOE-2. DOE-2 provides DSM impact estimates for both energy and peak demand. The ``User`s Guide`` is designed to assist DBEDT staff in the operation of DSAM. Supporting information on model structure and data inputs are provided in Volumes 2 and 3 of the Final Report. DSAM is designed to provide DBEDT estimates of the potential DSM resource for each county in Hawaii by measure, program, sector, year, and levelized cost category. The results are provided for gas and electric and for both energy and peak demand. There are two main portions of DSAM, the residential sector and the commercial sector. The basic underlying logic for both sectors are the same. However, there are some modeling differences between the two sectors. The differences are primarily the result of (1) the more complex nature of the commercial sector, (2) memory limitations within Quattro Pro, and (3) the fact that the commercial sector portion of the model was written four months after the residential sector portion. The structure for both sectors essentially consists of a series of input spreadsheets, the portion of the model where the calculations are performed, and a series of output spreadsheets. The output spreadsheets contain both detailed and summary tables and graphs.

  7. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

  8. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  9. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  10. The convergence of market designs for adequate generating capacity with special attention to the CAISO's resource adequacy problem

    E-Print Network [OSTI]

    Cramton, Peter C.

    2006-01-01

    This paper compares market designs intended to solve the resource adequacy (RA) problem, and finds that, in spite of rivalrous claims, the most advanced designs have nearly converged. The original dichotomy between approaches ...

  11. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  12. SGDP Report Now Available: Interoperability of Demand Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response Resources...

  13. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  14. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts > ProductsSubtitleTransportationFUELS

  15. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  16. Online Capacity Identification of Multitier Websites Using

    E-Print Network [OSTI]

    Xu, Cheng-Zhong

    to resource contention and algorithmic overhead for load management [15]. Knowledge about the server capacity

  17. Demand Response in the ERCOT Markets

    SciTech Connect (OSTI)

    Patterson, Mark

    2011-10-25

    ERCOT grid serves 85% of Texas load over 40K+ miles transmission line. Demand response: voluntary load response, load resources, controllable load resources, and emergency interruptible load service.

  18. InDemandInDemandInDemand Energize Your Career

    E-Print Network [OSTI]

    Wolberg, George

    InDemandInDemandInDemand Energize Your Career You can join the next generation of workers who in Energy #12;#12;In Demand | 1 No, this isn't a quiz...but if you answered yes to any or all and Training Administration wants you to have this publication, In Demand: Careers in Energy. It will let you

  19. VideoonDemandVideoonDemandVideoonDemand Video on Demand Testbed

    E-Print Network [OSTI]

    Eleftheriadis, Alexandros

    VideoonDemandVideoonDemandVideoonDemand Columbia's Video on Demand Testbed and Interoperability Experiment Columbia's Video on Demand Testbed and Interoperability Experiment S.-F. Chang and A Columbia UniversityColumbia University www.www.ctrctr..columbiacolumbia..eduedu/advent/advent #12;VideoonDemandVideoonDemandVideoonDemand

  20. VideoonDemandVideoonDemandVideoonDemand Video on Demand Testbed

    E-Print Network [OSTI]

    Eleftheriadis, Alexandros

    #12;VideoonDemandVideoonDemandVideoonDemand Columbia's Video on Demand Testbed and Interoperability Experiment Columbia's Video on Demand Testbed and Interoperability Experiment H.H. KalvaKalva, A.www.eeee..columbiacolumbia..eduedu/advent/advent #12;VideoonDemandVideoonDemandVideoonDemand VoD Testbed ArchitectureVoD Testbed Architecture Video

  1. Market Power in Nonrenewable Resource Markets: An Empirical Dynamic Model1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    , iron, lead, tin, and zinc were characterized by oligopolistic behavior. Our model enables us find that the demand for copper, iron, lead, and zinc is relatively inelastic, while the demand for tin nonrenewable resources with excessive capacities in both mining and processing (Auty, 2000). Since the world

  2. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    CA-N demand Variable cost Generation/Demand (MW) CA-SSnapshots of capacity, costs, generation, and GHG emissionsand provide low-cost generation for California. When they

  3. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    unit water requirement of coal-fired electricity generationin electricity demand. Coal-fired power generation accounted12, the absolute amount of coal-fired capacity grew at an

  4. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  5. What China Can Learn from International Experiences in Developing a Demand Response Program

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    of preferred resources, placing energy efficiency and demandPromoting Energy Efficiency as a Cost-Effective Resource infor energy efficiency and demand response resources. Peak

  6. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  7. SGDP Report Now Available: Interoperability of Demand Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response...

  8. Adaptive Caching for Demand Prepaging Scott F. Kaplan

    E-Print Network [OSTI]

    Kaplan, Scott

    Bottleneck Links, Variable Demand, and the Tragedy of the Commons Richard Cole£ Yevgeniy DodisÝ Tim demand to resources whose performance degrades with increasing congestion. While fundamental of a resource and the demand for that resource. This coupling motivates allowing demand to vary with congestion

  9. Bottleneck Links, Variable Demand, and the Tragedy of the Commons

    E-Print Network [OSTI]

    Dodis, Yevgeniy

    Bottleneck Links, Variable Demand, and the Tragedy of the Commons Richard Cole #3; Yevgeniy Dodis y a fixed demand to resources whose performance degrades with increasing congestion. While fundamental of a resource and the demand for that resource. This coupling motivates allowing demand to vary with congestion

  10. Value of Demand Response -Introduction Klaus Skytte

    E-Print Network [OSTI]

    -of-supply and DR 15 minutes DaysHoursSeconds Adjustments of planned production Prognosis errors Excess capacity in demand to prices. Similar to Least-cost planning and demand-side management. DR differs by using prices: Curtailment of load, Direct load control, e.g. central control of electric comfort heating. Reservation prices

  11. Demand Response for Ancillary Services

    Broader source: Energy.gov [DOE]

    Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and implement a methodology to construct detailed temporal and spatial representations of demand response resources and to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to assess economic value of the realizable potential of demand response for ancillary services.

  12. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  13. Value of Demand Response: Quantities from Production Cost Modeling (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind and solar power generation. However, managed loads in grid models are limited by data availability and modeling complexity. This presentation focuses on the value of co-optimized DR resources to provide energy and ancillary services in a production cost model. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves. In addition, the revenue is characterized by the capacity, energy, and units of DR enabled.

  14. Risk Management for Video-on-Demand Servers leveraging Demand Forecast

    E-Print Network [OSTI]

    Li, Baochun

    Risk Management for Video-on-Demand Servers leveraging Demand Forecast Di Niu, Hong Xu, Baochun Li}@eecg.toronto.edu Shuqiao Zhao Multimedia Development Group UUSee, Inc. shuqiao.zhao@gmail.com ABSTRACT Video-on-demand (VoD) servers are usually over-provisioned for peak demands, incurring a low average resource effi- ciency

  15. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01

    hydro facility or demand response aggregator to provide theOperator Demand Response Mass-Market Customers Aggregator ofDemand Response Resources Mass Market Customers Aggregator

  16. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  17. Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment ofConditionDelmarva Power -

  18. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications| BlandineResearchResources

  19. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  20. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  1. Demand Response Providing Ancillary Services

    E-Print Network [OSTI]

    1 Demand Response Providing Ancillary Services: A Comparison of Opportunities and Challenges in US to operate (likely price takers) ­ Statistical reliability (property of large aggregations of small resources size based on Mid-Atlantic Reserve Zone #12;Market Rules: Resource Size Min. Size (MW) Aggregation

  2. Tri-Laboratory Linux Capacity Cluster 2007 SOW

    SciTech Connect (OSTI)

    Seager, M

    2007-03-22

    The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.

  3. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications| BlandineResearch

  4. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serial codes on loginResonant

  5. Initial Production Capacity Investments for Commercializing Pharmaceutical Products

    E-Print Network [OSTI]

    Yuen, Ming Kwan

    2012-01-01

    Hanan. 1982. Operations research and capacity expansionEngi- neering and Operations Research Department forstochastic demands. Operations Research 40 pp. S210–S216.

  6. Prices, capacities and service quality in a congestible Bertrand duopoly

    E-Print Network [OSTI]

    De Borger, Bruno; Van Dender, Kurt

    2005-01-01

    Dender, Kurt. 2004. “Duopoly prices under congested access,”of demand on capacities and prices, see (3), has been madefacilities, even when price discrimination is allowed. r dq

  7. Modeling Capacity Reservation in High-Tech Manufacturing

    E-Print Network [OSTI]

    Wu, David

    by rapid innovation and volatile demands. Capacity reservation provides a risk sharing mechanism, manufacturers are confronted with capital intensive facilities and highly skilled labor, operating under long. Physical expansion of manufacturing capacity involves enormous risk. This involves building new facil

  8. DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION

    E-Print Network [OSTI]

    Wu, David

    and S. DAVID WU Manufacturing Logistics Institute, Department of Industrial and Manufacturing Systems semiconductor manufacturer: marketing managers reserve capacity from manufacturing based on product demands, while attempting to maximize profit; manufacturing managers allocate capacity to competing marketing

  9. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2DepartmentDelta Dental Claim Form PDF iconDemand

  10. Factory capacity limits Machine dependencies

    E-Print Network [OSTI]

    Foley, Simon

    Factory capacity limits Machine dependencies Employee scheduling Raw material availability Other internal operations (and also possibly the actions of other suppliers that supply raw materials) and at an international workshop at the multi-agent conference (AAMAS'06). Manufacturer Customer demand Penalties for non

  11. A marketplace game with neither distribution costs nor distribution-capacity constraints

    E-Print Network [OSTI]

    Squicciarini, Anna Cinzia

    neither distribution costs nor distribution-capacity constraints. II. THE CLEARING PRICE FOR LINEAR DEMAND-RESPONSE-sensitive demand. In turn, based on this demand response, the suppliers determine their optimal prices

  12. Using Dimmable Lighting for Regulation Capacity and Non-Spinning Reserves in the Ancillary Services Market. A Feasibility Study.

    E-Print Network [OSTI]

    Rubinstein, Francis

    2011-01-01

    Digital Addressable Lighting Interface Demand Responseof Demand-Responsive Lighting in Offices with and without2010). Using Dimmable Lighting for Regulation Capacity and

  13. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  14. Managing Capacity For Telecommunications Networks Under Uncertainty

    E-Print Network [OSTI]

    Forsyth, Peter A.

    the underlying risk factor in the bandwidth market, and then apply real options theory to the upgrade decision, this real options approach has not been used pre- viously in the area of network capacity planning--uncertain demand for capacity, real options, net- work planning I. INTRODUCTION In the past, bandwidth was traded

  15. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    E-Print Network [OSTI]

    Budhraja, Vikram

    2008-01-01

    Photovoltaic Distributed Biomass Demand management, dynamic pricing Storage Solar Thermal Peaking Capacity

  16. Water demand management in Kuwait

    E-Print Network [OSTI]

    Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

    2006-01-01

    Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

  17. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k... substantial battery storage capacity to the electricity grid, both when stationary at home and when at work. They may thus be very useful in providing short term back-up at system demand peaks or for dumping electricity to the batteries when supply is at a...

  18. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  19. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  20. FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS

    E-Print Network [OSTI]

    Keller, Arturo A.

    Winter (November - April) water demand Developed by Limaye et al. 1993 Residential water demand ­ f {PPHFORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil resources resulting in water stress. Effective water management ­ a solution Supply side management Demand

  1. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  2. Multiple-part-type systems in high volume manufacturing : long-term capacity planning & time-based production control

    E-Print Network [OSTI]

    Hua, Xia, M. Eng. Massachusetts Institute of Technology

    2008-01-01

    This project examines a production station that faces fluctuating demand with seasonal pattern. The cumulative capacity exceeds the cumulative demand in a one year period; however, its weekly capacity is not able to meet ...

  3. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01

    notices/2008-08-05_RFP_smartgrid/presentations/PIER-the three deployment plans. SmartGrid 2020 Roadmaps Areas ofresponse capabilities. IOU SmartGrid Deployment Plans The

  4. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01

    storage, combined heat and power (including both natural gas and biomass), AMI, DR capabilities, distribution, automation, electric vehicle accommodation, and microgrid

  5. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01

    Consulting Inc. Final Report Microgrids Research AssessmentThe three reports differed somewhat on microgrids. NeitherPOU roadmap recognized microgrids as an important aspect of

  6. Nonlinear estimation of water network demands form limited measurement information 

    E-Print Network [OSTI]

    Rabie, Ahmed Ibrahim El Said

    2009-05-15

    such as the requirement to meet the new dynamic regulations in the Safe Drinking Water Act and the Clean Water Act. This includes providing sufficient capacity to satisfy uncertain and changing water demands, maintaining consistent water quality, and identifying...

  7. DEMAND INTERPROCEDURAL PROGRAM ANALYSIS

    E-Print Network [OSTI]

    Reps, Thomas W.

    1 DEMAND INTERPROCEDURAL PROGRAM ANALYSIS USING LOGIC DATABASES Thomas W. Reps Computer Sciences@cs.wisc.edu ABSTRACT This paper describes how algorithms for demand versions of inerprocedural program­ analysis for all elements of the program. This paper concerns the solution of demand versions of interprocedural

  8. Demand Response Assessment INTRODUCTION

    E-Print Network [OSTI]

    Demand Response Assessment INTRODUCTION This appendix provides more detail on some of the topics raised in Chapter 4, "Demand Response" of the body of the Plan. These topics include 1. The features, advantages and disadvantages of the main options for stimulating demand response (price mechanisms

  9. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01

    and design of electricity capacity markets. Our work has twoMarkets for Electricity capacity markets, and so, when thesemain features of electricity capacity markets. We have used

  10. Grid Integration of Aggregated Demand Response, Part I: Load Availability

    E-Print Network [OSTI]

    LBNL-6417E Grid Integration of Aggregated Demand Response, Part I: Load Availability Profiles Resources 4 #12;#12;#12;CHAPTER 3: Results: DR Profiles 3.1 Projected Demand Response Availability in 2020

  11. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  12. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  13. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01

    Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

  14. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  15. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

  16. Exponential Demand Simulation Tool

    E-Print Network [OSTI]

    Reed, Derek D.

    2015-05-15

    Operant behavioral economics investigates the relation between environmental constraint and reinforcer consumption. The standard approach to quantifying this relation is through the use of behavioral economic demand curves. ...

  17. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  18. The Summer of 2006: A Milestone in the Ongoing Maturation of Demand Response

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Bharvirkar, Ranjit; Engel, Dan

    2007-01-01

    2007) Figure 7. U.S. Demand Response Resources in 2005Proposals to Augment 2007 Demand Response Programs, Aug. 22,Efforts to Improve Demand Response Programs for State to

  19. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01

    Power System Operator Demand Response Mass-Market Customers Aggregator of RetailPower System Operator Demand Response Resources Mass Market Customers Aggregator of Retailmarket customers, retail entities offering demand response opportunities, and bulk power

  20. Transmission Capacity Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign In About | Careers |

  1. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168Capacity Report

  2. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168Capacity Report5

  3. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168Capacity

  4. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168Capacity Operable

  5. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168Capacity

  6. Electrical Demand Management 

    E-Print Network [OSTI]

    Fetters, J. L.; Teets, S. J.

    1983-01-01

    The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below...

  7. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    to DR impacts that lower energy and capacity prices, improvedue to reduced wholesale energy and capacity prices; (5)DR impacts that lower energy and capacity prices, improve

  8. Greening Multi-Tenant Data Center Demand Response Niangjun Chen

    E-Print Network [OSTI]

    Ren, Shaolei

    Greening Multi-Tenant Data Center Demand Response Niangjun Chen , Xiaoqi Ren , Shaolei Ren , Adam resources for emergency demand response (EDR). However, currently, data centers typically participate in EDR. In this paper, we focus on "greening" demand response in multi-tenant data centers by incentivizing ten- ants

  9. Date: June 12, 2007 To: Pacific Northwest Demand Response Project

    E-Print Network [OSTI]

    Date: June 12, 2007 To: Pacific Northwest Demand Response Project From: Rich Sedano/RAP and Chuck, 2007 meeting of the Pacific Northwest Demand Response Project, we agreed to form three Working Groups for the evaluation of cost-effectiveness of Demand Response resources. One potential outcome would be for state

  10. Fast Automated Demand Response to Enable the Integration of Renewable

    E-Print Network [OSTI]

    LBNL-5555E Fast Automated Demand Response to Enable the Integration of Renewable Resources David S The work described in this report was coordinated by the Demand Response Research Center and funded ABSTRACT This study examines how fast automated demand response (AutoDR) can help mitigate grid balancing

  11. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  12. Demand Response and Electric Grid Reliability 

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01

    and Regional Transmission Organizations are the ?air traffic controllers? of the bulk electric power grids 4 Power supply (generation) must match load (demand) CATEE Conference October 10, 2012 ? The fundamental concept behind ERCOT operations... changes or incentives.? (FERC) ? ?Changes in electric use by demand-side resources from their normal consumption patterns in response to changes in the price of electricity, or to incentive payments designed to induce lower electricity use at times...

  13. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  14. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  15. STEO December 2012 - coal demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12 Page 1NEWSSupportcoal demand seen below

  16. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  17. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  18. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    H. , and James M. Gri¢ n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

  19. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

  20. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    2007) Concentrating Solar Power (CSP) Resources, Cost, andfraction of solar generation have higher costs, since theconsidered here. The costs of additional solar capacity, and

  1. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

  2. : Measurement of Battery Capacity in Mobile Robot Systems

    E-Print Network [OSTI]

    Breu, Ruth

    . These enhancements pose demanding operation conditions on the battery, emphasizing the importance of this com- ponentRoBM2 : Measurement of Battery Capacity in Mobile Robot Systems Nestor Lucas1 , Cosmin Codrea1. With battery driven robot systems performing very sophisti- cated tasks, increasing demands on the power supply

  3. 1993 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  4. Pathway and Resource Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using the Macro-System Model (MSM) * Resource and pathway analysis using the Hydrogen Demand and Resource Analysis Tool (HyDRA) * Status of water-electrolysis technology 2...

  5. Optimal Demand Response Libin Jiang

    E-Print Network [OSTI]

    Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 #12;Outline Caltech smart grid research Optimal demand response #12;Global trends 1

  6. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    ....................................................................................................1-16 Energy Consumption Data...............................................1-15 Data Sources for Energy Demand Forecasting ModelsCALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report

  7. Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand

    E-Print Network [OSTI]

    Carlini, David

    Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand Amos Golan* Jeffrey an almost ideal demand system for five types of meat using cross-sectional data from Mexico, where most households did not buy at least one type of meat during the survey week. The system of demands is shown

  8. Peer-Assisted On-Demand Streaming: Characterizing Demands and

    E-Print Network [OSTI]

    Li, Baochun

    Peer-Assisted On-Demand Streaming: Characterizing Demands and Optimizing Supplies Fangming Liu Abstract--Nowadays, there has been significant deployment of peer-assisted on-demand streaming services over the Internet. Two of the most unique and salient features in a peer-assisted on-demand streaming

  9. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    #12;Sources: China National Bureau of Statistics; U.S. Energy Information Administration, Annual Energy Outlook. Overview:Overview: Energy Use in China and the U.S.Energy Use in China and the U.S. 5 0Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused

  10. Capacity and Preparatory Review

    E-Print Network [OSTI]

    ....................................................................................................................13 Fiscal, Physical and Information Resources ................................................................................5 Fiscal Resources..........................................................................................................................6 Information Resources

  11. Centralized and Decentralized Control for Demand Response

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  12. U.S. Natural Gas Underground Storage Depleted Fields Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubic Feet) Depleted Fields Capacity (Million Cubic

  13. U.S. Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubic Feet) Depleted Fields Capacity (Million

  14. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    fraction of residential and commercial demands, leading16 Residential electricity demand endspecific residential electricity demands into electricity

  15. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

  16. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2006 PDF 2 Production Capacity of...

  17. Shannon Capacity Ramsey Numbers

    E-Print Network [OSTI]

    Radziszowski, Stanislaw P.

    Shannon Capacity Ramsey Numbers Old links between Shannon and Ramsey New links between Shannon and Ramsey Bounds on Shannon Capacity and Ramsey Numbers from Product of Graphs Xiaodong Xu1 Stanislaw Institute of Technology, NY, USA March 2014 1/24 #12;Shannon Capacity Ramsey Numbers Old links between

  18. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    retail regulatory authority prohibit such activity. Demand response integration into US wholesale power marketsretail or wholesale level. 17 While demand response began participating at scale in wholesale power markets

  19. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  20. Design and Valuation of Demand Response Mechanisms and Instruments for Integrating

    E-Print Network [OSTI]

    Design and Valuation of Demand Response Mechanisms and Instruments for Integrating Renewable) research project titled "Design and Valuation of Demand Response Mechanisms and Instruments for Integrating resources. The increased reserve requirement can be met using the so-called demand response resources (DRRs

  1. Capacity Planning in a General Supply Chain with Multiple Contract Types Single Period Model

    E-Print Network [OSTI]

    Graves, Stephen C.

    and sufficient capacity to meet market demands. However, capacity planning is a very challenging task for manyCapacity Planning in a General Supply Chain with Multiple Contract Types ­ Single Period Model Xin Huang · Stephen C. Graves Department of Electrical Engineering and Computer Science, Massachusetts

  2. Revelation on Demand Nicolas Anciaux

    E-Print Network [OSTI]

    Revelation on Demand Nicolas Anciaux 1 · Mehdi Benzine1,2 · Luc Bouganim1 · Philippe Pucheral1 "revelation on demand". Keywords: Confidentiality and privacy, Secure device, Data warehousing, Indexing model

  3. by popular demand: Addiction II

    E-Print Network [OSTI]

    Niv, Yael

    by popular demand: Addiction II PSY/NEU338:Animal learning and decision making: Psychological, size of other non-drug rewards, and cost (but ultimately the demand is inelastic, or at least

  4. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01

    Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs V. Residential Discussion... Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off-peak period or from high-price periods...

  5. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, presented in July 2008, addressed greenhouse gas reduction goals on high electric demand days. Presenter was Art Diem of the State and Local Capacity Building Branch at the U.S. Environmental Protection Agency.

  6. Improving transit demand management with Smart Card data : general framework and applications

    E-Print Network [OSTI]

    Halvorsen, Anne (Anne Fire)

    2015-01-01

    Increases in ridership are outpacing capacity expansions in a number of transit systems. By shifting their focus to demand management, agencies can instead influence how customers use the system, getting more out of the ...

  7. Why do poor people demand accountability from some participatory programs and not others?

    E-Print Network [OSTI]

    Serrano Berthet, Rodrigo

    2005-01-01

    There is a consensus that citizen oversight, or the capacity of citizens to demand accountability, over government programs improves program performance. Yet little is known about the conditions that enable citizens/beneficiaries ...

  8. Chord on Demand Alberto Montresor

    E-Print Network [OSTI]

    Jelasity, Márk

    Chord on Demand Alberto Montresor University of Bologna, Italy montresor@cs.unibo.it M´ark Jelasity to solve a specific task on demand. We introduce T- CHORD, that can build a Chord network efficiently to solve a specific task on demand. Existing join protocols are not designed to handle the massive

  9. Supply Chain Supernetworks Random Demands

    E-Print Network [OSTI]

    Nagurney, Anna

    Supply Chain Supernetworks with Random Demands June Dong and Ding Zhang Department of Marketing of three tiers of decision-makers: the manufacturers, the distributors, and the retailers, with the demands equilibrium model with electronic commerce and with random demands for which modeling, qualitative analysis

  10. Chord on Demand Alberto Montresor

    E-Print Network [OSTI]

    Chord on Demand Alberto Montresor University of Bologna, Italy montresor@cs.unibo.it Mark Jelasity to solve a specific task on demand. We introduce T- CHORD, that can build a Chord network efficiently on demand. Existing join protocols are not designed to handle the massive concurrency involved in a jump

  11. ERCOT Demand Response Paul Wattles

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    ERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre;Definitions of Demand Response · `The short-term adjustment of energy use by consumers in response to price to market or reliability conditions.' (NAESB) #12;Definitions of Demand Response · The common threads

  12. Energy-Efficient Capacity Optimization in Wireless Networks

    E-Print Network [OSTI]

    Wang, Yu

    Energy-Efficient Capacity Optimization in Wireless Networks Lu Liu, Xianghui Cao, Yu Cheng, Lili Du capacity in the most energy-efficient manner over a general large-scale wireless network, say, a multi for computing the resource allocation that leads to optimal network capacity with minimal energy consumption

  13. Climate control : smart thermostats, demand response, and energy efficiency in Austin, Texas

    E-Print Network [OSTI]

    Bowen, Brian (Brian Richard)

    2015-01-01

    Energy efficiency and demand response are critical resources for the transition to a cleaner electricity grid. Demand-side management programs can reduce electricity use during peak times when power is scarce and expensive, ...

  14. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  15. Shaped Offset QPSK Capacity

    E-Print Network [OSTI]

    Sahin, Cenk

    2012-08-31

    In this work we compute the capacities and the pragmatic capacities of military-standard shaped-offset quadrature phase-shift keying (SOQPSK-MIL) and aeronautical telemetry SOQPSK (SOQPSK-TG). In the pragmatic approach, SOQPSK is treated as a...

  16. Resource Adequacy INTRODUCTION

    E-Print Network [OSTI]

    whether there are sufficient non-hydro resources available to meet loads when the "fuel" for hydroelectric the amount of water for hydroelectric generation) and temperature (which affects the demand for electricity

  17. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  18. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Broader source: Energy.gov [DOE]

    Renewable integration studies have evaluated many challenges associated with deploying large amounts of variable wind and solar generation technologies. These studies can evaluate operational impacts associated with variable generation, benefits of improved wind and solar resource forecasting, and trade-offs between institutional changes, including increasing balancing area cooperation and technical changes such as installing new flexible generation. Demand response (DR) resources present a potentially important source of grid flexibility and can aid in integrating variable generation; however, integration analyses have not yet incorporated these resources explicitly into grid simulation models as part of a standard toolkit for resource planners.

  19. Demand response compensation, net Benefits and cost allocation: comments

    SciTech Connect (OSTI)

    Hogan, William W.

    2010-11-15

    FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

  20. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  1. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating Demand for...

  2. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  3. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  4. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01

    3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

  5. Home Network Technologies and Automating Demand Response

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01

    LBNL Commercial and Residential Demand Response Overview ofmarket [5]. Residential demand reduction programs have beenin the domain of residential demand response. There are a

  6. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  7. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - deep

  8. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01

    Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

  9. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01

    2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

  10. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  11. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

  12. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination of Energy Efficiency and Demand Response Demand Response in U.S. Electricity Markets: Empirical Evidence 2009 Retail Demand Response in Southwest Power Pool (January...

  13. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    duty fuel demand in alternate scenarios. ..for light-duty fuel demand in alternate scenarios. Minimum52 Heavy-duty vehicle fuel demand for each alternate

  14. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    2006-2016: Staff energy demand forecast (Revised SeptemberCEC (2005b) Energy demand forecast methods report.California energy demand 2003-2013 forecast. California

  15. Natural gas productive capacity for the lower 48 States, 1980 through 1995

    SciTech Connect (OSTI)

    Not Available

    1994-07-14

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

  16. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish; Koch, Ed; Hennage, Dan; Hernandez, John; Chiu, Albert; Sezgen, Osman; Goodin, John

    2009-11-06

    The Pacific Gas and Electric Company (PG&E) is conducting a pilot program to investigate the technical feasibility of bidding certain demand response (DR) resources into the California Independent System Operator's (CAISO) day-ahead market for ancillary services nonspinning reserve. Three facilities, a retail store, a local government office building, and a bakery, are recruited into the pilot program. For each facility, hourly demand, and load curtailment potential are forecasted two days ahead and submitted to the CAISO the day before the operation as an available resource. These DR resources are optimized against all other generation resources in the CAISO ancillary service. Each facility is equipped with four-second real time telemetry equipment to ensure resource accountability and visibility to CAISO operators. When CAISO requests DR resources, PG&E's OpenADR (Open Automated DR) communications infrastructure is utilized to deliver DR signals to the facilities energy management and control systems (EMCS). The pre-programmed DR strategies are triggered without a human in the loop. This paper describes the automated system architecture and the flow of information to trigger and monitor the performance of the DR events. We outline the DR strategies at each of the participating facilities. At one site a real time electric measurement feedback loop is implemented to assure the delivery of CAISO dispatched demand reductions. Finally, we present results from each of the facilities and discuss findings.

  17. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  18. OPEC production: Untapped reserves, world demand spur production expansion

    SciTech Connect (OSTI)

    Ismail, I.A.H. (Organization of the Petroleum Exporting Countries, Vienna (Austria))

    1994-05-02

    To meet projected world oil demand, almost all members of the Organization of Petroleum Exporting Countries (OPEC) have embarked on ambitious capacity expansion programs aimed at increasing oil production capabilities. These expansion programs are in both new and existing oil fields. In the latter case, the aim is either to maintain production or reduce the production decline rate. However, the recent price deterioration has led some major OPEC producers, such as Saudi Arabia and Iran, to revise downward their capacity plans. Capital required for capacity expansion is considerable. Therefore, because the primary source of funds will come from within each OPEC country, a reasonably stable and relatively high oil price is required to obtain enough revenue for investing in upstream projects. This first in a series of two articles discusses the present OPEC capacity and planned expansion in the Middle East. The concluding part will cover the expansion plans in the remaining OPEC countries, capital requirements, and environmental concerns.

  19. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings and workshops convened to develop content for the Demand Response Technology Roadmap. The project team has developed this companion document in the interest of providing...

  20. Supply Chain Supernetworks With Random Demands

    E-Print Network [OSTI]

    Nagurney, Anna

    Supply Chain Supernetworks With Random Demands June Dong Ding Zhang School of Business State Field Warehouses: stocking points Customers, demand centers sinks Production/ purchase costs Inventory Customer Demand Customer Demand Retailer OrdersRetailer Orders Distributor OrdersDistributor Orders

  1. Forward capacity market CONEfusion

    SciTech Connect (OSTI)

    Wilson, James F.

    2010-11-15

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  2. Marketing & Driving Demand Collaborative - Social Media Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Driving Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the Better...

  3. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

  4. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Environmental Management (EM)

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

  5. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

  6. A National Forum on Demand Response: What Remains to Be Done...

    Office of Environmental Management (EM)

    needs are changing as additional opportunities have opened up in wholesale and retail electricity markets for demand response resources. The working group focused on two key...

  7. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep3,118,592 3,102,59399 2006-20105)

  8. Residential Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0 Averagequestionnaires 7 Average

  9. Residential Sector Demand Module

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model8)3 November

  10. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    capacity prices Lower energy prices Participant Reduced svc$42 million); lxi Reduced energy prices during tight supply+ Reduced wholesale energy prices due to sustained energy

  11. Estimation and tactical allocation of airport capacity in the presence of uncertainty

    E-Print Network [OSTI]

    Ramanujam, Varun

    2012-01-01

    Major airports in the United States and around the world have seen an increase in congestion-related delays over the past few years. Because airport congestion is caused by an imbalance between available capacity and demand, ...

  12. Measuring the capacity of a port system : a case study on a Southeast Asian port

    E-Print Network [OSTI]

    Salminen, Jason Bryan

    2013-01-01

    As economies develop and trade routes change, investment in port infrastructure is essential to maintain the necessary capacity for an efficiently functioning port system and to meet expected demand for all types of cargo. ...

  13. On the Average Complexity of the Processor Demand Analysis for Earliest Deadline

    E-Print Network [OSTI]

    Lipari, Giuseppe

    Resource Allocation With Non-Deterministic Demands and Profits Nan Hu, Diego Pizzocaro, Matthew P wireless medium or variable quality of sensor outputs, it is not practical to assume that both demands study a specific case in which both demands and profits follow normal distributions, which

  14. Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems

    E-Print Network [OSTI]

    Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable Resources Electric Energy System #12;#12;Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems benefits correspond to a real-world power system, as we use actual data on demand-response and wind

  15. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  16. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

  17. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

  18. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

  19. Irrigation and the demand for electricity. Progress report

    SciTech Connect (OSTI)

    Maddigan, R. J.; Chern, W. S.; Gallagher, C. A.

    1980-03-01

    In order to anticipate the need for generating capacity, utility planners must estimate the future growth in electricity demand. The need for demand forecasts is no less important for the nation's Rural Electric Cooperatives (RECs) than it is for the investor-owned utilities. The RECs serve an historically agrarian region; therefore, the irrigation sector accounts for a significant portion of the western RECs' total demand. A model is developed of the RECs' demand for electricity used in irrigation. The model is a simultaneous equation system which focuses on both the short-run utilization of electricity in irrigation and the long-run determination of the number of irrigators using electricity. Irrigation demand is described by a set of equations in which the quantity of electricity demanded, the average electricity price, the number of irrigation customers, and the ratio of electricity to total energy used for irrigation are endogenous. The structural equations are estimated using pooled state-level data for the period 1961-1977. In light of the model's results, the impact of changes in relative energy prices on irrigation can be examined.

  20. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  1. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  2. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  3. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  4. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    demands. Residential and commercial demand has a significantDemand by Sector Residential Peak Demand (MW) Commercialwe convert residential electricity demand based upon climate

  5. Physically-based demand modeling 

    E-Print Network [OSTI]

    Calloway, Terry Marshall

    1980-01-01

    nts on the demand. Of course the demand of a real a1r cond1t1oner has lower and upper bounds equal to 0 and 0 , respec- u tively. A constra1ned system can be simulated numerically, but there 1s no explicit system response formula s1m11ar... sect1on. It may now be instruct1ve to relate this model to that of Jones and Bri ce [5] . The average demand pred1 cted by their model is the expected value of the product of a load response factor 0 and a U sw1tching process H(t), which depends...

  6. Demand Response For Power System Reliability: FAQ

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-12-01

    Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

  7. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  8. Seasonality in air transportation demand

    E-Print Network [OSTI]

    Reichard Megwinoff, H?tor Nicolas

    1988-01-01

    This thesis investigates the seasonality of demand in air transportation. It presents three methods for computing seasonal indices. One of these methods, the Periodic Average Method, is selected as the most appropriate for ...

  9. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01

    Monitoring in an Agent-Based Smart Home, Proceedings of theConference on Smart Homes and Health Telematics, September,Smart Meter Motion sensors Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home.

  10. Full Rank Rational Demand Systems

    E-Print Network [OSTI]

    LaFrance, Jeffrey T; Pope, Rulon D.

    2006-01-01

    Dover Publications 1972. Barnett, W.A. and Y.W. Lee. “TheEconometrica 53 (1985): 1421- Barnett, W.A. , Lee, Y.W. ,Laurent demand systems (Barnett and Lee 1985; Barnett, Lee,

  11. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  12. Marketing Demand-Side Management 

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  13. Integrating CO? storage with geothermal resources for dispatchable renewable electricity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO? storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO? is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO?, and thermal energy. Such storage can take excess power frommore »the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO? functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  14. Integrating CO? storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO? storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO? is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO?, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO? functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  15. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01

    A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

  16. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  17. Optimal Demand Response and Power Flow

    E-Print Network [OSTI]

    Willett, Rebecca

    Optimal Demand Response and Power Flow Steven Low Computing + Math Sciences Electrical Engineering #12;Outline Optimal demand response n With L. Chen, L. Jiang, N. Li Optimal power flow n With S. Bose;Optimal demand response Model Results n Uncorrelated demand: distributed alg n Correlated demand

  18. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01

    M. (2007) Loads Providing Ancillary Services: Review ofDepends on price level Ancillary Services Resource ~5 sec. –Emergency Capacity Energy Ancillary Services Currently not

  19. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  20. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    high economic/demographic growth, relatively low electricity and natural gas rates, and relatively low CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION

  1. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand Gough Office Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  2. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    Retail stores with solar photovoltaics (PV). baseline modelssources. Both wind and solar photovoltaics are expected to

  3. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    Retail stores with solar photovoltaics (PV). baseline modelssources. Both wind and solar photovoltaics are expected to

  4. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    G. Corey. Energy storage for the electricity grid: BenefitsG. Corey. Energy storage for the electricity grid: Benefits

  5. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    G. Corey. Energy storage for the electricity grid: BenefitsG. Corey. Energy storage for the electricity grid: Benefits

  6. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    1.2.1 Time-differentiated electricity rates 1.2.2 Incentiveto time-differentiated electricity rates. Other DR conceptsTime-differentiated electricity rates Time differentiated

  7. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    1.2.1 Time-differentiated electricity rates 1.2.2 Incentiveto time-differentiated electricity rates. Other DR conceptsTime-differentiated electricity rates Time differentiated

  8. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    into existing utility SCADA systems: Pacific Gas andand conventional SCADA system in each distribution

  9. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    into existing utility SCADA systems: Pacific Gas andand conventional SCADA system in each distribution

  10. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    for interruptible load management”. In: IEEE Transactions onsystems for load management”. In: IEEE Transactions on Power11, 99] for peak load management. Another way to achieve DR

  11. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    for interruptible load management”. In: IEEE Transactions onsystems for load management”. In: IEEE Transactions on Power11, 99] for peak load management. Another way to achieve DR

  12. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    for interruptible load management”. In: IEEE Transactions onsystems for load management”. In: IEEE Transactions on Powerinterruptible load management Los Angeles Department of

  13. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    for interruptible load management”. In: IEEE Transactions onsystems for load management”. In: IEEE Transactions on Powerinterruptible load management Los Angeles Department of

  14. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    data. ” In: Proceedings of ASME International Solar Energyenergy data: Part I-II”. In: Journal of Solar Energydata from commercial buildings”. In: Journal of Solar Energy

  15. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    data. ” In: Proceedings of ASME International Solar Energydata from commercial buildings”. In: Journal of Solar Energyenergy data: Part I-II”. In: Journal of Solar Energy

  16. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01

    energy on most DR days, both the furniture store and the bakeryEnergy * Calculated for the moderate / high price period, except for the Bakery

  17. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    energy on most DR days, both the furniture store and the bakeryEnergy * Calculated for the moderate / high price period, except for the Bakery

  18. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  19. IEED Tribal Energy Development to Build Tribal Energy Development Capacity

    Broader source: Energy.gov [DOE]

    The Assistant Secretary - Indian Affairs for the U.S. Department of the Interior, through the Office of Indian Energy and Economic Development, is soliciting grant proposals from Indian tribes to build tribal capacity for energy resource development or management under the Department of the Interior's (DOl's) Tribal Energy Development Capacity (TEDC) grant program.

  20. Towards Optimal Capacity Segmentation with Hybrid Cloud Pricing

    E-Print Network [OSTI]

    Li, Baochun

    between periodic auctions and EC2 spot market. Furthermore, we formulate the optimal capacity segmentationTowards Optimal Capacity Segmentation with Hybrid Cloud Pricing Wei Wang, Baochun Li, and Ben Liang Department of Electrical and Computer Engineering University of Toronto Abstract--Cloud resources are usually

  1. Exponential Communication Ine ciency of Demand Queries

    E-Print Network [OSTI]

    Sandholm, Tuomas W.

    FORECAST COMBINATION IN REVENUE MANAGEMENT DEMAND FORECASTING SILVIA RIEDEL A thesissubmitted Combination in RevenueManagement Demand Forecasting Abstract The domain of multi level forecastcombination

  2. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  3. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  4. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  5. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    Energy Efficiency, Demand Response, and Peak Load Managementdemand response, and load management programs in the Ebefore they undertake load management and demand response

  6. Supply chain planning decisions under demand uncertainty

    E-Print Network [OSTI]

    Huang, Yanfeng Anna

    2008-01-01

    Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

  7. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    > B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Responseand integration is: Energy efficiency, energy conservation,

  8. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades May 14, 2015 12:30PM to 2:00PM EDT Learn more...

  9. Demand Response Programs Oregon Public Utility Commission

    E-Print Network [OSTI]

    Demand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director;Demand Response Results, 2004 Load Control ­ Cool Keeper ­ ID Irrigation Load Control Price Responsive

  10. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  11. Hierarchical Storage Systems for OnDemand Video Servers \\Lambday ShuengHan Gary Chan Fouad A. Tobagi z

    E-Print Network [OSTI]

    Chan, Shueng-Han Gary

    Hierarchical Storage Systems for On­Demand Video Servers \\Lambday Shueng­Han Gary Chan Fouad A­demand video servers based on hierarchical storage system offer high­capacity and low­cost video storage to be displayed. We have studied the architecture and performance of a hierarchical storage system for an on

  12. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  13. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  14. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  15. Model documentation: Electricity Market Module, Electricity Capacity Planning submodule

    SciTech Connect (OSTI)

    Not Available

    1994-04-07

    The National Energy Modeling System (NEMS) is a computer modeling system developed by the Energy Information Administration (EIA). The NEMS produces integrated forecasts for energy markets in the United States by achieving a general equilibrium solution for energy supply and demand. Currently, for each year during the period from 1990 through 2010, the NEMS describes energy supply, conversion, consumption, and pricing. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The supply of electricity is a conversion activity since electricity is produced from other energy sources (e.g., fossil, nuclear, and renewable). The EMM represents the generation, transmission, and pricing of electricity. The EMM consists of four main submodules: Electricity Capacity Planning (ECP), Electricity Fuel Dispatching (EFD), Electricity Finance and Pricing (EFP), and Load and Demand-Side Management (LDSM). The ECP evaluates changes in the mix of generating capacity that are necessary to meet future demands for electricity and comply with environmental regulations. The EFD represents dispatching (i.e., operating) decisions and determines how to allocate available capacity to meet the current demand for electricity. Using investment expenditures from the ECP and operating costs from the EFD, the EFP calculates the price of electricity, accounting for state-level regulations involving the allocation of costs. The LDSM translates annual demands for electricity into distributions that describe hourly, seasonal, and time-of-day variations. These distributions are used by the EFD and the ECP to determine the quantity and types of generating capacity that are required to insure reliable and economical supplies of electricity. The EMM also represents nonutility suppliers and interregional and international transmission and trade. These activities are included in the EFD and the ECP.

  16. 2006 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-03-01

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of both the Federal system and the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This surplus energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These energy deficits will be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. This study incorporates information on Pacific Northwest (PNW) regional retail loads, contract obligations, and contract resources. This loads and resources analysis simulates the operation of the power system in the PNW. The simulated hydro operation incorporates plant characteristics, streamflows, and non-power requirements from the current Pacific Northwest Coordination Agreement (PNCA). Additional resource capability estimates were provided by BPA, PNW Federal agency, public agency, cooperative, U.S. Bureau of Reclamation (USBR), and investor-owned utility (IOU) customers furnished through annual PNUCC data submittals for 2005 and/or direct submittals to BPA. The 2006 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2006 White Book analysis updates the 2004 White Book. This analysis shows projections of the Federal system and region's yearly average annual energy consumption and resource availability for the study period, OY 2007-2016. The study also presents projections of Federal system and region expected 1-hour monthly peak demand, monthly energy demand, monthly 1-hour peak generating capability, and monthly energy generation for OY 2007, 2011, and 2016. BPA is investigating a new approach in capacity planning depicting the monthly Federal system 120-hour peak generating capability and 120-hour peak surplus/deficit for OY 2007, 2011, and 2016. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency;

  17. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  18. Demand Response and Energy Efficiency 

    E-Print Network [OSTI]

    2009-01-01

    stream_source_info ESL-IC-09-11-05.pdf.txt stream_content_type text/plain stream_size 14615 Content-Encoding ISO-8859-1 stream_name ESL-IC-09-11-05.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Demand Response... 4 An Innovative Solution to Get the Ball Rolling ? Demand Response (DR) ? Monitoring Based Commissioning (MBCx) EnerNOC has a solution involving two complementary offerings. ESL-IC-09-11-05 Proceedings of the Ninth International Conference...

  19. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

  20. Revelation on Demand Nicolas Anciaux

    E-Print Network [OSTI]

    is willing to reveal the aggregate response (according to his company's policy) to the customer dataRevelation on Demand Nicolas Anciaux 1 · Mehdi Benzine1,2 · Luc Bouganim1 · Philippe Pucheral1 time to support epidemiological studies. In these and many other situations, aggregate data or partial

  1. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  2. On-demand data broadcasting 

    E-Print Network [OSTI]

    Kothandaraman, Kannan

    1998-01-01

    related to on-demand data broadcasting. We look at the problem of data broadcasting in an environment where clients make explicit requests to the server. The server broadcasts requested data items to all the clients, including those who have not requested...

  3. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  4. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

  5. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  6. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01

    Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

  7. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01

    and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

  8. Incorporating Demand Response into Western Interconnection Transmission Planning

    E-Print Network [OSTI]

    Satchwell, Andrew

    2014-01-01

    Aggregator Programs. Demand Response Measurement andIncorporating Demand Response into Western Interconnection13 Demand Response Dispatch

  9. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    of 2 GW), or 86 GW of hydropower capacity (compared to 2007capacity displayed above hydropower in this figure. 3.3.1.load factor 86 GW of hydropower capacity @ 50% load factor

  10. Upply Chain Supernetworks with Random Demands

    E-Print Network [OSTI]

    Nagurney, Anna

    Upply Chain Supernetworks with Random Demands June Dong & Ding Zhang School of Business State Warehouses: stocking points Field Warehouses: stocking points Customers, demand centers sinks Production Commerce and Value Chain Management, 1998 Customer Demand Customer Demand Retailer OrdersRetailer Orders

  11. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  12. Computer resources Computer resources

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

  13. Electricity pricing as a demand-side management strategy: Western lessons for developing countries

    SciTech Connect (OSTI)

    Hill, L.J.

    1990-12-01

    Electric utilities in the Western world have increasingly realized that load commitments can be met not only by constructing new generating plants but also by influencing electricity demand. This demand-side management (DSM) process requires that electric utilities promote measures on the customer's side of the meter to directly or indirectly influence electricity consumption to meet desired load objectives. An important demand-side option to achieve these load objectives is innovative electricity pricing, both by itself and as a financial incentive for other demand-site measures. This study explores electricity pricing as a DSM strategy, addressing four questions in the process: What is the Western experience with DSM in general and electricity pricing in particular Do innovative pricing strategies alter the amount and pattern of electricity consumption Do the benefits of these pricing strategies outweigh the costs of implementation What are future directions in electricity pricing Although DSM can be used to promote increases in electricity consumption for electric utilities with excess capacity as well as to slow demand growth for capacity-short utilities, emphasis here is placed on the latter. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand.

  14. An Availability-on-Demand Mechanism for Datacenters

    E-Print Network [OSTI]

    Langendoen, Koen

    An Availability-on-Demand Mechanism for Datacenters Siqi Shen, Alexandru Iosup, Assaf Israel,danny}@cs.technion.ac.il Google, Mountain View, CA, USA. walfredo@google.com Abstract--Datacenters are at the core of a wide of today's datacenters, the failure of computing resources is a common occurrence that may disrupt

  15. Field Testing of Automated Demand Response for Integration of Renewable

    E-Print Network [OSTI]

    LBNL-5556E Field Testing of Automated Demand Response for Integration of Renewable Resources responsibility for the accuracy, completeness, or usefulness of any information TCP/IP over CDMA CAISO Utility Aggregator NOC Proprietary Comm. EMS GridLink Loads Interval Meter

  16. Planned Geothermal Capacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehemPlainsboro Center,Planned Geothermal Capacity

  17. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01

    Achievement of Energy Efficiency Resource Standards AndrewEfficiency; EERS=Energy Efficiency Resource Standard; EES=different energy efficiency and demand response resource

  18. Demand key factor in worldwide crude prices and drilling

    SciTech Connect (OSTI)

    Beck, R.J.

    1995-01-30

    The global demand surge that rescued world crude oil prices in 1994 will continue through 1995 and at least sustain, if not increase, worldwide drilling activity. Although average world crude oil prices at the end of 1994 were somewhat higher than a year earlier, the average price for all of last year was down from that of 1993. Production capacity remained sufficient to meet the growing need for crude, and the potential for return of Iraqi exports, embargoed by the United Nations since August 1990, lingered over the market. For several years the average world export crude oil price fluctuated seasonally within the range of $16--20/bbl. This band appears to have dropped to $13--17/bbl. The paper discusses economic growth rates; worldwide demand; worldwide supply; worldwide supply outlook; prices; and international drilling activity.

  19. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    benefits to all electricity market participants, includingin resource procurement, electricity markets, and system andstakeholders – electricity market participants, including

  20. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-01-01

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  1. Effects of Demand Response on Retail and Wholesale Power Markets

    SciTech Connect (OSTI)

    Chassin, David P.; Kalsi, Karanjit

    2012-07-26

    Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energy’s Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets is discussed with necessary and sufficient conditions on system controllability, observability and stability derived.

  2. Plug and Process Loads Capacity and Power Requirements Analysis

    SciTech Connect (OSTI)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  3. Scaling Microblogging Services with Divergent Traffic Demands

    E-Print Network [OSTI]

    Fu, Xiaoming

    Scaling Microblogging Services with Divergent Traffic Demands Tianyin Xu, Yang Chen, Lei Jiao, Ben-server architecture has not scaled with user demands, lead- ing to server overload and significant impairment

  4. Michel Meulpolder Managing Supply and Demand of

    E-Print Network [OSTI]

    Michel Meulpolder Managing Supply and Demand of Bandwidth in Peer-to-Peer Communities #12;#12;Managing Supply and Demand of Bandwidth in Peer-to-Peer Communities Proefschrift ter verkrijging van de

  5. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  6. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    /demographic growth, relatively low electricity and natural gas rates, and relatively low efficiency program CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity Manager Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY

  7. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  8. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  9. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin...

  10. Demand Effects in Productivity and Efficiency Analysis 

    E-Print Network [OSTI]

    Lee, Chia-Yen

    2012-07-16

    Demand fluctuations will bias the measurement of productivity and efficiency. This dissertation described three ways to characterize the effect of demand fluctuations. First, a two-dimensional efficiency decomposition (2DED) of profitability...

  11. Industrial Equipment Demand and Duty Factors 

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    1998-01-01

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air ...

  12. Fair Rewarding in Colocation Data Centers: Truthful Mechanism for Emergency Demand Response

    E-Print Network [OSTI]

    Ren, Shaolei

    emergency events (e.g., extreme weather) that result in electricity production shortage and put the grid response, especially for emergency demand response (EDR) where the power grid coordinates large electricity as a valuable demand response resource for enhancing power grid's efficiency and reliability, especially during

  13. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  14. Decentralized demand management for water distribution 

    E-Print Network [OSTI]

    Zabolio, Dow Joseph

    1989-01-01

    OF THE DEMAND CURVE 30 31 35 39 Model Development Results 39 45 VI CONTROLLER DESIGN AND COSTS 49 Description of Controller Production and Installation Costs 49 50 VII SYSTEM EVALUATION AND ECONOMICS 53 System Response and Degree of Control... Patterns 9 Typical Winter Diurnal Patterns 10 Trace of Marginal Pump Efficiency and Hourly Demand 11 Original Demand Distribution and Possible Redistributions 33 34 40 41 43 46 12 Typical Nodal Responses to Demand Change 54 ix LIST OF TABLES...

  15. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  16. Demand Queries with Preprocessing Uriel Feige

    E-Print Network [OSTI]

    Demand Queries with Preprocessing Uriel Feige and Shlomo Jozeph May 1, 2014 )>IJH=?J Given a set of items and a submodular set-function f that determines the value of every subset of items, a demand query, the value of S minus its price. The use of demand queries is well motivated in the context of com

  17. DemandDriven Pointer Analysis Nevin Heintze

    E-Print Network [OSTI]

    Tardieu, Olivier

    Demand­Driven Pointer Analysis Nevin Heintze Research, Agere Systems (formerly Lucent Technologies analysis of a pro­ gram or program component. In this paper we introduce a demand­driven approach for pointer analysis. Specifically, we describe a demand­driven flow­insensitive, subset­based, context

  18. APPLICATION-FORM DEMANDED'ADMISSION

    E-Print Network [OSTI]

    Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

  19. Airline Pilot Demand Projections What this is-

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    60 Mobile applications constantly demand additional memory, and traditional designs increase but also e-mail, Internet access, digital camera features, and video on demand. With feature expansion demanding additional storage and memory in all com- puting devices, DRAM and flash memory densities

  20. Adapton: Composable, Demand-Driven Incremental Computation

    E-Print Network [OSTI]

    Hicks, Michael

    Adapton: Composable, Demand-Driven Incremental Computation CS-TR-5027 -- July 12, 2013 Matthew A demands on the program output; that is, if a program input changes, all depen- dencies will be recomputed. To address these problems, we present cdd ic , a core calculus that applies a demand-driven seman- tics

  1. Pricing Cloud Bandwidth Reservations under Demand Uncertainty

    E-Print Network [OSTI]

    Li, Baochun

    Heap Assumptions on Demand Andreas Podelski1 , Andrey Rybalchenko2 , and Thomas Wies1 1 University analysis produces heap assumptions on demand to eliminate counterexamples, i.e., non-terminating abstract of a non-terminating abstract computation, i.e., it applies shape analysis on demand. The shape analysis

  2. Demand And Response Transportation Rider's Guide

    E-Print Network [OSTI]

    Acton, Scott

    Demand And Response Transportation Rider's Guide http://www.virginia.edu/parking/disabilities/dart Version 14.5 (8/13/14) Welcome DART Rider: The Demand and Response Transportation (DART) Service rides: #12;Demand And Response Transportation Rider's Guide http

  3. Scaling Microblogging Services with Divergent Traffic Demands

    E-Print Network [OSTI]

    Almeroth, Kevin C.

    Scaling Microblogging Services with Divergent Traffic Demands Tianyin Xu1 , Yang Chen1 , Lei Jiao1 client-server architecture has not scaled with user demands, leading to server overload and significant #12;Scaling Microblogging Services with Divergent Traffic Demands 21 producing effective predictions

  4. Demande de diplmes NOM,Prnom : ......................................................................................................................

    E-Print Network [OSTI]

    Chamroukhi, Faicel

    Optimal demand response: problem formulation and deterministic case Lijun Chen, Na Li, Libin Jiang load through real-time demand response and purchases balancing power on the spot market to meet the aggregate demand. Hence optimal supply procurement by the LSE and the consumption decisions by the users

  5. Precision On Demand: An Improvement in Probabilistic

    E-Print Network [OSTI]

    Precision On Demand: An Improvement in Probabilistic Hashing Igor Melatti, Robert Palmer approach Precision on Demand or POD). #12;This paper provides a scientific evaluation of the pros and cons time likely to increase by a factor of 1.8 or less. #12;Precision On Demand: An Improvement

  6. ADAPTON: Composable, Demand-Driven Incremental Computation

    E-Print Network [OSTI]

    Hicks, Michael

    ADAPTON: Composable, Demand- Driven Incremental Computation Abstract Many researchers have proposed important drawbacks. First, recomputation is oblivious to specific demands on the program output; that is ic , a core calculus that applies a demand-driven semantics to incremental computa- tion, tracking

  7. Constructing Speculative Demand Functions in Equilibrium Markets

    E-Print Network [OSTI]

    On the Convergence of Statistical Techniques for Inferring Network Traffic Demands Alberto Medina1 of traffic demands in a communication net- work enables or enhances a variety of traffic engineering and net set of these demands is prohibitively expensive because of the huge amounts of data that must

  8. Heap Assumptions on Demand Andreas Podelski1

    E-Print Network [OSTI]

    Wies, Thomas

    Heap Assumptions on Demand Andreas Podelski1 , Andrey Rybalchenko2 , and Thomas Wies1 1 University checker and shape analysis. The shape analysis pro- duces heap assumptions on demand to eliminate.e., it applies shape analysis on demand. The shape analysis produces a heap assumption, which is an assertion

  9. Appeld'offrespublic Demanded'approvisionnement

    E-Print Network [OSTI]

    Montréal, Université de

    ATM for Video and Audio on Demand David Greaves. University of Cambridge and ATM Ltd. email: djg fast, particularly for video- on-demand. These digital streams require constant-rate digi- tal channels of the Cambridge Digital Interactive Television Trial, where Video and Audio on demand are transported to the Home

  10. Precision On Demand: An Improvement in Probabilistic

    E-Print Network [OSTI]

    Precision On Demand: An Improvement in Probabilistic Hashing Igor Melatti, Robert Palmer approach Precision on Demand or POD). #12; This paper provides a scientific evaluation of the pros and cons time likely to increase by a factor of 1.8 or less. #12; Precision On Demand: An Improvement

  11. FORECAST COMBINATION IN REVENUE MANAGEMENT DEMAND FORECASTING

    E-Print Network [OSTI]

    Fernandez, Thomas

    Demandness in Rewriting and Narrowing Sergio Antoy1 and Salvador Lucas2 1 Computer Science by a strategy to compute a step. The notion of demandness provides a suitable framework for pre- senting that the notion of demandness is both atomic and fundamental to the study of strategies. 1 Introduction Modern

  12. Resolution on Demand Bianka BuschbeckWolf

    E-Print Network [OSTI]

    Reyle, Uwe

    Resolution on Demand Bianka Buschbeck­Wolf Universit¨at Stuttgart Report 196 May 1997 #12; May 1997¨ur den Inhalt dieser Arbeit liegt bei der Autorin. #12; Resolution on Demand Abstract Following the strategy of resolution on demand, the transfer component triggers inference processes in analysis

  13. Heap Assumptions on Demand Andreas Podelski1

    E-Print Network [OSTI]

    Wies, Thomas

    PROTOTYPE IMPLEMENTATION OF A DEMAND DRIVEN NETWORK MONITORING ARCHITECTURE Augusto Ciuffoletti for demand driven monitoring, named gd2, that can be potentially integrated in the gLite framework. We capable of managing the scalability challenge offered by a Grid environment: i) demand driven

  14. Pricing Cloud Bandwidth Reservations under Demand Uncertainty

    E-Print Network [OSTI]

    Li, Baochun

    Pricing Cloud Bandwidth Reservations under Demand Uncertainty Di Niu, Chen Feng, Baochun Li's utility depends not only on its bandwidth usage, but more importantly on the portion of its demand that can be made by all tenants and the cloud provider, even with the presence of demand uncertainty

  15. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    trends in China, India, Eastern Europe and other developing areas. China oil demand +104% by 2030, India 2000 2020 2040 2060 Supply demand Energy UWM-CUTS 14 U.S. DOE viewpoint, source:http://tonto.eia.doe.gov/FTPROOT/features/longterm.pdf#search='oilTransportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05

  16. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators- response paradigm. When the energy provider needs to reduce the current energy demand on the grid, it can

  17. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract the case that distributed PV generation deserves a substantial portion of the credit allotted to demand response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing

  18. Demand Response for Computing Jerey S. Chase

    E-Print Network [OSTI]

    Chase, Jeffrey S.

    Chapter 1 Demand Response for Computing Centers Jerey S. Chase Duke University 1.1 Introduction ............................................................... 3 1.2 Demand Response in the Emerging Smart Grid .......................... 5 1.2.1 Importance of Demand Response for Energy E ciency .......... 6 1.2.2 The Role of Renewable Energy

  19. Response to changes in demand/supply

    E-Print Network [OSTI]

    Response to changes in demand/supply through improved marketing 21.2 http with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board, statistics of demand and supply of wood, costs and competitiveness were analysed. The reactions

  20. Response to changes in demand/supply

    E-Print Network [OSTI]

    Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes log demand in 1995. The composites board mills operating in Korea took advantage of flexibility environment changes on the production mix, some economic indications, statistics of demand and supply of wood

  1. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  2. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

  3. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

  4. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  5. Comparing Resource Adequacy Metrics: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-09-01

    As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

  6. Energy conservation and electricity sector liberalization: Case-studies on the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom

    SciTech Connect (OSTI)

    Slingerland, S.

    1998-07-01

    In this paper, the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom are compared. It is discussed to what extent these developments are determined by the liberalization process. Three key liberalization variables are identified: unbundling, privatization and introduction of competition. The analysis suggests that unbundling prior to introduction of full competition in generation is particularly successful in stimulating industrial cogeneration; simultaneous introduction of competition and unbundling mainly stimulates non-cogeneration gas-based capacity; and introduction of competition in itself is likely to impede the development of district-heating cogeneration. Furthermore, it is argued that development of wind energy and demand-side management are primarily dependent on the kind of support system set up by policy makers rather than on the liberalization process. Negative impacts of introduction of competition on integrated resource planning and commercial energy services could nevertheless be expected.

  7. Total Working Gas Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November18.5 385.5Dry Production602 1,397 125 Q 69 0.11 Monthly

  8. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubicFracking,MichiganThousand47,959.15References and2009

  9. WINDExchange: Potential Wind Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|UpcomingVisit UsNews This page lists all

  10. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic Feet)698 1.8732009

  11. Refinery Capacity Report Historical

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic Feet)698 1.8732009

  12. Total Working Gas Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (BillionProduction(MillionGrossJarrett2009

  13. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014Capabilities ORISE technician performs

  14. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData -

  15. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData -1 Idle Operating

  16. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168

  17. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168Capacityof Last

  18. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168Capacityof

  19. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168CapacityofVacuum

  20. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a.

  1. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a.CORPORATION / Refiner /

  2. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a.CORPORATION / Refiner

  3. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a.CORPORATION /

  4. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a.CORPORATION / Cokers

  5. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a.CORPORATION / CokersMethod

  6. EIA - Electricity Generating Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel pricesDieselAnnualElectricity

  7. FAQs about Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers 2015Values shown for theabout

  8. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    SciTech Connect (OSTI)

    Lawrence Berkeley National Laboratory; Kiliccote, Sila

    2011-11-18

    Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

  9. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    Pumped Storage, Fuel Cells and Distributed Generation. TheNuclear Power Pumped Storage Fuel Cells Renewable Sources

  10. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01

    Protocol for Building Automation and Control  Networks.  Protocol for Building Automation and Control  Networks, Protocol for building Automation and Controls Networks.   

  11. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01

    and industrial facilities.   The long?term vision is to embed the  automation Industrial/Agricultural/Water End?Use Energy Efficiency  Renewable Energy Technologies  Transportation  The Automation 

  12. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    is fraction of total electricity consumption for commercialy) ! calculate total electricity consumption for the end-useis fraction of total electricity consumption for residential

  13. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01

    event are broadcast by a web services server through  the common signal using a web services client application.   control  systems.    A Web Services software or smart 

  14. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    types Oil & Gas Steam and Combustion Turbine/Diesel. Diesel.of Oil & Gas Steam plus Combustion Combustio Turbine/Diesel,Natural Gas Steam Combined Cycle Combustion Turbine/Diesel

  15. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    refrigeration generation type coal nuclear ngcc renewableby fuel type. %TWh Reduction Commercial coal ngcc nuclearType and Technology : Electricity : Electric Power Electric Power Projections for EMM Region : Electricity : Emissions Quantity Liquid Fuels Natural Gas Steam Coal

  16. Heavier Crude, Changing Demand for Petroleum Fuels, Regional Climate Policy, and the Location of Upgrading Capacity:

    E-Print Network [OSTI]

    Reilly, John

    The crude slate is likely to become heavier in the future with greater reliance on bitumens, tar sands, heavy oils, and eventually possibly shale oil. Under standard refining processes these crude oil sources produce a ...

  17. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01

    implementation in energy management systems.   This effort linked to energy management control systems (EMCS) 4  or Systems  Energy Management and Control Systems  Electric 

  18. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    sector such as coal production, liquid fuels production etc.Quantity Liquid Fuels Natural Gas Steam Coal Nuclear

  19. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    2011).pdf. ———. 2012a. “Annual Energy Outlook (AEO) 2012. ”2013. “Annual Energy Outlook - Model Documentation. ”forecast, the Annual Energy Outlook (AEO) (DOE EIA 2012a).

  20. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect (OSTI)

    Starke, Michael R; Kirby, Brendan J; Kueck, John D; Todd, Duane; Caulfield, Michael; Helms, Brian

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

  1. Storing hydroelectricity to meet peak-hour demand

    SciTech Connect (OSTI)

    Valenti, M.

    1992-04-01

    This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

  2. Bioenergy Demand in a Market Driven Forest Economy (U.S. South)

    Broader source: Energy.gov [DOE]

    Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Robert C. Abt, Professor of Natural Resource Economics and Management, North Carolina State University

  3. Power system balancing with high renewable penetration : the potential of demand response

    E-Print Network [OSTI]

    Critz, David Karl

    2012-01-01

    This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model was used to represent a version of ...

  4. Emerging Technology Conservation Resources Advisory

    E-Print Network [OSTI]

    possible path to zero carbon future for electricity system by 2035 Not limited by cost 2 #12;Step 1: Identify the Gap Run RPM with: No new carbon-emitting resources No cost limit on carbon-free resources Conservation (include EE>$170/MWh) Demand response Distributed PV, with achievability assumptions Utility

  5. Aggregate Model for Heterogeneous Thermostatically Controlled Loads with Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Kalsi, Karanjit; Fuller, Jason C.; Elizondo, Marcelo A.; Chassin, David P.

    2012-07-22

    Due to the potentially large number of Distributed Energy Resources (DERs) – demand response, distributed generation, distributed storage - that are expected to be deployed, it is impractical to use detailed models of these resources when integrated with the transmission system. Being able to accurately estimate the fast transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies. On the other hand, a less complex model is more amenable to design feedback control strategies for the population of devices to provide ancillary services. The main contribution of this paper is to develop aggregated models for a heterogeneous population of Thermostatic Controlled Loads (TCLs) to accurately capture their collective behavior under demand response and other time varying effects of the system. The aggregated model efficiently includes statistical information of the population and accounts for a second order effect necessary to accurately capture the collective dynamic behavior. The developed aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D (an open source distribution simulation software) under both steady state and severe dynamic conditions caused due to temperature set point changes.

  6. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  7. 1994 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-12-01

    The 1994 Pacific Northwest Loads and Resources Study establishes the Bonneville Power Administration`s (BPA) planning basis for supplying electricity t6 BPA customers. The Loads and Resources Study is presented in two documents: (1) this technical appendix detailing loads and resources for each major Pacific Northwest generating utility; and (2) a summary of Federal system and Pacific Northwest region loads and resources. This analysis updates the 1993 Pacific Northwest Loads and Resources Study Technical Appendix published in December 1993. This technical appendix provides utility specific information that BPA uses in its long-range planning. It incorporates the following for each utility: (1) electrical demand-firm loads; (2) generating resources; and (3) contracts both inside and outside the region. This document should be used in combination with the 1994 Pacific Northwest Loads and Resources Study, published in December 1994, because much of the information in that document is not duplicated here. This BPA planning document incorporates Pacific Northwest generating resources and the 1994 medium load forecast prepared by BPA. Each utility`s forecasted future firm loads are subtracted from its existing resources to determine whether it will be surplus or deficit. If a utility`s resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which the utility can sell to increase revenues. Conversely, if its firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet the utility`s load.

  8. Demande de casier 20142015 1. Demande ( remplir par l'lve)

    E-Print Network [OSTI]

    Demande de casier 20142015 1. Demande (à remplir par l'élève) Nom : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Demande l'attribution d'un casier pour y déposer) : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . En cas d'acceptation de ma demande, je retirerai ma clé contre un chèque de caution d'un montant de

  9. DEMANDE DE CONGE Cette demande doit tre effectue un mois avant le dbut du semestre.

    E-Print Network [OSTI]

    Halazonetis, Thanos

    DEMANDE DE CONGE Cette demande doit être effectuée un mois avant le début du semestre. Date de la demande .......................................................... NOM-mail .......................................................................................................................................................................... @etu.unige.ch Demande à être mis au bénéfice d'un congé pour le(s) semestre(s) suivant(s) (2 semestres

  10. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  11. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    it easy for the utility planning and regulatory reviewResource Planning (IRP) studies directly estimate utility-utility’s costs of doing business, avoided costing, integrated planning and

  12. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    Use Total Resource Cost Value of Lost Load Value of ServicePrice Modeling Value of Lost Load Improved ReliabilityCases Market Model Value of Lost Load Option Value Network

  13. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    Renewable energy spillage, operating costs and capacity requirements for the multi-area casemore in the case of deeper renewable energy integration, duerenewable energy spillage, operating costs and capacity requirements for the four case

  14. Property:Cooling Capacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOfficesCollaborators Jump to:Capacity Jump to:

  15. Africa - CCS capacity building | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts: EnergyRenewablesAfrica - CCS capacity

  16. U.S. Refinery Utilization and Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE: AprilCubicProduction Capacity ofCrudeStocks

  17. Demand Response - Policy: More Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment ofConditionDelmarva Power -Demand

  18. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01

    13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

  19. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01

    Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

  20. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01

    of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: