Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Incorporating Demand Resources into ISO New England’s Forward Capacity Market  

E-Print Network (OSTI)

The Forward Capacity Market was developed by ISO New England, the six New England states, and industry stakeholders to promote investment in demand- and supply-side resources. Under the new FCM design, ISO New England will project the needs of the power system three years in advance and then hold an annual auction to purchase the power resources that will satisfy the future regional requirements. ISO New England submitted a filing with the Federal Energy Regulatory Commission (FERC) in November of 2007 that defined 6,102 megawatts (MW) of new demand- and supply-side resources now eligible to compete in the market. Approximately 40 percent—or 2,483 MW—of the new, qualified projects are demand-side resources such as demand response, energy efficiency, load management, and distributed generation. Energy efficiency projects make up over 590 MW of that total.

Winkler, E.

2008-01-01T23:59:59.000Z

2

A Framework for Valuing Demand Response as a Capacity Adequacy Resource  

Science Conference Proceedings (OSTI)

This report demonstrates the importance of customer participation in decisions about how much reliability, in the form of capacity adequacy, to provide electricity consumers in centralized organized markets operated by independent system operators/regional transmission organizations (ISO/RTOs) or by electric utilities.

2009-12-23T23:59:59.000Z

3

Robust Dynamic Traffic Assignment under Demand and Capacity Uncertainty  

E-Print Network (OSTI)

Assignment under Demand and Capacity Uncertainty ? Giuseppeworst-case sce- nario of demand and capacity con?gurations.uncertain demands and capacities are modeled as unknown-but-

Calafiore, Giuseppe; El Ghaoui, Laurent

2008-01-01T23:59:59.000Z

4

Resource Adequacy Capacity - Power Marketing - Sierra Nevada...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Adequacy Capacity Resource Adequacy Capacity Resource Adequacy Plan - Current Local Resource Adequacy Plan (Word - 175K) - Notice of Proposed Final Resource Adequacy Plan...

5

Measuring the capacity impacts of demand response  

Science Conference Proceedings (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

6

Demand Response as a System Reliability Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response as a System Reliability Resource Title Demand Response as a System Reliability Resource Publication Type Report Year of Publication 2012 Authors Eto, Joseph H.,...

7

Assessing the Control Systems Capacity for Demand Response in...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type...

8

Congestion, excess demand, and effective capacity in California freeways  

E-Print Network (OSTI)

demand is first met at free flow speeds, until the demand exceeds maximum throughput and congestionCongestion, excess demand, and effective capacity in California freeways£ Zhanfeng Jia, Pravin empirical study of freeways in Los Angeles and Orange County. First, maximum throughput occurs at the free

Varaiya, Pravin

9

Demand-Responsive and Efficient Building Systems as a Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand-Responsive and Efficient Building Systems as a Resource for Electricity Reliability Title Demand-Responsive and Efficient Building Systems as a Resource for Electricity...

10

FERC Presendation: Demand Response as Power System Resources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy...

11

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Chapter 3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs...

12

South Korea-ANL Distributed Energy Resources and Demand Side...  

Open Energy Info (EERE)

Korea-ANL Distributed Energy Resources and Demand Side Management Jump to: navigation, search Name Distributed Energy Resources and Demand Side Management in South Korea Agency...

13

California Independent System Operator demand response & proxy demand resources  

Science Conference Proceedings (OSTI)

Demand response programs are designed to allow end use customers to contribute to energy load reduction individually or through a demand response provider. One form of demand response can occur when an end use customer reduces their electrical usage ...

John Goodin

2012-01-01T23:59:59.000Z

14

Assessing the Control Systems Capacity for Demand Response in California  

NLE Websites -- All DOE Office Websites (Extended Search)

the Control Systems Capacity for Demand Response in California the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type Report LBNL Report Number LBNL-5319E Year of Publication 2012 Authors Ghatikar, Girish, Aimee T. McKane, Sasank Goli, Peter L. Therkelsen, and Daniel Olsen Date Published 01/2012 Publisher CEC/LBNL Keywords automated dr, controls and automation, demand response, dynamic pricing, industrial controls, market sectors, openadr Abstract California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

15

Resource allocation for demand surge mitigation during disaster response  

Science Conference Proceedings (OSTI)

Large-scale public health emergencies can result in an overwhelming demand for healthcare resources. Regional aid in the form of central stockpiles and resource redistribution can help mitigate the resulting demand surge. This paper discusses a resource ... Keywords: Decision support, Optimization, Pandemic flu, Resource allocation

Hina Arora; T. S. Raghu; Ajay Vinze

2010-12-01T23:59:59.000Z

16

FERC Presendation: Demand Response as Power System Resources, October 29,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Presendation: Demand Response as Power System Resources, FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as Power System Resources More Documents & Publications A National Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Cost-Effectiveness Working Group Loads Providing Ancillary Services: Review of International Experience Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006)

17

Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spent 14.7 billion on DSM programs between 1989 and 1999, an average of 1.3 billion per year. Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3 Demand-Side...

18

Coordination of Energy Efficiency and Demand Response: A Resource...  

Open Energy Info (EERE)

Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

19

Chapter 3 Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

these resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys...

20

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

22

Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spent 14.7 billion on DSM programs between 1989 and 1999, an average of 1.3 billion per year. Chapter 3: Demand-Side Resources More Documents & Publications Draft Chapter 3:...

23

Modeling, Analysis, and Control of Demand Response Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Analysis, and Control of Demand Response Resources Speaker(s): Johanna Mathieu Date: April 27, 2012 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Sila...

24

Quantifying the Variable Effects of Systems with Demand Response Resources  

E-Print Network (OSTI)

Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George, USA Abstract--The growing environmental concerns and increasing electricity prices have led to wider implementation of demand- side activities and created a new class of consumers, called de- mand response

Gross, George

25

Modeling, Analysis, and Control of Demand Response Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Analysis, and Control of Demand Response Resources Modeling, Analysis, and Control of Demand Response Resources Speaker(s): Johanna Mathieu Date: April 27, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can play an active role in power systems via Demand Response (DR). Recent DR programs have focused on peak load reduction in commercial buildings and industrial facilities (C&I facilities). We present a regression-based baseline model, which allows us to quantify DR performance. We use this baseline model to understand the performance of C&I facilities participating in an automated dynamic pricing DR program in California. In this program, facilities are

26

Integrating Energy Efficiency and Demand Response into Utility Resource Plans  

Science Conference Proceedings (OSTI)

This report investigates the methods in which utilities integrate their supply-side and demand-side resources to meet their generating resource requirements. The major steps in developing a resource plan are reviewed, including the alternative methods currently employed. Finally, the report presents the results of a short survey that was administered to the advisors in Energy Utilization. The results show that methods are more sophisticated than 20 years ago, but more could be accomplished in ...

2013-01-14T23:59:59.000Z

27

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Optimal Control of Distributed Energy Resources and DemandRenewable Energy, former Distributed Energy Program of theOptimal Control of Distributed Energy Resources and Demand

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

28

A Successful Implementation with the Smart Grid: Demand Response Resources  

E-Print Network (OSTI)

1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution to the Panel: "Reliability and Smart Grid: Public Good or Commodity" Anupama Kowli Student Member, IEEE, Matias behind the Smart Grid concept - can markedly impact the system reliability. The appropriate utilization

Gross, George

29

Cogeneration System Size Optimization Constant Capacity and Constant Demand Models  

E-Print Network (OSTI)

This paper presents the development of a quasi-linear optimization model for a cogeneration system subject to constant heat and power demands or loads. The linear model is next modified to a non-linear one to account for economies of scale. The models define the necessary and sufficient conditions for system size optimality. Thus, the underlying methodology constitutes the foundation for a subsequent series of more sophisticated cogeneration design models. Several examples are presented to illustrate the models.

Wong-Kcomt, J. B.; Turner, W. C.

1993-03-01T23:59:59.000Z

30

Incorporating endogenous demand dynamics into long-term capacity expansion power system models for Developing countries  

E-Print Network (OSTI)

This research develops a novel approach to long-term power system capacity expansion planning for developing countries by incorporating endogenous demand dynamics resulting from social processes of technology adoption. ...

Jordan, Rhonda LeNai

2013-01-01T23:59:59.000Z

31

Cloud resource usage: extreme distributions invalidating traditional capacity planning models  

Science Conference Proceedings (OSTI)

For years Capacity Planning professionals knew or suspected that various characteristics of computer usage have non-normal distribution. At the same time much of the traditional workload modeling and forecasting is based on mathematical techniques assuming ... Keywords: capacity planning, power law, probability distributions, resource usage, volatility

Charles Z. Loboz

2011-06-01T23:59:59.000Z

32

National Microalgae Biofuel Production Potential and Resource Demand  

SciTech Connect

Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

2011-04-14T23:59:59.000Z

33

Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response  

Science Conference Proceedings (OSTI)

This report summarizes San Diego Gas& Electric Company?s collaboration with the Demand Response Research Center to develop and test automation capability for the Capacity Bidding Program in 2007. The report describes the Open Automated Demand Response architecture, summarizes the history of technology development and pilot studies. It also outlines the Capacity Bidding Program and technology being used by an aggregator that participated in this demand response program. Due to delays, the program was not fully operational for summer 2007. However, a test event on October 3, 2007, showed that the project successfully achieved the objective to develop and demonstrate how an open, Web?based interoperable automated notification system for capacity bidding can be used by aggregators for demand response. The system was effective in initiating a fully automated demand response shed at the aggregated sites. This project also demonstrated how aggregators can integrate their demand response automation systems with San Diego Gas& Electric Company?s Demand Response Automation Server and capacity bidding program.

Kiliccote, Sila; Piette, Mary Ann

2008-10-01T23:59:59.000Z

34

Demand responsive programs - an emerging resource for competitive electricity markets?  

SciTech Connect

The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

Heffner, Grayson C. Dr.; Goldman, Charles A.

2001-06-25T23:59:59.000Z

35

Demand Dispatch-Intelligent  

NLE Websites -- All DOE Office Websites (Extended Search)

and energy efficiency throughout the value chain resulting in the most economical price for electricity. Having adequate quantities and capacities of demand resources is a...

36

Using heat demand prediction to optimise Virtual Power Plant production capacity  

E-Print Network (OSTI)

CHP appliances on the grid in the near future. In case of a microCHP, adding a heat buffer (hot water tank1 Using heat demand prediction to optimise Virtual Power Plant production capacity Vincent Bakker that generate electricity (and heat) at the kilowatt level, which allows them to be installed in households

Al Hanbali, Ahmad

37

1 Setting Speculative and Reactive Capacities When an Early Demand Signal  

E-Print Network (OSTI)

Consider a fashion goods retailer choosing a strategy for contracting production of its products. It can 1) speculate by contracting for a certain quantity to be produced well ahead of uncertain demand at relatively low unit cost, 2) react by waiting until demand is known, and only then contracting for just the right quantity at a higher unit cost, or 3) hedge its bets by speculating on a portion of the total quantity, and reacting to demand for the rest. Using a twoproduct two-stage model, we identify the conditions under which each strategy is preferred, and determine capacity requirements. We find that fashion retailing often benefits from the dual strategy due to relatively higher obsolescence costs. But the use of the dual strategy is sensitive to the cost premium for reactive capacity and to the makeup of reactive production costs as either largely variable or fixed.

Kyle Cattani; Ely Dahan; Glen M. Schmidt

2007-01-01T23:59:59.000Z

38

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

Science Conference Proceedings (OSTI)

We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

2010-06-01T23:59:59.000Z

39

Assessing the Control Systems Capacity for Demand Response in California Industries  

SciTech Connect

California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

2012-01-18T23:59:59.000Z

40

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

comes to demand response is FERC is own worst enemy? Tech.9.1-2 (1986), pp. 5–18. [46] FERC. A national assessment of09-demand-response.pdf. [47] FERC. National action plan on

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Demand responsive programs - an emerging resource for competitive electricity markets?  

E-Print Network (OSTI)

difference between Strike Price & forecast wholesale priceon day-ahead forecast of demand & price Wholesale utilitiesday-of forecast, or actual hourly spot price. A quick

Heffner, Dr. Grayson C.; Goldman, Charles A.

2001-01-01T23:59:59.000Z

42

An Open Architecture Platform for Demand Resources from AutoDR and MBCx:  

NLE Websites -- All DOE Office Websites (Extended Search)

An Open Architecture Platform for Demand Resources from AutoDR and MBCx: An Open Architecture Platform for Demand Resources from AutoDR and MBCx: National Virtual Power Plant Speaker(s): Jung In Choi Date: December 20, 2013 - 2:00pm - 3:00pm Location: 90-3122 Seminar Host/Point of Contact: Philip Haves The presentation lays out the technology and business model for National Virtual Power Plant (NVPP). NAPP is a Korean initiative to develop a cluster of demand resources from consumers by peak reduction or energy saving. Demand resources from NVPP are collectively traded in the open architecture platform for energy market. The platform enables 3rd parties to develop new business models and applications through open API s. It will bring a long tail market for demand response and energy efficiency in small and medium size buildings as well as large ones. Automated Demand

43

Deployment of Demand Response as a Real-Time Resource in Organized Markets  

Open Energy Info (EERE)

Deployment of Demand Response as a Real-Time Resource in Organized Markets Deployment of Demand Response as a Real-Time Resource in Organized Markets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Deployment of Demand Response as a Real-Time Resource in Organized Markets Focus Area: Crosscutting Topics: Potentials & Scenarios Website: www.sciencedirect.com/science/article/pii/S1040619008000973 Equivalent URI: cleanenergysolutions.org/content/deployment-demand-response-real-time- Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning This article examines the use of demand response as a dispatchable resource

44

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

9.1-2 (1986), pp. 5–18. [46] FERC. A national assessment ofmeet/2008/101608/E-1.pdf. [49] FERC. Order No. 745, Demand17-000.pdf. BIBLIOGRAPHY [50] FERC. Order No. 755, Frequency

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

45

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

4.2.1 Individual TCL model . . . . . . . . . . . . . .4.2.2 Plant: The TCL population . . . . . . . .5 TCL Resource, Revenues & Costs 5.1 Chapter

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

46

Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response  

E-Print Network (OSTI)

S.  Kiliccote.   Estimating Demand Response Load  Impacts: in California.   Demand Response Research Center, Lawrence and Techniques for Demand Response.  LBNL Report 59975.  

Kiliccote, Sila

2011-01-01T23:59:59.000Z

47

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

Impacts of Reduced Electricity Demand. Part 1. MethodologyImpacts of Reduced Electricity Demand. Part 1. MethodologyFigure 3: Commercial electricity demand with and without the

Coughlin, Katie

2013-01-01T23:59:59.000Z

48

Agent-Based Wave Computation: Towards Controlling the Resource Demand  

Science Conference Proceedings (OSTI)

In recent years, the mobile agent paradigm has received significant consideration in the context of large complex decentralized systems. Tasks such as system monitoring, load balancing and resource management have been successfully mapped onto this paradigm. ...

Armin R. Mikler; Vivek S. Chokhani

2001-06-01T23:59:59.000Z

49

DOE Hydrogen Analysis Repository: HyDRA: Hydrogen Demand and Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

HyDRA: Hydrogen Demand and Resource Analysis Tool HyDRA: Hydrogen Demand and Resource Analysis Tool Project Summary Full Title: HyDRA: Hydrogen Demand and Resource Analysis Tool Project ID: 220 Principal Investigator: Johanna Levene Brief Description: HyDRA has evolved from a basic display of spatial data to a repository of over 100 datasets with dynamic data, querying, and interoperability with other models and spatial data repositories and over 350 registered users. Keywords: Hydrogen infrastructure; wind; solar; biomass; coal; natural gas Purpose Facilitate regional and geographical analyses of resources, demand, and infrastructure relevant to the implementation of hydrogen production, delivery, and dispensing. Performer Principal Investigator: Johanna Levene Organization: National Renewable Energy Laboratory (NREL)

50

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

Modeling the Capacity and Emissions Impacts of Reducedpurposes. Modeling the Capacity and Emissions Impacts ofFigure 2: Comparison of capacity projections from AEO2011

Coughlin, Katie

2013-01-01T23:59:59.000Z

51

Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response  

E-Print Network (OSTI)

Project Committee 135  Capacity Bidding Program  Client and REPORT AUTOMATION OF CAPACITY BIDDING WITH AN AGGREGATORDevelopment and Testing of the Capacity Bidding Program for 

Kiliccote, Sila

2011-01-01T23:59:59.000Z

52

A new model for allocating resources to scheduled lightpath demands  

Science Conference Proceedings (OSTI)

Recent research has clearly established that holding-time-aware routing-and-wavelength-assignment (RWA) schemes lead to significant improvements in resource utilization for scheduled traffic. Two different models have been proposed for scheduled traffic ... Keywords: Routing and wavelength assignment, Scheduled traffic model, Segmented sliding window model, Wavelength division multiplexing

Ying Chen; Arunita Jaekel; Ataul Bari

2011-09-01T23:59:59.000Z

53

Demand Response: An UntappedDemand Response: An Untapped Resource for Western ElectricityResource for Western Electricity  

E-Print Network (OSTI)

Information Administration, Form EIA-861 Database. #12;Energy Analysis Department Significant cost@lbl.gov FERC Western Energy Infrastructure Conference Denver, Colorado July 30, 2003 #12;Energy Analysis value of demand-side for electricity markets - Short-term Load Management - Dynamic Pricing - Energy

54

Managing Water Resource Requirements for Growing Electric Generation Demands  

Science Conference Proceedings (OSTI)

This report is a general guide to analytical techniques used to address water resource management as related to long-term sustainability planning, and short-term regulatory requirements, including total maximum daily loads, endangered species, and relicensing of hydropower facilities. The example applications presented in the report highlight the capability of the techniques, and help electric power company and government regulatory staffs identify the best approach for a specific need.

2009-12-02T23:59:59.000Z

55

Assessing the Control Systems Capacity for Demand Response in California Industries  

E-Print Network (OSTI)

5: Periods of Elevated Electricity Demand 8am-12pm 12pm-2pmC-8: Diurnal Variations in Electricity Demand Figure C-9:Variations in Electricity Demand Figure C-10: Seasonal

Ghatikar, Girish

2013-01-01T23:59:59.000Z

56

1993 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 2, Book 2, Capacity.  

DOE Green Energy (OSTI)

Monthly totals of utility loads and capacities extrapolated as far as 2009 with a probability estimate of enough water resources for hydro power.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

57

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

Science Conference Proceedings (OSTI)

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

58

OPEC and lower oil prices: Impacts on production capacity, export refining, domestic demand and trade balances  

SciTech Connect

The East-West Center received a research grant from the US Department of Energy's Office of Policy, Planning, and Analysis to study the impact of lower oil prices on OPEC production capacity, on export refineries, and the petroleum trade. The project was later expanded to include balance-of-payments scenarios and impacts on OPEC domestic demand. The Department of Energy requested that the study focus on the Persian Gulf countries, as these countries have the largest share of OPEC reserves and production. Since then, staff members from the East-West Center have visited Iran, the United Arab Emirates, and Saudi Arabia and obtained detailed information from other countries. In addition, the East-West Center received from a number of large international oil companies and national governments valuable information on OPEC production capabilities. In order to safeguard the confidential nature of this information, these data have been aggregated in this report. The East-West Center considers the results presented to be the most up-to-date information and analysis available today. This report also provides a major reassessment of the export refining and economic competitiveness of Middle East refineries. As pioneers of the research on OPEC export refineries, the East-West Center has fully reevaluated the performance and outlook of these refineries as of the present. 21 figs., 20 tabs.

Fesharaki, F.; Fridley, D.; Isaak, D.; Totto, L.; Wilson, T.

1989-01-01T23:59:59.000Z

59

Coordination of Energy Efficiency and Demand Response: A Resource of the  

Open Energy Info (EERE)

Coordination of Energy Efficiency and Demand Response: A Resource of the Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Focus Area: Energy Efficiency Topics: Policy, Deployment, & Program Impact Website: www.epa.gov/cleanenergy/documents/suca/ee_and_dr.pdf Equivalent URI: cleanenergysolutions.org/content/coordination-energy-efficiency-and-de Language: English Policies: "Regulations,Deployment Programs" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Retrofits Regulations: Energy Standards

60

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

than relying on central-station electricity generation and purchase of natural gas for heating and DER under uncertain electricity and natural gas prices · Section 5 summarizes the findings Control of Distributed Energy Resources and Demand Response under Uncertainty 3 · FPt: wholesale natural

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

demand changes impact the electric power sector. Figure 2:for electricity on the electric power sector as a whole. Thedemand changes impact the electric power sector. We refer to

Coughlin, Katie

2013-01-01T23:59:59.000Z

62

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

Comparison of capacity projections from AEO2011 and AEO2012.presents a reference case projection of U.S. energy supply,to produce a modified projection. 3. The difference between

Coughlin, Katie

2013-01-01T23:59:59.000Z

63

Utilization of Energy Efficiency and Demand Response as Resources for Transmission and Distribution Planning  

Science Conference Proceedings (OSTI)

EPRI began its Energy Efficiency Initiative in early 2007. Initiative research, which covers numerous topics associated with energy efficiency and demand management, is categorized into three areas: analytics, infrastructure, and devices. The project described in this report details the Initiative’s analytics element, which deals with methods and tools for analyzing aspects of the use of energy efficiency as supply resource, including measurement and verification, inclusion in generation planning, emissi...

2008-02-05T23:59:59.000Z

64

Economic Modeling of Mid-Term Gas Demand and Electric Generation Capacity Trends  

Science Conference Proceedings (OSTI)

The U.S. power sector natural gas use over the next 10 to 20 years is a topic of significant uncertainty and debate. The industry expects the power sector to be the principal source of growth in national gas demand in the short run; and the manner in which it drives demand and affects the market over the "mid term," to 2020-2030, is an important consideration for planners in both the electric and gas industries. With abundant, relatively low-priced supplies, gas-fired generation can be a strong competito...

2009-12-22T23:59:59.000Z

65

2012 SG Peer Review - Interoperability of Demand Response Resources in New York - Andre Wellington, ConEd NY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interoperability of Demand Response Interoperability of Demand Response Resources in NY Andre Wellington Con Edison June 8, 2012 December 2008 Interoperability of Demand Resource Resources in NY Objective Life-cycle Funding ($M) FY08 - FY13 $6.8 million Technical Scope (Insert graphic here) Develop and demonstrate technology required to integrate customer owned resources into the electrical distribution system * Evaluate interconnection designs * Design and install thermal storage plant with enhanced capabilities * Develop AutoDR application for targeted distributed resources 2 December 2008 Needs and Project Targets Develop the technology required to integrate customer owned distributed resources into the distribution system to enable the of deferment capital investments. * Remote dispatch of customer resources

66

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

follows: • EDemand t : electricity demand during day t (incost of reducing electricity demand (in $/MWh e ) • HRDCost:maximum fraction of electricity demand to be met by demand

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

67

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

Consulting), and Dave Shroyer (SCG). Demand Response andOpen Automated Demand Response Opportunities for DataIAW Research Team, Demand Response Research Center, Lawrence

Watson, David S.

2013-01-01T23:59:59.000Z

68

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

Water Supply Related Electricity Demand in California. CEC33 percent of our electricity demand in 2020 from renewablebuildings, heating electricity demand is not included in

Watson, David S.

2013-01-01T23:59:59.000Z

69

Hawaii demand-side management resource assessment. Final report: DSM opportunity report  

SciTech Connect

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

NONE

1995-08-01T23:59:59.000Z

70

Thermal Resources for Load Management: Understanding Variable Capacity HVAC Systems as a Load Management Resource  

Science Conference Proceedings (OSTI)

Space conditioning accounts for a major portion of the energy consumption in U.S. residences and commercial buildings and is a primary driver of summer and winter peak demand for electric utility companies. The most common type of space conditioning system in the U.S. is some form of an air-source, fixed speed, direct expansion system. For several decades utilities have implemented efficiency and demand response programs involving fixed speed air conditioning. Over the years, there has been a steady rise ..

2013-12-17T23:59:59.000Z

71

Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.  

DOE Green Energy (OSTI)

Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

Singh, M. K.; Moore, J. S.

2002-03-04T23:59:59.000Z

72

Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis  

Science Conference Proceedings (OSTI)

This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

NONE

1995-04-01T23:59:59.000Z

73

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

Piette, LBNL. Integrating Renewable Resources in Californiaprocurement from eligible renewable energy resources to 33%to Enable the Integration of Renewable Resources David S.

Watson, David S.

2013-01-01T23:59:59.000Z

74

Optimal Management of Renewable Resources with Growing Demand and Stock Externalities  

E-Print Network (OSTI)

MAi\\IAGEMEJ. 'n' OF RENEWABLE RESOURCES WIlli GROWING DEMANDapproximation, the problem of a renewable resource is: -f" (MA. ? \\IAGEMENl' OF RENEWABLE RESOURCES WIlli GROWING

Berck, Peter

1979-01-01T23:59:59.000Z

75

Fast Automated Demand Response to Enable the Integration of Renewable Resources  

E-Print Network (OSTI)

peak demand, and natural gas demand forecasts for eachnatural gas and other fossil fuels are the predominant heating fuels for California’s commercial buildings, heating electricity demandDemand. The California End Use Survey 2004 (CEUS 2004) provides statewide hourly electricity and natural gas

Watson, David S.

2013-01-01T23:59:59.000Z

76

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

and Demand Response under Uncertainty • F P t : wholesale natural gasdemand response and DER under uncertain electricity and natural gasand Demand Response under Uncertainty Energy Price Models We assume that the logarithms of the deseasonalized electricity and natural gas

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

77

Poster Abstract: Acxiom's Capacity On Demand Framework For the past five years Acxiom Corporation has be transitioning its IT infrastructure from a  

E-Print Network (OSTI)

Poster Abstract: Acxiom's Capacity On Demand Framework For the past five years Acxiom Corporation, distributed Grid model. Because Acxiom's internal processing needs are somewhat different from traditional Grid applications custom monitoring and control software, called the Apiary, was written in house

Melbourne, University of

78

Tracking Demands in Optimal Control of Managerial Systemswith Continuously-Divisible, Doubly Constrained Resources  

Science Conference Proceedings (OSTI)

The paper addresses problems of allocating continuously divisible resources among multiple production activities. The resources are allowed to be doubly constrained, so that both usage at every point of time and cumulative consumption over a planning horizon ... Keywords: Optimal control, Resource constrained scheduling, renewable and nonrenewable resources

Konstantin Kogan; Eugene Khmelnitsky

1998-08-01T23:59:59.000Z

79

Battery resource assessment. Interim report No. 1. Battery materials demand scenarios  

DOE Green Energy (OSTI)

Projections of demand for batteries and battery materials between 1980 and 2000 are presented. The estimates are based on existing predictions for the future of the electric vehicle, photovoltaic, utility load-leveling, and existing battery industry. Battery demand was first computed as kilowatt-hours of storage for various types of batteries. Using estimates for the materials required for each battery, the maximum demand that could be expected for each battery material was determined.

Sullivan, D.

1980-12-01T23:59:59.000Z

80

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

N Zhou (2007), “Distributed Generation with Heat Recoveryin the form of distributed generation with combined heat andcapacity. Keywords: Distributed generation, demand response,

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Solution Procedure for SDP Energy Prices We use electricityLondon for assistance with energy price modeling. Siddiquiof DER under uncertain energy prices with demand response

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

82

? Market Simulation Activities ? Registration Process Overview ? Agreements ? Intro to Demand Response Provider Software ? Resource Data Template ? Pre-Market Meter Data Submission  

E-Print Network (OSTI)

By the end of this module, you will be able to: ? Describe the purpose of the Proxy Demand Resource project ? Identify the tabs in the Demand Response Provider software ? Identify three components of the Generator Resource Data Template and describe how they are used. ISO PUBLIC- © 2010 CAISO 3

Jenny Pedersen; Senior Client Trainer; Iso Public Caiso

2010-01-01T23:59:59.000Z

83

Draft Measuring the Capacity Impacts of Demand Response to be published in the Electricity Journal – pre-print version  

E-Print Network (OSTI)

Demand response is an increasing part of the energy policy agenda in the United States. The Federal Energy Regulatory Commission (FERC) has undertaken major initiatives to encourage the incorporation of demand response in the wholesale markets, the American Recovery and Reinvestment Act of 2009 (aka, “the stimulus bill”) has provisions

Robert Earle; Edward P. Kahn; Edo Macan

2009-01-01T23:59:59.000Z

84

Optimal energy management of a micro-grid with renewable energy resources and demand response  

Science Conference Proceedings (OSTI)

With the introduction of smart energy grids and extensive penetration of renewable energy resources in distribution networks

2013-01-01T23:59:59.000Z

85

Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences  

E-Print Network (OSTI)

This paper presents estimates of the statewide electricity and electric demand savings achieved from the adoption of the International Energy Conservation Code (IECC) for single-family residences in Texas and includes the corresponding increase in construction costs over the eight-year period from 2002 through 2009. Using the Energy Systems Laboratory's International Code Compliance Calculator (IC3) simulation tool, the annual statewide electricity savings in 2009 are estimated to be $161 million. The statewide peak electric demand reductions in 2009 are estimated to be 694 MW for the summer and 766 MW for the winter periods. Since 2002, the cumulative statewide electricity and electric demand savings over the eight year period from 2002 to 2009 are $1,803 million ($776 million from electricity savings and $1,027 million from electric demand savings) while the total increased costs are estimated to be $670 million.

Kim, H.; Baltazar, J.C.; Haberl, J.

2011-01-01T23:59:59.000Z

86

EIA's Testimony on Natural Gas Supply and Demand Before the Senate Energy and Natural Resources Committee  

Reports and Publications (EIA)

Statement of Mark J. Mazur Acting Administrator Energy Information Administration Department of Energy before the Committee on Energy and Natural Resources U.S. Senate December 12, 2000

Information Center

2000-12-12T23:59:59.000Z

87

GENERATING CAPACITY  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating capacity consistent with mandatory reliability criteria. A large part of the problem can be associated with the failure of wholesale spot market prices for energy and operating reserves to rise to high enough levels during periods when generating capacity is fully utilized. Reforms to wholesale energy markets, the introduction of well-design forward capacity markets, and symmetrical treatment of demand response and generating capacity resources to respond to market and institutional imperfections are discussed. This policy reform program is compatible with improving the efficiency of spot wholesale electricity markets, the continued evolution of competitive retail markets, and restores incentives for efficient investment in generating capacity consistent with operating reliability criteria applied by system operators. It also responds to investment disincentives that have been associated with volatility in wholesale energy prices, limited hedging opportunities and to concerns about regulatory opportunism. 1

Paul L. Joskow; Paul L. Joskow; Paul L. Joskow

2006-01-01T23:59:59.000Z

88

Virtual network on demand: dedicating network resources to distributed scientific workflows  

Science Conference Proceedings (OSTI)

The VNOD project aims to build an on-demand network virtualization infrastructure that can deliver the unprecedented networking performance and quality of service required by modern, distributed, data-intensive applications utilized by user communities. ... Keywords: co-scheduling, network, virtualization

Dimitrios Katramatos; Sushant Sharma; Dantong Yu

2012-06-01T23:59:59.000Z

89

An Integrated Multi-scale Framework for Assessing Demand-Side Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nexus of Nexus of Systems Reliability, Energy Costs, the Environment during High Energy Demand Days K. Max Zhang Sibley School of Mechanical and Aerospace Engineering Acknowledgement * Joe Eto and Pete Capper at LBNL * Dick Schuler at Cornell * Mike Swider, Peter Carney and Wes Hall at NYISO * Ari Kahn and Jamil Kahn, NYC Mayor's Office * Michael Harrington, ConED Outline * Context: A "peak" problem * Research statement * Methodology * Synergy - DOE's research needs - NYC's resiliency planning High Electric Demand Days (HEDD): A "Peak" Problem * Hot summer days and heat waves * Power Systems - Reliability is compromised - Cost of electricity is high: expensive peaking generators * Environment - High ozone air pollution - Double threats to public health: heat and air pollution

90

PREDICTING RESOURCE DEMAND IN HETEROGENEOUS ACTIVE NETWORKS V. Galtier, K. Mills, and Y. Carlinet  

E-Print Network (OSTI)

National Institute of Standards and Technology S. Bush and A. Kulkarni General Electric Corporate R. Incorporating adaptive CPU models can enable AVNMP to predict active-network resource usage farther into the future, and lowers prediction overhead. INTRODUCTION Growing availability of processing power

Bush, Stephen F.

91

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

92

Capacity Markets and Market Stability  

Science Conference Proceedings (OSTI)

The good news is that market stability can be achieved through a combination of longer-term contracts, auctions for far enough in the future to permit new entry, a capacity management system, and a demand curve. The bad news is that if and when stable capacity markets are designed, the markets may seem to be relatively close to where we started - with integrated resource planning. Market ideologues will find this anathema. (author)

Stauffer, Hoff

2006-04-15T23:59:59.000Z

93

A Look Ahead at Demand Response in New England  

Science Conference Proceedings (OSTI)

The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

2008-08-01T23:59:59.000Z

94

Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations  

E-Print Network (OSTI)

In all around the world, because of the rapid population growth and exhausting energy sources over time, energy efficiency and energy conservation gradually come into prominence. Hence, in 2002, a directive (EPBD) which obligates reducing energy usage and energy performance in buildings was published by European Union. In this scope, Turkey has developed a National Building Energy Performance Calculation Methodology, BepTr, which is based on simple hourly method in ISO EN 13790 Umbrella Document to determine the energy performance of buildings. The aim of the paper is to display the energy demand differences resultant from only the envelope’s thermal capacity between simplified method which is projected in ISO EN 13790 Umbrella Document and EnergyPlus which is based on full dynamic simulation method.

Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

2011-10-01T23:59:59.000Z

95

Identifying distributed generation and demand side management investment opportunities  

SciTech Connect

Electric utilities have historically satisfied customer demand by generating electricity centrally and distributing it through an extensive transmission and distribution network. The author examines targeted demand side management programs as an alternative to system capacity investments once capacity is exceeded. The paper presents an evaluation method to determine how much a utility can afford to pay for distributed resources. 17 refs., 2 figs, 1 tab.

Hoff, T.E. [Stanford Univ., CA (United States)

1996-12-31T23:59:59.000Z

96

Demand Trading: Building Liquidity  

Science Conference Proceedings (OSTI)

Demand trading holds substantial promise as a mechanism for efficiently integrating demand-response resources into regional power markets. However, regulatory uncertainty, the lack of proper price signals, limited progress toward standardization, problems in supply-side markets, and other factors have produced illiquidity in demand-trading markets and stalled the expansion of demand-response resources. This report shows how key obstacles to demand trading can be overcome, including how to remove the unce...

2002-11-27T23:59:59.000Z

97

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

DOE Green Energy (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

98

State and National Wind Resource Potential at Various Capacity Factor Ranges for 80 and 100 Meters  

Wind Powering America (EERE)

February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) State Total (km 2 ) Excluded 2 (km 2 ) Available (km 2 ) Available % of State % of Total Windy Land Excluded Installed Capacity 3 (MW) Annual Generation (GWh) Alabama 15.9 13.3 2.6 0.00% 83.4% 13.2 42 Alaska 267,897.7 209,673.4 58,224.3 3.87% 78.3% 291,121.3 1,051,210 Arizona 611.7 417.3 194.4 0.07% 68.2% 972.1 3,100 Arkansas 1,130.0 687.5 442.5 0.32% 60.8% 2,212.5 7,215 C lif i 11 456 4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas >= 35% Capacity Factor at 80m These estimates show, for each of the 50 states and the total U.S., the windy land area with a gross capacity factor (without losses) of 35% and greater at 80-m height above ground and the wind energy potential that could be possible from development of the "available" windy land area

99

Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis  

SciTech Connect

This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

Fournier, W.M.; Hasson, V.

1980-10-10T23:59:59.000Z

100

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world  

Science Conference Proceedings (OSTI)

The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

Heffner, Grayson C.

2002-09-01T23:59:59.000Z

102

Capacity planning in a general supply chain with multiple contract types  

E-Print Network (OSTI)

In this thesis, we study capacity planning in a general supply chain that contains multiple products, processes, and resources. We consider situations with demand uncertainty, outsourcing contracts, and option contracts. ...

Huang, Xin, 1978-

2008-01-01T23:59:59.000Z

103

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

104

Shreddr: pipelined paper digitization for low-resource organizations  

Science Conference Proceedings (OSTI)

For low-resource organizations working in developing regions, infrastructure and capacity for data collection have not kept pace with the increasing demand for accurate and timely data. Despite continued emphasis and investment, many data collection ...

Kuang Chen; Akshay Kannan; Yoriyasu Yano; Joseph M. Hellerstein; Tapan S. Parikh

2012-03-01T23:59:59.000Z

105

Demand Trading Toolkit  

Science Conference Proceedings (OSTI)

Download report 1006017 for FREE. The global movement toward competitive markets is paving the way for a variety of market mechanisms that promise to increase market efficiency and expand customer choice options. Demand trading offers customers, energy service providers, and other participants in power markets the opportunity to buy and sell demand-response resources, just as they now buy and sell blocks of power. EPRI's Demand Trading Toolkit (DTT) describes the principles and practice of demand trading...

2001-12-10T23:59:59.000Z

106

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

DOE Green Energy (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

107

New coal plant technologies will demand more water  

Science Conference Proceedings (OSTI)

Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

2008-04-15T23:59:59.000Z

108

Home Network Technologies and Automating Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in...

109

Primer on gas integrated resource planning  

Science Conference Proceedings (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

110

Demand Uncertainty and Price Dispersion.  

E-Print Network (OSTI)

??Demand uncertainty has been recognized as one factor that may cause price dispersion in perfectly competitive markets with costly and perishable capacity. With the persistence… (more)

Li, Suxi

2007-01-01T23:59:59.000Z

111

Geothermal resources, present and future demand for power and legislation in the State of Wyoming. Public information series 1  

DOE Green Energy (OSTI)

Data on thermal springs and wells in Wyoming, exclusive of Yellowstone Park, are summarized. The presentation includes a map showing general spring and well locations outside the Park and lands in Wyoming that have been classified as being prospectively of geothermal value. Locations and geothermal data on the springs and wells are tabulated and a short table of chemical analyses of spring waters is also presented. Although thermal data constitute most of the material presented, the present and future demands for electrical energy in Wyoming are also summarized, and state legislation pertaining to exploration near thermal springs is reviewed. A list of state and federal agencies is included so that interested parties may obtain copies of pertinent legislation and information on the status of land.

Decker, E.R.

1976-03-01T23:59:59.000Z

112

Evaluation of Orange and Rockland Utilities, Inc.`s competitive bidding program for demand-side resources. Final report  

SciTech Connect

The process evaluation reports on the implementation of Orange and Rockland Utilities demand-side bidding program in New York State during 1991 and 1992. The program is implemented by two energy service companies in Orange and rockland`s New York State service territory. The process evaluation methodology included interviews with utility staff (3), energy service company staff (2), and participating (6) and nonparticipating (7) utility customers. The two energy service companies had enrolled 14 customers in the program by summer 1992. One company had achieved 90% of their 2.75 MW bid and the other had achieved less than 90% of their 6.9 MW bid. Critical factors in success were determination of a reasonable bid amount for the market and marketing to the appropriate customers. Customers most interested in the program included those with limited access to capital and medium-sized firms with poor cash flows, particularly schools and hospitals. The findings also show that due to the incentive structure and associated need for substantial customer contributions, lighting measures dominate all installations. Customers, however, were interested in the potential savings and six of the nonparticipants chose to either install measures on their own or enroll in the utility`s rebate program.

Peters, J.S.; Stucky, L.; Seratt, P.; Darden-Butler, D. [Barakat and Chamberlin, Inc., Portland, OR (United States)

1993-02-01T23:59:59.000Z

113

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

114

Fast Automated Demand Response to Enable the Integration of Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fast Automated Demand Response to Enable the Integration of Renewable Resources Title Fast Automated Demand Response to Enable the Integration of Renewable Resources Publication...

115

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

116

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

117

ISO New England Forward Capacity Market (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) < Back Eligibility Developer Industrial State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Generating Facility Rate-Making Under the Forward Capacity Market (FCM), ISO New England projects the capacity needs of the region's power system three years in advance and then holds an annual auction to purchase the power resources that will satisfy those future regional requirements. Resources that clear in the auction are obligated to provide power or curtail demand when called upon by the ISO. The Forward Capacity Market was developed by ISO New England, the six New

118

How much electric supply capacity is needed to keep U.S ...  

U.S. Energy Information Administration (EIA)

Today in Energy ... tags: capacity demand electricity generation capacity NERC (North American Electric Reliability Corporation)

119

Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world  

E-Print Network (OSTI)

MARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDMARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDend-users they serve. Demand Response Programs, once called

Heffner, Grayson C.

2002-01-01T23:59:59.000Z

120

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modeling the Capacity and Emissions Impacts of Reduced Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Title Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Publication Type Report...

122

Demand Response Valuation Frameworks Paper  

Science Conference Proceedings (OSTI)

While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

Heffner, Grayson

2009-02-01T23:59:59.000Z

123

The convergence of market designs for adequate generating capacity with special attention to the CAISO's resource adequacy problem  

E-Print Network (OSTI)

This paper compares market designs intended to solve the resource adequacy (RA) problem, and finds that, in spite of rivalrous claims, the most advanced designs have nearly converged. The original dichotomy between approaches ...

Cramton, Peter C.

2006-01-01T23:59:59.000Z

124

China's Coal: Demand, Constraints, and Externalities  

Science Conference Proceedings (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

125

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

126

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

127

Demand Response for Ancillary Services  

Science Conference Proceedings (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

128

Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration  

SciTech Connect

The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

1992-09-01T23:59:59.000Z

129

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The DOE Information Center's current collection has more than 40,000 documents consisting of technical reports and historical materials that relate to DOE operations....

130

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

131

Modeling Capacity Reservation Contract  

E-Print Network (OSTI)

In this paper we model a scenario where a chip designer (buyer) buys capacity from chip manufacturers (suppliers) in the presence of demand uncertainty faced by the buyer. We assume that the buyer knows the probability distribution of his demand. The supplier offers the buyer to reserve capacity in advance at a price that is lower than the historical average of the spot price. The supplier’s price (if the buyer reserves capacity in advance) is function of her capacity, demand for her capacity, unit production cost, the average spot market price and the amount of capacity reserved by the buyer. Based on these parameters we derive the price the suppliers will charge. We formulate the problem from the buyer’s perspective. The buyer’s decisions are how much capacity to reserve and from how many suppliers. The optimal solution is obtained numerically. Our model addresses the following issues that are not covered in the current literature on capacity reservation models. In the existing literature the supplier’s price is an exogenous parameter. We model the supplier’s price from relevant parameters mentioned above. This makes our model richer. For example, if the expected capacity utilization for the supplier is likely to be low then the supplier will charge a lower price for capacity reservation. In reality, the buyer sources from multiple suppliers. Most mathematical models on capacity reservation, we are aware of, assumes a single buyer and a single supplier. We generalize this to a single buyer and multiple suppliers.

Jishnu Hazra; B. Mahadevan; Sudhi Seshadri

2002-01-01T23:59:59.000Z

132

Robust Capacity Planning in Semiconductor Manufacturing  

E-Print Network (OSTI)

Oct 3, 2001 ... Abstract: We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing.

133

Using Dimmable Lighting for Regulation Capacity and Non-Spinning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Francis M., Li Xiaolei, and David S. Watson Keywords ancillary services, contingency reserves, demand response, demand response and distributed energy resources center, demand...

134

The Road Ahead for Light Duty Vehicle Fuel Demand  

U.S. Energy Information Administration (EIA)

The Road Ahead for Light Duty Vehicle Fuel Demand Joanne Shore Energy Information Administration July 7, 2005 Refining Capacity Surplus Shrank As Demand Grew ...

135

Lateral Capacity Exchange and Its Impact on Capacity Investment Decisions  

E-Print Network (OSTI)

We study the problem of capacity exchange between two …rms in anticipation of the mismatch between demand and capacity and its impact on …rm’s capacity investment decisions. For given capacity investment levels of the two …rms, we demonstrate how capacity price may be determined and how much capacity should be exchanged when either manufacturer acts as a Stackelberg leader in the capacity exchange game. By benchmarking against the centralized system, we show that a side payment may be used to coordinate the capacity exchange decisions. We then study the …rms’capacity investment decisions using a biform game framework in which capacity investment decisions are made individually and exchange decisions are made as in a centralized system. We demonstrate the existence and uniqueness of the Nash equilibrium capacity investment levels and study the impact of …rms’share of the capacity exchange surplus on their capacity investment levels.

Amiya K. Chakravartyz; Jun Zhangy

2005-01-01T23:59:59.000Z

136

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

137

Demand Response Spinning Reserve Demonstration  

Science Conference Proceedings (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

138

Scenario Analysis of Peak Demand Savings for Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center,...

139

Demand Response Program Design and Implementation Case Study...  

NLE Websites -- All DOE Office Websites (Extended Search)

Delurey, Dan, and J. Schwartz Date Published 022013 Keywords demand response research, demand side resources: policy, electricity markets, electricity markets and policy group,...

140

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

142

OPEC Middle East plans for rising world demand amid uncertainty  

Science Conference Proceedings (OSTI)

The Middle Eastern members of the Organization of Petroleum Exporting Countries must plan for huge increases in oil production capacity yet wonder whether markets for the new output will develop as expected. With worldwide oil consumption rising and non-OPEC output likely to reach its resource limits soon, OPEC member countries face major gains in demand for their crude oil. To meet the demand growth, those with untapped resources will have to invest heavily in production capacity. Most OPEC members with such resources are in the Middle East. But financing the capacity investments remains a challenge. Some OPEC members have opened up to foreign equity participation in production projects, and others may eventually do so as financial pressures grow. That means additions to the opportunities now available to international companies in the Middle East. Uncertainties, however, hamper planning and worry OPEC. Chief among them are taxation and environmental policies of consuming-nation governments. This paper reviews these concerns and provides data on production, pricing, capital investment histories and revenues.

Ismail, I.A.H. [Organization of Petroleum Exporting Countries, Vienna (Austria)

1996-05-27T23:59:59.000Z

143

Demand response participation in PJM wholesale markets  

Science Conference Proceedings (OSTI)

This paper provides an overview of demand response resource participation in PJM wholesale ancillary service markets which include: Day Ahead Scheduling Reserves, Synchronized Reserves and Regulation.

Peter L. Langbein

2012-01-01T23:59:59.000Z

144

Are they equal yet. [Demand side management  

Science Conference Proceedings (OSTI)

Demand-side management (DSM) is considered an important tool in meeting the load growth of many utilities. Northwest regional and utility resource plans forecast demand-side resources to meet from one-half to two-thirds of additional electrical energy needs over the next 10 years. Numerous sources have stated that barriers, both regulatory and financial, exist to utility acquisition of demand-side resources. Regulatory actions are being implemented in Oregon to make demand-side investments competitive with supply-side investments. In 1989, the Oregon Public Utility Commission (PUC) took two actions regarding demand-side investments. The PUC's Order 89-1700 directed utilities to capitalize demand-side investments to properly match amortization expense with the multiyear benefits provided by DSM. The PUC also began an informal investigation concerning incentives for Oregon's regulated electric utilities to acquire demand-side resources.

Irwin, K.; Phillips-Israel, K.; Busch, E.

1994-05-15T23:59:59.000Z

145

Demand Trading: Measurement, Verification, and Settlement (MVS)  

Science Conference Proceedings (OSTI)

With this report, EPRI's trilogy of publications on demand trading is complete. The first report (1006015), the "Demand Trading Toolkit," documented how to conduct demand trading based on price. The second report (1001635), "Demand Trading: Building Liquidity," focused on the problem of liquidity in the energy industry and developed the Demand Response Resource Bank concept for governing electricity markets based on reliability. The present report focuses on the emerging price/risk partnerships in electr...

2004-03-18T23:59:59.000Z

146

A resource-constrained profit-based dynamic order management model  

Science Conference Proceedings (OSTI)

This research extends the Available-to-Promise (ATP) concept to include both capacity and profitability considerations in a two-level supply chain. The model in study is referred in practice as Profitable-to-Promise (PTP) ... Keywords: ATP, DSS, available-to-, capacity, decision models, decision support systems, demand management, dynamic order management, production planning, profitability, profitable-to-, promise, resource constraints, resource planning, two-level supply chains

Elias T. Kirche; Rajesh Srivastava

2007-11-01T23:59:59.000Z

147

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

148

Competition under Capacitated Dynamic Lot Sizing with Capacity Acquisition  

E-Print Network (OSTI)

Lot-sizing and capacity planning are important supply chain decisions, and competition and cooperation affect the performance of these decisions. In this paper, we look into the dynamic lot sizing and resource competition problem of an industry consisting of multiple firms. A capacity competition model combining the complexity of time-varying demand with cost functions and economies os scale arising from dynamic lot-sizing costs is developed. Each firm can replenish inventory at the beginning of each period in a finite planning horizon. Fixed as well as variable production costs incur for each production setup, along with inventory carrying costs. The individual production lots of each firm are limited by a constant capacity restriction, which is purchased up front for the planning horizon. The capacity can be purchased from a spot market, and the capacity acquisition cost fluctuates with the total capacity demand of all the competing firms. We solve the competition model and establish the existence of a capacity equilibrium over the firms and the associated optimal dynamic lot-sizing plan for each firm under mild conditions.

Hongyan Li; Joern Meissner

2010-01-01T23:59:59.000Z

149

www.ucei.org Capacity Markets for Electricity ?  

E-Print Network (OSTI)

The creation of electricity markets has raised the fundamental question as to whether markets provide the right incentives for the provision of the reserves needed to maintain system reliability, or whether some form of regulation is needed. In some states in the US, electricity retailers have been made responsible for providing such reserves by contracting capacity in excess of their forecasted peak demand. The socalled Installed Capacity Markets (ICAP) provide one means for contracting reserves, and are the subject of this paper. In particular, for given productive and transmission capacities, we identify firms ’ opportunity costs of committing resources in the capacity market, and hence, the costs of inducing full capacity commitment. Regulatory issues such as the optimal choice of the reserve margin and the capacity deficiency rate (which serves as a price-cap) are analyzed. From a welfare view-point, we also compare the desirability of providing reserves either through capacity markets or through the demand side (i.e. power curtailments).

Anna Creti; Natalia Fabra; Iii Madrid; Anna Creti; Natalia Fabra; Iii Madrid

2004-01-01T23:59:59.000Z

150

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

151

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Asia Demand growth, product mix, trade Price Signals for Capacity Changes Capacity ... 150 AZ Clean Fuels FCC/RCC Coking ...

152

Changing World Product Markets and Potential Refining Capacity Increases  

Reports and Publications (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price incentives, and capacity expansion announcements.

Information Center

2006-03-20T23:59:59.000Z

153

Overview of Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

154

Entangling capacity with local ancilla  

E-Print Network (OSTI)

We investigate the entangling capacity of a dynamical operation with access to local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement measures including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Campbell, Earl T

2010-01-01T23:59:59.000Z

155

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

156

DE-AC03-76SF00098. CONFIGURING LOAD AS A RESOURCE FOR COMPETITIVE ELECTRICITY MARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. AND AROUND THE WORLD  

E-Print Network (OSTI)

The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge

Grayson C. Heffner; Grayson C. Heffner

2002-01-01T23:59:59.000Z

157

1993 Pacific Northwest Loads and Resources Study.  

SciTech Connect

The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

158

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

159

Water demand management in Kuwait  

E-Print Network (OSTI)

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

160

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A distributed approach to taming peak demand  

Science Conference Proceedings (OSTI)

A significant portion of all energy capacity is wasted in over-provisioning to meet peak demand. The current state-of-the-art in reducing peak demand requires central authorities to limit device usage directly, and are generally reactive. We apply techniques ...

Michael Sabolish; Ahmed Amer; Thomas M. Kroeger

2012-06-01T23:59:59.000Z

162

Forecasting Electricity Demand by Time Series Models  

Science Conference Proceedings (OSTI)

Electricity demand is one of the most important variables required for estimating the amount of additional capacity required to ensure a sufficient supply of energy. Demand and technological losses forecasts can be used to control the generation and distribution of electricity more efficiently. The aim of this paper is to utilize time series model

E. Stoimenova; K. Prodanova; R. Prodanova

2007-01-01T23:59:59.000Z

163

Distillate in Depth - The Supply, Demand, and Price Picture  

Reports and Publications (EIA)

The presentation provides background on distillate supply and demand, and then focuses on how hurricanes Katrina and Rita impact on refining capacity might affect winter fuels.

Information Center

2005-10-12T23:59:59.000Z

164

Demand Response Research in Spain  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

165

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

extra-heavy oil and shale have zero Resource- Cost), whileof the Oil Transition: Modeling Capacity, Costs, andof the oil transition: modeling capacity, costs, and

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

166

Tri-Laboratory Linux Capacity Cluster 2007 SOW  

SciTech Connect

The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.

Seager, M

2007-03-22T23:59:59.000Z

167

Determining the Capacity Value of Wind: A Survey of Methods and Implementation; Preprint  

DOE Green Energy (OSTI)

This paper focuses on methodologies for determining the capacity value of generating resources, including wind energy and summarizes several important state and regional studies. Regional transmission organizations, state utility regulatory commissions, the North American Electric Reliability Council, regional reliability councils, and increasingly, the Federal Energy Regulatory Commission all advocate, call for, or in some instances, require that electric utilities and competitive power suppliers not only have enough generating capacity to meet customer demand but also have generating capacity in reserve in case customer demand is higher than expected, or if a generator or transmission line goes out of service. Although the basic concept is the same across the country, how it is implemented is strikingly different from region to region. Related to this question is whether wind energy qualifies as a capacity resource. Wind's variability makes this a matter of great debate in some regions. However, many regions accept that wind energy has some capacity value, albeit at a lower value than other energy technologies. Recently, studies have been published in California, Minnesota and New York that document that wind energy has some capacity value. These studies join other initiatives in PJM, Colorado, and in other states and regions.

Milligan, M.; Porter, K.

2005-05-01T23:59:59.000Z

168

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

169

Review of Self-direct Demand Side Management (DSM) Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Self-direct Demand Side Management (DSM) Programs Review of Self-direct Demand Side Management (DSM) Programs Title Review of Self-direct Demand Side Management (DSM) Programs Publication Type Presentation Year of Publication 2012 Authors Borgeson, Merrian Keywords demand side resources: policy, electricity markets, electricity markets and policy group, energy analysis and environmental impacts department, energy efficiency, self direct programs, technical assistance Full Text LBNL recently provided technical assistance funded by DOE to the Public Utilities Commission of Ohio to inform their decision-making about changes to their existing self-direct program for commercial and industrial customers. Self-direct programs are usually targeted at large industrial customers with specialized needs or strong in-house energy engineering capacity. These programs are found in at least 24 states, and there is significant variety in how these programs are structured - with important implications for the additionality and reliability of the energy savings that result. LBNL reviewed existing programs and compared key elements of self-direct program design. For additional questions about this work, please contact Merrian Borgeson.

170

Reducing Wait Times Through Operations Research: Optimizing the Use of Surge Capacity  

E-Print Network (OSTI)

and · there is significant variability over time in the demand for health care services. By capacity, we mean the maximum, University of British Columbia July 20, 2007 1 #12;Abstract Widespread public demand for improved access services arise because: · capacity does not match demand, · capacity or demand is not well managed

Puterman, Martin L.

171

Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs  

SciTech Connect

The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

1995-03-01T23:59:59.000Z

172

1991 Pacific Northwest Loads and Resources Study.  

SciTech Connect

This study establishes the Bonneville Power Administration's (BPA) planning basis for supplying electricity to BPA customers. The Loads and Resources Study is presented in three documents: (1) this summary of federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates our 1990 study. BPS's long-range planning incorporates resource availability with a range of forecasted electrical consumption. The forecasted future electrical demands-firm loads--are subtracted from the projected capability of existing resources to determine whether BPA and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, then additional conservation, contract purchases, or generating resources will be needed to meet load growth. This study analyzes the Pacific Northwest's projected loads and available generating resources in two parts: (1) the loads and resources of the federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional profile, which includes loads and resources in addition to the federal system. This study presents the federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for 1992- 2012.

United States. Bonneville Power Administration.

1991-12-01T23:59:59.000Z

173

The alchemy of demand response: turning demand into supply  

Science Conference Proceedings (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

174

Demand Response and Storage Integration Study: Markets Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Background Tools and techniques have been developed to help characterize demand response (DR) resources Given diversity in types of DR programs and relative...

175

Field Testing of Automated Demand Response for Integration of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products Title Field Testing of Automated...

176

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

177

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

178

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

179

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

180

Mass Market Demand Response and Variable Generation Integration Issues: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response and Variable Generation Integration Issues: A Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Title Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Cappers, Peter, Andrew D. Mills, Charles A. Goldman, Ryan H. Wiser, and Joseph H. Eto Pagination 76 Date Published 10/2011 Publisher LBNL City Berkeley Keywords demand response, electricity markets and policy group, energy analysis and environmental impacts department, renewable generation integration, smart grid Abstract The penetration of renewable generation technology (e.g., wind, solar) is expected to dramatically increase in the United States during the coming years as many states are implementing policies to expand this sector through regulation and/or legislation. It is widely understood, though, that large scale deployment of certain renewable energy sources, namely wind and solar, poses system integration challenges because of its variable and often times unpredictable production characteristics (NERC, 2009). Strategies that rely on existing thermal generation resources and improved wind and solar energy production forecasts to manage this variability are currently employed by bulk power system operators, although a host of additional options are envisioned for the near future. Demand response (DR), when properly designed, could be a viable resource for managing many of the system balancing issues associated with integrating large-scale variable generation (VG) resources (NERC, 2009). However, demand-side options would need to compete against strategies already in use or contemplated for the future to integrate larger volumes of wind and solar generation resources. Proponents of smart grid (of which Advanced Metering Infrastructure or AMI is an integral component) assert that the technologies associated with this new investment can facilitate synergies and linkages between demand-side management and bulk power system needs. For example, smart grid proponents assert that system-wide implementation of advanced metering to mass market customers (i.e., residential and small commercial customers) as part of a smart grid deployment enables a significant increase in demand response capability.1 Specifically, the implementation of AMI allows electricity consumption information to be captured, stored and utilized at a highly granular level (e.g., 15-60 minute intervals in most cases) and provides an opportunity for utilities and public policymakers to more fully engage electricity customers in better managing their own usage through time-based rates and near-real time feedback to customers on their usage patterns while also potentially improving the management of the bulk power system. At present, development of time-based rates and demand response programs and the installation of variable generation resources are moving forward largely independent of each other in state and regional regulatory and policy forums and without much regard to the complementary nature of their operational characteristics.2 By 2020, the electric power sector is expected to add ~65 million advanced meters3 (which would reach ~47% of U.S. households) as part of smart grid and AMI4 deployments (IEE, 2010) and add ~40-80 GW of wind and solar capacity (EIA, 2010). Thus, in this scoping study, we focus on a key question posed by policymakers: what role can the smart grid (and its associated enabling technology) play over the next 5-10 years in helping to integrate greater penetration of variable generation resources by providing mass market customers with greater access to demand response opportunities? There is a well-established body of research that examines variable generation integration issues as well as demand response potential, but the nexus between the two has been somewhat neglected by the industry. The studies that have been conducted are informative concerning what could be accomplished with strong broad-based support for the expansion of demand response opportunities, but typically do not discuss the many barriers that stand in the way of reaching this potential. This study examines how demand side resources could be used to integrate wind and solar resources in the bulk power system, identifies barriers that currently limit the use of demand side strategies, and suggests several factors that should be considered in assessing alternative strategies that can be employed to integrate wind and solar resources in the bulk power system. It is difficult to properly gauge the role that DR could play in managing VG integration issues in the near future without acknowledging and understanding the entities and institutions that govern the interactions between variable generation and mass market customers (see Figure ES-1). Retail entities, like load-serving entities (LSE) and aggregators of retail customers (ARC), harness the demand response opportunities of mass market customers through tariffs (and DR programs) that are approved by state regulatory agencies or local governing entities (in the case of public power). The changes in electricity consumption induced by DR as well as the changes in electricity production due to the variable nature of wind and solar generation technologies is jointly managed by bulk power system operators. Bulk power system operators function under tariffs approved by the Federal Energy Regulatory Commission (FERC) and must operate their systems in accordance with rules set by regional reliability councils. These reliability rules are derived from enforceable standards that are set by the North American Electric Reliability Corporation (NERC) and approved by federal regulators. Thus, the role that DR can play in managing VG integration issues is contingent on what opportunities state and local regulators are willing to approve and how customers' response to the DR opportunities can be integrated into the bulk power system both electrically (due to reliability rules) and financially (due to market rules).

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Outstanding Issues For New Geothermal Resource Assessments | Open Energy  

Open Energy Info (EERE)

Outstanding Issues For New Geothermal Resource Assessments Outstanding Issues For New Geothermal Resource Assessments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Outstanding Issues For New Geothermal Resource Assessments Details Activities (1) Areas (1) Regions (0) Abstract: A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS)

182

Demand Pricing & Resource Allocation in Market- based ...  

Science Conference Proceedings (OSTI)

... While pricing operates on a comparatively slow ... and tracking the optimal price, admission control ... the time lag in varying and disseminating prices. ...

2013-02-25T23:59:59.000Z

183

Successful demand-side management  

Science Conference Proceedings (OSTI)

This article is a brief summary of a series of case studies of five publicly-owned utilities that are noted for their success with demand-side management. These utilities are: (1) city of Austin, Texas, (2) Burlington Electric Department in Vermont, (3) Sacramento Municipal Utility District in California, (4) Seattle City Light, and (5) Waverly Light and Power in Iowa. From these case studies, the authors identified a number of traits associated with a successful demand-side management program. These traits are: (1) high rates, (2) economic factors, (3) environmental awareness, (4) state emphasis on integrated resource planning/demand side management, (5) local political support, (6) large-sized utilities, and (7) presence of a champion.

Hadley, S. [Oak Ridge National Laboratory, TN (United States); Flanigan, T. [Results Center, Aspen, CO (United States)

1995-05-01T23:59:59.000Z

184

Home Network Technologies and Automating Demand Response  

Science Conference Proceedings (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

185

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

186

Measuring wind plant capacity value  

DOE Green Energy (OSTI)

Electric utility planners and wind energy researchers pose a common question: What is the capacity value of a wind plant? Tentative answers, which can be phrased in a variety of ways, are based on widely varying definitions and methods of calculation. From the utility`s point of view, a resource that has no capacity value also has a reduced economic value. Utility planners must be able to quantify the capacity value of a wind plant so that investment in conventional generating capacity can be potentially offset by the capacity value of the wind plant. Utility operations personnel must schedule its conventional resources to ensure adequate generation to meet load. Given a choice between two resources, one that can be counted on and the other that can`t, the utility will avoid the risky resource. This choice will be reflected in the price that the utility will pay for the capacity: higher capacity credits result in higher payments. This issue is therefore also important to the other side of the power purchase transaction -- the wind plant developer. Both the utility and the developer must accurately assess the capacity value of wind. This article summarizes and evaluates some common methods of evaluating capacity credit. During the new era of utility deregulation in the United States, it is clear that many changes will occur in both utility planning and operations. However, it is my judgement that the evaluation of capacity credit for wind plants will continue to play an important part in renewable energy development in the future.

Milligan, M.R.

1996-01-01T23:59:59.000Z

187

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers...

188

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

189

The Summer of 2006: A Milestone in the Ongoing Maturation of Demand Response  

E-Print Network (OSTI)

2007) Figure 7. U.S. Demand Response Resources in 2005Proposals to Augment 2007 Demand Response Programs, Aug. 22,Efforts to Improve Demand Response Programs for State to

Hopper, Nicole; Goldman, Charles; Bharvirkar, Ranjit; Engel, Dan

2007-01-01T23:59:59.000Z

190

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resources and Combined Heat and Power Distributed energy resources (DER) and combined heat and power (CHP) systems help Federal agencies meet increased demand,...

191

Primer on Distributed Energy Resources for Distribution Planning  

Science Conference Proceedings (OSTI)

Many factors -- including restructuring of the electric utility industry and an increased demand for electricity -- are driving the adoption of distributed energy technologies. This primer outlines the potential impacts that distributed generation and energy storage technologies (collectively called distributed energy resources) may have on utility distribution company planning. The primer focuses on distributed generation technologies with a capacity of 500 kW to 5 MW as well as energy storage systems w...

2002-10-09T23:59:59.000Z

192

The Effect of Technological Improvement on Capacity  

E-Print Network (OSTI)

We formulate a model of capacity expansion that is relevant to a service provider for whom the cost of capacity shortages would be considerable but difficult to quantify exactly. Due to demand uncertainty and a lead time for adding capacity, not all shortages are avoidable. In addition, technological innovations will reduce the cost of adding capacity but may not be completely predictable. Analytical expressions for the infinite horizon expansion cost and shortages are optimized numerically. Sensitivity analyses allow us to determine the impact of technological change on the optimal timing and sizes of capacity expansions to account for economies of scale, the time value of money and penalties for insufficient capacity.

Expansion For Uncertain; Dohyun Pak; Nattapol Pornsalnuwat; Sarah M. Ryan

2004-01-01T23:59:59.000Z

193

Tools & Resources: Resource Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Directory Resource Directory The guidance documents and reports below have been used by Better Buildings Neighborhood Program partners to build their programs and guide them to early successes. The tools and calculators can be used by homeowners, business owners, and program designers to help determine energy savings and other benefits associated with energy efficiency upgrades. Guidance Documents and Reports Background Program Evaluation Program Updates and Lessons Learned Program Design Marketing and Driving Demand Financing and Incentives Workforce Development Partnering with Utilities Technical Resources Tools and Calculators For Homes For Commercial Buildings Emissions and Equivalency Calculators Guidance Documents and Reports Background Recovery Through Retrofit Report

194

Optimal entangling capacity of dynamical processes  

SciTech Connect

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result, a property we call resource independence of the entangling capacity. We prove several useful upper bounds on the entangling capacity that hold for general qudit dynamical operations and for a whole family of entanglement monotones including log negativity and log robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independent for all two-qudit unitary operators.

Campbell, Earl T. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

2010-10-15T23:59:59.000Z

195

Optimal Entangling Capacity of Dynamical Processes  

E-Print Network (OSTI)

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement monotones including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Earl T. Campbell

2010-07-08T23:59:59.000Z

196

Prices, capacities and service quality in a congestible Bertrand duopoly  

E-Print Network (OSTI)

Dender, Kurt. 2004. “Duopoly prices under congested access,”of demand on capacities and prices, see (3), has been madefacilities, even when price discrimination is allowed. r dq

De Borger, Bruno; Van Dender, Kurt

2005-01-01T23:59:59.000Z

197

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price ...

198

Estimating Water Needs to Meet 2025 Electricity Generating Capacity...  

NLE Websites -- All DOE Office Websites (Extended Search)

demand and capacity forecasts from AEO 2006 with representative water withdrawal and consumption estimates to identify regions where water issues could become acute. Future...

199

Energy and Capacity Valuation of Photovoltaic Power Generation in New York  

E-Print Network (OSTI)

] that may, or may not be called upon. Another gauge of capacity is demand-based tarrification offered

Perez, Richard R.

200

Demand Response Screening Assessment Tool Version 1.0  

Science Conference Proceedings (OSTI)

The Demand Response Screeing Tool for Distribution Planners identifies opportunities for using demand response as a distribution resource. It serves as a screening tool to assist distribution planners to ascertain situations where demand response may be a cost45effective alternative to making distribution system asset investments. WindowsXP, Excel (MS Office 2003)

2010-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Demand Impacted by Weather  

U.S. Energy Information Administration (EIA)

When you look at demand, it’s also interesting to note the weather. The weather has a big impact on the demand of heating fuels, if it’s cold, consumers will use ...

202

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

203

Electricity resource planners credit only a fraction of potential ...  

U.S. Energy Information Administration (EIA)

The percentages reflect the assessment of the capacity value of wind at the time of peak electric demand ... Some planners also derate demand response ...

204

The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners  

E-Print Network (OSTI)

demand at night, then baseload plants and emissions willare typically used for baseload and peak capacity plants,

Vine, Edward

2007-01-01T23:59:59.000Z

205

Capacity Markets for Electricity  

E-Print Network (OSTI)

of their forecasted peak demand. The so- called Installedbut not enough to satisfy peak demand in the national energybe enough to satisfy peak demand in the national energy

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

206

TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN  

E-Print Network (OSTI)

relative to increases in its consumption at a higher rate than all but two states (in part because California is the lowest user of electricity per capita and per dollar of gross state product in the west). Annual WSCC consumption increased 64% from 1977 to 1998, but California's consumption grew by only 44

California at Berkeley. University of

207

Using Dimmable Lighting for Regulation Capacity and Non-Spinning Reserves in the Ancillary Services Market. A Feasibility Study.  

E-Print Network (OSTI)

Digital Addressable Lighting Interface Demand Responseof Demand-Responsive Lighting in Offices with and without2010). Using Dimmable Lighting for Regulation Capacity and

Rubinstein, Francis

2011-01-01T23:59:59.000Z

208

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

209

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers Publication Type...

210

Coordination of Energy Efficiency and Demand Response  

Science Conference Proceedings (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

211

Swing options: a mechanism for pricing IT peak demand, http: //www.hpl.hp.com/research/idl/papers/swings  

E-Print Network (OSTI)

Since usage patterns of information technology within organizations can be bursty, the peak demand for IT resources can at times exceed the installed capacity within the enterprise. If providers of such peak capacity emerge, as was the case for electricity and natural gas, the problem arises as to how to efficiently provide and price such peak demand. We present a swing option mechanism that allows for the efficient pricing of IT resources ranging from CPU usage to storage and bandwidth. This mechanism allows users to buy the right but not the obligation to future peak use. A statistical simulation tool allows the users to price these swings according to their own utilization patterns and to recover some of their costs if the options are not exercised. The provider in turn exploits its ability to statistically multiplex its resources to price peak usage. The use of these swing options serves as an incentive to the users to accurately forecasts of their own needs, thus leading to more efficient utilization of the provider’s resources.

Scott H. Clearwater; Bernardo A. Huberman

2005-01-01T23:59:59.000Z

212

Electrical Demand Management  

E-Print Network (OSTI)

The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below the previous year's level and yielded $150,000 annual savings. These measures include rescheduling of selected operations and demand limiting techniques such as fuel switching to alternate power sources during periods of high peak demand. For example, by rescheduling the startup of five heat treat annealing ovens to second shift, 950 kW of load was shifted off peak. Also, retired, non-productive steam turbine chillers and a diesel air compressor have been effectively operated to displaced 1330 kW during peak periods each day. Installed metering devices have enabled the recognition of critical demand periods. The paper concludes with a brief look at future plans and long range objectives of the Demand Management Plan.

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

213

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

214

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

215

U.S. Propane Demand  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

216

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

xxxv Option Value of Electricity Demand Response, Osmanelasticity in aggregate electricity demand. With these newii) reduction in electricity demand during peak periods (

Heffner, Grayson

2010-01-01T23:59:59.000Z

217

Market-based airport demand management : theory, model and applications  

E-Print Network (OSTI)

The ever-increasing demand for access to the world's major commercial airports combined with capacity constraints at many of these airports have led to increasing air traffic congestion. In particular, the scarcity of ...

Fan, Terence P

2004-01-01T23:59:59.000Z

218

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets”, Papers andand Steven Stoft, “Installed Capacity and Price Caps: Oil onElectricity Markets Have a Capacity requirement? If So, How

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

219

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

220

Centralized and Decentralized Control for Demand Response  

Science Conference Proceedings (OSTI)

Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

2011-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

222

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

internal conditions. Maximum Demand Saving Intensity [W/ft2]automated electric demand sheds. The maximum electric shed

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

223

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

224

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

225

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

226

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

227

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

228

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

229

Demand Response Database & Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Database & Demo Speaker(s): Mike Graveley William M. Smith Date: June 7, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Mary Ann Piette Infotility...

230

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

231

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

232

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

233

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

234

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

235

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

236

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

237

Survey of Western U.S. Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U.S. Electric Utility Resource Plans Survey of Western U.S. Electric Utility Resource Plans Title Survey of Western U.S. Electric Utility Resource Plans Publication Type Journal Article Year of Publication 2014 Authors Wilkerson, Jordan, Peter H. Larsen, and Galen L. Barbose Journal Energy Policy Date Published 2014 Abstract We review long-term electric utility plans representing "' 90% of generation within the Western U.S. and Canadian provinces. We address what utility planners assume about future growth of electricity demand and supply; what types of risk they consider in their long-term resource planning; and the consistency in which they report resource planning-related data. The region is anticipated to grow by 2% annually by 2020 before Demand Side Management. About two-thirds of the utilities that provided an annual energy forecast also reported energy efficiency savings projections; in aggregate, they anticipate an average 6.4% reduction in energy and 8.6% reduction in peak demand by 2020. New natural gas-fired and renewable generation will replace retiring coal plants. Although some utilities anticipate new coal-fired plants, most are planning for steady growth in renewable generation over the next two decades. Most planned solar capacity will come online before 2020, with most wind expansion after 2020. Fuel mix is expected to remain "' 55% of total generation. Planners consider a wide range of risks but focus on future demand, fuel prices, and the possibility of GHG regulations. Data collection and reporting inconsistencies within and across electric utility resource plans lead to recommendations on policies to address this issue.

238

Long-term need for new generating capacity  

SciTech Connect

Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity by the year 2000. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will not be acceptable to society without solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Technology improvements and waste management practices must be pursued to mitigate environmental and safety impacts from electricity generation. 26 refs., 14 figs., 23 tabs.

Bloomster, C.H.; Merrill, E.T.

1987-03-01T23:59:59.000Z

239

Estimating Demand Response Market Potential | Open Energy Information  

Open Energy Info (EERE)

Estimating Demand Response Market Potential Estimating Demand Response Market Potential Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating Demand Response Market Potential Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.ieadsm.org/Files/Tasks/Task%20XIII%20-%20Demand%20Response%20Resou Equivalent URI: cleanenergysolutions.org/content/estimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Resource Integration Planning This resource presents demand response (DR) potential results from top-performing programs in the United States and Canada, as well as a DR

240

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Climate policy implications for agricultural water demand  

SciTech Connect

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

2013-03-28T23:59:59.000Z

242

Only tough choices in Meeting growing demand  

SciTech Connect

U.S. electricity demand is not growing very fast by international or historical standards. Yet meeting this relatively modest growth is proving difficult because investment in new capacity is expected to grow at an even slower pace. What is more worrisome is that a confluence of factors has added considerable uncertainties, making the investment community less willing to make the long-term commitments that will be needed during the coming decade.

NONE

2007-12-15T23:59:59.000Z

243

Survey of Western U.S. electric utility resource plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey Survey of Western U.S. electric utility resource plans Jordan Wilkerson a,n , Peter Larsen a,b , Galen Barbose b a Management Science and Engineering Department, School of Engineering, Stanford University, Stanford, CA 94305, United States b Energy Analysis and Environmental Impacts Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, United States H I G H L I G H T S  Anticipated power plant retirements are split between coal and natural gas.  By 2030, natural gas-fired generation represents 60% of new capacity followed by wind (15%), solar (7%) and hydropower (7%).  Utilities anticipate most new solar capacity to come online before 2020 with significant growth in wind capacity after 2020.  Utilities focus their uncertainty analyses on future demand, fuel prices,

244

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

245

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

time. 4 Reducing this peak demand through DR programs meansthat a 5% reduction in peak demand would have resulted insame 5% reduction in the peak demand of the US as a whole.

Shen, Bo

2013-01-01T23:59:59.000Z

246

Demand Side Bidding. Final Report  

SciTech Connect

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

247

Using Dimmable Lighting for Regulation Capacity and Non-Spinning Reserves  

NLE Websites -- All DOE Office Websites (Extended Search)

Dimmable Lighting for Regulation Capacity and Non-Spinning Reserves Dimmable Lighting for Regulation Capacity and Non-Spinning Reserves in the Ancillary Services Market. A Feasibility Study Title Using Dimmable Lighting for Regulation Capacity and Non-Spinning Reserves in the Ancillary Services Market. A Feasibility Study Publication Type Report LBNL Report Number LBNL-4190E Year of Publication 2010 Authors Rubinstein, Francis M., Li Xiaolei, and David S. Watson Keywords ancillary services, contingency reserves, demand response, demand response and distributed energy resources center, demand response research center, dimmable lighting controls, dimming ballasts, lighting, regulation capacity Abstract The objective of this Feasibility Study was to identify the potential of dimmable lighting for providing regulation capacity and contingency reserves if massively-deployed throughout the State. We found that one half of the total electric lighting load in the California commercial sector is bottled up in larger buildings that are greater an 50,000 square feet. Retrofitting large California buildings with dimmable lighting to enable fast DR lighting would require an investment of about $1.8 billion and a "fleet" of about 56 million dimming ballasts. By upgrading the existing installed base of lighting and controls (primarily in large commercial facilities) a substantial amount of ancillary services could be provided. Though not widely deployed, today's state-of-the art lighting systems, control systems and communication networks could be used for this application. The same lighting control equipment that is appropriate for fast DR is also appropriate for achieving energy efficiency with lighting on a daily basis. Thus fast DR can leverage the capabilities that are provided by a conventional dimming lighting control system. If dimmable lighting were massively deployed throughout large California buildings (because mandated by law, for example) dimmable lighting could realistically supply 380 MW of non-spinning reserve, 47% of the total non-spinning reserves needed in 2007.

248

Determining the Capacity Value of Wind: An Updated Survey of Methods and Implementation; Preprint  

DOE Green Energy (OSTI)

This paper summarizes state and regional studies examining the capacity value of wind energy, how different regions define and implement capacity reserve requirements, and how wind energy is defined as a capacity resource in those regions.

Milligan, M.; Porter, K.

2008-06-01T23:59:59.000Z

249

Supply and demand of lube oils  

Science Conference Proceedings (OSTI)

Lube oil consumption in the world has reached about 40 million tonnes per year, of which 24 million tonnes is used outside the communist areas. There are large regional differences in annual consumption per head from one kilogramme (kg) in India to 35 kg in North America. A statistical analysis of historical data over twenty years in about ninety countries has lead to the conclusion that national income, measured as GDP per head, is the key determinant of total lube oil consumption per head. The functional relationship, however, is different in different countries. Starting from GDP projections until the year 2000, regional forecasts of lube oil demand have been made which show that the share of developing nations outside the communist area in world demand will grow. This will increase the regional imbalance between base oil capacity and demand.

Vlemmings, J.M.L.M.

1988-01-01T23:59:59.000Z

250

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

251

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

252

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

253

Automated Demand Response Today  

Science Conference Proceedings (OSTI)

Demand response (DR) has progressed over recent years beyond manual and semi-automated DR to include growing implementation and experience with fully automated demand response (AutoDR). AutoDR has been shown to be of great value over manual and semi-automated DR because it reduces the need for human interactions and decisions, and it increases the speed and reliability of the response. AutoDR, in turn, has evolved into the specification known as OpenADR v1.0 (California Energy Commission, PIER Program, C...

2012-03-29T23:59:59.000Z

254

Travel Demand Modeling  

SciTech Connect

This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

255

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

256

Demand response compensation, net Benefits and cost allocation: comments  

Science Conference Proceedings (OSTI)

FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

Hogan, William W.

2010-11-15T23:59:59.000Z

257

On Demand Guarantees in Iran.  

E-Print Network (OSTI)

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

258

Demand Response - Policy: More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response - Policy: More Information Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the New England regional power markets. NEDRI's goal was to outline workable market rules, public policies, and regulatory criteria to incorporate customer-based demand response resources into New England's electricity markets and power systems. NEDRI promoted best practices and coordinated

259

Transportation Demand Management Plan  

E-Print Network (OSTI)

Transportation Demand Management Plan FALL 2009 #12;T r a n s p o r t a t i o n D e m a n d M a n the transportation impacts the expanded enrollment will have. Purpose and Goal The primary goal of the TDM plan is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts

260

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

262

Heuristic batching policies for video-on-demand services  

Science Conference Proceedings (OSTI)

A video-on-demand (VOD) service imposes extremely severe resource requirement in terms of bandwidth and storage. Batching policies that use a single channel to serve multiple active clients for the same video program can reduce system resource requirement ... Keywords: Batching policy, Channel allocation, Instantaneous MFQL, Maximum factored queue length, Rate-based, Regular-interval, Statistical MFQL

J.-K Chen; J. -L. C Wu

1999-08-01T23:59:59.000Z

263

2012 CERTS R&M Peer Review - Summary: Evaluating the Effects of Managing Controllable Demand and Distributed Energy - Tim Mount  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Effects of Managing Controllable Demand and Distributed Energy the Effects of Managing Controllable Demand and Distributed Energy Resources Locally on System Performance and Costs Project Lead: Tim Mount, Alejandro D. Dominguez-Garcia, Ray Zimmerman 1. Project Objective The objective of this project is to use the new multi-period version of the Cornell SuperOPF to analyze the system and economic effects of having high penetrations of renewable energy on a network and to determine effective ways to mitigate the inherent variability of these sources. With the new capabilities of the SuperOPF, it will now be possible to evaluate the effects of shifting demand from peak to off-peak periods. Previous research has shown that higher penetrations of renewables are associated with higher annual costs for conventional installed generating capacity ($/MW/Year) due to

264

Comparison of Productive Capacity  

U.S. Energy Information Administration (EIA)

Appendix B Comparison of Productive Capacity Comparisons of base case productive capacities for this and all previous studies were made (Figure B1).

265

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

266

Changing fuel formulations will boost hydrogen demand  

SciTech Connect

Refinery demand in the U.S. for on-purpose hydrogen will continue to increase by 5-10 %/year, depending on the extent of implementation of the 1990 U.S. Clean Air Act Amendments (CAAA) and other proposed environmental legislation. Although the debate on the economic wisdom of the legislation still rages, it is evident that refiners likely will see a large upswing in hydrogen demand while existing hydrogen production may decline. To better understand the potential impact various reformulation scenarios may have on the refining industry, and specifically, on the demand for hydrogen, Texaco analyzed the hydrogen supply/demand scenario in great detail. Two cases were studied in this analysis: mild and severe reformulation. The mild reformulation case is based on current CAAA legislation along with minor modifications to automobile hardware. The severe case is based on a nationwide implementation of Phase 2 of the CAAA and California's proposed reformulated fuels. The paper discusses the current capacity balance; growth in demand; reformulated gasoline; steam methane reforming; and partial oxidation technology.

Simonsen, K.A.; O' Keefe, L.F. (Texaco Inc., White Plains, N.Y. (United States)); Fong, W.F. (Texaco Development Corp., White Plains, N.Y. (United States))

1993-03-22T23:59:59.000Z

267

Computer resources Computer resources  

E-Print Network (OSTI)

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

268

Western Resource Adequacy: Challenges - Approaches - Metrics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans in the West: Resource Strategies for a "Hybrid" Market Demand Response National Trends: Implications for the West? Proposed Energy Transport Corridors: West-wide energy...

269

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License

270

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

271

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

272

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

273

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

274

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

275

On Demand Paging Using  

E-Print Network (OSTI)

The power consumption of the network interface plays a major role in determining the total operating lifetime of wireless handheld devices. On demand paging has been proposed earlier to reduce power consumption in cellular networks. In this scheme, a low power secondary radio is used to wake up the higher power radio, allowing the latter to sleep or remain off for longer periods of time. In this paper we present use of Bluetooth radios to serve as a paging channel for the 802.11 wireless LAN. We have implemented an on-demand paging scheme on a WLAN consisting of iPAQ PDAs equipped with Bluetooth radios and Cisco Aironet wireless networking cards. Our results show power saving ranging from 19% to 46% over the present 802.11b standard operating modes with negligible impact on performance.

Bluetooth Radios On; Yuvraj Agarwal; Rajesh K. Gupta

2003-01-01T23:59:59.000Z

276

Estimating Flexibility Requirements in a Demand-Driven Lean/JIT Environment  

Science Conference Proceedings (OSTI)

Demand-driven JIT manufacturing is based on the assumption of a level stable demand rate. This is however not the reality experienced by most companies. To handle fluctuations from a level stable demand rate, the manufacturing system needs flexibility. ... Keywords: JIT, capacity matching, flexibility

Peter Nielsen; Kenn Steger-Jensen

2008-06-01T23:59:59.000Z

277

Net Demand3 Production  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary The US DOE has identified a number of materials that are both used by clean energy technologies and are at risk of supply disruptions in the short term. Several of these materials, especially the rare earth elements (REEs) yttrium, cerium, and lanthanum were identified by DOE as critical (USDOE 2010) and are crucial to the function and performance of solid oxide fuel cells (SOFCs) 1. In addition, US DOE has issued a second Request For Information regarding uses of and markets for these critical materials (RFI;(USDOE 2011)). This report examines how critical materials demand for SOFC applications could impact markets for these materials and vice versa, addressing categories 1,2,5, and 6 in the RFI. Category 1 – REE Content of SOFC Yttria (yttrium oxide) is the only critical material (as defined for the timeframe of interest for SOFC) used in SOFC 2. Yttrium is used as a dopant in the SOFC’s core ceramic cells.. In addition, continuing developments in SOFC technology will likely further reduce REE demand for SOFC, providing credible scope for at least an additional 50 % reduction in REE use if desirable. Category 2 – Supply Chain and Market Demand SOFC developers expect to purchase

J. Thijssen Llc

2011-01-01T23:59:59.000Z

278

Comparing capacities and delays at major European and American airports  

E-Print Network (OSTI)

Successful air transport systems must satisfy the demand for flights while maintaining a high level of service and safety. For airports, which have limited capacities, policy-makers must compromise between maximizing the ...

Morisset, Thomas (Thomas Marc)

2010-01-01T23:59:59.000Z

279

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Natural Gas Demands..xi Annual natural gas demand for each alternativeused in natural gas demand projections. 34

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

280

Unlocking the potential for efficiency and demand response through advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

Unlocking the potential for efficiency and demand response through advanced Unlocking the potential for efficiency and demand response through advanced metering Title Unlocking the potential for efficiency and demand response through advanced metering Publication Type Conference Paper LBNL Report Number LBNL-55673 Year of Publication 2004 Authors Levy, Roger, Karen Herter, and John Wilson Conference Name 2004 ACEEE Summer Study on Energy Efficiency in Buildings Date Published 06/2004 Publisher ACEEE Conference Location Pacific Grove, CA Call Number California Energy Commission Keywords demand response, demand response and distributed energy resources center, demand response research center, energy efficiency demand response advanced metering, rate programs & tariffs Abstract Reliance on the standard cumulative kilowatt-hour meter substantially compromises energy efficiency and demand response programs. Without advanced metering, utilities cannot support time-differentiated rates or collect the detailed customer usage information necessary to (1) educate the customer to the economic value of efficiency and demand response options, or (2) distribute load management incentives proportional to customer contribution. These deficiencies prevent the customer feedback mechanisms that would otherwise encourage economically sound demand-side investments and behaviors. Thus, the inability to collect or properly price electricity usage handicaps the success of almost all efficiency and demand response options.

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Demand Response For Power System Reliability: FAQ  

SciTech Connect

Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

Kirby, Brendan J [ORNL

2006-12-01T23:59:59.000Z

282

A dynamic model of industrial energy demand in Kenya  

Science Conference Proceedings (OSTI)

This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

Haji, S.H.H. [Gothenburg Univ. (Sweden)

1994-12-31T23:59:59.000Z

283

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Minimum demand and Maximum demand incorporate assumptionslevels, or very minor Maximum demand household size, growthvehicles in Increasing Maximum demand 23 mpg truck share

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

284

Scenario Analysis of Peak Demand Savings for Commercial Buildings with  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Title Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Publication Type Conference Paper LBNL Report Number LBNL-3636e Year of Publication 2010 Authors Yin, Rongxin, Sila Kiliccote, Mary Ann Piette, and Kristen Parrish Conference Name 2010 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center, demand shifting (pre-cooling), DRQAT Abstract This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30% using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

285

1994 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 1.  

SciTech Connect

The 1994 Pacific Northwest Loads and Resources Study establishes the Bonneville Power Administration`s (BPA) planning basis for supplying electricity t6 BPA customers. The Loads and Resources Study is presented in two documents: (1) this technical appendix detailing loads and resources for each major Pacific Northwest generating utility; and (2) a summary of Federal system and Pacific Northwest region loads and resources. This analysis updates the 1993 Pacific Northwest Loads and Resources Study Technical Appendix published in December 1993. This technical appendix provides utility specific information that BPA uses in its long-range planning. It incorporates the following for each utility: (1) electrical demand-firm loads; (2) generating resources; and (3) contracts both inside and outside the region. This document should be used in combination with the 1994 Pacific Northwest Loads and Resources Study, published in December 1994, because much of the information in that document is not duplicated here. This BPA planning document incorporates Pacific Northwest generating resources and the 1994 medium load forecast prepared by BPA. Each utility`s forecasted future firm loads are subtracted from its existing resources to determine whether it will be surplus or deficit. If a utility`s resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which the utility can sell to increase revenues. Conversely, if its firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet the utility`s load.

United States. Bonneville Power Administration.

1994-12-01T23:59:59.000Z

286

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This task of the International Energy Agency's (IEA's) Demand-Side

287

Dividends with Demand Response  

SciTech Connect

To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

2003-10-31T23:59:59.000Z

288

Resource Adequacy INTRODUCTION  

E-Print Network (OSTI)

or the inability to fuel generators under extreme conditions. Here in the Northwest, the primary concern has been the amount of water for hydroelectric generation) and temperature (which affects the demand for electricity to protect against power failures resulting from not having adequate generating capacity deliverable to load

289

A System Dynamics Approach for Developing Zone Water Demand Forecasting: A Case Study of Linkong Area  

Science Conference Proceedings (OSTI)

System dynamics (SD) approach for developing zone water demand forecasting was developed based on the analysis of its water resources system which has multi-feedback and nonlinear interactions amongst system elements. As an example, Tianjin Binhai Linkong ... Keywords: developing zone, system dynamics, water resources demand, Linkong

Xuehua Zhang; Hongwei Zhang; Xinhua Zhao

2008-12-01T23:59:59.000Z

290

Network Routing Capacity  

E-Print Network (OSTI)

We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every non-negative rational number is the routing capacity of some network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used.

Jillian Cannons; Randall Dougherty; Christopher Freiling; Kenneth Zeger

2005-01-01T23:59:59.000Z

291

Chinese demand drives global deforestation Chinese demand drives global deforestation  

E-Print Network (OSTI)

Chinese demand drives global deforestation Chinese demand drives global deforestation By Tansa Musa zones and do not respect size limits in their quest for maximum financial returns. "I lack words economy. China's demand for hardwood drives illegal logging says "Both illegal and authorized

292

Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand  

E-Print Network (OSTI)

: Properties of the AIDS Generalized Maximum Entropy Estimator 24 #12;Estimating a Demand SystemEstimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand Amos Golan* Jeffrey with nonnegativity constraints is presented. This approach, called generalized maximum entropy (GME), is more

Perloff, Jeffrey M.

293

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

294

Photovoltaics effective capacity: Interim final report 2  

DOE Green Energy (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

295

Construction project scheduling problem with uncertain resource ...  

E-Print Network (OSTI)

which its maximal limited capacity is fixed throughout the project duration; second maximal limited resource ... However, in the market fierce competition and bad.

296

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

297

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

298

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

299

Capacity of a UMTS system for aeronautical communications  

Science Conference Proceedings (OSTI)

Current Air Traffic Management and Air Traffic Control systems will experience a demand increase in the following years due to the large number of operating aircrafts. As a consequence, new solution must be studied to overcome this capacity limitation ... Keywords: ATC, ATM, ENR, SDR, TMA, UMTS, W-CDMA, air traffic, capacity

Miguel Calvo Ramón; Ramón Martínez Rodríguez-Osorio; Bazil Taha Ahmed; Juan José Iglesias Jiménez

2007-07-01T23:59:59.000Z

300

Resources for Small Water Systems in Texas  

E-Print Network (OSTI)

This publication is a guide to finding the many resources available to help managers of small water systems in Texas. Details are provided about sources of financial assistance, tools for capacity building, training programs and educational resources.

Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

2007-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Better Buildings Neighborhood Program: Business Model Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Model Business Model Resources to someone by E-mail Share Better Buildings Neighborhood Program: Business Model Resources on Facebook Tweet about Better Buildings Neighborhood Program: Business Model Resources on Twitter Bookmark Better Buildings Neighborhood Program: Business Model Resources on Google Bookmark Better Buildings Neighborhood Program: Business Model Resources on Delicious Rank Better Buildings Neighborhood Program: Business Model Resources on Digg Find More places to share Better Buildings Neighborhood Program: Business Model Resources on AddThis.com... Getting Started Assess the Market Establish Goals & Objectives Develop Plans of Action Business Model Resources Driving Demand Financing Workforce Development Business Model Resources Business Models Workshop and Materials

302

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

303

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 ..............................................................................3 Residential Forecast Comparison ..............................................................................................5 Nonresidential Forecast Comparisons

304

Demand Responsive Lighting: A Scoping Study  

SciTech Connect

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

305

Demand Responsive Lighting: A Scoping Study  

SciTech Connect

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

306

Grid Reliability Considerations for High Levels of Demand Response  

Science Conference Proceedings (OSTI)

The objectives of this white paper are to: (1) consider the unique characteristics of demand response relative to bulk electric system reliability needs and present contributions to system reliability, (2) identify potential bulk electric system reliability impacts of high levels of demand response without appropriate characterization of the resource over time and at increasing penetration levels, and (3) identify research needs to address these impacts so that the potential benefits of DR as system ...

2013-11-07T23:59:59.000Z

307

Is Demand-Side Management Economically Justified?  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Is Demand-Side Management Economically Justified? With billions of dollars being spent on demand-side management programs in the U.S. every year, the rationale for and performance of these programs are coming under increasing scrutiny. Three projects in the Energy Analysis Program are making significant contributions to the DSM debate. *Total Resource Cost Test Ratio = ratio of utility avoided costs (i.e., benefits) divided by total cost of program (i.e., Administrative Cost + Incentive Cost + Consumer Cost) In May, Joe Eto, Ed Vine, Leslie Shown, Chris Payne, and I released the first in a series of reports we authored from the Database on Energy Efficiency Programs (DEEP) project. The objective of DEEP is to document the measured cost and performance of utility-sponsored energy-efficiency

308

Valuation of Renewable and Distributed Resources: Implications for the Integrated Resource Planning  

Science Conference Proceedings (OSTI)

Over the last two decades, traditional integrated resource planning (IRP) has proven to be a valuable tool for evaluating the tradeoffs between supply-side generation and demand-side efficiency resources. However, there has been increasing focus on the incorporation of renewable, distributed, and demand-side resources into utility planning, which requires new methodologies to assess the value of these resources. Traditional IRP is generation-centric and typically fails to take into account the operationa...

2007-06-18T23:59:59.000Z

309

Rates and technologies for mass-market demand response  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and technologies for mass-market demand response Rates and technologies for mass-market demand response Title Rates and technologies for mass-market demand response Publication Type Conference Paper LBNL Report Number LBNL-50626 Year of Publication 2002 Authors Herter, Karen, Roger Levy, John Wilson, and Arthur H. Rosenfeld Conference Name 2002 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response, demand response and distributed energy resources center, demand response research center, rate programs & tariffs Abstract Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory, system-operator controlled, contingency program, and (2) a voluntary, customer controlled, bill management program with rate-based incentives. Any demand response program based on this system could consist of either or both of these components. Ideally, these programs would be bundled, providing automatic load management through customer-programmed price response, plus up to 10 GW of emergency load shedding capability in California. Finally, we discuss options for and barriers to implementation of such a program in California.

310

Tools & Resources: Resource Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

that reduce air emissions. Emissions & Generation Resource Integrated Database (eGRID) A tool that provides data on the environmental characteristics of almost all electric...

311

Publications & Resources, Human Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

or approved by Brookhaven National Laboratory or the Human Resources Division. Manuals Scientific Staff Manual Supervisors Personnel Manual SBMS Subject Areas Compensation...

312

Capacity Markets for Electricity  

E-Print Network (OSTI)

the prevailing PJM energy market price. The demand in thethe prevailing national energy market price. Last, suppliersraising the national energy market price cap P up to f, in

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

313

Control Mechanisms for Residential Electricity Demand in SmartGrids  

E-Print Network (OSTI)

Control Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department of the emerging SmartGrid, use both prices and user preferences to control power usage across the home. We first, accounts for the potential for electricity capacity constraints. I. INTRODUCTION The emerging SmartGrid

Snyder, Larry

314

Assisting Mexico in Developing Energy Supply and Demand Projections | Open  

Open Energy Info (EERE)

Assisting Mexico in Developing Energy Supply and Demand Projections Assisting Mexico in Developing Energy Supply and Demand Projections Jump to: navigation, search Name Assisting Mexico in Developing Energy Supply and Demand Projections Agency/Company /Organization Argonne National Laboratory Sector Energy Topics GHG inventory, Background analysis Resource Type Software/modeling tools Website http://www.dis.anl.gov/news/Me Country Mexico UN Region Latin America and the Caribbean References Assisting Mexico in Developing Energy Supply and Demand Projections[1] "CEEESA and the team of experts from Mexico analyzed the country's entire energy supply and demand system using CEEESA's latest version of the popular ENPEP-BALANCE software. The team developed a system representation, a so-called energy network, using ENPEP's powerful graphical user

315

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This report provides Annexes 1 through 7, which are country reports from

316

Assessment of Industrial Load for Demand Response across Western Interconnect  

SciTech Connect

Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)] [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

2013-11-01T23:59:59.000Z

317

Assessment of the impacts of demand curtailments in the DAMs: issues in and proposed modifications of FERC Order No. 745.  

E-Print Network (OSTI)

??The Federal Energy Regulatory Commission (FERC), in its initiative to incentivize demand response resources (DRRs) to participate in the day-ahead markets (DAMs), enacted Order No.… (more)

Castillo, Isaac

2013-01-01T23:59:59.000Z

318

Demand Response Programs, 6. edition  

Science Conference Proceedings (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

319

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

2007 EMCS EPACT ERCOT FCM FERC FRCC demand side managementEnergy Regulatory Commission (FERC). EPAct began the processin wholesale markets, which FERC Order 888 furthered by

Shen, Bo

2013-01-01T23:59:59.000Z

320

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

322

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

323

Increasing State Capacity Through Clans  

E-Print Network (OSTI)

their role in increasing state capacity With the decline ofhere focus on state capacity and the associated discussionselements of state capacity during the transition from one

Doyle, Jr, Thomas Martin

2009-01-01T23:59:59.000Z

324

Capacity Markets for Electricity  

E-Print Network (OSTI)

Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

325

Automated Demand Response and Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

and Commissioning Title Automated Demand Response and Commissioning Publication Type Conference Paper LBNL Report Number LBNL-57384 Year of Publication 2005 Authors Piette, Mary...

326

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

lvi Southern California Edison filed its SmartConnectinfrastructure (e.g. , Edison Electric Institute, DemandSouthern California Edison Standard Practice Manual

Heffner, Grayson

2010-01-01T23:59:59.000Z

327

1995 Demand-Side Managment  

U.S. Energy Information Administration (EIA)

U.S. Electric Utility Demand-Side Management 1995 January 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels

328

Retail Demand Response in Southwest Power Pool  

SciTech Connect

In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

2009-01-30T23:59:59.000Z

329

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

energy efficiency and demand response programs and tariffs.energy efficiency and demand response program and tariffenergy efficiency and demand response programs and tariffs.

Goldman, Charles

2010-01-01T23:59:59.000Z

330

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

331

Demand Response Quick Assessment Tool (DRQAT)  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool (DRQAT) The opportunities for demand reduction and cost saving with building demand responsive control vary tremendously with building type...

332

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

333

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

334

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

335

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

336

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

337

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Table 1. “Economic” demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

338

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

8 Figure 7: Maximum Demands Savings Intensity due toaddressed in this report. Maximum Demand Savings Intensity (Echelon Figure 7: Maximum Demands Savings Intensity due to

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

339

UNDP-Low Emission Capacity Building Programme | Open Energy Information  

Open Energy Info (EERE)

Programme Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme Agency/Company /Organization United Nations Development Programme (UNDP), European Union Sector Climate, Energy, Land, Water Topics Low emission development planning Resource Type Training materials Website http://www.undp.org/climatestr References UNDP-Low Emission Capacity Building Programme[1] UNDP-Low Emission Capacity Building Programme Screenshot "This collaborative programme aims to strengthen technical and institutional capacities at the country level, while at the same time facilitating inclusion and coordination of the public and private sector in national initiatives addressing climate change. It does so by utilizing the

340

IAEA Planning and Economic Studies Section (PESS) Capacity Building | Open  

Open Energy Info (EERE)

IAEA Planning and Economic Studies Section (PESS) Capacity Building IAEA Planning and Economic Studies Section (PESS) Capacity Building Jump to: navigation, search Tool Summary Name: IAEA Planning and Economic Studies Section (PESS) Capacity Building Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Non-renewable Energy, Energy Efficiency, Renewable Energy Topics: Pathways analysis Resource Type: Software/modeling tools, Training materials References: IAEA PESS capacity building[1] Logo: IAEA Planning and Economic Studies Section (PESS) Capacity Building "PESS offers assistance to Member States, particularly from developing regions, to improve their energy system analysis & planning capabilities. Assistance can include: transferring modern planning methods, tools and databanks

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Assessment of Commercial Space Conditioning Technologies: Variable Capacity Rooftop Units  

Science Conference Proceedings (OSTI)

Space conditioning in U.S. commercial buildings is commonly performed by a packaged air-source rooftop unit (RTU). In recent years, heating, ventilation, and air-conditioning (HVAC) manufacturers have begun to develop RTUs with higher efficiency through the implementation of variable capacity technology. Variable capacity RTUs potentially offer electric utilities a new resource for achieving energy and peak power reduction. This document aims to serve as a resource for electric utilities in ...

2013-12-16T23:59:59.000Z

342

Analysis of Distribution Level Residential Demand Response  

SciTech Connect

Control of end use loads has existed in the form of direct load control for decades. Direct load control systems allow a utility to interrupt power to a medium to large size commercial or industrial customer a set number of times a year. With the current proliferation of computing resources and communications systems the ability to extend the direct load control systems now exists. Demand response systems now have the ability to not only engage commercial and industrial customers, but also the individual residential customers. Additionally, the ability exists to have automated control systems which operate on a continual basis instead of the traditional load control systems which could only be operated a set number of times a year. These emerging demand response systems have the capability to engage a larger portion of the end use load and do so in a more controlled manner. This paper will examine the impact that demand response systems have on the operation of an electric power distribution system.

Schneider, Kevin P.; Fuller, Jason C.; Chassin, David P.

2009-03-23T23:59:59.000Z

343

Demand or Request: Will Load Behave?  

Science Conference Proceedings (OSTI)

Power planning engineers are trained to design an electric system that satisfies predicted electrical demand under stringent conditions of availability and power quality. Like responsible custodians, we plan for the provision of electrical sustenance and shelter to those in whose care regulators have given us the responsibility to serve. Though most customers accept this nurturing gladly, a growing number are concerned with the economic costs and environmental impacts of service at a time when technology (particularly distributed generation, storage, automation, and information networks) offers alternatives for localized control and competitive service. As customers’ and their systems mature, a new relationship with the electricity provider is emerging. Demand response is perhaps the first unsteady step where the customer participates as a partner in system operations. This paper explores issues system planners need to consider as demand response matures to significant levels beyond direct load control and toward a situation where service is requested and bargains are reached with the electricity provider based on desired load behavior. On one hand, predicting load growth and behavior appears more daunting than ever. On the other, for the first time load becomes a new resource whose behavior can be influenced during system operations to balance system conditions.

Widergren, Steven E.

2009-07-30T23:59:59.000Z

344

LEDS Capacity Building and Training Inventory | Open Energy Information  

Open Energy Info (EERE)

LEDS Capacity Building and Training Inventory LEDS Capacity Building and Training Inventory Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve LEDS Capacity Building and Training Activities and Resources Upcoming Capacity Building Events CLEAN shares capacity building activity information to encourage technical institutions to better coordinate efforts and avoid duplication of effort. If you are aware of an upcoming LEDS-related training or capacity building event please add it to the calendar below. Add Capacity Building or Training Event Webinars Title Developer Biopower Tool Webinar National Renewable Energy Laboratory United States Department of Energy Centro de Energías Renovables (CER) CESC-Webinar: Building an Innovation and Entrepreneurship Driven Economy: How Policies Can Foster Risk Capital Investment in Renewable Energy Clean Energy Solutions Center

345

China-Transportation Demand Management in Beijing: Mitigation of Emissions  

Open Energy Info (EERE)

China-Transportation Demand Management in Beijing: Mitigation of Emissions China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in

346

FAO-Capacity Development on Climate Change | Open Energy Information  

Open Energy Info (EERE)

FAO-Capacity Development on Climate Change FAO-Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land, Climate Focus Area: Forestry, Agriculture Resource Type: Training materials, Lessons learned/best practices, Case studies/examples Website: www.fao.org/climatechange/learning/en/ Cost: Free FAO-Capacity Development on Climate Change Screenshot References: FAO-Capacity Development on Climate Change[1] Logo: FAO-Capacity Development on Climate Change This portal provides a one-stop window for Member States, partners, UN staff and other development actors to access FAO climate change learning resources to facilitate experience-sharing.

347

Efficient demand assignment in multi-connected microgrids  

Science Conference Proceedings (OSTI)

With the proliferation of distributed generation, an electrical load can be satisfied either by a centralized generator or by local/nearby distributed generators. Given a set of resource demands in a collection of geographically co-located microgrids ... Keywords: switching

Kirill Kogan, Sergey Nikolenko, Srinivasan Keshav, Alejandro Lopez-Ortiz

2013-01-01T23:59:59.000Z

348

Strong demand growth seen for oil and gas in 1997--99  

Science Conference Proceedings (OSTI)

This paper provides historical information on worldwide crude oil productions from 1984 to present and makes predictions on future demand and refinery capacities. It provides information on oil reserves on a world scale and the pricing of these commodities. It breaks reserves, production and capacities down into OPEC and non-OPEC countries. It then provides general energy demand for both developed and developing countries in all energy forms.

Beck, R.J.

1996-04-22T23:59:59.000Z

349

Capacity on Finsler Spaces  

E-Print Network (OSTI)

Here, the concept of electric capacity on Finsler spaces is introduced and the fundamental conformal invariant property is proved, i.e. the capacity of a compact set on a connected non-compact Finsler manifold is conformal invariant. This work enables mathematicians and theoretical physicists to become more familiar with the global Finsler geometry and one of its new applications.

Bidabad, B

2009-01-01T23:59:59.000Z

350

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

351

Harnessing the power of demand  

Science Conference Proceedings (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

352

China, India demand cushions prices  

SciTech Connect

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

353

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

354

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

355

Capacity allocation for long tailed traffic in packet switching networks  

Science Conference Proceedings (OSTI)

The packet switching techniques are under evolution. The conventional "best effort" approach will no longer be the dominant service. The next generation of IP networks must provide the QoS to customers. Inadequacy is obvious when the conventional capacity ... Keywords: QoS, capacity allocation, delay bound, diffServ, resource optimization, self-similarity

Xian Liu

2009-06-01T23:59:59.000Z

356

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

climate zones. . . . . . . . . . . . . . . . . . .results. . . . Mapping of CEC forecast climate zones toCalifornia building climate zones. TCL parameter assumptions

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

357

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

in discrete time. . California climate zones. . . . . . .results. . . . Mapping of CEC forecast climate zones toCalifornia building climate zones. TCL parameter assumptions

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

358

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

1.2.1 Time-differentiated electricity rates 1.2.2 Incentiveto time-differentiated electricity rates. Other DR conceptsTime-differentiated electricity rates Time differentiated

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

359

Demand Responsive Programs -An Emerging Resource for Competitive  

E-Print Network (OSTI)

? Dr. Grayson C. Heffner and Charles A. Goldman Environmental Energy Technologies Division Ernest of Energy Efficiency and Renewable Energy, Office of Power Technologies of the U.S. Department of Energy Charles A. Goldman, Lawrence Berkeley National Laboratory, Berkeley, CA ABSTRACT The restructuring

360

Demand responsive programs - an emerging resource for competitive electricity markets?  

E-Print Network (OSTI)

References Bressler, Stu (PJM Interconnection, L.L.C. ).01, Effective Date: 06/01/00. PJM Interconnection, L.L.C. ,Market Monitoring Unit 2000. PJM Interconnection State of

Heffner, Dr. Grayson C.; Goldman, Charles A.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

In: IEEE Transactions on Smart Grid 11.2 (1996), pp. 708–reductions enabled by a smart grid. Tech. rep. EPRI TR-al. The many meanings of ‘smart grid’. Tech. rep. Paper 22.

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

362

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

index.cfm/mytopic=13090. [34] EERE. Results and methodology2011), pp. 411–419. [31] EERE. EnergyPlus energy simulationcfm/weather_data.cfm. [32] EERE. Estimating appliance and

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

363

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

2011), pp. 411–419. [31] EERE. EnergyPlus energy simulationcfm/weather_data.cfm. [32] EERE. Estimating appliance andmytopic=10040. [33] EERE. Lower water heater temperature for

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

364

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

for an office building. ACF and PACF computed with theCompany. xii Abbreviations ACF APE AR CAISO CBP CEC C&Iautocorrelation functions (ACF) and partial autocorrelation

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

365

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

for an office building. ACF and PACF computed with thelag one autocorrelation, or plot the ACF and PACF. First, weCompany. xii Abbreviations ACF APE AR CAISO CBP CEC C&I

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

366

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

buildings”. In: Journal of Solar Energy Engineering 120 (I-II”. In: Journal of Solar Energy Engineering 120 (1998),modeling”. In: Journal of Solar Energy Engineering 120 (

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

367

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

buildings”. In: Journal of Solar Energy Engineering 120 (I-II”. In: Journal of Solar Energy Engineering 120 (1998),modeling”. In: Journal of Solar Energy Engineering 120 (

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

368

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

capacity prices Lower energy prices Participant Reduced svc$42 million); lxi Reduced energy prices during tight supply+ Reduced wholesale energy prices due to sustained energy

Heffner, Grayson

2010-01-01T23:59:59.000Z

369

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

370

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

the average and maximum peak demand savings. The electricity1: Average and Maximum Peak Electric Demand Savings during

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

371

Role of Standard Demand Response Signals for Advanced Automated Aggregation  

Science Conference Proceedings (OSTI)

Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

Lawrence Berkeley National Laboratory; Kiliccote, Sila

2011-11-18T23:59:59.000Z

372

OPEC production: Untapped reserves, world demand spur production expansion  

Science Conference Proceedings (OSTI)

To meet projected world oil demand, almost all members of the Organization of Petroleum Exporting Countries (OPEC) have embarked on ambitious capacity expansion programs aimed at increasing oil production capabilities. These expansion programs are in both new and existing oil fields. In the latter case, the aim is either to maintain production or reduce the production decline rate. However, the recent price deterioration has led some major OPEC producers, such as Saudi Arabia and Iran, to revise downward their capacity plans. Capital required for capacity expansion is considerable. Therefore, because the primary source of funds will come from within each OPEC country, a reasonably stable and relatively high oil price is required to obtain enough revenue for investing in upstream projects. This first in a series of two articles discusses the present OPEC capacity and planned expansion in the Middle East. The concluding part will cover the expansion plans in the remaining OPEC countries, capital requirements, and environmental concerns.

Ismail, I.A.H. (Organization of the Petroleum Exporting Countries, Vienna (Austria))

1994-05-02T23:59:59.000Z

373

Effects of Demand Response on Retail and Wholesale Power Markets  

Science Conference Proceedings (OSTI)

Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energy’s Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets is discussed with necessary and sufficient conditions on system controllability, observability and stability derived.

Chassin, David P.; Kalsi, Karanjit

2012-07-26T23:59:59.000Z

374

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

375

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

376

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

Model of the Global Crude Oil Market and the U.S. RetailNoureddine. 2002. World crude oil and natural gas: a demandanalysis of the demand for oil in the Middle East. Energy

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

377

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

378

Water resources planning under climate change and variability  

E-Print Network (OSTI)

Scenario to Climatic Changes. Water Resources Management 19:2006) Quantifying the Urban Water Supply Impacts of Climateto the Shape of Supply? Water Demand Under Heterogeneous

O'Hara, Jeffrey Keith

2007-01-01T23:59:59.000Z

379

Energy-water nexus : sustainability of coal and water resources.  

E-Print Network (OSTI)

??Energy and water are two precious natural resources with which demand will continue to grow with increased population growth. Coal provides a cheap and abundant… (more)

Hebel, Anna Kathleen

2010-01-01T23:59:59.000Z

380

Reinforcement learning techniques for controlling resources in power networks.  

E-Print Network (OSTI)

??As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the… (more)

Kowli, Anupama

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Pathway and Resource Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway and Resource Overview Pathway and Resource Overview Delivering Renewable Hydrogen Workshop - A Focus on Near-Term Applications Mark F. Ruth November 16, 2009 Palm Springs, CA NREL/PR-6A1-47108 National Renewable Energy Laboratory Innovation for Our Energy Future Definition and Presentation Outline Hydrogen pathway analysis is analysis of the total levelized cost (including return on investment), well-to- wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways. This presentation focuses on * Pathway analyses using the Macro-System Model (MSM) * Resource and pathway analysis using the Hydrogen Demand and Resource Analysis Tool (HyDRA) * Status of water-electrolysis technology

382

Retail Demand Response in Southwest Power Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response in Southwest Power Pool Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region.

383

Demand Response & Smart Grid - State Legislative and Regulatory Policy  

Open Energy Info (EERE)

Demand Response & Smart Grid - State Legislative and Regulatory Policy Demand Response & Smart Grid - State Legislative and Regulatory Policy Actions: October 2008 to May 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demand Response & Smart Grid - State Legislative and Regulatory Policy Actions: October 2008 to May 2010 Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.demandresponsesmartgrid.org/Resources/Documents/State%20Policy%20S Equivalent URI: cleanenergysolutions.org/content/demand-response-smart-grid-state-legi Language: English Policies: Regulations Regulations: Enabling Legislation This report reviews the implementation of utility efficiency programs in the United States at both the state and federal levels. In addition, the updated report catalogues regulatory commission action, independent of

384

Water Utility Demand Management and the Financial, Social and Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Utility Demand Management and the Financial, Social and Environmental Water Utility Demand Management and the Financial, Social and Environmental Drivers Speaker(s): Allan J. Dietemann Date: February 19, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Camilla Whitehead At Seattle Public Utilities, Al Dietemann leads a team of 11 persons with a budget of $5 million a year implementing cost-effective resource conservation measures. In 2003, the Seattle area used less water than was used in 1950 on an annual basis. Seattle's demand management programs have been successful in holding total regional water use constant in our service area, despite an annual growth in population served. During this seminar he will speak to the following issues: 1) Water utility demand management and the financial, social and environmental drivers. 2)

385

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

Benenson, P.

2010-01-01T23:59:59.000Z

386

Non-OPEC supply to fill global 1996 demand gain  

SciTech Connect

Excess capacity brought on by rapidly rising oil production from outside the Organization of Petroleum Exporting Countries, coupled with stabilization of output from the Commonwealth of Independent States, will hamper OPEC`s efforts to balance the oil market in 1996. World demand for oil is projected to move up sharply. But non-OPEC output will increase even more, challenging OPEC to reduce production quotas. This paper reviews data on supply, demand, and production from these non-OPEC countries and the overall effects it will have on OPEC operations and costs.

Beck, R.J.

1996-01-29T23:59:59.000Z

387

Capacity Markets for Electricity  

E-Print Network (OSTI)

Global Agenda, August 15. [6] FERC, Docket No. EL01-63-003,at http://www.pjm.com. [7] FERC, Docket No. ER01-1440-capacity of the others” (FERC, 2001). Therefore, if an LSE

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

388

Hospitality resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

389

Healthcare resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

390

Congregation resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

391

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

392

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

393

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

394

Forward capacity market CONEfusion  

Science Conference Proceedings (OSTI)

In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

Wilson, James F.

2010-11-15T23:59:59.000Z

395

Demand-based coordinated scheduling for SMP VMs  

Science Conference Proceedings (OSTI)

As processor architectures have been enhancing their computing capacity by increasing core counts, independent workloads can be consolidated on a single node for the sake of high resource efficiency in data centers. With the prevalence of virtualization ... Keywords: synchronization, coscheduling, virtualization

Hwanju Kim; Sangwook Kim; Jinkyu Jeong; Joonwon Lee; Seungryoul Maeng

2013-04-01T23:59:59.000Z

396

Utility resource planning using modular simulation and optimization  

Science Conference Proceedings (OSTI)

Electric utility resource planning traditionally focuses on conventional energy supplies. Nowadays, planning of renewable energy generation and its storage has become equally important due to the growth in demand, insufficiency of natural resources, ...

Juan Sáenz Corredor; Nurcin Celik; Shihab Asfour; Young-Jun Son

2011-12-01T23:59:59.000Z

397

Analysis of Residential Demand Response and Double-Auction Markets  

Science Conference Proceedings (OSTI)

Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

2011-10-10T23:59:59.000Z

398

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart...

399

Demand for money in China .  

E-Print Network (OSTI)

??This research investigates the long-run equilibrium relationship between money demand and its determinants in China over the period 1952-2004 for three definitions of money –… (more)

Zhang, Qing

2006-01-01T23:59:59.000Z

400

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

402

Distillate Demand Strong Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Well, distillate fuel demand wasn't the reason that stocks increased in January 2001 and kept prices from going higher. As you will hear shortly, natural gas prices spiked...

403

Thermal Mass and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Mass and Demand Response Speaker(s): Gregor Henze Phil C. Bomrad Date: November 2, 2011 - 12:00pm Location: 90-4133 Seminar HostPoint of Contact: Janie Page The topic of...

404

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

405

Leslie Mancebo (7234) Transportation Demand &  

E-Print Network (OSTI)

Leslie Mancebo (7234) Transportation Demand & Marketing Coordinator 1 FTE, 1 HC Administrative Vice Chancellor Transportation and Parking Services Clifford A. Contreras (0245) Director 30.10 FTE Alternative Transportation & Marketing Reconciliation Lourdes Lupercio (4723) Michelle McArdle (7512) Parking

Hammock, Bruce D.

406

Team 3: Student Support Resources 2.D Student Support Resources (Rimpau/Caires)  

E-Print Network (OSTI)

2013) Resources and Capacity By documenting the adequacy of its resources and capacity, the institution and Procedures: Students NWCCU Accreditation ­ Year Three Report (draft should be completed and reviewed by May) Rules, regulations for conduct, rights, and responsibilities; g) Tuition, fees, and other program costs

Lawrence, Rick L.

407

Outlook for US lube oil supply and demand  

Science Conference Proceedings (OSTI)

This paper examines the domestic demand for automotive and industrial lubricants to the year 2000 and evaluates the ability of U.S. refiners to meet the associated demand for base stocks. Changes in the supply/demand picture over the past several years are also reviewed. In the late 1970's, lube base stocks had been in short supply as healthy increases in demand pushed U.S. refiners to near maximum operating levels. Imports were increased to what were then record high levels and exports were reduced. This situation began to reverse itself in mid-1980 as marketers began to feel the impact of recession here and abroad. U.S. base stock consumption has since declined dramatically, to a level in 1982 estimated to be 17.5% below that of 1979's peak. In the meantime, refiners had added another 7.0 MB/CD to manufacturing capacity. 1982 lube plant operations are estimated to have dropped as low as 62% of nameplate capacity. The outlook for recovery is conservative. Due to continued depressed demand in certain market segments, 1983's increase in base oil demand is projected to be held to only 2%. Gains in 1984 and 1985 will be more robust, in the area of 6% per year. Thereafter, the overall rate of growth will drop to under 1% per year. The outlooks for automotive and industrial lubricants demand are summarized. Due to a forecast of greater relative growth in synthetic and water-based lubricants, base stock consumption is forecast to increase at a slower pace than that of the total finished lubricants volume.

Brecht, F.

1983-03-01T23:59:59.000Z

408

Microsoft Word - GasCapacityReport3-17.doc  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available from natural gas wells considering limitations of the production, gathering, and transportation systems. Surplus or unutilized capacity is the difference between the effective productive capacity and the actual production. This report contains projections of natural gas effective productive capacity in the Lower-48 States for 2003 and is based on prices and production forecasts in EIA's February 2003 Short Term Energy Outlook (STEO). The analysis projects an average surplus capacity of 5.6 Bcf/d in 2003 under STEO Base

409

Entry-Deterring Capacity in the Texas Lodging Industry  

E-Print Network (OSTI)

This paper empirically tests whether capacity is used to deter entry and whether the amount invested in entry-deterring capacity is related to market concentration and market presence. We use a unique dataset containing 3,830 lodging properties in Texas from 1991 through 1997. We find that there is higher investment in capacity relative to demand (i.e., idle capacity) in markets with a larger Herfindahl index and by firms with a larger share of market capacity. These results are consistent with the entry deterrence literature that suggests firms in more concentrated markets and firms with a larger market share have greater incentive to invest in entry-deterring capacity. 1.

Michael Conlin; Vrinda Kadiyali

2006-01-01T23:59:59.000Z

410

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building (Redirected from US EPA GHG Inventory Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing

411

Power system balancing with high renewable penetration : the potential of demand response  

E-Print Network (OSTI)

This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model was used to represent a version of ...

Critz, David Karl

2012-01-01T23:59:59.000Z

412

Teacher Resource Center: Curricular Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Curricular Resources Curricular Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides workshops and consultations on Mathematics and Science Curriculum development. Here are a list of resources for educators. See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Key Science Resources for Curriculum Planning Key Science Resources for Curriculum Planning

413

Optimal Demand Response with Energy Storage Management  

E-Print Network (OSTI)

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

414

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

services provided to the energy markets, Order 745 advancesin the wholesale energy market (both day-ahead and real-the capacity market is. The energy market does not feature

Shen, Bo

2013-01-01T23:59:59.000Z

415

Geothermal Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Resources There are a number of different resource potential estimates that have been developed. A few are listed below. NREL Geothermal Favorability Map NREL Supply Characterization and Representation In 2011, NREL conducted an analysis to characterize and represent the supply of electricity generation potential from geothermal resources in the United States. The principal products were: Capacity Potential Estimates - quantitative estimates of the potential electric capacity of U.S. geothermal resources

416

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response and Mass Market Demand Response and Mass Market Demand Response and Mass Market Demand Response and Variable Generation Integration Issues: Variable Generation Integration Issues: Variable Generation Integration Issues: Variable Generation Integration Issues: A Scoping Study A Scoping Study Peter Cappers, Andrew Mills, Charles Goldman, Ryan Wiser, Joseph H. Eto Report Summary October 2011 Energy Analysis Department  Electricity Markets and Policy Group 1 1 Presentation Overview Presentation Overview  Objectives and Approach  Variable Generation Resources and the Bulk Power System  Demand Response Opportunities  Demand Response as a Strategy to Integrate p gy g Variable Generation Resources  Comparison of Various Strategies to Integrate Variable Generation  Conclusions Energy Analysis Department  Electricity Markets and Policy Group

417

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

418

Building MRV Standards and Capacity in Key Countries | Open Energy  

Open Energy Info (EERE)

MRV Standards and Capacity in Key Countries MRV Standards and Capacity in Key Countries Jump to: navigation, search Name Building MRV Standards and Capacity in Key Countries Agency/Company /Organization World Resources Institute (WRI) Sector Climate Focus Area Renewable Energy Topics Implementation Website http://www.wri.org/topics/mrv Program Start 2011 Program End 2014 Country Brazil, Colombia, Ethiopia, India, South Africa, Thailand South America, South America, Eastern Africa, Southern Asia, Southern Africa, South-Eastern Asia References World Resources Institute (WRI)[1] Program Overview Developing countries will be required to measure, report, and verify (MRV) mitigation actions according to international guidelines, but few have the capacity to do so. The goal of this project is to build the capacity of a

419

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

420

Data warehousing and mining technologies for adaptability in turbulent resources business environments  

Science Conference Proceedings (OSTI)

Resources businesses often undergo turbulent and volatile periods, due to rapid increase of resource demand and poorly organised resources data volumes. This volatile industry operates multifaceted business units that manage heterogeneous data sources. ...

Shastri L. Nimmagadda; Heinz Dreher

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network (OSTI)

Utility managements have two primary responsibilities. They must supply reliable electric service to meet the needs of their customers at the most efficient price possible while at the same time generating the maximum rate of return possible for their shareholders. Regulator hostility towards the addition of generating capacity has made it difficult for utilities to simultaneously satisfy both the needs of their ratepayers and the needs of their shareholders. Recent advances in thermal energy storage may solve the utilities' paradox. Residential thermal energy storage promises to provide the ratepayers significantly lower electricity rates and greater comfort levels. Utilities benefit from improved load factors, peak capacity additions at low cost, improved shareholder value (ie. a better return on assets), improved reliability, and a means of satisfying growing demand without the regulatory and litigious nightmares associated with current supply side solutions. This paper discusses thermal energy storage and its potential impact on the electric utilities and introduces the demand side plant concept.

Michel, M.

1989-01-01T23:59:59.000Z

422

Natural gas productive capacity for the lower 48 States, 1980 through 1995  

SciTech Connect

The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

Not Available

1994-07-14T23:59:59.000Z

423

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

424

Global irrigation demand - A holistic approach  

Science Conference Proceedings (OSTI)

To develop a research track on global irrigation demand and the use of future water resources to help feed the world, we need to adopt a holistic approach to understand inter-dependencies and the main drivers of the global water system and unravel positive (reinforcing) and negative (balancing) feedback loops that can lead to cascading consequences. Thus, there needs to be more research dedicated to 1) the modeling of the agricultural and water systems as components within an integrated assessment human-Earth modeling framework, 2) the understanding of the linkages between the physical processes and the human system, and to integrate them in an economic framework to capture the dynamics of market price, and institutional regulations. This editorial discusses the importance of tackling the global irrigation problem in an integrated assessment modeling framework.

Hejazi, Mohamad I.; Edmonds, James A.; Chaturvedi, Vaibhav

2012-09-30T23:59:59.000Z

425

Evaluating the role of uncertainty in electric utility capacity planning  

SciTech Connect

This final report on Evaluating the Role of Uncertainty in Electric Utility Capacity Planning is divided into separate sections addressing demand, supply and the simultaneous consideration of both and describes several mathematical characterizations of the effects of uncertainty on the capacity expansion decision. The basic objective is to develop more robust models which can appropriately include the fundamental uncertainties associated with capacity expansion planning in the electric utility industry. Much of what has been developed in this project has been incorporated into a long-term, computer model for capacity expansion planning. A review is provided of certain deterministic capacity expansion methodologies. The effect of load curve uncertainty on capacity planning is considered and the use of a certain expected load curve to account for uncertainty in demand is proposed. How uncertainty influences the allocation of capital costs among the various load curve realizations is also discussed. The supply side uncertainties of fuel prices and random availability of generating units are considered. In certain cases it is shown that the use of the expected fuel costs will furnish a solution which minimizes the total expected costs. The effect of derating units to account for their random availability is also characterized. A stochastic linear program formulated to examine the simultaneous consideration of fuel cost and demand uncertainties is analyzed. This volume includes the report text one appendix with information on linear programming-based analysis of marginal cost pricing in the electric utility industry.

Soyster, A.L.

1981-08-31T23:59:59.000Z

426

Grid Integration of Aggregated Demand Response, Part 1: Load Availability  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Aggregated Demand Response, Part 1: Load Availability Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection Title Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection Publication Type Report LBNL Report Number LBNL-6417E Year of Publication 2013 Authors Olsen, Daniel, Nance Matson, Michael D. Sohn, Cody Rose, Junqiao Han Dudley, Sasank Goli, Sila Kiliccote, Marissa Hummon, David Palchak, Paul Denholm, Jennie Jorgenson, and Ookie Ma Date Published 09/2013 Abstract Demand response (DR) has the potential to improve electric grid reliability and reduce system operation costs. However, including DR in grid modeling can be difficult due to its variable and non-traditional response characteristics, compared to traditional generation. Therefore, efforts to value the participation of DR in procurement of grid services have been limited. In this report, we present methods and tools for predicting demand response availability profiles, representing their capability to participate in capacity, energy, and ancillary services. With the addition of response characteristics mimicking those of generation, the resulting profiles will help in the valuation of the participation of demand response through production cost modeling, which informs infrastructure and investment planning.

427

Agent-based coordination techniques for matching supply and demand in energy networks  

Science Conference Proceedings (OSTI)

There is a lot of effort directed toward realizing the power network of the future. The future power network is expected to depend on a large number of renewable energy resources connected directly to the low and medium voltage power network. Demand ... Keywords: Supply and demand matching, market and non-market algorithms, multi-agent systems

Rashad Badawy; Benjamin Hirsch; Sahin Albayrak

2010-12-01T23:59:59.000Z

428

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing  

E-Print Network (OSTI)

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing Felix Creutzig a,*, Dongquan He b a Energy and Resources Group, University of California, Berkeley, USA b Energy i n f o Keywords: Climate change mitigation Transport demand management External costs Urban

Kammen, Daniel M.

429

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

430

The urban design of distributed energy resources  

E-Print Network (OSTI)

Distributed energy resources (DERs) are a considerable research focus for cities to reach emissions reduction goals and meet growing energy demand. DERs, consisting of local power plants and distribution infrastructure, ...

Sheehan, Travis (Travis P.)

2012-01-01T23:59:59.000Z

431

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

432

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

433

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

434

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

435

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network (OSTI)

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

436

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network (OSTI)

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

437

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

438

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

439

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

440

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

residential electricity consumption, the flattening of the demand curves (except Maximum demand) reflects decreasing population growth ratesresidential electricity demand are described in Table 11. For simplicity, end use-specific UEC and saturation rates

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

percent of 2008 summer peak demand (FERC, 2008). Moreover,138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).non-coincident summer peak demand by 157 GW” by 2030, or 14–

Goldman, Charles

2010-01-01T23:59:59.000Z

442

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

pricing tariffs have a peak demand reduction potential ofneed to reduce summer peak demand that is used to set demandcustomers and a system peak demand of over 43,000 MW. SPP’s

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

443

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

with total Statewide peak demand and on peak days isto examine the electric peak demand related to lighting inDaily) - TOU Savings - Peak Demand Charges - Grid Peak -Low

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

444

Tankless Demand Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heaters Tankless Demand Water Heaters August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is...

445

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

446

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

447

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

448

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

449

Analysis and characterization of ancillary service demand response strategies for variable air volume HVAC systems  

E-Print Network (OSTI)

Output variability and prediction difficulties with respect to solar and wind electricity resources increase the requirement of grid-scale reserve capacity and add strain to existing firm generators used for reserves and ...

Blum, David H. (David Henry)

2013-01-01T23:59:59.000Z

450

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1997 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

451

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

Regulatory Commission (FERC) 2006. “Assessment of DemandRegulatory Commission (FERC) 2007. “Assessment of DemandRegulatory Commission (FERC) 2008a. “Wholesale Competition

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

452

EIA - Annual Energy Outlook 2009 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

data Rate of Electricity Demand Growth Slows, Following the Historical Trend Electricity demand fluctuates in the short term in response to business cycles, weather conditions,...

453

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

454

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

455

Equity Capital Flows and Demand for REITs  

Science Conference Proceedings (OSTI)

This paper examines the shape of the market demand curve for ... Our results do not support a downward demand curve for ... Charleston, IL 61920, USA e-mail: ...

456

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Oakland CA, December. PJM Demand Side Response WorkingPrice Response Program a PJM Economic Load Response ProgramLoad Response Statistics PJM Demand Response Working Group

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

457

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

29 5.6. Peak and hourly demand43 6.6. Peak and seasonal demandthe average percent of peak demand) significantly impact the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

458

ADB-Methods and Tools for Energy Demand Projection | Open Energy  

Open Energy Info (EERE)

ADB-Methods and Tools for Energy Demand Projection ADB-Methods and Tools for Energy Demand Projection Jump to: navigation, search Tool Summary Name: Methods and Tools for Energy Demand Projection Agency/Company /Organization: Asian Development Bank Sector: Energy Topics: Pathways analysis Resource Type: Presentation, Software/modeling tools Website: cdm-mongolia.com/files/2_Methods_Hoseok_16May2010.pdf Cost: Free Methods and Tools for Energy Demand Projection Screenshot References: Methods and Tools for Energy Demand Projection[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "Methods and Tools for Energy Demand Projection" Retrieved from "http://en.openei.org/w/index.php?title=ADB-Methods_and_Tools_for_Energy_Demand_Projection&oldid=398945" Categories:

459

: Measurement of Battery Capacity in Mobile Robot Systems  

E-Print Network (OSTI)

RoBM2 : Measurement of Battery Capacity in Mobile Robot Systems Nestor Lucas1 , Cosmin Codrea1. With battery driven robot systems performing very sophisti- cated tasks, increasing demands on the power supply play a critical role. Operation breakdowns are unpredictable unless the state of the battery is known

Breu, Ruth

460

Capacity-constrained multiple-market price discrimination  

Science Conference Proceedings (OSTI)

This paper studies a multiple-market price discrimination problem with different markets' demand elasticity and supply constraints, whereas the markets share a common capacity. We model the problem as a continuous nonlinear knapsack problem, and propose ... Keywords: Knapsack problem, Nonlinear programming, Price discrimination

Bin Zhang

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Worldwide Energy Efficiency Action through Capacity Building and Training  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Agency/Company /Organization National Renewable Energy Laboratory, The International Partnership for Energy Efficiency Cooperation Sector Energy Focus Area Energy Efficiency Topics Background analysis Resource Type Training materials Website http://www.nrel.gov/ce/ipeec/w Country Mexico, India UN Region Northern America References Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT)[1] Abstract Included are training materials for the Worldwide Energy Efficiency Action through Capacity Building & Training (WEACT) Workshop in Mexico City, 28-30 September 2010.

462

GIZ-Best Practices in Capacity Building Approaches | Open Energy  

Open Energy Info (EERE)

GIZ-Best Practices in Capacity Building Approaches GIZ-Best Practices in Capacity Building Approaches Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Agency/Company /Organization: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector: Energy, Climate Focus Area: Solar, Wind Resource Type: Publications, Training materials, Lessons learned/best practices Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com/w/images/8/80/Best_ Cost: Free GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Screenshot

463

NREL: Renewable Resource Data Center - Wind Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

464

Demand-Side Management Glossary  

Science Conference Proceedings (OSTI)

In recent years, demand-side management (DSM) programs have grown in significance within the U.S. electric power industry. Such rapid growth has resulted in new terms, standards, and vocabulary used by DSM professionals. This report is a first attempt to provide a consistent set of definitions for the expanding DSM terminology.

1992-11-01T23:59:59.000Z

465

Reclaimed water distribution network design under temporal and spatial growth and demand uncertainties  

Science Conference Proceedings (OSTI)

A significant-but underutilized-water resource is reclaimed water, i.e., treated wastewater that is reintroduced for various purposes. Especially in water scarce regions, reclaimed water is often the only remaining source of water to meet increasing ... Keywords: Demand and network growth uncertainty, Reclaimed water distribution system, Stochastic optimization, Water resources management

Weini Zhang, Gunhui Chung, Péguy Pierre-Louis, Güzin Bayraksan, Kevin Lansey

2013-11-01T23:59:59.000Z

466

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity...  

NLE Websites -- All DOE Office Websites (Extended Search)

steel demanded by eliminating the gearbox. Assuming 1400 kgMW copper for a direct drive generator with permanent magnets, 579 GW of capacity would require 782,000 tonnes of...

467

Potential airport capacity gains from the optimal assignment of aircraft types to runways  

E-Print Network (OSTI)

Large commercial airports worldwide still experience demand in excess of capacity which leads to considerable delays. As an operational solution to alleviate delays, this thesis presents a model that aims at increasing ...

Kohler, Alf, 1962-

2004-01-01T23:59:59.000Z

468

Measuring the capacity of a port system : a case study on a Southeast Asian port  

E-Print Network (OSTI)

As economies develop and trade routes change, investment in port infrastructure is essential to maintain the necessary capacity for an efficiently functioning port system and to meet expected demand for all types of cargo. ...

Salminen, Jason Bryan

2013-01-01T23:59:59.000Z

469

Quantum Zero-error Capacity  

E-Print Network (OSTI)

We define here a new kind of quantum channel capacity by extending the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for which a quantum channel has zero-error capacity greater than zero is given. Finally, we point out some directions on how to calculate the zero-error capacity of such channels.

Rex A. C. Medeiros; Francisco M. De Assis

2006-11-08T23:59:59.000Z

470

Demand Response and Variable Generation Integration Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Market and Policy Barriers for Demand Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Electricity Markets Peter Cappers, Jason MacDonald, Charles Goldman April 2013 Report Summary 1 Energy Analysis Department  Electricity Markets and Policy Group Presentation Overview  Objectives and Approach  Wholesale and Retail Market Environments  Market and Policy Barrier Typology  Prototypical Regional Barrier Assessment 2 Energy Analysis Department  Electricity Markets and Policy Group A Role for Demand Response to Provide Ancillary Services  Increasing penetration of renewable energy generation in U.S. electricity markets means that bulk power system operators will need to manage the variable and uncertain nature of many renewable resources

471

Energy Efficiency Funds and Demand Response Programs - National Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds and Demand Funds and Demand Response Programs - National Overview Charles Goldman Lawrence Berkeley National Laboratory November 2, 2006 Federal Utility Partnership Working Group San Francisco CA Overview of Talk * National Overview * Energy Efficiency Programs and Funds * Demand Response Programs and Funds * FEMP Resources on Public Benefit Funds *Suggestions for Federal Customers DSM Spending is increasing! * 2006 Utility DSM and Public Benefit spending is ~$2.5B$ - $1B for C&I EE programs * CA utilities account for 35% of total spending 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1994 2000 2005 2006 Costs (in billion $) DSM Costs Load Management Gas EE Other States Electric EE California Electric EE EE Spending in 2006 (by State) $ Million < 1 (23) 1 - 10 (2) 11 - 50 (13) 51 - 100 (7) > 100 (5) 790 101 257

472

Energy Conservation and Commercialization in Gujarat: Report On Demand Side  

Open Energy Info (EERE)

Energy Conservation and Commercialization in Gujarat: Report On Demand Side Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Focus Area: Crosscutting Topics: Opportunity Assessment & Screening Website: eco3.org/wp-content/plugins/downloads-manager/upload/Report%20on%20Dem Equivalent URI: cleanenergysolutions.org/content/energy-conservation-and-commercializa Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning

473

Paying for demand-side response at the wholesale level  

Science Conference Proceedings (OSTI)

The recent FERC Notice of Public Rulemaking regarding the payment to demand-side resources in wholesale markets has engendered a great deal of comments including FERC's obligation to ensure just and reasonable rates in the wholesale market and criteria for what FERC should do (on grounds of economic efficiency) without any real focus on what that commitment would really mean if FERC actually pursued it. (author)

Falk, Jonathan

2010-11-15T23:59:59.000Z

474

Grid operators' newest nightmare: managing low-demand periods  

Science Conference Proceedings (OSTI)

As more renewable energy resources are added in many parts of the world, a new and even more daunting challenge is likely to face grid operators in the future - how to get through the minimum demand periods. This is especially a problem in systems where the difference between the daytime peak, usually in the early to late summer afternoons, and minimum load, usually in the late evening and early morning hours, is significant.

NONE

2009-08-15T23:59:59.000Z

475

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network (OSTI)

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

476

Demand Dispatch — Intelligent Demand for a More Efficient Grid  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Demand Dispatch: Intelligent Demand for a More Efficient Grid

Keith Dodrill

2011-01-01T23:59:59.000Z

477

Scoping Study for Demand Respose DFT II Project in Morgantown, WV  

Science Conference Proceedings (OSTI)

This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

Lu, Shuai; Kintner-Meyer, Michael CW

2008-06-06T23:59:59.000Z

478

An efficient load model for analyzing demand side management impacts  

SciTech Connect

The main objective of implementing Demand Side Management (DSM) in power systems is to change the utility's load shape--i.e. changes in the time pattern and magnitude of utility's load. Changing the load shape as a result of demand side activities could change the peak load, base load and/or energy demand. Those three variables have to be explicitly modeled into the load curve for properly representing the effects of demand side management. The impact of DSM will be manifested as higher or lower reliability levels. This paper presents an efficient technique to model the system load such that the impact of demand side management on the power system can be easily and accurately evaluated. The proposed technique to model the load duration curve will facilitate the representation of DSM impacts on loss-of-load probability, energy not served and energy consumption. This will provide an analytical method to study the impact of DSM on capacity requirements. So far iterative methods have been applied to study these impacts. The proposed analytical method results in a faster solution with higher accuracy. It takes only 18 seconds on an 80486 PC to solve each case study involving different peak and base loads, and energy use.

Rahman, S.; Rinaldy (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))

1993-08-01T23:59:59.000Z

479

Load Capacity of Bodies  

E-Print Network (OSTI)

For the stress analysis in a plastic body $\\Omega$, we prove that there exists a maximal positive number $C$, the \\emph{load capacity ratio,} such that the body will not collapse under any external traction field $t$ bounded by $Y_{0}C$, where $Y_0$ is the elastic limit. The load capacity ratio depends only on the geometry of the body and is given by $$ \\frac{1}{C}=\\sup_{w\\in LD(\\Omega)_D} \\frac{\\int_{\\partial\\Omega}|w|dA} {\\int_{\\Omega}|\\epsilon(w)|dV}=\\left\\|\\gamma_D\\right\\|. $$ Here, $LD(\\Omega)_D$ is the space of isochoric vector fields $w$ for which the corresponding stretchings $\\epsilon(w)$ are assumed to be integrable and $\\gamma_D$ is the trace mapping assigning the boundary value $\\gamma_D(w)$ to any $w\\in LD(\\Omega)_D$.

Reuven Segev

2005-11-01T23:59:59.000Z

480

Modeling renewable energy resources in integrated resource planning  

SciTech Connect

Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand capacity resources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Capacity Value of Solar Power  

Science Conference Proceedings (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

482

Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Resources Resources About one in every four federal employees is a military Veteran. At the Department of Energy, 19 percent of our workforce is made up of veterans. Veterans, their spouses, and dependent children are eligible for a variety of benefits provided by the Federal government. Some of these benefits are connected with service disabilities; others depend on amount of time served and in what capacity. Regardless, any Veteran seeking employment with a Federal agency should be aware of the many employment and work-life assistance programs that are available. Employment Information What is Veterans Preference Eligibility? Read more about employment eligibility for Veterans by visiting the Veterans Preference Eligibility page at FedsHireVets.gov. What are Special Hiring Authorities? To learn about the hiring authorities

483

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

484

Integrated Resource Planning: A Dialogue with ELCON  

E-Print Network (OSTI)

The oil price shocks of the 1970s were a precursor to some fundamental changes in the way the supply and demand for energy is viewed. One response to the events of that period is the application of integrated resource planning (IRP). IRP is, principally, a regulatory prerogative designed to promote a balance between supply and demand resources in electricity markets. In this paper we provide a definition of that concept and discuss two of its main features: Demand-side Management programs and environmental externalities. We also examine a number of positions taken by ELCON with respect to IRP and provide our responses.

Treadway, N.; Torrent, G.

1992-04-01T23:59:59.000Z

485

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

486

Solutions for Summer Electric Power Shortages: Demand Response andits Applications in Air Conditioning and Refrigerating Systems  

SciTech Connect

Demand response (DR) is an effective tool which resolves inconsistencies between electric power supply and demand. It further provides a reliable and credible resource that ensures stable and economical operation of the power grid. This paper introduces systematic definitions for DR and demand side management, along with operational differences between these two methods. A classification is provided for DR programs, and various DR strategies are provided for application in air conditioning and refrigerating systems. The reliability of DR is demonstrated through discussion of successful overseas examples. Finally, suggestions as to the implementation of demand response in China are provided.

Han, Junqiao; Piette, Mary Ann

2007-11-30T23:59:59.000Z

487

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

488

Technical Resources  

Science Conference Proceedings (OSTI)

AOCS Resource Directory helps members maintain technical excellence in their professions. Technical Resources Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDifferential scanning calorimetry chemi

489

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

490

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

491

Building Technologies Office: Integrated Predictive Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

492

Demand Response and Risk Management  

Science Conference Proceedings (OSTI)

For several decades, power companies have deployed various types of demand response (DR), such as interruptible contracts, and there is substantial ongoing research and development on sophisticated mechanisms for triggering DR. In this white paper, EPRI discusses the increasing use of electricity DR in the power industry and how this will affect the practice of energy risk management. This paper outlines 1) characteristics of a common approach to energy risk management, 2) the variety of types of DR impl...

2008-12-18T23:59:59.000Z

493

Operations Landscape for Integrating Demand Response in Wholesale Environments: A Primer on the Wholesale Operations Landscape for I ntegrating Retail Demand Response  

Science Conference Proceedings (OSTI)

The report depicts the electric power industry operations landscape, including the functions, systems, and information exchanges that support wholesale operations. It frames industry stakeholders and their respective uses for retail demand response (DR) in a structured fashion. It also elucidates opportunities, challenges, and strategies employed when integrating DR in wholesale environments.The project approach considers diverse functions, systems, and roles for demand-side resources ...

2012-12-31T23:59:59.000Z

494

Reviewing progress in PJM's capacity market structure via the new reliability pricing model  

Science Conference Proceedings (OSTI)

The Reliability Pricing Model introduces significant changes to the capacity market structure of PJM. The main feature of the RPM design is a downward-sloping demand curve, which replaces the highly volatile vertical demand curve. The authors review the latest RPM structure, results of the auctions, and the future course of the implementation process. (author)

Sener, Adil Caner; Kimball, Stefan

2007-12-15T23:59:59.000Z

495

Impact of Early Forecast Information Sharing on Manufacturers with Capacity Uncertainty  

E-Print Network (OSTI)

251 Impact of Early Forecast Information Sharing on Manufacturers with Capacity Uncertainty of future demand. Advanced forecast information sharing between buyer and seller about these demand patterns) manufacturers receive an early rough forecast with a deterministic due date, however, forecast revisions

Chinnam, Ratna Babu

496

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

497

Demand Response in U.S. Electricity Markets: Empirical Evidence  

SciTech Connect

Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ~;;38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation.

Cappers, Peter; Goldman, Charles; Kathan, David

2009-06-01T23:59:59.000Z

498

Credible Capacity Preemption in a Duopoly Market under Uncertainty  

E-Print Network (OSTI)

This paper explores firms ’ incentives to engage in capacity preemption using a continuous-time real options game. Two ex ante identical firms can choose capacity and investment timing regarding the entry into a new industry whose demand grows until an unknown maturity date, after which it declines until it disappears. Previous literature usually predicts that the Stackelberg leader, whether endogenously or exogenously determined, is better off by building a larger capacity than its rival. In contrast, this paper proves that, under certain conditions about the demand function and the market growth rate, in equilibrium the first mover enters with a smaller capacity. If it had chosen the larger capacity, its competitor could, and in fact would use a smaller plant to force it out of the market. The result is driven by two facts: first, the large capacity firm lacks the incentive to preempt its competitor, because of its higher option value, which tends to delay its investment; second, the large firm also lacks commitment to fight for the market if its leadership is challenged by a smaller firm, because the smaller firm can credibly commit to stay in the market.

Jianjun Wu

2006-01-01T23:59:59.000Z

499

North Dakota Refining Capacity Study  

Science Conference Proceedings (OSTI)

According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

2011-01-05T23:59:59.000Z

500

Uranium resources: Issues and facts  

SciTech Connect

Although there are several secondary issues, the most important uranium resource issue is, ``will there be enough uranium available at a cost which will allow nuclear power to be competitive in the future?`` This paper will attempt to answer this question by discussing uranium supply, demand, and economics from the perspective of the United States. The paper will discuss: how much uranium is available; the sensitivity of nuclear power costs to uranium price; the potential future demand for uranium in the Unites States, some of the options available to reduce this demand, the potential role of the Advanced Liquid Metal Cooled Reactor (ALMR) in reducing uranium demand; and potential alternative uranium sources and technologies.

Delene, J.G.

1993-12-31T23:59:59.000Z