National Library of Energy BETA

Sample records for demand auxiliary power

  1. Auxiliary power unit for moving a vehicle

    DOE Patents [OSTI]

    Akasam, Sivaprasad (Peoria, IL); Johnson, Kris W. (Peoria, IL); Johnson, Matthew D. (Peoria, IL); Slone, Larry M. (Washington, IL); Welter, James Milton (Chillicothe, IL)

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  2. DPF for a Tractor Auxiliary Power Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for a Tractor Auxiliary Power Unit DPF for a Tractor Auxiliary Power Unit Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007)....

  3. Microwave Regenerated DPF for Auxiliary Power Units and Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration...

  4. Capacity Demand Power (GW)

    E-Print Network [OSTI]

    California at Davis, University of

    Capacity Demand Power (GW) Hour of the Day The "Dip" Electricity Demand in Electricity Demand Every weekday, Japan's electricity use dips about 6 GW at 12 but it also shows that: · Behavior affects naHonal electricity use in unexpected ways

  5. Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit Abstract Recent interest in fuel cell fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical performance with experimental data is presented to demonstrate model validity. Introduction Fuel cell

  6. Auxiliary quasi-resonant dc tank electrical power converter

    DOE Patents [OSTI]

    Peng, Fang Z.

    2006-10-24

    An auxiliary quasi-resonant dc tank (AQRDCT) power converter with fast current charging, voltage balancing (or charging), and voltage clamping circuits is provided for achieving soft-switched power conversion. The present invention is an improvement of the invention taught in U.S. Pat. No. 6,111,770, herein incorporated by reference. The present invention provides faster current charging to the resonant inductor, thus minimizing delay time of the pulse width modulation (PWM) due to the soft-switching process. The new AQRDCT converter includes three tank capacitors or power supplies to achieve the faster current charging and minimize the soft-switching time delay. The new AQRDCT converter further includes a voltage balancing circuit to charge and discharge the three tank capacitors so that additional isolated power supplies from the utility line are not needed. A voltage clamping circuit is also included for clamping voltage surge due to the reverse recovery of diodes.

  7. Optimal Demand Response and Power Flow

    E-Print Network [OSTI]

    Willett, Rebecca

    Optimal Demand Response and Power Flow Steven Low Computing + Math Sciences Electrical Engineering #12;Outline Optimal demand response n With L. Chen, L. Jiang, N. Li Optimal power flow n With S. Bose;Optimal demand response Model Results n Uncorrelated demand: distributed alg n Correlated demand

  8. NOISE CONTROL METHODS FOR A RECIPROCATING AIR COMPRESSOR USED IN FUEL CELL AUXILIARY POWER UNIT (APU)

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    NOISE CONTROL METHODS FOR A RECIPROCATING AIR COMPRESSOR USED IN FUEL CELL AUXILIARY POWER UNIT What is Fuel Cell APU? Why use APU? To reduce overall noise levels in a fuel cell auxiliary power unit (APU) Main Components Foundation Power source Microphones Spectrum analyzer Stack of fuel cells

  9. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOE Patents [OSTI]

    Pollock, George G. (San Ramon, CA)

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  10. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOE Patents [OSTI]

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  11. Fuzzy Based Energy Management Control of A Hybrid Fuel Cell Auxiliary Power System

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    Fuzzy Based Energy Management Control of A Hybrid Fuel Cell Auxiliary Power System M. Godoy Simões1 Belfort-Montbéliard (France) Abstract -- This paper presents the analysis and design of a hybrid fuel cell battery auxiliary power unit (APU) for remote applications where a fuel cell is the main energy source

  12. Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks Modeling and Control Mohammad and maintenance of the truck engine. While still in the research phase, Solid Oxide Fuel Cell (SOFC) based APUs

  13. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    and Retails Electricity Markets in SPP The Southwest Powerand Retails Electricity Markets in SPP.3 2.1 Wholesale Markets in the Southwest PowerRetail Demand Response in SPP Wholesale Markets in the Southwest Power

  14. Concentrated solar power on demand

    E-Print Network [OSTI]

    Codd, Daniel Shawn

    2011-01-01

    This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten salt pool, which also functions ...

  15. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  16. FERC Presendation: Demand Response as Power System Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as...

  17. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

  18. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

  19. Demand Response For Power System Reliability: FAQ

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-12-01

    Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

  20. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Energy Savers [EERE]

    California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever...

  1. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    authorities, independent power producers, power marketers,Power Marketers Independent Power Producers Independent

  2. Survey of technology for hybrid vehicle auxiliary power units. Interim report, April 1994-June 1995

    SciTech Connect (OSTI)

    Widener, S.K.

    1995-10-01

    The state-of-the-art of heat engines for use as auxiliary power units in hybrid vehicles is surveyed. The study considers reciprocating or rotary heat engines, excluding gas turbines and fuel cells. The relative merits of various engine-generator concepts are compared. The concepts are ranked according to criteria tailored for a series-type hybrid drive. The two top APU concepts were the free-piston engine/linear generator (FPELG) and the Wankel rotary` engine. The FPELG is highly ranked primarily because of thermal efficiency cost, producibility. reliability, and transient response advantages; it is a high risk concept because of unproven technology. The Wankel engine is proven. with high power density, low cost and low noise. Four additional competitive concepts include two-stroke spark-ignition engine. two-stroke gas generator with turboalternator, free-piston engine gas generator with turboalternator, and homogeneous charge compression ignition engine. This study recommends additional work, including cycle simulation development and preliminary design to better quantify thermal efficiency and power density. Auxiliary concepts were also considered, including two which warrant further study: electrically actuated valves, and lean turndown of a normally stoichiometric engine. These concepts should be evaluated by retrofitting to existing engines.

  3. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  4. Two Market Models for Demand Response in Power Networks

    E-Print Network [OSTI]

    Wierman, Adam

    Two Market Models for Demand Response in Power Networks Lijun Chen, Na Li, Steven H. Low and John C-- In this paper, we consider two abstract market models for designing demand response to match power supply as oligopolistic markets, and propose distributed demand response algorithms to achieve the equilibria. The models

  5. Public goods and private interests: Understanding non-residential demand for green power

    E-Print Network [OSTI]

    Wiser, Ryan H.; Fowlie, Meredith; Holt, Edward A.

    2001-01-01

    Understanding Non-Residential Demand for Green PowerUnderstanding Non-Residential Demand for Green Power Vining,Understanding Non-Residential Demand for Green Power Kasius,

  6. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

  7. Retail Demand Response in Southwest Power Pool | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. Retail Demand Response in Southwest Power Pool More Documents &...

  8. Optimal Power Flow Based Demand Response Offer Price Optimization

    E-Print Network [OSTI]

    Lavaei, Javad

    Optimal Power Flow Based Demand Response Offer Price Optimization Zhen Qiu 1 Introduction-time energy balance. Demand response programs are offered by the utility companies to reduce the load response cost in exchange for load reduction. A considerable amount of papers have discussed the demand

  9. Optimal Demand Response Based on Utility Maximization in Power Networks

    E-Print Network [OSTI]

    Wierman, Adam

    Optimal Demand Response Based on Utility Maximization in Power Networks Na Li, Lijun Chen different appliances including PHEVs and batteries and propose a demand response approach based on utility. The utility company can thus use dynamic pricing to coordinate demand responses to the benefit of the overall

  10. Optimal Demand Response Based on Utility Maximization in Power Networks

    E-Print Network [OSTI]

    Low, Steven H.

    -- Demand side management will be a key component of future smart grid that can help reduce peak load interesting properties of the proposed scheme. I. INTRODUCTION Demand side management will be a key componentOptimal Demand Response Based on Utility Maximization in Power Networks Na Li, Lijun Chen

  11. Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand .............................................................. 23 Electricity Demand Growth in the West............................................................................................................................... 28 Estimating Electricity Demand in Data Centers

  12. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    Report Southwest Power Pool,” Prepared by Boston PacificTables Figure 1. Southwest Power Pool Region Footprint and14 Table 1. Southwest Power Pool Membership

  13. Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    technologies to enforce sensible use of energy through effective demand load management. We envision a scenario of effective management of power supply and demand loads. Load management is primarily employed by the power by transferring non-emergency power demands at off-peak-load times. Demand load management does not significantly

  14. The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2006-10-27

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module; two heat exchanger modules; and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will benefit design engineers to adjust design parameters to optimize the performance. The modeling results of the heat-up stage of an SOFC APU and the output voltage response to a sudden load change are presented in the paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  15. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah (Sarah Omer)

    2010-01-01

    Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

  16. Public goods and private interests: Understanding non-residential demand for green power

    E-Print Network [OSTI]

    Wiser, Ryan H.; Fowlie, Meredith; Holt, Edward A.

    2001-01-01

    Residential Demand for Green Power References Andreoni, J.Approach to Marketing Green Power. ” Research Report No. 8.Residential Demand for Green Power Vining, J. , Linn, N. ,

  17. Management of Power Demand through Operations of Building Systems 

    E-Print Network [OSTI]

    ElSherbini, A. I.; Maheshwari, G.; Al-Naqib, D.; Al-Mulla, A.

    2009-01-01

    In hot summers, the demand for electrical power is dominated by the requirements of the air-conditioning and lighting systems. Such systems account for more than 80% of the peak electrical demand in Kuwait. A study was conducted to explore...

  18. Demand Response This is the first of the Council's power plans to treat demand response as a resource.1

    E-Print Network [OSTI]

    . WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding. Demand response as defined here does not include involuntary curtailment imposed on electricity users to conditions in wholesale power markets, its electricity demand is not. This situation has a number of adverse

  19. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah O.

    Adding post-combustion capture technology to existing coal-fired power plants is being considered as a near-term option for mitigating CO[subscript 2] emissions. To supply the thermal energy needed for CO[subscript 2] ...

  20. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  1. Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    2010-01-01

    The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

  2. Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response Summary of Key.............................................................................................................. 1 Demand Response in the Fifth Power Plan........................................................................................... 3 Demand Response in the Sixth Power Plan

  3. Analysis of recent projections of electric power demand

    SciTech Connect (OSTI)

    Hudson, D.V. Jr.

    1993-08-01

    This report reviews the changes and potential changes in the outlook for electric power demand since the publication of Review and Analysis of Electricity Supply Market Projections (B. Swezey, SERI/MR-360-3322, National Renewable Energy Laboratory). Forecasts of the following organizations were reviewed: DOE/Energy Information Administration, DOE/Policy Office, DRI/McGraw-Hill, North American Electric Reliability Council, and Gas Research Institute. Supply uncertainty was briefly reviewed to place the uncertainties of the demand outlook in perspective. Also discussed were opportunities for modular technologies, such as renewable energy technologies, to fill a potential gap in energy demand and supply.

  4. Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response Introduction consumers' levels of service unchanged, demand response is a change in use of electricity at particular..................................................................................................................................... 1 Demand Response in the Council's Fifth Power Plan

  5. Wind Power Project Repowering: History, Economics, and Demand (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2015-01-01

    This presentation summarizes a related NREL technical report and seeks to capture the current status of wind power project repowering in the U.S. and globally, analyze the economic and financial decision drivers that surround repowering, and to quantify the level and timing of demand for new turbine equipment to supply the repowering market.

  6. Smart (In-home) Power Scheduling for Demand Response on the Smart Grid

    E-Print Network [OSTI]

    Yener, Aylin

    1 Smart (In-home) Power Scheduling for Demand Response on the Smart Grid Gang Xiong, Chen Chen consumption are part of demand response, which relies on varying price of electricity to reduce peak demand

  7. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01

    Research Director, PIER Demand Response Research CenterAssessment of Demand Response & Advanced Metering, staffPower Shortages: Demand Response and its Applications in Air

  8. Optimal Power Procurement and Demand Response with Quality-of-Usage Guarantees

    E-Print Network [OSTI]

    Huang, Longbo

    1 Optimal Power Procurement and Demand Response with Quality-of-Usage Guarantees Longbo Huang, Jean the utility company to jointly perform power procurement and demand response so as to maximize the social are the inte- gration of renewable energy technologies [1] and the design of efficient user demand-response

  9. Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services

    E-Print Network [OSTI]

    Victoria, University of

    Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Christopher Parkinson B highly-distributed sustainable demand- side infrastructure, in the form of heat pumps, electric vehicles

  10. An Online Procurement Auction for Power Demand Response in Storage-Assisted Smart Grids

    E-Print Network [OSTI]

    Li, Zongpeng

    An Online Procurement Auction for Power Demand Response in Storage-Assisted Smart Grids Ruiting discharging at times when supply is tight. This work aims at a systematic study of such demand response

  11. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    SciTech Connect (OSTI)

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  12. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  13. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Environmental Management (EM)

    in-home displays, programmable communicating thermostats, and access to a web portal (http:www.myOGEpower.com). The study measures demand reductions by customers during...

  14. Reliability implications of price responsive demand : a study of New England's power system

    E-Print Network [OSTI]

    Whitaker, Andrew C. (Andrew Craig)

    2011-01-01

    With restructuring of the traditional, vertically integrated electricity industry come new opportunities for electricity demand to actively participate in electricity markets. Traditional definitions of power system ...

  15. Power Strip Packing of Malleable Demands in Mohammad M. Karbasioun, Gennady Shaikhet, Evangelos Kranakis, Ioannis Lambadaris

    E-Print Network [OSTI]

    Kranakis, Evangelos

    of the main goals of Demand Side Management (DSM) in smart grid is to reduce the peak to average ratio (PAR1 Power Strip Packing of Malleable Demands in Smart Grid Mohammad M. Karbasioun, Gennady Shaikhet of electrical energy which has to be supplied during the time interval [0, 1]. We assume that each demand has

  16. Exploring Power-Voltage Relationship for Distributed Peak Demand Flattening in Microgrids

    E-Print Network [OSTI]

    Adali, Tulay

    Exploring Power-Voltage Relationship for Distributed Peak Demand Flattening in Microgrids Zhichuan energy storage units in microgrids, how to regulate peak demand is one of the main challenges. Thus, it is possible that peak demand of the microgrid would not be flattened but only shifted to another period

  17. Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast Summary.............................................................................................. 11 Demand From Plug-in Hybrid Electric Vehicles (PHEV megawatt-hours of electricity in 2007. That demand is expected to grow to 25,000 average megawatts by 2030

  18. Distributed Multi-Period Optimal Power Flow for Demand Response in Microgrids

    E-Print Network [OSTI]

    Trumpf, Jochen

    Distributed Multi-Period Optimal Power Flow for Demand Response in Microgrids Paul Scott Methodologies]: Artificial Intelligence Keywords OPF; ADMM; demand response; distributed control; micro- grid-coupled behaviours. In this new regime demand response (DR) techniques will play a central role in providing

  19. Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory

    E-Print Network [OSTI]

    Huang, Jianwei

    Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast supply and demand in an isolated microgrid [2], which is an important concept for renewable energy

  20. On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch

    E-Print Network [OSTI]

    Chen, Yiling

    On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic;On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch Abstract Information asymmetry in retail electricity markets is one of the largest sources of inef

  1. Effects of Demand Response on Retail and Wholesale Power Markets

    SciTech Connect (OSTI)

    Chassin, David P.; Kalsi, Karanjit

    2012-07-26

    Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energy’s Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets is discussed with necessary and sufficient conditions on system controllability, observability and stability derived.

  2. Regulatory risks paralyzing power industry while demand grows

    SciTech Connect (OSTI)

    Maize, K.; Peltier, R.

    2008-01-15

    2008 will be the year the US generation industry grapples with CO{sub 2} emission. Project developers are suddenly coal-shy, mostly flirting with new nuclear plants waiting impatiently in line for equipment manufacturers to catch up with the demand for wind turbines, and finding gas more attractive again. With no proven greenhouse gas sequestration technology on the horizon, utilities will be playing it safe with energy-efficiency ploys rather than rushing to contract for much-needed new generation.

  3. THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION

    E-Print Network [OSTI]

    1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY to be about 25%. The demand for U.S. electrical engineers in construction will be up from 150,000 today to 175 PROFESSION Wanda Reder, S & C Electric Company, 6601 North Ridge Blvd., Chicago, IL 60626- 3997, USA Vahid

  4. Mul$-scale Demand-Side Management for Con$nuous Power-intensive Processes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Mul$-scale Demand-Side Management for Con$nuous Power-intensive Processes-dependent) Load Informa(on Electricity ((me-dependent) Load Informa(on Transmission, Distribu Response Energy Efficiency Demand-Side Management (DSM)1 Integra

  5. 25TechTransfer Success Stories 2012 Increasing demand for power creates

    E-Print Network [OSTI]

    available high voltage SiC- based power device. Targeted research applications include grid-tied solar25TechTransfer Success Stories · 2012 Problem Increasing demand for power creates numerous challenges for ensuring reliable power for consumers. Because the current electricity grid is aging, updating

  6. Bottom-Up Self-Organization of Unpredictable Demand and Supply under Decentralized Power Management

    E-Print Network [OSTI]

    Wedde, Horst F.

    level of granularity, with short-term power balance fluctuation, in terms of a peak demand and supply, distributed power production at lower voltage levels (through wind turbines or solar panels) is considered, as this depends on external environmental conditions (e.g. solar and wind power). In Electrical Engineering

  7. Effects of Price-Responsive Residential Demand on Retail and Wholesale Power Market Operations

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Effects of Price-Responsive Residential Demand on Retail and Wholesale Power Market Operations/C) on integrated retail and wholesale power market operations. The physical operations of the A/C sys- tem, and distribution of electric power was mo- nopolistically controlled by vertically integrated utilities with retail

  8. Incorporating endogenous demand dynamics into long-term capacity expansion power system models for Developing countries

    E-Print Network [OSTI]

    Jordan, Rhonda LeNai

    2013-01-01

    This research develops a novel approach to long-term power system capacity expansion planning for developing countries by incorporating endogenous demand dynamics resulting from social processes of technology adoption. ...

  9. As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal

    E-Print Network [OSTI]

    plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal powerAs the demand for power increases in populated areas, so will the demand for water. Current power the cooling power from radiation were developed and run. The results showed a cooling power of 35 W/m2

  10. Demand Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  11. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  12. Retail Demand Response in Southwest Power Pool | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A Wholesale PowerNaturalEnergyResuming Operations at

  13. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  14. Distributed Multi-Period Optimal Power Flow for Demand Response in Microgrids

    E-Print Network [OSTI]

    Yeoh, William

    Distributed Multi-Period Optimal Power Flow for Demand Response in Microgrids Paul Scott1 direction method of multipliers (ADMM), can be adapted to remain practical in this challenging microgrid discrete decisions. Our experiments on a suburb-sized microgrid show that the AC power flows and a simple

  15. Standby and off-mode power demand of new appliances in the Anbal de Almeida

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Standby and off-mode power demand of new appliances in the market Aníbal de Almeida ISR regulation to limit the standby and off-mode power consumption of non-networked household electronic involved in the project. Standby and off-mode values by product categories are analyzed and compared

  16. Using heat demand prediction to optimise Virtual Power Plant production capacity

    E-Print Network [OSTI]

    Hurink, Johann

    1 Using heat demand prediction to optimise Virtual Power Plant production capacity Vincent Bakker that generate electricity (and heat) at the kilowatt level, which allows them to be installed in households distributed electricity generation (micro-generation e.g. solar cells, micro Combined Heat and Power (micro

  17. Improving the Power Grid with Superconducting Technology New superconducting technology will help America reduce the demand for additional electric power

    E-Print Network [OSTI]

    Pennycook, Steve

    will help America reduce the demand for additional electric power generation and increased delivery because they have virtually no resistance to electric current, offering the possibility of new electric@ornl.gov #12;Working with Industry to Develop Electric Power Applications Superconducting technologies

  18. High ozone concentrations on hot days: The role of electric power demand and NOx1 , Linda Hembeck1

    E-Print Network [OSTI]

    Dickerson, Russell R.

    1 High ozone concentrations on hot days: The role of electric power demand and NOx1 emissions2 3;2 hot summer days due to high electricity demand. Between 1997 and 2011, power23 plant emissions of NOx greater59 electricity demand for air conditioning. Singh and Sloan [2005] reported that60

  19. Electric power supply and demand for the contiguous United States, 1980-1989

    SciTech Connect (OSTI)

    1980-06-01

    A limited review is presented of the outlook for the electric power supply and demand during the period 1980 to 1989. Only the adequacy and reliability aspects of bulk electric power supply in the contiguous US are considered. The economic, financial and environmental aspects of electric power system planning and the distribution of electricity (below the transmission level) are topics of prime importance, but they are outside the scope of this report.

  20. A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing

    E-Print Network [OSTI]

    Giles, C. Lee

    1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real bills. Our focus is on a subset of this work that carries out demand response (DR) by modulating

  1. A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real for optimizing their utility bills. Our focus is on a subset of this work that carries out demand response (DR

  2. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  3. Auxiliary resonant DC tank converter

    DOE Patents [OSTI]

    Peng, Fang Z. (Knoxville, TN)

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  4. Integrating demand into the U.S. electric power system : technical, economic, and regulatory frameworks for responsive load

    E-Print Network [OSTI]

    Black, Jason W. (Jason Wayne)

    2005-01-01

    The electric power system in the US developed with the assumption of exogenous, inelastic demand. The resulting evolution of the power system reinforced this assumption as nearly all controls, monitors, and feedbacks were ...

  5. Solar Two is a concentrating solar power plant that can supply electric power "on demand"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    achievement. The design is based on lessons learned at Solar One, this country's first power tower. Solar One. Project engineers calculated the power tower would operate more efficiently if it used a working fluid it is stored in a "hot" tank. When power production is needed, hot salt is pumped from the hot tank to generate

  6. Public goods and private interests: Understanding non-residential demand for green power

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Fowlie, Meredith; Holt, Edward A.

    2001-01-01

    This article presents the results of the first large-scale mail survey of non-residential green power customers in the United States. The survey explored the motivations, attitudes, and experiences of 464 business, non-profit, and public-sector customers that have voluntarily opted to purchase - and frequently pay a premium for - renewable electricity. Results of this study should be of value to marketers interested in targeting these customer segments, to policy makers interested in fostering and understanding non-residential demand for green power, and to academics pondering the motivations for firms to engage in such voluntary environmental initiatives.

  7. Electric power demand limit for variable speed heat pumps and integrated water heating heat pumps

    SciTech Connect (OSTI)

    Dudley, K.F.

    1992-03-17

    This patent describes a method of operating an integrated heat pump and hot water system that is capable of providing heating or cooling to an environmental comfort zone. The heat pump and hot water system including a variable speed compressor whose operating speed is substantially linearly related to the difference between outdoor air temperature and indoor air temperature in the comfort zone, and also including means to receive a utility peak demand limit signal to initiate automatic power limiting to reduce the power demand imposed by the heat pump and hot water system, the method comprising sensing the outdoor temperature T{sub OD}; sensing the indoor temperature T{sub ID} in the comfort zone; sensing the speed S{sub 1} of the variable speed compressor; and in response to receiving the utility peak demand limit signal DLS calculating a reference speed S{sub R} for the compressor as a function of the speed S{sub 1}, the outdoor temperature T{sub OD}, the indoor temperature T{sub ID}, and predetermined values that correspond to a reference indoor temperature T{sub ID} and a zero-load temperature difference {Delta}T{sub Z} that corresponds to the difference between the outdoor and indoor temperatures that result in a zero load requirement on the compressor; and during occurrence of the signal DLS operating the compressor at a reduced operating speed limited to a predetermined fraction, less than unity, times the reference speed S{sub R}.

  8. Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous

    E-Print Network [OSTI]

    Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand a wide range of wind speeds. Results show that power harvesting capability using the discussed alternator electronics to be less than the available power for harvest, which varies as a function of wind speed

  9. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix D ECONOMIC AND DEMAND FORECASTS

    E-Print Network [OSTI]

    , and high) based on different assumptions about the key determinants of electricity demand. Much economy is the dominant determinant of electricity demand both now and in the future. The demand of alternative energy forms, such as natural gas, are also important determinants of electricity demand. Demand

  10. Optimal Power Procurement and Demand Response with Quality-of-Usage Guarantees

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2011-01-01

    In this paper, we propose a general operating scheme which allows the utility company to jointly perform power procurement and demand response so as to maximize the social welfare. Our model takes into consideration the effect of the renewable energy and the multi-stage feature of the power procurement process. It also enables the utility company to provide quality-of-usage (QoU) guarantee to the power consumers, which ensures that the average power usage level meets the target value for each user. To maximize the social welfare, we develop a low-complexity algorithm called the \\emph{welfare maximization algorithm} (WMA), which performs joint power procurement and dynamic pricing. WMA is constructed based on a two-timescale Lyapunov optimization technique. We prove that WMA achieves a close-to-optimal utility and ensures that the QoU requirement is met with bounded deficit. WMA can be implemented in a distributed manner and is robust with respect to system dynamics uncertainty.

  11. Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.

    SciTech Connect (OSTI)

    Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. (Decision and Information Sciences); ( ES); (ED); (Kyungwon Univ.)

    2011-07-01

    This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

  12. Dynamic Control of Electricity Cost with Power Demand Smoothing and Peak Shaving for Distributed Internet Data Centers

    E-Print Network [OSTI]

    Rahman, A.K.M. Ashikur

    Dynamic Control of Electricity Cost with Power Demand Smoothing and Peak Shaving for Distributed a major part of their running costs. Modern electric power grid provides a feasible way to dynamically and efficiently manage the electricity cost of distributed IDCs based on the Locational Marginal Pricing (LMP

  13. Demand Side Management in the Smart Grid: Information Processing for the Power Switch

    SciTech Connect (OSTI)

    Alizadeh, Mahnoosh; LI, Xiao; Wang, Zhifang; Scagilone, Anna; Melton, Ronald B.

    2012-09-01

    In this article we discuss the most recent developments in the area of load management, and consider possible interaction schemes of novel architectures with distributed energy resources (DER). In order to handle the challenges faced by tomorrow’s smart grid, which are caused by volatile load and generation profiles (from the large number of plug-in EVs and from renewable integration), the conventional grid operating principle of load-following needs to be changed into load-shaping or generation-following. Demand Side Management will be a most promising and powerful solution to the above challenges. However, many other issues such as load forecasting, pricing structure, market policy, renewable integration interface, and even the AC/DC implementation at the distribution side, need to be taken into the design in order to search for the most effective and applicable solution.

  14. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01

    Performance 32 nm CPU to Ultra-Low-Power 130 nm MCU Davidboxes and smart phones to ultra-low-power 130 nm MCUs forthe energy demand for ultra-low-power MCUs is completely

  15. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01

    Performance 32 nm CPU to Ultra-Low-Power 130 nm MCU Davidboxes and smart phones to ultra-low-power 130 nm MCUs forthe energy demand for ultra-low-power MCUs is completely

  16. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01

    for DR and demand side management, along with operationalresponse), DSM (demand side management), DR strategy, air

  17. Power system balancing with high renewable penetration : the potential of demand response

    E-Print Network [OSTI]

    Critz, David Karl

    2012-01-01

    This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model was used to represent a version of ...

  18. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    SciTech Connect (OSTI)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R

    2014-06-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological response to an increase in energy demands from membrane transporters, required for cell division, growth, and migration. This work is supported by the NIH Physical Sciences in Oncology Center grant 1U54CA143970-03 and NIH R01 CA077575-10.

  19. Design Considerations for a PEM Fuel Cell Powered Truck APU

    E-Print Network [OSTI]

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01

    Evaluation of Fuel Cell Auxiliary Power Units for Heavy -Solid Oxide Fuel Cell Auxiliary Power Unit – A DevelopmentMarkets for Fuel Cell Auxiliary Power Units in Vehicles: A

  20. Demand Forecast Advisory Committee in Preparation for the Seventh Power Plan

    E-Print Network [OSTI]

    products, electric motors, commercial water heaters, and heating, ventilation, and air conditioning Battery Chargers and External Power Supplies Ceiling Fan Light Kits Residential & Commercial Clothes

  1. G REEN FLASH PROJECT The electrical power demands of ultrascale computers threaten to limit the future

    E-Print Network [OSTI]

    Oliker, Leonid

    feasible within the next 15 years, but that they face signifi- cant challenges. One of the challenges (enough to power approximately 2,600 homes)is"perhapsachievable,"accordingtotheE3 findings led to supercomputers that consume egregious amounts of electrical power. Other performance metrics

  2. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

  3. Dynamic pricing and stabilization of supply and demand in modern electric power grids

    E-Print Network [OSTI]

    Roozbehani, Mardavij

    The paper proposes a mechanism for real-time pricing of electricity in smart power grids, with price stability as the primary concern. In previous publications the authors argued that relaying the real-time wholesale market ...

  4. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination of Energy Efficiency and Demand Response Demand Response in U.S. Electricity Markets: Empirical Evidence 2009 Retail Demand Response in Southwest Power Pool (January...

  5. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    retail regulatory authority prohibit such activity. Demand response integration into US wholesale power marketsretail or wholesale level. 17 While demand response began participating at scale in wholesale power markets

  6. Auxiliary reactor for a hydrocarbon reforming system

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  7. Cogeneration System Size Optimization Constant Capacity and Constant Demand Models 

    E-Print Network [OSTI]

    Wong-Kcomt, J. B.; Turner, W. C.

    1993-01-01

    is made up by auxiliary boilers. 2. Isolated Operation, Thermal Load Following: the system is sized to match or exceed the maximum thermal load. Any electrical load deficit is made up by auxiliary generator. 3. Electrically Baseloaded, the system... is sized to meet - or slightly exceed the minimum electrical demand. 4. Thermally Baseloaded, the system is sized to meet - or slightly exceed the minimum thermal demand. 5. Maximum Legal System Size, as determined by the Public Utilities...

  8. Heavy Vehicle Essential Power Systems Workshop

    SciTech Connect (OSTI)

    Susan Rogers

    2001-12-12

    Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road.

  9. Radiant vessel auxiliary cooling system

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1987-01-01

    In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

  10. 2013 IREP Symposium-Bulk Power System Dynamics and Control -IX (IREP), August 25-30, 2013, Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource

    E-Print Network [OSTI]

    Gross, George

    , Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource Economic (ES) and demand response resources (DRRs) to address power system economic and environmental concerns the utilization of demand response (DR) and ES resources (ESRs) to reliably and effectively meet the supply

  11. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  12. Hybrid mesons and auxiliary fields

    E-Print Network [OSTI]

    Fabien Buisseret; Vincent Mathieu

    2006-09-29

    Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their understanding deserves interest from a theoretical point of view, because it is intimately related to nonperturbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the $\\pi_1(1600)$ and the Y(4260), are serious hybrid candidates. In this work, we investigate the description of such exotic hadrons by applying the auxiliary fields technique to the widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual numerical resolution, this technique allows to find simplified analytical mass spectra and wave functions of the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different descriptions of hybrid mesons, namely a two-body $q\\bar q$ system with an excited flux tube, or a three-body $q\\bar q g$ system. We also compute the masses of the $1^{-+}$ hybrids. Our results are shown to be in satisfactory agreement with lattice QCD and other effective models.

  13. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007 1563 Transmission-Constrained Residual Demand

    E-Print Network [OSTI]

    Baldick, Ross

    . However, in an electricity market, the market is embedded in a transmission network. When, electricity market, residual demand, supply function equilibrium, transmission constraint. I. INTRODUCTION important issues comes from the special nature of electricity transmission networks [1]. Although numerical

  14. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    SciTech Connect (OSTI)

    Yapuncich, F.; Ross, A. [AREVA Federal Services (AFS), Tacoma WA (United States); Clark, R.H. [Shaw AREVA MOX Services, Savannah River Site, Aiken, SC (United States); Ammerman, D. [Sandia National Laboratories, Albuquerque, NM (United States)

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It was necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)

  15. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    Figure 16 Annual peak electricity demand by sector. Tableincludes an hourly electricity demand (i.e. power) profileof aggregating sectoral electricity demands into a statewide

  16. Builtin vs. auxiliary detection of extrapolation risk.

    SciTech Connect (OSTI)

    Munson, Miles Arthur; Kegelmeyer, W. Philip,

    2013-02-01

    A key assumption in supervised machine learning is that future data will be similar to historical data. This assumption is often false in real world applications, and as a result, prediction models often return predictions that are extrapolations. We compare four approaches to estimating extrapolation risk for machine learning predictions. Two builtin methods use information available from the classification model to decide if the model would be extrapolating for an input data point. The other two build auxiliary models to supplement the classification model and explicitly model extrapolation risk. Experiments with synthetic and real data sets show that the auxiliary models are more reliable risk detectors. To best safeguard against extrapolating predictions, however, we recommend combining builtin and auxiliary diagnostics.

  17. Managing the Night Off-Peak Power Demand in the Central Region UPS with Newly Commissioned NPP Capacities

    SciTech Connect (OSTI)

    Aminov, R. Z. [Saratov Research Center of the Russian Academy of Sciences (Russian Federation); Pron’, D. M. [Yu. A. Gagarin Saratov State Technical University (Russian Federation)

    2014-01-15

    The use of hydrogen technologies as a controlled-load consumer based on the newly commissioned base-load nuclear power plants to level out the daily load profile is justified for the Unified Power System (UPS) of the Central Region of Russia, as an example, for the period till 2020.

  18. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul (Princeton Power Systems, Inc., Princeton, NJ); Sena-Henderson, Lisa; Hammell, Darren (Princeton Power Systems, Inc., Princeton, NJ); Holveck, Mark (Princeton Power Systems, Inc., Princeton, NJ); David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  19. InDemandInDemandInDemand Energize Your Career

    E-Print Network [OSTI]

    Wolberg, George

    InDemandInDemandInDemand Energize Your Career You can join the next generation of workers who in Energy #12;#12;In Demand | 1 No, this isn't a quiz...but if you answered yes to any or all and Training Administration wants you to have this publication, In Demand: Careers in Energy. It will let you

  20. An Operational Model for Optimal NonDispatchable Demand Response

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    An Operational Model for Optimal NonDispatchable Demand Response for Continuous PowerintensiveFACTS, $ Demand Response Energy Storage HVDC Industrial Customer PEV Renewable Energy Source: U.S.-Canada Power: To balance supply and demand of a power system, one can manipulate both: supply and demand demand response

  1. VideoonDemandVideoonDemandVideoonDemand Video on Demand Testbed

    E-Print Network [OSTI]

    Eleftheriadis, Alexandros

    VideoonDemandVideoonDemandVideoonDemand Columbia's Video on Demand Testbed and Interoperability Experiment Columbia's Video on Demand Testbed and Interoperability Experiment S.-F. Chang and A Columbia UniversityColumbia University www.www.ctrctr..columbiacolumbia..eduedu/advent/advent #12;VideoonDemandVideoonDemandVideoonDemand

  2. VideoonDemandVideoonDemandVideoonDemand Video on Demand Testbed

    E-Print Network [OSTI]

    Eleftheriadis, Alexandros

    #12;VideoonDemandVideoonDemandVideoonDemand Columbia's Video on Demand Testbed and Interoperability Experiment Columbia's Video on Demand Testbed and Interoperability Experiment H.H. KalvaKalva, A.www.eeee..columbiacolumbia..eduedu/advent/advent #12;VideoonDemandVideoonDemandVideoonDemand VoD Testbed ArchitectureVoD Testbed Architecture Video

  3. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  4. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  5. An Economic Investigation of Urban Water Demand in the U.S. 

    E-Print Network [OSTI]

    Griffin, R.; Bell, D.

    2008-01-01

    ................................................................................... 21 3.5 Weather and Climate ........................................................................................... 22 Chapter 4. Econometric Demand Analyses................................................................... 23 4.1 Auxiliary Price... to be estimated. The estimated adjustment path exhibits gradual change over several years. An estimated 85% of total adjustment to new price conditions is reached after 10 years. As expected weather is the most influential driver of demand change from year...

  6. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    Runs, Average Value) Electricity Demand Power/Electricitygrowth to 2030. Since electricity demand is projected toequipment. Since electricity demand, is projected to exhibit

  7. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01

    Goldman, G. (2009) Retail demand response in Southwest PowerCoordination of retail demand response with Midwest ISO2010. 110 pages. Demand Response and Variable Generation

  8. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01

    your Power. (2008). "Demand Response Programs." RetrievedS. (2008). Automated Demand Response Results from Multi-Yearusing Open Automated Demand Response, California Energy

  9. Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot

    E-Print Network [OSTI]

    Herter, Karen

    2010-01-01

    Martin Aspen. 2006. Demand Response Enabling TechnologiesDon. 2007. “Pricing for Demand Response from Residential andthe Level of Demand Response,” Power Point Presentation, 24

  10. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  11. Designing and implementing auxiliary operational processes

    E-Print Network [OSTI]

    Smith, Zachary R

    2008-01-01

    Amazon.com, one of the largest and most profitable online retailers, has been experiencing such dramatic growth rates that it must continually update and modify its fulfillment process in order to meet customer demand for ...

  12. Brane worlds in gravity with auxiliary fields

    E-Print Network [OSTI]

    Bin Guo; Yu-Xiao Liu; Ke Yang

    2015-03-11

    Recently, Pani, Sotiriou, and Vernieri explored a new theory of gravity by adding nondynamical fields, i.e., gravity with auxiliary fields [Phys. Rev. D 88, 121502(R) (2013)]. In this gravity theory, higher-order derivatives of matter fields generically appear in the field equations. In this paper we extend this theory to any dimensions and discuss the thick braneworld model in five dimensions. Domain wall solutions are obtained numerically. The stability of the brane system under the tensor perturbation is analyzed. We find that the system is stable under the tensor perturbation and the gravity zero mode is localized on the brane. Therefore, the four-dimensional Newtonian potential can be realized on the brane.

  13. Renewable energies such as solar photovoltaics "PV" have been widely used to minimize the use of grid power. Nevertheless, solar PV is hampered by the lack of solar radiation during peak energy demand hours

    E-Print Network [OSTI]

    Renewable energies such as solar photovoltaics "PV" have been widely used to minimize the use of grid power. Nevertheless, solar PV is hampered by the lack of solar radiation during peak energy demand curve and make the energy accessible during peak hours can be accomplished through pairing solar PV

  14. Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment ofConditionDelmarva Power -

  15. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01

    Power System Operator Demand Response Mass-Market Customers Aggregator of RetailPower System Operator Demand Response Resources Mass Market Customers Aggregator of Retailmarket customers, retail entities offering demand response opportunities, and bulk power

  16. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  17. APPLICATION-FORM DEMANDED'ADMISSION

    E-Print Network [OSTI]

    Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

  18. Demande de diplmes NOM,Prnom : ......................................................................................................................

    E-Print Network [OSTI]

    Chamroukhi, Faicel

    Optimal demand response: problem formulation and deterministic case Lijun Chen, Na Li, Libin Jiang load through real-time demand response and purchases balancing power on the spot market to meet the aggregate demand. Hence optimal supply procurement by the LSE and the consumption decisions by the users

  19. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  20. Demand Response for Ancillary Services

    Broader source: Energy.gov [DOE]

    Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and implement a methodology to construct detailed temporal and spatial representations of demand response resources and to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to assess economic value of the realizable potential of demand response for ancillary services.

  1. Figure 1. Current-sensing calibration circuit consisting of an auxiliary switch Qa and a precision sensing resistor Rs in parallel with a main

    E-Print Network [OSTI]

    Qa and a precision sensing resistor Rs in parallel with a main power switch Q. The auxiliary switch in parallel with a main power switch to achieve accuracy comparable to the sense resistor method, together in parallel with a main power switch Q as shown in Fig. 1, to achieve combined advantages of the accurate

  2. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2DepartmentDelta Dental Claim Form PDF iconDemand

  3. Semantic Information Integration and Processing for Demand Response Optimization Qunzhi Zhou, Sreedhar Natarajan, Yogesh Simmhan and Viktor Prasanna

    E-Print Network [OSTI]

    Hwang, Kai

    Semantic Information Integration and Processing for Demand Response Optimization Qunzhi Zhou Demand response optimization (DR) deals with curtailing power consumption when peak demand on the power for Dynamic Demand Response Optimization Existing DR programs are typically based on static planning

  4. Minimizing electricity costs with an auxiliary generator using stochastic programming

    E-Print Network [OSTI]

    Rafiuly, Paul, 1976-

    2000-01-01

    This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

  5. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01

    your Power. (2008). "Demand Response Programs." RetrievedUsing Open Automated Demand Response, Lawrence Berkeley2008). "What is Demand Response?" Retrieved 10/10/2008, from

  6. Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis

    SciTech Connect (OSTI)

    Al-Saidi, W.A.; Zhang Shiwei; Krakauer, Henry [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2006-06-14

    We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with the system size as a low power. A QMC approach with auxiliary fields, in principle, allows an exact solution of the Schroedinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few millihartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled cluster with single and double excitations and with noniterative triples [CCSD(T)]. For stretched bonds in H{sub 2}O, our method exhibits a better overall accuracy and a more uniform behavior than CCSD(T)

  7. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  8. Field Test Results of Automated Demand Response in a Large Office Building

    E-Print Network [OSTI]

    Han, Junqiao

    2008-01-01

    operation of the power grid. Keywords Demand Response,ensures stability of the power grid. Auto-DR implementations

  9. Approximability of Partitioning Graphs with Supply and Demand

    E-Print Network [OSTI]

    Demaine, Erik

    Approximability of Partitioning Graphs with Supply and Demand Takehiro Ito a,, Erik D. Demaine b vertex or a demand vertex and is assigned a positive real number, called the supply or the demand. Each demand vertex can receive "power" from at most one supply vertex through edges in G. One thus wishes

  10. Approximability of Partitioning Graphs with Supply and Demand

    E-Print Network [OSTI]

    Demaine, Erik

    Approximability of Partitioning Graphs with Supply and Demand (Extended Abstract) Takehiro Ito1 vertex or a demand vertex and is assigned a positive real number, called the supply or the demand. Each demand vertex can receive "power" from at most one supply vertex through edges in G. One thus wishes

  11. Approximability of Partitioning Graphs with Supply and Demand

    E-Print Network [OSTI]

    Demaine, Erik

    Approximability of Partitioning Graphs with Supply and Demand (Extended Abstract) Takehiro Ito 1 vertex or a demand vertex and is assigned a positive real number, called the supply or the demand. Each demand vertex can receive ``power'' from at most one supply vertex through edges in G. One thus wishes

  12. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system demand time series based only on data for six years to forecast the demand for the seventh year. Both

  13. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  14. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  15. Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves

    E-Print Network [OSTI]

    Nakanishi, Toshihiro

    2015-01-01

    We propose a metamaterial to realize true electromagnetically induced transparency (EIT), where the incidence of an auxiliary electromagnetic wave called the control wave induces transparency for a probe wave. The analogy to the original EIT effect in an atomic medium is shown through analytical and numerical calculations derived from a circuit model for the metamaterial. We performed experiments to demonstrate the EIT effect of the metamaterial in the microwave region. The width and position of the transparent region can be controlled by the power and frequency of the control wave. We also observed asymmetric transmission spectra unique to the Fano resonance.

  16. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOE Patents [OSTI]

    Murty, Balarama Vempaty (West Bloomfield, MI)

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  17. A short note on gravity with tensor auxiliary fields

    E-Print Network [OSTI]

    Máximo Bañados; Diego Cohen

    2013-09-24

    We consider gravity coupled to a second metric in the strong coupling limit, where the second kinetic term is absent. This system belongs to the recently discussed class of models of "gravity with auxiliary fields" by Pani et al. We prove that, in vacuum, these theories are always equivalent to GR with a cosmological constant, even in the case where the auxiliary field equations contain identities leaving undetermined functions. In the situation where some functions are undetermined, the actual value of the cosmological constant is dictated by an initial condition, and not by the parameters in the action.

  18. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  19. Worlds primary energy demand is continuously increasing and one of the best technologies that can be used for providing domestic heat and power through the

    E-Print Network [OSTI]

    Psaltis, Demetri

    be used for providing domestic heat and power through the distributed power generation is the SOFC (Solid oxide fuel cell). SOFC has lower emission levels, fuel flexibility and has the highest efficiency. The system comprises of a SOFC (co-flow) with an innovative method of recirculation. The entire work has

  20. 2014 Navigant Consulting, Inc. Assessing Demand Response (DR)

    E-Print Network [OSTI]

    © 2014 Navigant Consulting, Inc. Assessing Demand Response (DR) Program Potential for the Seventh;Assessing Demand Response (DR) Program Potential for the Seventh Power Plan Page i Updated Final Report

  1. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    unit water requirement of coal-fired electricity generationin electricity demand. Coal-fired power generation accounted12, the absolute amount of coal-fired capacity grew at an

  2. DEMAND INTERPROCEDURAL PROGRAM ANALYSIS

    E-Print Network [OSTI]

    Reps, Thomas W.

    1 DEMAND INTERPROCEDURAL PROGRAM ANALYSIS USING LOGIC DATABASES Thomas W. Reps Computer Sciences@cs.wisc.edu ABSTRACT This paper describes how algorithms for demand versions of inerprocedural program­ analysis for all elements of the program. This paper concerns the solution of demand versions of interprocedural

  3. Demand Response Assessment INTRODUCTION

    E-Print Network [OSTI]

    Demand Response Assessment INTRODUCTION This appendix provides more detail on some of the topics raised in Chapter 4, "Demand Response" of the body of the Plan. These topics include 1. The features, advantages and disadvantages of the main options for stimulating demand response (price mechanisms

  4. Demand Response and Electric Grid Reliability 

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01

    and Regional Transmission Organizations are the ?air traffic controllers? of the bulk electric power grids 4 Power supply (generation) must match load (demand) CATEE Conference October 10, 2012 ? The fundamental concept behind ERCOT operations... changes or incentives.? (FERC) ? ?Changes in electric use by demand-side resources from their normal consumption patterns in response to changes in the price of electricity, or to incentive payments designed to induce lower electricity use at times...

  5. UAS Strategic Plan University Auxiliary Services at Albany, Inc.

    E-Print Network [OSTI]

    Alexandrova, Ivana

    UAS Strategic Plan University Auxiliary Services at Albany, Inc. 2013-2016 Achieving Our Vision #12) worked cooperatively to develop a Strategic Plan that would guide the organization for the next three the delivery of services to the campus community. The Board of Directors'role in strategic planning is tied

  6. Contract Demand Quantity (CDQ) Close-Out of Comments - June 17...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Contract Demand Quantity (CDQ) Close-Out of Comments June 17, 2011 This Contract Demand Quantity close-out document explains conclusions of the Bonneville Power Administration's...

  7. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  8. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    E-Print Network [OSTI]

    Thompson, Lisa

    2010-01-01

    your Power. (2008). "Demand Response Programs." RetrievedTool Berkeley, CA, Demand Response Research Center.2008). "What is Demand Response?" Retrieved 10/10/2008, from

  9. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  10. Packaging effects: operating frequency, power, complexity, reliability, and cost The packaging challenge is too keep up with the demands of forecasted silicon

    E-Print Network [OSTI]

    Patel, Chintan

    Packaging effects: operating frequency, power, complexity, reliability, and cost The packaging materials, as well as process techniques. Introduction of CU/low-k materials has caused stiffness of package and silicon to become similar. The IC and package become a single physical structure requiring new knowledge

  11. Effective Use of Chinese Structural Auxiliaries for Chinese Parsing * , Yingshun Wu

    E-Print Network [OSTI]

    Effective Use of Chinese Structural Auxiliaries for Chinese Parsing * Yun Jin a , Qing Li b the Chinese structural auxiliary knowledge to detect and correct ungrammatical Chinese parsing errors. We that appropriate use of evident Chinese structural auxiliary knowledge indeed helps to correct parsing errors

  12. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01

    Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

  13. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  14. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

  15. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    SciTech Connect (OSTI)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.

  16. Robust Unit Commitment Problem with Demand Response and ...

    E-Print Network [OSTI]

    Long Zhao

    2010-10-31

    Oct 31, 2010 ... Abstract: To improve the efficiency in power generation and to reduce the greenhouse gas emission, both Demand Response (DR) strategy ...

  17. U.S. Electric Utility Demand-Side Management

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  18. Exponential Demand Simulation Tool

    E-Print Network [OSTI]

    Reed, Derek D.

    2015-05-15

    Operant behavioral economics investigates the relation between environmental constraint and reinforcer consumption. The standard approach to quantifying this relation is through the use of behavioral economic demand curves. ...

  19. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  20. Opportunities and Challenges for Data Center Demand Response

    E-Print Network [OSTI]

    Low, Steven H.

    Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

  1. Optimal demand response: problem formulation and deterministic case

    E-Print Network [OSTI]

    Low, Steven H.

    Optimal demand response: problem formulation and deterministic case Lijun Chen, Na Li, Libin Jiang load through real-time demand response and purchases balancing power on the spot market to meet, optimal demand response reduces to joint scheduling of the procurement and consumption decisions

  2. Towards Continuous Policy-driven Demand Response in Data Centers

    E-Print Network [OSTI]

    Shenoy, Prashant

    Towards Continuous Policy-driven Demand Response in Data Centers David Irwin, Navin Sharma, and Prashant Shenoy University of Massachusetts, Amherst {irwin,nksharma,shenoy}@cs.umass.edu ABSTRACT Demand response (DR) is a technique for balancing electricity sup- ply and demand by regulating power consumption

  3. Electrical Demand Management 

    E-Print Network [OSTI]

    Fetters, J. L.; Teets, S. J.

    1983-01-01

    The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below...

  4. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  5. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  6. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  7. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  8. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America Using the SWITCH Electric Power Sector Planning Model

    E-Print Network [OSTI]

    Nelson, James Henry

    2013-01-01

    power  cost  and  electricity  demand  by  investment  transmission,   and   electricity   demand   in   2030  transmission,   and   electricity   demand   in   2050  

  9. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as wind, solar, and electric vehicles as well as dispatchable loads and microgrids. Many of these resources will be "behind-the-meter" (i.e., demand resources) and...

  10. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  11. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  12. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    H. , and James M. Gri¢ n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

  13. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

  14. Development Methodology for Power-Dense Military Diesel Engine

    Broader source: Energy.gov [DOE]

    Laboratory data and modeling results are presented on a military auxiliary power unit engine that has a peak efficiency of 35.3% at an output shaft power of 25 kW.

  15. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

  16. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  17. Optimal Demand Response Libin Jiang

    E-Print Network [OSTI]

    Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 #12;Outline Caltech smart grid research Optimal demand response #12;Global trends 1

  18. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    ....................................................................................................1-16 Energy Consumption Data...............................................1-15 Data Sources for Energy Demand Forecasting ModelsCALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report

  19. Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants

    E-Print Network [OSTI]

    with back pressure steam turbine. The capital cost of the MEA unit is estimated using the Aspen Icarus Process Evaluator, and the capital cost of the external GT plants are estimated using the Thermoflow Plant of integration. Using a GT with a HRSG only has a lower capital cost but generates less excess electricity than

  20. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    EIA EIS EDR EEA FERC HP IOU IRC ISO LMP LBNL LSE MISO MP MROwith the ISO/RTO Council (IRC) on two initiatives to advancein ISO/RTO Council (IRC) DR activities Set specific goals

  1. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    in wholesale and retail markets. The survey template wasvia wholesale or retail markets. DR incentive paymentsof DR in wholesale and retail market and system operations.

  2. Retail Demand Response in Southwest Power Pool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,Breakout SessionsEnergySampleWIPPLBNL-1470E Retail

  3. Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand

    E-Print Network [OSTI]

    Carlini, David

    Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand Amos Golan* Jeffrey an almost ideal demand system for five types of meat using cross-sectional data from Mexico, where most households did not buy at least one type of meat during the survey week. The system of demands is shown

  4. Peer-Assisted On-Demand Streaming: Characterizing Demands and

    E-Print Network [OSTI]

    Li, Baochun

    Peer-Assisted On-Demand Streaming: Characterizing Demands and Optimizing Supplies Fangming Liu Abstract--Nowadays, there has been significant deployment of peer-assisted on-demand streaming services over the Internet. Two of the most unique and salient features in a peer-assisted on-demand streaming

  5. Coordinated Aggregation of Distributed Demand-Side Resources

    E-Print Network [OSTI]

    community control. It includes renewable micro-generation, storage, combined heat and power, and highlyCoordinated Aggregation of Distributed Demand-Side Resources Final Project Report Power Systems@cornell.edu Phone: 607-255-7156 Power Systems Engineering Research Center The Power Systems Engineering

  6. Coordinated Aggregation of Distributed Demand-Side Resources

    E-Print Network [OSTI]

    control. It includes renewable micro-generation, storage, combined heat and power, and highly adjustableCoordinated Aggregation of Distributed Demand-Side Resources Final Project Report Power Systems@cornell.edu Phone: 607-255-7156 Power Systems Engineering Research Center The Power Systems Engineering

  7. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    #12;Sources: China National Bureau of Statistics; U.S. Energy Information Administration, Annual Energy Outlook. Overview:Overview: Energy Use in China and the U.S.Energy Use in China and the U.S. 5 0Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused

  8. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    fraction of residential and commercial demands, leading16 Residential electricity demand endspecific residential electricity demands into electricity

  9. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping of any forecast of electricity demand and developing ways to reduce the risk of planning errors

  10. MODELICA LIBRARY FOR SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    MODELICA LIBRARY FOR SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1 Niklas vehicle models that can be used to evaluate alternative architectures for the drive of auxiliary units in heavy vehicles. With aid of the simulation models, the energy savings of new designs can be assessed

  11. 00 (2015) 130 Greening Multi-Tenant Data Center Demand Response$

    E-Print Network [OSTI]

    Ren, Shaolei

    2015-01-01

    00 (2015) 1­30 Greening Multi-Tenant Data Center Demand Response$ Niangjun Chena , Xiaoqi Rena for demand response, particularly for emergency demand response (EDR), which saves the power grid from. In this paper, we focus on "greening" demand response in multi-tenant data centers, i.e., colocation data

  12. Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid

    E-Print Network [OSTI]

    Wierman, Adam

    Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid Libin Jiang and Steven Low manages user load through real-time demand response and purchases balancing power on the spot market and demand response in the presence of uncertain renewable supply and time-correlated demand. The overall

  13. An MILP Formulation for Load-Side Demand Control Zhonghui Luo, Ratnesh Kumar*

    E-Print Network [OSTI]

    Kumar, Ratnesh

    their operations prone to high demand charges. In fact, demand control has been used in residential power systemsAn MILP Formulation for Load-Side Demand Control Zhonghui Luo, Ratnesh Kumar* , Joseph Sottile linear programming formulation for load-side control of electrical energy demand. The formulation

  14. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions between the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power and power density can be significantly increased, without losing the passive heat removal feature. This paper will introduce the concept of using DRACS to enhance VHTR passive safety and economics. Three design options will be discussed, depending on the cooling pipe locations. Analysis results from a lumped volume based model and CFD simulations will be presented.

  15. Large-Scale Integration of Deferrable Demand and Renewable Energy Sources

    E-Print Network [OSTI]

    Oren, Shmuel S.

    . Index Terms--Wind power generation, load management, power generation scheduling. I. INTRODUCTION on power system operations it is necessary to represent the balancing operations of the remaining grid and deferrable demand in power systems in terms of reserve requirements. We analyze three demand response

  16. Adjudication Concerning the Civil Engineering Work for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1972-01-01

    Adjudication Concerning the Civil Engineering Work for the Auxiliary Buildings of the 300 GeV Accelerator

  17. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the forecast of electricity consumption for those years has been less than one half of a percent. Figure A-1 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  18. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01

    data of California power exchange wholesale electrical powerFigure 1: California power exchange wholesale electrical

  19. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  20. A demand responsive bidding mechanism with price elasticity matrix in wholesale electricity pools

    E-Print Network [OSTI]

    Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    In the past several decades, many demand-side participation features have been applied in the electricity power systems. These features, such as distributed generation, on-site storage and demand response, add uncertainties ...

  1. Climate control : smart thermostats, demand response, and energy efficiency in Austin, Texas

    E-Print Network [OSTI]

    Bowen, Brian (Brian Richard)

    2015-01-01

    Energy efficiency and demand response are critical resources for the transition to a cleaner electricity grid. Demand-side management programs can reduce electricity use during peak times when power is scarce and expensive, ...

  2. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  3. Optimal demand response: problem formulation and deterministic case

    E-Print Network [OSTI]

    Wierman, Adam

    load through real-time demand response and purchases balancing power on the spot market to meet generation [17]. Indeed, [12, 18, 19] advocates the creation of a distribution/retail market to encourage

  4. Revelation on Demand Nicolas Anciaux

    E-Print Network [OSTI]

    Revelation on Demand Nicolas Anciaux 1 · Mehdi Benzine1,2 · Luc Bouganim1 · Philippe Pucheral1 "revelation on demand". Keywords: Confidentiality and privacy, Secure device, Data warehousing, Indexing model

  5. by popular demand: Addiction II

    E-Print Network [OSTI]

    Niv, Yael

    by popular demand: Addiction II PSY/NEU338:Animal learning and decision making: Psychological, size of other non-drug rewards, and cost (but ultimately the demand is inelastic, or at least

  6. Waste tires as auxiliary fuel for cement kilns

    SciTech Connect (OSTI)

    Dodds, J.

    1987-01-01

    The subject I have been asked to speak about is the utilization of scrap tires as an auxiliary fuel for cement kilns. My experience with scrap tires began five years ago when we performed a technical and economic evaluation for tire pyrolysis. I work for the Idaho National Engineering Laboratory which is supported by the Department of Energy. My interest in scrap tires continued; in 1984 the Department of Energy and the Portland Cement Association jointly sponsored a conference on the utilization of scrap tires in cement kilns. Most of my remarks today are based upon that conference along with some current information in the US. Mr. Sladek requested that I speak on the combustion process, the progress to date, and the factors that impede or encourage implementation of using scrap tires in cement kilns. For discussion purposes it would help if we had a common understanding of the cement manufacturing process. Cement is made by heating a mixture of finely ground limestone and silica from clay or sand to about 1450/degree/C in a large rotating kiln. The heat causes the limestone to decarbonate and subsequently react with the silica to form calcium silicates. 5 figs.

  7. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01

    Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs V. Residential Discussion... Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off-peak period or from high-price periods...

  8. Chord on Demand Alberto Montresor

    E-Print Network [OSTI]

    Jelasity, Márk

    Chord on Demand Alberto Montresor University of Bologna, Italy montresor@cs.unibo.it M´ark Jelasity to solve a specific task on demand. We introduce T- CHORD, that can build a Chord network efficiently to solve a specific task on demand. Existing join protocols are not designed to handle the massive

  9. Supply Chain Supernetworks Random Demands

    E-Print Network [OSTI]

    Nagurney, Anna

    Supply Chain Supernetworks with Random Demands June Dong and Ding Zhang Department of Marketing of three tiers of decision-makers: the manufacturers, the distributors, and the retailers, with the demands equilibrium model with electronic commerce and with random demands for which modeling, qualitative analysis

  10. Chord on Demand Alberto Montresor

    E-Print Network [OSTI]

    Chord on Demand Alberto Montresor University of Bologna, Italy montresor@cs.unibo.it Mark Jelasity to solve a specific task on demand. We introduce T- CHORD, that can build a Chord network efficiently on demand. Existing join protocols are not designed to handle the massive concurrency involved in a jump

  11. ERCOT Demand Response Paul Wattles

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    ERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre;Definitions of Demand Response · `The short-term adjustment of energy use by consumers in response to price to market or reliability conditions.' (NAESB) #12;Definitions of Demand Response · The common threads

  12. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    transportation electricity demand and power supply. Ryancompared for different electricity demand profiles. And thewith CED based on an electricity demand curve from the EPA

  13. Auxiliary material for Observation of the Spread of Slow Deformation in Greece Following the

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Auxiliary material for Observation of the Spread of Slow Deformation in Greece Following of Engineering Seismology and Earthquake Engineering ITSAK, P.O. Box 53, 55102 Thessaloniki, Greece 4 Université

  14. Vehicle Technologies Office Merit Review 2015: 12 Volt Auxiliary Load On-road Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 12 volt auxiliary...

  15. A classical variant of the vertex algebra & the auxiliary linear problem

    E-Print Network [OSTI]

    Doikou, Anastasia

    2015-01-01

    We propose a classical analogue of the vertex algebra in the context of classical integrable field theories. We use this fundamental notion to describe the auxiliary function of the linear auxiliary problem as a classical vertex operator. Then using the underlying algebra satisfied by the auxiliary function together with the linear auxiliary problem we identify the local integrals of motion, which by construction are in involution. The time components of the Lax pair are also identified in terms of the classical vertex operators. Systems in the presence of point like defects as well as systems on the semi-infinite line are investigated. Specific examples associated to the classical Yangian and twisted Yangian are also presented.

  16. Detailed Modeling and Response of Demand Response Enabled Appliances

    SciTech Connect (OSTI)

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  17. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  18. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating Demand for...

  19. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  20. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  1. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01

    3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

  2. Home Network Technologies and Automating Demand Response

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01

    LBNL Commercial and Residential Demand Response Overview ofmarket [5]. Residential demand reduction programs have beenin the domain of residential demand response. There are a

  3. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  4. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - deep

  5. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01

    Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

  6. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01

    2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

  7. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  8. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

  9. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning Reserveand B. Kirby. 2012. The Demand Response Spinning Reserve

  10. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    duty fuel demand in alternate scenarios. ..for light-duty fuel demand in alternate scenarios. Minimum52 Heavy-duty vehicle fuel demand for each alternate

  11. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    2006-2016: Staff energy demand forecast (Revised SeptemberCEC (2005b) Energy demand forecast methods report.California energy demand 2003-2013 forecast. California

  12. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  13. Auxiliary material: "Scaling laws of single polymer dynamics near attractive surfaces" This electronic auxiliary material contains supportive evidence for claims made in the main text.

    E-Print Network [OSTI]

    Mueser, Martin

    " This electronic auxiliary material contains supportive evidence for claims made in the main text. STRUCTURAL PROPERTIES To give an impression of the various systems analyzed in the main part of our letter, a few conditions. In the main part of our manuscript we claim that our model reproduces the correct static features

  14. Essential Power Systems Workshop - OEM Perspective

    SciTech Connect (OSTI)

    Bill Gouse

    2001-12-12

    In California, idling is largely done for climate control. This suggests that climate control devices alone could be used to reduce idling. Line-haul truck drivers surveyed require an average of 4-6 kW of power for a stereo, CB radio, light, refrigerator, and climate control found in the average truck. More power may likely be necessary for peak power demands. The amount of time line-haul trucks reported to have stopped is between 25 and 30 hours per week. It was not possible to accurately determine from the pilot survey the location, purpose, and duration of idling. Consulting driver logs or electronically monitoring trucks could yield more accurate data, including seasonal and geographic differences. Truck drivers were receptive to idling alternatives. Two-thirds of truck drivers surveyed support a program to reduce idling. Two-thirds of drivers reported they would purchase idling reduction technologies if the technology yielded a payback period of two years or less. Willingness to purchase auxiliary power units appears to be higher for owner-operators than for company drivers. With a 2-year payback period, 82% of owner- operators would be willing to buy an idle- reducing device, while 63% of company drivers thought their company would do the same. Contact with companies is necessary to discern whether this difference between owner- operators and companies is true or simply due to the perception of the company drivers. Truck stops appear to be a much more attractive option for electrification than rest areas by a 48% to 21% margin. Much of this discrepancy may be due to perceived safety problems with rest areas. This survey did not properly differentiate between using these areas for breaks or overnight. The next, full survey will quantify where the truck drivers are staying overnight, where they go for breaks, and the duration of time they spend at each place. The nationwide survey, which is in progress, will indicate how applicable the results are to the US in general. In addition to the survey, we believe data loggers and focus groups will be necessary to collect the idling duration and location data necessary to compare auxiliary power units to truck stop electrification. Focus groups are recommended to better understand the driver response to APUs and electrification. The appearance and perception of the new systems will need further clarification, which could be accomplished with a demonstration for truck drivers.

  15. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  16. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  17. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings and workshops convened to develop content for the Demand Response Technology Roadmap. The project team has developed this companion document in the interest of providing...

  18. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  19. Supply Chain Supernetworks With Random Demands

    E-Print Network [OSTI]

    Nagurney, Anna

    Supply Chain Supernetworks With Random Demands June Dong Ding Zhang School of Business State Field Warehouses: stocking points Customers, demand centers sinks Production/ purchase costs Inventory Customer Demand Customer Demand Retailer OrdersRetailer Orders Distributor OrdersDistributor Orders

  20. Marketing & Driving Demand Collaborative - Social Media Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Driving Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the Better...

  1. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Environmental Management (EM)

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

  2. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

  3. Integrated Transmission and Distribution Effects of Demand-Side Participation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    to retail customers Wholesale net load Load Aggregators Retailers Intermediaries Wholesale Power Market Retail Power Market #12;IRW Test Bed = AMES + Distribution Feeders http://www2.econ,tesfatsi}@iastate.edu 1 Panel Session: Wholesale and Retail Market Interaction Requirements for Effective Demand

  4. A Cheat-Proof Game Theoretic Demand Response Scheme for Smart Grids

    E-Print Network [OSTI]

    Liu, K. J. Ray

    A Cheat-Proof Game Theoretic Demand Response Scheme for Smart Grids Yan Chen, W. Sabrina Lin, Feng}@umd.edu Abstract--While demand response has achieved promising results on making the power grid more efficient and reliable, the additional dynamics and flexibility brought by demand response also increase the uncertainty

  5. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue of electricity consumers is an effective way to alleviate the peak power demand on the elec- tricity grid- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation

  6. Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems

    E-Print Network [OSTI]

    Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable Resources Electric Energy System #12;#12;Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems benefits correspond to a real-world power system, as we use actual data on demand-response and wind

  7. Residential Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0 Averagequestionnaires 7 Average

  8. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, Herbert S. (Asheville, NC)

    1984-01-01

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

  9. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-07-31

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

  10. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  11. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

  12. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

  13. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    electricity. In this manner, demand side management is directly integrated into the wholesale capacity marketcapacity market U.S. Federal Energy Regulatory Commission Florida Reliability Coordinating Council incremental auctions independent electricity

  14. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

  15. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    demands. Residential and commercial demand has a significantDemand by Sector Residential Peak Demand (MW) Commercialwe convert residential electricity demand based upon climate

  16. Physically-based demand modeling 

    E-Print Network [OSTI]

    Calloway, Terry Marshall

    1980-01-01

    nts on the demand. Of course the demand of a real a1r cond1t1oner has lower and upper bounds equal to 0 and 0 , respec- u tively. A constra1ned system can be simulated numerically, but there 1s no explicit system response formula s1m11ar... sect1on. It may now be instruct1ve to relate this model to that of Jones and Bri ce [5] . The average demand pred1 cted by their model is the expected value of the product of a load response factor 0 and a U sw1tching process H(t), which depends...

  17. Fourth derivative gravity in the auxiliary fields representation and application to the black hole stability

    E-Print Network [OSTI]

    Sebastiao Mauro; Roberto Balbinot; Alessandro Fabbri; Ilya L. Shapiro

    2015-04-25

    We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in full details and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results more clear. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.

  18. Creating and manipulating non-Abelian anyons in cold atom systems using auxiliary bosons

    E-Print Network [OSTI]

    Yuhe Zhang; G. J. Sreejith; J. K. Jain

    2015-08-16

    The possibility of realizing bosonic fractional quantum Hall effect in ultra-cold atomic systems suggests a new route to producing and manipulating anyons, by introducing auxiliary bosons of a different species that capture quasiholes and thus inherit their non-trivial braiding properties. States with localized quasiholes at any desired locations can be obtained by annihilating the auxiliary bosons at those locations. We explore how this method can be used to generate non-Abelian quasiholes of the Moore-Read Pfaffian state for bosons at filling factor $\

  19. Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers

    E-Print Network [OSTI]

    Adam J. Mullavey; Bram J. J. Slagmolen; John Miller; Matthew Evans; Peter Fritschel; Daniel Sigg; Sam J. Waldman; Daniel A. Shaddock; David E. McClelland

    2011-12-14

    Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities' lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms and successfully transfer longitudinal control of the system from the auxiliary laser to the measurement laser.

  20. Auxiliary matrix formalism for interaction representation transformations, optimal control and spin relaxation theories

    E-Print Network [OSTI]

    D. L. Goodwin; Ilya Kuprov

    2015-07-24

    Auxiliary matrix exponential method is used to derive simple and numerically efficient general expressions for the following, historically rather cumbersome and hard to compute, theoretical methods: (1) average Hamiltonian theory following interaction representation transformations; (2) Bloch-Redfield-Wangsness theory of nuclear and electron relaxation; (3) gradient ascent pulse engineering version of quantum optimal control theory. In the context of spin dynamics, the auxiliary matrix exponential method is more efficient than methods based on matrix factorizations and also exhibits more favourable complexity scaling with the dimension of the Hamiltonian matrix.

  1. ARES NW Power and Conservation Council Presentation

    E-Print Network [OSTI]

    Shortfall of power, due to high demand, energy supplied into the grid by regenerative braking of shuttle

  2. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  3. Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks

    E-Print Network [OSTI]

    2002-01-01

    reduced diesel fuel consumption, lubricant changes, anddiesel consumption Diesel fuel cost Lubricant cost Engine

  4. Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    Microwave regeneration of the DPF can be done without diesel fuel or a catalyst in less than 5 minutes with the engine off.

  5. Map of the State Recognition of the Auxiliary Power Weight Exemption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |Department of Energy MA3TMaking|Chicago

  6. Seasonality in air transportation demand

    E-Print Network [OSTI]

    Reichard Megwinoff, H?tor Nicolas

    1988-01-01

    This thesis investigates the seasonality of demand in air transportation. It presents three methods for computing seasonal indices. One of these methods, the Periodic Average Method, is selected as the most appropriate for ...

  7. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01

    Monitoring in an Agent-Based Smart Home, Proceedings of theConference on Smart Homes and Health Telematics, September,Smart Meter Motion sensors Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home.

  8. Full Rank Rational Demand Systems

    E-Print Network [OSTI]

    LaFrance, Jeffrey T; Pope, Rulon D.

    2006-01-01

    Dover Publications 1972. Barnett, W.A. and Y.W. Lee. “TheEconometrica 53 (1985): 1421- Barnett, W.A. , Lee, Y.W. ,Laurent demand systems (Barnett and Lee 1985; Barnett, Lee,

  9. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  10. Marketing Demand-Side Management 

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  11. Fair Rewarding in Colocation Data Centers: Truthful Mechanism for Emergency Demand Response

    E-Print Network [OSTI]

    Ren, Shaolei

    emergency events (e.g., extreme weather) that result in electricity production shortage and put the grid response, especially for emergency demand response (EDR) where the power grid coordinates large electricity as a valuable demand response resource for enhancing power grid's efficiency and reliability, especially during

  12. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01

    A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

  13. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  14. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    Pacific Gas and Electric power purchase agreement peak timein structure to a power purchase agreement (PPA) that athe need to purchase high-priced power, all customers in a

  15. RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid

    E-Print Network [OSTI]

    Taylor, Zachariah David

    2014-01-01

    and N. Gulhar, “Taking demand response to the next level,”Xu, “An Event-Driven Demand Response Scheme for Power SystemDemand side management: Demand response, intelligent energy

  16. US electric utility demand-side management, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-26

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  17. Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System 

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.; Li, G.

    2006-01-01

    This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

  18. SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1 Niklas Pettersson, Karl Henrik Johansson

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1 Niklas Pettersson, Karl Henrik that can be used to evaluate alternative architectures for the electrical system in heavy vehicles. The vehicle model has been validated with respect to the energy consumption of the combustion engine

  19. Active electron energy distribution function control in direct current discharge using an auxiliary electrode

    E-Print Network [OSTI]

    Kaganovich, Igor

    Active electron energy distribution function control in direct current discharge using an auxiliary://pop.aip.org/authors #12;Active electron energy distribution function control in direct current discharge using; accepted 18 July 2013; published online 10 October 2013) The electron energy distribution functions

  20. Auxiliary Information for "Wind-blown sandstones cemented by sulfate and clay minerals in Gale

    E-Print Network [OSTI]

    Fischer, Woodward

    Auxiliary Information for "Wind-blown sandstones cemented by sulfate and clay minerals in Gale. Sharp exhibit features consistent with eolian sandstones that may be cemented by sulfates. As described to features observed in terrestrial eolian sandstones such as the Navajo sandstone in the southwestern U

  1. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  2. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    high economic/demographic growth, relatively low electricity and natural gas rates, and relatively low CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION

  3. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand Gough Office Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  4. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

  5. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  6. On-Demand Based Wireless Resources Trading for Green Communications

    E-Print Network [OSTI]

    Cheng, Wenchi; Zhang, Hailin; Wang, Qiang

    2011-01-01

    The purpose of Green Communications is to reduce the energy consumption of the communication system as much as possible without compromising the quality of service (QoS) for users. An effective approach for Green Wireless Communications is On-Demand strategy, which scales power consumption with the volume and location of user demand. Applying the On-Demand Communications model, we propose a novel scheme -- Wireless Resource Trading, which characterizes the trading relationship among different wireless resources for a given number of performance metrics. According to wireless resource trading relationship, different wireless resources can be consumed for the same set of performance metrics. Therefore, to minimize the energy consumption for given performance metrics, we can trade the other type of wireless resources for the energy resource under the demanded performance metrics. Based on the wireless resource trading relationship, we derive the optimal energy-bandwidth and energy-time wireless resource trading ...

  7. Exponential Communication Ine ciency of Demand Queries

    E-Print Network [OSTI]

    Sandholm, Tuomas W.

    FORECAST COMBINATION IN REVENUE MANAGEMENT DEMAND FORECASTING SILVIA RIEDEL A thesissubmitted Combination in RevenueManagement Demand Forecasting Abstract The domain of multi level forecastcombination

  8. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  9. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  10. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  11. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  12. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    Energy Efficiency, Demand Response, and Peak Load Managementdemand response, and load management programs in the Ebefore they undertake load management and demand response

  13. Supply chain planning decisions under demand uncertainty

    E-Print Network [OSTI]

    Huang, Yanfeng Anna

    2008-01-01

    Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

  14. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    > B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Responseand integration is: Energy efficiency, energy conservation,

  15. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades May 14, 2015 12:30PM to 2:00PM EDT Learn more...

  16. Demand Response Programs Oregon Public Utility Commission

    E-Print Network [OSTI]

    Demand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director;Demand Response Results, 2004 Load Control ­ Cool Keeper ­ ID Irrigation Load Control Price Responsive

  17. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  18. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  19. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  20. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  1. Demand Response and Energy Efficiency 

    E-Print Network [OSTI]

    2009-01-01

    stream_source_info ESL-IC-09-11-05.pdf.txt stream_content_type text/plain stream_size 14615 Content-Encoding ISO-8859-1 stream_name ESL-IC-09-11-05.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Demand Response... 4 An Innovative Solution to Get the Ball Rolling ? Demand Response (DR) ? Monitoring Based Commissioning (MBCx) EnerNOC has a solution involving two complementary offerings. ESL-IC-09-11-05 Proceedings of the Ninth International Conference...

  2. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  3. U.S. electric utility demand-side management 1995

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  4. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  5. Meeting Inelastic Demand in Systems with Storage and Renewable Sources

    E-Print Network [OSTI]

    Gautam, Natarajan

    such as wind turbines or solar panels, and an in- house energy storage device. In our setting, power demand- voltaic (PV) solar panels or wind turbines) that is situated locally and owned by the consumer. Note consider, [1] also models the use of diesel generators and external renewable sources (besides on

  6. Demand Response and Energy Storage Integration Study- Past Workshops

    Office of Energy Efficiency and Renewable Energy (EERE)

    The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project team.

  7. Price-Based Adaptive Spinning Reserve Requirements in Power System Scheduling

    E-Print Network [OSTI]

    . Additionally, coor- dinators who match suppliers and demands in California, for example, the Power Exchange

  8. Revelation on Demand Nicolas Anciaux

    E-Print Network [OSTI]

    is willing to reveal the aggregate response (according to his company's policy) to the customer dataRevelation on Demand Nicolas Anciaux 1 · Mehdi Benzine1,2 · Luc Bouganim1 · Philippe Pucheral1 time to support epidemiological studies. In these and many other situations, aggregate data or partial

  9. Demand Response Providing Ancillary Services

    E-Print Network [OSTI]

    1 Demand Response Providing Ancillary Services: A Comparison of Opportunities and Challenges in US to operate (likely price takers) ­ Statistical reliability (property of large aggregations of small resources size based on Mid-Atlantic Reserve Zone #12;Market Rules: Resource Size Min. Size (MW) Aggregation

  10. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  11. Water demand management in Kuwait

    E-Print Network [OSTI]

    Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

    2006-01-01

    Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

  12. On-demand data broadcasting 

    E-Print Network [OSTI]

    Kothandaraman, Kannan

    1998-01-01

    related to on-demand data broadcasting. We look at the problem of data broadcasting in an environment where clients make explicit requests to the server. The server broadcasts requested data items to all the clients, including those who have not requested...

  13. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  14. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  15. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01

    Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

  16. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01

    and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

  17. Incorporating Demand Response into Western Interconnection Transmission Planning

    E-Print Network [OSTI]

    Satchwell, Andrew

    2014-01-01

    Aggregator Programs. Demand Response Measurement andIncorporating Demand Response into Western Interconnection13 Demand Response Dispatch

  18. Upply Chain Supernetworks with Random Demands

    E-Print Network [OSTI]

    Nagurney, Anna

    Upply Chain Supernetworks with Random Demands June Dong & Ding Zhang School of Business State Warehouses: stocking points Field Warehouses: stocking points Customers, demand centers sinks Production Commerce and Value Chain Management, 1998 Customer Demand Customer Demand Retailer OrdersRetailer Orders

  19. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  20. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  1. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  2. Auxiliary field Monte-Carlo simulation of strong coupling lattice QCD for QCD phase diagram

    E-Print Network [OSTI]

    Terukazu Ichihara; Akira Ohnishi; Takashi Z. Nakano

    2014-10-07

    We study the QCD phase diagram in the strong coupling limit with fluctuation effects by using the auxiliary field Monte-Carlo method. We apply the chiral angle fixing technique in order to obtain finite chiral condensate in the chiral limit in finite volume. The behavior of order parameters suggests that chiral phase transition is the second order or crossover at low chemical potential and the first order at high chemical potential. Compared with the mean field results, the hadronic phase is suppressed at low chemical potential, and is extended at high chemical potential as already suggested in the monomer-dimer-polymer simulations. We find that the sign problem originating from the bosonization procedure is weakened by the phase cancellation mechanism; a complex phase from one site tends to be canceled by the nearest neighbor site phase as long as low momentum auxiliary field contributions dominate.

  3. Auxiliary-field approach to dilute Bose gases with tunable interactions

    SciTech Connect (OSTI)

    Cooper, Fred; Mihaila, Bogdan; Dawson, John F.; Chien, Chih-Chun; Timmermans, Eddy

    2011-05-15

    We rewrite the Lagrangian for a dilute Bose gas in terms of auxiliary fields related to the normal and anomalous condensate densities. We derive the loop expansion of the effective action in the composite-field propagators. The lowest-order auxiliary field (LOAF) theory is a conserving mean-field approximation consistent with the Goldstone theorem without some of the difficulties plaguing approximations such as the Hartree and Popov approximations. LOAF predicts a second-order phase transition. We give a set of Feynman rules for improving results to any order in the loop expansion in terms of composite-field propagators. We compare results of the LOAF approximation with those derived using the Popov approximation. LOAF allows us to explore the critical regime for all values of the coupling constant, and we determine various parameters in the unitarity limit.

  4. Decentralized Control of Aggregated Loads for Demand Response Di Guo, Wei Zhang, Gangfeng Yan, Zhiyun Lin, and Minyue Fu

    E-Print Network [OSTI]

    Zhang, Wei

    Decentralized Control of Aggregated Loads for Demand Response Di Guo, Wei Zhang, Gangfeng Yan of residential responsive loads for vari- ous demand response applications. We propose a general hybrid system and effectively reduce the peak power consumption. I. INTRODUCTION Demand response has the potential to shift

  5. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOE Patents [OSTI]

    Gorman, William G. (Ballston Spa, NY); Carberg, William George (Ballston Spa, NY); Jones, Charles Michael (Ballston Lake, NY)

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  6. Influence of store dimensions and auxiliary volume configuration on the performance of medium-sized solar combisystems

    SciTech Connect (OSTI)

    Lundh, Magdalena; Zass, Katrin; Wilhelms, Claudius; Vajen, Klaus; Jordan, Ulrike

    2010-07-15

    To increase the fractional energy savings achieved with solar thermal combisystems the store volume may be increased. Installation of large stores in single-family houses is, however, often limited by space constraints. In this article the influence of the store dimensions, as well as internal and external auxiliary volume configurations, are investigated for large solar water stores by annual dynamic TRNSYS simulations. The results show that store sizes up to 4 m{sup 3} may be used in solar heating systems with 30 m{sup 2} collector area. It is further shown that well-insulated stores are rather insensitive to the geometry. Stores deviating from the conventional dimensions still yield high fractional energy savings. Furthermore, the simulations show that the performance of an internal auxiliary volume configuration in most cases exceeds that of a solution with an external auxiliary unit. The practical limitations of very thin auxiliary volumes must, however, be further investigated. (author)

  7. A Truthful Incentive Mechanism for Emergency Demand Response in Colocation Data Centers

    E-Print Network [OSTI]

    Ren, Shaolei

    program, the operator has to rely on the highly expensive and/or environmentally-unfriendly on-site energy--Data centers are key participants in demand re- sponse programs, including emergency demand response (EDR of incentives to reduce energy consumption by tenants who control their servers and are typically on fixed power

  8. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect (OSTI)

    Starke, Michael R; Kirby, Brendan J; Kueck, John D; Todd, Duane; Caulfield, Michael; Helms, Brian

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

  9. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01

    Sun Description The HVAC (Heating Ventilation and Air Conditioning) relay mote serves three primary purposes: relay control, temperature sensing, and power

  10. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01

    power and energy consumed; and wireless current measurementsVibration Energy Scavenging for Wireless Sensor Networks,”J. Rabaey, Energy Scavenging for Wireless Sensor Networks

  11. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01

    and solar power sources of energy to extend the battery life of radio transmitters, and the Thermostat/Controls group, which concentrated

  12. STEO December 2012 - coal demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12 Page 1NEWSSupportcoal demand seen below

  13. Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Blair Swezey. 2007. Green Power Marketing in the Unitedcustomer demand for “green” power (Bird et al. , 2007),

  14. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  15. Guidelines for Marketing Demand-Side Management in the Commercial Sector 

    E-Print Network [OSTI]

    George, S. S.

    1988-01-01

    For the past decade, electric and gas utilities throughout the nation, not just in hot and humid climates, have promoted energy efficiency through a variety of demand-side management (DSM) programs. In 1984, the Electric Power Research Institute...

  16. Demand Relief and Weather Sensitivity in Large California Commercial Office Buildings 

    E-Print Network [OSTI]

    Kinney, S.; Piette, M. A.; Gu, L.; Haves, P.

    2001-01-01

    A great deal of research has examined the weather sensitivity of energy consumption in commercial buildings; however, the recent power crisis in California has given greater importance to peak demand. Several new loadshedding programs have been...

  17. Scaling Microblogging Services with Divergent Traffic Demands

    E-Print Network [OSTI]

    Fu, Xiaoming

    Scaling Microblogging Services with Divergent Traffic Demands Tianyin Xu, Yang Chen, Lei Jiao, Ben-server architecture has not scaled with user demands, lead- ing to server overload and significant impairment

  18. Michel Meulpolder Managing Supply and Demand of

    E-Print Network [OSTI]

    Michel Meulpolder Managing Supply and Demand of Bandwidth in Peer-to-Peer Communities #12;#12;Managing Supply and Demand of Bandwidth in Peer-to-Peer Communities Proefschrift ter verkrijging van de

  19. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  20. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    /demographic growth, relatively low electricity and natural gas rates, and relatively low efficiency program CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity Manager Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY

  1. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  2. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  3. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin...

  4. Demand Effects in Productivity and Efficiency Analysis 

    E-Print Network [OSTI]

    Lee, Chia-Yen

    2012-07-16

    Demand fluctuations will bias the measurement of productivity and efficiency. This dissertation described three ways to characterize the effect of demand fluctuations. First, a two-dimensional efficiency decomposition (2DED) of profitability...

  5. Industrial Equipment Demand and Duty Factors 

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    1998-01-01

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air ...

  6. Dramatic Demand Reduction In The Desert Southwest

    SciTech Connect (OSTI)

    Boehm, Robert; Hsieh, Sean; Lee, Joon; Baghzouz, Yahia; Cross, Andrew; Chatterjee, Sarah

    2015-07-06

    This report summarizes a project that was funded to the University of Nevada Las Vegas (UNLV), with subcontractors Pulte Homes and NV Energy. The project was motivated by the fact that locations in the Desert Southwest portion of the US demonstrate very high peak electrical demands, typically in the late afternoons in the summer. These high demands often require high priced power to supply the needs, and the large loads can cause grid supply problems. An approach was proposed through this contact that would reduce the peak electrical demands to an anticipated 65% of what code-built houses of the similar size would have. It was proposed to achieve energy reduction through four approaches applied to a development of 185 homes in northwest part of Las Vegas named Villa Trieste. First, the homes would all be highly energy efficient. Secondly, each house would have a PV array installed on it. Third, an advanced demand response technique would be developed to allow the resident to have some control over the energy used. Finally, some type of battery storage would be used in the project. Pulte Homes designed the houses. The company considered initial cost vs. long-term savings and chose options that had relatively short paybacks. HERS (Home Energy Rating Service) ratings for the homes are approximately 43 on this scale. On this scale, code-built homes rate at 100, zero energy homes rate a 0, and Energy Star homes are 85. In addition a 1.764 Wp (peak Watt) rated PV array was used on each house. This was made up of solar shakes that were in visual harmony with the roofing material used. A demand response tool was developed to control the amount of electricity used during times of peak demand. While demand response techniques have been used in the utility industry for some time, this particular approach is designed to allow the customer to decide the degree of participation in the response activity. The temperature change in the residence can be decided by the residents by adjusting settings. In a sense the customer can choose between greater comfort and greater money savings during demand response circumstances. Finally a battery application was to be considered. Initially it was thought that a large battery (probably a sodium-sulfur type) would be installed. However, after the contract was awarded, it was determined that a single, centrally-located battery system would not be appropriate for many reasons, including that with the build out plan there would not be any location to put it. The price had risen substantially since the budget for the project was put together. Also, that type of battery has to be kept hot all the time, but its use was only sought for summer operation. Hence, individual house batteries would be used, and these are discussed at the end of this report. Many aspects of the energy use for climate control in selected houses were monitored before residents moved in. This was done both to understand the magnitude of the energy flows but also to have data that could be compared to the computer simulations. The latter would be used to evaluate various aspects of our plan. It was found that good agreement existed between actual energy use and computed energy use. Hence, various studies were performed via simulations. Performance simulations showed the impact on peak energy usage between a code built house of same size and shape compared to the Villa Trieste homes with and without the PV arrays on the latter. Computations were also used to understand the effect of varying orientations of the houses in this typical housing development, including the effect of PV electrical generation. Energy conservation features of the Villa Trieste homes decreased the energy use during peak times (as well as all others), but the resulting decreased peak occurred at about the same time as the code-built houses. Consideration of the PV generation decreases the grid energy use further during daylight hours, but did not extend long enough many days to decrease the peak. Hence, a demand response approach, as planned, was needed. With p

  7. Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation 

    E-Print Network [OSTI]

    Felak, R. P.

    1986-01-01

    , TX, June 17-19, 1986 Table 1 (Cont'd) Situation Utility has a temp orary oversupply of its own baseload power sources and thus at certain times prefers dis patching the inde pendent power source Requirement If the producer does not comply... factor range, as as intended output range as a functi time, and rate of change) Delivery (and purchase) voltage leve preferred Auxiliary power requirements Start-up/Standby/Emergency power requirements Sendout characteristics (e.g., net v surplus...

  8. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  9. Decentralized demand management for water distribution 

    E-Print Network [OSTI]

    Zabolio, Dow Joseph

    1989-01-01

    OF THE DEMAND CURVE 30 31 35 39 Model Development Results 39 45 VI CONTROLLER DESIGN AND COSTS 49 Description of Controller Production and Installation Costs 49 50 VII SYSTEM EVALUATION AND ECONOMICS 53 System Response and Degree of Control... Patterns 9 Typical Winter Diurnal Patterns 10 Trace of Marginal Pump Efficiency and Hourly Demand 11 Original Demand Distribution and Possible Redistributions 33 34 40 41 43 46 12 Typical Nodal Responses to Demand Change 54 ix LIST OF TABLES...

  10. Assessment of Industrial Load for Demand Response across U.S. Regions of the Western Interconnection

    Broader source: Energy.gov [DOE]

    Demand response has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles for demand response that can provide more regional understanding and can be inserted into analysis software for further study.

  11. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  12. Demand Queries with Preprocessing Uriel Feige

    E-Print Network [OSTI]

    Demand Queries with Preprocessing Uriel Feige and Shlomo Jozeph May 1, 2014 )>IJH=?J Given a set of items and a submodular set-function f that determines the value of every subset of items, a demand query, the value of S minus its price. The use of demand queries is well motivated in the context of com

  13. DemandDriven Pointer Analysis Nevin Heintze

    E-Print Network [OSTI]

    Tardieu, Olivier

    Demand­Driven Pointer Analysis Nevin Heintze Research, Agere Systems (formerly Lucent Technologies analysis of a pro­ gram or program component. In this paper we introduce a demand­driven approach for pointer analysis. Specifically, we describe a demand­driven flow­insensitive, subset­based, context

  14. Airline Pilot Demand Projections What this is-

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    60 Mobile applications constantly demand additional memory, and traditional designs increase but also e-mail, Internet access, digital camera features, and video on demand. With feature expansion demanding additional storage and memory in all com- puting devices, DRAM and flash memory densities

  15. Algorithms Demands and Bounds Applications of Flow

    E-Print Network [OSTI]

    Kabanets, Valentine

    2/28/2014 1 Algorithms ­ Demands and Bounds Applications of Flow Networks Design and Analysis of Algorithms Andrei Bulatov Algorithms ­ Demands and Bounds 12-2 Lower Bounds The problem can be generalized) capacities (ii) demands (iii) lower bounds A circulation f is feasible if (Capacity condition) For each e E

  16. Adapton: Composable, Demand-Driven Incremental Computation

    E-Print Network [OSTI]

    Hicks, Michael

    Adapton: Composable, Demand-Driven Incremental Computation CS-TR-5027 -- July 12, 2013 Matthew A demands on the program output; that is, if a program input changes, all depen- dencies will be recomputed. To address these problems, we present cdd ic , a core calculus that applies a demand-driven seman- tics

  17. Pricing Cloud Bandwidth Reservations under Demand Uncertainty

    E-Print Network [OSTI]

    Li, Baochun

    Heap Assumptions on Demand Andreas Podelski1 , Andrey Rybalchenko2 , and Thomas Wies1 1 University analysis produces heap assumptions on demand to eliminate counterexamples, i.e., non-terminating abstract of a non-terminating abstract computation, i.e., it applies shape analysis on demand. The shape analysis

  18. Demand And Response Transportation Rider's Guide

    E-Print Network [OSTI]

    Acton, Scott

    Demand And Response Transportation Rider's Guide http://www.virginia.edu/parking/disabilities/dart Version 14.5 (8/13/14) Welcome DART Rider: The Demand and Response Transportation (DART) Service rides: #12;Demand And Response Transportation Rider's Guide http

  19. Scaling Microblogging Services with Divergent Traffic Demands

    E-Print Network [OSTI]

    Almeroth, Kevin C.

    Scaling Microblogging Services with Divergent Traffic Demands Tianyin Xu1 , Yang Chen1 , Lei Jiao1 client-server architecture has not scaled with user demands, leading to server overload and significant #12;Scaling Microblogging Services with Divergent Traffic Demands 21 producing effective predictions

  20. Precision On Demand: An Improvement in Probabilistic

    E-Print Network [OSTI]

    Precision On Demand: An Improvement in Probabilistic Hashing Igor Melatti, Robert Palmer approach Precision on Demand or POD). #12;This paper provides a scientific evaluation of the pros and cons time likely to increase by a factor of 1.8 or less. #12;Precision On Demand: An Improvement

  1. ADAPTON: Composable, Demand-Driven Incremental Computation

    E-Print Network [OSTI]

    Hicks, Michael

    ADAPTON: Composable, Demand- Driven Incremental Computation Abstract Many researchers have proposed important drawbacks. First, recomputation is oblivious to specific demands on the program output; that is ic , a core calculus that applies a demand-driven semantics to incremental computa- tion, tracking

  2. Constructing Speculative Demand Functions in Equilibrium Markets

    E-Print Network [OSTI]

    On the Convergence of Statistical Techniques for Inferring Network Traffic Demands Alberto Medina1 of traffic demands in a communication net- work enables or enhances a variety of traffic engineering and net set of these demands is prohibitively expensive because of the huge amounts of data that must

  3. Heap Assumptions on Demand Andreas Podelski1

    E-Print Network [OSTI]

    Wies, Thomas

    Heap Assumptions on Demand Andreas Podelski1 , Andrey Rybalchenko2 , and Thomas Wies1 1 University checker and shape analysis. The shape analysis pro- duces heap assumptions on demand to eliminate.e., it applies shape analysis on demand. The shape analysis produces a heap assumption, which is an assertion

  4. Appeld'offrespublic Demanded'approvisionnement

    E-Print Network [OSTI]

    Montréal, Université de

    ATM for Video and Audio on Demand David Greaves. University of Cambridge and ATM Ltd. email: djg fast, particularly for video- on-demand. These digital streams require constant-rate digi- tal channels of the Cambridge Digital Interactive Television Trial, where Video and Audio on demand are transported to the Home

  5. Precision On Demand: An Improvement in Probabilistic

    E-Print Network [OSTI]

    Precision On Demand: An Improvement in Probabilistic Hashing Igor Melatti, Robert Palmer approach Precision on Demand or POD). #12; This paper provides a scientific evaluation of the pros and cons time likely to increase by a factor of 1.8 or less. #12; Precision On Demand: An Improvement

  6. FORECAST COMBINATION IN REVENUE MANAGEMENT DEMAND FORECASTING

    E-Print Network [OSTI]

    Fernandez, Thomas

    Demandness in Rewriting and Narrowing Sergio Antoy1 and Salvador Lucas2 1 Computer Science by a strategy to compute a step. The notion of demandness provides a suitable framework for pre- senting that the notion of demandness is both atomic and fundamental to the study of strategies. 1 Introduction Modern

  7. Resolution on Demand Bianka BuschbeckWolf

    E-Print Network [OSTI]

    Reyle, Uwe

    Resolution on Demand Bianka Buschbeck­Wolf Universit¨at Stuttgart Report 196 May 1997 #12; May 1997¨ur den Inhalt dieser Arbeit liegt bei der Autorin. #12; Resolution on Demand Abstract Following the strategy of resolution on demand, the transfer component triggers inference processes in analysis

  8. Heap Assumptions on Demand Andreas Podelski1

    E-Print Network [OSTI]

    Wies, Thomas

    PROTOTYPE IMPLEMENTATION OF A DEMAND DRIVEN NETWORK MONITORING ARCHITECTURE Augusto Ciuffoletti for demand driven monitoring, named gd2, that can be potentially integrated in the gLite framework. We capable of managing the scalability challenge offered by a Grid environment: i) demand driven

  9. Pricing Cloud Bandwidth Reservations under Demand Uncertainty

    E-Print Network [OSTI]

    Li, Baochun

    Pricing Cloud Bandwidth Reservations under Demand Uncertainty Di Niu, Chen Feng, Baochun Li's utility depends not only on its bandwidth usage, but more importantly on the portion of its demand that can be made by all tenants and the cloud provider, even with the presence of demand uncertainty

  10. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    trends in China, India, Eastern Europe and other developing areas. China oil demand +104% by 2030, India 2000 2020 2040 2060 Supply demand Energy UWM-CUTS 14 U.S. DOE viewpoint, source:http://tonto.eia.doe.gov/FTPROOT/features/longterm.pdf#search='oilTransportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05

  11. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators- response paradigm. When the energy provider needs to reduce the current energy demand on the grid, it can

  12. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract the case that distributed PV generation deserves a substantial portion of the credit allotted to demand response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing

  13. Demand Response for Computing Jerey S. Chase

    E-Print Network [OSTI]

    Chase, Jeffrey S.

    Chapter 1 Demand Response for Computing Centers Jerey S. Chase Duke University 1.1 Introduction ............................................................... 3 1.2 Demand Response in the Emerging Smart Grid .......................... 5 1.2.1 Importance of Demand Response for Energy E ciency .......... 6 1.2.2 The Role of Renewable Energy

  14. Response to changes in demand/supply

    E-Print Network [OSTI]

    Response to changes in demand/supply through improved marketing 21.2 http with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board, statistics of demand and supply of wood, costs and competitiveness were analysed. The reactions

  15. Response to changes in demand/supply

    E-Print Network [OSTI]

    Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes log demand in 1995. The composites board mills operating in Korea took advantage of flexibility environment changes on the production mix, some economic indications, statistics of demand and supply of wood

  16. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  17. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  18. Demand Response Resources in Pacific Northwest

    E-Print Network [OSTI]

    Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

  19. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

  20. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

  1. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  2. Spin-orbit induced backflow in neutron matter with auxiliary field diffusion Monte Carlo

    E-Print Network [OSTI]

    L. Brualla; S. Fantoni; A. Sarsa; K. E Schmidt; S. A. Vitiello

    2003-04-14

    The energy per particle of zero-temperature neutron matter is investigated, with particular emphasis on the role of the $\\vec L\\cdot\\vec S$ interaction. An analysis of the importance of explicit spin--orbit correlations in the description of the system is carried out by the auxiliary field diffusion Monte Carlo method. The improved nodal structure of the guiding function, constructed by explicitly considering these correlations, lowers the energy. The proposed spin--backflow orbitals can conveniently be used also in Green's Function Monte Carlo calculations of light nuclei.

  3. Auxiliary Field Diffusion Monte Carlo calculation of nuclei with A<40 with tensor interactions

    E-Print Network [OSTI]

    S. Gandolfi; F. Pederiva; S. Fantoni; K. E. Schmidt

    2007-04-13

    We calculate the ground-state energy of 4He, 8He, 16O, and 40Ca using the auxiliary field diffusion Monte Carlo method in the fixed phase approximation and the Argonne v6' interaction which includes a tensor force. Comparison of our light nuclei results to those of Green's function Monte Carlo calculations shows the accuracy of our method for both open and closed shell nuclei. We also apply it to 16O and 40Ca to show that quantum Monte Carlo methods are now applicable to larger nuclei.

  4. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    Renewable power for China: Past, present, and future,? Frontiers of Energyfuture energy demand. Wind power must be complemented with other renewable

  5. Beacon Power - Challenges and Opportunities for an Innovative...

    Broader source: Energy.gov (indexed) [DOE]

    This forces utilities to ramp different power plants up and down in response to shifts in electricity demand -- a process that is expensive and inefficient. To avoid power...

  6. Overview of Options to Integrate Stationary Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Power Generation...

  7. Smart Finite State Devices: A Modeling Framework for Demand Response Technologies

    E-Print Network [OSTI]

    Turitsyn, Konstantin; Ananyev, Maxim; Chertkov, Michael

    2011-01-01

    We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the following four types: (a) optional loads that can be shed, e.g. light dimming; (b) deferrable loads that can be delayed, e.g. dishwashers; (c) controllable loads with inertia, e.g. thermostatically-controlled loads, whose task is to maintain an auxiliary characteristic (temperature) within pre-defined margins; and (d) storage devices that can alternate between charging and generating. Our analysis of the devices seeks to find their optimal price-taking control strategy under a given stochastic model of the distribution market.

  8. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01

    RPS obliga- tions, and green power markets in which RECs arecustomer demand for “green” power, especially amongplanning require- ments, green power markets, and growing

  9. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  10. New coal plant technologies will demand more water

    SciTech Connect (OSTI)

    Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

    2008-04-15

    Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

  11. Demand Response - Policy: More Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment ofConditionDelmarva Power -Demand

  12. Demande de casier 20142015 1. Demande ( remplir par l'lve)

    E-Print Network [OSTI]

    Demande de casier 20142015 1. Demande (à remplir par l'élève) Nom : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Demande l'attribution d'un casier pour y déposer) : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . En cas d'acceptation de ma demande, je retirerai ma clé contre un chèque de caution d'un montant de

  13. DEMANDE DE CONGE Cette demande doit tre effectue un mois avant le dbut du semestre.

    E-Print Network [OSTI]

    Halazonetis, Thanos

    DEMANDE DE CONGE Cette demande doit être effectuée un mois avant le début du semestre. Date de la demande .......................................................... NOM-mail .......................................................................................................................................................................... @etu.unige.ch Demande à être mis au bénéfice d'un congé pour le(s) semestre(s) suivant(s) (2 semestres

  14. Risk Management for Video-on-Demand Servers leveraging Demand Forecast

    E-Print Network [OSTI]

    Li, Baochun

    Risk Management for Video-on-Demand Servers leveraging Demand Forecast Di Niu, Hong Xu, Baochun Li}@eecg.toronto.edu Shuqiao Zhao Multimedia Development Group UUSee, Inc. shuqiao.zhao@gmail.com ABSTRACT Video-on-demand (VoD) servers are usually over-provisioned for peak demands, incurring a low average resource effi- ciency

  15. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  16. Auxiliary field formalism for dilute fermionic atom gases with tunable interactions

    SciTech Connect (OSTI)

    Mihaila, Bogdan; Chien, Chih-Chun; Timmermans, Eddy; Dawson, John F.; Cooper, Fred

    2011-05-15

    We develop the auxiliary field formalism corresponding to a dilute system of spin-1/2 fermions. This theory represents the Fermi counterpart of the Bose-Einstein condensation (BEC) theory developed recently by F. Cooper et al. [Phys. Rev. Lett. 105, 240402 (2010)] to describe a dilute gas of Bose particles. Assuming tunable interactions, this formalism is appropriate for the study of the crossover from the regime of Bardeen-Cooper-Schriffer (BCS) pairing to the regime of BEC in ultracold fermionic atom gases. We show that when applied to the Fermi case at zero temperature, the leading-order auxiliary field (LOAF) approximation gives the same equations as obtained in the standard BCS variational picture. At finite temperature, LOAF leads to the theory discussed by Sa de Melo, Randeria, and Engelbrecht [Phys. Rev. Lett. 71, 3202 (1993); Phys. Rev. B 55, 15153 (1997)]. As such, LOAF provides a unified framework to study the interacting Fermi gas. The mean-field results discussed here can be systematically improved on by calculating the one-particle irreducible action corrections, order by order.

  17. Auxiliary Field Diffusion Monte Carlo calculation of ground state properties of neutron drops

    E-Print Network [OSTI]

    Francesco Pederiva; A. Sarsa; K. E. Schmidt; S. Fantoni

    2004-03-23

    The Auxiliary Field Diffusion Monte Carlo method has been applied to simulate droplets of 7 and 8 neutrons. Results for realistic nucleon-nucleon interactions, which include tensor, spin--orbit and three--body forces, plus a standard one--body confining potential, have been compared with analogous calculations obtained with Green's Function Monte Carlo methods. We have studied the dependence of the binding energy, the one--body density and the spin--orbit splittings of $^7n$ on the depth of the confining potential. The results obtained show an overall agreement between the two quantum Monte Carlo methods, although there persist differences in the evaluation of spin--orbit forces, as previously indicated by bulk neutron matter calculations. Energy density functional models, largely used in astrophysical applications, seem to provide results significantly different from those of quantum simulations. Given its scaling behavior in the number of nucleons, the Auxiliary Field Diffusion Monte Carlo method seems to be one of the best candidate to perform {\\sl ab initio} calculations on neutron rich nuclei.

  18. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    Power generation ..Efficiency Status of Power Generation Industry in China,”Efficiency Status of Power Generation Industry in China,”

  19. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    SciTech Connect (OSTI)

    Kirby, Brendan J

    2006-07-01

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

  20. Adjudication of a Contract for the Supply of the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1972-01-01

    Adjudication of a Contract for the Supply of the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

  1. Adjudication of a Contract for the Supply of False Floors for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1973-01-01

    Adjudication of a Contract for the Supply of False Floors for the Auxiliary Buildings of the 300 GeV Accelerator

  2. Information Concerning the Contract for the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1974-01-01

    Information Concerning the Contract for the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

  3. Hierarchical Adaptive Dynamic Power Management

    E-Print Network [OSTI]

    Chen, Yuanzhu Peter

    life by switching devices to lower-power modes when there is a reduced demand for service. Static power (MDPs). The power manager then switches online among these policies to accommodate the stochastic mode-switching rate of the nonstationary request process. Index Terms--Low-power design, hierarchical modeling

  4. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01

    13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

  5. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01

    Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

  6. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01

    of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

  7. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    warming and electricity demand: A study of California.Extreme Heat, and Electricity Demand in California Norman L.high temperature and electricity demand for air-conditioned

  8. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    with Residential Electricity Demand in India's Future - How2008). The Boom of Electricity Demand in the residential2005). Forecasting Electricity Demand in Developing

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    fuel efficiency and electricity demand assumptions used into added vehicle electricity demand in the BAU (no IGCC)to added vehicle electricity demand in the Mixed technology

  10. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal...

  11. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    2007). Coping with Residential Electricity Demand in India'sResidential Electricity Demand in China –Can EfficiencyBoom of Electricity Demand in the residential sector in the

  12. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    Peirson. 1998. Residential energy demand and the interactionresponse of residential cooling energy demand to climaterise in residential and commercial electricity demand can be

  13. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01

    Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

  14. Rates and technologies for mass-market demand response

    E-Print Network [OSTI]

    Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

    2002-01-01

    Roger. 2002. Using Demand Response to Link Wholesale andfor advanced metering, demand response, and dynamic pricing.EPRI. 2001. Managing Demand-Response To Achieve Multiple

  15. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01

    Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

  16. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  17. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  18. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01

    C. McParland, Open Automated Demand Response Communicationsand Open Automated Demand Response", Grid Interop Forum,Testing of Automated Demand Response for Integration of

  19. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01

    and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

  20. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Goli, Sasank

    2012-01-01

    and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

  1. Results and commissioning issues from an automated demand response pilot

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-01-01

    of Fully Automated Demand Response in Large Facilities"Management and Demand Response in Commercial Buildings", L Band Commissioning Issues from an Automated Demand Response.

  2. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    CEC (2005b) Energy demand forecast methods report.growth in California energy demands forecast in the baseline2006-2016: Staff energy demand forecast (Revised September

  3. National Action Plan on Demand Response | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Working Group (FUPWG) Fall 2008 meeting-discusses the National Assessment of Demand Response study, the National Action Plan for Demand Response, and demand response as...

  4. Trends in Gulf Coast Power Supply, Demand, and Costs 

    E-Print Network [OSTI]

    Posey, L. G., Jr.

    1980-01-01

    load and peak load requirements are supplied by fuel oil, gas, and, where available, hydroelectric genera tors. Fuel Cost Forecast Three sources of information provide data to forecast fuel costs for each utility: ? Fuel contracts between... offsets are required for both NMHC and S02' These offsets are regarded as scarce corporate resources by the industries already operating in the area. They will be used carefUlly to optimize industrial growth with the least expensive offsets used first...

  5. Power-Demand Routing in massive geo-distributed systems

    E-Print Network [OSTI]

    Qureshi, Asfandyar

    2010-01-01

    There is an increasing trend toward massive, geographically distributed systems. The largest Internet companies operate hundreds of thousands of servers in multiple geographic locations, and are growing at a fast clip. A ...

  6. OpenEI Community - Global DC Power System Market Demand

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information OlindaOnslow County,OpTICOpenBarter Jump

  7. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service ofConditioning Filter | Department

  8. California Geothermal Power Plant to Help Meet High Lithium Demand |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California EnergyFuel CellDepartment

  9. California Geothermal Power Plant to Help Meet High Lithium Demand |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLCAdministration of theVersionProgram

  10. FERC Presendation: Demand Response as Power System Resources, October 29,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 2011 CX-006821:for EnergyEnergyDepartment2010 |

  11. Sandia Energy - ECIS-Princeton Power Systems, Inc.: Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNot ChemistryECMexico,Inverter

  12. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 5 D E M A N D R E S P O N S E T E C H N O L O G Y R O A D M A P Development of this roadmap occurred in stages between May 2014 and February 2015. The Bonneville Power...

  13. Partially Adaptive Stochastic Optimization for Electric Power ...

    E-Print Network [OSTI]

    Jikai Zou

    2015-01-03

    Jan 3, 2015 ... Abstract: Electric Power Generation Expansion Planning (GEP) is the problem ... expansion problem under demand and fuel price uncertainty.

  14. The Pacific Northwest Demand Response Market Demonstration

    SciTech Connect (OSTI)

    Chassin, David P.; Hammerstrom, Donald J.; DeSteese, John G.

    2008-07-20

    This paper describes the implementation and results of a field demonstration wherein residential electric water heaters and thermostats, commercial building space conditioning, municipal water pump loads, and several distributed generators were coordinated to manage constrained feeder electrical distribution through the two-way communication of load status and electric price signals. The field demonstration took place in Washington and Oregon and was paid for by the U.S. Department of Energy and several northwest utilities. Price is found to be an effective control signal for managing transmission or distribution congestion. Real-time signals at 5-minute intervals are shown to shift controlled load in time. The behaviors of customers and their responses under fixed, time-ofuse, and real-time price contracts are compared. Peak loads are effectively reduced on the experimental feeder. A novel application of portfolio theory is applied to the selection of an optimal mix of customer contract types. Index Terms—demand response, power markets, retail markets, distribution automation, distributed resources, load control.

  15. Electric Utility Demand-Side Evaluation Methodologies 

    E-Print Network [OSTI]

    Treadway, N.

    1986-01-01

    UTILITY DEMAND-SIDE EVALUATION METHODOLOGIES* Nat Treadway Public Utility Commission of Texas Austin, Texas ABSTRACT The electric. util ity industry's demand-side management programs can be analyzed ?from various points of view using a standard... cost and certification proceedings. A s~andard benefit-cost methodology analyzes demand-slde management programs from various ~oints of view. The benefit-cost methodology now ln use by several electric utilities and the * The views presented...

  16. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  17. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  18. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  19. Operationalizing demand forecasts in the warehouse

    E-Print Network [OSTI]

    Li, Dan, Ph. D. University of Rochester

    2015-01-01

    Demand planning affects the subsequent business activities including distribution center operational planning and management. Today's competitive environment requires distribution centers to rapidly respond to changes in ...

  20. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Broader source: Energy.gov (indexed) [DOE]

    January 16, 2011 Conference Call transcript: "Marketing & Driving Demand: Social Media Tools & Strategies," from the U.S. Department of Energy. Conference call transcript More...

  1. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation,...

  2. Optimization of Demand Response Through Peak Shaving

    E-Print Network [OSTI]

    Jul 5, 2013 ... Optimization of Demand Response Through Peak Shaving. G. Zakeri(g.zakeri *** at*** auckland.ac.nz) D. Craigie(David.Craigie ***at*** ...

  3. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    National Action Plan for Energy Efficiency Energy efficiency programson energy efficiency program types, see National Action PlanNational Action Plan for Energy Efficiency Most demand response programs

  4. Demand Response in the ERCOT Markets

    SciTech Connect (OSTI)

    Patterson, Mark

    2011-10-25

    ERCOT grid serves 85% of Texas load over 40K+ miles transmission line. Demand response: voluntary load response, load resources, controllable load resources, and emergency interruptible load service.

  5. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    Demand  Response  Roadmap  Project   Final  Report  39   5.   Developing a Roadmap Actionproject was to develop a “roadmap” to guide the Hawaiian

  6. Optimization of Demand Response Through Peak Shaving

    E-Print Network [OSTI]

    2013-06-19

    Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user ...

  7. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  8. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01

    conditioning. Figure 2: Wireless discharge air temperatureWireless Demand Response Controls for HVAC Systems Cliffordcontrol software and wireless hardware that could enable

  9. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    Forecasts of California transportation energy demand, 2005-alternative transportation energy pathways on California’salternative transportation energy pathways on California’s

  10. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search...

  11. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    systems absorb large amounts of hydroelectric power. Duringthat snow melts and hydroelectric power supply increases and

  12. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the following comments response NAESB Business Practice

  13. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    eliminate the charging station peak power demand for EVcan lower the station’s peak power demand and reduce thefor a workplace charging station, solar PV power cannot be

  14. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-01-01

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  15. Resource Allocation With Non-Deterministic Demands and Profits

    E-Print Network [OSTI]

    Preece, Alun

    100000$ Appeld'offrespublic 1 Demanded'approvisionnement 25000$àDemanded'approvisionnementet Appeld'offresurinvitationou 3soumissions 2 5000$àDemanded'approvisionnementet Appeld services reliés Services de professionnels 3000$àDemanded'approvisionnementet 1soumission 2 4

  16. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  17. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program...

  18. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    SciTech Connect (OSTI)

    Lv, Quiping; Sun, Xiaodong; Chtistensen, Richard; Blue, Thomas; Yoder, Graydon; Wilson, Dane

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  19. Control system analysis for off-peak auxiliary heating of passive solar systems

    SciTech Connect (OSTI)

    Murray, H.S.; Melsa, J.L.; Balcomb, J.D.

    1980-01-01

    A computer simulation method is presented for the design of an electrical auxiliary energy system for passive solar heated structures. The system consists of electrical mats buried in the ground underneath the structure. Energy is stored in the ground during utility off-peak hours and released passively to the heated enclosure. An optimal control strategy is used to determine the system design parameters of depth of mat placement and minimum instaled electrical heating capacity. The optimal control applies combinations of fixed duration energy pulses to the heater, which minimize the room temperature error-squared for each day, assuming advance knowledge of the day's weather. Various realizable control schemes are investigated in an attempt to find a system that approaches the performance of the optimal control system.

  20. Storing hydroelectricity to meet peak-hour demand

    SciTech Connect (OSTI)

    Valenti, M.

    1992-04-01

    This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

  1. Demand-scalable geographic multicasting in wireless sensor networks Shibo Wu *, K. Selcuk Candan

    E-Print Network [OSTI]

    Candan, Selçuk

    schemes for situations where scalable transmission paths can save power. In particular, we propose distributed and scalable manner. Furthermore, to save power of the sensors and routing nodes, networkDemand-scalable geographic multicasting in wireless sensor networks Shibo Wu *, K. Selc¸uk Candan

  2. Demand-Aware Price Policy Synthesis and Verification Services for Smart Grids

    E-Print Network [OSTI]

    Tronci, Enrico

    at the same time (peak hour), this may result in an economical damage (both for usage of peak power plants forcing residential end users to cut their power demand. On the other hand, if all users require energy interconnection. The first service, which we call EDN Virtual Tomography (EVT) service, considers the whole EDN

  3. Dynamic LMP Response Under Alternative Price-Cap and Price-Sensitive Demand Scenarios

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    profiles) implying essentially vertical demand curves. A key difficulty is that downstream retail markets Marginal Prices (LMPs) for bulk electric power when profit-seeking generators can learn over time how NSF- 0527460 and by a grant from the ISU Electric Power Research Center. Hongyan Li (lihy

  4. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide SandwichCray eraSkillsCross-Sector Sign In

  5. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:Delta Electric Power AssnDeluge Inc Jump

  6. Energy Demand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc JumpElko,ServiziEnergy

  7. THE PERFORMANCE OF QUEUING THEORETIC VIDEO ON DEMAND ALGORITHMS

    E-Print Network [OSTI]

    THE PERFORMANCE OF QUEUING THEORETIC VIDEO ON DEMAND ALGORITHMS BOURAS C.(1)(2), GAROFALAKIS J.(1,Greece KEYWORDS Video On Demand (VOD), Performance of Algorithms, Simulation, Modeling ABSTRACT Video On Demand on state-of-the-art technologies is Video On Demand (VOD). A Video On Demand System provides on demand

  8. Demand response in adjustment markets for electricity

    E-Print Network [OSTI]

    : electricity consumption, adjustment market, demand response, information asymmetry JEL codes: D11, D21, Q41 in the consumption of electric energy by retail customers from their expected consumption inDemand response in adjustment markets for electricity Claude Crampes and Thomas-Olivier Léautier

  9. MODELLING WOODLAND RECREATION DEMAND USING GEOGRAPHICAL

    E-Print Network [OSTI]

    Bateman, Ian J.

    MODELLING WOODLAND RECREATION DEMAND USING GEOGRAPHICAL INFORMATION SYSTEMS: A BENEFIT TRANSFER;MODELLING WOODLAND RECREATION DEMAND USING GEOGRAPHICAL INFORMATION SYSTEMS: A BENEFIT TRANSFER STUDY by Ian Research Promotion Fund. ISSN 0967-8875 #12;Abstract This paper utilizes geographical information systems

  10. Optimal Trading Strategy Supply/Demand Dynamics

    E-Print Network [OSTI]

    Gabrieli, John

    prices through the changes in their supply/demand.2 Thus, to study how market participants trade can have interesting implications on the observed behavior of intraday volume, volatility and prices: November 15, 2004. This Draft: April 8, 2006 Abstract The supply/demand of a security in the market

  11. Value of Demand Response -Introduction Klaus Skytte

    E-Print Network [OSTI]

    -of-supply and DR 15 minutes DaysHoursSeconds Adjustments of planned production Prognosis errors Excess capacity in demand to prices. Similar to Least-cost planning and demand-side management. DR differs by using prices: Curtailment of load, Direct load control, e.g. central control of electric comfort heating. Reservation prices

  12. Demand Response and Peak Load Management; Programs, Products and Technology 

    E-Print Network [OSTI]

    Barth, A.

    2015-01-01

    Management: Programs, Products, and Technology IETC 2015 ESL-IE-15-06-13 Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 2Supply & Demand Power Demand Grid Stability Reliability Risk Price Availability... ESL-IE-15-06-13 Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 What Should We Expect? 0 1000 2000 3000 4000 5000 6000 2 0 1 1 2 0 1 2 2 0 1 3 2 0 1 4 2 0 1 5 2 0 1 6 2 0 1 7 2 0 1 8 2 0 1 9 2 0...

  13. Patterns of crude demand: Future patterns of demand for crude oil as a func-

    E-Print Network [OSTI]

    Langendoen, Koen

    #12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion;5 Summary The crude oil market is actually experiencing dramatic changes on a world wide scale. Most schemes, and/or change quality of the feedstock (crude). Demand for crude oil is growing, especially

  14. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    systems absorb large amounts of hydroelectric power. Duringthat snow melts and hydroelectric power supply increases andfrom hydroelectric dams or discards renewable power [53].

  15. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01

    Current and projected capacity of wind power installations (of wind speed (left) and wind power pro- duction (right) forelectricity prices (left) and wind power production (right)

  16. The role of building technologies in reducing and controlling peak electricity demand

    SciTech Connect (OSTI)

    Koomey, Jonathan; Brown, Richard E.

    2002-09-01

    Peak power demand issues have come to the fore recently because of the California electricity crisis. Uncertainties surrounding the reliability of electric power systems in restructured markets as well as security worries are the latest reasons for such concerns, but the issues surrounding peak demand are as old as the electric utility system itself. The long lead times associated with building new capacity, the lack of price response in the face of time-varying costs, the large difference between peak demand and average demand, and the necessity for real-time delivery of electricity all make the connection between system peak demand and system reliability an important driver of public policy in the electric utility sector. This exploratory option paper was written at the request of Jerry Dion at the U.S.Department of Energy (DOE). It is one of several white papers commissioned in 2002 exploring key issues of relevance to DOE. This paper explores policy-relevant issues surrounding peak demand, to help guide DOE's research efforts in this area. The findings of this paper are as follows. In the short run, DOE funding of deployment activities on peak demand can help society achieve a more economically efficient balance between investments in supply and demand-side technologies. DOE policies can promote implementation of key technologies to ameliorate peak demand, through government purchasing, technology demonstrations, and improvements in test procedures, efficiency standards, and labeling programs. In the long run, R&D is probably the most important single leverage point for DOE to influence the peak demand issue. Technologies for time-varying price response hold great potential for radically altering the way people use electricity in buildings, but are decades away from widespread use, so DOE R&D and expertise can make a real difference here.

  17. Power Spectrum in Krein Space Quantization

    E-Print Network [OSTI]

    M. Mohsenzadeh; S. Rouhani; M. V. Takook

    2008-11-06

    The power spectrum of scalar field and space-time metric perturbations produced in the process of inflation of universe, have been presented in this paper by an alternative approach to field quantization namely, Krein space quantization [1,2]. Auxiliary negative norm states, the modes of which do not interact with the physical world, have been utilized in this method. Presence of negative norm states play the role of an automatic renormalization device for the theory.

  18. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  19. Optimizing Power Factor Correction 

    E-Print Network [OSTI]

    Phillips, R. K.; Burmeister, L. C.

    1986-01-01

    FACTOR CORRECTION Robert K. Phillips and Louis C. Burmeister, Mechanical Engineering, University of Kansas, Lawrence, KS The optimal investment for power factor correcting capacitors for Kansas Power and Light Company large power contract customers... consumer of electricity were made for demands of 200, 400, 800, 1,600, 3,200, and 6,400 k\\~ and monthly energy consumption periods of 100, 150, 200, 300, 400, and 500 hours for several capacitor purchase and installation costs. The results...

  20. Adjustable Speed Drive Power Quality Evaluation Program

    E-Print Network [OSTI]

    Strangas, Elias G.

    Unruh from Consumers Power provided technical guidance, while Ms. Heidi Muir from Demand Side Management and managed by Detroit Edi- son, Consumers Power and Drive manufacturers to evaluate the operational charac