National Library of Energy BETA

Sample records for delivered fossil fuel

  1. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  2. DOE - Fossil Energy: How Fossil Fuels Were Formed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Fuel Formation Fossil Energy Study Guides How Fossil Fuels were Formed Contrary to what many people believe, fossil fuels are not the remains of dead dinosaurs. In fact,...

  3. No Fossil Fuel - Kingston | Open Energy Information

    Open Energy Info (EERE)

    Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Advanced fossil fuel combustor

    SciTech Connect (OSTI)

    Rogers, B.

    1995-05-01

    Charged with enhancing the use of US fossil energy resources, the Morgantown Energy Technology Center (METC) is a federal Department of Energy research center that performs its own research and also manages the work of contractors. One interesting recent METC project is the effort to develop a ``multiannular swirl burner`` (MSB) for use in an advanced fossil fuel combustion system. The design is being developed by an outside contractor with funding and technical assistance from METC. Recently, EG and G Technical Services of West Virginia was asked to provide analytical support to the contractor developing the MSB. Design projects like this usually require building and testing a series of very expensive prototypes. Recent success with computational fluid dynamic (CFD) design techniques, however, have generated a great deal of excitement because of its ability to reduce research and development costs. Using FLUENT, a CFD package from Fluent Inc., EG and G was able to predict, with a high degree of accuracy, the performance of one of the MSB combustor prototypes. Furthermore, the model provided researchers with a more detailed understanding of the proposed design`s performance characteristics.

  5. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  6. Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Staples Delivers on Fuel Efficiency to someone by E-mail Share Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Google Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Delicious Rank Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Digg Find More

  7. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greening up fossil fuels with carbon sequestration 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Greening up fossil...

  8. No Fossils in This Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast  a simple, living organism  breaks the sugar down into ethyl alcohol, or

  9. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greening up fossil fuels with carbon sequestration 1663 Los Alamos science and technology magazine Latest Issue:March 2016 past issues All Issues » submit Greening up fossil fuels with carbon sequestration Researchers make progress fighting climate change by capturing carbon dioxide from power plants and storing it deep underground in geological reservoirs March 25, 2013 Greening up fossil fuels with carbon sequestration Most of the world's existing energy supply is stored underground in

  10. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy ...

  11. Synthetic fossil fuel technologies: health problems and intersociety...

    Office of Scientific and Technical Information (OSTI)

    Conference: Synthetic fossil fuel technologies: health problems and intersociety cooperation Citation Details In-Document Search Title: Synthetic fossil fuel technologies: health ...

  12. fossil fuels | OpenEI Community

    Open Energy Info (EERE)

    energy becomes more competitive with fossil fuels in OECD countries, reports of this nature can go a long way to supporting more and more development. The four new reports in...

  13. Replace Fossil Fuels, Final Technical Report Roberts, William...

    Office of Scientific and Technical Information (OSTI)

    Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Roberts, William L 09 BIOMASS FUELS biofuels, glycerin, glycerol,...

  14. Thermal dissolution of solid fossil fuels

    SciTech Connect (OSTI)

    E.G. Gorlov

    2007-10-15

    The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

  15. Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels

  16. Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trucks Seattle Bakery Delivers With Biodiesel Trucks to someone by E-mail Share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Facebook Tweet about Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Twitter Bookmark Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Google Bookmark Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Delicious Rank Alternative Fuels Data

  17. Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...

    Open Energy Info (EERE)

    Fuel CO2 Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany...

  18. Fossil fuel is king with energy producers

    SciTech Connect (OSTI)

    Hansen, T.

    1996-11-01

    Worldwide energy consumption is expected to double today`s levels by 2020, according to the World Energy Council. As diverse energy needs develop, fossil fuels are expected to continue to be the major source for power generation throughout the world. In the United States, utility deregulation is making low-cost fuel and power plant efficiency more important than ever. Electricity generators see both natural gas and coal as the fuels that will allow them to best meet the nation`s future energy needs. Coal will see less increase in its share of electricity generation than natural gas due to the costs associated with meeting the Clean Air Act Amendments` (CAAA) requirements. According to Organizations for Economic Cooperation Development, coal in both the United States and Europe will experience a 12 percent growth by 2010. Even with this somewhat slow growth, coal will remain the nation`s number one fuel for electricity generation well into the next century.

  19. Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Tractors Foodliner Delivers Goods in Illinois With Natural Gas Tractors to someone by E-mail Share Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois With Natural Gas Tractors on Facebook Tweet about Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois With Natural Gas Tractors on Twitter Bookmark Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois With Natural Gas Tractors on Google Bookmark Alternative Fuels Data Center: Foodliner

  20. Alternative Fuels Data Center: Schwan's Home Service Delivers With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane-Powered Trucks Schwan's Home Service Delivers With Propane-Powered Trucks to someone by E-mail Share Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Facebook Tweet about Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Twitter Bookmark Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Google Bookmark Alternative Fuels Data Center: Schwan's Home Service

  1. Fossil fuel conversion--measurement and modeling

    SciTech Connect (OSTI)

    Solomon, P.R.; Smoot, L.D.; Serio, M.A.; Hamblen, D.G.; Brewster, B.S.; Radulovic, P.T.

    1994-10-01

    The main objective of this program is to understand the chemical and physical mechanisms in coal conversion processes and incorporate this knowledge in computer-aided reactor engineering technology for the purposes of development, evaluation, design, scale-up, simulation, control and feedstock evaluation in advanced coal conversion devices. To accomplish this objective, this program will: (1) provide critical data on the physical and chemical processes in fossil fuel gasifiers and combustors; (2) further develop a set of comprehensive codes; and (3) apply these codes to model various types of combustors and gasifiers (fixed-bed, transport reactor, and fluidized-bed for coal and gas turbines for natural gas).

  2. Minimising greenhouse gas emissions from fossil fuels

    SciTech Connect (OSTI)

    Freund, P.

    1997-07-01

    Combustion of fossil fuels is the main anthropogenic source of carbon dioxide, the principal greenhouse gas. Generation of electricity is the single largest user of fossil fuels, world-wide. If there is international agreement about the need to make substantial reductions in greenhouse gas emissions, then having access to suitable, effective technology would be important. This would help avoid the need for precipitate action, such as radical changes in the energy supply systems. Capture and disposal of greenhouse gases from flue gases can achieve substantial reductions in greenhouse gas emissions. This can be realized with known technology. In this paper, the range of options will be summarized and steps needed to achieve further progress will be identified. Emissions of other gases, such as methane, are also expected to influence the climate. Methane is emitted from many anthropogenic sources; the IEA Greenhouse Gas programme is investigating ways of reducing these emissions. Opportunities for abatement of methane emissions associated with coal mining will be described. Reduction in emissions from drainage gas is relatively straightforward and can, in appropriate circumstances, generate useful income for the none operator. More substantial amounts of methane are discharged in mine ventilation air but these are more difficult to deal with. In this paper, a summary will be given of recent progress in reducing methane emissions. Opportunities will be examined for further research to progress these technologies.

  3. Fossil Fuels Study Guide - High School | Department of Energy

    Energy Savers [EERE]

    Fuels Study Guide - High School Fossil Fuels Study Guide - High School PDF icon Fossil Fuels Study Guide - High School More Documents & Publications Coal Study Guide for Elementary School Coal Study Guide - Middle School Secondary Energy Infobook and Secondary Infobook Activities (19 Activities)

  4. Fossil Fuel-Generated Energy Consumption Reduction for New Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings and Major Renovations of Federal Buildings | Department of Energy Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking. File fossilfuel.docx More Documents & Publications Fossil Fuel-Generated Energy Consumption

  5. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Broader source: Energy.gov (indexed) [DOE]

    the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document. File ...

  6. Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy...

    Open Energy Info (EERE)

    Brazil-NETL Advanced Fossil Fuels Partnerships (Redirected from Brazil-NETL Cooperation) Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation...

  7. Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy...

    Open Energy Info (EERE)

    Brazil-NETL Advanced Fossil Fuels Partnerships Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation AgencyCompany Organization National Energy...

  8. Optimization of fossil fuel sources: An exergy approach

    SciTech Connect (OSTI)

    Camdali, U.

    2007-02-15

    We performed linear programming for optimization of fossil fuel supply in 2000 in Turkey. For this, an exergy analysis is made because the second law of thermodynamics takes into account the quality of energy as well as quantity of energy. Our analyses showed that the interfuel substitution between different fossil fuels will lead to a best energy mix of the country. The total retail price of fossil fuels can be lowered to 11.349 billion US$ from 13.012 billion US$ by increasing the domestic production of oil, lignite, and hard coal and by decreasing imports. The remaining demand can be met by natural gas imports. In conclusion, our analysis showed that a reduction of 1.663 billion US$ in fossil fuel cost can be made possible by giving more emphasis on domestic production, particularly of oil, lignite and hard coal.

  9. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 ii This report...

  10. Fossil Fuel-Generated Energy Consumption Reduction for New Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings and Major Renovations of Federal Buildings OIRA Comparison Document | Department of Energy Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Document details the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document. File fossilfuel_compare2014.docx More

  11. Disclosure of Permitted Communication Concerning Fossil Fuel Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 | Department of Energy Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No.

  12. Solubilities of heavy fossil fuels in compressed gases

    SciTech Connect (OSTI)

    Monge, A. Jr.

    1982-01-01

    Design of processes for upgrading heavy fossil fuels such as coal-derived liquids, heavy petroleum fractions, tar sands, and shale oil, requires quantitative information for equilibrium properties of the fossil fuel in the presence of compressed light gases at elevated temperatures. Presented here are methods to predict and measure solubilities of heavy fossil fuels in compressed gases in the region ambient to 100 bar and 600 K. A molecular-thermodynamic model is used to predict heavy fossil-fuel solubilities. The heavy fuel is fractionated ina spinning-band column at low pressure and high reflux; each fraction is considered to be a pseudo-component. Each fraction is characterized by one vapor-pressure datum (obtained during fractionation), elemental analysis, and proton-NMR spectra (to determine aromaticity). Liquid-phase properties are obtained from the SWAP equation for vapor pressure and from a density correlation. Vapor-phase properties are obtained using the virial equation of state with virial coefficients from Kaul's correlation. The molecular-thermodynamic model has been used to establish a design-oriented computer program for calculating heavy, fossil-fuel solubility for general application in process design and, in particular, for isobaric condensation as a function of temperature as required for design of a continuous-flow heat exchanger. A total-vaporization technique is used to measure the solubilities of narrow-boiling, heavy fossil-fuel fractions in compressed gases. The solubility of a heavy fraction is determined from the volume of gas required to vaporize completely a small, measured mass of fossil-fuel sample. To test the molecular-thermodynamic model, the total-vaporization technique has been used to measure the solubilities of two Lurgi coal-tar fractions in compressed methane. Predicted and experimental solubilities agree well.

  13. Fossil fuel combined cycle power system

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  14. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    SciTech Connect (OSTI)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  15. Fossil fuel combined cycle power generation method

    DOE Patents [OSTI]

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  16. Norwegian carbon taxes and their implication for fossil fuels

    SciTech Connect (OSTI)

    Kaarstad, O.

    1995-12-31

    The Scandinavian countries, and in particular Norway and Sweden, have since 1990/91 taxed CO{sub 2}-emissions with carbon tax of about US $150 per ton of CO{sub 2}. One may therefore say that these countries have placed themselves in a role as {open_quotes}carbon tax laboratories{close_quotes}. These very high CO{sub 2}-taxes have been in place for about four years and the first lessons from this experience are reported. In general it would seem as if the taxation mechanism is less efficient than economists have expected. The CO{sub 2}-emissions are increasing in both Norway and Sweden and the stabilization goal to the year 2000 will not be achieved in spite of the high taxation. The fossil fuel industry will have to learn to live with the climate change question which is inherently hostile to fossil fuels. It is argued that a more informed and active participation by the fossil fuel industry is needed in the climate change discussion. In addition the image of fossil fuels will benefit from showing real and potential improvement in the area of greenhouse gas emissions in the whole energy chain from production to combustion. The R&D effort being done into CO{sub 2}-capture and -disposal is creating such an option for the future. It is argued that the image of the entire fossil fuel industry will benefit from the creation of a {open_quotes}CO{sub 2}-free{close_quote} option or vision for oil, gas and coal. A number of examples are shown where today (or in the near future) actual CO{sub 2}-disposal in underground formations are taking place.

  17. Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay

  18. US fossil fuel technologies for Thailand

    SciTech Connect (OSTI)

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

    1990-10-01

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

  19. Fossil fuels in a sustainable energy future

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  20. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-09-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  1. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-07-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRB and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  2. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-04-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming process, mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  3. U.S. DOE fossil energy fuel cell program

    SciTech Connect (OSTI)

    Wayne Surdoval

    2007-07-01

    The U.S. Department of Energy's Office of Fossil Energy's National Energy Technology Laboratory, in partnership with private industry, educational institutions, and national laboratories, is leading the research, development, and demonstration of high efficiency, fuel flexible solid oxide fuel cells (SOFCs) and coal based SOFC power generation systems for stationary markets. This Fuel Cell Program has three parts: Solid State Energy Conversion Alliance (SECA) cost reduction, SECA fuel cell coal based systems, and advanced SECA systems. The SECA cost reduction goal is to have SOFCs capable of being mass manufactured at $400 per kilowatt by 2010. Concurrently, the scale-up, aggregation, and integration of the technology will progress in parallel leading to prototype validation of megawatt class products by 2012 with potential testing at FutureGen. The SECA coal-based and advanced systems goals are the development of megawatt-class fuel cell power systems that will enable affordable, reliable, efficient, and environmentally-friendly electrical power from coal.

  4. Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trucks Golden Eagle Delivers Beer With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Delicious Rank

  5. An oxy-hydrocarbon model of fossil fuels

    SciTech Connect (OSTI)

    Fred D. Lang; Tom Canning

    2007-09-15

    This paper asserts a new method of analyzing fossil fuels, useful for sorting coals into well-defined categories and for the identification of outlying ultimate analysis data. It describes a series of techniques starting with a new multivariant approach for describing the lower ranks of coal, progressing to a classical, but modified, single-variant approach for the volatile and high-energy ranks. In addition, for a few special cases, multiple low and high ranks are also well described by the multivariant approach. As useful as these techniques are for analyzing fuel chemistry in the laboratory arena, this work was initiated in support of Exergetic Systems' Input/Loss Method. At commercial coal-fired power plants, Input/Loss allows the determination of fuel chemistry based on combustion effluents. The methods presented allow equations to be developed independent of combustion stoichiometrics, which improve Input/Loss accuracy in determining fuel chemistry on-line and in real time.

  6. Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    with Electric Trucks Lee's Summit R-7 School District Delivers with Electric Trucks to someone by E-mail Share Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers with Electric Trucks on Facebook Tweet about Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers with Electric Trucks on Twitter Bookmark Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers with Electric Trucks on Google Bookmark Alternative Fuels Data Center: Lee's

  7. Formulating Energy Policies Related to Fossil Fuel Use:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONF-9 O O 255 --I DE90 008741 Formulating Energy Policies Related to Fossil Fuel Use: i Critical Uncertainties in the Global Carbon Cycle. W. M. Post, V. H. Dale, D. L. DeAngelis, L. K. Mann, P. J. Mulholland, R. V. O'Neill, T. -H. Peng, M. P. Farrell Environmental Sciences Division Oak Ridge National Laboratory Post Office Box 2008 Oak Ridge, Tennessee 37831 The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Understanding the global carbon cycle

  8. Mitigating environmental pollution and impacts from fossil fuels: The role of alternative fuels

    SciTech Connect (OSTI)

    Liu, L.; Cheng, S.Y.; Li, J.B.; Huang, Y.F.

    2007-07-01

    In order to meet the rising global demand for energy, rapid development of conventional fossil fuels (i.e., coal, oil, and natural gas) have been experienced by many nations, bringing dramatic economic benefit and prosperity to fossil-fuel industries as well as well being of human society. However, various fossil-fuel related activities emit huge quantities of gaseous, liquid, and solid waste materials, posing a variety of impacts, risks, and liabilities to the environment. Therefore, on the one hand, control measures are desired for effectively managing pollution issues; on the other hand, it becomes extremely critical to invest efforts in finding promising alternative energy sources as solutions to the possible energy shortage crisis in future. This article focuses on both aspects through: (1) a discussion of waste materials generated from fossil-fuel industries and waste management measures; and (2) an exploration of some well-recognized alternative fuels in terms of their nature, availability, production, handling, environmental performances, and current and future applications. The conclusion restates the urgency of finding replaceable long-term alternatives to the conventional fuels.

  9. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the

    Office of Scientific and Technical Information (OSTI)

    United States (Journal Article) | SciTech Connect Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States Citation Details In-Document Search Title: Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical

  10. Carter, L.D. 20 FOSSIL-FUELED POWER PLANTS; COAL GASIFICATION...

    Office of Scientific and Technical Information (OSTI)

    carbon capture, utilisation, and storage Carter, L.D. 20 FOSSIL-FUELED POWER PLANTS; COAL GASIFICATION; POWER GENERATION; CARBON DIOXIDE; CAPTURE; STORAGE; USA; ENHANCED...

  11. EPRI-DOE Joint Report on Fossil Fleet Transition with Fuel Changes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Large Scale Variable Renewable Integration Now Available EPRI-DOE Joint Report on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration ...

  12. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  13. Rajendran, N. 36 MATERIALS SCIENCE; 20 FOSSIL-FUELED POWER PLANTS...

    Office of Scientific and Technical Information (OSTI)

    ACI Committee 229 Rajendran, N. 36 MATERIALS SCIENCE; 20 FOSSIL-FUELED POWER PLANTS; 01 COAL, LIGNITE, AND PEAT; FLY ASH; WASTE PRODUCT UTILIZATION; BACKFILLING; THERMAL...

  14. Fossil fuel derivatives with reduced carbon. Phase I final report

    SciTech Connect (OSTI)

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  15. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    SciTech Connect (OSTI)

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  16. Progress performance report of clean uses of fossil fuels

    SciTech Connect (OSTI)

    Todd, Jr., Lee T.; Boggess, Ronald J.; Carson, Ronald J.; Falkenberg, Virginia P.; Flanagan, Patrick; Hettinger, Jr., William P.; Kimel, Kris; Kupchella, Charles E.; Magid, Lee J.; McLaughlin, Barbara; Royster, Wimberly C.; Streepey, Judi L.; Wells, James H.; Stencel, John; Derbyshire, Frank J.; Hanley, Thomas R.; Magid, Lee J.; McEllistrem, Marc T.; Riley, John T.; Steffen, Joseph M.

    1992-01-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  17. Progress performance report of clean uses of fossil fuels

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled ``Clean Uses of Fossil Fuels.`` was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  18. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32...

    Office of Scientific and Technical Information (OSTI)

    Lee, G.T.; Sudhoff, F.A. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; FUEL CELL POWER PLANTS; GAS TURBINE...

  19. Better batteries to break dependence on fossil fuels > EMC2 News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better batteries to break dependence on fossil fuels April 28th, 2015 By Linda B. ... said Abrua, which means better and more affordable designs for fuel cells and batteries. ...

  20. The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification

    SciTech Connect (OSTI)

    Svendsen, R.L.

    1996-12-31

    Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

  1. Low-emission vortex combustion of biomass and fossil fuel

    SciTech Connect (OSTI)

    Finker, F.Z.; Kubischkin, I.B.; Akhmedov, D.B.

    1995-11-01

    The article introduces the results of development and industrial experience of low-emission vortex combustion technology (LEVC) of biomass and fossil fuel in industrial and utility boilers in Russian timber and paper industries and Polish power plants. The LEVC technology is based on aerodynamics method of multiple circulation of gases and fuel in the furnaces. LEVC technology accumulates the advantages of conventional and fluidized bed combustion technology. Existing boilers could be easily retrofitted for the application of LEVC technology without requiring major investment. The repowering of boiler with LEVC was the result the reduction NOx emission to the level 170g/GJ without installation additional flue gas cleaning equipment and it gave the opportunity for an injection of sulfur sorbent in the furnace. The authors discussed Russian-Polish experiment on utility boiler retrofitted with the application of LEVC. As the result the efficiency of the boiler increased in 2%. The reduction of the emission is: NOx-40%, SO2-17%.

  2. Refractory failure in IGCC fossil fuel power systems

    SciTech Connect (OSTI)

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2001-01-01

    Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

  3. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  4. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect (OSTI)

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

  5. Emissions from ethanol-blended fossil fuel flames

    SciTech Connect (OSTI)

    Akcayoglu, Azize

    2011-01-15

    A fundamental study to investigate the emission characteristics of ethanol-blended fossil fuels is presented. Employing a heterogeneous experimental setup, emissions are measured from diffusion flames around spherical porous particles. Using an infusion pump, ethanol-fossil fuel blend is transpired into a porous sphere kept in an upward flowing air stream. A typical probe of portable digital exhaust gas analyzer is placed in and around the flame with the help of a multi-direction traversing mechanism to measure emissions such as un-burnt hydrocarbons, carbon monoxide and carbon dioxide. Since ethanol readily mixes with water, emission characteristics of ethanol-water blends are also studied. For comparison purpose, emissions from pure ethanol diffusion flames are also presented. A simplified theoretical analysis has been carried out to determine equilibrium surface temperature, composition of the fuel components in vapor-phase and heat of reaction of each blend. These theoretical predictions are used in explaining the emission characteristics of flames from ethanol blends. (author) This paper presents the results of an experimental study of flow structure in horizontal equilateral triangular ducts having double rows of half delta-wing type vortex generators mounted on the duct's slant surfaces. The test ducts have the same axial length and hydraulic diameter of 4 m and 58.3 mm, respectively. Each duct consists of double rows of half delta wing pairs arranged either in common flow-up or common flow-down configurations. Flow field measurements were performed using a Particle Image Velocimetry Technique for hydraulic diameter based Reynolds numbers in the range of 1000-8000. The secondary flow field differences generated by two different vortex generator configurations were examined in detail. The secondary flow is found stronger behind the second vortex generator pair than behind the first pair but becomes weaker far from the second pair in the case of Duct1. However, the strength of the secondary flow is found nearly the same behind the first and the second vortex generator pair as well as far from the second vortex generator pair in the case of Duct2. Both ducts are able to create a counter-rotating and a second set of twin foci. Duct2 is able to create the second set of twin foci in an earlier streamwise location than Duct1, as these foci are well-known to their heat transfer augmentation. A larger vortex formation area and a greater induced vorticity field between vortex pairs are observed for Duct2 compared with Duct1. As the induced flow field between the vortex pairs increases the heat transfer, and as the flow field between the vortex cores is found larger in the case of Duct2, therefore, it is expected to obtain better heat transfer characteristics for Duct2 compared with Duct1. (author)

  6. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Map Appendix State/area maps Figure A1. Fossil fuel production on federal and Indian lands, FY 2014 Source: U.S. Energy Information Administration based on U.S. Department of the Interior, Office of Natural Resources Revenue. "ONNR Statistical Information Site" (http://statistics.onrr.gov). July 2015 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2014 24 Figure A2. Changes in fossil fuels production (trillion

  7. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  8. EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2011-01-21

    Berkeley Lab researchers Greg Newman and Michael Commer have developed advanced software for discovering and mapping offshore fossil fuel deposits. When combined with established seismic methods, this software makes possible direct imaging of reservoir fluids....

  9. Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS...

    Office of Scientific and Technical Information (OSTI)

    Liquid-fluidized-bed heat exchanger flow distribution models Cole, L.T.; Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS; FLUIDIZED BED HEAT EXCHANGERS; DESIGN;...

  10. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  11. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    This paper was prepared in response to recent requests that the U.S. Energy Information Administration (EIA) provide updated summary information regarding fossil fuel production on federal and...

  12. fan blades Karr, O.F.; Brooks, J.B.; Seay, E. 20 FOSSIL-FUELED...

    Office of Scientific and Technical Information (OSTI)

    draft fan blades Karr, O.F.; Brooks, J.B.; Seay, E. 20 FOSSIL-FUELED POWER PLANTS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 42 ENGINEERING NOT INCLUDED IN OTHER...

  13. Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption

    SciTech Connect (OSTI)

    Korkmaz, S.; Kara-Gulbay, R.; Turan, M.

    2008-07-01

    Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

  14. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect (OSTI)

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  15. 2004 Office of Fossil Energy Fuel Cell Program Annual Report

    SciTech Connect (OSTI)

    NETL

    2004-11-01

    Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

  16. Standard for the qualification of high capacity fossil fuel fired plant operators

    SciTech Connect (OSTI)

    Axtman, W.

    1996-12-31

    The American Society of Mechanical Engineers, at the request of the U.S. Environmental Protection Agency (EPA) and, in recognition of the needs and benefits associated with standard qualifications of operators of high capacity fossil fuel fired plants, established the Qualifications of High Capacity Fossil Fuel Fired Operator (QFO) Committee in 1994. The purpose of the QFO Committee is to develop and maintain such a standard for operators. This standard includes qualifications, duties, responsibilities and the certification requirements for operators as appropriate to The Clean Air Act as amended in 1990 for fossil fuel fired plants with inputs equal to or greater than 10,000 Btu/hr. This Standard does not cover the certification or validation of fossil plant operating procedures, operating practices, facility performance, nor compliance with any particular permit requirement. This standard recognizes the titles or positions to which any particular fossil plant operator may apply, will vary within a facility. Therefore, this standard does not attempt to identify the individual who is required to obtain certification in any class designation. The fossil plant owner is urged to contact the local jurisdiction in which the fossil plant is located in this regard. This standard does not in itself require certification but rather it serves as a means for complying with federal, state, and local regulations which require operators of fossil fuel fired boilers with inputs equal to or greater than 10,000,000 But/hr to be certified. Safety codes and standards are intended to enhance public health and safety. Revisions to this Standard result from committee considerations of factors such as technological advances, new data, and changing environmental and industry needs. Revisions do not imply that previous editions of this standard were inadequate.

  17. Clean Cities Case Study: UPS delivers with Alternative Fuels

    SciTech Connect (OSTI)

    Frailey, M.

    1999-08-30

    In the fall of 1994, the UPS fleet in Landover, Maryland, began operating 20 vehicles on CNG. UPS selected CNG because natural gas is an abundant domestic resource that is available in almost every city in the US, and it also generally costs less than other fuels. The UPS project, funded by DOE through NREL and managed by TRI, was designed to test the feasibility of using CNG in a medium-duty pick-up and delivery fleet. This study is intended only to illustrate approaches that organizations could use in adopting AFVs into their fleets.

  18. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  19. Municipal waste combustion assessment: Fossil fuel co-firing. Final report, October 1988-July 1989

    SciTech Connect (OSTI)

    Landrum, V.J.; Barton, R.G.

    1989-07-01

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; and describes the population of coal fired boilers that currently co-fire RDF, have previously co-fired RDF but have ceased to do so, and have been used in RDF co-firing demonstrations. (Fossil fuel co-firing, defined as the combustion of RDF with another fuel (usually coal) in a device designed primarily to burn the other fuel, is generally confined to commercial and utility boilers.) Model plants are developed and good combustion practices are recommended.

  20. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014 July 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2014 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  1. Combustion system for hybrid solar fossil fuel receiver

    DOE Patents [OSTI]

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  2. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect (OSTI)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  3. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect (OSTI)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine; Wada, Kenichi; van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  4. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect (OSTI)

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  5. Steam-reforming of fossil fuels and wastes to produce energy and chemicals without greenhouse gases

    SciTech Connect (OSTI)

    Galloway, T.R.

    1998-07-01

    Worldwide concern has demanded a re-examination of the energy- and chemical-producing plants that use fossil fuel sources and release large quantities of greenhouse gases. Plant retrofits with steam-reformer/gasifiers will increase plant efficiencies, improve economics and avoid releasing troublesome amounts of greenhouse gases, such as carbon dioxide. In this paper, the authors describe and illustrate the several new steam-reforming/gasification plants that are processing waste streams and fossil fuels. These plants range in size from 1 ton/day to 2,000 tons/day. They are commercial and economically successful. These new concepts can be used to both upgrade fossil plants for improved economics while eliminating the release of greenhouse gases. By aggressively retrofitting old coal plants and sequestering CO{sub 2}, a 15% reduction in 1990 CO{sub 2} emissions can be met by the US by 2010.

  6. Environmental review for the conversion of Bellefonte Nuclear Plant to fossil fuel

    SciTech Connect (OSTI)

    Carter, R.; Rucker, H.; Summers, R.

    1998-07-01

    The Tennessee Valley Authority recently issued for public review a Draft Environmental Impact Statement for the conversion of the unfinished Bellefonte Nuclear Plant to fossil fuel. The DEIS was structured to support three tiers of decision making. Tier 1 is to decide between the No-Action Alternative, which is to leave Bellefonte as a partially completed nuclear plant into the indefinite future, and the Proposed Action Alternative, which is to proceed with converting Bellefonte to fossil fuel. Tier 2 is to select one of five conversion options. In the DEIS, TVA indicated no preference among the five competing fossil conversion options. The five conversion pathways would fully repower the plant consistent with fossil fuel availability, would use commercially ready systems and technologies and be designed to fully utilize the capacity of transmission lines serving Bellefonte. Conversion options addressed were pulverized coal (PC), natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), IGCC with joint production of electricity and chemicals, and an option, which combines elements of NGCC and IGCC with coproduction. Tier 3 involves decisions about eight sub-option choices, basically types of processes, equipment, and modes of operation, which is part of two or more conversion options. An example of a sub-option choice would be the type of gasifier that would be used in conversion options involving coal or petroleum coke gasification. Other sub-option choices addressed in the DEIS were natural gas pipeline corridors; fuels, feedstocks, and by-products transportation modes; types of combustion turbines; solid fuels; types of boilers for conventional coal-fired options; chemical production mixes; and modes of onsite solid fuel conveyance. The impact of constructing and operating each proposed fossil conversion option at Bellefonte were evaluated for 18 environmental resource and economic categories.

  7. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    SciTech Connect (OSTI)

    Linville, B.

    1982-10-01

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  8. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

  9. Environmental impact of fossil fuel combustion in power generation

    SciTech Connect (OSTI)

    Allen, J.W.; Beal, P.R.

    1996-12-31

    All the recent developments in the combustion systems employed for power generation have been based on environmental considerations. Combustion modifications have been developed and utilised in order to control NO{sub x} emissions and improvements continue to be made as the legislative requirements tighten. Chemical processes and fuel switching are used to control SO{sub x} emissions. After nitrogen, carbon dioxide is the major gas emitted from the combustion process and its potential potency as a greenhouse gas is well documented. Increased efficiency cycles, mainly based on natural gas as the prime fuel, can minimise the amount of CO{sub x} produced per unit of power generated. As the economics of natural gas utilisation become less favourable a return to clean coal technology based power generation processes may be required.

  10. Orimulsion conversion boosts prospects of `fourth` fossil fuel

    SciTech Connect (OSTI)

    1995-04-01

    This article describes how, by retrofitting a 100-MW oil-fired and a 215-MW coal-fired unit, one utility turned a plant destined for peaking service into a base-load asset with a predictable fuel bill and manageable emissions-even in environmentally sensitive Atlantic Canada. Six years ago, New Brunswick Power Corp (NB Power) found itself on the horns of a dilemma. For years, the utility had been searching for a powerplant fuel with a more stable price than oil, which at the time was fueling one-third of its generating capacity. Buying and burning more domestic coal-even at twice the price of offshore supplies-was the preferred option, because that would also help keep New Brunswick`s coal mines open. But by 1989, federal and provincial legislation had begun to plan for stringent limits on SO{sub 2} emissions that would take the local-coal card out of NB Power`s hand. Containing up to 8% sulfur, New Brunswick coal would be too dirty to burn by itself; emissions from a 200-MW unit would alone use up nearly half of the utility`s system-wide annual quota for SO{sub 2} emissions schedules for imposition in 1994. Enter Bitor America Corp, the Boca Raton (Fla) marketing subsidiary of the world`s third-largest oil company, Petroleos de Venezuela SA (PdVSA). Looking to further the fortunes of Orimulsion, a liquid emulsion of bitumen and water from the Orinoco region of Venezuela, Bitor funded and provided technical support for the first large-scale test burn of the fuel in the 100-MW Unit 1 of NB Power`s Dalhousie station in northern New Brunswick. After making the required modifications, NB Power burned Orimulsion in Unit 1 for two years. By 1991, the utility had cleanly converted more than a million barrels of the fuel to nearly half a million megawatt-hours of electricity-in the process finding few reasons not to commit to permanently converting Dalhousie`s Unit 1, as well as coal fired 215-MW Unit 2, to burn Orimulsion.

  11. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema (OSTI)

    McGraw, Jennifer

    2013-05-28

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  12. Technical considerations in repowering a nuclear plant for fossil fueled operation

    SciTech Connect (OSTI)

    Patti, F.J.

    1996-03-01

    Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today`s world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal.

  13. Timing is everything : along the fossil fuel transition pathway.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

    2013-10-01

    People save for retirement throughout their career because it is virtually impossible to save all you'll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is,To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?' Existing models do not include full regulatory constraints due to their often complex, and inflexible approaches to solve foroptimal' engineering instead ofrobust' and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework ormodule' to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the model's capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technology's demand in the marketplace.

  14. Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine

    SciTech Connect (OSTI)

    Reader, G.T.; Potter, I.J.

    1995-12-31

    The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

  15. Chlorine induced corrosion of steels in fossil fuel power plants

    SciTech Connect (OSTI)

    Spiegel, M.; Grabke, H.J.

    1998-12-31

    The corrosion of steels in power plants (coal combustion, waste incineration) is mainly due to condensed chlorides in the ash deposited on the boiler tubes. These chlorides are stabilized by HCl in the combustion gas. In the case of coal as a fuel, chlorine is present as chloride minerals in the raw material which is converted to HCl during the combustion process. Corrosion of steels in chlorine containing environments occurs by the active oxidation mechanism, which is a self-sustaining accelerated oxidation process, catalyzed by chlorine. This study shows that solid chlorides react with the oxide scale of the steels to form chlorine, which initiates active oxidation. In order to prevent chlorine induced corrosion, the deposition of chlorides on the tubes within the coal ash must be avoided. This is possible by the presence of SO{sub 2}, which is present in the combustion gas, converting the chlorides to sulfates in the gas phase. The paper presents an example of a failure case in a coal fired plant in Germany. In this plant, chlorine induced corrosion was observed after effective removal of SO{sub 2} by additions of CaO. From thermodynamic calculations it can be shown that a certain amount of SO{sub 2} is necessary in order to avoid deposition of chlorides and to prevent corrosion.

  16. Further experience for environmental improvement in fossil fuel combustion

    SciTech Connect (OSTI)

    Lazzeri, L.; Santis, R. de

    1998-12-31

    Reburning is a technology which has proven, by plant demonstration, capable of providing compliance with very stringent regulatory emissions requests (less than 90 ppm NO{sub x} firing oil and gas and less than 160--170 ppm firing coal). Designing a Reburn System requires a contemporary control of many parameters like flow rates, local stoichiometries residence times, etc.; it also requires the availability and capability of using complex and sophisticated numerical modeling. Although the system can be adapted to any already installed hardware it should be noted that the availability of reliable LNB`s and of specifically designed OFA`s and Reburn fuel injectors can greatly enhance the system performance. Design of OFA system is a subcase of a Reburn System design, as it implies same concepts of mixing and residence times which are the basis of Reburn System. As shown in the cases previously presented Reburning always provides additional margins to OFA operation specifically when very low emission limits are pursued. Finally it should be noted that the use of Reburning may create problems of unburned specifically when very low local stoichiometries and when very low sulfur oils are used which are often characterized by asphaltene instability especially when STZ oil is the result of blending high and low sulfur oils. A specific know-how has been jointly developed by Ansaldo and ENEL to solve these problems acting on both atomizer type selection and operation.

  17. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; et al

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increasesmore » strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less

  18. Fossil fuel-fired peak heating for geothermal greenhouses

    SciTech Connect (OSTI)

    Rafferty, K.

    1997-01-01

    Greenhouses are a major application of low-temperature geothermal resources. In virtually all operating systems, the geothermal fluid is used in a hot water heating system to meet 100% of both the peak and annual heating requirements of the structure. This strategy is a result of the relatively low costs associated with the development of most US geothermal direct-use resources and past tax credit programs which penalized systems using any conventional fuel sources. Increasingly, greenhouse operations will encounter limitations in available geothermal resource flow due either to production or disposal considerations. As a result, it will be necessary to operate additions at reduced water temperatures reflective of the effluent from the existing operations. Water temperature has a strong influence on heating system design. Greenhouse operators tend to have unequivocal preferences regarding heating system equipment. Many growers, particularly cut flower and bedding plant operators, prefer the {open_quotes}bare tube{close_quotes} type heating system. This system places small diameter plastic tubes under the benches or adjacent to the plants. Hot water is circulated through the tubes providing heat to the plants and the air in the greenhouse. Advantages include the ability to provide the heat directly to the plants, low cost, simple installation and the lack of a requirement for fans to circulate air. The major disadvantage of the system is poor performance at low (<140{degrees}F) water temperatures, particularly in cold climates. Under these conditions, the quantity of tubing required to meet the peak heating load is substantial. In fact, under some conditions, it is simply impractical to install sufficient tubing in the greenhouse to meet the peak heating load.

  19. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  20. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. Fossil fuel sales of production from federal lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 679 3,939 33.0% 93 347 14.7% 6,798 6,981 35.7% 436 8,960 40.6%

  1. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 2. Fossil fuel sales of production from Indian lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 10 59 0.5% 2 6 0.3% 283 291 1.5% 30 616 2.8% 972 1.7% 2004 10 58

  2. In-situ FT-IR diagnostics for monitoring and control of fossil fuel combustion

    SciTech Connect (OSTI)

    Bonanno, A.S.; Wojtowicz, M.A.; Serio, M.A.; Nelson, C.M.; Solomon, P.R.

    1995-12-31

    This paper describes the development and testing of a prototype fourier transform infrared (FT-IR) based measurement system for continuous emission monitoring (CEM) and process control in fossil fuel-fired power plants. On several occasions, prototype systems have been transported and assembled at full-scale and pilot-scale fossil fuel-fired combustors. The in-situ version of the prototype is able to measure NH{sub 3} and HCl concentrations, which are difficult to measure extractively, as well as CO, CO{sub 2}, NO{sub x}, H{sub 2}O, and SO{sub x} concentrations. The results of recent tests will be presented which involve in-situ monitoring of selective non-catalytic reduction (SNCR) of NO{sub x} based on simultaneous measurement of NO, NH{sub 3} and CO.

  3. NREL: Technology Deployment - Fossil Fuel Dependency Falls from 100% to 56%

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Alcatraz Island Fossil Fuel Dependency Falls from 100% to 56% on Alcatraz Island News Solar Cells Light Up Prison Cells on 'The Rock' Sponsors U.S. National Park Service American Recovery and Reinvestment Act Key Partners National Park Service Golden Gate National Recreation Area National Park Service Denver Services Center Princeton Power Inc. University of Washington Lawrence Berkeley National Laboratory U.S. DOE Federal Energy Management Program Related Stories U.S. Virgin Islands

  4. March 2016 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy, Office of Scientific and Technical Information Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 310 Bamboo: An Overlooked Biomass Resource? Scurlock, J.M.O. (2000) 197 Solubility of methane in water under natural conditions: a laboratory study. Final report, April 1, 1978-June 30, 1982 Blount, C.W.; Price, L.C. (1982) 186 ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF

  5. EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification - Energy Innovation Portal Energy Analysis Energy Analysis Find More Like This Return to Search EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification Lawrence Berkeley National Laboratory Contact LBL About This Technology Plots of electrical conductivity over the Troll Field in the North Sea produced by analyzing 3D electromagnetic field data. Plots of electrical conductivity over the Troll Field in the North Sea produced by analyzing 3D

  6. High capacity fossil fuel fired plant operator training program. Student handbook. Final report

    SciTech Connect (OSTI)

    Pearson, S.; Gardner, M.; Nguyen, Q.

    1994-09-30

    The operator of fossil fuel-fired boilers has a significant responsibility in assuring that the unit is continuously operated in a manner which complies with the various state and federal regulations. The course will emphasize the operating principles for all types of boilers and for all types of control equipment used for controlling air emissions from boilers. The course will emphasize the significant operating parameters that directly influence air emissions.

  7. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1997-05-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1996-01-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Advanced technologies for co-processing fossil and biomass resources for transportation fuels and power generation

    SciTech Connect (OSTI)

    Steinberg, M.; Dong, Y.

    2004-07-01

    Over the past few decades, a number of processes have been proposed or are under development for coprocessing fossil fuel and biomass for transportation fuels and power generation. The paper gives a brief description of the following processes: the Hydrocarb system for converting biomass and other carbonaceous fuels to elemental carbon and hydrogen, methane or methanol; the Hynol process where the second step of the Hydrocarb process is replaced with a methane steam reformer to convert methane to CO and H{sub 2}S without deposition of carbon; the Carnol process where CO{sub 2} from coal and the biomass power plants is reacted with hydrogen to produce methanol; and advanced biomass high efficiency power generator cycle where a continuous plasma methane decomposition reactor (PDR) is used with direct carbon fuel cell to produce power and carbon and hydrogen. 13 refs., 5 figs., 2 tabs.

  10. EPRI-DOE Joint Report on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration Now Available

    Broader source: Energy.gov [DOE]

    A new report “Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration” from the Electric Power Research Institute (EPRI) and jointly funded by the Offices of...

  11. EA-1778: Proposed Rule, 10 CFR 433 and 435, Energy Conservation and Fossil Fuel-Generated Energy

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of DOE's Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings and 10 CFR Part 435, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings.

  12. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect (OSTI)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  13. Long-term tradeoffs between nuclear- and fossil-fuel burning

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1996-12-31

    A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

  14. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    SciTech Connect (OSTI)

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  15. Table 1.15 Non-Combustion Use of Fossil Fuels, 1980-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Non-Combustion Use of Fossil Fuels, 1980-2011 Year Petroleum Products Natural Gas 4 Coal Total Percent of Total Energy Consumption Asphalt and Road Oil Liquefied Petroleum Gases 1 Lubricants Petro- chemical Feedstocks 2 Petroleum Coke Special Naphthas Other 3 Total Physical Units 5<//td> 1980 145 230 58 253 14 [R] 37 58 795 [R] 639 2.4 [ – –] [ – –] 1981 125 229 56 216 15 [R] 27 54 722 [R] 518 [R] 2.1 [ – –] [ – –] 1982 125 256 51 157 15 [R] 25 48 678 [R] 448 [R] 1.4 [ – –] [

  16. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gurney, Kevin

    Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  17. Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983

    SciTech Connect (OSTI)

    Linville, B.

    1983-07-01

    Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

  18. Evaluation of innovative fossil fuel power plants with CO{sub 2} removal

    SciTech Connect (OSTI)

    2000-07-15

    This interim report presents initial results of an ongoing study of the potential cost of electricity produced in both conventional and innovative fossil fueled power plants that incorporate carbon dioxide (CO{sub 2}) removal for subsequent sequestration or use. The baseline cases are natural gas combined cycle (NGCC) and ultra-supercritical pulverized coal (PC) plants, with and without post combustion CO{sub 2} removal, and integrated gasification combined cycle (IGCC) plants, with and without pre-combustion CO{sub 2} removal.

  19. Comparison of emissions from landfills, municipal waste combustors, and fossil fuel-fired utilities

    SciTech Connect (OSTI)

    1996-11-01

    Landfilling is the most popular disposal method for managing municipal solid waste (MSW). However, air emissions from MSW landfills have generally been unregulated until recently. Instead, EPA has focused on emissions from municipal waste combustors (MWCs), even though they only manage 15% of MSW generated in the United States. In the past, little data have been available comparing landfill and MWC air emissions. Such information is provided by this paper. It also compares emissions from waste-to-energy MWCs and fossil fuel-fired utilities with equivalent electrical generation capacity. 1 refs., 6 tabs.

  20. USVI Makes Headway Toward Goal to Reduce Fossil Fuel 60% by 2025

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil prices spike to over $145/ barrel and price of electricity exceeds $0.50/kWh in U.S. Virgin Islands (USVI) USVI announces goal to reduce fossil fuel use 60% by 2025 In 3rd most active hurricane season on record, Earl hits USVI Virgin Islands Energy O ce (VIEO) launches Sun Power Loan Program WAPA installs waste heat recovery plant, adding 19 MW of power without burning a single drop of additional oil VIEO awards nearly $1 million to USVI nonpro ts for energy e ciency and renewable energy

  1. A brief overview of Chinese Design Code on Fossil-Fueled Power Plants

    SciTech Connect (OSTI)

    Xu Zhongqing; He Yehong

    1996-10-01

    The Chinese Design Code on Fossil Fueled Power Plants (DL 5000-94) was issued in April 1994 by the Ministry of Electric Power Industry, P.R. China, and the English version has been drafted and will be formally published in the near future. Based on the 1984 version and the nation`s current policies, the 1994 version was formed to meet the challenges of the nation`s speedy development of electric power construction. In general, the code is primarily a directive document guiding the planning and engineering of China`s large- and medium-sized fossil-fueled power plants. The preparation of the 1984 version and the revision of it to the 1994 version were all carried out by the East China Electric Power Design Institute under the direction of Electric Power Planning and Engineering Institute. For small-sized power plants with unit rating of 25 MW and below, there is another national design code titled Code for Design of Small Sized Power Plants (GB 50049-94) issued in November 1994 jointly by the China`s National Technology Supervision Administration and the Ministry of Construction.

  2. Identifying fly ash at a distance from fossil fuel power stations

    SciTech Connect (OSTI)

    Flanders, P.J.

    1999-02-15

    A method has been developed to identify fly ash originating at fossil fuel power stations, even at a distance where the ash level is lower by a factor of 1000 from that close to a source. Until now such detection has been difficult and uncertain. The technique combines collection of particles, measurement of magnetization and coercive field, and microscopy. The analysis depends on the fact that ash from iron sulfide in fossil fuels is in the form of spherical magnetite. These particles have a relatively high coercive field H{sub c}, near 135 Oe, compared with airborne particulates from soil erosion which have an H{sub c} of {approximately}35 Oe. The coercive field of any sample therefore gives an indication for the percentage of fly ash relative to the total amount of magnetic material that is airborne. The concentration of ash from a large, isolated coal burning power station is found to fall off with the distance from the source, approximately as D{sup {minus}1}. As D increases there is a drop in H{sub c}, associated with the reduced amount of fly ash relative to the airborne particulates from soil erosion.

  3. Fossil Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy Fossil Energy Below are resources for Tribes on fossil energy. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper...

  4. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  5. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  6. Senator Dorgan and Under Secretary Orr to Deliver Remarks at 2015 Fuel Cell Technologies and Vehicle Technologies Annual Merit Review

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Fuel Cell Technologies Office and the Vehicle Technologies Office announce that Senator Byron L. Dorgan (ret.) and DOE’s Under Secretary for Science and Energy Franklin Orr will deliver remarks at the 2015 Hydrogen and Fuel Cell Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Monday, June 8.

  7. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect (OSTI)

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  8. Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Trillion Btu Percent

  9. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    SciTech Connect (OSTI)

    Michael Petrik; Robert Ruhl

    2012-03-31

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled “Small Scale SOFC Demonstration using Bio-based and Fossil Fuels.” Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  10. Results of studies on application of CCMHD to advanced fossil fuel power plant cycles

    SciTech Connect (OSTI)

    Foote, J.P.; Wu, Y.C.L.S.; Lineberry, J.T.

    1998-07-01

    A study was conducted to assess the potential for application of a Closed Cycle MHD disk generator (CCMHD) in advanced fossil fuel power generation systems. Cycle analyses were conducted for a variety of candidate power cycles, including simple cycle CCMHD (MHD); a cycle combining CCMHD and gas turbines (MHD/GT); and a triple combined cycle including CCMHD, gas turbines, and steam turbines (MHD/GT/ST). The above cycles were previously considered in cycle studies reported by Japanese researchers. Also considered was a CCMHD cycle incorporating thermochemical heat recovery through reforming of the fuel stream (MHD/REF), which is the first consideration of this approach. A gas turbine/steam turbine combined cycle (GT/ST) was also analyzed for baseline comparison. The only fuel considered in the study was CH4. Component heat and pressure losses were neglected, and the potential for NOx emission due to high combustion temperatures was not considered. Likewise, engineering limitations for cycle components, particularly the high temperature argon heater, were not considered. This approach was adopted to simplify the analysis for preliminary screening of candidate cycles. Cycle calculations were performed using in-house code. Ideal gas thermodynamic properties were calculated using the NASA SP- 273 data base, and thermodynamic properties for steam were calculated using the computerized ASME Steam Tables. High temperature equilibrium compositions for combustion gas were calculated using tabulated values of the equilibrium constants for the important reactions.

  11. Table 3.7 Value of Fossil Fuel Imports, 1949-2011 (Thousand Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Value of Fossil Fuel Imports, 1949-2011 (Thousand Dollars) Year Coal Coal Coke Natural Gas Crude Oil 1 Petroleum Products 2 Total Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 1949 2,368 16,332 [R] 3,976 27,423 [R] 0 0 304,658 2,101,235 [R] 137,130 945,789 [R] 448,132 3,090,779 [R] 1950 2,624 17,904 [R] 5,297 36,142 [R] 0 0 369,208 2,519,159 [R] 214,629 1,464,445 [R] 591,758 4,037,650 [R] 1951 2,420 15,402 [R] 1,932 12,296 [R] 0 0 374,869

  12. Table 3.8 Value of Fossil Fuel Exports, 1949-2011 (Thousand Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Value of Fossil Fuel Exports, 1949-2011 (Thousand Dollars) Year Coal Coal Coke Natural Gas Crude Oil Petroleum Products 1 Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 297,179 2,049,652 [R] 8,323 57,404 [R] 1,823 12,573 [R] 98,425 678,840 [R] 461,439 3,182,557 [R] 867,189 5,981,026 [R] 1950 269,195 1,836,756 [R] 6,159 42,024 [R] 3,199 21,827 [R] 102,717 700,853 [R] 394,434 2,691,280 [R] 775,704 5,292,740 [R] 1951 586,056

  13. Table 3.9 Value of Fossil Fuel Net Imports, 1949-2011 (Thousand Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Value of Fossil Fuel Net Imports, 1949-2011 (Thousand Dollars) Year Coal Coal Coke Natural Gas Crude Oil Petroleum Products 1 Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 -294,811 -2,033,320 [R] -4,347 -29,981 [R] -1,823 -12,573 [R] 206,233 1,422,395 [R] -324,309 -2,236,768 [R] -419,057 -2,890,248 [R] 1950 -266,571 -1,818,852 [R] -862 -5,882 [R] -3,199 -21,827 [R] 266,491 1,818,306 [R] -179,805 -1,226,835 [R] -183,946

  14. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table 7. Sales of fossil fuel production from federal and Indian lands by state/area, FY 2003-14 trillion Btu State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 75 57 51 47 40 42 60 88 86 71 46 29 Alaska 61 66 68 52 32 28 27 23 21 19 18 21 Arizona 258 273 280 193 180 162 157 154 164 163 167 158 Arkansas 7 8 10 10 10 11 15 18 14 13 11 11 California 141 125 124 139 146 129 116 115 121 125 121 119 Colorado 785 842 960 906 905 931 846 868 917 952 875 877 Florida 0 - - - - -

  15. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L.; Summers, Cathy A.; Gerdemann, Steve; Oryshchyn, Danylo B.; Turner, Paul; Patrick, Brian R.

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  16. A creep damage estimation method for in-service fossil fuel boiler superheater tubes

    SciTech Connect (OSTI)

    Nogata, F. . Dept. of Mechanical Engineering); Takahashi, H. . Research Inst. of Fracture Technology)

    1995-02-01

    Because mechanical properties of structural materials for high-temperature use, such as boiler tubing, degrade during long-term service, it is essential to detect toughness degradation by means of a nondestructive and simple field test technique. A grain boundary etching technique is developed to detect material degradation, and assess creep strength and notch toughness. An etching test using a picric acid solution with a wetting agent or using 20 percent HNO[sub 3] with alcoholic solution was found to have great potential for the nondestructive estimation of grain boundary embrittlement caused by carbide and sigma precipitation in SUS stainless steel. The feasibility of this estimation procedure was determined showing the relationships between Charpy impact energy (CVN) and grooving width (W[sub GS]), and creep damage ratio ([Phi]) and W[sub GS]. Superheater tubes of fossil fuel boiler were tested on site to demonstrate the validity of this technique.

  17. An optical gas temperature probe for high temperature fossil fuel process streams

    SciTech Connect (OSTI)

    Bauman, L.E.; Cook, R.L.; Lineberry, J.T.; Litchford, R.J.

    1995-12-31

    Reported here are the results of a feasibility study of a modular optical gas temperature probe for direct measurement of gas temperature in fossil-fueled combustion streams. A probe based upon the spectroscopic technique of line reversal would be superior to currently available gas temperature technology. The study concluded that a modular form of the line reversal optical temperature probe is feasible and, as such. the probe should be a commercially viable product with potential economic benefits from improved monitoring and control of utility furnaces. Such a probe will have the capability of making direct measurements of gas temperature in hot (>1500 K) process streams of coal combustion systems and large-scale power plant facilities.

  18. Device for separating CO2 from fossil-fueled power plant emissions

    DOE Patents [OSTI]

    Burchell, Timothy D.; Judkins, Roddie R.; Wilson, Kirk A.

    2002-04-23

    A gas separation device includes an inner conduit, and a concentric outer conduit. An electrically conductive filter media, preferably a carbon fiber composite molecular sieve, is provided in the annular space between the inner conduit and the outer conduit. Gas flows through the inner conduit and the annular space between the inner conduit and the outer conduit, so as to contact the filter media. The filter media preferentially adsorbs at least one constituent of the gas stream. The filter media is regenerated by causing an electric current to flow through the filter media. The inner conduit and outer conduit are preferably electrically conductive whereby the regeneration of the filter media can be electrically stimulated. The invention is particularly useful for the removal of CO.sub.2 from the exhaust gases of fossil-fueled power plants.

  19. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/03

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions.

  20. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/02

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions. (DMC)

  1. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  2. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-10-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  4. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  5. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    1993-09-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  6. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-02-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/01

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985 and 2025. Residential, commercial, and industrial energy demands are forecast as well as the impacts of energy technology implementation and market penetration using a set of energy technology assumptions. (DMC)

  8. sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields

    Energy Science and Technology Software Center (OSTI)

    2014-10-06

    The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The softwaremore » can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field being estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.« less

  9. sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields

    SciTech Connect (OSTI)

    2014-10-06

    The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The software can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field being estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.

  10. An overview of alternative fossil fuel price and carbon regulation scenarios

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2004-10-01

    The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2) current oil prices, (3) externally generated oil price forecasts, and (4) the historical difficulty in accurately forecasting oil prices. Overall, a spread between the FE-EERE High Oil Price and Reference scenarios of well over $8/bbl is supported by the literature. We conclude that a wide range of carbon regulation scenarios are possible, especially within the time frame considered by EERE and FE (through 2050). The Working Group's Carbon Cap-and-Trade Scenario is found to be less aggressive than many Kyoto-style targets that have been analyzed, and similar in magnitude to the proposed Climate Stewardship Act. The proposed scenario is more aggressive than some other scenarios found in the literature, however, and ignores carbon banking and offsets and does not allow nuclear power to expand. We are therefore somewhat concerned that the stringency of the proposed carbon regulation scenario in the 2010 to 2025 period will lead to a particularly high estimated cost of carbon reduction. As described in more detail later, we encourage some flexibility in the Working Group's ultimate implementation of the Carbon Cap-and-Trade Scenario. We conclude by identifying additional scenarios that might be considered in future analyses, describing a concern with the proposed specification of the High Fuel Price Scenario, and highlighting the possible difficulty of implementing extreme scenarios with current energy modeling tools.

  11. An Internet-based interactive module for air emissions from fossil fuel based power generation

    SciTech Connect (OSTI)

    Karman, D.; O`Leary, K.; O`Reilly, S.

    1997-12-31

    The proliferation of the Internet, Web pages and associated software tools available for developing multimedia material provides significant opportunities in training, education and information transfer. This paper will describe the development, testing and evaluation of an interactive teaching module aimed at college and university students that have previous education in thermodynamics and basic chemistry. The module is currently in development at the Department of Civil and Environmental Engineering at Carleton University with support from Environment Canada. Preliminary testing of this module is expected to begin late January. The module contains options to look at CO, CO{sub 2}, SO{sub 2} and NO{sub x} emissions associated with electric power generation in thermal stations that use coal, natural gas, crude and distillate oil. Factors governing the thermal efficiency of typical boiler systems and the thermodynamic limitations for converting heat into work are discussed. Supporting background information such as emission trends and emission factors used in calculations are also included as part of this module. A simple Rankine cycle without reheat or regeneration is considered to compare the emissions per unit energy delivered from each of the fuels considered. For natural gas and distillate oil, combined cycle operation is considered with a gas turbine-heat recovery steam generator combination replacing the boiler in the simple Rankine cycle. For all fuels, the cogeneration option is investigated by expanding the steam to an intermediate pressure in the turbine and utilizing the remaining heat by condensing the steam in a heat recovery application. Emission factors and basic information on CO, SO{sub 2} and NO{sub x} control technologies are utilized to calculate and report the emissions per unit energy delivered under the various scenarios investigated.

  12. The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector

    SciTech Connect (OSTI)

    Steinberg, M.; Dong, Yuanji; Borgwardt, R.H.

    1993-10-01

    Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

  13. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  14. Table 3.2 Value of Fossil Fuel Production, 1949-2011 (Billion Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    Value of Fossil Fuel Production, 1949-2011 (Billion Dollars) Year Coal 1 Natural Gas 2 Crude Oil 3,4 Total Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 1949 2.52 17.37 [R] 0.33 2.24 4.68 32.27 [R] 7.52 51.88 [R] 1950 2.91 19.84 [R] .44 3.00 4.95 33.80 [R] 8.30 56.64 [R] 1951 3.05 19.40 [R] .52 3.32 [R] 5.69 36.19 [R] 9.26 58.92 [R] 1952 2.67 16.73 [R] .64 4.01 5.79 36.25 [R] 9.11 56.99 [R] 1953 2.55 15.79 [R] .76 4.67 [R] 6.32 39.06 [R] 9.63 59.52 [R] 1954 2.02 12.40 [R]

  15. The impact of environmental regulation on productivity in the US fossil-fueled power plants

    SciTech Connect (OSTI)

    Whang, J.

    1993-12-31

    The purpose of this dissertation is to examine the impact of environmental regulation on productivity in the U.S. fossil fueled electric generating industry. With the oil shocks, environmental regulation has been considered as one of the main culprits for the apparent productivity slowdown during the 1970`s. Even though new pieces of legislation are continuously enacted to regulate hazardous pollutants emitted, it is difficult to find thorough and meaningful analyses on the effects of regulation. Without exact measurement of regulation effects, it is not easy to design socially efficient environmental policies to reconcile several conflicting goals. Using plant-level production and environmental data for the last two decades, the effects of differentiated environmental regulation are carefully examined. Since unbalanced panel data set is used, fixed-effects and random-effects models are also examined. The estimated impact of environmental regulation explains 6 to 10 percent of the variation of total factor productivity growth rates. This appears to be a relatively mild effect compared with several previous studies.

  16. Determining NO{sub x} emissions from fossil fuel-fired sources

    SciTech Connect (OSTI)

    McNeel, A.

    1996-11-01

    To determine nitrogen oxides (NO{sub x}) emissions, the concentration of NO{sub x} within the stack gas must be determined. USEPA Reference Methods 7, 7A, 7C, 7D and/or 7E are the procedures to be used for NO{sub x} measurement as referenced in 40 CFR 60 subparts D, Da, Db and Dc - {open_quotes}Standards of performance for fossil fuel-fired steam generators...{open_quotes}. Depending upon the reason for determining NO{sub x} emissions, information in addition to NO{sub x} concentrations may be needed. Generally, USEPA Reference Methods 1 - 4 will be used to gather the additional data needed to satisfy the specific need for determining NO{sub x} emissions. The following text outlines the individual NO{sub x} sampling methodology, the relative costs of the reference method (RM) sampling, and the use of the resulting reference method data to calculate emissions in units of applicable standards.

  17. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  18. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOE Patents [OSTI]

    Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.

    1997-01-01

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  19. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  20. An expanded review and comparison of greenhouse gas emissions from fossil fuel and geothermal electrical generating facilities

    SciTech Connect (OSTI)

    Booth, R.B.; Neil, P.E.

    1998-12-31

    This paper provides a review of the greenhouse gas emissions due to fossil fuel and geothermal electrical generation and to the emissions of their respective support activities. These support activities consist of, exploration, development, and transportation aspects of the fuel source, including waste management. These support activities could amount to an additional 6% for coal, 22% for oil, 13% for natural gas and 1% for geothermal. The presented methodologies and underlying principles can be used to better define the resultant emissions, rankings and global impacts of these electrical generating industries.

  1. Comparison of AB2588 multipathway risk factors for California fossil-fuel power stations

    SciTech Connect (OSTI)

    Gratt, L.B.; Levin, L.

    1997-12-31

    Substances released from power plants may travel through various exposure pathways resulting in human health and environmental risks. The stack air emission`s primary pathway is inhalation from the ambient air. Multipathway factors (adjustment factors to the inhalation risk) are used to evaluate the importance of non-inhalation pathways (such as ingestion and dermal contact). The multipathway factor for a specific substance is the health risk by all pathways divided by the inhalation health risk for that substance. These factors are compared for fossil fuel power stations that submitted regulatory risk assessments in compliance with California Toxic Hot Spots Act (AB2588). Substances representing the largest contributions to the cancer risk are of primary concern: arsenic, beryllium, cadmium, chromium (+6), formaldehyde, nickel, lead, selenium, and PAHs. Comparisons of the chemical-specific multipathway factors show the impacts of regulatory policy decisions on the estimated health risk for trace substances. As an example, point estimates of the soil mixing depth, varying from 1 cm to 15 cm, relate to the relative importance of the pathway. For the deeper mixing depths, the root-zone uptake by homegrown tomato plants (for assumed consumption rate of 15% for San Diego) may result in high multipathway factors for several trace metals. For shallower mixing depths, soil ingestion may become the dominant non-inhalation pathway. These differences may lead to significantly different risk estimates for similar facilities located at different California locations such as to be under local regulatory authorities. The overall multipathway factor for the total cancer risk is about 2, much smaller than some of the chemical-specific factors. Science-based multipathway analysis should reduce much of the concern that may be due to policy-based decisions on pathway selection and high-value point-estimates of the parameters.

  2. FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation

    SciTech Connect (OSTI)

    Zitney, S.E.

    2006-11-01

    This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

  3. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol

    SciTech Connect (OSTI)

    Haywood, J.M.; Roberts, D.L.; Slingo, A.

    1997-07-01

    A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different aerosol profiles, relative humidity parameterizations, chemical compositions, and internal and external mixtures of the two aerosol types are investigated. The contribution to the radiative forcing from cloudy sky regions is found to be negligible for sulfate aerosol; this is in contrast to recent studies where the cloudy sky contribution was estimated using a method in which the spatial correlation between cloud amount and sulfate burden was ignored. However, the radiative forcing due to fossil-fuel soot aerosol is enhanced in cloudy regions if soot aerosol exists within or above the cloud. The global solar radiative forcing due to sulfate aerosol is estimated to be -0.38 W m{sup -2} and the global thermal radiative forcing is estimated to be +0.01 W m{sup -2}. The hemispheric mean radiative forcings vary by only about 10% for reasonable assumptions about the chemical form of the sulfate aerosol and the relative humidity dependence; the uncertainties in the aerosol loading are far more significant. If a soot/sulfate mass ratio of 0.075 is assumed, then the global solar radiative forcing weakens to -0.18 W m{sup -2} for an external mixture and weakens further for an internal mixture. Additionally, the spatial distribution of the radiative forcing shows strong negative/positive forcing contrasts that may influence the dynamical response of the atmosphere. Although these results are extremely sensitive to the adopted soot/sulfate ratio and the assumed vertical profile, they indicate that fossil-fuel soot aerosol may exert a nonnegligible radiative forcing and emphasize the need to consider each anthropogenic aerosol species. 58 refs., 8 figs., 1 tab.

  4. Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation

    SciTech Connect (OSTI)

    Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R.; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A.

    2014-03-14

    Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known signal-to-noise problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in the meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.

  5. Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report

    SciTech Connect (OSTI)

    Nelson, C.

    1995-08-01

    Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

  6. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 85 citations and includes a subject term index and title list.)

  7. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 84 citations and includes a subject term index and title list.)

  8. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-03-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

  10. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. ROSE-based compact simulator for fossil fuel-fired power plant

    SciTech Connect (OSTI)

    Dana, H.; Burelle, R.

    1996-11-01

    Nuclear simulators specifications typically ask for {open_quotes}high fidelity full scope replica simulator{close_quotes}. This request is not only the norm but also mandatory due to the strict regulations and safety concerns in that industry. It is an unquestionable fact that these types of simulators do provide the most realistic and effective environment to train control room operators in normal, abnormal operations, and especially in emergency conditions which would be difficult to rehearse otherwise. Utilities in the fossil industry who could afford the price that these top of the line simulators demand would not hesitate long to acquire one. Fortunately for the others, this industry has the luxury to be more flexible in its simulator`s needs which permits utilities to select a simulator within their specific budget. They may chose from a wide range of different types of simulators, including full scope or partial scope, high fidelity or generic, hardware control rooms replicas or CRT-based graphical emulations. In all cases, a simulator must be economically beneficial to plant operations to justify its cost. Taking into account the distinctive requirements of the fossil industry, including their budget constraints, CAE used its vast experience in nuclear simulators to produce a user-friendly, CRT-based compact fossil simulator, using ROSE (Real-time Object-oriented Software Environment). This paper describes the specifics and characteristics of the ROSE-base compact simulator.

  12. EPRI-DOE Joint Report Focuses on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration

    Broader source: Energy.gov [DOE]

    The Energy Department released a report on fossil fleet transition with renewable integration, describing operational and engineering challenges to the fossil generation fleet.

  13. Los Alamos Lab: Fossil Energy & Environment, Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Fossil Energy, as well as projects supported by the Department of Interior ... to the entire fossil fuel cycle, from exploration and production to capture and storage ...

  14. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect (OSTI)

    Xiao, Hai; Dong, Junhang; Lin, Jerry; Romero, Van

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  15. Can industry`s `fourth` fossil fuel establish presence in US?

    SciTech Connect (OSTI)

    Armor, A.F.; Dene, C.E.

    1996-09-01

    After five years of commercial experience burning Orimulsion overseas, US utilities are now evaluating the new fuel as a serious alternative to oil. In their relentless drive to remain competitive, electric utilities with oil-fired generating units are searching for lower cost fuel alternatives. Because of high fuel prices, oil-fired units have low capacity factors. Only 23 out of 142 oil-capable units in the US had capacity factors greater than 50% in 1993; the average was a mere 24%. Utility consumption of fuel oil slid from over 600,000 barrels (bbl)/day in 1989 to less than 200,000 bbl/day last year. Orimulsion now fuels nearly 3,000 MW/yr worldwide. The UK`s PowerGen Ltd, currently the world`s largest consumer of Orimulsion, fires some 10-million bbl/yr at two 500-MW units at its Ince plant and three 120-MW units at its Richborough plant. Both plants formerly burned fuel oil, and have been using Orimulsion since 1991. Canada`s New Brunswick Power Corp has fired Orimulsion in two units at its Dalhousie plant since 1994 (Power, April 1995, p 27); one 105-MW unit was originally designed for fuel oil, the other 212-MW unit was designed for coal. Last year, Denmark`s SK Power converted its coal-fired, 700-MW Asnaes Unit 5 to Orimulsion firing. And in the US, Florida Power and Light Co. (FP and L) has signed a 20-yr fuel supply contract with Bitor America Corp (Boca Raton, Fla.), for two 800-MW units at the oil-fired Manatee plant, contingent on securing necessary permits. The Manatee installation (Power, September 1994, p 57) would be the first in the US to burn the fuel. Today, five years after Orimulsion begun to be used commercially, many of the lingering questions involving the new fuel`s handling, transportation, combustion, emissions control, spill control, and waste utilization have been settled. Several US utilities have expressed serious interest in the fuel as an alternative to oil.

  16. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    SciTech Connect (OSTI)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  17. Control of SO{sub 2} and NOx emissions from fossil fuel-fired power plants: Research and practice of TPRI

    SciTech Connect (OSTI)

    Ming-Chuan Zhang

    1993-12-31

    The generation of electric power in China has been dominated by coal for many years. By the end of 1990, total installed generating capacity reached 135 GW, of which fossil fuel-fired plants accounted for 74 percent. The total electricity generated reached 615 TWh, with fossil fuels accounting for 80.5 percent. About 276 million tons of raw coal are consumed in these fossil fuel-burning units per year, accounting for about 25 percent of the total output of the country. According to the government, by the year 2000, the total installed capacity of Chinese power systems should be at least 240 GW, of which fossil fuels will account for about 77 percent. The coal required for power generation will increase to about 530 million tons per year, accounting for about 38 percent of the total coal output. So, it is obvious that coal consumed in coal-fired power plants occupies a very important place in the national fuel balance. The current environmental protection standards, which are based on ground-level concentrations of pollutants, do not effectively lead to the control of pollution emission concentrations or total SO{sub 2} emissions. Due to the practical limitations of the Chinese economy, there is a limited capability to introduce advanced sulfur emission control technologies. Thus, except for the two 360 MW units imported from Japan for the Luohuang Power Plant in Shichuan province, all the other fossil fuel-fired units have not yet adopted any kind of SO{sub 2} removal measures. The Luohuang units are equipped with Mitsubishi limestone flue gas desulfurization systems. Because of the lack of effective pollution control technologies, large areas of the country have been seriously polluted by SO{sub 2}, and some of them even by acid rain.

  18. Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles

    Broader source: Energy.gov [DOE]

    Solid oxide fuel cell (SOFC) technology being developed by the U.S. Department of Energy (DOE) for coal-based central power generation is being adapted by the U.S. Office of Naval Research for use in advanced unmanned undersea vehicles (UUVs).

  19. Fossil fuel power plants: Computer systems for power plant control, maintenance, and operation. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning fossil fuel power plant computer systems. Minicomputer and microcomputer systems used for monitoring, process control, performance calculations, alarming, and administrative applications are discussed. Topics emphasize power plant control, maintenance and operation. (Contains 250 citations and includes a subject term index and title list.)

  20. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    SciTech Connect (OSTI)

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

  1. A formalized approach to cycle chemistry improvement in fossil fuel power plants

    SciTech Connect (OSTI)

    Dimmer, J.P.; Dooley, R.B.

    1995-01-01

    The overall cost impact of cycle chemistry problems in fossil plants is typically hidden within the statistics of component forced outages, efficiency losses and premature end of useful component life. Corrosion of components in US utility steam generating plants is responsible for an estimated 50% of forced outages and over three billion dollars a year in additional operating and maintenance costs. These problems are usually the direct result of repeat incidents of impurity ingress, corrosion, and/or corrosion product generation transport, and deposition on heat transfer and power generation process equipment surfaces. The only way to prevent repeat incidents of cycle chemistry corrosion and/or deposition-influenced equipment problems is to implement a formalized cycle chemistry improvement program that addresses the root-causes of these problems. This paper describes such a program being implemented at twelve (12) utilities under EPRI research project RP2712-11, {open_quotes}Cycle Chemistry Improvement Program.{close_quotes} Interim utility results, after almost three years of project participation, have demonstrated substantial reductions in availability/performance losses and water treatment costs due to applications of state-of-the-art cycle chemistry, monitoring equipment and/or process control systems.

  2. TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

    2001-08-01

    With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined less by the needs of the plant than by the availability in the soil solution; in addition to occurring naturally, Cl is present in excess as the anion complement in K fertilizer applications. An analysis was performed on existing data for switchgrass samples from ten different farms in the south-central portion of Iowa, with the goal of determining correlations between switchgrass elemental composition and geographical and seasonal changes so as to identify factors that influence the elemental composition of biomass. The most important factors in determining levels of various chemical compounds were found to be seasonal and geographical differences related to soil conditions. Combustion testing was performed to obtain deposits typical of boiler fouling and slagging conditions as well as fly ash. Analysis methods using computer-controlled scanning electron microscopy and chemical fractionation were applied to determine the composition and association of inorganic materials in the biomass samples. Modified sample preparation techniques and mineral quantification procedures using cluster analysis were developed to characterize the inorganic material in these samples. Each of the biomass types exhibited different inorganic associations in the fuel as well as in the deposits and fly ash. Morphological analyses of the wheat straw show elongated 10-30-{micro}m amorphous silica particles or phytoliths in the wheat straw structure. Alkali such as potassium, calcium, and sodium is organically bound and dispersed in the organic structure of the biomass materials. Combustion test results showed that the blends fed quite evenly, with good burnout. Significant slag deposit formation was observed for the 100% wheat straw, compared to bituminous and subbituminous coals burned under similar conditions. Although growing rapidly, the fouling deposits of the biomass and coal-biomass blends were significantly weaker than those of the coals. Fouling was only slightly worse for the 100% wheat straw fuel compared to the coals. The wheat straw ash was found to show the greatest similarity from the fuel to the ash analyzed. A high percentage of particles from both fuel and ash samples contained both Si and K. While Cl was a significant component in the fuel, very little was detected in the ash sample.

  3. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  4. Fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas. Topical report February 1994--February 1995

    SciTech Connect (OSTI)

    1995-02-01

    Experiments were made on use of H and CH plasmas for converting waste materials and heavy oils to H-rich transportation fuels. Batch and continuous experiments were conducted with an industrial microwave generator and a commercial microwave oven. A continuously circulating reactor was constructed for conducting experiments on flowing oils. Experiments on decomposition of scrap tires showed that microwave plasmas can be used to decompose scrap tires into potentially useful liquid products. In a batch experiment using a commercial microwave oven, about 20% of the tire was converted to liquid products in about 9 minutes. Methane was decomposed in a microwave plasma to yield a liquid products composed of various compound types; GC/MS analyses identified unsaturated compounds including benzene, toluene, ethyl benzene, methyl and ethyl naphthalene, small amounts of larger aromatic rings, and olefinic compounds. Experiments on a crude oil in a continuously flowing reactor showed that distillate materials are produced using H and CH plasmas. Also, the recycle oils had an overall carbon aromaticity lower than that of starting feed material, indicating that some hydrogenation and methanation had taken place in the recycle oils.

  5. ABB`s investigations into air toxic emissions from fossil fuel and MSW combustion

    SciTech Connect (OSTI)

    Wesnor, J.D.

    1994-12-31

    Since passage of the Clean Air Act, Asea Brown Boveri (ABB) has been actively developing a knowledge base on the Title 3 hazardous air pollutants, more commonly called air toxics. As ABB is a multinational company, US operating companies are able to call upon work performed by European counterparts, who have faced similar legislation several years ago. In addition to the design experience and database acquired in Europe, ABB Inc. has been pursuing several other avenues to expand its air toxics knowledge. ABB Combustion Engineering (ABB CE) is presently studying the formation of organic pollutants within the combustion furnace and partitioning of trace metals among the furnace outlet streams. ABB Environmental Systems (ABBES) has reviewed available and near-term control technologies and methods. Also, both ABB CE and ABBES have conducted source sampling and analysis at commercial installations for hazardous air pollutants to determine the emission rates and removal performance of various types of equipment. Several different plants hosted these activities, allowing for variation in fuel type and composition, boiler configuration, and air pollution control equipment. This paper discusses the results of these investigations.

  6. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    SciTech Connect (OSTI)

    Gregg, J; Andres, Robert Joseph; Marland, Gregg

    2008-01-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  7. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    SciTech Connect (OSTI)

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  8. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  9. Krakow clean fossil fuels and energy efficiency program. Phase 1 report

    SciTech Connect (OSTI)

    Butcher, T.; Pierce, B.

    1995-06-01

    Krakow is one of the largest and oldest cities in Poland. It is situated in the south of the country on the banks of the Vistula River. From the 11th until the 17th centuries, it was the capital of Poland. Today, Krakow is a city of 750,000 residents, one of the largest centers of higher education, an important industrial center, and is of particular importance because of the number and kinds of historic buildings and sites. For this reason, Krakow was included by the UNESCO in the list of the world`s cultural heritages. For about three decades, significant air pollution has been one of Krakow`s most serious problems. Because the city is situated in the Vistula River valley, it is poorly ventilated and experiences a high concentration of air pollutants. The quality of air in Krakow is affected mainly by industry (Sendzimir Steelworks, energy industry, chemical plants), influx from the Silesian industrial region (power plants, metallurgy), transboundary pollution (Ostrava - Czech Republic), and local sources of low pollution, i.e. more than 1,000 boiler houses using solid fuels and more than 100,000 coal-fired home stoves. These local sources, with low stacks and almost no pollution-control equipment, are responsible for about 35-40% of the air pollution. This report presents phase I results of a program to reduce pollution in krakow. Phase I was to gather information on emissions and costs, and to verify assumptions on existing heating methods and alternatives.

  10. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect (OSTI)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  11. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect (OSTI)

    Chen, Kevin

    2014-08-31

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  12. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    SciTech Connect (OSTI)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  13. Fossil Energy RSS Feeds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy RSS Feeds Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages. RSS feeds from the Office of Fossil Energy provide updates of specific interest to the fossil fuel community. Fossil Energy RSS feeds are free of charge. RSS content can be read using

  14. Boiler and steam generator corrosion: Fossil-fuel power plants. March 1977-December 1989 (A Bibliography from the NTIS data base). Report for March 1977-December 1989

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. Hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 88 citations fully indexed and including a title list.)

  15. Fossil-Fired Boilers

    Energy Science and Technology Software Center (OSTI)

    1993-09-23

    Boiler Performance Model (BPM 3.0S) is a set of computer programs developed to analyze the performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, and can model coal, oil, or natural gas firing. The programs are intended for use by engineers performing analyses of alternative fuels, alternative operating modes, or boiler modifications.

  16. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  17. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P.

    2007-07-01

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  18. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect (OSTI)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  19. Fossil-fuel power plants: Computer systems for power plant control, maintenance, and operation. October 1976-December 1989 (A Bibliography from the COMPENDEX data base). Report for October 1976-December 1989

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    This bibliography contains citations concerning fossil-fuel power plant computer systems. Minicomputer and microcomputer systems used for monitoring, process control, performance calculations, alarming, and administrative applications are discussed. Topics emphasize power plant control, maintenance and operation. (Contains 240 citations fully indexed and including a title list.)

  20. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect (OSTI)

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  1. Fe-Al Weld Overlay and High Velocity Oxy-Fuel Thermal Spray Coatings for Corrosion Protection of Waterwalls in Fossil Fired Plants with Low NOx Burners

    SciTech Connect (OSTI)

    Regina, J.R.

    2002-02-08

    Iron-aluminum-chromium coatings were investigated to determine the best candidates for coatings of boiler tubes in Low NOx fossil fueled power plants. Ten iron-aluminum-chromium weld claddings with aluminum concentrations up to 10wt% were tested in a variety of environments to evaluate their high temperature corrosion resistance. The weld overlay claddings also contained titanium additions to investigate any beneficial effects from these ternary and quaternary alloying additions. Several High-Velocity Oxy-Fuel (HVOF) thermal spray coatings with higher aluminum concentrations were investigated as well. Gaseous corrosion testing revealed that at least 10wt%Al is required for protection in the range of environments examined. Chromium additions were beneficial in all of the environments, but additions of titanium were beneficial only in sulfur rich atmospheres. Similar results were observed when weld claddings were in contact with corrosive slag while simultaneously, exposed to the corrosive environments. An aluminum concentration of 10wt% was required to prevent large amounts of corrosion to take place. Again chromium additions were beneficial with the greatest corrosion protection occurring for welds containing both 10wt%Al and 5wt%Cr. The exposed thermal spray coatings showed either significant cracking within the coating, considerable thickness loss, or corrosion products at the coating substrate interface. Therefore, the thermal spray coatings provided the substrate very little protection. Overall, it was concluded that of the coatings studied weld overlay coatings provide superior protection in these Low NOx environments; specifically, the ternary weld composition of 10wt%Al and 5wt%Cr provided the best corrosion protection in all of the environments tested.

  2. Evaluation of vost and semivost methods for halogenated compounds in the Clean Air Act amendments title III. Validation study at fossil fuel plant

    SciTech Connect (OSTI)

    Jackson, M.D.; Knoll, J.E.; Midgett, M.R.; McGaughey, J.F.; Bursey, J.T.

    1993-01-01

    The Clean Air Act Amendments of 1990 (CAAA), Title III, present a need for stationary source sampling and analytical methods for the list of 189 toxic air pollutants. The US Environmental Protection Agency (EPA) has used VOST and SemiVOST sampling and analytical methods for a wide variety of volatile and semivolatile organic compounds in the past, but these methodologies have been completely validated for only a few of the organic compounds. The applicability of VOST and SemiVOST techniques to the halogenated organic compounds listed in Title III of the Clean Air Act Amendments of 1990 has been evaluated under laboratory conditions for chromatographic separation, mass spectrometric response, sorbent recovery and analytical method detection limit. Dynamic spiking techniques for the sampling trains (both gaseous and liquid dynamic spiking) were also evaluated in the laboratory. In the study, the VOST and SemiVOST methods were evaluated in the field at a fossil fuel power plant. The source was selected to provide actual stationary source emissions with the compounds of interest present in trace amounts or not present. The paper presents the results of the field validation of the VOST and SemiVOST sampling and analytical methods.

  3. A review of METC`S continuous process monitoring devices for application to high temperature and pressure fossil fuel process streams

    SciTech Connect (OSTI)

    Chisholm, W.P.

    1994-12-31

    The Morgantown Energy Technology Center of the United States Department of Energy, in support of advanced fossil fuel technologies, is developing and applying a number of innovative continuous process monitors. These include an inductively coupled plasma spectrometer, an alkali monitor, a particle counter and sizer, and a water vapor monitor. The alkali monitor is a flame emission spectrometer currently undergoing field trials. Alkali emission from gasifiers and combustors is of interest because it causes corrosion and deposition on downstream components, such as particle filters, sulfur compound sorbents, turbine blades, etc. This device can measure alkali concentrations at the part-per-billion level. The particle monitoring devices use laser light scattering to count and size particles. By measuring particle concentration around a particulate removal device, capture efficiency can be measured in real time with a resolution of one minute. Particles between .45 and 80 microns can be counted at rates as high as one million per second in 5 bar, 350 degree celsius environments. The optical water vapor monitor uses near-infrared light absorption to monitor and control steam injection in an advanced heat exchanger. It is targeted for a 300 degrees celsius and 5 bar environment. The inductively coupled plasma system uses a helium and argon plasma discharge within a torch assembly capable of accepting a high temperature and pressure sample stream. An artificial neural network is being developed to interpret its data. Real-time data from a bench-scale coal gasifier will be presented and discussed.

  4. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    SciTech Connect (OSTI)

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D.

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  5. Fossil-fuel processing technical/professional services: comparison of Fischer-Tropsch reactor systems. Phase I, final report

    SciTech Connect (OSTI)

    Thompson, G.J.; Riekena, M.L.; Vickers, A.G.

    1981-09-01

    The Fischer-Tropsch reaction was commercialized in Germany and used to produce military fuels in fixed bed reactors. It was recognized from the start that this reactor system had severe operating and yield limitations and alternative reactor systems were sought. In 1955 the Sasol I complex, using an entrained bed (Synthol) reactor system, was started up in South Africa. Although this reactor was a definite improvement and is still operating, the literature is filled with proponents of other reactor systems, each claiming its own advantages. This report provides a summary of the results of a study to compare the development potential of three of these reactor systems with the commercially operating Synthol-entrained bed reactor system. The commercial Synthol reactor is used as a benchmark against which the development potential of the other three reactors can be compared. Most of the information on which this study is based was supplied by the M.W. Kellogg Co. No information beyond that in the literature on the operation of the Synthol reactor system was available for consideration in preparing this study, nor were any details of the changes made to the original Synthol system to overcome the operating problems reported in the literature. Because of conflicting claims and results found in the literature, it was decided to concentrate a large part of this study on a kinetic analysis of the reactor systems, in order to provide a theoretical analysis of intrinsic strengths and weaknesses of the reactors unclouded by different catalysts, operating conditions and feed compositions. The remainder of the study considers the physical attributes of the four reactor systems and compares their respective investment costs, yields, catalyst requirements and thermal efficiencies from simplified conceptual designs.

  6. DOE - Fossil Energy: A Brief Overview of Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Fossil Energy Study Guides Coal - General Info America has more coal than any other fossil fuel resource. The United States also has more coal reserves than any other ...

  7. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  8. Natural Gas Delivered to Consumers in California (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in California (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  9. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  10. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  11. DOE - Fossil Energy: Introduction to Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction An Energy Lesson Cleaning Up Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still enough coal ...

  12. Transitioning from fossil-fueled ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    economical, reliable, and safe batteries. To substantially improve battery ... degradation, suboptimal reliability, and potential safety concerns in batteries. ...

  13. Transitioning from fossil-fueled ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    depends on developing batteries that are increasingly economical, reliable, and safe. A ... active in batteries, particularly those that degrade a battery's service lifetime. ...

  14. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  15. Launching the Next Wave of Clean Fossil Energy Innovation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    an advanced power plant that cuts carbon pollution, or building an efficient microgrid network that better utilizes fossil fuels, loan guarantees under this solicitation...

  16. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL...

    Broader source: Energy.gov (indexed) [DOE]

    ... meet domestic demand, many LNG import facilities were proposed, but few were constructed. ... renewable energy supplies, which will compound this country's dependency on fossil fuels. ...

  17. DOE - Fossil Energy:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWSALERT - Keep Up to date with e-mail alerts from the Office of Fossil Energy Fossil Energy NEWSALERT is a free, e-mail notification service of the U.S. Department of Energy's ...

  18. Fossil energy biotechnology: A research needs assessment. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  19. Senator Dorgan and Under Secretary Orr to Deliver Remarks at...

    Energy Savers [EERE]

    Senator Dorgan and Under Secretary Orr to Deliver Remarks at 2015 Fuel Cell Technologies and Vehicle Technologies Annual Merit Review Senator Dorgan and Under Secretary Orr to ...

  20. Office of Fossil Energy

    Broader source: Energy.gov (indexed) [DOE]

    Terminal (Bcf) (Bcf) (Bcf) LNG Imports by Company Office of Fossil Energy Office of Oil & Natural Gas Office of Regulation and International Engagement Division of Natural Gas...

  1. Fossil | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    by Daniel Wood, Energy Department. Fossil energy sources, including oil, coal and natural gas, are non-renewable resources that formed when prehistoric plants and animals died...

  2. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  3. Fossil energy program. Progress report, July 1980

    SciTech Connect (OSTI)

    McNeese, L. E.

    1980-10-01

    This report - the seventy-second of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process and program analysis, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, fossil energy applications assessments, performance assurance system support for fossil energy projects, international assessment of atmospheric fluidized bed combustion technology, and PFBC systems analysis.

  4. Fossil-energy program. Progress report for June 1981

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    This report - the eighty-third of series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, coal preparation waste utilization, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, generalized equilibrium models for liquid and gaseous fuel supplies, analyses of coal production goals, and fossil energy information center.

  5. Fossil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our <a href="node/770751">interactive chart</a>. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Fossil energy sources, including oil, coal and natural gas, are non-renewable resources that formed when

  6. Deactivation and Storage Issues Shared by Fossil and Nuclear Facilities

    SciTech Connect (OSTI)

    Thomas S. LaGuardia

    1998-12-31

    The deactivation of a power plant, be it nuclear or fossil fueled, requires that the facility be placed in a safe and stable condition to prevent unacceptable exposure of the public or the environment to hazardous materials until the facility can be decommissioned. The conditions at two Texas plants are examined. These plants are fossil fueled, but their conditions might be duplicated at a nuclear plant.

  7. DOE - Fossil Energy:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services, LLC (Trinidad and Tobago) 1926; 1926-A FE03-30-NG 071103 Mex TransAlta Chihuahua S.A. de C.V. 1877 Page owner: Fossil Energy Office of Communications Page updated...

  8. Office of Fossil Energy

    Office of Environmental Management (EM)

    LNG Imports by Country of Origin LNG Imports by Receiving Terminal (Bcf) (Bcf) (Bcf) LNG Imports by Company Office of Fossil Energy Office of Oil & Natural Gas Office of Regulation ...

  9. EPRI-DOE Joint Report Focuses on Fossil Fleet Transition with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Changes and Large Scale Variable Renewable Integration EPRI-DOE Joint Report Focuses on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration ...

  10. Fossil Energy FY 2009 Budget

    Broader source: Energy.gov [DOE]

    Fossil Energy's FY 2009 budget, including request, House and Senate marks, and Omnibus appropriation.

  11. Natural Gas Delivered to Vehicle Fuel Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    2,900 2,996 2,900 2,996 3,329 3,007 1997-2016 Alabama 18 19 18 19 21 19 2010-2016 Alaska 1 1 1 1 1 1 2010-2016 Arizona 167 173 167 173 192 173 2010-2016 Arkansas 3 3 3 3 3 3 2010-2016 California 1,363 1,408 1,363 1,408 1,565 1,413 2010-2016 Colorado 26 27 26 27 30 27 2010-2016 Connecticut 4 5 4 5 5 5 2010-2016 Delaware 0 0 0 0 0 0 2010-2016 District of Columbia 83 86 83 86 95 86 2010-2016 Florida 17 18 17 18 19 18 2010-2016 Georgia 96 99 96 99 111 100 2010-2016 Hawaii 1 1 1 1 1 1 2010-2016 Idaho

  12. Natural Gas Delivered to Vehicle Fuel Consumers

    Gasoline and Diesel Fuel Update (EIA)

    28,664 29,974 29,970 30,044 35,280 34,459 1997-2015 Alabama 105 192 193 190 224 220 1988-2015 Alaska 20 11 11 9 10 11 1997-2015 Arizona 2,015 1,712 1,707 1,730 2,032 1,976 ...

  13. Natural Gas Delivered to Vehicle Fuel Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    28,664 29,974 29,970 30,044 35,280 34,459 1997-2015 Alabama 105 192 193 190 224 220 1988-2015 Alaska 20 11 11 9 10 11 1997-2015 Arizona 2,015 1,712 1,707 1,730 2,032 1,976 1988-2015 Arkansas 16 21 21 27 31 28 1988-2015 California 13,572 14,660 14,671 14,121 16,581 16,467 1988-2015 Colorado 249 282 281 269 316 314 1988-2015 Connecticut 41 27 27 46 54 44 1988-2015 Delaware 1 1 1 1 1 1 1988-2015 District of Columbia 883 879 870 861 1,011 993 1988-2015 Florida 60 84 84 175 206 159 1988-2015 Georgia

  14. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  15. Nitrogen/oxygen separations in metal-organic frameworks for clean fossil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel combustion | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Nitrogen/oxygen separations in metal-organic frameworks for clean fossil fuel combustion

  16. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  17. Natural Gas Delivered to Consumers in Ohio (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 ...

  18. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  19. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  20. Status of fossil energy resources: A global perspective

    SciTech Connect (OSTI)

    Balat, M.

    2007-07-01

    This article deals with recently status of global fossil energy sources. Fossil energy sources have been split into three categories: oil,coal, and natural gas. Fossil fuels are highly efficient and cheap. Currently oil is the fastest primary energy source in the world (39% of world energy consumption). Coal will be a major source of energy for the world for the foreseeable future (24% of world energy consumption). In 2030, coal covers 45% of world energy needs. Natural gas is expected to be the fastest growing component of world energy consumption (23% of world energy consumption). Fossil fuel extraction and conversion to usable energy has several environmental impacts. They could be a major contributor to global warming and greenhouse gases and a cause of acid rain; therefore, expensive air pollution controls are required.

  1. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nations CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

  2. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  3. Proceedings of the Eight Annual Conference on Fossil Energy Materials

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1994-08-01

    Objective of the meeting was to conduct R and D on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The work is divided into ceramics, new alloys, corrosion, and technology assessment/transfer. The 39 papers are arranged under the session headings: ceramics, ceramics and new alloys, and intermetallics and advanced austenitics; a workshop on new materials development and applications is summarized briefly. The papers are processed separately for the data base.

  4. ABSTRACTS: Seventh annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    Objective of the Advanced Research and Technology Development materials program is to conduct R and D on materials for fossil energy applications (coal processing, coal liquefaction, gasification, heat engines and recovery, combustion systems, fuel cells). Research is aimed at better understanding of materials in fossil energy environments and development of new materials for improvement of plant operations and reliability. Abstracts are given of 37 papers on ceramics/composites, intermetallics (iron aluminides, etc.), and advanced austenitics. (DLC)

  5. ABSTRACTS: Seventh annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Objective of the Advanced Research and Technology Development materials program is to conduct R and D on materials for fossil energy applications (coal processing, coal liquefaction, gasification, heat engines and recovery, combustion systems, fuel cells). Research is aimed at better understanding of materials in fossil energy environments and development of new materials for improvement of plant operations and reliability. Abstracts are given of 37 papers on ceramics/composites, intermetallics (iron aluminides, etc.), and advanced austenitics. (DLC)

  6. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  7. Disclosure of Permitted Communication Concerning Fossil Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted Communication Concerning ... More Documents & Publications Disclosure of Permitted Communication Concerning Regional ...

  8. Microsoft Word - Fossil Fuel EA Final EA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE compared the Proposed Rule with the "no-action alternative" of using the current Federal building energy efficiency standards found at 10 CFR Part 433 and 10 CFR Part 435...

  9. Enhancing carburization resistance in fossil fuel environments

    SciTech Connect (OSTI)

    Smith, G.D.; Tassen, C.S.

    1995-11-01

    There has been steady progress in the development of wrought alloys for use in gaseous carburizing environments. Contributing significantly to this progress is a growing knowledge base of the role of scales in enhancing carburization resistance. Future improvements in carburization resistance must build upon this level of understanding. This paper seeks to survey some of this wealth of information regarding scale characteristics of commercial wrought nickel-containing alloys as these scales are influenced by environment and alloy composition. Some suggestions as to the future direction of alloy development with regard to scale optimization and minimization of carburization resistance are proposed.

  10. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biofuels vs Fossil Fuels

    Broader source: Energy.gov [DOE]

    This infographic was created by students from North Caddo Magnet High School in Vivian, LA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  11. Proceedings of the Seventh Annual Conference on Fossil Energy Materials. Fossil Energy AR and TD Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1993-07-01

    Objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The 37 papers are arranged into 3 sessions: ceramics, new alloys/intermetallics, and new alloys/advanced austenitics. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Fossil Energy Program semiannual progress report for October 1991--March 1992

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-11-01

    This report covers progress made during the period October 1, 1991, through March 31, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development. The Fossil Energy Program organization chart is shown in the appendix. Topics discussed are under the following projects: materials research and developments; environmental analysis support; coal conversion development; coal combustion research; and fossil fuels supplies modeling and research.

  13. Fossil and synthetic fuels: miscellaneous. Part 1. Hearings before the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, House of Representatives, Ninety-Seventh Congress, First Session on Extension of IEA antitrust defense authorities, February 26, 1981, H. R. 2166, Department of Transportation authorization request, April 8, 1981, Gasohol usage in federal vehicles, July 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Part I of the hearing record covers testimony relating to the extension of antitrust defense availability to the International Energy Agency (IEA); an authorization request by the Department of Transportation (DOT) to comply with pipeline safety regulations; and the administration's reluctance to promote gasohol use in federal vehicles. The first day's hearing included discussion of H.R. 2166, which extended the IEA authority by amending the Energy Policy and Conservation Act, and the testimony of four witnesses representing federal agencies involved in international affairs. On the second day, three DOT witnesses described pipeline-safety programs, enforcement, and procedures, with emphasis on the transport of liquefied natural gas. On the third day, nine witnesses representing gasohol-producing states, the US Army Equipment Research and Development Command, federal fleet services, and DOE examined the appropriateness and compliance record of Executive Order 12261 mandating gasohol for federally owned or leased vehicles. At issue was the need to convert Midwest grains to fuel at a time when oil is plentiful, the performance of alcohol fuels, and the administration's preference for working through the marketplace. Additional material submitted for the record follows each day's testimony. (DCK)

  14. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  15. Fossil Energy Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blog » Fossil Energy Today Fossil Energy Today Fossil Energy Today - a free, quarterly newsletter published by the Office of Fossil Energy This newsletter is currently on hiatus. Archived editions are available below. Fossil Energy Today - launched in January 2011 - is a free digital newsletter published quarterly by the U.S. Department of Energy's Office of Fossil Energy. Fossil Energy Today provides you with updates on important activities, progress and other developments within Fossil

  16. President Requests $711.0 Million for Fossil Energy Programs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy President Requests $711.0 Million for Fossil Energy Programs President Requests $711.0 Million for Fossil Energy Programs March 4, 2014 - 9:25am Addthis Learn more Learn more about the FE Budget on the Fossil Energy website. FE Budget Page President Obama's FY 2015 budget seeks $711.0 million for the Office of Fossil Energy (FE) to advance technologies related to the reliable, efficient, affordable and environmentally sound use of fossil fuels as well as manage the Strategic

  17. Cycles in fossil diversity

    SciTech Connect (OSTI)

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  18. Fossil plant self assessment

    SciTech Connect (OSTI)

    Bozgo, R.H.; Maguire, B.A.

    1996-07-01

    The increasingly competitive environment of the electric utility business is focusing utilities attention on reducing the cost of electricity generation. By using benchmark indicators, gains are being sought in plant material condition with corresponding improvements in operating efficiency and capacity factor as well as reductions in Operating and Maintenance (O&M) costs. In designing a process for improvement, Consolidated Edison Company of New York, Inc. (Con Edison) plant managers were asked to review and approve objectives and criteria for Fossil Plant Operations. The program methods included optimizing work processes (including material condition, maintenance programs, work control systems, and personnel performance); team building techniques to foster personnel buy-in of the process; and long term cultural change to insure an ongoing continuous improvement process with measurable results. The program begins with a self assessment of each plant based upon the approved Objectives and Criteria. The Criteria and Review Approaches (CRAs) are established by senior management and the review team. The criteria cover Management, Operations, Maintenance, and Support Functions including Technical Support, Training and Qualification, Environmental Compliance, Chemistry, and Safety and Emergency Preparedness. The Assessment is followed by a review of corrective action plans and an interim corrective action review. Annual Assessments are planned to ensure continuous improvement. Emphasis is placed on progress made in maintenance at the fossil stations.

  19. DOE - Fossil Energy:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    103098 Can Husky Gas Marketing Inc. 1432 1432-A FE98-87-NG 110408 Can Mex Pemex Gas Y Petroquimica Basica 1435 FE98-92-NG 112098 Can Union Pacific Fuels, Inc. 1444...

  20. Proceedings of the fourth annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Judkins, R.R.; Braski, D.N.

    1990-08-01

    The Fourth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on may 15--17, 1990. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. Individual projects are processed separately for the data bases.

  1. Oil Shale and Other Unconventional Fuels Activities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on ...

  2. Fossil Energy Program semiannual progress report for April 1991 through September 1991

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-10-01

    This report covers progress made during the period April 1, 1991, through September 30, 1991, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Fossil Energy Office of Petroleum Reserves, and the US Agency for International Development (USAID). The Fossil Energy Program organization chart is shown in the appendix. Project discussed are: materials research and development; environmental analysis support; coal conversion development; coal combustion research; fossil fuel supplies modeling and research; evaluations and assessments; and coal structure and chemistry.

  3. Delivering Renewable Hydrogen: A Focus on Near-Term Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications On November 16, 2009, the National Renewable Energy Laboratory and the California Fuel Cell Partnership conducted a workshop on near-term applications of renewable hydrogen. Held in Palm Springs, California, the workshop consisted of several presentations in addition to a special show-and-tell session on hydrogen systems analysis models.

  4. Delivering Renewable Hydrogen: A Focus on Near-Term Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications Agenda for the Delvering Renewable Hydrogen Workshop held Nov. 16, 2010, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_agenda.pdf More Documents & Publications Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Refueliing Infrastructure for Alternative Fuel Vehicles:

  5. DOE - Fossil Energy: A Brief History of Coal Use in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Fossil Energy Study Guides A Brief History of Coal Use Steam Locomotive - In the 1800s, one of the primary uses of coal was to fuel steam engines used to power locomotives. ...

  6. Fossil Energy Crossword Puzzle | Department of Energy

    Energy Savers [EERE]

    Crossword Puzzle Fossil Energy Crossword Puzzle PDF icon Fossil Energy Crossword Puzzle (including answer key) More Documents & Publications Fossil Energy Word Find Intermediate Energy Infobook and Intermediate Infobook Activities (29 Activities) Coal Study Guide for Elementary School

  7. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    SciTech Connect (OSTI)

    Breazeale, K.; Yamaguchi, N.D.; Keeville, H.

    1993-12-01

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

  8. PIA - Fossil Energy Web System (FEWEB) | Department of Energy

    Energy Savers [EERE]

    Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PDF icon PIA - Fossil Energy Web System (FEWEB) More Documents &...

  9. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  10. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  11. Fossil Gulch Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Fossil Energy FY 2015 Budget in Brief

    Broader source: Energy.gov [DOE]

    Fossil Energy FY 2015 Budget in Brief document gives highlights to the budget request for the FY 2015 budget request for the Office of Fossil Energy.

  13. Publications of the Oak Ridge National Laboratory Fossil Energy Program, October 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Carlson, P.T.

    1993-06-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities for the Department of Energy (DOE) Assistant Secretary for Fossil Energy that cover a wide range of fossil energy technologies. The principal focus of the Laboratory`s fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of October 1, 1991, through March 31, 1993.

  14. President Requests $638.0 Million for Fossil Energy Programs | Department

    Energy Savers [EERE]

    of Energy 38.0 Million for Fossil Energy Programs President Requests $638.0 Million for Fossil Energy Programs April 10, 2013 - 4:00pm Addthis Washington, DC - President Obama's FY 2014 budget seeks $638.0 million for the Office of Fossil Energy (FE) to advance technologies related to the reliable, efficient, affordable and environmentally sound use of fossil fuels as well as manage the Strategic Petroleum Reserve and Northeast Home Heating Oil Reserve to provide strategic and economic

  15. Delivering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory's value as an engine of national security science and technology, one that ... energy-rich lipids and refine them into biofuel, using a new ultrasonic field technol- ...

  16. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  17. FOSSIL ENERGY FY 2016 BUDGET | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOSSIL ENERGY FY 2016 BUDGET FOSSIL ENERGY FY 2016 BUDGET Documents and information related to the Fossil Energy FY 2016 budget. Office of Fossil Energy Techline Office of Fossil Energy Budget Request Presentation

  18. Investments in fossil energy technology: How the government's fossil energy R&D program has made a difference

    SciTech Connect (OSTI)

    None, None

    1997-03-01

    America has the technological capacity to change its energy future. There is no reason, for example, why our nation must continue following a path of rising oil imports when billions of barrels of crude oil remain in domestic oil fields. There is no reason why we cannot continue to use our abundant supplies of high-value, low-cost coal when we have the scientific know-how to remove virtually all of its pollutants and reduce greenhouse gas emissions. There is no reason why we cannot turn increasingly to clean-burning natural gas and tap the huge supplies we know exist within our borders. We remain a nation rich in the fuels that have powered economic growth. Today 85 percent of the energy we use to heat our homes and businesses, generate our electricity, and fuel our vehicles comes from coal, petroleum and natural gas. As we move toward a new century, the contributions of these fuels will grow. By 2015, the United States is likely to require nearly 20 percent more energy than it uses today, and fossil fuels are projected to supply almost 88 percent of the energy Americans will consume. We have the scientific know-how to continue using our fossil fuel wealth without fear of environmental damage or skyrocketing costs. The key is technology - developing cutting edge concepts that are beyond the private sector's current capabilities. Some of the most important innovations in America's energy industry are the results of investments in the Federal government's fossil energy research and development programs. Today, our air and water are cleaner, our economy is stronger, and our industries are more competitive in the global market because these programs have produced results. This booklet summarizes many of these achievements. It is not a comprehensive list by any means. Still, it provides solid evidence that the taxpayers' investment in government fossil energy research has paid real and measurable dividends.

  19. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds

    SciTech Connect (OSTI)

    McCollum, David; Bauer, Nico; Calvin, Katherine V.; Kitous, Alban; Riahi, Keywan

    2014-04-01

    Fossil resource endowments and the future development of fossil fuel prices are important factors that will critically influence the nature and direction of the global energy system. In this paper we analyze a multi-model ensemble of long-term energy and emissions scenarios that were developed within the framework of the EMF27 integrated assessment model inter-comparison exercise. The diverse nature of these models highlights large uncertainties in the likely development of fossil resource (coal, oil, and natural gas) consumption, trade, and prices over the course of the twenty-first century and under different climate policy frameworks. We explore and explain some of the differences across scenarios and models and compare the scenario results with fossil resource estimates from the literature. A robust finding across the suite of IAMs is that the cumulative fossil fuel consumption foreseen by the models is well within the bounds of estimated recoverable reserves and resources. Hence, fossil resource constraints are, in and of themselves, unlikely to limit future GHG emissions. Our analysis also shows that climate mitigation policies could lead to a major reallocation of financial flows between regions, in terms of expenditures on fossil fuels and carbon, and can help to alleviate near-term energy security concerns via the reductions in oil imports and increases in energy system diversity they will help to motivate.

  20. Diagnosis system to improve heat rate in fossil power plants

    SciTech Connect (OSTI)

    Arroyo-Figueroa, G.; Villavicencio R., A.

    1996-05-01

    Today fossil fuel power plants is showing a trend toward full automation. This increases the difficulty for human operators to follow in detail the progress of power plants, and also limit the contribution of human operators to diagnostic task. Therefore, automated and intelligent fault diagnostic systems have been intensively investigated. Despite several successful examples of diagnostic systems, often called expert systems, the development task of a diagnostic system still remains empiric and is unique for each system. This paper discusses the design of a Diagnostic System to improve Heat Rate for fossil fuel power plant. The approach is characterized as an fault tree diagnostic system. The prototype of this system has showed the benefits and the feasibility of using this system to diagnose equipment in power plants.

  1. Fuel-Flexible Microturbine and Gasifier System

    SciTech Connect (OSTI)

    2009-12-01

    This factsheet describes a project that will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  2. Fuel control system

    SciTech Connect (OSTI)

    Detweiler, C.A.

    1980-12-30

    A fuel control system for a turbocharged engine having fuel delivered to the carburetor under the control of a vacuum operated device which is under the further control of a device sensing pressures upstream and downstream of the turbo charger compressor and delivering a vacuum signal to the fuel control device in proportion to the manifold pressure even though the latter pressure may be a positive pressure.

  3. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Office of Scientific and Technical Information (OSTI)

    Replace Fossil Fuels, Final Technical Report (Technical Report) | SciTech Connect Technical Report: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Citation Details In-Document Search Title: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of

  4. Fossil Energy Word Find | Department of Energy

    Energy Savers [EERE]

    Word Find Fossil Energy Word Find Word Find (inlcuidng answer key) PDF icon Fossil Energy Word Search More Documents & Publications Fossil Energy Crossword Puzzle Coal Study Guide for Elementary School Guide to Low-Emission Boiler and Combustion Equipment Selection

  5. Fossil Energy Program annual progress report for April 1997 through March 1998

    SciTech Connect (OSTI)

    Judkins, R.R.

    1998-07-01

    This report covers progress made on research and development projects that contribute to the advancement of fossil energy technologies, covering the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve (SPR). Papers are arranged under the following topical sections: materials research and development; environmental analysis support; bioprocessing research; fossil fuels supplies modeling and research; and oil and gas production.

  6. Global Collaboration in Clean Fossil Energy A Column from the Deputy Assistant Secretary

    Energy Savers [EERE]

    6, Second Quarter, 2012 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 Global Collaboration in Clean Fossil Energy A Column from the Deputy Assistant Secretary for International Affairs 3 Exchanging CO 2 for Methane An Update on Methane Hydrate Testing on Alaska's North Slope 4 McConnell Confirmed Charles McConnell Sworn in As 12th Assistant Secretary for Fossil Energy in April 5 Hydrogen-Based Fuel Cells New Catalyst Technology Reduces Diesel Engine Idling 7 Petroleum Reserves

  7. Proceedings of the fifth annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1991-09-01

    The Fifth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 14--16, 1991. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. This conference is held every year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B.

  8. Proceedings of the sixth annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  9. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  10. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  11. Mild, Nontoxic Production of Fuels and Chemicals from Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil fuel resources supply almost 90 percent of the world's energy and the vast majority of its organic chemicals. This dependency is insupportable in light of rising emissions, ...

  12. Fossil Energy Program. Progress report for April 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-06-01

    This report - the sixty-ninth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  13. Fossil energy program. Progress report for May 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-08-01

    This report - the seventieth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, atmospheric fluidized bed coal combustor for cogeneration, performance assurance system support and international energy technology assessment.

  14. Fossil energy program. Progress report for June 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-08-01

    This report - the seventy-first of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluation, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, TVA fluidized combustion demonstration plant program technical support, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  15. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect (OSTI)

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  16. DOE - Fossil Energy: Coal Mining and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mining Fossil Energy Study Guides Coal Mining and Transportation Coal Miners - One type of mining, called "longwall mining", uses a rotating blade to shear coal away from the ...

  17. Fossil Energy Fiscal Year 2011 Budget Request

    Broader source: Energy.gov [DOE]

    Statement of Dr. James Markowsky, Assistant Secretary for Fossil Energy before the House Committee on Appropriations, Subcommittee on Energy and Water Development.

  18. Office of Fossil Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Fossil Energy INFOGRAPHIC: Carbon Capture 101 INFOGRAPHIC: Carbon Capture 101 Want to know how carbon capture works? This infographic breaks it down for you Read more ...

  19. Annual Report: Unconventional Fossil Energy Resource Program...

    Office of Scientific and Technical Information (OSTI)

    of Fossil Energy (FE) Country of Publication: United States Language: English Subject: 02 PETROLEUM; 58 GEOSCIENCES CO2 EOR; CO2-soluble surfactants; enhanced oil recovery Word ...

  20. Advanced Fossil Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Advanced-Fossil-Fact-Sheet-FINAL.pdf More Documents & Publications CO2 Conference Presentation POWER-GEN Conference Presentation National Coal Council Presentation...

  1. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  2. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  3. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  4. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  5. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  6. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  7. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  8. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  9. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  10. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  11. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  12. Table 6. Electric power delivered fuel Prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  13. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  14. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  15. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  16. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  17. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  18. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  19. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  20. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  1. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  2. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  3. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  4. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  5. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  6. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  7. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  8. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  9. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  10. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  11. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  12. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  13. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  14. Table 6. Electric power delivered fuel Prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  15. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  16. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  17. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  18. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  19. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  20. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  1. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 ...

  2. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  3. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  4. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  5. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  6. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  7. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  8. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal ...

  9. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 36,984 28,384 27,217 23,714 21,027 21,010 22,537 23,488 21,619 24,186 23,647 25,742 2002 36,559 33,467 32,355 26,061 23,580 27,901 29,889 30,615 26,781 22,744 22,838 31,044 2003 39,779 34,222 26,412 23,422 20,310 22,858 27,147 32,162 21,482 18,885 20,502 29,389 2004 38,499 36,343 31,829 27,460 26,994 26,923 32,691 29,710 24,787 23,688 22,042 29,661 2005 32,785 29,012 29,689 22,622 22,525 26,381 30,759 31,841

  10. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 12,927 11,677 12,492 10,557 9,618 8,588 9,860 10,185 9,784 11,290 11,926 13,523 2002 12,414 11,258 11,090 10,310 10,076 11,260 10,510 9,907 9,717 10,827 10,291 11,621 2003 9,731 8,407 9,561 9,112 8,639 8,518 8,461 8,717 8,895 10,027 9,481 10,141 2004 12,414 10,221 10,996 9,967 9,462 9,831 9,829 8,537 9,512 9,377 9,374 11,436 2005 11,592 10,185 10,627 9,847 9,809 9,712 10,596 10,360 10,325 10,740 11,792 11,516 2006

  11. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,139 20,654 21,940 16,528 13,819 12,558 14,779 16,061 15,014 18,239 19,675 22,233 2002 24,431 24,940 22,284 19,166 15,635 16,964 18,741 17,700 16,789 16,932 17,770 21,567 2003 27,116 27,256 22,904 18,625 17,603 17,849 18,208 18,467 15,282 16,402 16,960 20,603 2004 24,746 25,909 21,663 16,382 15,991 14,085 14,456 14,551 11,956 14,094 13,138 18,337 2005 22,386 19,719 19,170 15,597 14,643 15,315 16,703 17,392

  12. Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 57,089 50,447 49,042 41,157 30,506 23,904 22,403 22,033 19,905 22,672 30,231 42,797 2002 47,541 44,713 45,909 30,319 24,230 22,105 26,301 21,119 21,764 34,563 38,884 46,826 2003 44,971 47,164 38,292 25,380 24,811 18,484 23,772 23,529 20,981 22,248 39,408 48,023 2004 47,548 44,859 30,853 28,458 23,766 20,408 22,895 21,210 20,651 26,731 39,719 50,977 2005 50,356 41,495 39,617 33,501 25,108 20,725 26,350 23,387

  13. Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,086 30,338 35,463 39,708 42,466 46,947 53,430 53,352 55,306 52,955 42,205 47,598 2002 50,177 41,302 50,453 55,845 56,767 62,343 67,197 70,144 65,136 64,259 47,600 45,144 2003 53,384 43,538 54,761 51,487 62,575 58,312 64,041 61,764 62,150 59,558 56,488 50,525 2004 50,877 49,866 51,687 53,442 62,663 69,628 72,443 70,540 70,259 66,961 50,122 53,169 2005 59,417 49,956 60,238 55,269 64,436 69,719 90,376 84,114

  14. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,414 34,292 35,867 25,368 20,633 20,544 24,229 26,863 21,857 25,679 23,983 34,450 2002 44,041 37,992 33,260 23,775 22,612 24,924 30,113 29,701 24,899 23,785 32,829 47,106 2003 56,470 43,704 31,355 30,232 21,920 20,512 23,789 26,828 21,628 22,981 26,920 45,508 2004 52,486 48,806 31,529 28,718 26,610 24,562 26,132 26,093 22,927 22,025 29,012 49,125 2005 47,756 39,503 39,085 25,191 23,198 26,957 31,619 33,089

  15. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 253 237 247 243 237 244 242 227 226 220 217 225 2002 236 226 225 234 226 224 239 222 224 215 227 236 2003 251 236 234 229 226 218 224 218 223 218 216 239 2004 243 230 239 240 221 235 229 222 226 221 230 236 2005 242 225 240 240 245 238 224 225 226 218 229 240 2006 241 226 242 237 239 235 229 222 233 223 223 231 2007 259 226 229 232 234 244 241 218 223 244 256 244 2008 245 237 235 238 225 233 238 211 211 206 204

  16. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,061 8,656 6,890 5,799 4,539 3,728 4,106 4,145 4,609 5,611 7,528 8,984 2002 8,747 8,547 7,861 5,699 4,667 3,654 3,038 2,812 3,303 4,162 5,950 7,000 2003 7,519 7,632 7,150 5,498 4,487 3,443 4,268 3,399 3,902 3,977 6,312 7,657 2004 10,168 9,168 7,032 4,556 4,391 3,602 3,672 3,601 3,844 4,668 6,536 8,238 2005 9,355 8,465 6,757 6,168 3,946 3,381 3,511 3,614 3,733 4,635 6,142 9,403 2006 8,375 8,140 7,439 5,455 3,877

  17. Natural Gas Delivered to Consumers in Illinois (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 151,699 132,638 117,186 62,934 46,113 39,615 44,463 46,777 41,870 67,167 74,519 115,418 2002 131,434 119,430 122,242 93,668 61,529 49,664 60,624 51,277 43,656 70,127 100,944 131,720 2003 167,855 147,181 114,072 74,457 47,169 38,291 39,012 43,781 39,310 59,953 89,354 127,165 2004 163,310 135,906 102,899 68,328 47,779 40,404 40,176 39,133 37,585 53,947 80,742 131,346 2005 153,861 118,319 117,462 65,549 48,798 46,244

  18. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 77,275 61,840 57,608 37,045 27,762 26,685 25,473 29,184 25,697 34,650 39,146 51,997 2002 65,893 58,962 58,569 44,882 32,659 27,696 30,899 30,668 28,357 37,204 49,556 68,056 2003 80,534 70,155 52,368 35,903 31,266 25,652 24,580 26,666 27,072 34,914 46,556 64,253 2004 80,680 70,341 53,056 37,842 30,840 25,006 25,592 27,498 26,658 33,102 43,630 65,054 2005 72,775 58,428 61,390 39,473 30,697 28,897 28,628 29,602

  19. Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 33,183 29,626 26,788 17,172 12,430 10,449 10,249 10,177 10,494 14,476 16,865 23,400 2002 28,527 25,072 25,693 18,706 13,413 10,076 9,731 9,815 10,403 14,561 22,219 27,225 2003 31,445 32,450 25,482 16,870 12,421 10,288 9,892 10,030 10,550 13,644 20,542 26,599 2004 32,639 30,955 23,081 15,569 11,543 10,481 9,546 10,080 10,193 14,132 20,759 27,591 2005 34,272 27,838 24,671 18,370 13,180 12,206 11,888 11,542 11,838

  20. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,659 23,182 21,670 14,953 9,527 8,890 9,668 9,881 10,024 12,591 16,271 23,216 2002 26,131 24,533 23,241 14,879 12,317 11,623 13,804 10,869 11,129 14,628 21,069 27,646 2003 34,776 29,032 20,580 14,017 10,797 9,334 9,467 10,296 10,390 13,196 16,933 27,218 2004 32,640 27,566 21,630 15,771 12,331 11,249 10,810 11,428 10,883 13,355 17,689 27,203 2005 29,373 24,036 24,578 15,557 13,614 13,693 12,658 14,134 12,122

  1. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 90,750 82,773 86,038 87,577 81,223 77,877 93,937 105,743 93,365 92,353 85,277 92,797 2002 102,807 96,945 102,315 94,281 91,511 97,058 107,870 109,348 97,986 94,054 96,857 102,289 2003 106,504 91,821 89,554 89,376 88,426 78,863 91,469 95,243 85,824 84,198 83,677 94,139 2004 101,114 98,005 96,851 86,763 89,143 89,075 96,344 98,583 93,156 94,397 89,577 99,046 2005 102,652 87,403 100,620 97,398 104,027 102,860 104,234

  2. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,537 6,903 6,950 5,791 7,780 6,957 8,161 9,020 8,835 8,864 9,644 9,127 2002 9,857 10,737 9,131 9,186 10,030 9,602 7,965 10,909 8,186 10,974 12,161 11,924 2003 8,047 5,034 5,581 5,924 4,577 4,916 6,000 5,629 5,606 6,652 5,970 6,036 2004 7,095 8,049 7,635 7,137 6,496 6,314 6,648 7,333 6,100 7,027 7,786 7,858 2005 5,882 5,823 5,955 5,764 4,162 5,163 5,883 6,097 4,936 4,955 4,236 2,234 2006 3,888 4,850 5,239 4,090

  3. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28,398 21,618 21,408 13,900 9,252 8,342 9,046 11,007 9,109 12,662 13,558 17,125 2002 24,221 22,802 20,670 12,534 8,846 8,846 10,514 12,842 10,157 12,911 20,408 28,827 2003 31,739 28,530 21,240 15,685 9,809 8,723 8,128 7,986 7,131 11,863 16,167 27,049 2004 33,576 27,062 20,558 14,623 9,867 8,560 7,704 8,271 7,535 11,725 16,222 26,279 2005 29,469 25,497 24,272 13,414 10,273 10,104 9,641 11,634 8,302 12,060 16,807

  4. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 133,140 112,047 111,301 76,191 48,707 41,686 43,845 44,577 40,142 59,283 71,352 92,053 2002 119,902 108,891 104,208 87,138 63,810 52,457 51,899 47,094 40,938 53,419 82,015 114,268 2003 140,545 133,702 114,085 80,651 53,258 37,279 35,261 42,115 32,744 49,901 69,659 99,067 2004 137,906 127,671 102,442 76,978 54,610 41,310 38,001 37,565 37,285 48,239 71,870 107,025 2005 133,079 112,812 108,608 72,884 50,886 47,768

  5. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,479 16,635 19,646 21,739 20,948 20,348 30,696 31,715 28,537 28,525 24,653 28,356 2002 29,331 28,518 28,650 25,702 23,117 27,335 33,509 29,104 24,492 19,663 18,433 24,444 2003 29,743 24,826 20,395 19,195 18,492 16,946 17,613 19,394 16,780 14,228 16,133 21,577 2004 23,187 23,828 21,311 19,087 24,565 21,821 24,034 23,064 18,228 18,641 15,628 21,305 2005 23,881 20,984 23,827 18,047 21,247 24,690 29,577 32,966

  6. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 51,986 40,694 34,239 22,717 13,209 12,679 16,175 16,218 12,056 13,682 18,230 29,876 2002 39,936 35,157 34,198 24,362 15,624 13,116 15,351 13,593 11,804 14,038 22,945 32,834 2003 42,257 42,379 33,569 21,083 13,307 10,498 12,889 15,215 9,788 10,817 17,229 30,354 2004 41,477 43,268 30,344 20,642 15,737 12,404 12,556 11,676 12,399 11,977 16,704 31,367 2005 42,227 35,965 31,014 19,890 15,686 13,519 13,855 14,649 12,548

  7. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,993 8,301 5,782 5,036 3,055 2,439 2,359 2,152 2,135 3,446 5,081 6,696 2002 7,738 6,859 7,247 5,853 4,084 2,965 2,265 2,298 2,711 4,300 5,929 6,147 2003 7,471 6,977 6,706 4,682 3,515 2,729 2,042 2,006 2,468 3,629 6,282 7,503 2004 8,787 6,926 5,508 3,906 3,279 2,725 2,154 2,098 2,533 3,912 5,268 6,895 2005 8,717 6,227 5,828 4,563 3,517 2,678 2,135 2,426 2,551 4,121 4,933 7,501 2006 7,064 7,060 7,344 4,972 3,562

  8. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,481 15,747 13,983 11,129 7,094 5,429 8,556 6,368 5,506 5,854 10,730 11,012 2002 16,123 14,049 12,938 10,424 6,676 4,984 8,748 7,414 6,786 6,218 9,753 13,269 2003 15,675 15,319 13,354 8,644 6,232 4,472 7,653 7,469 5,904 6,758 8,775 13,011 2004 16,104 16,445 12,058 7,983 6,255 5,830 6,952 6,641 4,338 5,935 8,995 13,129 2005 17,242 14,641 11,440 8,360 6,579 5,853 7,874 8,028 6,345 6,081 8,200 13,733 2006 15,551

  9. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,952 19,433 17,795 12,312 12,723 11,650 12,329 14,023 12,067 12,854 12,525 17,842 2002 18,621 16,951 15,943 11,123 11,789 13,044 14,033 14,618 13,988 13,798 14,840 16,521 2003 17,053 15,548 15,238 12,410 12,410 13,355 17,113 17,666 15,088 14,301 14,598 18,798 2004 19,886 20,030 14,760 11,514 13,220 16,819 20,333 19,864 17,480 16,556 18,897 22,720 2005 23,220 21,494 17,907 16,239 13,790 15,823 20,156 20,490

  10. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,337 36,026 35,468 29,023 26,153 28,194 41,056 38,697 30,910 29,194 26,719 33,193 2002 42,957 42,546 40,981 36,989 28,784 31,741 39,440 43,092 34,007 26,058 27,197 34,574 2003 44,633 43,363 39,395 32,941 30,147 32,417 46,076 47,914 30,139 28,937 26,588 39,627 2004 44,286 47,720 40,198 35,528 36,608 33,843 39,855 38,791 36,056 30,069 25,036 35,444 2005 42,941 41,516 38,987 36,599 35,972 45,327 48,696 49,698

  11. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 21,689 25,019 21,080 18,224 15,822 14,891 14,036 15,541 15,102 16,822 18,239 22,097 2002 25,687 22,100 21,179 14,501 12,612 11,363 9,336 12,198 12,978 14,195 16,780 20,005 2003 23,496 19,260 18,102 13,784 12,066 11,146 16,560 16,275 17,015 16,463 19,222 21,940 2004 26,773 24,112 19,699 16,486 14,346 12,752 16,235 16,733 16,179 17,146 21,137 23,569 2005 25,874 23,392 21,951 20,274 11,452 11,481 14,502 16,348 15,706

  12. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 96,012 79,547 77,363 52,992 33,092 26,098 25,208 27,662 29,499 38,457 46,614 63,083 2002 80,458 74,651 70,773 53,368 38,209 33,401 32,700 34,743 30,425 40,462 58,542 83,877 2003 101,975 96,176 79,246 53,759 36,015 29,095 30,298 32,640 26,799 39,895 47,467 78,054 2004 100,298 95,715 73,189 54,937 42,873 33,367 36,047 33,735 32,060 34,578 50,908 74,224 2005 90,958 84,388 85,058 50,137 38,196 34,547 36,133 37,648

  13. Natural Gas Delivered to Consumers in Tennessee (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 43,045 30,197 26,202 21,053 13,399 12,059 12,967 13,230 11,569 16,135 19,011 23,239 2002 37,019 31,272 27,242 19,932 14,058 12,918 12,293 12,439 11,103 13,432 20,337 31,833 2003 37,778 37,692 27,915 18,989 14,580 13,392 11,615 12,627 12,016 13,775 16,202 27,807 2004 34,375 33,788 24,928 18,001 14,262 11,211 10,988 11,553 11,041 11,874 13,718 24,756 2005 30,997 29,214 25,561 19,122 13,849 11,579 11,055 13,522

  14. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 20,043 17,426 13,012 11,173 7,791 7,056 6,214 6,023 6,572 9,189 11,646 18,505 2002 19,727 17,659 15,165 8,453 7,113 5,260 5,915 6,481 7,591 11,589 13,814 16,447 2003 16,474 16,494 12,825 10,664 6,942 5,612 6,174 6,166 6,229 7,898 13,299 16,533 2004 21,414 17,627 10,247 9,033 6,775 5,344 6,398 5,617 6,456 8,714 13,097 17,058 2005 18,357 16,430 13,763 12,951 9,253 7,461 7,380 6,187 6,053 6,449 9,027 16,786 2006

  15. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,164 1,003 1,084 834 544 381 304 307 361 438 658 827 2002 1,127 1,149 960 808 575 428 330 336 348 485 803 1,003 2003 1,153 1,191 1,062 906 539 367 293 312 325 502 708 1,029 2004 1,154 1,381 1,072 829 517 421 331 342 365 479 769 1,011 2005 1,211 1,280 1,199 776 558 404 310 298 295 418 666 943 2006 1,112 1,063 1,190 745 501 415 318 318 347 481 658 893 2007 1,104 1,375 1,250 915 536 382 340 331 342 423 696 1,158

  16. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,325 27,001 23,081 15,728 11,714 10,937 14,866 15,873 15,145 14,257 21,748 23,733 2002 30,728 25,956 22,525 16,988 14,493 13,877 18,202 18,373 14,992 16,512 22,349 32,089 2003 39,589 32,153 25,608 18,114 15,312 12,832 14,519 15,084 11,238 15,259 21,050 32,921 2004 40,135 33,982 24,192 18,779 18,241 16,500 15,667 17,654 16,341 13,924 21,649 31,243 2005 37,448 31,508 31,147 18,853 12,905 18,009 23,552 25,949

  17. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,231 31,904 29,422 27,137 23,855 18,345 18,349 16,283 15,107 23,527 30,172 37,445 2002 29,531 27,361 27,117 20,531 15,439 11,596 10,256 11,367 12,459 15,045 20,551 25,818 2003 27,912 26,079 26,003 19,269 14,939 11,471 15,334 15,006 15,698 18,116 25,119 27,774 2004 33,107 29,246 23,696 18,926 15,242 11,848 16,510 17,954 16,165 18,170 24,172 28,231 2005 32,764 27,001 24,695 21,951 14,060 13,150 16,232 18,247

  18. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 52,126 51,020 52,466 24,969 17,238 15,421 16,478 16,540 16,716 25,355 26,981 41,400 2002 49,850 43,815 48,646 31,946 24,278 16,100 16,531 15,795 16,659 28,429 39,330 49,912 2003 62,523 55,695 44,756 32,270 20,752 15,502 15,630 18,099 16,485 24,636 36,907 47,677 2004 65,038 48,498 41,599 27,544 21,106 15,420 15,949 14,951 16,063 23,268 33,602 56,693 2005 59,667 45,463 47,647 29,885 23,265 22,788 21,959 22,549

  19. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,475 6,484 5,643 5,505 4,182 3,864 3,515 3,541 3,688 4,790 5,518 6,170 2002 6,844 5,846 6,319 5,737 5,034 4,070 4,980 4,124 4,599 6,126 7,421 8,523 2003 7,672 7,313 7,026 5,737 4,976 4,408 4,112 4,164 4,356 5,062 5,554 7,236 2004 7,555 7,180 6,077 5,400 4,775 4,216 4,064 4,187 4,024 5,032 6,153 6,963 2005 7,585 6,443 6,231 5,612 5,092 4,247 4,081 3,903 4,080 4,829 5,360 7,262 2006 7,304 6,824 6,957 5,389 4,762

  20. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 293,981 299,146 299,872 2000's 315,202 299,631 343,913 316,665 350,734 323,143 358,141 385,209 369,750 418,677 2010's 496,051 558,116 622,359 573,981 599,473 640,70

  1. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 149,171 147,435 150,062 2000's 150,745 132,441 129,292 109,707 120,974 127,140 113,933 99,281 87,677 81,335 2010's 80,794 88,178 87,404 75,926 70,960 70,027

  2. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 241,664 247,908 241,648 2000's 240,672 217,765 233,046 237,428 205,480 202,946 221,378 214,298 221,983 230,488 2010's 256,102 266,194 278,304 263,281 249,549 270,209

  3. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,049,536 2,228,414 2,264,158 2000's 2,434,770 2,400,993 2,218,923 2,218,715 2,353,823 2,196,741 2,248,988 2,327,205 2,330,514 2,256,380 2010's 2,196,086 2,096,279 2,337,017 2,352,421 2,265,431 2,257,216

  4. Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 272,530 289,945 288,147 2000's 321,784 412,773 404,873 377,794 378,894 405,509 383,452 435,360 426,034 420,500 2010's 396,083 345,663 327,108 361,779 367,021 NA

  5. Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,499 40,794 55,968 2000's 48,325 50,090 52,167 46,143 48,019 46,863 43,172 48,139 48,144 50,126 2010's 54,685 79,251 100,630 95,008 99,736 99,543

  6. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 363,402 360,973 328,730 2000's 408,209 343,698 375,567 372,492 388,751 406,852 414,377 435,919 419,057 456,082 2010's 521,557 512,466 605,262 617,310 645,253 683,796

  7. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,894 2,654 3,115 2000's 2,841 2,818 2,734 2,732 2,772 2,793 2,782 2,848 2,700 2,605 2010's 2,625 2,616 2,687 2,853 2,927 2,929

  8. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 63,483 63,781 66,160 2000's 66,758 73,723 65,510 65,329 69,572 69,202 69,202 74,395 81,646 78,166 2010's 75,647 77,343 83,274 98,843 87,647 98,782

  9. Natural Gas Delivered to Consumers in Illinois (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,062,536 944,170 992,865 2000's 1,017,283 940,691 1,036,615 987,964 941,964 958,727 883,080 954,100 987,137 931,329 2010's 942,205 960,018 910,611 1,024,851 1,062,377 NA

  10. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 545,839 514,407 549,639 2000's 564,919 494,706 533,754 520,352 519,785 524,415 489,881 528,655 544,202 500,135 2010's 564,904 619,977 642,209 664,817 703,637 712,946

  11. Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 243,181 223,287 222,943 2000's 224,299 215,348 215,482 220,263 216,625 229,717 225,929 280,954 311,672 301,340 2010's 300,033 296,098 285,038 314,742 317,784 NA

  12. Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 252,275 259,783 240,248 2000's 253,037 224,367 239,449 227,436 213,122 206,537 217,981 246,094 244,181 243,199 2010's 235,316 241,473 223,188 241,292 246,547 NA

  13. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,361,995 1,313,827 1,267,668 2000's 1,286,353 1,069,808 1,193,418 1,079,213 1,132,186 1,121,178 1,074,563 1,124,310 1,089,351 1,044,149 2010's 1,207,599 1,244,752 1,336,521 1,267,795 1,325,708 1,361,733

  14. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,290 5,716 6,572 2000's 43,971 94,569 100,659 69,973 85,478 61,088 63,541 62,430 69,202 69,497 2010's 75,821 69,291 67,504 63,247 59,362

  15. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 208,890 185,583 193,142 2000's 208,894 175,611 193,766 194,280 192,242 200,336 179,949 198,715 193,613 193,988 2010's 205,688 187,921 201,550 193,232 201,199 205,407

  16. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 958,506 846,478 919,922 2000's 926,633 874,578 926,299 888,584 881,257 875,492 767,509 762,502 748,655 703,346 2010's 713,533 745,769 761,544 787,603 824,527 NA

  17. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 206,845 201,303 271,218 2000's 266,008 298,296 312,317 235,345 254,727 274,431 278,563 328,487 316,214 325,132 2010's 399,073 401,561 440,741 393,161 390,396 NA

  18. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 275,838 253,157 259,054 2000's 277,206 281,875 273,073 259,526 260,708 265,485 250,290 269,825 288,847 260,976 2010's 274,361 265,534 250,902 271,341 290,421 271,116

  19. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 54,138 54,093 55,129 2000's 57,725 54,529 58,451 56,074 54,066 55,200 60,602 60,869 64,240 66,613 2010's 60,517 68,113 61,963 68,410 71,435 NA

  20. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 128,092 127,840 118,536 2000's 123,791 118,933 117,427 113,320 110,725 114,402 125,202 145,253 160,685 156,161 2010's 161,284 162,219 150,961 166,233 165,620 149,107

  1. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 131,463 147,747 153,880 2000's 188,288 175,966 175,739 184,152 212,723 224,919 246,865 251,425 261,579 272,543 2010's 256,256 245,807 267,242 268,008 247,182 NA

  2. Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 877,039 792,617 823,448 2000's 871,444 787,719 813,735 832,563 812,084 811,759 729,264 791,733 780,187 723,471 2010's 767,704 808,509 832,437 901,087 982,855 949,865

  3. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 459,508 490,070 456,573 2000's 450,596 400,740 429,152 443,139 444,514 487,723 528,236 563,474 590,997 566,176 2010's 582,389 559,215 587,287 539,056 508,363 544,200

  4. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 172,588 216,058 224,767 2000's 213,063 218,632 193,006 205,415 225,263 225,277 214,346 242,371 261,105 240,765 2010's 232,900 194,336 211,232 236,276 216,365 233,523

  5. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 664,782 609,779 648,194 2000's 659,042 596,041 632,035 651,938 662,513 656,097 625,944 711,945 705,284 755,938 2010's 811,209 866,775 918,490 959,041 1,042,647 1,078,193

  6. Natural Gas Delivered to Consumers in Tennessee (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 259,790 262,598 263,607 2000's 256,821 242,184 243,955 244,484 220,602 221,088 212,864 211,020 219,535 204,990 2010's 247,000 252,200 266,762 272,304 297,814 306,194

  7. Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,732,807 3,809,430 3,658,039 2000's 4,073,007 3,917,933 3,966,512 3,747,467 3,595,474 3,154,632 3,068,002 3,133,456 3,128,339 2,947,542 2010's 3,185,011 3,305,730 3,377,217 3,350,645 3,415,789 3,589,916

  8. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 137,700 139,522 133,518 2000's 137,213 135,123 135,699 125,899 128,441 130,286 152,283 183,237 192,281 182,187 2010's 185,228 184,581 178,941 199,684 198,278 187,452

  9. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,052 7,726 8,025 2000's 10,411 7,906 8,353 8,386 8,672 8,358 8,041 8,851 8,609 8,621 2010's 8,428 8,558 8,077 9,512 10,554 11,766

  10. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 240,244 252,233 267,269 2000's 258,975 228,670 247,351 254,008 268,674 292,043 264,954 309,866 286,497 304,266 2010's 359,208 352,281 392,255 401,623 404,939 NA

  11. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 247,530 281,143 279,656 2000's 280,617 303,060 227,360 243,072 253,663 256,580 256,842 265,211 291,535 302,930 2010's 278,139 257,945 255,356 308,148 298,088 NA

  12. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 396,107 363,738 376,409 2000's 389,543 356,915 381,498 391,185 380,014 406,550 369,353 395,519 406,723 385,418 2010's 369,924 391,128 400,876 439,741 458,999 454,45

  13. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 70,792 77,652 60,593 2000's 63,384 60,385 69,633 67,627 65,639 64,753 65,487 67,693 66,472 61,774 2010's 67,736 70,862 73,690 74,597 73,096 72,765

  14. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars ...

  15. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Average heat value (Btu per cubic foot)",1108,1040,1121,1016,1018,1021,1025,1013,1093,1106,1095,1123,1104,1020,1139,1092,1072,1071,1075,1073,1055,1165,1206,1194,12

  16. Proceedings of the 18th Annual Conference on Fossil Energy Materials.

    SciTech Connect (OSTI)

    Judkins, RR

    2004-11-02

    The 18th Annual conference on Fossil Energy Materials was held in Knoxville, Tennessee, on June 2 through June 4, 2004. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff members at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer.

  17. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect (OSTI)

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  18. Fossil Energy Today- Second Quarter, 2012

    Broader source: Energy.gov [DOE]

    Here are just some of the stories featured in this issue: NETL Share Computing Speed, Efficiency to Tackle Barriers; Global Collaboration in Clean Fossil Energy; Charles McConnell Confirmed Assistant Secretary for Fossil Energy; and, New Catalyst Technology Reduces Diesel Engine Idling.

  19. Oil Shale and Other Unconventional Fuels Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves » Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. It is generally agreed that worldwide petroleum supply will eventually reach its productive limit, peak, and begin a

  20. Fossil Energy FY 2010 Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Budget Fossil Energy FY 2010 Budget Fossil Energy's FY 2010 budget, including request, House and Senate marks, and final appropriation. PDF icon Fossil Energy FY 2010 Budget More Documents & Publications Fossil Energy FY 2011 Budget Fossil Energy FY 2009 Budget FY 2014 Funding History Detail Spreadsheet

  1. Fossil Energy FY 2011 Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Budget Fossil Energy FY 2011 Budget Fossil Energy's FY 2011 budget request, House and Senate marks, and final appropriation. PDF icon Fossil Energy FY 2011 Budget More Documents & Publications Fossil Energy FY 2010 Budget Fossil Energy FY 2009 Budget FY 2012 Budget Justification

  2. Fossil Energy FY 2014 Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy FY 2014 Budget Fossil Energy FY 2014 Budget Documents and information related to the Fossil Energy FY 2014 budget. Fossil Energy FY 2014 Budget-in-Brief Office of Fossil Energy Techline - April 10, 2013 Detailed FY 2014 Budget Jusifications for FE Department of Energy's Complete FY 2014 Budget Request

  3. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  4. NREL: Hydrogen and Fuel Cells Research - Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Photo of scientific equipment in a laboratory setting. NREL scientist applies catalyst layer to a fuel cell through a spray process that delivers a more even distribution of material, improving performance. Photo by Dennis Schroeder, NREL What is a fuel cell? A single fuel cell consists of an electrolyte sandwiched between two electrodes. Bipolar plates on either side of the cell help distribute gases and serve as current collectors. Depending on the application, a fuel cell stack may

  5. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Solicitation Part I Due Date Adv. Fossil Solicitation Part I Due Date January 13, 2016 12:01AM to 11:59PM EST ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE ...

  6. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Solicitation Part I Due Date Adv. Fossil Solicitation Part I Due Date March 16, 2016 12:01PM to 11:59PM EDT ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE...

  7. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  8. EERE Success Story-Department of Energy Delivers on R&D Targets around

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Ethanol | Department of Energy Delivers on R&D Targets around Cellulosic Ethanol EERE Success Story-Department of Energy Delivers on R&D Targets around Cellulosic Ethanol April 19, 2013 - 11:24am Addthis In September 2012, scientists at DOE national laboratories successfully demonstrated technical advances required to produce cellulosic ethanol that is cost competitive with petroleum. Cellulosic ethanol is fuel produced from the inedible, organic material abundant in

  9. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    SciTech Connect (OSTI)

    Yamaguchi, N.D.; Breazeale, K.

    1993-12-01

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  10. Energy Department Releases Draft Advanced Fossil Energy Solicitation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII...

  11. Profiles in Leadership: Christopher Smith, Assistant Secretary for Fossil Energy

    Broader source: Energy.gov [DOE]

    Christopher Smith, Assistant Secretary for Fossil Energy, shares his perspective on the work of the Office of Fossil Energy in this Profile in Leadership.

  12. Fossil Energy FY 2014 Appropriations Hearing | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy FY 2014 Appropriations Hearing March 14, 2013 - 1:36pm Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy before the House Committee ...

  13. Energy Department's Fossil Energy Chief to Tour Western Michigan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, ... Capture and Sequestration (CCS) technology help industry make fossil energy use ...

  14. Fossil superheating in geothermal steam power plants (Technical...

    Office of Scientific and Technical Information (OSTI)

    Fossil superheating in geothermal steam power plants Citation Details In-Document Search Title: Fossil superheating in geothermal steam power plants You are accessing a document ...

  15. DISTRIBUTED ENERGY PROJECTS SUPPLEMENT TO ADVANCED FOSSIL LOAN...

    Office of Environmental Management (EM)

    SUPPLEMENT TO ADVANCED FOSSIL LOAN GUARANTEE ANNOUNCEMENT DISTRIBUTED ENERGY PROJECTS SUPPLEMENT TO ADVANCED FOSSIL LOAN GUARANTEE ANNOUNCEMENT LPO has released a supplement to its ...

  16. Powerpoint Presentation: Fossil Energy R&D American Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects A ...

  17. Fossil Energy FY 2012 Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Fossil Energy FY 2012 Budget More Documents & Publications FY 2014 Budget Request Statistical Table Fossil Energy FY 2013 Budget FY 2014 Department of Energy Budget ...

  18. Fossil Fuel-fired Peak Heating for Geothermal Greenhouses | Open...

    Open Energy Info (EERE)

    18(1):1-4. Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997) Areas (1) Lightning Dock...

  19. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... this period, exceeding offshore sales by FY 2007. The ... Further, private landowners often require drilling within a ... analysis, resource evaluation, economic analysis, and ...

  20. Most Viewed Documents for Fossil Fuels: September 2014 | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Generalized displacement correlation method for estimating stress intensity factors Fu, P; ... our World (A "Life at the Frontiers of Energy Research" contest entry from the 2011 ...

  1. Most Viewed Documents for Fossil Fuels: December 2014 | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Generalized displacement correlation method for estimating stress intensity factors Fu, P; ... basins--a possible significant new energy source Price, L.C. (1977) 23 Life Cycle ...

  2. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema (OSTI)

    Stephen Herring

    2010-01-08

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, lab

  3. GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS; MECHANICAL...

    Office of Scientific and Technical Information (OSTI)

    DRAFT COOLING TOWERS; PERFORMANCE; SIMULATION; COST; DESIGN; HEAT TRANSFER; OPERATION; WATER REQUIREMENTS; COOLING TOWERS; ENERGY TRANSFER; MECHANICAL STRUCTURES; TOWERS...

  4. September 2015 Most Viewed Documents for Fossil Fuels | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Jorge Gabitto; Maria Barrufet (2003) 141 Decomposition of calcium sulfate: a review of the literature. 62 refs Swift, W M; Panek, A F; Smith, G W; Vogel, G J; Jonke, A A (1976) ...

  5. December 2015 Most Viewed Documents for Fossil Fuels | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    of calcium sulfate: a review of the literature. 62 refs Swift, W M; Panek, A F; Smith, G W; Vogel, G J; Jonke, A A (1976) 130 Autothermal Reforming of Natural Gas to ...

  6. Synthetic fossil fuel technologies: health problems and intersociety...

    Office of Scientific and Technical Information (OSTI)

    Authors: Gammage, R B ; Turner, J E Publication Date: 1979-01-01 OSTI Identifier: 6073318 Report Number(s): CONF-790415-31 DOE Contract Number: W-7405-ENG-26 Resource Type: ...

  7. September 2013 Most Viewed Documents for Fossil Fuels | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Roe-Hoam Yoon; Ramazan Asmatulu; Ismail Yildirim; William Jansen; Jinmig Zhang; Brad Atkinson; Jeff Havens (2004) 26 > VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL ...

  8. Atmospheric benzenoid emissions from plants rival those from fossil fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Misztal, P. K.; Hewitt, C. N.; Wildt, J.; Blande, J. D.; Eller, A. S.D.; Fares, S.; Gentner, D. R.; Gilman, J. B.; Graus, M.; Greenberg, J.; et al

    2015-07-13

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functionsmore » of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y-1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.« less

  9. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Gasoline and Diesel Fuel Update (EIA)

    lands in FY 2011 could continue to change for some time, and that revisions to such data are more likely than not to increase reported sales. However, there is no reason to...

  10. Cracow clean fossil fuels and energy efficiency program. Progress report

    SciTech Connect (OSTI)

    1998-10-01

    Since 1990 the US Department of Energy has been involved in a program aimed at reducing air pollution caused by small, coal-fired sources in Poland. The program focuses on the city of Cracow and is designed so that results will be applicable and extendable to the entire region. This report serves both as a review of the progress which has been made to date in achieving the program objectives and a summary of work still in progress.

  11. Plants Martin, Christopher; Pavlish, John 20 FOSSIL-FUELED POWER...

    Office of Scientific and Technical Information (OSTI)

    was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program. University Of North Dakota USDOE United States...

  12. renewable sources of power. Demand for fossil fuels surely will...

    Broader source: Energy.gov (indexed) [DOE]

    ... to meet future energy needs and worsen the national dependency on foreign petroleum. ... This trend towards a dependency on the transmission grid to facilitate not only economic ...

  13. Atmospheric benzenoid emissions from plants rival those from fossil fuels

    SciTech Connect (OSTI)

    Misztal, P. K.; Hewitt, C. N.; Wildt, J.; Blande, J. D.; Eller, A. S.D.; Fares, S.; Gentner, D. R.; Gilman, J. B.; Graus, M.; Greenberg, J.; Guenther, A. B.; Hansel, A.; Harley, P.; Huang, M.; Jardine, K.; Karl, T.; Kaser, L.; Keutsch, F. N.; Kiendler-Scharr, A.; Kleist, E.; Lerner, B. M.; Li, T.; Mak, J.; Nlscher, A. C.; Schnitzhofer, R.; Sinha, V.; Thornton, B.; Warneke, C.; Wegener, F.; Werner, C.; Williams, J.; Worton, D. R.; Yassaa, N.; Goldstein, A. H.

    2015-07-13

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y-1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.

  14. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  15. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect (OSTI)

    Russell G. May; Tony Peng; Tom Flynn

    2004-04-01

    Accomplishments during the first six months of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers.

  16. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air is heated prior to entering the diffusion tower. Further analytical analysis is required to predict the thermal and mass transport with the air heating configuration.

  17. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  18. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  19. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Clive Brereton; Warren Wolfs; James Lockhart

    2004-10-21

    During this quarter, work was focused on characterizing the stability of layered composite membranes in a one hundred percent permeate environment. Permeation data was also collected on cermets as a function of thickness. A thin film deposition procedure was used to deposit dense thin BCY/Ni onto a tubular porous support. Thin film tubes were then tested for permeation at ambient pressure. Process flow diagrams were prepared for inclusion of hydrogen separation membranes into IGCC power plants under varying conditions. Finally, membrane promoted alkane dehydrogenation experiments were performed.

  20. 2016 Bioenergizeme Infographic Challenge: Fossil Fuels vs Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  1. 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  2. 2016 Bioenergizeme Infographic Challenge: Use of Fossil Fuels & Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from High Tech Early College in Denver, CO, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  3. March 2014 Most Viewed Documents for Fossil Fuels | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    F. Rice; David P. Mann (2007) 38 > Geothermal Well Stimulation Campbell, D. A.; ... (1999) 30 > Recent Developments in Geothermal Drilling Fluids Kelsey, J. R.; Rand, P. ...

  4. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Gasoline and Diesel Fuel Update (EIA)

    maplayers.html?openChapterschpboundchpbound Four agencies-the National Park Service, Fish and Wildlife Service, and Bureau of Land Management (BLM), in the Department of the...

  5. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect (OSTI)

    Russell G. May; Tony Peng; Tom Flynn

    2004-12-01

    Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also, an unclad sapphire fiber was tested as a temperature sensor at moderate temperatures (up to 775 C).

  6. March 2015 Most Viewed Documents for Fossil Fuels | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico Hoak, T. Kestrel Geoscience, Littleton, CO (United States); Sundberg, K. Phillips ...

  7. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    U.S. Energy Information Administration (EIA) Indexed Site

    Resources Revenue. "ONNR Statistical Information Site" (http:statistics.onrr.gov). ... Resources Revenue. "ONNR Statistical Information Site" (http:statistics.onrr.gov). ...

  8. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    U.S. Energy Information Administration (EIA) Indexed Site

    Resources Revenue. "ONNR Statistical Information Site" (http:statistics.onrr.gov). ... of Natural Resources Revenue. "ONNR Statistical Information Site" (http:...

  9. Novel Gas Sensors for High-Temperature Fossil Fuel Applications

    SciTech Connect (OSTI)

    Palitha Jayaweera; Francis Tanzella

    2005-03-01

    SRI International (SRI) is developing ceramic-based microsensors to detect exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems under this DOE NETL-sponsored research project. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes attached to a solid state electrolyte and are designed to operate at the high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. The sensors can be easily integrated into online monitoring systems for active emission control. The ultimate objective is to develop sensors for multiple gas detection in a single package, along with data acquisition and control software and hardware, so that the information can be used for closed-loop control in novel advanced power generation systems. This report details the Phase I Proof-of-Concept, research activities performed from October 2003 to March 2005. SRI's research work includes synthesis of catalytic materials, sensor design and fabrication, software development, and demonstration of pulse voltammetric analysis of NO, NO{sub 2}, and CO gases on catalytic electrodes.

  10. Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A significant feature of the program is the reduction and partial elimination of trips required (usually by diesel-powered trucks) to refuel andor repair remotely located pumping ...

  11. Fuel injector system

    DOE Patents [OSTI]

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  12. Presentation: DOE Office of Fossil Energy

    Broader source: Energy.gov [DOE]

    Paula Gant, U.S. Department of Energy, Office of Fossil Energy, Deputy Assistant Secretary, Office of Oil and Gas highlighted a number of reports from 2011-2013 aimed at the safe and responsible...

  13. Proceedings: 1996 EPRI fossil plant maintenance conference

    SciTech Connect (OSTI)

    1996-07-01

    EPRI sponsors many conferences and workshops addressing various aspects of fossil power plant maintenance. Featured have been topics such as inspection methods, life assessment techniques, overhaul planning, predictive maintenance programs, thermography, vibration monitoring, welding, and component-specific events on boilers, condensers, feedwater heaters, generators, and turbines. The 1996 EPRI Fossil Plant Maintenance Conference-held July 29-August 1, 1996, in Baltimore, Maryland-reached a wider audience by providing a forum to discuss all aspects of fossil plant maintenance. Knowledgeable industry personnel exchanged information on state-of-the-art technology; identified major unresolved problems; and helped establish priorities for further research, development, and demonstration in fossil plant maintenance. This document presents report presented at the conference. Individual papers have been processed separately for the United States Department of Energy databases.

  14. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect (OSTI)

    Bradley, R.A.

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  15. Fossil-energy program. Quarterly progress report for June 30, 1983

    SciTech Connect (OSTI)

    McNeese, L.E.

    1983-08-01

    This quarterly report covers the progress made during the period March 31 through June 30 for the Oak Ridge National Laboratory research and development projects that are carried out in support of the increased utilization of coal and other fossil fuels as sources of clean energy. These projects are supported by various parts of DOE including Fossil Energy, Basic Energy Sciences, Office of Health and Environmental Research, Office of Environmental Compliance and Overview, the Electric Power Research Institute, and by the Tennessee Valley Authority and the EPA Office of Research and Development through inter-agency agreement with DOE.

  16. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    SciTech Connect (OSTI)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  17. Adv. Fossil Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adv. Fossil Solicitation Part II Due Date Adv. Fossil Solicitation Part II Due Date June 15, 2016 12:01AM to 11:59PM EDT ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Advanced Fossil Energy Projects Solicitation

  18. Supplement to Advanced Fossil Loan Guarantee Announcement 062315 |

    Energy Savers [EERE]

    Department of Energy to Advanced Fossil Loan Guarantee Announcement 062315 Supplement to Advanced Fossil Loan Guarantee Announcement 062315 PDF icon Supplement_third_to_Advanced_Fossil_Loan_Guarantee_Announcement_062315.pdf More Documents & Publications Supplement second to REEE Loan Guarantee Announcement 062315 DOE-LPO_Email-Update_001_Through_11 DISTRIBUTED ENERGY PROJECTS SUPPLEMENT TO ADVANCED FOSSIL LOAN GUARANTEE ANNOUNCEMENT

  19. PIA - Fossil Energy Web System (FEWEB) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PDF icon PIA - Fossil Energy Web System (FEWEB) More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - WEB Physical Security Major Application PIA - WEB Unclassified Business Operations General Support

  20. Fossil Energy Today - Third Quarter, 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Fossil Energy Today - Third Quarter, 2011 Topics In This Issue... Addressing Today's Energy Challenges Empowering Education Global CCS Projects NETL Joins Forces with India Hurricane Preparedness Upcoming Events PDF icon Fossil Energy Today - Issue No. 3, Third Quarter, 2011 More Documents & Publications Fossil Energy Today - Second Quarter, 2012 Fossil Energy Today - First

  1. Renewable Energy: Solar Fuels GRC and GRS

    SciTech Connect (OSTI)

    Nathan Lewis Nancy Ryan Gray

    2010-02-26

    This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  2. Fossil Energy Today - Fourth Quarter, 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Fossil Energy Today - Fourth Quarter, 2011 Topics In This Issue.... Industrial Carbon Capture, Storage Project Begins Construction A New Path Forward: CCUS FE R&D: A Legacy of Benefit NETL Helps Develop Improved Coronary Stents for Heart Patients CSLF Ministerial Reinforces Support for CCUS PDF icon Fossil Energy Today - Issue No. 4, Fourth Quarter, 2011 More Documents & Publications Fossil Energy Today - Third Quarter, 2011 Fossil Energy Today - Fourth Quarter, 2012 Fossil Energy

  3. Fossil Energy Today - Second Quarter, 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Fossil Energy Today - Second Quarter, 2011 Topics In This Issue... Office Reorganization McConnell Joins FE Staff Coal Cleaning Commercial Success Sonar Survey Program Heating Oil Reserve Converts Stock Marcellus Shale Water Management FE Spotlight Upcoming Events PDF icon Fossil Energy Today - Issue No. 2, Second Quarter, 2011 More Documents & Publications Fossil Energy Today - First Quarter, 2013 Fossil Energy Today - Third Quarter, 2011 Fossil Energy Today - Second Quarter, 2012

  4. Recommended nozzle loads for major equipment in fossil plants

    SciTech Connect (OSTI)

    Basavaraju, C.

    1995-12-31

    Most commonly, equipment nozzles are limiting items in the qualification of piping systems. Difficulty in meeting the allowable nozzle loads for major equipment such as boilers, HRSGs, steam turbines, pumps, tanks, heat exchangers, etc. is a commonly encountered and recurring problem. This issue also has a potential for impact on project costs and schedules due to modifications, piping reanalysis, and repeated interfaces with equipment vendor. The purpose of this paper is to provide guidance with regard to allowable nozzle loads. The approach consisted of utilizing data gathered and experience gained from several recently completed fossil fueled power projects. Tables containing a reasonable set of recommended values for allowable nozzle loads, which do not impose unnecessary burden either on the equipment manufacturers or on the designers and analysts of connected piping, are presented for guidance and use in the procurement of major equipment.

  5. Fossil generation restructuring in the Ukraine

    SciTech Connect (OSTI)

    Galambas, J.W.

    1996-12-31

    This paper describes the Ukrainian electrical system as it was in 1991, defines the need for restructuring, outlines the restructuring process, identifies a number of major obstacles that are hindering the implementation of the fossil generation, restructuring process, and points out major problems in the coal procurement system. It describes the visits to several Ukrainian power plants, defines restructuring success to date, makes suggestions for improved restructuring progress, highlights lessons learned, and enlightens the audience on the opportunities of investing in the Ukrainian power generation industry. The primary focus is on the Fossil Generator Advisor task, which was carried out under the direction of Hagler Bailly Consulting, Inc. (Hagler Bailly).

  6. Fuel-cell-propelled submarine-tanker-system study

    SciTech Connect (OSTI)

    Court, K E; Kumm, W H; O'Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  7. CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE

    SciTech Connect (OSTI)

    Joan M. Ogden

    2004-05-01

    In this third semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period September 2003 through March 2004. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  8. CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE

    SciTech Connect (OSTI)

    Joan M. Ogden

    2003-06-26

    In this semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period September 2002 through March 2003. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  9. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Joan M. Ogden

    2005-11-29

    In this final progress report, we describe research results from Phase I of a technical/economic study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the period September 2002 through August 2005 The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We carried out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  10. CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE

    SciTech Connect (OSTI)

    Joan M. Ogden

    2003-12-01

    In this second semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period March 2003 through September 2003. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  11. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  12. Proceedings of the second US Department of Energy environmental control symposium. Volume 1. Fossil energy

    SciTech Connect (OSTI)

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume I contains papers relating to coal preparation, oil shales, coal combustion, advanced coal utilization (fluidized bed combustion, MHD generators, OCGT, fuel cells), coal gasification, coal liquefaction, and fossil resource extraction (enhanced recovery). Separate abstracts for individual papers are prepared for inclusion in the Energy Data Base. (DMC)

  13. Fossil Energy Materials Program conference proceedings

    SciTech Connect (OSTI)

    Judkins, R.R.

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Advanced Vehicle Technology Research and Demonstration Bonds Qualified state, tribal, and local governments may issue Qualified Energy Conservation Bonds subsidized by the U.S. Department of Treasury at competitive rates to fund capital expenditures on qualified energy conservation projects. Eligible activities include research and demonstration projects related to cellulosic ethanol and other non-fossil fuels, as well as advanced battery manufacturing technologies. Government entities may

  15. Secondary fuel delivery system

    DOE Patents [OSTI]

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  16. New Mexico Natural Gas Delivered to Commercial Consumers for...

    Gasoline and Diesel Fuel Update (EIA)

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) New Mexico Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic...

  17. Minnesota Natural Gas Delivered to Commercial Consumers for the...

    Gasoline and Diesel Fuel Update (EIA)

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Minnesota ... Natural Gas Delivered to Commercial Consumers for the Account of Others Minnesota Natural ...

  18. Maine Natural Gas Delivered to Commercial Consumers for the Account...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Maine Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet)...

  19. California Natural Gas Delivered to Commercial Consumers for...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Account of Others (Million Cubic Feet) California Natural Gas Delivered to Commercial ... Natural Gas Delivered to Commercial Consumers for the Account of Others California Natural ...

  20. GTO Director Doug Hollett Delivers Keynote at the Nation's Largest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GTO Director Doug Hollett Delivers Keynote at the Nation's Largest Industry Gathering, September 29, 2014 GTO Director Doug Hollett Delivers Keynote at the Nation's Largest...