Sample records for delivered energy consumption

  1. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential Energy Consumption,

  2. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01T23:59:59.000Z

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  3. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential EnergyTotal Delivered

  4. Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential EnergyTotal Delivered::Total

  5. Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtight oil plays:

  6. "Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8Total Delivered

  7. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8 WaterRegionalListTotal

  8. "Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8

  9. "Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8Total

  10. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  11. Energy-consumption modelling

    SciTech Connect (OSTI)

    Reiter, E.R.

    1980-01-01T23:59:59.000Z

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  12. Delivering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations, andDelivering

  13. Get Daily Energy Analysis Delivered to Your Website | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website August 8, 2011 - 3:39pm Addthis Get Daily Energy Analysis Delivered to Your...

  14. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecadeEnergy Consumption

  15. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  16. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  17. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  18. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

  20. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  1. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  2. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  4. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  5. Exceeding Energy Consumption Design Expectations

    E-Print Network [OSTI]

    Castleton, H. F.; Beck, S. B. M.; Hathwat, E. A.; Murphy, E.

    2013-01-01T23:59:59.000Z

    ) the building consumed 208.7 kWh m-2 yr-1, 83% of the expected energy consumption (250 kWh m-2 yr-1). This dropped further to 176.1 kWh m-2 yr-1 in 2012 (70% below expected). Factors affecting building energy consumption have been discussed and appraised...

  6. Energy consumption of building 39

    E-Print Network [OSTI]

    Hopeman, Lisa Maria

    2007-01-01T23:59:59.000Z

    The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

  7. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    LBNL-pend TV Energy Consumption Trends and Energy-EfficiencyTrends and Energy Consumption ..TV Technology Trends and Energy Consumption. 1.2.3. Factors

  8. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

  9. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  10. New York: Weatherizing Westbeth Reduces Energy Consumption |...

    Energy Savers [EERE]

    New York: Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and...

  11. Continuous Improvement Energy Projects Reduce Energy Consumption

    E-Print Network [OSTI]

    Niemeyer, E.

    2014-01-01T23:59:59.000Z

    Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity..., LA. May 20-23, 2014 A presentation of the paper Continuous Improvement Energy Projects Reduce Energy Consumption by Bruce Murray and Allison Myers ESL-IE-14-05-31 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans...

  12. Transportation Energy Consumption Surveys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool

  13. ENERGY CONSUMPTION SURVEY

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State GlossaryEnergyForest(NAICSGlobal5

  14. Residential Energy Consumption Survey:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires 3U.S.E/EIA-0262/2

  15. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption, Energy Efficiency inTV Shipments on Energy Consumption.. 22 Figure 3-1.Estimates of Annual Energy Consumption in 3D mode of 3D TVs

  16. Energy Consumption ESPRIMO E7935 E80+

    E-Print Network [OSTI]

    Ott, Albrecht

    Computers is also taking significant effort to reduce the energy consumption in data centres by providingEnergy Consumption ESPRIMO E7935 E80+ White Paper Issue: September 2008 In order to strengthen all important energy information about their products. With the publication of energy consumption

  17. Monitoring Energy Consumption In Wireless Sensor Networks

    E-Print Network [OSTI]

    Turau, Volker

    Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

  18. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01T23:59:59.000Z

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  19. State energy data report 1992: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  20. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

  1. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

  2. Trends in Renewable Energy Consumption and Electricity

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

  3. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2008-09-02T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  4. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2006-03-07T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  5. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    NONE

    1995-10-05T23:59:59.000Z

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  6. Home, Habits, and Energy: Examining Domestic Interactions and Energy Consumption

    E-Print Network [OSTI]

    Paulos, Eric

    , habitual, and irrational. Implications for the design of energy-conserving interactions with technology investigate the relationships among "normal" domestic interactions with technology, energy consumptionHome, Habits, and Energy: Examining Domestic Interactions and Energy Consumption James Pierce1

  7. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of...

  8. Energy consumption metrics of MIT buildings

    E-Print Network [OSTI]

    Schmidt, Justin David

    2010-01-01T23:59:59.000Z

    With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

  9. State energy data report 1993: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  10. State Energy Data Report, 1991: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  11. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator ofEnergy Consumption2003

  12. Energy Preview: Residential Transportation Energy Consumption Survey,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5 15 1 Short-Term5 15t

  13. State energy data report 1994: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  14. Using Iterative Compilation to Reduce Energy Consumption

    E-Print Network [OSTI]

    Gheorghita, Valentin

    or to re- duce power. Most transformations require loop re- structuring. Although a large number.v.gheorghita,h.corporaal,a.a.basten}@tue.nl Keywords: Iterative Compilation, Program Optimization, Energy Consumption, Program Transformation. Abstract. This is emphasized by new demands added to compilers, like reducing static code size, energy consumption or power

  15. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  16. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of...

  17. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  18. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

  19. Monitoring and Management of Refinery Energy Consumption

    E-Print Network [OSTI]

    Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

    MONITORING AND MANAGEMENT OF REFINERY ENERGY CONSUMPTION Roger O. Pelham Richard D. Moriarty Patrie D. Hudgens Profimatics, Inc. Thousand Oaks, California ABSTRACT Since 1972, the u.s. refining industry has made much progress in reduci... ng energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and man age the daily use...

  20. Changing patterns of world energy consumption

    SciTech Connect (OSTI)

    Todd, S.H.

    1983-08-01T23:59:59.000Z

    The substantial increases in oil prices since 1973 have had tremendous impacts on world energy, and particularly on oil consumption. These impacts have varied across regions and energy types. As shown in a table, from 1960 through 1973 the real price of internationally traded crude oil, as measured in constant US dollars, changed very little. In this stable oil price environment, Free World energy consumption grew at 5.3% per year and oil use rose at 7.5% per year, increasing its share of Free World energy consumption from 43 to 56%. 6 tables.

  1. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 2 CBECS Surveyabout

  2. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 2 CBECS SurveyaboutSurvey

  3. Energy Information Administration - Transportation Energy Consumption by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 2 CBECS

  4. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06T23:59:59.000Z

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  5. State energy data report 1995 - consumption estimates

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  6. Research on Building Energy Consumption Situation in Shanghai

    E-Print Network [OSTI]

    Yang, X.; Tan, H.

    2006-01-01T23:59:59.000Z

    This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between...

  7. Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption

    E-Print Network [OSTI]

    Chyba, Monique

    : Autonomous Underwater Vehicle, Minimum Energy Consumption, Optimal Control, Experiments. 1 IntroductionIncreasing Underwater Vehicle Autonomy by Reducing Energy Consumption M. Chybaa , T. Haberkornd , S, we concern ourselves with finding a control strategy that minimizes energy consumption along

  8. Research on Building Energy Consumption Situation in Shanghai

    E-Print Network [OSTI]

    Yang, X.; Tan, H.

    2006-01-01T23:59:59.000Z

    This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between...

  9. Uncertainties in Energy Consumption Introduced by Building Operations and

    E-Print Network [OSTI]

    Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

  10. GIS-based energy consumption mapping

    E-Print Network [OSTI]

    Balta, Chrysi

    2014-11-27T23:59:59.000Z

    This project aims to provide a methodology to map energy consumption of the housing stock at a city level and visualise and evaluate different retrofitting scenarios. It is based on an engineering, bottom-up approach. It makes use...

  11. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  12. Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Preliminary measured drying time of fabric sample using ultrasonic...

  13. Energy Information Administration - Energy Efficiency, energy consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSalesVehicleYear Jan FebOverview >savings

  14. Electric Blanket Delivers K.O. to Space Heater During #EnergyFaceoff...

    Office of Environmental Management (EM)

    Electric Blanket Delivers K.O. to Space Heater During EnergyFaceoff Round Three Electric Blanket Delivers K.O. to Space Heater During EnergyFaceoff Round Three November 19, 2014...

  15. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andcan be measured using energy consumption per capita values.

  16. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

  17. Federal Energy Consumption and Progress Made toward Requirements

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) tracks Federal agency energy consumption and progress toward achieving energy laws and requirements.

  18. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    have the end use, not consumption specifically for that particular end use. HVAC Heating, Ventilation, and Air Conditioning. Due to rounding, data may not sum to...

  19. Residential Energy Consumption Survey Results: Total Energy Consumption,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - Making the Path

  20. Public perceptions of energy consumption and savings

    E-Print Network [OSTI]

    Kammen, Daniel M.

    on Environmental Decisions, Columbia University, New York, NY 10027; b Department of Psychology, Ohio StatePublic perceptions of energy consumption and savings Shahzeen Z. Attaria,1 , Michael L. De February 12, 2010) In a national online survey, 505 participants reported their percep- tions of energy

  1. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1 Energy Information

  2. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Broader source: Energy.gov [DOE]

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  3. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air BPA2.D (2001) -- FormAD

  4. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air BPA2.D (2001) -- FormADE

  5. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air BPA2.D (2001) -- FormADEF

  6. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air BPA2.D (2001) --

  7. 2014 Manufacturing Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air1, 2015 Financial4

  8. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage

  9. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecadePublication10.99 12.28E U.S. Census

  10. Understanding energy consumption: Beyond technology and economics

    SciTech Connect (OSTI)

    Wilhite, H.; Shove, E.

    1998-07-01T23:59:59.000Z

    This paper summarizes two years of efforts among a cross-disciplinary group of senior researchers to bring social and cultural perspectives to modeling of household energy consumption. The work has been organized by the Center for Energy Studies of the University of Geneva. The researchers represent both the physical and social sciences, several institutions and a number of countries. The initiative was based on an acknowledgement of the failure of technical and economic models to explain consumption or more importantly, how consumption patterns change. Technical and economic models most often either ignore social and cultural issues or reduce them to parameters of other variables. An important objective for the Geneva Group has been to engage modelers and social scientists in a dialogue which brings social and cultural context to the fore. The process reveals interesting insights into the frictions of cross-disciplinary interaction and the emergence of new perspectives. Various classical modeling approaches have been discussed and rejected. Gradually, a framework has emerged which says something about the appropriate institutions and actors which contribute to consumption patterns; about how they are related; and finally about how the interinstitutional relationships and the consumption patterns themselves change. A key point of convergence is that a complete understanding of energy end-use will not be possible from an analysis directed at the point of end use alone. The analysis must incorporate what happens inside institutions like manufacturers, retailers, and public policy organizations as well as how those organizations interact with consumers, including media and advertising. Progress towards a better understanding of energy consumption requires a greater engagement of social scientists with these heretofore little explored actors an relationships.

  11. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0

  12. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ Y M n i 1

  13. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ Y M n i

  14. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ Y M n

  15. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ Y M

  16. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ Y

  17. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ YDetailed

  18. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ

  19. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ0. Number

  20. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ0.

  1. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic Feet)Historical1

  2. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic

  3. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic1. Introduction The

  4. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in61999

  5. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in61999C

  6. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in61999C.

  7. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year

  8. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year. Vehicle

  9. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year. Vehicle

  10. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year. Vehicle

  11. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year.

  12. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year.Detailed

  13. Household Vehicles Energy Consumption 1994

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year.DetailedW

  14. Reduced Energy Consumption for Melting in Foundries

    E-Print Network [OSTI]

    336 007 TM 06 07 Department of Manufacturing Engineering and Management Technical University at the Technical University of Denmark, DTU. The project has been financed by the Danish transmission system-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

  15. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ Y M n iE

  16. Manufacturing Consumption of Energy 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S ˆ Y M n2(94)

  17. Evaluating Texas State University Energy Consumption According to Productivity

    E-Print Network [OSTI]

    Carnes, D.; Hunn, B. D.; Jones, J. W.

    1998-01-01T23:59:59.000Z

    The Energy Utilization Index, energy consumption per square foot of floor area, is the most commonly used index of building energy consumption. However, a building or facility exists solely to support the activities of its occupants. Floor area...

  18. Characterizing System Level Energy Consumption in Mobile Computing Platforms

    E-Print Network [OSTI]

    Obraczka, Katia

    1 Characterizing System Level Energy Consumption in Mobile Computing Platforms Cintia B. Margi 1156 High Street Santa Cruz, CA 95064 Abstract--- This paper approaches energy consumption charac terization in mobile computing platforms by assessing energy con sumption of ''basic'' application

  19. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    real-world thermostat settings and heat energy consumptionto real-world behaviours. The actual energy consumption goesworld data indicates that the houses heated during the night had higher annual heat energy consumption.

  20. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    USA MODELLING THE IMPACT OF USER BEHAVIOUR ON HEAT ENERGY CONSUMPTIONUSA The second point of interest to research was modelling the excess energy consumptionUSA Figure 3. Actual heating and hot water energy consumption

  1. Energy Consumption Characteriation of Heterogeneous Servers School of Computer Science

    E-Print Network [OSTI]

    Qin, Xiao

    Energy Consumption Characteriation of Heterogeneous Servers Xiao Zhang School of Computer Science Machine between servers to save energy. An accurate energy consumption model is the basic of energy management. Most past studies show that energy consumption has linear relation with resource utilization. We

  2. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2012-09-04T23:59:59.000Z

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  3. 2008 Erik Hinterbichler DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR

    E-Print Network [OSTI]

    Karahalios, Karrie G.

    in which HCI can contribute to energy conservation is in interfaces for residential energy consumption on the effects of energy consumption feedback in the home. From this analysis, we created a theoretical framework© 2008 Erik Hinterbichler #12;DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR INTERFACE

  4. On the Energy Consumption and Performance of Systems Software

    E-Print Network [OSTI]

    Stoller, Scott

    On the Energy Consumption and Performance of Systems Software Zhichao Li, Radu Grosu, Priya Sehgal {zhicli,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption that can balance out performance and energy use. This paper considers the energy consumption

  5. Modeling energy consumption in cellular networks L. Decreusefond

    E-Print Network [OSTI]

    Boyer, Edmond

    Modeling energy consumption in cellular networks L. Decreusefond Telecom Paristech, LTCI Paris Abstract--In this paper we present a new analysis of energy consumption in cellular networks. We focus on the distribution of energy consumed by a base station for one isolated cell. We first define the energy consumption

  6. Study of Air Infiltration Energy Consumption

    E-Print Network [OSTI]

    Liu, Mingsheng

    SYSTEMATIC ERROR DUE TO THE STEADY-STATE COMBINED MODELS 127 SIMULATION AND NUMERICAL RESULTS 141 APPLICATION 150 SUMMARy 157 METHODOLOGy 158 DIFFERENTIAL EQUATION 159 DISCRETIZATION OF THE DIFFERENTIAL EQUATION 161 EXTERNAL NODE EQUATIONS 164... temperature. Clearly, the room heater does not need to heat the air from the outside temperature to the room temperature because it has already captured part of the conduction heat flowing through the wall. To properly estimate house energy consumption...

  7. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    size on the market, which could also increase average energymarket will somewhat offset the increases in energy consumption that would otherwise be expected from increasing sales and screen sizes.

  8. Automated Analysis of Performance and Energy Consumption for Cloud Applications

    E-Print Network [OSTI]

    Schneider, Jean-Guy

    load tests and profile system performance and energy consumption data. Using StressCloud, we have, increasing data storage and computation needs significantly raise the energy consumption of large cloud consumption directly contributes to data centres' operational costs, especially as the energy unit cost

  9. Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization

    E-Print Network [OSTI]

    Poovendran, Radha

    energy consumption while limiting the latency in data transfer. In this paper, we focus on pollingMinimizing Energy Consumption in Body Sensor Networks via Convex Optimization Sidharth Nabar energy consumption and latency. We show that this problem can be posed as a geometric program, which

  10. On the Energy Consumption and Performance of Systems Software

    E-Print Network [OSTI]

    Zadok, Erez

    On the Energy Consumption and Performance of Systems Software Appears in the proceedings of the 4th,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption and performance are necessary to understand and identify system. This paper considers the energy consumption and performance of servers running a relatively simple file

  11. Reducing the Energy Consumption of Mobile Applications Behind the Scenes

    E-Print Network [OSTI]

    Tilevich, Eli

    Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

  12. The Impact of Distributed Programming Abstractions on Application Energy Consumption

    E-Print Network [OSTI]

    Tilevich, Eli

    The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon of their energy consumption patterns. By varying the abstractions with the rest of the functionality fixed, we measure and analyze the impact of distributed programming abstractions on application energy consumption

  13. Energy Consumption in Coded Queues for Wireless Information Exchange

    E-Print Network [OSTI]

    Boucherie, Richard J.

    Energy Consumption in Coded Queues for Wireless Information Exchange Jasper Goseling, Richard J customers. We use this relation to ob- tain bounds on the energy consumption in a wireless information, for example, from the observations in [3] that using network coding can reduce the energy consumption

  14. Optimization of Energy and Water Consumption in Cornbased Ethanol Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization of Energy and Water Consumption in Cornbased Ethanol Plants Elvis Ahmetovi). First, we review the major alternatives in the optimization of energy consumption and its impact for the water streams. We show that minimizing energy consumption leads to process water networks with minimum

  15. GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS

    E-Print Network [OSTI]

    Schott, Ren - Institut de Mathmatiques lie Cartan, Universit Henri Poincar

    GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

  16. Bounds on the Energy Consumption of Computational Andrew Gearhart

    E-Print Network [OSTI]

    California at Berkeley, University of

    Bounds on the Energy Consumption of Computational Kernels Andrew Gearhart Electrical Engineering not necessarily reflect the position or the policy of the sponsors. #12;Bounds on the Energy Consumption Fall 2014 #12;Bounds on the Energy Consumption of Computational Kernels Copyright 2014 by Andrew Scott

  17. Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks

    E-Print Network [OSTI]

    Weigle, Michele

    Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks Shahram}@cs.odu.edu Abstract--This paper investigates the effect of various param- eters of energy consumption. Finding the optimum combination of parameters to minimize energy consumption while satisfying the Qo

  18. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  19. Data Center Power Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Consumption Data Center Power Consumption Presentation covers the FUPWG Fall Meeting, held on November 28-29, 2007 in San Diego, California. fupwgsandiegomainers.pdf More...

  20. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

  1. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  2. Energy Consumption Scheduling in Smart Grid:A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  3. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

  4. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

  5. ResPoNSe: modeling the wide variability of residential energy consumption.

    E-Print Network [OSTI]

    Peffer, Therese; Burke, William; Auslander, David

    2010-01-01T23:59:59.000Z

    affect appliance energy consumption. For example, differentStates, 2005 Residential Energy Consumption Survey: HousingModeling of End-Use Energy Consumption in the Residential

  6. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

  7. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

  8. The Impact of Residential Density on Vehicle Usage and Energy Consumption

    E-Print Network [OSTI]

    Golob, Thomas F.; Brownstone, David

    2005-01-01T23:59:59.000Z

    Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

  9. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  10. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    104 306 3,611 Fuel Oil ... 5 1,864 403 179 1,993 District Heat ... 67 5,576 83 636 7,279 Energy End Uses...

  12. On Minimizing the Energy Consumption of an Electrical Vehicle

    E-Print Network [OSTI]

    2011-04-19T23:59:59.000Z

    Problem, Branch-and-Bound, Electrical Vehicle, Energy Consumption. ... Electrical vehicle uses an electrical energy source for its displacement which can.

  13. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  14. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

  15. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator ofEnergy

  16. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator ofEnergy2003 Detailed

  17. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator ofEnergy2003 Detailed2003

  18. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator ofEnergy2003

  19. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator ofEnergy20032003 Detailed

  20. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator ofEnergy20032003

  1. Residential Energy Consumption Survey (RECS) - Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 mPilotDataGlossaryRSS

  2. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P. [British Nuclear Group Ltd, Daresbury, Warrington (United Kingdom)

    2007-07-01T23:59:59.000Z

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  3. The Analysis and Assessment on Heating Energy Consumption of SAT

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  4. The Analysis and Assessment on Heating Energy Consumption of SAT

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  5. Delivering Energy Efficiency to Middle Income Single Family Households

    E-Print Network [OSTI]

    Zimring, Mark

    2012-01-01T23:59:59.000Z

    Neighborhood Program GETS Green Energy Training ServicesGJGEI Green Jobs, Green Energy Initiative CEWO Cleanincome households. The Green Energy Training Services (GETS)

  6. Delivering Energy Efficiency to Middle Income Single Family Households

    E-Print Network [OSTI]

    Zimring, Mark

    2012-01-01T23:59:59.000Z

    rentalhousing/Energy_Efficiency_Project/COB_rebates_8.2.11.PDS/rentalhousing/Energy_Efficiency_Project/SmartRegs_Final_s residential energy efficiency loan program November 2010-

  7. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use1995 End-Use2003

  8. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use1995

  9. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use19952003 Detailed

  10. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use19952003

  11. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use199520032003

  12. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use1995200320032003

  13. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables

  14. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables2003 Detailed Tables

  15. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables2003 Detailed

  16. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables2003 Detailed2003 Detailed

  17. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables2003 Detailed2003

  18. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables2003 Detailed20032003

  19. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables2003 Detailed200320032003

  20. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables2003

  1. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables20032003 Detailed

  2. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables20032003 Detailed2003

  3. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables20032003 Detailed20032003

  4. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables20032003

  5. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables200320032003 Detailed

  6. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables200320032003 Detailed2003

  7. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables200320032003

  8. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables2003200320032003 Detailed

  9. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables2003200320032003

  10. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables20032003200320032003

  11. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables200320032003200320032003

  12. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand

  13. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed Tables 5A. Natural

  14. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed Tables 5A.

  15. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed Tables 5A.2003

  16. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed Tables 5A.20032003

  17. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed Tables

  18. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed Tables2003 Detailed

  19. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed Tables2003

  20. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed Tables20032003

  1. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed Tables200320032003

  2. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed

  3. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed2003 Detailed Tables

  4. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed2003 Detailed

  5. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed2003 Detailed2003

  6. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed2003 Detailed20032003

  7. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed2003 Detailed200320032003

  8. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed2003

  9. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed20032003 Detailed

  10. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed20032003 Detailed2003

  11. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed20032003 Detailed20032003

  12. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed20032003

  13. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed200320032003 Detailed

  14. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed200320032003 Detailed2003

  15. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed200320032003

  16. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed2003200320032003 Detailed

  17. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed2003200320032003

  18. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed20032003200320032003

  19. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003 Detailed200320032003200320032003

  20. Delivering Energy Efficiency to Middle Income Single Family Households

    E-Print Network [OSTI]

    Zimring, Mark

    2012-01-01T23:59:59.000Z

    New York, the New York State Energy Research and DevelopmentVermont Energy Investment Corporation NYSERDA New Yorkfor a case study on New Yorks energy efficiency program

  1. Delivering Energy Efficiency to Middle Income Single Family Households

    E-Print Network [OSTI]

    Zimring, Mark

    2012-01-01T23:59:59.000Z

    and other risks that make residential energy performancebenefits of energy improvements, there is a risk that theyenergy efficient properties, these initiatives reduce the risk

  2. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    Monitoring of Direct Energy Consumption in Long-Term2007. Constraining Energy Consumption of Chinas LargestProgram: Reducing Energy Consumption of the 1000 Largest

  3. Towards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System

    E-Print Network [OSTI]

    Zhuang, Weihua

    technology is incorporated to facilitate the energy delivery by providing electricity pricing and energy energy flow, non- stationary energy demand, battery characteristics, and TOU elec- tricity price. WeTowards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System Hao Liang, Bong Jun Choi

  4. Energy Information Administration / Annual Energy Outlook 2011

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Administration Annual Energy Outlook 2011 1 7 Table A7. Transportation Sector Key Indicators and Delivered Energy Consumption (Continued) Key Indicators and Consumption...

  5. Discover and Deliver: The Big Picture on Energy | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof aDepartment-ofBenefits »Discover and Deliver:

  6. Classification of Energy Consumption in Buildings with Outlier Detection

    E-Print Network [OSTI]

    Yao, Xin

    . Then a canonical variate analysis is employed to describe latent variables of daily electricity consumption is used to predict the daily electricity consumption profiles. A case study, based on a mixed use consumption data within a buildings energy management system. Electrical peak load forecasting plays

  7. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q)2Q) 19924(82)/HRIf

  8. DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q)2Q)6)2k

  9. Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage Volume16,%ThousandSwitching

  10. Delivering energy savings through community-based Organizations

    SciTech Connect (OSTI)

    Berry, David

    2010-11-15T23:59:59.000Z

    To achieve greater energy savings through energy efficiency programs, participation in those programs must increase. Community-based organizations provide a potentially effective way to reach more residential and small commercial consumers and increase the adoption of energy efficiency measures. (author)

  11. The Greatest Generation : a new retail store model for delivering energy efficiency in Massachusetts

    E-Print Network [OSTI]

    Hutchinson, Elijah Moses

    2012-01-01T23:59:59.000Z

    The mitigation of greenhouse gases (GHG) and reduced energy consumption in the United States has proven to be a great challenge in the face of climate change. While technological innovation and renewable energy continue ...

  12. Long-term energy consumptions of urban transportation: A prospective...

    Open Energy Info (EERE)

    can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of appropriate...

  13. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    come from space heating within homes (Boardman, 2007). If weassociated with heating the home must be an imperative. Theheating and hot water energy consumption of the homes (Zack

  14. On Minimizing the Energy Consumption of an Electrical Vehicle

    E-Print Network [OSTI]

    Abdelkader Merakeb

    2011-04-20T23:59:59.000Z

    Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

  15. Obama Administration Delivers Nearly $72 Million for Energy Efficiency...

    Office of Environmental Management (EM)

    Conservation Block Grant (EECBG) program, these states will implement programs that lower energy use, reduce carbon pollution, and create green jobs locally. "This funding will...

  16. Obama Administration Delivers More than $106 Million for Energy...

    Energy Savers [EERE]

    will also use EECBG funds to establish a loan program for small businesses, non-profits, health care institutions and institutions of higher education to finance energy efficiency...

  17. Delivering Energy Efficiency to Middle Income Single Family Households

    E-Print Network [OSTI]

    Zimring, Mark

    2012-01-01T23:59:59.000Z

    Cohen (DOE), Todd Conkey (WECC), Neely Crane-Smit (MNCEE),Diamond (LBNL), George Edgar (WECC), Lara Ettenson & team (Assistance Program WECC Wisconsin Energy Conservation

  18. DOE Delivers More than $354 Million for Energy Efficiency and...

    Broader source: Energy.gov (indexed) [DOE]

    selected based on several factors including projected energy savings, greenhouse gas emission reduction, ability to implement projects expeditiously and participation in national...

  19. GreenSlot: Scheduling Energy Consumption in Green Datacenters

    E-Print Network [OSTI]

    GreenSlot: Scheduling Energy Consumption in Green Datacenters igo Goiri UPC/BSC and Rutgers Univ grid (as a backup). GreenSlot predicts the amount of solar energy that will be available in the near future, and schedules the workload to maximize the green energy consumption while meet- ing the jobs

  20. Balancing Image Quality and Energy Consumption in Visual Sensor Networks

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    Balancing Image Quality and Energy Consumption in Visual Sensor Networks Kit-Yee Chow, King by hop through the sensor network. To reduce the energy used in transmission, the size of the images studies the tradeoff between image quality and energy consumption. We study the scenario that a number

  1. Characterizing System Level Energy Consumption in Mobile Computing Platforms

    E-Print Network [OSTI]

    Obraczka, Katia

    1 Characterizing System Level Energy Consumption in Mobile Computing Platforms Cintia B. Margi 1156 High Street Santa Cruz, CA 95064 Abstract-- This paper approaches energy consumption charac- terization in mobile computing platforms by assessing energy con- sumption of "basic" application-level tasks

  2. Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques ?lie Cartan, Université Henri Poincaré

    Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD1 , Ren energy reduction becomes crucial for many embed- ded systems designers. In this paper, we propose Hybrid to BEH). Keywords: Energy consumption reduction, Genetic algorithms, hybrid heuristics, memory allocation

  3. Statistical Mechanics of Money, Income, Debt, and Energy Consumption

    E-Print Network [OSTI]

    Hill, Wendell T.

    Statistical Mechanics of Money, Income, Debt, and Energy Consumption Physics Colloquium Presented in financial markets. Globally, data analysis of energy consumption per capita around the world shows@american.edu Similarly to the probability distribution of energy in physics, the probability distribution of money among

  4. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    Administration Annual Energy Outlook 2012 17 Table A7. Transportation sector key indicators and delivered energy consumption (continued) Key indicators and consumption...

  5. ECEEE 2005 SUMMER STUDY WHAT WORKS & WHO DELIVERS? 183 Local energy efficiency and demand-side

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ECEEE 2005 SUMMER STUDY ­ WHAT WORKS & WHO DELIVERS? 183 1,202 Local energy efficiency and demand be the basis for local energy policies and energy efficiency/demand-side management activities1, have been) activities in 1. DSM: Demand-Side Management; EE: energy efficiency (here, does not include renewable

  6. Obama Administration Delivers More than $106 Million for Energy Efficiency

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM Policy Acquisition GuidesEnergy ProjectsPrograms inand

  7. Obama Administration Delivers Nearly $72 Million for Energy Efficiency and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM Policy Acquisition GuidesEnergyConservation Projects in 7

  8. Workers Deliver Award-Winning Respiratory Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | DepartmentKavita RaviValerieEnergy| Department

  9. Energy consumption of personal computer workstations

    SciTech Connect (OSTI)

    Szydlowski, R.F.; Chvala, W.D. Jr.

    1994-02-01T23:59:59.000Z

    The explosive growth of the information age has had a profound effect on the appearance of today`s office. Although the telephone still remains an important part of the information exchange and processing system within an office, other electronic devices are now considered required equipment within this environment. This office automation equipment includes facsimile machines, photocopiers, personal computers, printers, modems, and other peripherals. A recent estimate of the installed base indicated that 42 million personal computers and 7.3 million printers are in place, consuming 18.2 billion kWh/yr-and this installed base is growing (Luhn 1992). From a productivity standpoint, it can be argued that this equipment greatly improves the efficiency of those working in the office. But of primary concern to energy system designers, building managers, and electric utilities is the fact that this equipment requires electric energy. Although the impact of each incremental piece of equipment is small, installation of thousands of devices per building has resulted in office automation equipment becoming the major contributor to electric consumption and demand growth in commercial buildings. Personal computers and associated equipment are the dominant part of office automation equipment. In some cases, this electric demand growth has caused office buildings electric and cooling systems to overload.

  10. Energy Storage & Delivery The goal of this project is to deliver measurement methods specific to

    E-Print Network [OSTI]

    Energy Storage & Delivery Materials The goal of this project is to deliver measurement methods specific to polymeric and organic materials needed in next generation energy storage and delivery. · The NIST team is works closely with leaders in the energy storage and delivery field, including General

  11. An Energy and Power Consumption Analysis of FPGA Routing Architectures

    E-Print Network [OSTI]

    Wilton, Steve

    An Energy and Power Consumption Analysis of FPGA Routing Architectures Peter Jamieson, Elec of energy and power consumption using an updated power estimation framework compatible with VPR 5.0. The goal of this research is to help FPGA vendors find the best FPGA architectures. Initially, we make some

  12. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

  13. Obama Administration Delivers More than $106 Million for Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.ofUseIowa |Programs in Alaska,and

  14. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    renewable energy technologies, solar photovoltaic (PV) technologies hold significant potentialenergy consumption: Potential savings and environmental impact." Renewable andpotential new value stream from NEM solar is monetization of the renewable energy

  15. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of primary energy, not including biomass fuels which areResidential Energy Consumption by Fuel (with Biomass) FigurePrimay Energy Consumption by Fuel (without Biomass) 8 of 17

  16. Input Substitution and Business Energy Consumption: Evidence from ABS Energy Survey Data

    E-Print Network [OSTI]

    1 Input Substitution and Business Energy Consumption: Evidence from ABS Energy Survey Data Kay Cao applies the system of equations approach to energy consumption modelling using the ABS 2008-09 Energy of equations, energy consumption modelling, elasticity of substitution JEL codes: C51, D24 * Please do

  17. EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies

    E-Print Network [OSTI]

    EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies Ekhiotz Jon VergaraFi transmissions at the user end. We recognize that the energy consumption of data transmission is highly. EnergyBox enables efficient energy consumption studies using real data, which com- plements the device

  18. Energy Consumption Reduction with Low Computational Needs in Multicore Systems with Energy-Performance Tradeoff

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Energy Consumption Reduction with Low Computational Needs in Multicore Systems with Energy rules) in order to decrease the energy consumption. We proposed in a previous paper a robust control of the energy consumption. I. INTRODUCTION An energy-performance tradeoff is required in many em- bedded

  19. Development of Energy Consumption Database Management System of Existing Large Public Buildings

    E-Print Network [OSTI]

    Li, Y.; Zhang, J.; Sun, D.

    2006-01-01T23:59:59.000Z

    The statistic data of energy consumption are the base of analyzing energy consumption. The scientific management method of energy consumption data and the development of database management system plays an important role in building energy...

  20. Development of Energy Consumption Database Management System of Existing Large Public Buildings

    E-Print Network [OSTI]

    Li, Y.; Zhang, J.; Sun, D.

    2006-01-01T23:59:59.000Z

    The statistic data of energy consumption are the base of analyzing energy consumption. The scientific management method of energy consumption data and the development of database management system plays an important role in building energy...

  1. China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    Chinas Industrial Energy Consumption Trends and Impacts ofChinas Industrial Energy Consumption Trends and Impacts ofs industrial energy consumption trends from 1996 to 2010

  2. China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    Choices, and Energy Consumption. Praeger Publishers,The decomposition effect of energy consumption in China'sThe challenge of reducing energy consumption of the Top-1000

  3. Monitoring and optimization of energy consumption of base transceiver stations

    E-Print Network [OSTI]

    Spagnuolo, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

    2015-01-01T23:59:59.000Z

    The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six Base Transceiver Stations (BSs) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy.

  4. Instrumenting Linear Algebra Energy Consumption via On-chip Energy Counters

    E-Print Network [OSTI]

    California at Berkeley, University of

    Instrumenting Linear Algebra Energy Consumption via On-chip Energy Counters James Demmel Andrew to lists, requires prior specific permission. #12;Instrumenting linear algebra energy consumption via on consumption is still a prevalent and growing problem within the computing sector. To evaluate energy

  5. Energy consumption testing of innovative refrigerator-freezers

    SciTech Connect (OSTI)

    Wong, M.T.; Howell, B.T.; Jones, W.R. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Long, D.L. [Statistical Solutions, Mississauga, Ontario (Canada)

    1995-12-31T23:59:59.000Z

    The high ambient temperature of the Canadian Standards Association (CSA) and the AHAM/DOE Refrigerator-Freezer Energy Consumption Standards is intended to compensate for the lack of door openings and other heat loads. Recently published results by Meier and Jansky (1993) indicate labeled consumption overpredicting typical field consumption by 15%. In-house field studies on conventional models showed labeled consumption overpredicting by about 22%. The Refrigerator-Freezer Technology Assessment (RFTA) test was developed to more accurately predict field consumption. This test has ambient temperature and humidity, door openings, and condensation control set at levels intended to typify Canadian household conditions. It also assesses consumption at exactly defined compartment rating temperatures. Ten conventional and energy-efficient production models were laboratory tested. The RFTA results were about 30% lower than labeled. Similarly, the four innovative refrigerator-freezer models, when field tested, also had an average of 30% lower consumption than labeled. Thus, the results of the limited testing suggest that the RFTA test may be a more accurate predictor of field use. Further testing with a larger sample is recommended. Experimental results also indicated that some innovative models could save up to 50% of the energy consumption compared with similar conventional units. The technologies that contributed to this performance included dual compressors, more efficient compressors and fan motors, off-state refrigerant control valve, fuzzy logic control, and thicker insulation. The larger savings were on limited production models, for which additional production engineering is required for full marketability.

  6. BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY

    E-Print Network [OSTI]

    Dukes, Jeffrey

    BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY JEFFREY S. DUKES Department of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I

  7. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Buildings Total energy consumption trends for the JapaneseFigure 9. Total energy consumption trends i n the JapaneseFigure 10. Energy consumption intensity trends i n Japanese

  8. The Impact of Residential Density on Vehicle Usage and Energy Consumption

    E-Print Network [OSTI]

    Golob, Thomas F; Brownstone, David

    2005-01-01T23:59:59.000Z

    on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

  9. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China Nan Zhou,Commercial Building Energy Consumption in China* Nan Zhou, 1whether and how the energy consumption trend can be changed

  10. Distributed Energy Consumption Control via Real-TimePricing Feedback in Smart Grid

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    on game- theoretic energy consumption scheduling for theK }). We denote the energy consumption of consumers as l kwhere l i k is the energy consumption of consumer i (i ? N )

  11. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...

    Broader source: Energy.gov (indexed) [DOE]

    In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that...

  12. 2003 Commercial Buildings Energy Consumption - What is an RSE

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of...

  13. Smart Meters Help Balance Energy Consumption at Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clouds, rain, thunderstorms at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's teams, thanks to smart grid technology that is helping them monitor their energy consumption.

  14. Reducing 3G energy consumption on mobile devices

    E-Print Network [OSTI]

    Deng, Shuo

    2012-01-01T23:59:59.000Z

    The 3G wireless interface is a significant contributor to battery drain on mobile devices. This paper describes the design, implementation, and experimental evaluation of methods to reduce the energy consumption of the 3G ...

  15. Efficiency alone as a solution to increasing energy consumption

    E-Print Network [OSTI]

    Haidorfer, Luke

    2005-01-01T23:59:59.000Z

    A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

  16. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J

  17. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O JInformation

  18. Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium-Size Office Building

    E-Print Network [OSTI]

    Wang, Liping

    2014-01-01T23:59:59.000Z

    Uncertainties in Energy Consumption Introduced by Buildingand actual building energy consumption can be attributed touncertainties in energy consumption due to actual weather

  19. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    and Projected Trends in Energy Consumption in China, 2000-Energy Consumption (Mtce) 2010 Baseline Target 2010 Current TrendsEnergy Consumption for the Top-1000 Energy-Consuming Enterprises Program Under Baseline, Target, and Current Trends

  20. Method and apparatus for delivering high power laser energy over long distances

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2013-08-20T23:59:59.000Z

    Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  1. Reducing Energy Consumption in Industrial Facilities

    E-Print Network [OSTI]

    Whalen, J. M.

    1984-01-01T23:59:59.000Z

    Owners or managers want to conserve energy, however, they have limited funds. Energy conservation must stand on its merits economically if it is to successfully compete for funds. There are two basic types of approaches to achieving energy...

  2. Energino: a Hardware and Software Solution for Energy Consumption Monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    aware and energyefficient protocols and algorithms for wireless networks. However, there is considerable dearth for designing energy efficient network protocols and architectures for broadband wireless access networks efficient protocols and algorithms for wireless networks. Nevertheless, energy consumption models used

  3. How Efficient Can We Be?: Bounds on Algorithm Energy Consumption

    E-Print Network [OSTI]

    California at Irvine, University of

    How Efficient Can We Be?: Bounds on Algorithm Energy Consumption Andrew Gearhart #12;Relation design use feedback to "cotune" compute kernel energy efficiency #12;Previous Work: Communication Lower-optimal" algorithms #12;Communication is energy inefficient! On-chip/Off-chip gap isn't going to improve much Data

  4. State energy data report: Consumption estimates, 1960--1987

    SciTech Connect (OSTI)

    Not Available

    1989-04-20T23:59:59.000Z

    The State Energy Data Report presents estimates of annual energy consumption at the state and national levels by major economic sector and by principal energy type for 1960 through 1987. Included in the report are documentation describing how the estimates were made for each energy source, sources of all input data, and a summary of changes from the State Energy Data Report published in April 1988.

  5. Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program

    E-Print Network [OSTI]

    Price, Lynn; Wang, Xuejun

    2007-01-01T23:59:59.000Z

    Industry Constraining Energy Consumption of Chinas Largestone-to-one ratio of energy consumption to GDP given Chinagoal of reducing energy consumption per unit of GDP by 20%

  6. Vending Machine Energy Consumption and VendingMiser Evaluation

    E-Print Network [OSTI]

    Ritter, J.; Hugghins, J.

    2000-01-01T23:59:59.000Z

    As an effort to decrease the amount of non-critical energy used on the Texas A&M campus, and to assist Dixie Narco in evaluating the efficiency of their vending machines, the Texas A&M Energy Systems Laboratory investigated the power consumption...

  7. annual energy consumption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy consumption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Sample Annual and Monthly Energy...

  8. The Impact on Energy Consumption of Daylight Saving Clock Changes

    E-Print Network [OSTI]

    Hill, Simon I.

    The Impact on Energy Consumption of Daylight Saving Clock Changes S. I. Hilla, , F. Desobrya , E. W demonstrating po- tential energy savings which could be obtained were Great Britain to maintain Daylight Savings result from an extension of Daylight Saving Time (DST) over the months currently on Greenwich Mean Time

  9. Preliminary Analysis of Energy Consumption For Cool Roofing Measures

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    decisions by offering design requirements and establishing building codes. Over the last decade, muchPreliminary Analysis of Energy Consumption For Cool Roofing Measures By Joe Mellott, Joshua New to reduce energy demand by reflecting sunlight away from structures and back into the atmosphere. By use

  10. World Energy Consumption and Carbon Dioxide Emissions: 1950 2050

    E-Print Network [OSTI]

    -U" relation with a within- sample peak between carbon dioxide emissions (and energy use) per capita and perWorld Energy Consumption and Carbon Dioxide Emissions: 1950 2050 Richard Schmalensee, Thomas M capita income. Using the income and population growth assumptions of the Intergovernmental Panel

  11. The effects of energy policies in China on energy consumption and GDP1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    policies have significant impacts on diesel oil, gasoline and natural gas consumption. However, some energy The effects of energy policies in China on energy consumption and GDP1 Ming-Jie Lu, C.-Y. Cynthia Lin and Song Chen Abstract This paper examines the effects of energy policies in China on energy

  12. Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild. "Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate the architectural and mechanical design of a building. Several researchers have demonstrated the analysis of low-energy

  13. The effects of energy policies in China on energy consumption1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    1 The effects of energy policies in China on energy consumption1 Ming-Jie Lu, C.-Y. Cynthia Lin and Song Chen Abstract This paper examines the effects of energy policies in China on energy consumption of energy policies, including environmental protection policies, policies that promote technological

  14. Canada's Fuel Consumption Guide | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway ElectricCambridge FundsCampa SudCanada's

  15. Energy Consumption Tools Pack Leandro Fontoura Cupertino, Georges DaCosta,

    E-Print Network [OSTI]

    Lefvre, Laurent

    Energy Consumption Library Data Acquisition Tool Data Monitoring Tool Energy Profiler 3 ConclusionsEnergy Consumption Tools Pack Leandro Fontoura Cupertino, Georges DaCosta, Amal Sayah, Jean Consumption Tools Pack 1 / 23 #12;Outline 1 Introduction Motivation Our proposal 2 Energy Consumption Tools

  16. uFLIP: Understanding the Energy Consumption of Flash Devices Matias Bjrling

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    uFLIP: Understanding the Energy Consumption of Flash Devices Matias Bjrling IT University Abstract Understanding the energy consumption of flash devices is important for two reasons. First, energy about the energy consumption of flash devices beyond their approximate aggregate consumption (low power

  17. A Measurement-Based Model of Energy Consumption for PLC Modems

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    A Measurement-Based Model of Energy Consumption for PLC Modems Wafae Bakkali(,), Mohamed Tlich- ysis of the energy consumption of commercial broadband PLC modems is reported. Energy consumption that quantifies the energy consumption associated to Ethernet frames and PLC Physical Blocks (PBs) processing

  18. Mixed-Criticality Multiprocessor Real-Time Systems: Energy Consumption vs Deadline Misses

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Mixed-Criticality Multiprocessor Real-Time Systems: Energy Consumption vs Deadline Misses Vincent that using the best compromise, the energy consumption can be reduced up to 17% while the percentage the energy consumption of MC systems. The energy consumption of embedded real-time systems is indeed

  19. Balancing Peer and Server Energy Consumption in Large Peer-to-Peer File Distribution Systems

    E-Print Network [OSTI]

    Andrew, Lachlan

    Balancing Peer and Server Energy Consumption in Large Peer-to-Peer File Distribution Systems}@swin.edu.au Abstract--Network induced energy consumption is a significant fraction of all ICT energy consumption. It is shown that using peer-to-peer and naively minimizing the transfer time results in energy consumption

  20. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    whether and how the energy consumption trend can be changedenergy consumption has grown more rapidly than GDP in the last five years. If the recent trend

  1. Residential Energy Consumption Survey: Housing Characteristics,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires 3U.S.E/EIA-0262/2tni

  2. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    behavior patterns in which American households use energy causes wide variations in total residential energy consumption per home,

  3. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    electricity, oil and coal consumption, offset by increasedsaved in electricity, oil and gas consumption, offset by 2.4energy consumption by fuel type. Natural gas, oil and some

  4. EIA - Annual Energy Outlook 2013 Early Release

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    A6 Industrial Sector Key Indicators and Consumption A7 Transportation Sector Key Indicators and Delivered Energy Consumption A8 Electricity Supply, Disposition, Prices,...

  5. Commercial Buildings Energy Consumption and Expenditures 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96(92)Information(92)

  6. Household Vehicles Energy Consumption 1994 - Appendix C

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year.DetailedW

  7. assess energy consumption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assess energy consumption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The Analysis and Assessment...

  8. Survey: Techniques for Efficient energy consumption in Mobile Architectures

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Survey: Techniques for Efficient energy consumption in Mobile Architectures Sean Maloney University@cs.ucsb.edu March 16th, 2012 Abstract As the world becomes more dependent on mobile technologies, battery life battery life is a delicate balance of give and take between longer battery life and more functionality

  9. November 2012 Key Performance Indicator (KPI): Energy Consumption

    E-Print Network [OSTI]

    Evans, Paul

    and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating requirements by combusting municipal waste to produce hot water. The process significantly saves carbon

  10. A method for evaluating transport energy consumption in suburban areas

    SciTech Connect (OSTI)

    Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

    2012-02-15T23:59:59.000Z

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

  11. Analysis of federal incentives used to stimulate energy consumption

    SciTech Connect (OSTI)

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01T23:59:59.000Z

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  12. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    49 3.3.3. Pre-installation electricity consumption of CSIE. Kahn (2011). Electricity Consumption and Durable Housing:on Electricity Consumption .

  13. Recirculation of Factory Heat and Air to Reduce Energy Consumption

    E-Print Network [OSTI]

    Thiel, G. R.

    1983-01-01T23:59:59.000Z

    ---- -- - ------ RECIRCULATION OF FACTORY HEAT AND AIR TO REDUCE ENERGY CONSUMPTION Gregory R. Thiel Eltron Mfg. Inc. Fort Thomas, KY. ABSTRACT Two methods for achieving substantial energy savings through recirculation techniques are discussed... challenging conditions: Because they are constructed to op erate "dripping wet", Eltron' s pro prietary "Conductive Precipitate" models can resume normal air clean ing operation immediately after each water washing cycle. They are the only...

  14. Energy Consumption Analysis and Energy Conservation Evaluation of a Commercial Building in Shanghai

    E-Print Network [OSTI]

    Chen, C.; Pan, Y.; Huang, Z.; Wu, G.

    2006-01-01T23:59:59.000Z

    The paper presents a model of a commercial building in Shanghai with energy simulation software, and after calibration, the energy consumption of this building is calculated. On the basis of the simulation and calculation, a series of energy saving...

  15. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01T23:59:59.000Z

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  16. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    LPG is a major energy source, while coal and electricity areoil coal Figure 14 Residential Primary Energy Consumption bytotal primary energy supply in 2000, coal will drop to about

  17. Energy Consumption Analysis and Energy Conservation Evaluation of a Commercial Building in Shanghai

    E-Print Network [OSTI]

    Chen, C.; Pan, Y.; Huang, Z.; Wu, G.

    2006-01-01T23:59:59.000Z

    The paper presents a model of a commercial building in Shanghai with energy simulation software, and after calibration, the energy consumption of this building is calculated. On the basis of the simulation and calculation, a series of energy saving...

  18. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01T23:59:59.000Z

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  19. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5 15EnvironmentalErin

  20. Capping the Brown Energy Consumption of Internet Services at Low Cost

    E-Print Network [OSTI]

    energy Trend: Cap the brown energy consumption of large electricity consumers (data centers) CappingCapping the Brown Energy Consumption of Internet Services at Low Cost Kien T. Le Ricardo Bianchini Energy Consumption Improving efficiency does not promote green energy or guarantee limits on brown

  1. Revised: 6 November 1991 Trends in the Consumption of Energy-Intensive Basic Materials

    E-Print Network [OSTI]

    Revised: 6 November 1991 Trends in the Consumption of Energy-Intensive Basic Materials on the consumption, rather than production, of materials. Earlier analyses of trends in basic materials consumption materials consumption patterns on energy use is the recognition that physical units (kilograms) are more

  2. U.S. Energy Information Administration (EIA) - Data

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    and Consumption XLS Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption XLS Table 8. Electricity Supply, Disposition, Prices, and Emissions XLS Table...

  3. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect (OSTI)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01T23:59:59.000Z

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  4. An analysis of residential energy consumption in a temperate climate

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01T23:59:59.000Z

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  5. Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant

    E-Print Network [OSTI]

    Kusiak, Andrew

    ; Energy consumption; Data collection; Neural networks; Dynamic models; Statics; Water treatment plants. Author keywords: Wastewater pump models; Energy consumption; Pump energy; Data mining; Head influenceModels for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant Zijun Zhang

  6. Analyzing the Impact of Useless Write-Backs on the Endurance and Energy Consumption of PCM

    E-Print Network [OSTI]

    Zhang, Youtao

    . This can reduce the static power consumption to negligible levels. The energy required to read data fromAnalyzing the Impact of Useless Write-Backs on the Endurance and Energy Consumption of PCM Main-effective and energy-efficient alternative to traditional DRAM main memory. Due to the high energy consumption

  7. Fine-grained Energy Consumption Characterization and Modeling Catherine Mills Olschanowsky, Tajana Rosing, and

    E-Print Network [OSTI]

    Simunic, Tajana

    Fine-grained Energy Consumption Characterization and Modeling Catherine Mills Olschanowsky, Tajana of the applications in the workload affect the energy consumption of the resource. Our experiments confirm that data the performance and energy-efficiency of candidate resources. Predicting the energy consumption of an HPC resource

  8. Energy consumption in cellular network: ON-OFF model and impact of mobility

    E-Print Network [OSTI]

    Energy consumption in cellular network: ON-OFF model and impact of mobility Thanh Tung Vu Telecom consumption in cellular network and we focus on the distribution of energy consumed by a base station. We first define the energy consumption model, in which the consumed energy is divided into two parts

  9. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Energy Consumption Reduction in Machining, Master of Science at the University of California at Berkeley, Berkeley, CA, USA.

  10. Demonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the sources of consumption. Automated monitoring of the electricity consumption in a house is quite a recent or numbers, but simply alert residents that something relevant to their electricity consumption is chang- ingDemonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses Christophe Gisler1

  11. Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada

    E-Print Network [OSTI]

    implemented in Canada, what would be the response of the industrial sector in terms of energy consumptionHybrid modeling of industrial energy consumption and greenhouse gas emissions with an application for modeling industrial energy consumption, among them a series of environmental and security externalities

  12. Balancing Energy and Water Consumption in an Urban Desert Environment: A Case

    E-Print Network [OSTI]

    Hall, Sharon J.

    at the Census block group level for 2005 3. Energy consumption data from 2005 Census Mesic Landscaping XericBalancing Energy and Water Consumption in an Urban Desert Environment: A Case Study on Phoenix, AZ effect, water scarcity, and energy consumption. The transformation of native landscapes into built

  13. Energy Consumption in Data Analysis for On-board and Distributed Applications

    E-Print Network [OSTI]

    Kargupta, Hilol

    Energy Consumption in Data Analysis for On-board and Distributed Applications Ruchita Bhargava Energy consumption is an important issue in the growing number of data mining and machine learning of the energy consumption characteristics of dif- ferent data analysis techniques. The paper com- pares

  14. Modelling Business Energy Consumption using Agent-based Simulation Modelling Jason Wong and Kay Cao1

    E-Print Network [OSTI]

    to develop a prototype agent based simulation model for business energy consumption, using data from the 2008 presents a framework of the model for estimating business energy consumption. Section V discusses the dataModelling Business Energy Consumption using Agent-based Simulation Modelling Jason Wong and Kay Cao

  15. MIND: A Black-Box Energy Consumption Model for Disk Arrays

    E-Print Network [OSTI]

    Qin, Xiao

    consumption is becoming a growing concern in data centers. Many energy-conservation techniques have beenMIND: A Black-Box Energy Consumption Model for Disk Arrays Zhuo Liu1,2 , Jian Zhou1 , Weikuan Yu2 with power conservation techniques. Accurate energy consumption and performance statistics are then collected

  16. Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications

    E-Print Network [OSTI]

    Politécnica de Madrid, Universidad

    Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications (Extended Abstract relying on autonomous on-board data analysis. Intermediate Representation Resource Usage Analysis Energy- mize energy consumption. Several approaches have been developed for estimating the en- ergy consumption

  17. Hybrid GA-SA Algorithms for Reducing Energy Consumption in Embedded Systems

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques ?lie Cartan, Université Henri Poincaré

    Hybrid GA-SA Algorithms for Reducing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD Vandoeuvre-L`es-Nancy, France. Email: Rene.Schott@loria.fr Abstract--Reducing energy consumption in embedded algorithms based on Simulated An- nealing (SA) and Genetic Algorithm (GA) for reducing energy consumption

  18. Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements

    E-Print Network [OSTI]

    Mellia, Marco

    Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements Luca% of the worldwide energy consumption, and several initiatives are being punt into place to reduce the power power consumption, even without taking into account the energy necessary for equipment cooling [4

  19. Accounting for the Energy Consumption of Personal Computing Including Portable Devices

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Accounting for the Energy Consumption of Personal Computing Including Portable Devices Pavel.S.A vinod.namboodiri@wichita.edu ABSTRACT In light of the increased awareness of global energy consumption the share of energy consumption due to these equipment over the years, these have rarely characterized

  20. Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking

    E-Print Network [OSTI]

    Sirer, Emin Gun

    Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking protocols re- quires knowledge of the energy consumption behavior of actual wireless interfaces. But little practical information is available about the energy consumption behavior of well-known wireless network

  1. Energy Consumption of TCP Reno, Newreno, and SACK in Multi-Hop Wireless Networks

    E-Print Network [OSTI]

    Singh, Suresh

    Energy Consumption of TCP Reno, Newreno, and SACK in Multi-Hop Wireless Networks Harkirat Singh In this paper we compare the energy consumption behavior of three versions of TCP Reno, Newreno, and SACK the lowest overall energy consumption. 1. INTRODUCTION Today, sophisticated wireless devices are gaining

  2. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Elevator Drive Systems Energy Consumption Study Report

    E-Print Network [OSTI]

    Energy Consumption Study Report Benny ChunYin Chan University of British Columbia EECE 492 April 6th the current status of the subject matter of a project/report". #12;Elevator Drive Systems Energy Consumption Study Report April 2012 0 2012 Elevator Drive Systems Energy Consumption Study Report Benny CY Chan UBC

  3. An off-line multiprocessor real-time scheduling algorithm to reduce static energy consumption

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    An off-line multiprocessor real-time scheduling algorithm to reduce static energy consumption, France laurent.pautet@telecom-paristech.fr Abstract--Energy consumption of highly reliable real dynamic energy consumption. This paper aims to propose a new off-line schedul- ing algorithm to put

  4. CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION?

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION? Julie how household consumption responds to changes in home energy outlays over the course of the year. We specify Euler equations describing nondurable and food consumption and then rely on changes in energy

  5. IEEE INFOCOM 2001 1 Investigating the Energy Consumption of a Wireless

    E-Print Network [OSTI]

    IEEE INFOCOM 2001 1 Investigating the Energy Consumption of a Wireless Network Interface in an Ad and evaluation of network protocols re quires knowledge of the energy consumption behavior of actual wireless interfaces. But little practical information is available about the energy consumption behavior of well

  6. Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements

    E-Print Network [OSTI]

    Mellia, Marco

    Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements Luca% of the worldwide energy consumption, and several initiatives are being put into place to reduce the power power consumption, even without taking into account the energy necessary for equipment cooling [4

  7. Mobile Location Sharing: An Energy Consumption Study Ekhiotz Jon Vergara, Mihails Prihodko, Simin Nadjm-Tehrani

    E-Print Network [OSTI]

    Mobile Location Sharing: An Energy Consumption Study Ekhiotz Jon Vergara, Mihails Prihodko, Simin- packet interval) highly influences the energy consumption of the mobile device. Our work focuses other clients' location updates (similar to pull behaviour). In order to evaluate the energy consumption and the

  8. Energy management of HEV to optimize fuel consumption and pollutant emissions

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

  9. Unit Testing of Energy Consumption of Software Libraries Adel Noureddine1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    Unit Testing of Energy Consumption of Software Libraries Adel Noureddine1,2 , Romain Rouvoy1. In this paper, we therefore introduce JalenUnit, a software framework that infers the energy consumption model, and comparing software libraries against their energy consumption. Categories and Subject Descriptors D.2

  10. An Analysis of Hard Drive Energy Consumption Anthony Hylick, Ripduman Sohan, Andrew Rice, and Brian Jones

    E-Print Network [OSTI]

    Cambridge, University of

    An Analysis of Hard Drive Energy Consumption Anthony Hylick, Ripduman Sohan, Andrew Rice, and Brian consumed by the electronics of a drive is just as important as the mechanical energy consumption; (ii consumption was a concern pri- marily for mobile computing domains. The rising cost of energy and increased

  11. INFLUENCES OF RAKE RECEIVER/TURBO DECODER PARAMETERS ON ENERGY CONSUMPTION AND QUALITY

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    INFLUENCES OF RAKE RECEIVER/TURBO DECODER PARAMETERS ON ENERGY CONSUMPTION AND QUALITY Lodewijk T are selected and their influences on the energy consumption and quality are investigated by means power hardware is needed to save energy consumption. Furthermore, an adequate quality of the wireless

  12. Cherish every Joule: Maximizing throughput with an eye on network-wide energy consumption

    E-Print Network [OSTI]

    Hou, Y. Thomas

    Cherish every Joule: Maximizing throughput with an eye on network-wide energy consumption Canming: {jcm, yshi, thou, wjlou}@vt.edu Abstract Conserving network-wide energy consumption is becoming of wireless networks, the concern of energy consumption is becoming in- creasingly important for network

  13. Measuring the Client Performance and Energy Consumption in Mobile Cloud Gaming

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    Measuring the Client Performance and Energy Consumption in Mobile Cloud Gaming Chun-Ying Huang1, Po-constrained devices may lead to inferior performance and high energy consumption. For example, the gaming frame rate and energy consumption of mobile clients is critical to the success of the new mobile cloud gaming ecosystem

  14. Experimental Study on the Energy Consumption in IaaS Cloud Environments

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Experimental Study on the Energy Consumption in IaaS Cloud Environments Alexandra Carpen.morin@inria.fr Abstract--Energy consumption has always been a major concern in the design and cost of datacenters the energy consumption of a cloud system, the hardware-component level is one of the most intensively studied

  15. Global Inequality in Energy Consumption from 1980 to 2010

    E-Print Network [OSTI]

    Lawrence, Scott; Yakovenko, Victor M

    2013-01-01T23:59:59.000Z

    We study the global probability distribution of energy consumption per capita around the world using data from the U.S. Energy Information Administration (EIA) for 1980-2010. We find that the Lorenz curves have moved up during this time period, and the Gini coefficient G has decreased from 0.66 in 1980 to 0.55 in 2010, indicating a decrease in inequality. The global probability distribution of energy consumption per capita in 2010 is close to the exponential distribution with G=0.5. We attribute this result to the globalization of the world economy, which mixes the world and brings it closer to the state of maximal entropy. We argue that global energy production is a limited resource that is partitioned among the world population. The most probable partition is the one that maximizes entropy, thus resulting in the exponential distribution function. A consequence of the latter is the law of 1/3: the top 1/3 of the world population consumes 2/3 of produced energy. We also find similar results for the global pro...

  16. To appear in: Mobile Networks and Applications 0 (2000) ?{? 1 An Energy-consumption Model for Performance

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    To appear in: Mobile Networks and Applications 0 (2000) ?{? 1 An Energy-consumption Model consumption behavior of a mobile ad hoc network. The model was used to examine the energy consumption of two. Keywords: mobile ad hoc networks, routing, energy consumption 1. Introduction Energy consumption

  17. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01T23:59:59.000Z

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  18. Sample design for the residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  19. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I E

  20. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I EProjections

  1. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I

  2. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    Tracking adopters and their consumption over time would shed additional light on the dynamics of solar

  3. A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based on Large Datasets

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based consumption of buildings based on historical performances is an important approach to achieve energy efficiency. A simulation method is here introduced to obtain sufficient clean historical consumption data

  4. Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report

    E-Print Network [OSTI]

    Lockhead, S.

    1999-01-01T23:59:59.000Z

    , liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify...

  5. Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report

    E-Print Network [OSTI]

    Lockhead, S.

    , liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify...

  6. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01T23:59:59.000Z

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  7. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    China Estimates of global and country-specific energy saving potentials will be based on the above TV market forecast

  8. Baseline projections of transportation energy consumption by mode: 1981 update

    SciTech Connect (OSTI)

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01T23:59:59.000Z

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  9. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    Energy Efficiency of New Televisions. October. http://mappingandbenchmarking.iea-4e.org/shared_files/110/download 2010b Australia

  10. 2009 Energy Consumption Per Person | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNewsEnergyDepartmentof15 Ways to

  11. Appliance Energy Consumption in Australia | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture and SequestrationAnemoiAnokaApi NovaEnergy

  12. Changing Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages and Tobacco

    E-Print Network [OSTI]

    in energy consumption. Patterns of Consumption--Historic Trends Electricity & Gas We'll start with historicChanging Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages analysis of consumption patterns of different commodities in the U.S. shed light on the consumption

  13. Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network infrastructures are

    E-Print Network [OSTI]

    Politcnica de Catalunya, Universitat

    Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network as for their energy consumption. Renewable energy sources (e.g. solar, wind, tide, etc.) are emerging as a promising and the comparison of several energy-aware static routing and wavelength assignment (RWA) strategies for wavelength

  14. Modelling Office Energy Consumption: An Agent Based Approach , Peer-Olaf Siebers1

    E-Print Network [OSTI]

    Aickelin, Uwe

    1 Modelling Office Energy Consumption: An Agent Based Approach Tao Zhang1 , Peer-Olaf Siebers1 integrates four important elements, i.e. organisational energy management policies/regulations, energy, to simulate the energy consumption in office buildings. With the model, we test the effectiveness of different

  15. Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services

    E-Print Network [OSTI]

    Bianchini, Ricardo

    or "green" energy. This paper introduces a general, optimization-based framework for enabling multi-data-center services to manage their brown en- ergy consumption and leverage green energy, while respecting their SLAs. "green" or renewable energy.) We argue that placing caps on the brown energy consumption of data centers

  16. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect (OSTI)

    Bunting, Bruce G [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  17. Energy Information Administration - Energy Efficiency-Table 5a. Consumption

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003Offsite-Produced Fuelof Energy for

  18. Energy Information Administration - Energy Efficiency-Table 5b. Consumption

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand2003Offsite-Produced Fuelof Energy

  19. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15Liquid Fuels andAssociation ofInformation

  20. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15Liquid Fuels andAssociation

  1. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15Liquid Fuels andAssociationInformation

  2. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15Liquid Fuels

  3. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15Liquid FuelsInformation Administration

  4. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15Liquid FuelsInformation

  5. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15Liquid FuelsInformationInformation

  6. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperityNaturalLower

  7. Visualization of United States Energy Consumption | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: Energydba Vision Motor CorpEIA SEDS data

  8. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect (OSTI)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01T23:59:59.000Z

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden, the United Arab Emirates, the United Kingdom, and the United States. More information on SEAD is available from its website at http://www.superefficient.org/.

  9. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01T23:59:59.000Z

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  10. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96(92)

  11. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96(92)Information Administration

  12. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear Jan FebIssues in

  13. Energy Information Administration/Household Vehicles Energy Consumption 1994

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128

  14. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679Aprildefault

  15. Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration (EIA) Archive MECS Survey

  16. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration (EIA) Archive MECS

  17. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration (EIA) Archive

  18. 2009 Energy Consumption Per Person | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703Conference Presentations |2009 Energy

  19. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782A andS

  20. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782A andSInformation Administration

  1. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782A andSInformation

  2. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782A andSInformationInformation

  3. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782A

  4. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782AAdministration (EIA) About

  5. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782AAdministration (EIA)

  6. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782AAdministration

  7. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    SciTech Connect (OSTI)

    Engelmann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01T23:59:59.000Z

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  8. Web-Based Method to Generate Specific Energy Consumption Data for the Evaluation and Optimization of Building Operation

    E-Print Network [OSTI]

    Wagner, A.; Wambsgan, M.; Froehlich, S.

    2004-01-01T23:59:59.000Z

    about energy consumptionand specific data especially in large building stocks?user complaints and energy consumption arerarely considered in building operation?reduction of energy consumption and operation costsas well as ensuring a high work space... consumption specific heating energy consumption buildings with additional technical usage (control room)without arithmetic mean consumption related to the heated net floor area; data measured one full year: 02-2001 to 02-2002 specific yearly energy...

  9. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    Consumption Patterns in Chinese Households, in the Proceedings of 2002 ACEEE Summer Studies on Energy Efficiency in Buildings, Asilamor, California, USA,

  10. Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control

    E-Print Network [OSTI]

    Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    optimal control design for HVAC systems, in Proc. Dynamicelectricity consumption in hvac using learning- based model-algorithm design for hvac systems in energy efficient

  11. Evaluating Network-Based DoS Attacks Under the Energy Consumption Perspective

    E-Print Network [OSTI]

    Politcnica de Catalunya, Universitat

    with great opportunities for raising the target facility energy consumption and consequently its green house green, energy- sustainable computing paradigms has gained a lot of attention in both the researchEvaluating Network-Based DoS Attacks Under the Energy Consumption Perspective New security issues

  12. Energy consumption models for ad-hoc mobile Emmanuel Lochin1

    E-Print Network [OSTI]

    Lochin, Emmanuel

    1 Energy consumption models for ad-hoc mobile terminals Emmanuel Lochin1 Anne Fladenmuller1 Jean describes a set of experiments based on ACPI BIOS measurements which evaluate the energy consumption of an IEEE802.11 wireless net- work interface. Based on our ACPI measurements, two models of energy

  13. Reducing Network-on-Chip Energy Consumption Through Spatial Locality Speculation

    E-Print Network [OSTI]

    Grot, Boris

    Reducing Network-on-Chip Energy Consumption Through Spatial Locality Speculation Hyungjun Kim, an efficient communication substrate is critical for meeting performance and energy targets. In this work, we target the root cause of network energy consumption through techniques that re- duce link and router

  14. An Opportunistic Scheduler To Balance Performance Measures and Energy Consumption in Wireless Networks: Design and Implementation

    E-Print Network [OSTI]

    Yau, David K Y

    An Opportunistic Scheduler To Balance Performance Measures and Energy Consumption in Wireless scheduler that can balance the energy consumption by an idle system and the performance of motion prediction Chinese University of Hong Kong Shatin, Hong Kong cslui@cse.cuhk.edu.hk Abstract Energy management

  15. Non-Blocking, Localized Routing Algorithm for Balanced Energy Consumption in Mobile Ad Hoc Networks

    E-Print Network [OSTI]

    Lee, Ben

    1 Non-Blocking, Localized Routing Algorithm for Balanced Energy Consumption in Mobile Ad Hoc relevant nodes but also to balance individual battery levels. Unbalanced energy usage will result achieves a trade-off between balanced energy consumption and shortest routing delay, and at the same time

  16. SmartTecO: Context-Based Ambient Sensing and Monitoring for Optimizing Energy Consumption

    E-Print Network [OSTI]

    Beigl, Michael

    SmartTecO: Context-Based Ambient Sensing and Monitoring for Optimizing Energy Consumption Yong Ding networks and a context awareness system, the acquired data will be interpreted into different energy the actuation mod- ule a certain context, which allows managing and saving the energy consumption of home

  17. Experimental Analysis of Task-based Energy Consumption in Cloud Computing Systems

    E-Print Network [OSTI]

    Schneider, Jean-Guy

    Experimental Analysis of Task-based Energy Consumption in Cloud Computing Systems Feifei Chen, John is that large cloud data centres consume large amounts of energy and produce significant carbon footprints that minimise energy consumption while guaranteeing Service Level Agreements (SLAs). In order to achieve

  18. Bounds on the Energy Consumption of Routings in Wireless Sensor Networks

    E-Print Network [OSTI]

    Voigt, Thiemo

    Bounds on the Energy Consumption of Routings in Wireless Sensor Networks Juan Alonso1 , Adam. Energy is one of the most important resources in wireless sensor networks. We use an idealized mathematical model to study the impact of routing on energy consumption. We find explicit bounds on the minimal

  19. Bounds on the Energy Consumption of Routings in Wireless Sensor Networks

    E-Print Network [OSTI]

    Bounds on the Energy Consumption of Routings in Wireless Sensor Networks Juan Alonso1 , Adam Technical Report T2003:22 ISSN 1100-3154 ISRN:SICS-T­2003/22-SE Abstract. Energy is one of the most of routing on energy consumption. Our results are very general and, within the assumptions listed in Section

  20. EvaluatingMobilePhonesasEnergyConsumptionFeedbackDevices MarkusWeiss*

    E-Print Network [OSTI]

    EvaluatingMobilePhonesasEnergyConsumptionFeedbackDevices MarkusWeiss* ,ClaireManagement,ETHZurich Abstract. With smart electricity meters being widely deployed, data on residential energy usage of mobile phones as an interface to provide feedback on overall and de- vice-related energy consumption

  1. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    LPG is a major energy source, while coal and electricity arethe total residential energy and coal is the dominant fuel.1 Residential Energy consumption by End-use Coal Renewables

  2. Energy Policy The university is committed to reducing its consumption of energy and promoting low carbon, energy

    E-Print Network [OSTI]

    Haase, Markus

    Energy Policy June 2009 The university is committed to reducing its consumption of energy and promoting low carbon, energy saving and energy efficiency initiatives as part of its Sustainable Development programme. Tackling climate change is one of our highest priorities and this reflects UK policy. Our Energy

  3. An Integrated Geovisual Analytics Framework for Analysis of Energy Consumption Data and Renewable Energy Potentials

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Maness, Christopher S [ORNL; Kramer, Ian S [ORNL; Kodysh, Jeffrey B [ORNL; Bhaduri, Budhendra L [ORNL; Steed, Chad A [ORNL; Karthik, Rajasekar [ORNL; Nugent, Philip J [ORNL; Myers, Aaron T [ORNL

    2012-01-01T23:59:59.000Z

    We present an integrated geovisual analytics framework for utility consumers to interactively analyze and benchmark their energy consumption. The framework uses energy and property data already available with the utility companies and county governments respectively. The motivation for the developed framework is the need for citizens to go beyond the conventional utility bills in understanding the patterns in their energy consumption. There is also a need for citizens to go beyond one-time improvements that are often not monitored and measured over time. Some of the features of the framework include the ability for citizens to visualize their historical energy consumption data along with weather data in their location. The quantity of historical energy data available is significantly more than what is available from utility bills. An overlay of the weather data provides users with a visual correlation between weather patterns and their energy consumption patterns. Another feature of the framework is the ability for citizens to compare their consumption on an aggregated basis to that of their peers other citizens living in houses of similar size and age and within the same or different geographical boundaries, such as subdivision, zip code, or county. The users could also compare their consumption to others based on the size of their family and other attributes. This feature could help citizens determine if they are among the best in class . The framework can also be used by the utility companies to better understand their customers and to plan their services. To make the framework easily accessible, it is developed to be compatible with mobile consumer electronics devices.

  4. Capping the Brown Energy Consumption of Internet Services at Low Cost

    E-Print Network [OSTI]

    energy" (produced via carbon-intensive means) relative to renewable or "green" energy. This paper their brown energy consumption and lever- age green energy, while respecting their SLAs and minimizing energy-intensive energy as "brown" energy, in contrast with "green" or renewable energy.) We argue that placing caps

  5. A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics Lucie(on)ic equipment is proposed for illustration purposes. Keywords: Energy efficiency; energy consumption; electric version received 23 February 2011) One of the challenging environmental issues faced by the electr

  6. Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    2/21/2011 Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is essential for achieving a sustainable clean energy future and will be an enormous challenge. Buildings account for 40% of the nation's carbon emissions and the consumption of 40% of our

  7. A Hybrid Solid-State Storage Architecture for the Performance, Energy Consumption, and Lifetime Improvement

    E-Print Network [OSTI]

    Giles, C. Lee

    A Hybrid Solid-State Storage Architecture for the Performance, Energy Consumption, and Lifetime-place updating so that it significantly im- proves the usage efficiency of log pages by eliminating out- of results show that our proposed methods can substantially improve the perfor- mance, energy consumption

  8. UNCOVERING BASIC WANTS USING THE ROTTERDAM AND AIDS MODELS: THE US HOUSEHOLD ENERGY CONSUMPTION CASE

    E-Print Network [OSTI]

    Diallo, Ibrahima

    2013-05-31T23:59:59.000Z

    UNCOVERING BASIC WANTS USING THE ROTTERDAM AND AIDS MODELS: THE US HOUSEHOLD ENERGY CONSUMPTION CASE By 2013 IBRAHIMA DIALLO Submitted to the graduate degree program in Economics and the Graduate Faculty of the University of Kansas... version of the following dissertation: UNCOVERING BASIC WANTS USING THE ROTTERDAM AND AIDS MODELS: THE US HOUSEHOLD ENERGY CONSUMPTION CASE ________________________________ (Chairperson) William A. Barnett Date...

  9. Balancing Energy Consumption and Food Quality Loss in Supermarket Refrigeration System

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Balancing Energy Consumption and Food Quality Loss in Supermarket Refrigeration System J. Cai and J energy consumption and food quality loss, at varying ambient condition, in a supermarket refrigeration-designed optimal control scheme, continuously maintaining a commer- cial refrigeration system at its optimum

  10. Minimizing Energy Consumption in IR-UWB Based Wireless Sensor Networks

    E-Print Network [OSTI]

    Heinzelman, Wendi

    Minimizing Energy Consumption in IR-UWB Based Wireless Sensor Networks Tianqi Wang, Wendi communications systems, where transmit power can be flexibly adjusted to minimize the energy consumption [3] [4 Heinzelman and Alireza Seyedi Department of Electrical and Computer Engineering, University of Rochester

  11. THE NEXUS BETWEEN ENERGY CONSUMPTION AND ECONOMIC GROWTH IN OECD COUNTRIES: A DECOMPOSITION ANALYSIS

    E-Print Network [OSTI]

    1 THE NEXUS BETWEEN ENERGY CONSUMPTION AND ECONOMIC GROWTH IN OECD COUNTRIES: A DECOMPOSITION ANALYSIS Sahar Shafiei, Ruhul A. Salim and Helen Cabalu School of Economics & Finance, Curtin Business the impacts of renewable and non-renewable energy consumption on economic activities to find out whether

  12. Simulation for the Optimal Design of a Biped Robot: Analysis of Energy Consumption

    E-Print Network [OSTI]

    Gini, Giuseppina

    Simulation for the Optimal Design of a Biped Robot: Analysis of Energy Consumption Federico Moro1 at Chicago, USA 3 University of Belgrade, Institute Mihajlo Pupin, Robotics Laboratory, Serbia Abstract. Our first aim is to develop a systematic method to estimate energy consumption of bipedal locomotion

  13. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Broader source: Energy.gov [DOE]

    Document provides information about using energy savings performance contracts (ESPCs) to reduce energy consumption and provide energy and cost savings in non-building applications.

  14. Analysis of the Effects of the Application of Solar Water Heater in Building Energy Consumption

    E-Print Network [OSTI]

    Wang, J.; Li, Z.

    2006-01-01T23:59:59.000Z

    With the development of the economy, civilian construction in the Changjiang River delta region is rapidly expanding. The boom in the construction industry definitely results in that the proportion of building energy consumption to whole energy...

  15. An Operational Energy Consumption Evaluation Index System for Large Public Buildings

    E-Print Network [OSTI]

    Li, Y.; Zhang, J.; Sun, D.

    2006-01-01T23:59:59.000Z

    Large public buildings have been the emphasis of energy conservation in China. In this paper, the design and operational energy consumption evaluation indices for large public buildings are generalized, their differences and deficiencies...

  16. Research on the Statistical Method of Energy Consumption for Public Buildings in China

    E-Print Network [OSTI]

    Chen, S.; Li, N.

    2006-01-01T23:59:59.000Z

    The purpose of this research is to develop a national statistical system for energy consumption data for public buildings in China, in order to provide data support for building energy efficiency work. The framework for a national statistical system...

  17. Research on the Statistical Method of Energy Consumption for Public Buildings in China

    E-Print Network [OSTI]

    Chen, S.; Li, N.

    2006-01-01T23:59:59.000Z

    The purpose of this research is to develop a national statistical system for energy consumption data for public buildings in China, in order to provide data support for building energy efficiency work. The framework for a national statistical system...

  18. Analysis of the Effects of the Application of Solar Water Heater in Building Energy Consumption

    E-Print Network [OSTI]

    Wang, J.; Li, Z.

    2006-01-01T23:59:59.000Z

    With the development of the economy, civilian construction in the Changjiang River delta region is rapidly expanding. The boom in the construction industry definitely results in that the proportion of building energy consumption to whole energy...

  19. Household operational energy consumption in urban China : a multilevel analysis on Jinan

    E-Print Network [OSTI]

    Wang, Dong, M.C.P. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    With decades of economic growth and socio-economic transformation, China's residential sector has seen rapid expansion in energy consumption, and is now the second largest energy consuming sector in the country. Faced with ...

  20. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    E-Print Network [OSTI]

    Regnier, Cindy

    2014-01-01T23:59:59.000Z

    including cost, energy and thermal comfort analysis, whichfor greatest energy benefits, prioritize thermal comfortSetting Thermal Comfort Criteria and Minimizing Energy Use

  1. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,1876.378052,1886.589233,1896.617065,1906.307617,1915.627686,1924.664062,1933.551636 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.73735809,...

  2. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.27132416,97.48834229,98.7328186,100.0090332,101.3084106,102.6172562,103.9295502 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  3. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.26745605,97.52584839,98.82666779,100.167244,101.5404816,102.9384232,104.3544464 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  4. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,1876.765991,1887.016235,1897.062622,1906.736938,1916.007446,1924.966064,1933.756714 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.73736572,...

  5. Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method

    E-Print Network [OSTI]

    Wen, Y.; Zhao, F.

    2006-01-01T23:59:59.000Z

    to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show...

  6. Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method

    E-Print Network [OSTI]

    Wen, Y.; Zhao, F.

    2006-01-01T23:59:59.000Z

    to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show...

  7. A Simple Method to Continuous Measurement of Energy Consumption of Tank Less Gas Water Heaters for Commercial Buildings

    E-Print Network [OSTI]

    Yamaha, M.; Fujita, M.; Miyoshi, T.

    2006-01-01T23:59:59.000Z

    energy consumptions of hot water supply in restaurants or residential houses are large amount, guidelines for optimal design are not presented. measurements of energy consumption of tank less gas water heaters very difficult unless gas flow meters...

  8. Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services

    E-Print Network [OSTI]

    Martonosi, Margaret

    Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services Kien Le , Ozlem electricity consumptions translate into large carbon footprints, since most of the electricity in the US such as government imposed Kyoto- style carbon limits. Extensive simulations and real experiments show that our

  9. How can we compare or add up our energy consumption?

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Energy in Brief article on the use of energy conversion factors to compare energy usage from different fuels.

  10. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    of renewable energy as well as create incentives for largenew Renewable Energy Program to provide financial incentivesfinancial incentives to promote renewable energy than energy

  11. Analyzing the Trade-offs Between Minimizing Makespan and Minimizing Energy Consumption in a Heterogeneous Resource Allocation Problem

    E-Print Network [OSTI]

    Maciejewski, Anthony A.

    @engr.colostate.edu, wcoliver@rams.colostate.edu, HJ@colostate.edu, aam@colostate.edu Abstract--The energy consumption of data a new data center in Manhattan [3]. To battle the rising costs of energy consumption, it is es- sentialAnalyzing the Trade-offs Between Minimizing Makespan and Minimizing Energy Consumption

  12. Energy Consumption in Wireless Sensor Networks is a fundamental issue in terms of functionality and network lifetime. Minimization

    E-Print Network [OSTI]

    Vouyioukas, Demosthenes

    ABSTRACT Energy Consumption in Wireless Sensor Networks is a fundamental issue in terms of functionality and network lifetime. Minimization of energy consumption by applying optimization techniques setup. Application driven profiling of energy consumption at the node level is a useful tool for optimal

  13. 978-1-4244-4439-7/09/$25.00 c 2009 IEEE Minimizing Energy Consumption by Power-Efficient Radio

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    978-1-4244-4439-7/09/$25.00 c 2009 IEEE Minimizing Energy Consumption by Power-Efficient Radio herve.rivano@sophia.inria.fr Abstract In this paper, we investigate on minimizing the energy consumption a piecewise linear convex function that pro- vides a good approximation of the energy consumption on the links

  14. Minimizing energy consumption for handheld computers in Moby Dick Paul J.M. Havinga, Gerard J.M. Smit

    E-Print Network [OSTI]

    Havinga, Paul J.M.

    Minimizing energy consumption for handheld computers in Moby Dick Paul J.M. Havinga, Gerard J to reduce energy consumption for mobile comput- ers. We use extra dedicated low-power modules to cut's battery resources much effort is put in reducing energy consumption in this part. We use intelligent

  15. Methods and apparatus for delivering high power laser energy to a surface

    DOE Patents [OSTI]

    Faircloth, Brian O; Zediker, Mark S; Rinzler, Charles C; Koblick, Yeshaya; Moxley, Joel F

    2013-04-23T23:59:59.000Z

    There is provided a system, apparatus and methods for providing a laser beam to borehole surface in a predetermined and energy deposition profile. The predetermined energy deposition profiles may be uniform or tailored to specific downhole applications. Optic assemblies for obtaining these predetermined energy deposition profiles are further provided.

  16. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01T23:59:59.000Z

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  17. Partnering with Utilities Part 2- Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    This presentation given through the DOE's Technical Assitance Program (TAP) is part two in the series Partnering with Utilities:Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs.

  18. Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling distributed demand side energy management strategy requires each user to simply apply its best response-average ratio of the total energy demand, the total energy costs, as well as each user's individual daily

  19. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  20. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  1. Comparative analysis of energy consumption trends in cohousing and alternate housing arrangements

    E-Print Network [OSTI]

    Brown, Jason R. (Jason Robert), 1975-

    2004-01-01T23:59:59.000Z

    The sizes of both single-family and multifamily homes have grown steadily in the United States over the last fifty years. During this time, despite more efficient production processes, energy consumption in the country ...

  2. Methodology to Analyze the Sensitivity of Building Energy Consumption to HVAC System Sensor Error

    E-Print Network [OSTI]

    Ma, Liang

    2012-02-14T23:59:59.000Z

    This thesis proposes a methodology for determining sensitivity of building energy consumption of HVAC systems to sensor error. It is based on a series of simulations of a generic building, the model for which is based on several typical input...

  3. Minimizing Energy Consumption in a Water Distribution System: A Systems Modeling Approach

    E-Print Network [OSTI]

    Johnston, John

    2011-08-08T23:59:59.000Z

    In a water distribution system from groundwater supply, the bulk of energy consumption is expended at pump stations. These pumps pressurize the water and transport it from the aquifer to the distribution system and to elevated storage tanks. Each...

  4. Implementation of Simple Measures for Savings Water and Energy Consumption in Kuwait Government Buildings

    E-Print Network [OSTI]

    Albaharani, H.; Al-Mulla, A.

    2012-01-01T23:59:59.000Z

    This paper gives in details the efforts made by the Public Services Department (PSD) to reduce water and energy consumptions in the Ministry of Social Affairs and Labour's (MOSAL) buildings in Kuwait. PSD manages around 125 buildings distributed...

  5. Indoor Conditions Study and Impact on the Energy Consumption for a Large Commercial Building

    E-Print Network [OSTI]

    Catalina, T.

    2011-01-01T23:59:59.000Z

    that were studied using dynamic simulations. The article provides interesting insights of the building indoor conditions (summer/winter comfort), humidity, air temperature, mean operative temperature and energy consumption using hourly climate data. A...

  6. Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings

    E-Print Network [OSTI]

    Lian, Y.; Hao, Y.

    2006-01-01T23:59:59.000Z

    Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

  7. Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings

    E-Print Network [OSTI]

    Lian, Y.; Hao, Y.

    2006-01-01T23:59:59.000Z

    Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

  8. Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings

    E-Print Network [OSTI]

    Engblom, Lisa A. (Lisa Allison)

    2006-01-01T23:59:59.000Z

    Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy consumption of the buildings in their ...

  9. Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT

    E-Print Network [OSTI]

    Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

    2012-01-01T23:59:59.000Z

    performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same...

  10. Commissioning to Meet Space Qualification Criteria vs. Energy Consumption Optimization Focused Commissioning

    E-Print Network [OSTI]

    Sellers, D.; Irvine, L.

    2001-01-01T23:59:59.000Z

    In many cases, the commissioning process is driven by space quality criteria rather than by energy consumption and optimization criteria. This is especially true for the HVAC systems serving clean rooms in the semi-conductor and pharmaceuticals...

  11. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    more than 21 G J are referred to as "heat supply" businessesunder the Heat Supply Business L a w . The first districtE E R = A n n u a l heat supply/annual energy consumption

  12. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    Building Heating Loads (Trillion BTU/yr) Total BuildingCooling Loads (Trillion BTU/yr) Non. Wind Infilt SHGC Wind.Energy Consumption (Trillion BTU/yr) Area, Window Window

  13. How El Nino affects energy consumption: a study at national and regional levels

    E-Print Network [OSTI]

    Collins, Kathleen Jo

    2009-06-02T23:59:59.000Z

    bad. This study outlines areas of the United States that are most highly impacted by anomalous temperature and rainfall during El Nio years and determines whether these anomalies affect energy consumption. These effects will be examined on both a...

  14. Energy notes: Energy in natural processes and human consumption, some numbers H A&S 220c Fall 2004 19x2004

    E-Print Network [OSTI]

    Energy notes: Energy in natural processes and human consumption, some numbers H A&S 220c Fall 2004 consumption rate per capita U.S. 102 Electric razor 101 Energy Content of Fuels (in Joules) Energy Unit Joules person (Note: MWE is an abbreviation for megawatts-electrical output) Global Energy Consumption Global

  15. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    Conservation vs. renewable energy: Cases (sic) studies from2009). Distributed Renewable Energy Operating Impacts anddeployment, National Renewable Energy Lab CPUC (2006). D.

  16. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    Kaya (2009). "Conservation vs. renewable energy: Cases (sic)in social housing." Renewable and Sustainable Energy ReviewsR. W. (2009). Distributed Renewable Energy Operating Impacts

  17. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    Process in the Adoption of Solar Energy Systems." Journal ofthe diffusion of innovation: Solar energy technology in Sri2010. Washington, DC, Solar Energy Industries Association:

  18. Macromodeling and characterization of filesystem energy consumption for diskless embedded systems

    E-Print Network [OSTI]

    Choudhuri, Siddharth

    2004-09-30T23:59:59.000Z

    MACROMODELING AND CHARACTERIZATION OF FILESYSTEM ENERGY CONSUMPTION FOR DISKLESS EMBEDDED SYSTEMS A Thesis by SIDDHARTH CHOUDHURI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2003 Major Subject: Computer Engineering MACROMODELING AND CHARACTERIZATION OF FILESYSTEM ENERGY CONSUMPTION FOR DISKLESS EMBEDDED SYSTEMS A Thesis by SIDDHARTH CHOUDHURI Submitted to Texas A&M University in partial...

  19. Effect of daylighting on energy consumption and daylight quality in an existing elementary school

    E-Print Network [OSTI]

    Atre, Umesh Vinayak

    2005-08-29T23:59:59.000Z

    EFFECT OF DAYLIGHTING ON ENERGY CONSUMPTION AND DAYLIGHT QUALITY IN AN EXISTING ELEMENTARY SCHOOL A Thesis by UMESH VINAYAK ATRE Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2005 Major Subject: Architecture EFFECT OF DAYLIGHTING ON ENERGY CONSUMPTION AND DAYLIGHT QUALITY IN AN EXISTING ELEMENTARY SCHOOL A...

  20. CEBAF Beam Goes Over the Hump Highest-Energy Beam Ever Delivered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWPORT NEWS, VA, May 14, 2014 - The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has...

  1. Promise of Solar Energy is Boundless: A Smarter Electric Grid Delivers on that Promise

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    This brochure summarizes the benefits of a smart electric grid, the Solar Program's Solar Energy Grid Intergration Systems efforts, and the Office of Electricity's "The Smart Grid" booklet.

  2. U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries | Department of Energy

  3. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  4. Energy-efficiency solutions: What commodity prices can`t deliver

    SciTech Connect (OSTI)

    Cavanagh, R. [Natural Resources Defense Council, San Francisco, CA (United States)

    1995-11-01T23:59:59.000Z

    Over the past two decades, the brightest feature of US energy policy has been largely successful efforts to accelerate the pace of energy-efficiency improvements. Fortunately, the process is nowhere near complete, as continued progress is essential for meeting compelling environmental and economic objectives, both at home and abroad. One now confronts a debate over how to achieve this progress in a nation--and a world--that seeks more competition in the production of all fuels, including those traditionally controlled by integrated monopolies. That debate typically is not over whether more competition is good for energy users and energy efficiency; rather, dispute centers on the terms on which competition should occur, and the criteria that will determine winners and losers. Also, meeting today`s US energy needs carries a half trillion dollar annual price tag: about $5,000 per household. Every one of those households stands to benefit from new energy-efficient technologies, which can get more work out of less energy at lower cost while reducing the vulnerability to fluctuations in fossil fuel prices. For developing countries, economic opportunities are even greater.

  5. Hydropower Generators Will Deliver New Energy from an Old Dam | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen and Fuel71List ofof

  6. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    The Size of the U.S. Energy Efficiency Market: Generating amarket program] may have employed energy efficiency measures, they had a weaker mandate for energy efficiency; hence, their PV system sizes

  7. Don't Supersize Me! Toward a Policy of Consumption-Based Energy Efficiency

    E-Print Network [OSTI]

    Diamond, Richard

    Don't Supersize Me! Toward a Policy of Consumption-Based Energy Efficiency Jeffrey Harris, Rick and elsewhere, we argue that today's primary focus on energy efficiency may not be sufficient to slow (and to return to an earlier emphasis on "conservation," with energy efficiency seen as a means rather than

  8. Secure Distributed Solution for Optimal Energy Consumption Scheduling in Smart Grid

    E-Print Network [OSTI]

    Shehab, Mohamed

    Secure Distributed Solution for Optimal Energy Consumption Scheduling in Smart Grid Mohammad Emails: {mrahman4, lbai2, mshehab, ealshaer}@uncc.edu Abstract--The demand-side energy management is crucial to optimize the energy usage with its production cost, so that the price paid by the users

  9. To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications

    E-Print Network [OSTI]

    Namboodiri, Vinod

    To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications Vinod important criteria might be the energy consumed by the applications they run. The goal of this work is to characterize under what scenarios cloud-based applications would be relatively more energy-efficient for users

  10. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Interim Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under of the United States Government. Neither the United States Government nor any agency thereof, nor any

  11. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Final Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither

  12. Evaluation of Application-aware Heterogeneous Embedded Systems for Performance and Energy Consumption

    E-Print Network [OSTI]

    Kuzmanovic, Aleksandar

    In this work, we first present an application-initiated strategy that aims to control the energy consumptionEvaluation of Application-aware Heterogeneous Embedded Systems for Performance and Energy benefits and im- provements are apparent, the performance-energy trade- offs are not prominently noticeable

  13. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    architecture that provides fine-grained real-time visibility into building energy consumption enables significant and sustainablearchitecture, to create actionable views of energy usages, which lead to significant and sustainablearchitecture for local energy generation, distribution, and sharing. IEEE Conference on Global Sustainable

  14. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    4.2 Smart Energy Meter . . . . . . 4.2.1 Hardwareconsumption provided the Smart Meter installed can send datahave developed the Smart Energy Meter to monitor and actuate

  15. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    10 1.5. The Coordination of Solar and Energyintegration of solar and energy efficiency. Currentlytension between solar and energy efficiency remains much

  16. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01T23:59:59.000Z

    Driven Energy Management for Smart Building Automation InDriven Energy Management for Smart Building Au- tomation Innetwork for all our smart building solutions. For this we

  17. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    40 Figure 3.2. Levelized Cost of Energyof Water and Power Levelized cost of energy Load-servingabove the expected levelized cost of energy (LCOE) for PV-

  18. Electric Blanket Delivers K.O. to Space Heater During #EnergyFaceoff Round

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4DimitriJune 30,NEW! EnergyIndustry Bring

  19. DOE Delivers More than $354 Million for Energy Efficiency and Conservation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of Energy SafetyDOEU.S. Department

  20. Seven Cities and a Utility Company Team Up to Deliver Residential Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union WorkSession