National Library of Energy BETA

Sample records for delaware lewes campus

  1. EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project

    Broader source: Energy.gov [DOE]

    The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware’s Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been constructed.

  2. Delaware - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware

  3. Delaware - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware

  4. Delaware - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware

  5. New Castle County, Delaware: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Delaware Newark, Delaware Newport, Delaware North Star, Delaware Odessa, Delaware Pike Creek, Delaware Smyrna, Delaware Townsend, Delaware Wilmington Manor, Delaware...

  6. Kent County, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Delaware Kenton, Delaware Leipsic, Delaware Little Creek, Delaware Magnolia, Delaware Milford, Delaware Rising Sun-Lebanon, Delaware Riverview, Delaware Rodney Village, Delaware...

  7. Sussex County, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Delaware Long Neck, Delaware Milford, Delaware Millsboro, Delaware Millville, Delaware Milton, Delaware Ocean View, Delaware Rehoboth Beach, Delaware Seaford, Delaware Selbyville,...

  8. Avian and Bat Assessment at the Lewes Wind Turbine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the advisory committee on February 14, 2013. On the call were Genevieve LaRouche (US Fish & Wildlife Service-USFWS), Julie Thompson (USFWS), Holly Niederriter (Delaware ...

  9. Laurie Bagley succeeds Lew Meixler as head of Technology Transfer |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Laurie Bagley succeeds Lew Meixler as head of Technology Transfer By Jeanne Jackson DeVoe May 6, 2015 Tweet Widget Google Plus One Share on Facebook Laurie Bagley is the new head of Technology Transfer at PPPL. (Photo by Elle Starkman/PPPL Office of Communications) Laurie Bagley is the new head of Technology Transfer at PPPL. Gallery: Lew Meixler was head of Technology Transfer at PPPL for 23 years. (Photo by Photo by Elle Starkman/PPPL Office of Communications)

  10. Delaware Municipal Electric Corporation- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Delaware Green Energy Fund was created in 1999 as the part of the deregulation of Delaware's electric utilities. Under the 2005 Delaware renewable portfolio standard (RPS) legislation,...

  11. Delaware County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Capital Partners Energy Generation Facilities in Delaware County, Pennsylvania American Ref-Fuel of Delaware Valley Biomass Facility Places in Delaware County, Pennsylvania Aldan,...

  12. University of Delaware Wind | Open Energy Information

    Open Energy Info (EERE)

    search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of...

  13. Delaware/Incentives | Open Energy Information

    Open Energy Info (EERE)

    No DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) (Delaware) Utility Rebate Program Yes Delaware Electric Cooperative - Green Energy Program Incentives...

  14. University of Delaware | CCEI Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Its Partner Institutions The Catalysis Center for Energy Innovation (CCEI) is a partnership between the University of Delaware, 8 academic institutions and 1 national ...

  15. University of Delaware | Contact CCEI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address Catalysis Center for Energy Innovation University of Delaware 221 Academy Street Newark, DE 19716 Phone Number (302) 831-1628 Email efrc-info@udel.edu Visitors A ...

  16. Newark, Delaware June 1, 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newark, Delaware June 1, 2016 The University of Delaware has found talent in the retired engineering experts now working independently as consultants for industry across the US. UD's Catalysis Center for Energy Innovation (CCEI) has partnered with industry throughout its history, looking for commercial connections and industrial innovation to pair with their own groundbreaking research in catalysis and sustainable chemical processes. CCEI is pleased to announce the addition of Dr. Ron Ozer,

  17. American Ref-Fuel of Delaware Valley Biomass Facility | Open...

    Open Energy Info (EERE)

    Ref-Fuel of Delaware Valley Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley...

  18. Department of Energy Official in Newark, Delaware, to Highlight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Official in Newark, Delaware, to Highlight 168 Million for Solar Energy Projects Department of Energy Official in Newark, Delaware, to Highlight 168 Million for Solar Energy ...

  19. University of Delaware Institute of Energy Conversion | Open...

    Open Energy Info (EERE)

    Institute of Energy Conversion Jump to: navigation, search Name: University of Delaware Institute of Energy Conversion Place: Delaware Product: String representation "University...

  20. Hess Retail Natural Gas and Elec. Acctg. (Delaware) | Open Energy...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (Delaware) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Delaware References: EIA Form EIA-861 Final...

  1. Clean Cities: State of Delaware Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program, which aims to increase alternative fueled vehicle deployment through rebates, helping to promote en route charging in Delaware through the Charging-Up Delaware...

  2. Delaware County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Delaware County, Ohio US Recovery Act Smart Grid Projects in Delaware County, Ohio City of Westerville, OH Smart Grid Project Columbus Southern Power Company (doing business...

  3. Delaware Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Delaware Region Middle School Regional Delaware New Jersey Regional Middle...

  4. Delaware Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Delaware Region High School Regional Delaware New Jersey Regional High School...

  5. CAMPUS ENERGY MODEL

    Energy Science and Technology Software Center (OSTI)

    003655IBMPC00 Campus Energy Model for Control and Performance Validation  https://github.com/NREL/CampusEnergyModeling/releases/tag/v0.2.1 

  6. ,"Delaware Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Delaware Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. Delaware/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. Delaware Electric Cooperative- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Delaware Electric Cooperative (DEC) provides incentives for solar photovoltaic (PV), solar thermal, wind, fuel cells, and geothermal installed by DEC member-owners. Eligibility is limited to ...

  10. DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Delaware are ...

  11. University of Delaware | Open Energy Information

    Open Energy Info (EERE)

    Newark, Delaware Sector: Solar Product: University with a research department leading a solar cell development consortium. Coordinates: 44.690435, -71.951685 Show Map Loading...

  12. GEXA Corp. (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Name: GEXA Corp. Place: Delaware Phone Number: 866.961.9399 Website: www.gexaenergy.com Twitter: @gexavoice Facebook: https:www.facebook.comGexaEnergy Outage Hotline:...

  13. University of Delaware Energy Institute

    SciTech Connect (OSTI)

    Klein, Michael T

    2012-09-30

    The main goal of this project funded through this DOE grant is to help in the establishment of the University of Delaware Energy Institute (UDEI) which is designed to be a long-term, on-going project. The broad mission of UDEI is to develop collaborative programs encouraging research activities in the new and emerging energy technologies and to partner with industry and government in meeting the challenges posed by the nation�s pressing energy needs.

  14. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    Delaware For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Delaware Renewable Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 ...

  16. Delaware Renewable Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",3 ...

  17. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  18. Alternative Fuels Data Center: Delaware Reduces Truck Idling With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electrified Parking Areas Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware

  19. Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Buses to Its Fleet Delaware Transit Corporation Adds Propane Buses to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Google Bookmark Alternative Fuels Data Center: Delaware Transit

  20. ORAU South Campus Facility

    Broader source: Energy.gov [DOE]

    This document explains the cleanup activities and any use limitations for the land surrounding the ORAU South Campus Facility.

  1. Liberty Power Corp. (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Corp. Place: Delaware Phone Number: 1-866-769-3799 Website: www.libertypowercorp.com Twitter: https:twitter.comlibertypower Facebook: http:www.facebook.comLibertyPowerCorp...

  2. Delaware Electric Cooperative- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation, electric cooperatives were allowed to opt out of the RPS schedule if they met certain other requirements. One such requirem...

  3. Glasgow, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Glasgow is a census-designated place in New Castle County, Delaware. It falls under...

  4. PEPCO Energy Services (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Place: Delaware Phone Number: 1-877-737-2662 Website: www.pepco.com Twitter: https:twitter.comPepcoConnect Facebook: https:www.facebook.comPepcoConnect Outage Hotline:...

  5. Campus Energy Modeling Platform

    Energy Science and Technology Software Center (OSTI)

    2014-09-19

    NREL's Campus Energy Modeling project provides a suite of simulation tools for integrated, data driven energy modeling of commercial buildings and campuses using Simulink. The tools enable development of fully interconnected models for commercial campus energy infrastructure, including electrical distribution systems, district heating and cooling, onsite generation (both conventional and renewable), building loads, energy storage, and control systems.

  6. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  7. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  8. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  9. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    1999-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  10. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2000-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  11. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  12. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:29 AM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware...

  13. Noble Americas Energy Solutions LLC (Delaware) | Open Energy...

    Open Energy Info (EERE)

    Delaware) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: Delaware Phone Number: 1 877273-6772 or 1 888896-8629 Website: www.noblesolutions.com...

  14. Electric Cars Coming to Former Delaware GM Plant | Department...

    Energy Savers [EERE]

    Electric Cars Coming to Former Delaware GM Plant Electric Cars Coming to Former Delaware GM Plant January 26, 2010 - 9:04am Addthis Joshua DeLung If a company's cars are luxurious ...

  15. Alternative Fuels Data Center: Delaware Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Delaware Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Delaware Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Delaware Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Delaware Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  16. Low E Brings High Savings in Newark, Delaware

    Broader source: Energy.gov [DOE]

    Newark, Delaware used an Energy Efficiency and Conservation Block Grant to install energy efficient windows and lights.

  17. AIKEN TECHNICAL COLLEGE CAMPUS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AIKEN TECHNICAL COLLEGE CAMPUS 2276 Jefferson Davis Highway, Graniteville SC 29829 Visitor parking is provided mainly on Parking Lot 3. In addition to that, all parking lots have...

  18. national security campus

    National Nuclear Security Administration (NNSA)

    1%2A en National Security Campus http:nnsa.energy.govaboutusourlocationsnsc

    Page...

  19. campus-visitor-map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MC-212 Pollard Aud. MC- 210 MC- 120 MC-130 MC-100 Main Campus Map Building RoomOffice Contact Name + Number Visitor Map You are here. Emergency Assembly Point Entrance Buildings...

  20. NREL's Sustainable Campus Overview

    SciTech Connect (OSTI)

    Rukavina, Frank; Pless, Shanti

    2015-04-06

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  1. Testing the Delaware sand filter's effectiveness for treating stormwater runoff

    SciTech Connect (OSTI)

    Leszczynska, D.; Dzurik, A.

    1998-07-01

    The use of the Delaware Sand Filter for treatment of ultra-urban stormwater is investigated for Florida applications. An experimental Delaware filter is designed in conjunction with a typical sand filter as part of a street improvement project in Tallahassee, Florida. The design allows for testing of different filter media in an attempt to determine the suitability of the Delaware Sand Filter in hot climates with numerous heavy rainfall episodes.

  2. Delaware Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " ... "Renewables",7,7,7,7,10 "Pumped Storage","-","-","-","-","-" ...

  3. EECBG Success Story: Delaware Community Saves with Solar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Delaware, is soaking up the sun -- saving taxpayer dollars on town utility bills. Learn more. Addthis Related Articles With a grant from the Energy Department's Energy ...

  4. Delaware State University | OSTI, US Dept of Energy Office of...

    Office of Scientific and Technical Information (OSTI)

    DOE Applauds Delaware State University Science and Technical Programs bbc-logo-new.gif ... Angela Lundbert will help analyze Curiosity's Mars data DSU Breaks Ground for New Optics ...

  5. Delaware Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Delaware Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  6. ,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  7. North Star, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Star, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7612226, -75.7191006 Show Map Loading map... "minzoom":false,"mappingservice...

  8. Think Tank: Delaware Department of Natural Resources

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal

  9. Delaware State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Delaware State Historic Preservation Programmatic Agreement Delaware State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. state_historic_preservation_programmatic_agreement_de.pdf (1.05 MB) More Documents & Publications Florida State Historic Preservation Programmatic Agreement Louisiana State Historic Preservation Programmatic Agreement Massachusetts State Historic

  10. PNNL Campus Master Plan

    SciTech Connect (OSTI)

    Mosey, Whitney LC

    2012-09-07

    The Plan is used as a guide for PNNL in making facility and infrastructure decisions essential to supporting the PNNL vision: to establish a modern, collaborative, flexible, and sustainable campus while optimizing the efficiency of operations in support of courageous discovery and innovation.

  11. Delaware-Val Verde gas drilling busy

    SciTech Connect (OSTI)

    Petzet, G.A.

    1992-01-13

    Deep and not so deep exploration is under way in the southeastern Delaware and northwestern Val Verde basins in West Texas. Northern Terrell County is seeing a good agenda of Permian Wolfcamp development drilling in spite of testy gas prices. This paper reports that none of the drilling appears to be targeted to Ouachita facies along the Marathon portion of the Ouachita Overthrust, although oil production from several of those fields has been respectable. And a number of exploratory tests to 20,000 ft and deeper are under way or on tap in eastern Pecos County and Terrell County.

  12. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",7182,8486,7350,4710,5489 " Coal",4969,5622,5267,2848,2568 " Petroleum",132,241,219,258,56 " Natural ...

  13. Consolidated Edison Sol Inc (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Consolidated Edison Sol Inc Place: Delaware Phone Number: 1-888-320-8991 or 1-888-320-8991 or 1-800-316-8011 or 1-888-210-8899 Website: www.conedsolutions.comHome.as Twitter:...

  14. ,"Delaware Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:46 AM" "Back to Contents","Data 1: Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  15. Washington Gas Energy Services (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Washington Gas Energy Services Place: Delaware Phone Number: 1-844-427-5945 Website: www.wges.com Outage Hotline: 1-844-427-5945 References: EIA Form EIA-861 Final Data File for...

  16. City of Milford, Delaware (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    of Milford Place: Delaware Phone Number: 302-422-1110 Website: www.cityofmilford.com23Elect Facebook: https:www.facebook.compagesCity-of-Milford-DE-River-Town-Art-Town-Ho...

  17. Delaware County Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Delaware County Elec Coop Inc Place: New York Phone Number: (607) 746-9283 or Toll Free at (866) 436-1223 Website: www.dce.coop Facebook: https:www.facebook.compages...

  18. Pike Creek, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike Creek is a census-designated place in New Castle County, Delaware. It falls under...

  19. Delaware Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " Coal",1083,1083,1083,1074,1054 " Petroleum",695,698,557,557,563 " Natural ...

  20. Delaware Company Breathes New Life into Old Post Office Building...

    Office of Environmental Management (EM)

    Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 12:51pm Addthis Thanks to the Energy ...

  1. Delaware County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a county in New York. Its FIPS County Code is 025. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype A. Places in Delaware County, New York...

  2. Catalysis Center for Energy Innovation: University of Delaware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAT'LS TRANSFER FORM In The Spotlight Tweets by @CCEIUD Fueling the Quest for Green Energy August 24, 2016 -- Watch an introduction to the University of Delaware's Catalysis ...

  3. Delaware Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  4. Delaware - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma

  5. University of Delaware Energy Institute Inauguration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy

  6. Delaware Community Saves with Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Saves with Solar Delaware Community Saves with Solar November 28, 2012 - 4:41pm Addthis With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View,

  7. Department of Energy Official in Newark, Delaware, to Highlight $168

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million for Solar Energy Projects | Department of Energy Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects Department of Energy Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects March 16, 2007 - 12:00pm Addthis Funding will help further President Bush's Solar America Initiative NEWARK, DE - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Andy Karsner today highlighted DOE's

  8. Campus Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Campus Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Campus Carbon Calculator AgencyCompany Organization: Clean Air-Cool Planet Phase: Create a...

  9. campus | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 26 June, 2013 - 09:17 NREL's Energy Databus storing big energy data campus databus energy meter data NREL OpenEI Tool The Energy Databus began...

  10. Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 980 1,255 878 1970's 602 1,463 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Withdrawals of Natural Gas from Underground Storage - All Operators Delaware

  11. Memorial Lew Kowarski

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le DG J.Adams et d'autres intervenants rendent hommage à L.Kowarski (1907-1979), un des pionniers du Cern en 1952, né à St.Petersbourg et physicien, chimiste et ingénieur. Depuis sa retraite en 1972, il se consacra à l'enseignement et est conseiller des Nations Unies.

  12. Working with SRNL - Our Facilities - Main Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL Home SRNL main campus Working with SRNL Our Facilities - Main Campus SRNL personnel put science to work in a variety of unique and traditional spaces. These include both...

  13. NREL: Climate Neutral Research Campuses - Campus-Wide Measures Have Greater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Campus-Wide Measures Have Greater Potential Pursuing climate neutrality on research campuses fits into the bigger picture of addressing the impacts of climate change and fossil-fuel depletion. International scientific bodies addressing climate change are calling for reductions of carbon emissions of 80% by 2050. Because of their size and complexity, research campuses are well positioned to take advantage of campus-wide efficient energy systems. For example, many campuses have

  14. NREL to Partner with University of Delaware on Offshore Wind Research -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL to Partner with University of Delaware on Offshore Wind Research June 15, 2010 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and the University of Delaware (UD) today announced they will work to facilitate the potential establishment of a test site for commercial wind turbines off the Delaware coast. Under a Cooperative Research and Development Agreement (CRADA) worth $500,000 over the next five years, UD will work with federal and

  15. Cool Trends on Campus: A Survey of Thermal Energy Storage Use in Campus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    District Energy Systems, May 2005 | Department of Energy on Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005 Cool Trends on Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005 A survey was conducted to develop a database documenting and quantifying the use of Thermal Energy Storage (TES) in campus applications. cool_trends_on_campus.pdf (97.88 KB) More Documents & Publications Cool Trends in District Energy:

  16. FormCampusMachineShopsLabs.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highway Baton Rouge, Louisiana 70806 225-578-8887 225-578-6954 (Fax) Form for Campus Machine Shops and Labs Purchaser's Name Phone ...

  17. Energy and Water Efficiency on Campus | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies, renewable energy, ...

  18. Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113 -3 -3 -29 39 7 -71 -60 4 -38 1990's 6 7 -5 3 23 -1 11 -8 8 31 2000's 83 10 -43 -28 -10 7 -1 -6 17 3 2010's -2 -31 51 -68 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  19. Delaware Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Delaware Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113 99 118 94 149 133 0 6 93 39 1990's 88 79 61 99 225 103 237 112 77 83 2000's 182 88 127 219 230 138 68 215 122 121 2010's 73 64 117 63 157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  20. Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 102 121 123 110 126 71 66 89 76 1990's 81 72 66 95 202 103 226 121 70 52 2000's 99 78 170 191 220 145 68 220 104 118 2010's 76 96 66 131 128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  1. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  2. Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13 15 45 2000's 62 23 49 34 39 40 18 16 18 22 2010's 140 464 1,045 970 1,040 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  3. Delaware Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,274 1,500 179 1970's 391 189 255 2,012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections

  4. Delaware Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -294 -245 699 1970's 211 -189 -255 -549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net

  5. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 0 0 0 1 1 1 21 27 33 2000's 37 46 46 56 63 9 6 5 4 1 2010's 1 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Delivered to

  6. EcoCampus, Center for Creative Ecology, Kibbutz Lotan, Israel...

    Open Energy Info (EERE)

    EcoCampus, Center for Creative Ecology, Kibbutz Lotan, Israel Jump to: navigation, search Name EcoCampus, Center for Creative Ecology, Kibbutz Lotan, Israel Facility EcoCampus PV...

  7. Food and Drug Administration White Oak Campus Environmental Stewardshi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Campus Environmental Stewardship and Cost Savings FEMP ESPC Success Story on water conservation and green energy at the Food and Drug Administration (FDA) White Oak Campus....

  8. NREL: Education Center - Sustainable NREL Walking Campus Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable NREL Walking Campus Tour NREL exemplifies environmental sustainability throughout its operations. Visitors to our main South Table Mountain campus will learn about ...

  9. Sustainable Federal Buildings and Campuses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Sustainable Federal Buildings and Campuses Sustainable Federal Buildings and Campuses An air-intake structure outside this high-performance federal building lowers ...

  10. Water Efficiency in Federal Buildings and Campuses | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Water Efficiency in Federal Buildings and Campuses Water Efficiency in Federal Buildings and Campuses Water Efficiency in Federal Buildings and ...

  11. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Delaware

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Delaware.

  12. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  13. Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1.33 1980's 3.67 3.68 3.91 3.80 4.00 3.75 2.71 2.95 3.10 1990's 3.10 2.88 3.01 3.19 3.02 3.02 3.51 2.98 2.40 2.22 2000's 4.29 3.58 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Delaware Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Delaware Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,511 40,809 56,013 2000's 48,387 50,113 52,216 46,177 48,057 46,904 43,190 48,155 48,162 50,148 2010's 54,825 79,715 101,676 95,978 100,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  18. Delaware Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 2016 1,055 1,050 1,043 1,044 1,042 1,042

    % of Total Residential Deliveries (Percent) Delaware Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  19. Deep-water density current deposits of Delaware Mountain Group (Permian), Delaware basin, Texas and New Mexico

    SciTech Connect (OSTI)

    Harms, J.C.; Williamson, C.R.

    1988-03-01

    The Guadalupian Delaware Mountain Group is a 1000-1600-m (3281-5250-ft) thick section of siltstone and sandstone deposited in a deep-water density-stratified basin surrounded by carbonate banks or reefs and broad shallow evaporite-clastic shelves. The most prevalent style of basinal deposition was suspension settling of silt. Laminated siltstone beds are laterally extensive and cover basin-floor topographic irregularities and flat-floored channels as much as 30 m (99 ft) deep and 1 km or more wide. Channels can be observed in outcrop at the basin margin and can be inferred from closely spaced wells in the basin. The channels are straight to slightly sinuous, trend at high angles to the basin margin, and extend at least 70 km (43 mi) into the basin. Sandstone beds, confined to channels, form numerous stratigraphic traps. Hydrocarbon sealing beds are provided by laminated organic siltstone, which laterally can form the erosional margin where channels are cut into siltstone beds. Thick beds of very fine-grained sandstones fill the channels. These sandstones contain abundant large and small-scale traction-current-produced stratification. These sandy channel deposits generally lack texturally graded sedimentation units and show no regular vertical sequence of stratification types or bed thickness. Exploration predictions based on submarine fan models formed by turbidity currents would anticipate very different proximal-distal changes in sandstone geometry and facies. 16 figures.

  20. NREL: Technology Deployment - Climate Neutral Research Campuses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Neutral Research Campuses Technology Deployment Four photos in a row across the top of the page. The first photo shows the profile of a wind turbine at dusk; the second of two women in white laboratory coats and glasses observing a piece of equipment; the third of a blue car moving downhill with a red rock in the background; the fourth of a walkway to a sandstone building that has a silver tower in the front and a silver walkway into the second story. Climate Neutral Research Campuses

  1. Integrated Renewable Energy and Campus Sustainability Initiative

    SciTech Connect (OSTI)

    Uthoff, Jay; Jensen, Jon; Bailey, Andrew

    2013-09-25

    Renewable energy, energy conservation, and other sustainability initiatives have long been a central focus of Luther College. The DOE funded Integrated Renewable Energy and Campus Sustainability Initiative project has helped accelerate the College’s progress toward carbon neutrality. DOE funds, in conjunction with institutional matching funds, were used to fund energy conservation projects, a renewable energy project, and an energy and waste education program aimed at all campus constituents. The energy and waste education program provides Luther students with ideas about sustainability and conservation guidelines that they carry with them into their future communities.

  2. Sandia National Laboratories: Careers: Students & Postdocs: Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recruiting Campus Recruiting Internships & Co-ops Fellowships Postdoctoral Positions Campus Recruiting Events Universities Careers Campus Recruiting We recruit at the best colleges and universities, looking for talented individuals to join our diverse workforce. We want to meet you in person. We have recruiting teams that travel to colleges and universities around the country to speak with brilliant students just like you. During our campus visits, we're available to answer your

  3. Duke University: Improving the Campus While Saving Energy

    SciTech Connect (OSTI)

    2003-11-01

    This is a fact sheet that describes the efforts of Duke University to reduce energy and water waste on campus.

  4. Delaware State University | OSTI, US Dept of Energy Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information Delaware State University Spotlights Home DOE Applauds Delaware State University Science and Technical Programs bbc-logo-new.gif chudsu.png DSU Leads the Way in Better Buildings DSU is one of the first university partners in the US to join the Department of Energy's Better Buildings inititative to reduce its carbon footprint by 25% by 2015. Secretary of Energy Chu participated in the DSU kick-off program to commemorate the school's efforts in July 2012. Read more

  5. Forward stratigraphic modeling of the Permian of the Delaware Basin

    SciTech Connect (OSTI)

    Qiucheng, Ye; Kerans, C.; Bowman, S. )

    1996-01-01

    Permian platform-to-basin strata of the Delaware Basin In west Texas and New Mexico represent one of the world's most complete, best studied, and most hydrocarbon productive records of this geologic period in the world. This superb marriage of a refined stratigraphic framework and active exploration provided impetus to develop a forward stratigraphic model of this section to better predict the distribution of reservoir and seal relationships. The approximately 30 m.y. interval modeled is composed of 2 km of platform strata and 3 km of basinal strata divided into 8 composite sequences (average 3 m.y. duration) and 45 high-frequency sequences (400 ky m.y. duration). A 130 km dip section through the basin margin Guadalupe/Deleware Mountain outcrop is inversely modeled to derive local tectonic subsidence and a sea level curve for the Permian. In this process, the highest and lowest shoreline positions of each sequence are interpreted based on facies description which are assumed to approximate the highest and lowest relative sea level. A eustatic sea level curve is calculated by restoring these shoreline positions and removing local tectonic subsidence using a polynomial fit to the derived relative sea level curve. The quantitatively constrained curve for the Permian contains 2nd, 3rd, and 4th order 180m. This quantitatively constrained accommodation history (calculated eustatic curve and subsidence history) are input into the PHIL forward modeling program. Model variables of sediment supply are depositional system are adjusted to match known outcrop relations. The resulting model is potentially capable of predicting stratigraphy elsewhere in the basin using only subsidence history data from the inverse model.

  6. Forward stratigraphic modeling of the Permian of the Delaware Basin

    SciTech Connect (OSTI)

    Qiucheng, Ye; Kerans, C.; Bowman, S.

    1996-12-31

    Permian platform-to-basin strata of the Delaware Basin In west Texas and New Mexico represent one of the world`s most complete, best studied, and most hydrocarbon productive records of this geologic period in the world. This superb marriage of a refined stratigraphic framework and active exploration provided impetus to develop a forward stratigraphic model of this section to better predict the distribution of reservoir and seal relationships. The approximately 30 m.y. interval modeled is composed of 2 km of platform strata and 3 km of basinal strata divided into 8 composite sequences (average 3 m.y. duration) and 45 high-frequency sequences (400 ky m.y. duration). A 130 km dip section through the basin margin Guadalupe/Deleware Mountain outcrop is inversely modeled to derive local tectonic subsidence and a sea level curve for the Permian. In this process, the highest and lowest shoreline positions of each sequence are interpreted based on facies description which are assumed to approximate the highest and lowest relative sea level. A eustatic sea level curve is calculated by restoring these shoreline positions and removing local tectonic subsidence using a polynomial fit to the derived relative sea level curve. The quantitatively constrained curve for the Permian contains 2nd, 3rd, and 4th order 180m. This quantitatively constrained accommodation history (calculated eustatic curve and subsidence history) are input into the PHIL forward modeling program. Model variables of sediment supply are depositional system are adjusted to match known outcrop relations. The resulting model is potentially capable of predicting stratigraphy elsewhere in the basin using only subsidence history data from the inverse model.

  7. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Standard Chlorine of Delaware Superfund Site in Delaware City, Delaware. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  8. A New Campus Built on Efficiency

    SciTech Connect (OSTI)

    Harding, Ari; Mercado, Andrea; Regnier, Cindy

    2015-08-01

    The University of California (UC), Merced partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce energy consumption by as part of DOE’s Commercial Buildings Partnerships (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. This case study reports on the process and outcome of this project including the achieved savings from design improvements for the campus. The intent of the project was to retrofit the Science & Engineering (S&E) building and the central plant at UC Merced to achieve up to 30% energy reduction. The anticipated savings from these retrofits represented about 17% of whole-campus energy use. If achieved, the savings contribution from the CBP project would have brought overall campus performance to 56% of the 1999 UC/CSU benchmark performance for their portfolio of buildings. However, the final design that moved forward as part of the CBP program only included the retrofit measures for the S&E building.

  9. Optimizing Electric Motor Systems at a Corporate Campus Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Motor Systems at a Corporate Campus Facility Optimizing Electric Motor Systems at a Corporate Campus Facility Minnesota Mining and Manufacturing (3M) conducted an in-house motor system performance optimization project. This four-page case study describes their experience. Optimizing Electric Motor Systems at a Corporate Campus Facility (May 2002) (191.7 KB) More Documents & Publications Metal and Glass Manufacturers Reduce Costs by Increasing Energy

  10. Mastering Campus Energy and Water Management - Tools for Success

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Providence, RI) | Department of Energy Mastering Campus Energy and Water Management - Tools for Success (Providence, RI) Mastering Campus Energy and Water Management - Tools for Success (Providence, RI) August 8, 2016 9:00AM to 3:00PM EDT INTERMEDIATE LEVEL (201) This highly interactive workshop, which will be held at the Rhode Island Convention Center in Providence, Rhode Island, features technical experts who will engage participants in a campus-planning exercise intended to give them

  11. Energy Smart Guide to Campus Cost Savings: Executive Summary

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    Summary of The Energy Smart Guide to Campus Cost Savings, an energy efficiency guidebook for College and University business and facility managers.

  12. Largest American Net Zero Energy Campus Community Embraces Clean Energy

    Broader source: Energy.gov [DOE]

    A new housing development on the UC Davis campus is planning to bring a new source of renewable energy to its community.

  13. NREL: Climate Neutral Research Campuses - Implementing the Climate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementing the Climate Action Plan When implementing climate action plans on research campuses, two important and related questions must be answered. How do we pay for climate ...

  14. NREL: Climate Neutral Research Campuses - Labs21 Approach to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Labs21 Approach to Climate Neutral Campuses Photo of the NREL Science and Technology ... Laboratory facilities represent both a challenge to climate-neutral targets and a growing ...

  15. NREL: Climate Neutral Research Campuses - Measure and Evaluate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Successful implementation of a climate action plan at your campus involves flexibility and ... The American College and University Presidents Climate Commitment (ACUPCC) and the ...

  16. Kansas City National Security Campus contractor and University...

    National Nuclear Security Administration (NNSA)

    Related Topics kcnsc missouri national security campus nsc research STEM Related News NNSA-lab-created new magnets will power renewable technology Nuclear weapons research holds ...

  17. Large Campus Innovative Change Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    laws and requirements, maintain their missions, and manage large facility portfolios. ... focus on multiple, often conflicting, missions Campus energy and water metering ...

  18. NREL: Transportation Research - NREL's Campus EV Charging Stations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Campus EV Charging Stations are Now More Integrated with the Grid Researcher looks at computer in parking garage standing near electric vehicle charging station. Myungsoo ...

  19. Food and Drug Administration White Oak Campus Environmental Stewardshi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Food and Drug Administration White Oak Campus Environmental Stewardship and Cost Savings FEMP ESPC Success Story on water conservation and green energy at the Food and Drug ...

  20. Permian Bone Spring formation: Sandstone play in the Delaware basin. Part I - slope

    SciTech Connect (OSTI)

    Montgomery, S.L.

    1997-08-01

    New exploration in the Permian (Leonardian) Bone Spring formation has indicated regional potential in several sandstone sections across portions of the northern Delaware basin. Significant production has been established in the first, second, and third Bone Spring sandstones, as well as in a new reservoir interval, the Avalon sandstone, above the first Bone Spring sandstone. These sandstones were deposited as submarine-fan systems within the northern Delaware basin during periods of lowered sea level. The Bone Spring as a whole consists of alternating carbonate and siliciclastic intervals representing the downdip equivalents to thick Abo-Yeso/Wichita-Clear Fork carbonate buildups along the Leonardian shelf margin. Hydrocarbon exploration in the Bone Spring has traditionally focused on debris-flow carbonate deposits restricted to the paleoslope. Submarine-fan systems, in contrast, extend a considerable distance basinward of these deposits and have been recently proven productive as much as 40-48 km south of the carbonate trend.

  1. Campus Challenge - Part 2: Benefits and Challenges of BACnet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Masica, Ken

    2016-01-15

    Additional challenges of implementing a BACnet network in a large campus environment are explored in this article: providing BACnet campus connectivity, protecting BACnet network traffic, and controlling the resulting broadcast traffic. An example of BACnet implementation is also presented, unifying concepts presented in this and Part One of the article.

  2. Campus and Conference Visits | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campus and Conference Visits We usually visit college campuses twice a year, once in the fall and again in the spring. Our fall visits typically occur from September to December; spring visits occur from January to March. To find out when we will be visiting your school, check with the career placement center on your campus or check out the schedule below. We also participate in national conferences each year. If you are a member of the American Indian Science and Engineering Society, Society of

  3. Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

  4. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. ,"Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  6. ,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Lease and

  8. Preliminary Site Assessment Of The Redfield Campus, Reno, Nevada...

    Open Energy Info (EERE)

    Site Assessment Of The Redfield Campus, Reno, Nevada, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Preliminary Site Assessment Of The...

  9. Geothermal energy to contribute to net-zero campus

    Broader source: Energy.gov [DOE]

    The Oregon Institute of Technology plans to become the first college campus in the U.S. to produce all of its own base load energy from a geothermal energy source.

  10. NREL: Climate Neutral Research Campuses - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Close-up photo of a photovoltaic panel on Cornell University's Day Hall with the campus clock tower standing in the background. Cornell University is representative of a research ...

  11. NREL: Climate Neutral Research Campuses - Analyze Technology Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyze Technology Options An effective climate action plan follows a portfolio approach and addresses each energy sector on campus. This section outlines how various technology options would fit into a campus climate action plan and provides examples of how others have used these technologies. Links to definitions, technology basics, and references are also provided. Use the Climate Action Planning Tool to identify which options will lead to the most significant reductions in consumption of

  12. Anne Harrington tours new National Security Campus | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Anne Harrington tours new National Security Campus Wednesday, May 14, 2014 - 9:39am Anne Harrington, NNSA Deputy Administrator for Defense Nuclear Nonproliferation, visited the Kansas City Plant recently for a facility tour of the new National Security Campus and to receive project briefings on its proliferation deterrence programs. During the visit, Harrington toured the Analytical Sciences Lab, one of the most complete and diverse labs under one roof. The

  13. Kansas City National Security Campus | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Kansas City National Security Campus National Security Campus (formerly known as Kansas City Plant) Contract No.: DE-NA0002839 Period of Performance: 07/09/2015 - 9/30/2020 (Transition and Basic Term) Operated by Honeywell FM&T, LLC Conformed to Modification 0016 dated 03/29/2016 To view contracts prior to July 2015, click here BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) (to Mod 0016 dated

  14. Kansas City National Security Campus | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Kansas City National Security Campus The NNSA's Kansas City National Security Campus, located near Kansas City, MO, is responsible for manufacturing and procuring nonnuclear components for nuclear weapons, including electronic, mechanical, and engineered material components. It supports national laboratories, universities, and U.S. industry. The KCNSC is operated by Honeywell Federal Manufacturing & Technologies. Visit our website Related News Kansas City National

  15. Iowa Community College Campuses Reduce Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iowa Community College Campuses Reduce Energy Use Iowa Community College Campuses Reduce Energy Use August 27, 2010 - 1:05pm Addthis DMACC will be installing nearly 1,500 occupancy sensors in the college's classrooms to help conserve energy.| Photo Courtesy of DMACC DMACC will be installing nearly 1,500 occupancy sensors in the college's classrooms to help conserve energy.| Photo Courtesy of DMACC Kevin Craft What are the key facts? Energy retrofit projects estimated to reduce annual energy use

  16. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect (OSTI)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  17. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  18. Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) from Delaware Bay, New Jersey

    SciTech Connect (OSTI)

    Burger, Joanna; Gochfeld, Michael; Niles, Lawrence; Dey, Amanda; Jeitner, Christian; Pittfield, Taryn; Tsipoura, Nellie

    2014-08-15

    There is an abundance of field data on levels of metals for feathers in a variety of birds, but relatively few data for tissues, especially for migrant species from one location. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in muscle, liver, brain, fat and breast feathers from migrant semipalmated sandpipers (Calidris pusilla) collected from Delaware Bay, New Jersey. Our primary objectives were to (1) examine variation as a function of tissue, (2) determine the relationship of metal levels among tissues, and (3) determine the selenium:mercury molar ratio in different tissues since selenium is thought to protect against mercury toxicity. We were also interested in whether the large physiological changes that occur while shorebirds are on Delaware Bay (e.g. large weight gains in 2–3 weeks) affected metal levels, especially in the brain. There were significant differences among tissues for all metals. The brain had the lowest levels of arsenic and cadmium, and was tied for the lowest levels of all other metals except lead and selenium. Correlations among metals in tissues were varied, with mercury levels being positively correlated for muscle and brain, and for liver and breast feathers. Weights vary among individuals at the Delaware Bay stopover, as they arrive light, and gain weight prior to migration north. Bird weight and levels of arsenic, cadmium, and selenium in the brain were negatively correlated, while they were positively correlated for lead. There was no positive correlation for mercury in the brain as a function of body weight. The selenium:mercury molar ratio varied significantly among tissues, with brain (ratio of 141) and fat having the highest ratios, and liver and breast feathers having the lowest. In all cases, the ratio was above 21, suggesting the potential for amelioration of mercury toxicity. - Highlights: • Metal levels were examined for migrant semipalmated sandpipers. • There

  19. Delaware Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Delaware Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 0 0 0 0 0 75 2000's 103 97 1,285 1,450 1,561 1,399 1,833 2,178 2,611 5,438 2010's 6,117 4,879 5,647 6,146 6,389 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report

    SciTech Connect (OSTI)

    None

    1980-07-01

    This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

  1. Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.00 3.03 2.85 2.60 2.91 2000's 3.21 4.12 5.48 12.66 14.88 19.32 22.42 21.90 26.48 14.12 2010's 24.55 28.76 30.97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  2. HUD consumer market profile for the states of Florida, Delaware and Maryland

    SciTech Connect (OSTI)

    Jack, M.C.; Denny, W.M.

    1981-01-01

    Data obtained on persons who purchased solar water heaters with HUD grants from 1977 to 1979 in the states of Florida, Delaware and Maryland are compiled. A total of more than 2600 consumers are profiled. The following variables are included in the consumer profile: type of present hot water system, site location by county, family composition and type of installation. This study represents the largest marketing profile of solar hot water system purchasers to date. It has significance both to private industry and the government for it details what type of person participated in the HUD grant program. It is found that the largest number of solar installations cluster around large metropolitan areas in neighborhoods that are predominantly white, upper-class, and less than five persons in the household.

  3. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement...

    Office of Scientific and Technical Information (OSTI)

    SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator Citation Details In-Document Search Title: SU-E-CAMPUS-T-03: Four-Dimensional Dose ...

  4. New NREL Web Site Helps Campuses Go Green - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New NREL Web Site Helps Campuses Go Green Cornell Collaboration Aims to Reduce Carbon Use ... and Cornell University have launched a Web site to help campus-based institutions ...

  5. Morris, Minnesota: Creating a Sustainable College Campus and Local Jobs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Morris, Minnesota: Creating a Sustainable College Campus and Local Jobs Morris, Minnesota: Creating a Sustainable College Campus and Local Jobs August 16, 2012 - 11:46am Addthis The second in a new Energy.gov video series about local clean energy projects is University of Minnesota Morris and their partnership with the town of Morris, Minnesota. Steven R. Thai Steven R. Thai Office of Public Affairs What are the key facts? The school uses two 1.65 megawatt wind turbines.

  6. Food and Drug Administration White Oak Campus Environmental Stewardship and Cost Savings

    Broader source: Energy.gov [DOE]

    FEMP ESPC Success Story on water conservation and green energy at the Food and Drug Administration (FDA) White Oak Campus.

  7. Notices Bldg., 901 Pilottown Road, Lewes, DE

    Energy Savers [EERE]

    along with the new time and place of the meeting will be posted on the Commission's Web site at http: www.cftc.gov. CONTACT PERSON FOR MORE INFORMATION: Sauntia S. Warfield,...

  8. Mastering Campus Energy and Water Management: Tools for Success Presentations and Materials

    Broader source: Energy.gov [DOE]

    Presentations and materials covered during the "Mastering Campus Energy and Water Management: Tools for Success" workshop held on August 8, 2016, in Providence, Rhode Island. This interactive workshop featured technical experts who engaged participants in a campus-planning exercise intended to give them technical and management tools to address federal goals at a campus level.

  9. Delaware basin/Central basin platform margin: The development of a subthrust deep-gas province in the Permian Basin

    SciTech Connect (OSTI)

    Purves, W.J. ); Ting, S.C. )

    1990-05-01

    A deep-gas-prone province was identified along the Delaware basin/Central Basin platform margin, a margin conventionally interpreted to be bounded by high-angle normal or high-angle reverse structures. Redefinition of the tectonic style between the Delaware basin and the adjacent platform resulted in the identification of this Delaware basin/Central Basin platform subthrust province and a giant prospect within it. Definition of a giant-sized gas prospect in northern Pecos County, Texas, revealed that portions of this margin may be characterized by shingled, low-angle, eastward-dipping, basement involved thrust faults. Interpretations suggest that hidden, subthrust footwall structures may trend discontinuously for greater than 100 mi along this structural margin. Subthrust footwall structures formed as basinal buttress points for the Central Basin platform to climb over the Delaware basin. In this area, structural relief of over 19,000 ft over a 10-mi width is believed due to stacking of low-angle thrust sheets. Seismic resolution of this subthrust margin has been complexed by allochtonous hanging-wall gravity-glide blocks and folds and by velocity changes in overlying syn- and posttectonic sediments associated with basin-to-shelf lithofacies changes. Statistical studies indicate that this deep-gas province has a play potential of greater than 10 tcf of gas, with individual prospect sizes exceeding 1 tcfg. The prospects defined along this trend are deep (approximately 20,000 ft) subthrust structural traps that are indigenously sourced and reservoired by dual-matrix porosity. Vitrinite supported maturation modeling suggests that these subthrust structures formed prior to catagenic conversion of the oldest source rocks to oil and later to gas. Tectonically fractured Ordovician Ellenburger and Devonian sediments are considered the principal reservoirs. Shales overlying reservoir intervals form vertical seals.

  10. Kansas City National Security Campus Performance Evaluations (formerly

    National Nuclear Security Administration (NNSA)

    Kansas City Plant) | National Nuclear Security Administration | (NNSA) Kansas City National Security Campus Performance Evaluations (formerly Kansas City Plant) FY 2016 FY 2016 Performance Evaluation Plan, Honeywell Federal Manufacturing & Technologies, LLC FY 2015 FY 2015 Performance Evaluation Report, Honeywell Federal Manufacturing & Technologies, LLC FY 2015 Performance Evaluation Report, Fee Determination Letter, Honeywell Federal Manufacturing & Technologies, LLC FY 2015

  11. Y-12 National Security Campus | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Y-12 National Security Campus Ambassador Ensher visits Y-12 and NNSS Ambassador Henry S. Ensher, the top U.S. diplomat at the United States Mission to International Organizations in Vienna, Austria, recently visited two facilities to understand NNSA's mission better: the Y-12 National Security Complex and the Nevada National Security Site (NNSS). At Y-12, he

  12. CNCC Craig Campus Geothermal Project Â…Craig, Colorado | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy CNCC Craig Campus Geothermal Project Â…Craig, Colorado CNCC Craig Campus Geothermal Project Â…Craig, Colorado Feasibility study of GHP technology for new Craig Campus and conducted energy analysis modeling with Architect and Engineers. 96-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. gshp_boyd_cncc_craig_campus.pdf (698.36 KB) More Documents & Publications Comparison of building energy use before and after GSHP

  13. A Distributed Cooperative Power Allocation Method for Campus Buildings

    SciTech Connect (OSTI)

    Hao, He; Sun, Yannan; Carroll, Thomas E.; Somani, Abhishek

    2015-09-01

    We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designed using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method

  14. NREL: Climate Neutral Research Campuses - Determine Baseline Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption Determine Baseline Energy Consumption To create a climate action plan for your research campus, begin by determining current energy consumption and the resulting greenhouse gas emissions. You can then break down emissions by sector. It important to understand the following at the beginning: The Importance of a Baseline "The baseline inventory also provides a common data set for establishing benchmarks and priorities during the strategic planning stage and a means for

  15. Kansas City National Security Campus volunteers help students with FIRST

    National Nuclear Security Administration (NNSA)

    Robotics | National Nuclear Security Administration | (NNSA) volunteers help students with FIRST Robotics Monday, March 14, 2016 - 2:45pm NNSA Blog The FIRST Robotics competition in Kansas City, March 10-12, resembled a medieval battlefield as nearly 50 high school teams battled robot against robot to scale the opponent's defenses and capture their tower and flag. For the past 10 years, Kansas City National Security Campus employees have volunteered their time to mentor area high schools

  16. Sandia National Laboratories: Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LVOC LVOC CREATE Visiting the LVOC Locations Livermore Valley Open Campus (LVOC) Open engagement Expanding opportunities for open engagement of the broader scientific community. Building on success Sandia's Combustion Research Facility pioneered open collaboration over 30 years ago. Access to DOE-funded capabilities Expanding access to foundational research at the Department of Energy national labs. Targeting the toughest problems Join us in multi-disciplinary R&D to solve large-scale

  17. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  18. ,"Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release

  19. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  20. Growth rates of upper Permian carbonate platform, Capitan margin of northern Delaware basin

    SciTech Connect (OSTI)

    Harris, P.M.; Grover, G.A.

    1989-03-01

    Subsurface and outcrop studies of the Capitan margin (late Guadalupian, Capitanian) in the northern Delaware basin have revealed that over 80% of the total progradation of the margin, over half the total aggradation of the platform (150 of 290 m), and over two-thirds of the basin fill (190 of 280 m) occurred during an early phase of development equating with Seven Rivers beds on the platform. The amount of progradation varied from 6 km from outcrop data in the Guadalupe Mountains to 19 km along trend to the east from subsurface information. The later phase of Capitan margin development was coincident with Yates and Tansill deposition on the platform and was dominated by aggradation and steepening of the margin. Corresponding to this two-phase model, two third-order cycles of relative sea level occur within the Capitanian on the eustasy curve of Ross and Ross: a Seven Rivers cycle lasting 1.5 m.y. and a Yates-Tansill cycle of 1.0 m.y. Progradation rates for the Capitan range from 2.6 to 8.3 m/1000 years. Similar rates are calculated from high-resolution seismic lines across the Cenozoic margin of northwestern great Bahama Bank. Accumulation rates for the Capitan, uncorrected for compaction, average 125 ..mu..m/year and 335 ..mu..m/year for the early phase shelf and shelf margin, respectively, and 160 ..mu..m/year and 430..mu..m/year for the later phase shelf and shelf margin. These accumulation rates are similar to those of other ancient, prograding platforms.

  1. Geologic evolution of the Late Permian Capitan shelf margin, northern Delaware basin

    SciTech Connect (OSTI)

    Grover, G.A. )

    1991-03-01

    A two-phase model, based on outcrop and subsurface data rimming the northern half of the Delaware basin, characterizes the evolution of the late Guadalupian Capitan shelf margin, a margin that prograded up to 19 km basinward while an interval of over 700 m accumulated. Phase 1, during Seven Rivers shelf (early Capitan) deposition, accounts for 70-80% of the total progradation, over 50% of the total aggradation, and corresponds with shelf facies devoid of siliciclastics, emplacement of abundant carbonate debris on the slope and basin margin, and deposition of 50-70% of the Bell Canyon siliciclastic interval in the basin. The clastics bypassed the growing Capitan margin and were equally important to that of the allochthonous carbonate debris in filling accommodation space to facilitate progradation of the margin. The second phase, during Yates-Tansill (middle-upper Capitan) time, was dominated by aggradation, steepening of the shelf margin, deepening of the basin, and deposition of abundant siliciclastics on the shelf. This model differs from previous reconstructions that show uniform growth of the Capitan reef, and it contradicts the long-standing dogma of reciprocal sedimentation. This two-phase growth model adds insight into deposition of the two principle Guadalupian reservoir facies that account for nearly 50% of the Permian basin in-place oil reserves. Offlapping sheets of inner shelf carbonates (e.g., San Andres Formation, McElroy field) relate to periods of shelf progradation whereas widespread sheets of shelf clastics (e.g., Yates Formation, N. Ward Estes field) reflect periods of shelf aggradation. The model should be useful in evaluating the evolution of other shelves, particularly mixed shelves.

  2. Largest On-Campus Solar Facility Being Installed at William Paterson |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Largest On-Campus Solar Facility Being Installed at William Paterson Largest On-Campus Solar Facility Being Installed at William Paterson March 29, 2010 - 10:57am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs What does this project do? Solar arrays at parking lots and photovoltaic cells on the rooftops of campus buildings should provide about 15 to 20 percent of our energy needs on the campus. Cranes place solar panels on roofs and

  3. CX-005898: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - Renewable Energy Incentives - Fleck's ResidenceCX(s) Applied: B5.1Date: 05/17/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  4. U.S EPA Research Triangle Park Campus, Typical Office Wing

    High Performance Buildings Database

    Research Triangle Park, NC The EPA's new RTP campus includes laboratories and offices for over 2,000 people. One of the three 3-story office blocks is described here. The building sits on the shore of an artificial lake, and is part of a larger campus of federal facilities that share a central cooling plant.

  5. New Mexico State University Campus geothermal demonstration project

    SciTech Connect (OSTI)

    Cuniff, R.A.; Fisher, K.P.; Chintawongvanich, P.

    1984-04-01

    This report presents the design, construction highlights, and performance of the New Mexico State University Campus Geothermal Demonstration Project at Las Cruces, New Mexico. Construction started in July 1981, first system use was January 1982, and the system was dedicated on April 21, 1982. Included herein are summary observations after two years of use. The geothermal hot water from New Mexico State University wells is used to heat potable water, which in turn provides 83 percent of the domestic hot water on the New Mexico State University campus, as well as space heat to two buildings, and for two heated swimming pools. The original system is providing service to 30 total buildings, with two additional buildings (150,000 square feet) in process of geothermal conversion.) The system overall performance has been excellent, except for geothermal well pump problems. In terms of operating efficiency, the system has exceeded the design parameters. In spite of abnormally high costs for well and pump repairs, the system has shown a positive cost avoidance of more than $118,000 for the first year of operation. For the first two full years of operation, the system has produced a net positive cost avoidance of more than $200,000. Payback on the total investment of $1,670,000 is projected to be 6 to 10 years, depending on the future prices of natural gas and electricity.

  6. Envisioning an Ecologically Sustainable Campus At New England College

    SciTech Connect (OSTI)

    Paula Amato; Gregory Palmer

    2010-09-30

    Appropriation funding for our project Ecologically Sustainable Campus - New England College (NH). 67.09. supported five environmental initiatives: (1) a wood pellet boiler for our Science Building, (2) solar hot water panels and systems for five campus buildings, (3) campus-wide energy lighting efficiency project, (4) new efficiency boiler system in Colby Residence Hall, and (5) energy efficient lighting system for the new artificial athletic turf field. (1) New England College purchased and installed a new wood pellet boiler in the Science Building. This new boiler serves as the primary heating source for this building. Our boiler was purchased through New England Wood Pellet, LLC, located in Jaffrey, New Hampshire. The boiler selected was a Swebo, P500. 300KW wood pellet boiler. The primary goals, objectives, and outcomes of this initiative include the installation of a wood pellet boiler system that is environmentally friendly, highly efficient, and represents a sustainable and renewable resource for New England College. This project was completed on December 15, 2010. (2) New England College purchased and installed solar hot water panels and systems for the Science Building, the Simon Center (student center), the H. Raymond Danforth Library, Gilmore Dining Hall, and Bridges Gymnasium. The College worked with Granite State Plumbing & Heating, LLC, located in Weare, New Hampshire on this project. The solar panels are manufactured by Heat Transfer; the product is Heat Transfer 30-tube collector panels (Evacuated Tube Type) with stainless steel hardware. The interior equipment includes Super Stor Ultra stainless steel super insulated storage tank, Taco 009 Bronze circulator pump, Solar Relay Control Pack, and a Taco Thermal Expansion Tank. The primary goals, objectives, and outcomes of this initiative will allow the College to utilize the sun as an energy resource. These solar hot water panels and systems will alleviate our dependency on fossil fuel as our primary

  7. InSAR At Redfield Campus Area (Oppliger, Et Al., 2008) | Open...

    Open Energy Info (EERE)

    All InSAR pairs were systematically screened to determine those suitable for further processing based on signal-to-noise and data integrity around the Redfield campus and...

  8. Cool Trends on Campus: A Survey of Thermal Energy Storage Use...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A survey was conducted to develop a database documenting and quantifying the use of Thermal Energy Storage (TES) in campus applications. cooltrendsoncampus.pdf (97.88 KB) More ...

  9. National Security Campus Management and Operating (M&O) Contract

    National Nuclear Security Administration (NNSA)

    Competition | National Nuclear Security Administration | (NNSA) Solicitation National Security Campus Management and Operating (M&O) Contract Competition Contract Competition Home Page Welcome to the National Nuclear Security Administration's website for the National Security Campus (NSC) Management and Operating Contract Competition. The NSC in Kansas City, MO, is situated on approximately 177 acres. The facility is leased for the NNSA by the General Services Administration. Satellite

  10. NNSA Awards Kansas City National Security Campus Follow-on Management &

    National Nuclear Security Administration (NNSA)

    Operating Contract to Honeywell FM&T | National Nuclear Security Administration | (NNSA) NNSA Awards Kansas City National Security Campus Follow-on Management & Operating Contract to Honeywell FM&T July 10, 2015 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced the award to Honeywell Federal Manufacturing and Technologies, LLC, to be the management and operating contractor for the National Security Campus (NSC) in Kansas City, Missouri.

  11. Geology of north-central Delaware basin, Eddy and Lea Counties, New Mexico: its hydrocarbon potential, focusing on 12 townships centered on WIPP site

    SciTech Connect (OSTI)

    Cheeseman, R.J.

    1986-03-01

    The Waste Isolation Pilot Plant (WIPP) site is located within the Carlsbad potash mining area, southeastern New Mexico, about 20 mi east of Carlsbad. Structurally, the WIPP site is located in the north-central part of the Delaware basin, which yields hydrocarbon production from the following: the Ordovician Ellenburger; the Pennsylvanian Morrow (gas), Atoka (oil and gas), and Strawn (reef oil) intervals; the Wolfcamp (gas) and Bone Spring (oil) formations of lowermost Permian; the Permian Yates (800-3500 ft deep), Queen, and Seven Rivers Formations; and the Delaware Mountain Group (4700-5200 ft deep). Structure contour maps demonstrate favorable Bone Spring conditions north of the WIPP site and the centrally located Delaware targets, as well as important Morrow development in the southern part. Five prospects are explored, and two are especially promising. Five anticlinal trends in this 12-township area bear field names as a result of production: Big Eddy, South Salt Lake, Cabin Lake, Los Medanos, and Sand Dunes. The Department of Energy's WIPP project is a planned repository for nuclear waste; despite centering on a deep dry hole, it occurs just northeast of productive Morrow formation. Whereas the successful tests seem concentrated on the structural highs, significant wells produce offtrend; the WIPP site lies in a syncline.

  12. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  13. Occurrence and significance of magnesite in Upper Permian (Guadalupian) Tansill and Yates Formations, Delaware Basin, New Mexico

    SciTech Connect (OSTI)

    Garber, R.A.; Harris, P.M.; Borer, J.M. )

    1990-02-01

    Magnesite (MgCO{sub 3}) occurs pervasively in a 270-ft (82-m) cored interval of Upper Permian (Guadalupian) shelf deposits from the northern rim of the Delaware basin portion of the Permian basin, New Mexico. In their core example, magnesite is found in tidal flat/lagoon and pisolite shoal dolomites and siltstones of the Tansill and uppermost Yates formations. The interval is overlain by magnesite-bearing anhydrite and a thick halite section of the (Ochoan) Salado Formation. The basinwide extent of magnesite is unknown. Magnesite may have formed either (1) during Ochoan deposition or thereafter, after burial of the Tansill and Yates formations, from dense brines originating from the overlying Salado evaporites; or less likely, (2) syndepositionally with the Tansill and Yates sediments. Preliminary measurements of stable carbon and oxygen isotopes for magnesite yield normal Permian values for {delta}{sup 13}C averaging + 6.84% (PDB) and slightly evaporitic values for {delta}{sup 18}O averaging + 1.04% (PDB); corrected {sup 87}Sr/{sup 86}Sr isotope composition averages 0.70687. Because a high content of associated uranium in the magnesite-rich part of the core causes large gamma-ray deflections similar to those for shale, and because the density of magnesite is close to that of anhydrite, the presence of magnesite could lead to improper evaluation of lithology and porosity from logs and could ultimately result in failure to recognize potential reservoir zones. 14 figs., 1 tab.

  14. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  15. Net-Zero Campus at University of California, Davis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net-Zero Campus at University of California, Davis Net-Zero Campus at University of California, Davis Sunlight reflects off the metal window sun shields on the Ramble apartments at West Village at UC Davis in Davis, California. Sunlight reflects off the metal window sun shields on the Ramble apartments at West Village at UC Davis in Davis, California. Photo by Greg Urquiaga /UC Davis, NREL 20240 The new Viridian apartments at West Village at UC Davis. The new Viridian apartments at West Village

  16. NREL/University of Delaware Offshore Wind R&D Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-10-393

    SciTech Connect (OSTI)

    Musial, Walt

    2015-11-12

    Specifically, the work under this CRADA includes, but is not limited to, the development of test procedures for an offshore test site in Delaware waters; testing of installed offshore wind turbines; performance monitoring of those turbines; and a program of research and development on offshore wind turbine blades, components, coatings, foundations, installation and construction of bottom-fixed structures, environmental impacts, policies, and more generally on means to enhance the reliability, facilitate permitting, and reduce costs for offshore wind turbines. This work will be conducted both at NREL's National Wind Technology Center and participant facilities, as well as the established offshore wind test sites.

  17. Regional basinal sandstone depositional patterns during the Guadalupian (Late Permian), Delaware basin, west Texas-New Mexico

    SciTech Connect (OSTI)

    Geisen, J.H.; Scholle, P.A. )

    1990-05-01

    Examination of well logs from more than 300 Delaware basin wells penetrating the Bell Canyon and Brushy Canyon formations has allowed definition of regional depositional patterns during the Late Permian (Guadalupian). Characteristic gamma-ray hot-kicks mark thin but widespread calcareous shales or limestones representing starved basin sedimentation during sea level highstands. Correlation of such markers along three strike and ten dip lines permitted isopaching of intervening lowstand clastic wedges. The low-stand wedges typically thin significantly from basin margin to basin center and are marked by a prominent linearity oriented perpendicular to the margin. These lineations probably represent channelized turbidite and grain-flow deposits. Most intervals show dozens of such lineations indicating multiple input points for terrigenous detritus rather than just a few major point sources of debris. The resulting deposits appear to be more apron-like than fan-like and coalesce into broad, sheetlike deposits toward the basin center. Isopach thicks vary in position through time, but terrigenous sediment transport is predominantly from northerly directions throughout the analyzed interval. Thus, the filling of the Midland basin at the close of Cherry Canyon deposition did not result in a major new source of terrigenous debris from the east (Central Basin platform). The well-sorted nature of the basinal sands, their widely distributed input points, apron-like geometry, and other factors argue for migration of eolian dunes to the shelf margin during sea level lowstands. Transport of these well-sorted, unconsolidated sands into the basin was not however, mainly by direct eolian processes as has been proposed recently, but must have involved submarine current mechanisms.

  18. Evaporite replacement within the Permian strata of the Bighorn Basin, Wyoming and the Delaware Basin, west Texas and New Mexico

    SciTech Connect (OSTI)

    Ulmer, D.S.; Scholle, P.A. )

    1992-01-01

    The Park City and Goose Egg Formations of the Big Horn Basin, Wyoming and the Seven Rivers, Yates and Tansill Formations of west Texas and New Mexico contain numerous examples of silicified and calcitized evaporites. Both areas show significant preserved interstitial evaporite, but on outcrop the discrete crystals and nodular evaporites have been extensively replaced. These replacements appear to be a multistage phenomenon. Field and petrographic evidence (matted fabrics in nodules; evaporite inclusions) indicate that silicification involved direct replacement of evaporites and probably occurred during earlier stages of burial. Calcitization, however, appears to be a much later phenomenon and involved precipitation of coarse crystals within evaporite molds. The calcites are typically free of evaporite inclusions. Isotopic analyses of these calcites give a wide range of values from [minus]6.04 to [minus]25.02 [per thousand] [delta][sup 18]O and +6.40 to [minus]25.26 [per thousand] [delta][sup 13]C, reflecting their complex diagenetic histories. In both localities, silicification of evaporites was completed by the end of hydrocarbon migration and emplacement. The extremely broad isotopic range of the calcites indicates that the calcitization occurred during a long period of progressive uplift and increased groundwater circulation associated with mid-Tertiary block faulting. The very light oxygen values within the Bighorn Basin were produced by thermochemical sulfate reduction during deepest burial of the region. Evaporite diagenesis in both the Bighorn and Delaware Basins is an ongoing process that started prior to hydrocarbon migration, continued over millions of years, and has the potential to do significant porosity change.

  19. Feasibility of electric power generation by the wind on the University of New Orleans campus

    SciTech Connect (OSTI)

    Hilbert, L.B. Jr.; Janna, W.S.

    1982-03-01

    Recent advances in wind energy technology have led to the point where it may be feasible to use windmills to generate amounts of energy to supplement present energy demands. This paper presents a study of the feasibility of using wind as an alternative or supplemental energy source for the campus of the University of New Orleans. 10 refs.

  20. Energy Department Helps University of California Develop Net-Zero Campus

    Broader source: Energy.gov [DOE]

    With the help of $2.5 million in U.S. Department of Energy (DOE) funding, the University of California, Davis (UC Davis) built a net-zero community on its 130-acre West Village campus that provides housing for approximately 3,000 people in 662 apartments and 343 single-family homes.

  1. Energy Department Officially Dedicates New National Security Campus in Kansas City

    Broader source: Energy.gov [DOE]

    Secretary of Energy Ernest Moniz was joined by the Administrator of the National Nuclear Security Administration (NNSA), Lt. Gen. Frank Klotz, United States Air Force (Ret), U.S. Representatives Emanuel Cleaver II and Vicky Hartzler, and other local officials today to officially dedicate the new National Security Campus in Kansas City.

  2. Campus Cafeteria Serves As Sustainable Model for Energy-Efficient Food Service (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campus Cafeteria Serves As Sustainable Model for Energy- Efficient Food Service Unlike the less-than-appealing, traditional cafeteria you may have eaten at in school, the state-of-the-art Café on the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) campus, which opened in 2012, is breaking stereotypes from aesthetics to energy- effcient design. In addition to meeting staff needs as the primary dining location to grab snacks and eat lunch on the Golden, Colorado, campus,

  3. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    SciTech Connect (OSTI)

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    2011-01-03

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology is viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator

  4. Webinar: 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems, originally presented on September 4, 2012.

  5. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    SciTech Connect (OSTI)

    Onar, Omer C; Miller, John M; Campbell, Steven L; Coomer, Chester; White, Cliff P; Seiber, Larry Eugene

    2013-01-01

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  6. Tectonic and eustatic controls on the carbonate stratigraphy of the Leonardian-Guadalupin (Permian) section, northwestern Delaware basin, New Mexico and Texas

    SciTech Connect (OSTI)

    Glaser, K.S.; Vail, P.R. ); Jordan, J.E. )

    1990-05-01

    The effects of tectonics and eustasy on carbonate sedimentation have been determined using seismic, well logs, and outcrop data for the middle Permian of the Delaware basin. Sequence and chronostratigraphic analyses indicate the section contains a broad, tectonically controlled aggradational/progradational cycle overprinted by eustatic sea level cycles. Early Leonardian deposition of the Abo Formation and the third Bone Spring sand occurred during a period of rapid subsidence, producing the aggradational geometry observed on seismic and well logs. This followed a time of uplift to the northwest of the study area, which caused enhanced shelf erosion during the late Wolfcampian. The aggradational style of deposition continued through the middle Leonardian. Late Leonardian time is characterized by progradational geometry, due to a slower subsidence rate. This resulted in a 15-km progradation of the Bone Spring shelf margin in the northwestern part of the Delaware basin. A second period of uplift to the northwest followed, leading to the deposition of the sands of the Brushy Canyon Formation (Guadalupian). This aggradational/progradational cycle is followed by a similar cycle which ends after the deposition of the Capitan Formation. Within the carbonate-dominated Leonardian aggradational/progradational cycle, nine sea level cycles are recognized. The lowstand systems tracts within this package are of two types. The lowstands within the aggradational part of the section consist primarily of slope fans, while those associated with progradation contain large lowstand prograding wedges. Steep margins are associated with aggradation, while progradation is characterized by a ramplike geometry. Highstands are widespread on the shelf and prograde into the basin throughout this interval.

  7. Delaware Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    78-2005 Citygate 5.67 9.03 7.19 5.67 5.54 NA 1984-2015 Residential 15.12 15.38 15.24 13.65 13.21 NA 1967-2015 Commercial 13.26 13.58 13.31 11.78 11.42 10.70 1967-2015 Industrial 10.18 11.69 11.61 11.24 10.95 NA 1997-2015 Vehicle Fuel 24.55 28.76 30.97 1995-2012 Electric Power W W -- -- W -- 1997-2015 Underground Storage (Million Cubic Feet) Injections 1967-1975 Withdrawals 1967-1975 Net Withdrawals 1967-1975 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 73 64 117 63 157 1980-2014

  8. Delaware Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    78-2005 Citygate Price 5.67 9.03 7.19 5.67 5.54 NA 1984-2015 Residential Price 15.12 15.38 15.24 13.65 13.21 NA 1967-2015 Percentage of Total Residential Deliveries included in ...

  9. ,"Delaware Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcusdem.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusdem.htm" ,"Source:","Energy ...

  10. ,"Delaware Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 38336,6759,1509,1180,1960,,2110 38367,6870,2031,1358,2068,,1412 38398,5543,1824,1253,1465,,1001 38426,5427,1705,1198,1558,,965 38457,2696,790,572,1055,,280 ...

  11. Delaware Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    1 3.84 4.70 5.03 6.24 8.53 1989-2016 Residential 10.09 9.71 10.24 11.47 13.44 17.54 1989-2016 Commercial 8.75 8.58 8.79 9.33 10.03 10.87 1989-2016 Industrial 8.14 7.98 8.29 7.89 8.62 8.93 2001-2016 Electric Power -- -- -- -- -- -- 2002-2016 Consumption (Million Cubic Feet) Delivered to Consumers 9,040 8,389 8,707 8,781 7,721 9,045 2001-2016 Residential 2,084 1,879 1,135 823 475 231 1989-2016 Commercial 2,003 1,658 1,113 934 695 535 1989-2016 Industrial 2,821 2,517 2,666 2,464 2,643 2,335

  12. Delaware Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.81 3.84 4.70 5.03 6.24 8.53 1989-2016 Residential Price 10.09 9.71 10.24 11.47 13.44 17.54 1989-2016 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2016 Commercial Price 8.75 8.58 8.79 9.33 10.03 10.87 1989-2016 Percentage of Total Commercial Deliveries included in Prices 41.6 49.4 47.8 40.8 35.9 31.2 1989-2016 Industrial Price 8.14 7.98 8.29 7.89 8.62 8.93 2001-2016 Percentage of Total Industrial Deliveries included in Prices 0.3 0.5 0.4

  13. Remarks by Deputy Secretary Elizabeth Sherwood-Randall on the Joint Trade Mission to China at the Microsoft Campus in Beijing on April 14, 2015-- As Prepared

    Office of Energy Efficiency and Renewable Energy (EERE)

    Deputy Secretary Elizabeth Sherwood-Randall's prepared remarks on the Joint Trade Mission to China at the Microsoft Campus in Beijing on April 14, 2015.

  14. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  15. Path to Zero: Ultra-Efficient Architecture on the NREL Campus: S&TF and Master Planning (Presentation)

    SciTech Connect (OSTI)

    Carlisle, N.

    2012-05-01

    Describe the aspects of NREL's S and TF and Campus Master Planning in terms of how they have influenced ultra-efficient architecture on NREL's campus. Energy goals for the NREL campus are: (1) Understand how buildings uses energy, implement the cost-effective energy and water efficiency retrofits; (2) Use principals of energy efficiency and low energy design to reduce energy demand in all new construction; (3) Operate central plants efficiently; (4) Alternative transportation; (5) Use combined heat and power systems; (6) Use on-site renewables for demonstration and where it is cost-effective; and (7) Buy green power (over the next 25 years) so that 100% of our power will be from renewable sources.

  16. ReSS: Resource Selection Service for National and Campus Grid Infrastructure

    SciTech Connect (OSTI)

    Mhashilkar, Parag; Garzoglio, Gabriele; Levshina, Tanya; Timm, Steve; /Fermilab

    2009-05-01

    The Open Science Grid (OSG) offers access to around hundred Compute elements (CE) and storage elements (SE) via standard Grid interfaces. The Resource Selection Service (ReSS) is a push-based workload management system that is integrated with the OSG information systems and resources. ReSS integrates standard Grid tools such as Condor, as a brokering service and the gLite CEMon, for gathering and publishing resource information in GLUE Schema format. ReSS is used in OSG by Virtual Organizations (VO) such as Dark Energy Survey (DES), DZero and Engagement VO. ReSS is also used as a Resource Selection Service for Campus Grids, such as FermiGrid. VOs use ReSS to automate the resource selection in their workload management system to run jobs over the grid. In the past year, the system has been enhanced to enable publication and selection of storage resources and of any special software or software libraries (like MPI libraries) installed at computing resources. In this paper, we discuss the Resource Selection Service, its typical usage on the two scales of a National Cyber Infrastructure Grid, such as OSG, and of a campus Grid, such as FermiGrid.

  17. Energy Efficiency Improvements to Wundar Hall, a Historic Building on the Concordia Campus, Milwaukee, Wisconsin

    SciTech Connect (OSTI)

    Karman, Nathan

    2012-11-29

    The Forest County Potawatomi Community (â??FCPCâ?ť or â??Communityâ?ť) implemented energy efficiency improvements to revitalize Wundar Hall, a 34,000 square foot (â??SFâ?ť) building that was formerly used as a dormitory and is listed on the National Registry of Historic Places, into an office building. Wundar Hall is the first of many architecturally and historically significant buildings that the Community hopes to renovate at the former Concordia College campus, property on the near west side of Milwaukee that was taken into trust for the Community by the United States on July 10, 1990 (collectively, the â??Concordia Trust Propertyâ?ť). As part of this project, which was conducted with assistance from the Department of Energyâ??s Tribal Energy Program (â??TEPâ?ť), the Community updated and/or replaced the building envelope, mechanical systems, the plumbing system, the electrical infrastructure, and building control systems. The project is expected to reduce the buildingâ??s natural gas consumption by 58% and the electricity consumption by 55%. In addition, the project was designed to act as a catalyst to further renovation of the Concordia Trust Property and the neighborhood. The City of Milwaukee has identified redevelopment of the Concordia Trust Property as a â??Catalytic Projectâ?ť for revitalizing the near west side. The Tribe envisions a revitalized, mixed-use campus of community services, education, and economic developmentâ??providing services to the Indian community and jobs to the neighborhood.

  18. Campus Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Information Visitor Center TCS Conference Center APS Conference Center Bistro Freund Lodge Credit Union Entrance MAINNORTH GATE Entrance TRUCKEAST GATE Entrance WEST...

  19. Establishment of a Background Environmental Monitoring Station for the PNNL Campus

    SciTech Connect (OSTI)

    Fritz, Brad G.; Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.; Rishel, Jeremy P.

    2014-12-18

    The environmental surveillance of background levels of radionuclides and, in particular, the siting of a background environmental surveillance (monitoring) station are examined. Many published works identify and stress the need for background monitoring; however, little definitive and comprehensive information for siting a station exists. A definition of an ideal background monitoring location and the generic criteria recommended for use in establishing such a background monitoring location are proposed. There are seven primary (mandatory) criteria described with two additional, optional criteria. The criteria are applied to the Richland, Washington (WA), Pacific Northwest National Laboratory (PNNL) Campus, which currently uses background monitoring data from the nearby Hanford Site. Eleven potential background monitoring sites were identified, with one location in Benton City, WA found to meet all of the mandatory and optional criteria. It is expected that the new sampler will be installed and operating by the end of June, 2015.

  20. CX-006152: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Osler Residence Open Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  1. CX-006151: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Ivins Residence Open Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  2. CX-006150: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Martin Residence Closed Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  3. CX-006153: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Schwartz Residence Closed Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  4. CX-006154: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Spencer Residence Open Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  5. CX-005650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Gareis Residence Closed Loop Heat Pump SystemCX(s) Applied: B5.1Date: 04/28/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  6. INDEPENDENT VERIFICATION OF THE CENTRAL CAMPUS AND SOUTHEAST LABORATORY COMPLEX BUILDING SLABS AT OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-07-24

    Oak Ridge Associated Universities/Oak Ridge Institute for Science and Education (ORAU/ORISE) has completed the independent verification survey of the Central Campus and Southeast Lab Complex Building Slabs. The results of this effort are provided. The objective of this verification survey was to provide independent review and field assessment of remediation actions conducted by SEC, and to independently assess whether the final radiological condition of the slabs met the release guidelines.

  7. Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979

    SciTech Connect (OSTI)

    LeFebre, V.; Miller, A.

    1980-01-01

    An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

  8. Converting campus waste into renewable energy – A case study for the University of Cincinnati

    SciTech Connect (OSTI)

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C.

    2015-05-15

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.

  9. Wireless Sensing, Monitoring and Optimization for Campus-Wide Steam Distribution

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Sukumar, Sreenivas R; Woodworth, Ken; Lake, Joe E

    2011-11-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize energy delivery within the steam distribution system. Our approach leverages an integrated wireless sensor and real-time monitoring capability. We make real time state assessment on the steam trap health and steam flow estimate of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observing measurements of these sensors with state estimators for system health. Our assessments are based on a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps status. Experimental results show that the energy signature scheme has the potential to identify different steam trap states and it has sufficient sensitivity to estimate flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. We are able to present the steam flow and steam trap status, sensor readings, and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  10. Delaware City, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5778901, -75.588815 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  11. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs – VA Manhattan Campus

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01

    This report focuses on the Department of Veterans Affairs, VA Manhattan Campus (VA- Manhattan) fleet to identify the daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support successful introduction of plug-in electric vehicles (PEVs) into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively called PEVs) can fulfill the mission requirements.

  12. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    L. Harvego; Brion Bennett

    2011-11-01

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  13. University of Delaware | CCEI Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership {Image} {Name} - {Affiliation} {Title} {Location} Phone: {Phone} {Email}

  14. University of Delaware | CCEI News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News [August 24, 2016] UD Research Magazine Fuling the Quest for Green Energy: You can't put a tree limb or a corncob in your gas tank and expect to get anything but a strange look and a bill from your mechanic. But that kind of fodder could one day be a fuel source as cheap and common as fossil fuels are now, providing renewable, sustainable raw materials for biorefineries that turn such agricultural waste into fuels, electricity and chemicals. view video and read aritcle here [July 29, 2016]

  15. University of Delaware | CCEI Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Staff Jeff Everhart Analytical Chemist Phone: (302) 831-6066 Email: Send email Location:368 ISE Lab Cindy King Administrative Assistant Phone: (302) 831-1628 Email: Send email ...

  16. University of Delaware | CCEI Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Equipment Click column headings to sort Type Equipment Details Institution Professor Type Equipment Details Institution Lab BACK TO TOP

  17. University of Delaware | About CCEI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INTRO VIDEO COMPUTATIONS VIDEO SUGARS VIDEO Catalysis Center for Energy Innovation About CCEI The Catalysis Center for Energy Innovation (CCEI) is a multi-institutional research ...

  18. University of Delaware | CCEI Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... on alternative energy and giving campers the opportunities to perform hands-on activities. ... CCEI staff led several camp sessions that were focused on nanoscience and renewable energy...

  19. University of Delaware | CCEI Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI's Upcoming Events Seminar Series - WinterSpring 2017 CCEI is pleased to present the following enriching seminar series. Unless otherwise noted, times are Eastern Standard ...

  20. University of Delaware | CCEI Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... opportunities from across the web Clean Tech Recruits Specialists in Renewable Energy Jobs Green Careers Guide Resources for finding jobs in the green industry ...

  1. University of Delaware | CCEI Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patents and Patent Applications Production of Para-xylene by Catalytically Reacting 2,5-Dimethylfuran and Ethylene in a Solvent Dauenhauer, P. J.; Williams, C. L.; Vlachos, D. G.; ...

  2. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  3. Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Donadee, Jon; Lai, Judy; Megel, Olivier; Bhattacharya, Prajesh; Siddiqui, Afzal

    2011-02-06

    Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization Fund (TCF) grant from the U.S. Department of Energy. The goal of the project is to commercialize Berkeley Lab's optimizing program, the Distributed Energy Resources Customer Adoption Model (DER-CAM) using a software as a service (SaaS) model with OSIsoft as its first non-scientific user. OSIsoft could in turn provide optimization capability to its software clients. In this way, energy efficiency and/or carbon minimizing strategies could be made readily available to commercial and industrial facilities. Specialized versions of DER-CAM dedicated to solving OSIsoft's customer problems have been set up on a server at Berkeley Lab. The objective of DER-CAM is to minimize the cost of technology adoption and operation or carbon emissions, or combinations thereof. DER-CAM determines which technologies should be installed and operated based on specific site load, price information, and performance data for available equipment options. An established user of OSIsoft's PI software suite, the University of California, Davis (UCD), was selected as a demonstration site for this project. UCD's participation in the project is driven by its motivation to reduce its carbon emissions. The campus currently buys electricity economically through the Western Area Power Administration (WAPA). The campus does not therefore face compelling cost incentives to improve the efficiency of its operations, but is nonetheless motivated to lower the carbon footprint of its buildings. Berkeley Lab attempted to demonstrate a scenario wherein UCD is forced to purchase electricity on a standard time-of-use tariff from Pacific Gas and Electric (PG&E), which is a concern to Facilities staff. Additionally, DER-CAM has been set up to consider the variability of carbon emissions throughout the day and seasons. Two distinct analyses of

  4. EA-1968: Site-Wide Environmental Assessment of the U.S. Department of Energy National Renewable Energy Laboratory (NREL) South Table Mountain (STM) Campus, Golden, Colorado

    Broader source: Energy.gov [DOE]

    DOE is preparing a Site-Wide Environmental Assessment to analyze the potential environmental impacts of possible site operations and improvements over the next five to ten years at DOE’s STM campus of NREL and nearby leased support facilities in Golden, Colorado. This proposed action would support DOE’s mission to research, develop, and deploy energy efficiency and renewable energy technologies and would consist of: • Research, routine laboratory, and site operation enhancements • New building construction and modifications of existing buildings • Infrastructure and utilities upgrades and enhancements

  5. The Cost-Effectiveness of Investments to Meet the Guiding Principles for High-Performance Sustainable Buildings on the PNNL Campus

    SciTech Connect (OSTI)

    Cort, Katherine A.; Judd, Kathleen S.

    2014-08-29

    As part its campus sustainability efforts, Pacific Northwest National Laboratory (PNNL) has invested in eight new and existing buildings to ensure they meet the U.S. Department of Energy’s requirements for high performance sustainable buildings (HPSB) at DOE sites. These investments are expected to benefit PNNL by reducing the total life-cycle cost of facilities, improving energy efficiency and water conservation, and making buildings safer and healthier for the occupants. This study examines the cost-effectiveness of the implementing measures that meet the criteria for HPSBs in 3 different types of buildings on the PNNL campus: offices, scientific laboratories, and data centers. In each of the three case studies examined the investments made to achieve HPSB status demonstrated a high return on the HPSB investments that have taken place in these varied environments. Simple paybacks for total investments in the three case study buildings ranged from just 2 to 5 years; savings-to-investment ratios all exceeded the desirable threshold of 1; and the net present values associated with these investments were all positive.

  6. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid ... " Hydro Conventional","-","-" " Solar","-","-" " Wind",2,0.1 " WoodWood ...

  7. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste... Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - ...

  8. Delaware Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner NextEra Energy Resources Developer American National Wind PowerOrion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX...

  9. Delaware Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  10. Delaware Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 EIA Form 861 Data Utility Id 5070 Utility Location Yes Ownership C...

  11. ,"Delaware Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusdem.xls" ...

  12. Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    138,302 MWh Coal Power 2,910,909 MWh Gas Power 1,686,773 MWh Petroleum Power 268,773 MWh Nuclear Power 0 MWh Other 5,877 MWh Total Energy Production 5,010,634 MWh Percent of Total...

  13. Energy Incentive Programs, Delaware | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    No utility energy efficiency programs are currently available to federal customers. What load managementdemand response options are available to me? The PJM Interconnection (PJM), ...

  14. University of Delaware | CCEI Visiting Scholars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visiting Scholars Adriano Freitas de Sousa- Visiting Student Universidade Federal do Cear Advisor: Vlachos, Dion Office: 367 ISE Lab Phone: (302) 831-4061 Email: Send email...

  15. Delaware Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9) Distribution Category UC-950 Cost and Quality of Fuels for Electric Plants 2009 November 2010 U.S. Energy Information Administration Assistant Administrator for Energy Statistics Office of Electricity, Renewables, and Uranium Statistics U.S. Department of Energy Washington DC 20585 This report is only available online at: http://www.eia.gov/cneaf/electricity/cq/cq_sum.html This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency

  16. Newark, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6837226, -75.7496572 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  17. Middletown, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.449556, -75.7163207 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  18. Hockessin, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7876112, -75.6966001 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  19. Odessa, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.457334, -75.6613184 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  20. Ardentown, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.808446, -75.4829752 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  1. Townsend, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3951115, -75.6915973 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  2. Greenville, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7790012, -75.5982599 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  3. Arden, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8092794, -75.4865866 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  4. Ardencroft, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8051323, -75.4861752 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  5. Edgemoor, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7501139, -75.4996414 Show Map Loading map... "minzoom":false,"mappingservice":"googlem...

  6. Elsmere, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7392796, -75.5979812 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  7. Brookside, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6670561, -75.7268779 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  8. Bear, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6292788, -75.6582628 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  9. Claymont, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8006685, -75.4596404 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  10. Clayton, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2906671, -75.6343727 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  11. Bellefonte, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7663, -75.498313 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  12. CCEI REU Program Application | University of Delaware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REU Application for CCEI's Summer Internship Program Registration for the 2016 program is closed. Program Dates: June 6 - August 12, 2016 Deadline to Apply: January 21, 2016 About the Program This 10-week program is open to undergraduates studying chemical engineering, chemistry, or a related field of study. Students who will receive their degree prior to August 31, 2016 are not eligible. Benefits of the Program: $3,800 stipend Valuable hands-on research experience Experience presenting research

  13. Delaware Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,043 1,051 1,051 1,049 1,055 1,050 2013-2016

  14. Delaware Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,025 1,027 1,043 1,054 1,050 2007-2015

  15. Delaware Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    2 1 0 * * 6 1967-2014 Propane-Air 2 1 0 0 6 1980-2014 Refinery Gas 1980-2005 Other 0 1999-2014

  16. Delaware Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    1969 1970 1971 1973 1975 View History Net Withdrawals 699 211 -189 -255 -549 1967-1975 Injections 179 391 189 255 2,012 1967-1975 Withdrawals 878 602 1,463 1967...

  17. ,"Delaware Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    8817,1663,1627,2865,0,2661 41654,9350,2463,2128,2676,0,2083 41685,8446,2138,1696,2644,0,1968 41713,9361,1858,1502,2871,0,3129 41744,6829,825,740,2340,0,2924 41774,6637,496,615,2477...

  18. Delaware Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    9,040 8,389 8,707 8,781 7,721 9,045 2001-2016 Residential 2,084 1,879 1,135 823 475 231 1989-2016 Commercial 2,003 1,658 1,113 934 695 535 1989-2016 Industrial 2,821 2,517 2,666 2,464 2,643 2,335 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric Power 2,132 2,335 3,792 4,559 3,908 5,944

  19. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional","-","-" " Solar","-","-" " Wind",2,0.1 " WoodWood Waste","-","-" " MSW... Conventional","-","-" " Solar","-","-" " Wind",3,"*" " WoodWood Waste","-","-" " MSW ...

  20. Categorical Exclusion Determinations: Delaware | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 28, 2014 CX-011805: Categorical Exclusion Determination Carbon Dioxide Capture By Cold Membrane Operation with Actual Coal-Fired Power Plant Flue Gas CX(s) Applied: A1, A9, ...

  1. Delaware Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 3,367 3,350 3,344 3,355 3,379 Coal 1,083 1,083 1,083 ... Natural Gas includes single-fired and dual-fired plants ...

  2. University of Delaware | CCEI Past Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... March 1-2, 2015 Invited Lecture (during CCEI's Spring Symposium) Dr. Prasanna Joshi ExxonMobil Research & Engineering "Energy in the 21st Century - Outlook for Energy to 2040" 7:15 ...

  3. University of Delaware | CCEI Industrial Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the research of viable catalytic technologies for applications in renewable energy. ... mission to develop viable catalytic technologies for applications in renewable energy. ...

  4. University of Delaware | CCEI Principal Investigators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Investigators Image Name - Affiliation Title Email Phone: Phone Research Interests: ResearchInterests Profile ResearchGroupWebsite BACK TO TOP

  5. University of Delaware | CCEI Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Advisory Board Our advisory board is comprised of the following distinguished board members: Image Name Affiliation BACK TO TOP

  6. University of Delaware | CCEI Faculty Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... furfural (HMF) derived humins," Green Chemistry, 18(7), 1983-1993 (2016). ... for a heat engine biomass conveyor," Energy & Environmetal Science, 9, 1645-1649 ...

  7. University of Delaware | CCEI Students & Postdoctoral Researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students and Postdoctoral Researchers Click column headings to sort Name Institution Title Advisor Name Institution Title Advisor BACK TO TOP

  8. University of Delaware | CCEI Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases DOE Funding Leads to New Technology that is Revolutionizing Chemical Analysis (November 2015) CCEI's carbon detection technology is commercialized by Activated ...

  9. University of Delaware | CCEI Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights Discovering New Catalytic Technologies Click on the links below to learn about our exciting new discoveries impacting the scientific community. (beginning with ...

  10. New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981

    SciTech Connect (OSTI)

    Cunniff, R.A.; Ferguson, E.; Archey, J.

    1981-07-01

    A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

  11. DE-NT0005666 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE-NT0005666 Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Waters DE-NT0005666 Last Reviewed 5/15/2012 Project Goal The goal of this project is gain a better understanding of methane degradation and methane-degrading microbes in order to improve predictive models of methane fluxes in the Arctic. Performer University of Delaware, College of Marine and Earth Studies, Lewes, DE 19968 Map of proposed study area. The area boxed in red is the main region to

  12. South Table Mountain Campus Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L o o p R o a d Garage Caf D e n v e r W e s t B l v d . Exit 263 IBRF Integrated Biorefinery Research Facility Shipping & Receiving Quaker St. Maintenance Building West Gate...

  13. About Fermilab - The Fermilab Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Laboratory. The Mobius Strip is mounted in the midst of a circular pool atop Ramsey Auditorium. It is built of 3 x 5 inch pieces of stainless steel which were welded on a...

  14. Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models for Integrating EnergyWater Facilities Atmospheric Radiation Measurement Climate ... eliminate the need for rare earth element magnets in wind-turbine generators. ...

  15. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e","-","-","-","-","-" "Other","-","-",11,6,"-" "Total",7182,8534,7524,4842,5628 " " "s Value is less than 0.5 of the table metric, but value is included in any associated total.

  16. Delaware Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,033 1,030 2010's 1,023 1,025 1,027 1,043 1,054 1,050

  17. Delaware Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 ...

  18. How One Delaware County is Saving Money and Creating Jobs

    Broader source: Energy.gov [DOE]

    New Castle County will carry out 158 conservation measures, including heat pump and boiler replacements, high-efficiency motors, lighting retrofits and controls, and a white reflective roof.

  19. Platform, Delaware Basin, and Midland Basin, West Texas and New...

    Office of Scientific and Technical Information (OSTI)

    The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening...

  20. Delaware Liquefied Natural Gas Additions to and Withdrawals from...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 -2 -31 51 -68 29 1980-2014 Additions 121 73 64 117 63 157 1980-2014 Withdrawals 118 76 96 66 131 128

  1. Delaware's At-large congressional district: Energy Resources...

    Open Energy Info (EERE)

    Advanced Biofuels LLC Citizenre Group Delmarva Power Light Company Delmarva Power DuPont DuPont Biofuels Dupont Fuel Cells Galt Power Inc GlobalWatt Inc Ion Power Inc Naveen...

  2. Delaware Natural Gas Price Sold to Electric Power Consumers ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W W W W W W W W W W 2006 W W W ...

  3. Chrome Deposit Corporation and the University of Delaware IAC: Another

    Broader source: Energy.gov (indexed) [DOE]

    7, 2016 Christopher Lawrence United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 POWER Re: Nogales Interconnection Project Presidential Permit Application Dear Mr. Lawrence: Nogales Transmission, L.L.C., a subsidiary of Hunt Power, L.P., hereby submits an Application for a Presidential Permit to the Department of Energy for a proposed high-voltage direct current ("HVDC") interconnection between the electric grid in southern Arizona and the electric grid

  4. Delaware Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 78 189 1,109 89 959 1,358 1,474 2,856 2,998 2,483 1,094 443 2002 797 1,123 1,226 1,067 1,018 1,357 4,884 2,210 1,932 1,248 269 329 2003 465 353 1,273 861 358 890 2,222 2,118 1,127 904 476 665 2004 968 796 838 626 1,701 1,105 1,129 1,055 1,324 504 913 2,110 2005 1,412 1,001 965 280 440 1,474 2,014 2,335 1,312 930 494 217 2006 453 387 812 234 530 1,286 2,111 1,535 718 527 313 614 2007 606 365 817 624 762 1,342 2,210 2,502 1,533

  5. Delaware Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,989 2,006 1,830 1,718 1,229 1,429 1,454 1,433 1,557 1,971 1,804 1,639 2002 1,550 1,301 1,328 1,111 857 804 1,053 1,166 1,778 1,965 2,120 2,600 2003 2,167 1,702 1,251 847 748 850 828 969 1,095 1,212 1,668 1,836 2004 1,938 1,515 1,466 1,176 1,290 964 1,027 911 1,043 1,164 1,571 1,960 2005 2,068 1,465 1,558 1,055 1,185 825 804 930 864 1,222 1,597 1,683 2006 1,663 1,364 1,329 1,032 1,376 1,328 1,187 1,412 1,288 1,505 1,544 1,371 2007 1,514

  6. Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7.37 4.61 11.53 7.36 8.20 6.89 6.65 6.54 6.29 6.19 5.68 6.11 2002 6.58 6.02 6.11 6.16 5.47 7.23 6.29 6.47 6.68 6.34 5.84 5.53 2003 5.33 5.80 7.15 6.71 6.71 6.78 6.38 6.70 7.27 5.95 6.08 6.75 2004 6.39 7.89 6.75 7.26 7.28 7.46 8.39 8.59 8.40 7.30 8.83 8.47 2005 8.85 9.59 9.28 11.33 10.93 10.46 10.46 9.33 10.77 11.27 13.11 14.05 2006 13.87 13.00 13.68 14.08 10.91 14.98 11.75 11.23 11.93 10.64 8.81 9.20 2007 9.31 8.86 9.25 9.00 10.67 9.30

  7. Delaware Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,257 1,153 1,223 793 466 272 192 189 207 275 485 1,085 1990 1,613 1,069 1,008 797 449 260 183 166 190 222 483 830 1991 1,249 1,217 1,079 795 409 211 169 186 175 261 547 892 1992 1,303 1,417 1,158 948 528 301 197 179 183 307 628 1,044 1993 1,304 1,386 1,487 1,019 448 243 185 167 185 289 609 974 1994 1,579 1,836 1,480 879 397 281 179 159 180 259 459 869 1995 1,359 1,487 1,417 865 501 264 197 177 176 230 601 1,231 1996 1,701 1,918 1,504

  8. Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6.06 6.10 6.06 6.33 6.81 7.52 7.96 7.49 7.48 7.38 6.76 6.16 1990 5.60 5.79 5.82 5.98 6.44 7.29 7.62 7.86 7.61 7.33 6.46 6.03 1991 5.90 5.00 5.89 5.63 6.25 7.24 7.50 6.47 7.42 6.86 5.99 5.49 1992 5.50 5.52 5.80 5.98 6.51 7.39 7.94 8.08 8.05 7.20 6.44 6.22 1993 6.15 6.11 6.07 6.31 7.16 8.33 8.74 8.88 8.76 7.93 6.99 7.35 1994 6.97 6.92 6.99 7.34 8.17 8.80 9.63 9.90 9.63 8.90 8.07 7.28 1995 6.29 6.15 6.18 6.53

  9. Suez Energy Resources North America (Delaware) | Open Energy...

    Open Energy Info (EERE)

    Facebook: http:www.facebook.compagesGDF-SUEZ-Energy-Resources-NA245319195214?refsearch&sid1209831116.1227718548..1 Outage Hotline: 888.232.6206 References: EIA Form...

  10. Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,499 40,794 55,968 2000's 48,325 50,090 52,167 46,143 48,019 46,863 43,172 48,139 48,144 50,126 2010's 54,685 79,251 100,630 95,008 99,736 99,543

  11. Sustainable Energy Utility (SEU) - Revolving Loan Fund (Delaware...

    Open Energy Info (EERE)

    Agricultural, Institutional Eligible Technologies Solar Water Heat, Solar Space Heat, Photovoltaics, Wind, Biomass, Geothermal Heat Pumps, Other Distributed Generation...

  12. Delaware/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  13. Chrome Deposit Corporation and the University of Delaware IAC...

    Energy Savers [EERE]

    ... The company insulated tanks and pipes, installed covers on plant exhaust fans, reduced compressed air pressure, and replaced motor drive belts with energy efficient pulleys and ...

  14. New Castle, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6620572, -75.5663132 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  15. Wilmington Manor, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6867795, -75.5843694 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  16. Delaware Renewable Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...l","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 "WoodWood Waste","-","-","-","-","-" "MSWLandfill Gas",7,7,7,7,8 "Other Biomass","-","-","-","-","-" ...

  17. Delaware Renewable Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...l","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",3 "WoodWood Waste","-","-","-","-","-" "MSW BiogenicLandfill Gas","s",48,163,126,136 "Other ...

  18. ,"Delaware Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,"Annual",2015,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6/30/1967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 4","Consumption",9,"Annual",2015,"6/30/1967" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  19. City of Seaford, Delaware (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 16852 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  20. City of Dover, Delaware (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 5335 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  1. Delaware Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,033 1,030 2010's 1,023 1,025 1,027 1,043 1,054

  2. Delaware Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update (EIA)

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Delivered to Consumers 1,055 1,050 1,043 1,044 1,042 1,042 2013-2016

    3 -2 -31 51 -68 29 1980-2014 Additions 121 73 64 117 63 157 1980-2014 Withdrawals 118 76 96 66 131 128

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's

    Year Jan Feb Mar Apr May

  3. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16,092 11,135 19,879 2000's 8,371 15,129 17,460 11,712 13,067 12,875 9,522 13,493 11,181 10,990 2010's 24,383 38,984 53,295 41,487 45,534 44,725

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 14,805 16,287 21,075 2000's 25,325 20,059 17,634 15,172 16,025 15,257 16,398 16,014 18,216 17,402 2010's 7,983 19,760 28,737 32,154 31,004 33,127

    Decade Year-0 Year-1

  4. Tenaska Power Services Co (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 18995 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Industrial: 0.0534kWh...

  5. Delaware State University | OSTI, US Dept of Energy, Office of...

    Office of Scientific and Technical Information (OSTI)

    Office of the President About DSU Academics Administration News and Media Library Social Media DSU is on Facebook DSU Playlists on YouTube Follow DSU on Twitter DSU RSS Feeds Dover ...

  6. Delaware Natural Gas Deliveries to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16,092 11,135 19,879 2000's 8,371 15,129 17,460 11,712 13,067 12,875 9,522 13,493 11,181 10,990...

  7. Delaware County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":36.4263135,"lon":-94.8105955,"alt":0,"address":"","i...

  8. Delaware County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":40.2583533,"lon":-85.3962769,"alt":0,"address":"","i...

  9. Delaware Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's

  10. Delaware Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

  11. Delaware Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 14,805 16,287 21,075 2000's 25,325 20,059 17,634 15,172 16,025 15,257 16,398 16,014 18,216 17,402 2010's 7,983 19,760 28,737 32,154 31,004 33,127

  12. Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.40 4.13 4.07 2000's 5.03 6.85 6.16 6.37 7.72 10.86 11.94 8.93 12.54 13.99 2010's 10.18 11.69 11.61 11.24 10.95 NA

  13. Delaware Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,844 7,068 7,475 1970's 7,843 8,172 8,358 7,514 7,380 6,985 7,380 7,209 7,458 6,986 1980's 6,910 6,807 6,677 6,219 6,855 6,210 6,861 7,074 7,586 7,595 1990's 7,270 7,189 8,194 8,295 8,557 8,505 9,791 8,972 7,755 8,862 2000's 9,467 9,175 9,550 10,766 10,399 10,339 9,111 10,000 9,875 10,049 2010's 10,126 10,030 8,564 10,197 11,316 10,50

  14. Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.60 1.59 1.50 1970's 1.58 1.63 1.71 1.85 2.11 2.43 2.61 3.25 4.06 4.03 1980's 4.30 5.53 6.04 6.59 6.67 7.06 7.09 6.32 6.00 6.42 1990's 6.13 5.86 6.13 6.70 7.43 6.60 7.12 8.36 8.90 8.63 2000's 8.33 9.06 10.53 10.53 12.08 14.58 16.93 16.21 16.07 17.79 2010's 15.12 15.38 15.24 13.65 13.21 NA

  15. Delaware Price of Natural Gas Sold to Commercial Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    5.33 5.43 5.50 5.61 5.65 5.46 5.48 5.56 5.45 5.35 1990 4.97 5.01 5.15 5.08 5.18 5.24 ... 5.33 5.34 5.64 5.52 6.06 6.82 6.93 6.88 6.45 6.39 5.96 6.19 1997 6.25 6.46 6.39 6.53 ...

  16. Delaware Power Systems Corp DPS | Open Energy Information

    Open Energy Info (EERE)

    Zip: V7A 4Z1 Product: DPS has developed and is commercializing an off-the-shelf, modular, lithium battery system intended to be applicable to any type of electric vehicle...

  17. Natural Gas Delivered to Consumers in Delaware (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    2,652 2,870 3,515 4,876 2006 5,025 4,699 4,451 2,549 2,659 3,204 3,812 3,447 2,516 2,972 ... 7,928 7,616 9,230 10,239 2015 10,439 8,451 8,652 9,744 8,377 7,661 8,917 8,330 7,939 ...

  18. City of Newark, Delaware (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    37,683 11,841 2008-08 1,282 9,101 9,992 925 6,907 1,354 2,626 22,723 57 4,833 38,731 11,403 2008-07 1,131 8,202 10,205 884 6,545 1,352 2,469 20,728 56 4,484 35,475 11,613 2008-06...

  19. SEP Success Story: Delaware Company Breathes New Life into Old...

    Office of Environmental Management (EM)

    qualify for the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) Platinum rating -- something that they hope to achieve by mid 2014. Learn more. ...

  20. University of Delaware | Catalysis Center for Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Upgrade Upgrade of furans via hydrodeoxygenation technology. Bio-oil and oxygenated intermediates derived from sugars are oxygen rich. In order to be transformed to fuels ...

  1. University of Delaware | Catalysis Center for Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Activity map produced from the new high-throughput computational engine. Example for ethylene glycol catalysis. Reforming, hydrodeoxygenation, dehydrogenation, and ...

  2. University of Delaware | Catalysis Center for Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Bi-modal silica nanoparticle templates for synthesizing 3D ordered mesoporous replicas of various oxides. CCEI has a growing portfolio of novel classes of materials with ...

  3. University of Delaware | Catalysis Center for Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrolysis Thin-film pyrolysis sample. The next generation of biofuels will be produced by high-temperature (>1000 F) pyrolysis or gasification of lignocellulosic biomass. At ...

  4. University of Delaware | Catalysis Center for Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Aromatics Transition state for the Diels-Alder reaction of 2,5-dimethylfuran and ethylene in zeolite LiY Most polymers and plastics require six-carbon ring structures. Sugars ...

  5. University of Delaware | Catalysis Center for Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sugars to Furans Converting sugars to high-value intermediates. CCEI introduced an iconic technology for the isomerization of aldoses to ketoses production via Sn-beta zeolite and ...

  6. University of Delaware | Catalysis Center for Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Schematic for a large-scale DCFC system based on molten Sb anodes. CCEI's technology is based on electrolytes that are ceramic oxygen-ion conductors, such as cubic ...

  7. Feasibility Study of Economics and Performance of Solar Photovoltaics at the TechCity East Campus Resource Conservation and Recovery Act Site in Kingston, New York. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J. W.; Mosey, G.; Healey, V.

    2014-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the TechCity East Campus site in Kingston, New York, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this study is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  8. Status of the Residential Conservation Service Program in selected states as of December 1981

    SciTech Connect (OSTI)

    Frogge, L.M.; Ehrenshaft, A.R.; Morris, L.E.

    1982-09-01

    The primary objective of the study reported was to collect information concerning Residential Conservation Service (RCS) and similar residential audit programs to determine the implementation status of the RCS programs in various parts of the country as of December 1, 1981. Common experiences, problems, and treatment of RCS and other residential audit programs are briefly overviewed, and then the interview findings are discussed on a state-by-state basis for each of the eleven states contacted. The program structure and status are described for each state, including the nonregulated utility programs, unique features, and problems and impacts. The 11 states are: California, Connecticut, Delaware, Iowa, Michigan, New Jersey, New York, Oregon, Rhode Island, South Carolina, and Texas. Appended are an interview guide and a table of program coverage. (LEW)

  9. National Security Campus | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure ...

  10. Redfield Campus Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  11. NREL: Climate Neutral Research Campuses - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message

  12. Caltech Campus Map and Directory 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INT'L. S C HOLAR S E R VIC E S LIG O I INT'L. S C HOLAR S E R VIC E S LIG O LIG O LIG O S AN PAS QUAL S T. HOLLIS TON AVE . HILL AVE . C ALIFOR NIA B LVD. DE L MAR B LVD. WILS ON AVE . C ATALINA AVE . S AN PAS QUAL S T. C HE S TE R AVE . MIC HIG AN AVE . A R D E N R D . S AN PAS QUAL S HOLLIS TON AVE . S S C a m p u s D i r e c to r y M a p A B C D E 1 2 3 4 5 MOOR E AVE R Y FINANC IAL PAS ADE NA FIR E S TATION # 34 IMS S B E C KMAN AUD B AXTE R KE C K S E R VIC E S WATSON C E S H R STEELE LAB

  13. national security campus | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ... Advanced Manufacturing pipeline brings NSC and Minority Serving Institutions together In an ongoing effort to build a sustainable STEM pipeline between DOE's siteslabs and ...

  14. Redfield Campus Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  15. Student Ambassadors: Connecting Campuses to Energy

    Broader source: Energy.gov [DOE]

    The Department's desire to enhance the recruiting process led them to create the Student Ambassadors program, a program in which college students learn about the Department directly from their own peers over the course of an entire academic year -- instead of from an outside recruiter during a one day blitz.

  16. Case Western Reserve Univerity Campus Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Inside Buildings Generation: * Natural Gas DGs * Wind, Solar * Energy storage System ... individual building level. * Allow integration of more solar, wind, energy storage ...

  17. Workplace Charging: Charging Up University Campuses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... goals related to national sustainability programs and green building certifications. ... This report is available at no cost from the National Renewable Energy Laboratory (NREL) ...

  18. Sandia Energy » Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dias-energy-program-wins-two-federal-laboratory-consortium-2015-awardsfeed 0 Hydrogen Fuel-Cell Funding Awarded for Feasibility Study http:energy.sandia.gov...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Other Distributed Generation Technologies Delaware Electric Cooperative- Green Energy Fund Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation,...

  20. Percent of Commercial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.8 2000's 98.0 98.3 82.8 82.8 81.6 83.3 77.5 74.8 70.6 53.5 2010's 49.8 53.4 43.7 45.0 46.2 45.7

  1. Percent of Industrial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31.0 22.4 16.6 2000's 10.6 16.1 13.4 15.6 11.7 12.2 9.0 9.8 5.8 2.1 2010's 5.3 1.6 0.3 0.3 0.3 NA

  2. Percent of Industrial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10.8 29.0 19.8 13.0 14.8 20.4 15.1 11.6 14.2 11.7 14.9 16.3 2002 18.4 19.6 20.4 17.5 21.7 15.6 11.9 9.9 8.0 8.6 10.6 10.3 2003 11.8 16.2 16.3 23.7 21.2 13.2 16.1 11.2 12.5 21.3 14.0 15.5 2004 10.7 11.4 12.2 12.8 9.4 14.4 11.1 12.1 11.5 12.2 10.9 12.8 2005 9.4 13.1 14.7 14.0 10.2 13.3 12.8 10.9 13.5 11.5 12.4 12.5 2006 10.7 9.8 9.6 11.0 8.9 6.2 7.6 7.5 8.5 9.3 8.3 10.7 2007 9.7 14.7 14.4 12.2 8.5 9.2 8.1 8.2 9.2 7.1 8.8

  3. SEP Success Story: Delaware Company Breathes New Life into Old Post Office Building

    Broader source: Energy.gov [DOE]

    With the help of the Energy Department’s State Energy Program, Brandywine CAD Design, Inc. set out to create a new workspace. The long-term goal: qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum rating -- something that they hope to achieve by mid 2014. Learn more.

  4. Natural Gas Citygate Price in Delaware (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4.20 4.04 3.24 2.60 2.88 2.82 1990's 2.76 2.54 2.83 3.24 2.95 2.70 3.68 3.53 3.02 3.45 2000's 3.41 5.16 5.37 5.88 6.13 8.32 8.84 7.58 8.32 6.54 2010's 5.67 9.03 7.19 5.67 5.54 NA

  5. Final Technical Report: Residential Fuel Cell Demonstration by the Delaware County Electric Cooperative, Inc.

    SciTech Connect (OSTI)

    Mark Hilson Schneider

    2007-06-06

    This demonstration project contributes to the knowledge base in the area of fuel cells in stationary applications, propane fuel cells, edge-of-grid applications for fuel cells, and energy storage in combination with fuel cells. The project demonstrated that it is technically feasible to meet the whole-house electrical energy needs of a typical upstate New York residence with a 5-kW fuel cell in combination with in-home energy storage without any major modifications to the residence or modifications to the consumption patterns of the residents of the home. The use of a fuel cell at constant output power through a 120-Volt inverter leads to system performance issues including: • relatively poor power quality as quantified by the IEEE-defined short term flicker parameter • relatively low overall system efficiency Each of these issues is discussed in detail in the text of this report. The fuel cell performed well over the 1-year demonstration period in terms of availability and efficiency of conversion from chemical energy (propane) to electrical energy at the fuel cell output terminals. Another strength of fuel cell performance in the demonstration was the low requirements for maintenance and repair on the fuel cell. The project uncovered a new and important installation consideration for propane fuel cells. Alcohol added to new propane storage tanks is preferentially absorbed on the surface of some fuel cell reformer desulfurization filters. The experience on this project indicates that special attention must be paid to the volume and composition of propane tank additives. Size, composition, and replacement schedules for the de-sulfurization filter bed should be adjusted to account for propane tank additives to avoid sulfur poisoning of fuel cell stacks. Despite good overall technical performance of the fuel cell and the whole energy system, the demonstration showed that such a system is not economically feasible as compared to other commercially available technologies such as propane reciprocating engine generators.

  6. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect (OSTI)

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  7. Delaware Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update (EIA)

    per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.60 1.59 1.50 1970's 1.58 1.63 1.71 1.85 2.11 2.43 2.61 3.25 4.06 4.03 1980's 4.30 5.53 6.04 6.59 6.67 7.06 7.09 6.32 6.00 6.42 1990's 6.13 5.86 6.13 6.70 7.43 6.60 7.12 8.36 8.90 8.63 2000's 8.33 9.06 10.53 10.53 12.08 14.58 16.93 16.21 16.07 17.79 2010's 15.12 15.38 15.24 13.65 13.21 NA Thousand Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  8. Natural Gas Citygate Price in Delaware (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3.95 3.17 3.14 2.38 2.90 2.14 3.53 2.66 2.29 2.09 2.98 3.29 1990 2.84 3.16 2.91 2.41 2.97 2.44 2.42 2.30 2.49 2.54 3.62 3.46 1991 3.28 2.82 2.48 2.33 2.38 2.15 2.21 2.14 2.46 2.62 3.08 2.83 1992 3.01 1.81 2.62 2.55 2.59 2.90 2.72 1.78 2.74 3.74 3.93 3.53 1993 3.13 3.03 3.22 3.33 3.52 3.52 3.15 2.98 3.56 3.19 2.94 3.45 1994 3.29 3.41 3.19 2.98 3.00 2.73 3.00 2.98 2.69 2.42 2.82 2.75 1995 2.69 2.45 2.47 3.11 3.20 3.38 1.73 2.48 2.85 2.81

  9. Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.15 2.89 2.98 2000's 4.92 4.41 3.89 W W W W W W W 2010's W W -- -- W

  10. Delaware Price of Natural Gas Sold to Commercial Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.22 1.27 1.22 1970's 1.25 1.27 1.36 1.39 1.63 1.90 1.98 2.95 3.85 3.74 1980's 4.05 5.18 5.59 6.08 6.17 6.44 6.36 5.17 4.93 5.39 1990's 5.12 4.81 4.94 5.46 6.17 5.28 5.82 6.70 7.05 7.00 2000's 6.99 10.27 9.41 9.05 10.56 12.98 15.33 14.48 14.24 15.87 2010's 13.26 13.58 13.31 11.78 11.42 10.70

  11. Carbonate gravity-flow processes on the Lower Permian slope, northwest Delaware basin

    SciTech Connect (OSTI)

    Loucks, R.G.; Brown, A.A.; Achauer, C.W. )

    1991-03-01

    Wolfcampian carbonate gravity-flow deposits accumulated on a low-angle slope in front of a platform of relatively low relief ({approximately}220 m). A 25 m core, located approximately 15 km basinward of the self margin, was examined to determine processes of carbonate deposition in the middle to distal slope environments. The majority of the deposits are cohesive debris-flows composed of clast-supported conglomerates with a calcareous siliciclastic mudstone matrix. Other deposits include high- and low-density turbidites of lime packstones (sand- to boulder-size range), lime grainstones, and siliclastic muddy silstones and suspension deposits of calcareous siliciclastic mudstones. Cohesive debris flows are generally massive and structureless, although several flows show an inverse-graded zone at their base indicating dispersive pressure forces that developed in a traction carpet. Other flows display coarse-tail fining-upward sequences indicating deposition by suspension settling from liquefied flow. At the base of each high-density, gravelly turbidite is one to several inversely graded zones of carbonated clasts indicating a traction carpet zone. These traction carpets are overlain by normal-graded units of shell and clast material. The upper units appear to be deposited directly out of suspension. The low-density turbidites are interpreted to be the residual products of more shelfward-deposited debris flows and high-density turbidity currents. Many of the depositional features described here for carbonate gravity-flow deposits are identical to those in siliclastic deposits, therefore the depositional processes controlling these features are probably similar.

  12. Percent of Commercial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  13. Kansas City National Security Campus | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Augmented Reality is all science - no fiction Imagine working on a car while wearing a pair of glasses that shows you how to replace your oil and even notifies you if something is ...

  14. Kansas City National Security Campus volunteers help students...

    National Nuclear Security Administration (NNSA)

    In constructing the robot, the competition teaches students - and mentors - how to solve engineering design problems in an interesting and competitive way. It's a fun, ...

  15. Sustainable and Net Zero Buildings on the NREL Campus | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was designed to perform 30% better than ASHRAE 90.1 2007 standards Natural ventilation ... year Designed to perform 50% better than ASHRAE 90.1 2007 standards, or a commercial ...

  16. Big changes for the Jefferson Lab campus | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Development Facility project, or TEDF, reached a critical milestone on Nov. 12, when the U.S. Department of Energy gave approval to the project's performance baseline. ...

  17. Sandia National Laboratories: Livermore Valley Open Campus (LVOC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in eastern Livermore, California, the LVOC is situated on a parcel of land that spans the border between the two historically closed, self-contained labs. New and emerging programs...

  18. Sunrayce 93: The hottest new sport on campus. Technical report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The solar powered electric vehicle race began in Arlington, Texas on June 20, 1993 and finished 7 days later in Minneapolis, Minnesota. Thirty four teams from Universities across the United States and Puerto Rico completed the race out of thirty six entries. The race demonstrated the viability of sunlight powered vehicles as the better average daily speeds were in excess of 50 miles an hour. Even in the rain, most average speeds were in excess of 15 miles an hour. Analyzed results, photographs, and project details are included. (GHH)

  19. National Security Campus design team wins global award | National...

    National Nuclear Security Administration (NNSA)

    awards for their interior design elements. HNTB was tasked with designing a work space that was energizing, reflected our mission, and created a crisp, clean and bright...

  20. NREL: Climate Neutral Research Campuses - Preparing a Plan and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparing a Plan and Setting Priorities At this stage of formulating a climate action ... The resulting plan can be goal driven or finance driven. In preparing climate action ...

  1. Sandia National Laboratories: Careers: Students & Postdocs: Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recruiting: Universities Universities A partial list of universities hosting Sandia recruiting events: California Institute of Technology Carnegie Mellon University Cornell University DeVry University - Phoenix Georgia Institute of Technology Massachusetts Institute of Technology New Mexico Institute of Mining and Technology New Mexico State University Oklahoma State University Prairie View A&M University Purdue University Stanford University Texas A&M University University of

  2. Resources for Sustainable Federal Buildings and Campuses | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    describes the President's Climate Action Plan, which was released in June 2013. Strategic Sustainability Performance Plans (SSPPs) and Scorecards: Website lists SSPPs and Office of...

  3. Senator Blunt visits National Security Campus | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Blunt also got an inside look at the Fireset and Reservoir manufacturing areas and saw a demonstration of NSC's 3D printing capabilities. Additive manufacturing and 3D printing ...

  4. NNSA National Security Campus Receives LEED® Gold Certification...

    National Nuclear Security Administration (NNSA)

    ... in six categories: sustainable sites, water efficiency, energy and atmosphere, ... to save more than 3.2 million gallons of water each year, energy-efficient features that ...

  5. Sustainable Federal Buildings and Campuses | Department of Energy

    Office of Environmental Management (EM)

    SustainX Inc Isothermal Compressed Air Energy Storage Project Description SustainX is developing and demonstrating a modular, market-ready energy storage system that uses compressed air as the storage medium. SustainX uses a crankshaft-based drivetrain to convert electrical energy into potential energy stored as compressed air. SustainX's ICAES system captures the heat from compression in water and stores the captured heat until it is needed again for expansion. Storing the captured heat

  6. Water Efficiency in Federal Buildings and Campuses | Department of Energy

    Office of Environmental Management (EM)

    Waste-to-Energy Evaluation: U.S. Virgin Islands Waste-to-Energy Evaluation: U.S. Virgin Islands This report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. waste-to-energy_eval_usvi_nrel_52308_final.pdf (1.68 MB) More Documents & Publications U.S. Virgin Islands Energy Road Map: Analysis Waste-to-Energy Evaluation: U.S. Virgin Islands U.S. Virgin Islands

  7. Campus Energy Model for Control and Performance Validation

    Energy Science and Technology Software Center (OSTI)

    2014-09-19

    The core of the modeling platform is an extensible block library for the MATLAB/Simulink software suite. The platform enables true co-simulation (interaction at each simulation time step) with NREL's state-of-the-art modeling tools and other energy modeling software.

  8. National Security Campus leader receives STEM award | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of science, technology, engineering, and math careers across the greater Kansas City area. ... in Science, Technology, Engineering and Math careers to generate a robust force of ...

  9. Workplace Charging at University Campuses | Department of Energy

    Office of Environmental Management (EM)

    decided to offer PEV charging to their faculty, staff, and students, and the various approaches the partners have taken to installing and managing those charging stations. ...

  10. A Green Prison: The Santa Rita Jail Campus Microgrid

    SciTech Connect (OSTI)

    Marnay, Chris; DeForest, Nicholas; Lai, Judy

    2012-01-22

    A large microgrid project is nearing completion at Alameda County’s twenty-two-year-old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources (DER) including an eight-year old 1.2 MW PV array, a five-year old 1 MW fuel cell with heat recovery, and considerable efficiency investments. A current US$14 M expansion adds a 2 MW-4 MWh Li-ion battery, a static disconnect switch, and various controls upgrades. During grid blackouts, or when conditions favor it, the Jail can now disconnect from the grid and operate as an island, using the on-site resources described together with its back-up diesel generators. In other words, the Santa Rita Jail is a true microgrid, or μgrid, because it fills both requirements, i.e. it is a locally controlled system, and it can operate both grid connected and islanded. The battery’s electronics includes Consortium for Electric Reliability Technology (CERTS) Microgrid technology. This enables the battery to maintain energy balance using droops without need for a fast control system.

  11. Transportation and the 'Campus of the Future' (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Fact sheet on Vehicle Testing and Integration Facility, featuring the Vehicle Modification Facility, Vehicle Test Pad and RECharge Integrated Demonstration System.

  12. Optimizing Electric Motor Systems at a Corporate Campus Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... A timer in the DDCS initiated the turning on and off of some of the exhaust fans. The team also retrofitted the supply makeup air fan motor with a variable frequency drive (VFD) ...

  13. Resources for Sustainable Federal Buildings and Campuses | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program: Website provides information about the 2015 International ... Find information about Commercial Buildings Integration and Residential Buildings ...

  14. CNCC Craig Campus Geothermal Program: 82-well closed loop GHP...

    Open Energy Info (EERE)

    source heat pump system will reduce consumption of electricity (60% is from coal) and natural gas resources compared to traditional heating and cooling systems. This project...

  15. DOE Releases Common Definition for Zero Energy Buildings, Campuses...

    Broader source: Energy.gov (indexed) [DOE]

    ... of long-term advantages of buildings meeting this goal, including lower environmental impacts, lower operating and maintenance costs, better resilience to power outages and ...

  16. National Security Campus Management and Operating (M&O) Contract...

    National Nuclear Security Administration (NNSA)

    NNSA will use this website as a means to disseminate information relating to this acquisition. Please direct questions concerning the content of this web site to SEB4@nnsa.doe.gov ...

  17. LAMPF workshop on Dirac approaches to nuclear physics: proceedings

    SciTech Connect (OSTI)

    Shepard, J.R.; Cheung, C.Y.; Boudrie, R.L.

    1985-05-01

    Separate abstracts were prepared for 20 papers in this proceedings. Two other papers were previously abstracted for EDB. (LEW)

  18. History of Proton Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    Alvarez, L. W.

    1987-01-01

    Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

  19. Analysis of Dust Samples Collected from an Unused Spent Nuclear Fuel Interim Storage Container at Hope Creek, Delaware.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David

    2015-03-01

    In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently - removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers. Both wet and dry samples of the dust/salts were collected, using SaltSmart(TM) sensors and Scotch - Brite(TM) abrasive pads, respectively. The SaltSmart(TM) samples were leached and the leachate analyzed chemically to determine the composition and surface load per unit area of soluble salts present on the canister surface. The dry pad samples were analyzed by X-ray fluorescence and by scanning electron microscopy to determine dust texture and mineralogy; and by leaching and chemical analysis to deter mine soluble salt compositions. The analyses showed that the dominant particles on the canister surface were stainless steel particles, generated during manufacturing of the canister. Sparse environmentally - derived silicates and aluminosilicates were also present. Salt phases were sparse, and consisted of mostly of sulfates with rare nitrates and chlorides. On the FME covers, the dusts were mostly silicates/aluminosilicates; the soluble salts were consistent with those on the canister surface, and were dominantly sulfates. It should be noted that the FME covers were w ashed by rain prior to sampling, which had an unknown effect of the measured salt loads and compositions. Sulfate salts dominated the assemblages on the canister and FME surfaces, and in cluded Ca - SO4 , but also Na - SO4 , K - SO4 , and Na - Al - SO4 . It is likely that these salts were formed by particle - gas conversion reactions, either prior to, or after, deposition. These reactions involve reaction of carbonate, chloride, or nitrate salts with at mospheric SO2, sulfuric acid, or a mmonium sulfate to form sulfate minerals. The Na - Al - SO4 phase is unusual, and may have formed by reaction of Na - Al containing phases in aluminum smelter emissions with SO2 , also present in smelter emissions. An aluminum smelter is located in Camden, NJ, 40 miles NE of the Hope Creek Site.

  20. EV Community Readiness projects: Delaware Valley Regional Planning Commission (PA); Metropolitan Energy Information Center, Inc. (KS, MO)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Obama-Biden Administration Announces Nearly $38 Million in Weatherization Funding and Energy Efficiency Grants for Delaware

    Broader source: Energy.gov [DOE]

    Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families

  2. Silicification of evaporites in Permian (Guadalupian) back-reef carbonates of the Delaware basin, west Texas and New Mexico

    SciTech Connect (OSTI)

    Ulmer-Scholle, D.; Scholle, P.A.; Brady, P.V. . Dept. of Geological Science)

    1993-09-01

    Outcrops of the Seven Rivers, Yates, and Tansill Formations contain widespread evaporites replaced by quartz and calcite. The original evaporites consisted of discrete horizons, scattered nodules, enterolithic layers, and individual crystals or crystal fragments of gypsum and/or anhydrite within a finely crystalline dolomite matrix. The fluid inclusions in the replacive megaquartz are primary,and many contain both hydrocarbons and water. Daughter minerals of halite, gypsum, or possibly antarcticite (CaCl[sub 2] [center dot] 6H[sub 2]O) are also found within the aqueous inclusions. Homogenization-temperature data for hydrocarbon and aqueous fluid inclusions average 67.7C and 67.1C, respectively. Hydrocarbon-bearing and aqueous inclusions are thus interpreted to have formed simultaneously from the same fluids. Eutectic melting and final melting temperatures for aqueous inclusions indicate that the fluids were concentrated brines consisting of CaCl[sub 2] and NaCl. Oxygen-isotope values for the megaquartz replacements averaged 28.4[per thousand] (SMOW), indicating precipitation from evaporative waters with an isotopic composition of +2.9 [per thousand] (SMOW). Evaporite silicification was coeval with or slightly postdated hydrocarbon migration. The fluid-inclusion data provide a record of the fluid temperatures and compositions that prevailed during silica precipitation. These data, coupled with regional stratigraphy and published geothermal gradients, suggest a burial depth of approximately 1.3 km during silicification. The source of the silica for evaporite replacement is problematic. The authors postulate, however, that silica may have been derived from dissolution of siliciclastics in back-reef units.

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and meet the requirements of the Delaware Energy Act. The Delaware Division of Energy and Climate... Eligibility: Commercial, Industrial, Local Government, Residential Savings...

  4. BPA-2016-00085-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Palo Alto Research Center Incorporated Delaware PARC China Holdings, Inc. Delaware Proyectos Inverdoco, C.A. Venezuela Smart Data Consulting Corp New York Stewart Business...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (Small), Fuel Cells using Renewable Fuels Delaware Electric Cooperative- Green Energy Fund Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation, electric...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Green Energy Fund regulations are currently under revision to improve program function and to meet the requirements of the Delaware Energy Act. The Delaware Division of...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, Building Insulation, Windows Delaware Electric Cooperative- Green Energy Fund Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation,...

  8. World Wind and Water Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    and Water Energy LLC Jump to: navigation, search Name: World Wind and Water Energy LLC Place: Delaware Sector: Wind energy Product: Delaware-based company focused on developing...

  9. A Minority Serving Institution Leads the Way in Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coons, U.S. Representative John Carney, and Delaware State University President Harry Williams at Delaware State University, a Historically Black College and University (HBCU)....

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delaware Electric Cooperative- Green Energy Fund Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation, electric cooperatives were allowed to opt out of the RPS...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delaware Electric Cooperative- Green Energy Program Incentives The Delaware Electric Cooperative (DEC) provides incentives for solar photovoltaic (PV), solar thermal, wind, fuel...

  12. Apollo Energy III LLC | Open Energy Information

    Open Energy Info (EERE)

    Delaware, Delaware Product: The company owns and operates a landfill gas to liquiefied natural gas production facility. Coordinates: 39.145271, -75.418762 Show Map Loading...

  13. Property:Incentive/Cont4Name | Open Energy Information

    Open Energy Info (EERE)

    Gas Regulation - Delaware Public Service Commission (Delaware) + Jeffrey Clark + O OTEC - Agricultural Energy Efficiency Rebate Programs (Oregon) + La Grande Office + OTEC -...

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    As part of the Delaware Clean Transportation Incentive Program, the Delaware Department of Natural Resources and Environmental Control offers rebates for new EVSE purchased for use ...

  15. PNE Renewable Solutions JV | Open Energy Information

    Open Energy Info (EERE)

    PNE Renewable Solutions JV Jump to: navigation, search Name: PNE & Renewable Solutions JV Place: Delaware Sector: Wind energy Product: Delaware-based limited liability company and...

  16. US Biofuels Inc USB | Open Energy Information

    Open Energy Info (EERE)

    Inc USB Jump to: navigation, search Name: US Biofuels, Inc (USB) Place: Delaware Sector: Biofuels Product: A Delaware corporation and a wholly owned subsidiary of Australian...

  17. Butamax Advanced Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NOTE: The Green Energy Fund regulations are currently under revision to improve program function and to meet the requirements of the Delaware Energy Act. The Delaware Division of...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Energy Utility (SEU)- Green for Green Home Rebate The Delaware Sustainable Energy Utility, in partnership with the Home Builders Association of Delaware (HBADE), is...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delaware Electric Cooperative- Green Energy Fund Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation, electric cooperatives were allowed to opt out of the...

  1. EA-1771: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    U.S. Receipt and Storage of Gap Material - Plutonium, Delaware, Georgia, South Carolina, and Tennessee

  2. Chemistry of western Atlantic precipitation at the mid-Atlantic coast and on Bermuda

    SciTech Connect (OSTI)

    Church, T.M.; Galloway, J.N.; Jickells, T.D.; Knap, A.H.

    1982-12-20

    The major ion composition of western Atlantic precipitation falling at the coast of eastern United States (Lewes, Delaware) and at the Sargasso Sea (Bermuda Island) has been measured by event year round (May 1980 to April 1981) to assess the influence of the ocean on precipitation from storms that leave the North American continent and transit over the western Atlantic. Particular attention is paid to the oceanic influence on the sulfur and nitrogen precursors of acid rains. While sea salt contributes over half (by weight) of the salt in precipitation at the coast and over three quarters at Bermuda, most of the sulfate (90% at the coast and 50% at Bermuda) is in excess to sea salt sodium. Since Bermuda precipitation is still acidified some factor of 8 relative to pure equilibrium with atmospheric carbon dioxide, this strong acidity has been attributed to the long-range transport sulfur and nitrogen precursors in the marine troposphere during which the sulfuric acid component dominates. A sulfur budget for the western Atlantic troposphere shows that of the total amount of sulfur exported from the North American continent (>3.9 TgS/yr) less than 3% (0.1 TgS/yr) is from natural sources, the rest being from anthropogenic emissions. If Bermuda precipitation is taken as typical of wet fallout of sulfur over the western Atlantic, then no more than half (<2 TgS/yr) of North American excess (nonsea salt) sulfur export falls out to the western Atlantic and at least half undergoes potential transoceanic transport as acid rain precursors to the east of Bermuda.

  3. Chemistry of Western Atlantic Precipitation at the Mid-Atlantic Coast and on Bermuda

    SciTech Connect (OSTI)

    Church, T.M.; Galloway, J.N.; Jickells, T.D.; Knap, A.H.

    1982-12-20

    The major ion composition of western Atlantic precipitation falling at the coast of eastern United States (Lewes, Delaware) and at the Sargasso Sea (Bermuda Island) has been measured by event year round (May 1980 to April 1981) to assess the influence of the ocean on precipitation from storms that leave the North American continent and transit over the western Atlantic. Particular attention is paid to the oceanic influence on the sulfur and nitrogen precursors of 'acid rains.' While sea salt contributes over half (by weight) of the salt in precipitation at the coast and over three quarters at Bermuda, most of the sulfate (90% at the coast and 50% at Bermuda) is in excess to sea salt sodium. Since Bermuda precipitation is still acidified some factor of 8 relative to pure equilibrium with atmospheric carbon dioxide, this strong acidity has been attributed to the long-range transport sulfur and nitrogen precursors in the marine troposphere during which the sulfuric acid component dominates. A sulfur budget for the western Atlantic troposphere shows that of the total amount of sulfur exported from the North American continuent (>3.9 TgS/yr) less than 3% (0.1 TgS/yr) is from natural sources, the rest being from anthropogenic emissions. If Bermuda precipitation is taken as typical of wet fallout of sulfur over the western Atlantic, then no more than half (<2 TgS/yr) of north American excess (nonsea salt) sulfur export falls out to the western Atlantic and at least half undergoes potential transoceanic tranport as acid rain precursors to the east of Bermuda.

  4. In Memoriam Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Memoriam Archive Honoring Los Alamos National Laboratory Fellows and their contributions to the institution. Llewellyn (Lew) Jones Llewellyn (Lew) Jones (Pioneer in Vibrational Spectroscopy Field) Llewellyn (Lew) Jones, died June 7, 2014, at his home in Albuquerque. He was 94. A Laboratory Fellow and U.S. Army veteran, Jones was a postdoc at the University of Rochester before joining the Laboratory in 1951 in the former Chemistry-Metallurgy Fowler Division. He retired in 1986 from the former

  5. Joint NRC/ANS meeting on basic thermal-hydraulic mechanisms in LWR analysis

    SciTech Connect (OSTI)

    Hsu, Y Y; Lee, R

    1983-04-01

    Separate abstracts were prepared for 18 papers in this conference proceedings. Three papers are also included in the proceedings that were previously abstracted for EDB. (LEW)

  6. EE Technical Review

    SciTech Connect (OSTI)

    Not Available

    1985-12-01

    Brief summaries are given of electronics engineering work, including: laser engineering, engineering research, nuclear energy systems, engineering services, and field test systems. Individual papers are abstracted separately. (LEW)

  7. Proceedings of the 1981 annual meeting American section of the International Solar Energy Society, Inc. Volume 4. 2. Passive systems; physics; socio-economics; solar radiation; wind

    SciTech Connect (OSTI)

    Glenn, B.H.; Franta, G.E.

    1981-01-01

    Separate abstracts were prepared for 134 papers in these proceedings. An additional 21 papers were previously abstracted for EDB, and two panel discussions are title listed. (LEW)

  8. Solar energy information symposium

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Separate abstracts were prepared for 19 papers in this conference proceedings. Two papers were previously abstracted for EDB. Also included in the proceedings are panel discussions. (LEW)

  9. NREL: Transmission Grid Integration - Webinars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Speakers include: Debra Lew and Gregory Brinkman, Senior Engineers, National Renewable Energy Laboratory See the webinar: Presentation slides Webinar recording Audio transcript ...

  10. Instrumentation and Controls Division progress report, July 1, 1982-July 1, 1984. Volume 1

    SciTech Connect (OSTI)

    Klobe, L.W.E.

    1984-12-01

    Progress is briefly summarized for a large number of projects in the areas of research instruments, measurement and controls engineering, reactor systems, and maintenance management. (LEW)

  11. Collider detectors: present capabilities and future possibilities

    SciTech Connect (OSTI)

    Loken, S.C.; Nemethy, P.

    1983-04-01

    Separate abstracts were prepared for 27 papers in this conference proceedings. Thirteen other papers had been previously abstracted for EDB. (LEW)

  12. OTEC Utility Users Council. Final grant termination report, second year activities

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The second year of the activities of the OTEC Utility Users Council is reported, including meetings and a statement on the DOE OTEC Pilot Plant. (LEW)

  13. Grid Integration and the Carrying Capacity of the U.S. Grid to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... forecasting into unit commitment and dispatch can improve the scheduling of other generators to reduce reserves, fuel consumption, and operating and maintenance costs (Lew et ...

  14. Proceedings of the international workshop on hadron facility technology

    SciTech Connect (OSTI)

    Thiessen, H.A.

    1987-12-01

    The conference included papers on facility plans, beam dynamics, accelerator hardware, and experimental facilities. Individual abstracts were prepared for 43 papers in the conference proceedings. (LEW)

  15. Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study

    SciTech Connect (OSTI)

    2013-03-29

    Case study of Thermal Energy Corporation (TECO) demonstrating a high-efficiency combined heat and power (CHP) system at Texas Medical Center in Houston, Texas

  16. Kansas City National Security Campus contractor and University of Kansas to

    National Nuclear Security Administration (NNSA)

    collaborate on NNSA technology projects | National Nuclear Security Administration | (NNSA) contractor and University of Kansas to collaborate on NNSA technology projects Thursday, March 3, 2016 - 1:00am The University of Kansas has entered into a new research collaboration that will position faculty and students to work with industry on technologies that enhance national security. A master collaboration agreement was signed Feb. 16 between KU and Honeywell Federal Manufacturing &

  17. SU-E-CAMPUS-T-01: Automation of the Winston-Lutz Test for Stereotactic Radiosurgery

    SciTech Connect (OSTI)

    Litzenberg, D; Irrer, J; Kessler, M; Lam, K; Keranen, W

    2014-06-15

    Purpose: To optimize clinical efficiency and shorten patient wait time by minimizing the time and effort required to perform the Winston-Lutz test before stereotactic radiosurgery (SRS) through automation of the delivery, analysis, and documentation of results. Methods: The radiation fields of the Winston-Lutz (WL) test were created in a “machine-QA patient” saved in ARIA for use before SRS cases. Images of the BRW target ball placed at mechanical isocenter are captured with the portal imager for each of four, 2cm×2cm, MLC-shaped beams. When the WL plan is delivered and closed, this event is detected by in-house software called EventNet which automates subsequent processes with the aid of the ARIA web services. Images are automatically retrieved from the ARIA database and analyzed to determine the offset of the target ball from radiation isocenter. The results are posted to a website and a composite summary image of the results is pushed back into ImageBrowser for review and authenticated documentation. Results: The total time to perform the test was reduced from 20-25 minutes to less than 4 minutes. The results were found to be more accurate and consistent than the previous method which used radiochromic film. The images were also analyzed with DoseLab for comparison. The difference between the film and automated WL results in the X and Y direction and the radius were (?0.17 +/? 0.28) mm, (0.21 +/? 0.20) mm and (?0.14 +/? 0.27) mm, respectively. The difference between the DoseLab and automated WL results were (?0.05 +/? 0.06) mm, (?0.01 +/? 0.02) mm and (0.01 +/? 0.07) mm, respectively. Conclusions: This process reduced patient wait times by 15–20 minutes making the treatment machine available to treat another patient. Accuracy and consistency of results were improved over the previous method and were comparable to other commercial solutions. Access to the ARIA web services is made possible through an Eclipse co-development agreement with Varian Medical Systems.

  18. Geographic information system (G.I.S.) research project at Navajo Community College - Shiprock Campus

    SciTech Connect (OSTI)

    Yazzie, R.; Peter, C.; Aaspas, B.; Isely, D.; Grey, R.

    1995-12-31

    The Navajo and Hopi GIS Project was established to assess the feasibility and impact of implementing GIS techology at Tribal institutions. Los Alamos and Lawrence Livermore National Laboratories funded the Navajo and Hopi Geographic Information System (G.I.S.) Project and assigned a mentor from LANL to help guide the project for three summer months of 1995. The six organizations involved were: LANL, LLNL, Navajo Community College, Navajo Nation Land Office, Northern Arizona University and San Juan College. The Navajo Land Office provided the system software, hardware and training. Northern Arizona University selected two students to work at Hopi Water Resource Department. Navajo Community College provided two students and two faculty members. San Juan College provided one student to work with the N.C.C. group. This made up two project teams which led to two project sites. The project sites are the Water Resource Department on the Hopi reservation and Navajo Community College in Shiprock, New Mexico.

  19. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2014-06-01

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2013 from PNNL Site sources is 2E-05 mrem (2E-07 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 2E-6 mrem (2E-8 mSv) EDE. The dose from radon emissions is 1E-11 mrem (1E-13 mSv) EDE. No nonroutine emissions occurred in 2013. The total radiological dose for 2013 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 2E-5 mrem (2E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance

  20. Campus Cafeteria Serves As Sustainable Model for Energy-Efficient Food Service (Fact Sheet)

    SciTech Connect (OSTI)

    Septon, K.

    2013-10-01

    This is a general fact sheet about the energy efficiency and sustainability features of the NREL Cafe.

  1. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    SciTech Connect (OSTI)

    Hashimoto, M; Kozuka, T; Oguchi, M; Nishio, T; Haga, A; Hanada, T; Kabuki, S

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder. By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of the scattered light.

  2. DOE Releases Common Definition for Zero Energy Buildings, Campuses, and Communities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) reached a significant milestone in bringing the building community together by releasing a common definition for a zero energy building, or what is also referred to as a “net zero energy” or “zero net energy” building.

  3. 2014 NREL South Table Mountain Campus Site-Wide Environmental Assessment Appendices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    List of Appendices Appendix A Scoping Input Appendix B Comments on Draft SW EA and Responses Appendix C Summary of Federal Permits, Licenses, and Entitlements Appendix D Description of the South Platte W ater Related Activities Program and the Platte River Recovery Implementation Program Appendix E Section 7 Consultation of the Endangered Species Act Correspondence with the U.S. Fish & W ildlife Service Appendix F Section 106 Consultation of the National Historic Preservation Act

  4. A New Campus Building on Efficiency: University of California (UC) Merced Case Study

    SciTech Connect (OSTI)

    2013-03-01

    The University of California (UC), Merced partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit two existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Buildings Partnerships (CBP) Program.

  5. OFFICZ OF OCCUPAIIOXAL EILhLlH h SAFZETY JAXRS FORRESTAL CAMPUS

    Office of Legacy Management (LM)

    J* &*r, -A ti.:,?*-cl>- +ysics Gffict. s'wo mics of &jr. : hzs's retort 2nd Sqpcrr-Lng iosea for y& infCrn&ifcn 2nd Is: ThP 2, v-m -- --- , - --- ---- ---- --- . --- "c-- ...

  6. EIS-0465: Pepco Holdings, Inc. Mid-Atlantic Power Path (MAPP) Project, Prince George's, Calvert, and Wicomico Counties, Maryland, and Sussex County, Delaware

    Broader source: Energy.gov [DOE]

    Pepco Holdings, Inc., cancelled its proposed Phase II of the Mid-Atlantic Power Pathway transmission line project and DOE cancelled preparation of an EIS on the potential environmental impacts of a proposed federal loan guarantee for the project.

  7. Suspension- and current-deposit reservoirs in the Delaware basin: Trends and cycles in siltstones of the Permian Bone Spring Limestone

    SciTech Connect (OSTI)

    Lorenz, J.C. ); Brooks, L.L. )

    1990-05-01

    Cores show that siltstone to very fine-grained sandstone oil reservoirs within the Permian Bone Spring Limestone are composed of submillimeter- to centimeter-thick sedimentation laminae. Blanketing of small-scale topography suggests that the laminae were deposited over wide areas as sediment settled vertical to the sea floor. Superimposed on the event laminae, were (1) background sedimentation of dolomitic, organic-rich, mudstone, (2) invertebrate burrowing, and (3) reworking by gentle bottom currents. Currents produced wispy ripply bedding and starved ripple forms that were draped by later deposits. Paleoflow was subparallel to the basin margin. Several sedimentation patterns occur within the formation. Three clastic intervals 25-50-m thick are interbedded with dolomitic mudstones of similar thickness. The clastic intervals are composed of three to six siltstone beds, each up to 25-m thick. Upsection within the beds increases in event-laminae, thickness, bioturbation, and current reworking. Other reports have suggested that these are turbidite-fan deposits, but locally, paleocurrent orientations and the lack of diagnostic assemblages and sequences of sedimentary structures argue against this interpretation. Rather, some of these deposits compare favorably with the few existing sedimentologic descriptions of Quaternary dust storm deposition in marine basins. The siltstone beds may also record deflation of the exposed adjacent shelf during lowered sea level. Very fine grain size and extensive carbonate cementation produce 5-10 pd permeability and 4-15% porosity. Sedimentary laminations cause significantly reduced vertical permeability where they are not disrupted by bioturbation, but permeability may be enhanced by natural fractures. Some reservoir thickenings are attributed to the formation of giant ripples by bottom currents, dictating a different exploration rationale than the turbidite-fan model.

  8. Obama Administration Announces Additional $11,072,300 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Funding for state, city, and county governments in the state includes: DE Delaware Total Sum City, County, and SEO Allocations All 11,072,300 DE Delaware State Energy Office ...

  9. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    On May 2014, Delaware updated its energy code to 2012 IECC with amendments for residential sector and ASHRAE 90.1-2010 with amendments for the commercial sector. The Delaware specific amendments to...

  10. CX-011758: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of Delaware - Synthetic Methylotrophy to Liquid Fuel CX(s) Applied: B3.6 Date: 12/19/2013 Location(s): Delaware, New York Offices(s): Advanced Research Projects Agency-Energy

  11. CX-014429: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Regional Carbon Sequestration Partnership - Phase III (Delaware Geological Survey) CX(s) Applied: A9Date: 11/24/2015 Location(s): DelawareOffices(s): National Energy Technology Laboratory

  12. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, ...

  13. CX-006578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Delaware State Energy Office Sub Grantee/Bridgeville Well Pump ReplacementCX(s) Applied: B5.1Date: 08/26/2011Location(s): Bridgeville, DelawareOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  14. CX-008587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacing Traditional Electric Meters with Smart Electric Meters - City of Newark, Delaware CX(s) Applied: B1.7 Date: 07/23/2012 Location(s): Delaware Offices(s): Golden Field Office

  15. EIS-0465: Notice of Intent to Prepare an Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware

  16. Obama Administration Awards More than $162 Million for State Energy Programs in Seven States and Territories

    Broader source: Energy.gov [DOE]

    Funding Will Speed Adoption of Efficiency and Renewable Energy Technologies in Colorado, Delaware, Indiana, Louisiana, Massachusetts, Pennsylvania, and Puerto Rico

  17. EIS-0465: Announcement of Public Scoping Meetings

    Broader source: Energy.gov [DOE]

    Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware

  18. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Delaware | Department of Energy 5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, 2011 EIS-0465: Notice of Intent to Prepare an Environmental Impact Statement Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware February 4, 2011 EIS-0465: Announcement of Public Scoping Meetings Construction of Phase II of

  19. EIS-0465: Scoping Meeting Transcript, 3/24/2011

    Broader source: Energy.gov [DOE]

    Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware

  20. EIS-0465: Scoping Meeting Transcript, 3/22/2011

    Broader source: Energy.gov [DOE]

    Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware

  1. EIS-0465: Scoping Meeting Transcript, 3/23/2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware

  2. High School Regionals | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Delaware Massachusetts North Dakota Vermont Florida Michigan Ohio Virginia Georgia Minnesota Oklahoma Washington Hawaii Mississippi Oregon Washington, DC Idaho Missouri ...

  3. Building America Whole-House Solutions for Existing Home: Retrofitting...

    Broader source: Energy.gov (indexed) [DOE]

    Insight Homes, Seaford, Delaware Building America Technology Solutions for New and Existing Homes: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota

  4. Building America Whole-House Solutions for New Homes: Insight Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seaford, Delaware | Department of Energy Insight Homes, Seaford, Delaware Building America Whole-House Solutions for New Homes: Insight Homes, Seaford, Delaware Case study of Insight Homes, who worked with the Building America research partner IBACOS to design HERS-49 homes with high-efficiency HVAC, ducts in insulated crawl spaces, raised heel trusses, dehumidifiers, and central manifold plumbing. Insight Homes: Deep Creek - Seaford, Delaware (651.43 KB) More Documents & Publications

  5. Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Newark, Delaware) - JCAP Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Mon, Mar 7, 2016 11:30am 11:30 Tue, Mar 8, 2016 12:30pm 12:30 University of Delaware Newark, Delaware Frances Houle, "Solar Fuels Systems Research in the Joint Center for Artificial Photosynthesis" March 6 80th Annual Conference of the DPG & DPG Spring Meeting

  6. Advanced Offshore Wind Energy - Atlantic Consortium

    SciTech Connect (OSTI)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  7. Hydrogeologic Evaluation of a Ground-Source Cooling System at the BSF/CSF on the Battelle Campus: Final Report

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.; Moon, Thomas W.; Newcomer, Darrell R.; DeSmet, Darrell J.; Lindsey, K. A.; Porcello, J. J.

    2010-05-12

    This report documents both the field characterization activities and the numerical modeling effort at the BSF/CSF site to determine the viability of an open-loop ground source heat pump (GSHP). The primary purpose of the integrated field and modeling study was to determine far-field impacts related to a non-consumptive use water right for the well field containing four extraction and four injection wells. In the field, boreholes were logged and used to develop the geologic conceptual model. Hydraulic testing was performed to identify hydraulic properties and determine sustainable pumping rates. Estimates of the Ringold hydraulic conductivity (60-150 m/d) at the BSF/CSF site were consistent with the local and regional hydrogeology as well as estimates previously published by other investigators. Sustainable pumping rates at the extraction wells were variable (100 – 700 gpm), and confirmed field observations of aquifer heterogeneity. Field data were used to develop a numerical model of the site. Simulations assessed the potential of the well field to impact nearby contaminant plumes, neighboring water rights, and the thermal regime of nearby surface water bodies. Using steady-state flow scenarios in conjunction with particle tracking, a radius of influence of 400–600 m was identified around the well field. This distance was considerably shorter than the distance to the closest contaminant plume (~1.2 km northwest to the DOE Horn Rapids Landfill) and the nearest water right holder (~1.2 km southeast to the City of Richland Well Field). Results demonstrated that current trajectories for nearby contaminant plumes will not be impacted by the operation of the GSHP well field. The objective of the energy transport analysis was to identify potential thermal impacts to the Columbia River under likely operational scenarios for the BSF/CSF well field. Estimated pumping rates and injection temperatures were used to simulate heat transport for a range of hydraulic conductivity estimates for the Ringold Formation. Two different operational scenarios were simulated using conservative assumptions, such as the absence of river water intrusion in the near shore groundwater. When seasonal injection of warm and cool water occurred, temperature impacts were insignificant at the Columbia River (< +0.2şC), irrespective of the hydraulic conductivity estimate. The second operational scenario simulated continuous heat rejection, a condition anticipated once the BSF/CSF is fully loaded with laboratory and computer equipment. For the continuous heat rejection case, where hourly peak conditions were simulated as month-long peaks, the maximum change in temperature along the shoreline was ~1şC. If this were to be interpreted as an absolute change in a static river temperature, it could be considered significant. However, the warmer-than-ambient groundwater flux that would potentially discharge to the Columbia River is very small relative to the flow in the river. For temperatures greater than 17.0şC, the flow relative to a low-flow condition in the river is only 0.012%. Moreover, field data has shown that diurnal fluctuations in temperature are as high as 5şC along the shoreline.

  8. Infrastructure Practices of Select World-Class Research Organizations - A Benchmark of Campus Design, Development, and Implementation Strategies

    SciTech Connect (OSTI)

    Kevin M. Kostelnik, PhD; Ann Marie Phillips

    2005-07-01

    This report presents case studies and benchmarking conclusion for seven world-class research facilities in the areas of academia, industry, government, and non-profit institutions.

  9. SU-E-CAMPUS-J-01: TG142 Complied Comprehensive Commissioning and Quality Assurance Procedure for Respiratory Gating

    SciTech Connect (OSTI)

    Woods, K; Rong, Y; Weldon, M; Gupta, N

    2014-06-15

    Purpose: To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG142. Methods: Quality assurance tests on three Varian LINACs included beam output and energy constancy, calibration of surrogate, as well as phase and amplitude gating temporal accuracy. A diode array (MapCHECK 2) and film (Gafchromic EBT2) were used to measure the temporal accuracy of phase and amplitude gating windows. A motion simulation device (MotionSim) was used to simulate respiratory motion for both detectors. An end-to-end test was also performed on all three machines. The overall accuracy and uncertainty was analyzed and compared. Results: The end-to-end test using an anthropomorphic lung phantom (CIRS) results in an OSL dose difference reading within 5% (within measurement uncertainty) for both phase and amplitude gated treatment. Film results showed < 1% agreement between profiles for gated delivery and predicted dose. The diode array demonstrated an 80% passing rate for gamma criteria of 2%/0.2 mm, which results in a 111 msec temporal accuracy. However, the diode array is limited by its spatial resolution of measurements, due to its 7.07 mm diode spacing. Film provided higher measuring resolution, thus demonstrated a temporal accuracy of <100 msec. Conclusion: Results showed consistent respiratory gating stability and accuracy. MapCHECK 2 may not be sufficient for the temporal accuracy test in the respiratory gating treatment in order to meet the corresponding tolerance in TG142. One would need to decrease respiratory motion speed from the surrogate or tighten the gating window in order to be within tolerance of 100 msec temporal accuracy per TG-142. The end-to-end test offers insight to the overall accuracy and uncertainties with a gated protocol. Compared to static delivery, respiratory motion increases the overall uncertainty of treatment delivery from 3% to 5% dose difference.

  10. Solar collector panels (process-method). Rainwater collection and storage

    SciTech Connect (OSTI)

    Mowery, J.W.

    1981-10-15

    A process for producing panels for solar heating of potable water is described. The panels have PVC tubing flat-coiled into square or rectangular shapes. Also described is a cistern for collecting and storing rainwater. (LEW)

  11. Proceedings of the flat-plate solar array project workshop on low-cost polysilicon for terrestrial photovoltaic solar-cell applications

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    Separate abstracts were prepared for 21 papers in this workshop proceedings. Topics covered include: polysilicon material requirements; economics; process developments in the USA and internationally; and the polysilicon market and forecasts. (LEW)

  12. Building and using the solar greenhouse

    SciTech Connect (OSTI)

    1983-01-01

    Thorough directions are given for planning, constructing and using a solar greenhouse attached to a house. Included is a method of calculating the savings accruing from the use of the greenhouse. (LEW)

  13. Project planning workshop 6-GeV synchrotron light source: Volume 2

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    A series of work sheets, graphs, and printouts are given which detail the work breakdown structure, cost, and manpower requirements for the 6 GeV Synchrotron Light Source. (LEW)

  14. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis. Volume 2. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Previously completed OTEC deployment studies are synthesized to describe a projected commercialization scenario. A compendium of oceanographic data for potential OTEC resource areas is provided. The methods or calculations used in the environmental assessment are briefly described. (LEW)

  15. 1-MWe heat exchangers for OTEC. Final acceptance document

    SciTech Connect (OSTI)

    Snyder, J.E.

    1980-06-19

    Acceptance documents for major units of 1 MWe OTEC heat exchangers, including condensers and evaporators, are provided. Included are a transportation plan for the heat exchangers and design specifications for the phase separator. (LEW)

  16. OTEC support services. Quarterly technical progress report No. 17, 15 May 1982-14 August 1982

    SciTech Connect (OSTI)

    1982-08-01

    Progress relative to accomplishments and relative to meetings, conferences, etc. are reported in the areas of OTEC commercialization support, program technical engineering and instrumentation analysis, technical and management services, OTEC system integration, and transmission subsystem considerations. (LEW)

  17. OTEC support services. Quarterly technical progress report No. 19, November 15, 1982-February 14, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    Activities relative to accomplishments and to meetings, conferences, etc. are reported in the areas of: OTEC commercialization support, program technical engineering and instrumentation analysis, technical and management services, OTEC systems integration, and transmission subsystem considerations. (LEW)

  18. Program listing for heat-pump seasonal-performance model (SPM). [CNHSPM

    SciTech Connect (OSTI)

    Not Available

    1982-06-30

    The computer program CNHSPM is listed which predicts heat pump seasonal energy consumption (including defrost, cyclic degradation, and supplementary heat) using steady state rating point performance and binned weather data. (LEW)

  19. Residential electricity rates for the United States for Solcost Data Bank cities

    SciTech Connect (OSTI)

    Smith, L. E.

    1981-05-01

    Electricity rates are given for selected cities in each state, first of the Southern Solar Energy Center region and then of the rest of the US, for an average residence that uses 1000 kWh a month. (LEW)

  20. Resonance topology

    SciTech Connect (OSTI)

    Michelotti, L.

    1987-03-01

    The separatrix of a resonance is defined, and the example of the separatrix for the first order (1,2) sextupole resonance is discussed. Adiabatic resonance widths are considered. (LEW)

  1. Secretary Moniz's Remarks at the League of Conservation Voters...

    Broader source: Energy.gov (indexed) [DOE]

    ... But we have a lot of work to do before Paris, including the week after next, the Strategic and Economic Dialogue in Beijing with Secretaries Kerry and Lew who lead that for the ...

  2. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laurie Bagley succeeds Lew Meixler as head of Technology Transfer Click on an image below to view the high resolution image. Then right click on the image and select "Save Image"...

  3. Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program

    SciTech Connect (OSTI)

    Britt, Michelle L.; Makela, Eric J.

    2011-01-30

    Adhering to Delaware’s Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: • Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. • Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

  4. EEO Policy March 3 2011_0.pdf

    Office of Environmental Management (EM)

    Energy Delaware Community Saves with Solar EECBG Success Story: Delaware Community Saves with Solar November 28, 2012 - 1:26pm Addthis With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. With a grant from the Energy Department's Energy Efficiency and Conservation Block

  5. Trans India Acquisition Corporation | Open Energy Information

    Open Energy Info (EERE)

    India Acquisition Corporation Jump to: navigation, search Name: Trans-India Acquisition Corporation Place: Delaware Sector: Solar Product: Blank check company to be merged with...

  6. Building America Whole-House Solutions for New Homes: Insight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Insight Homes, Seaford, Delaware Case study of Insight Homes, who worked with the Building America research partner IBACOS to ...

  7. Microsoft Word - CVRv11 - FINAL OS.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 1,300 kilowatts. An engineer-procure-construct contract has been executed with Renewable Energy Systems (USA) Inc., a Delaware corporation. The turbines will be...

  8. JSX Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Thailand Zip: 10500 Product: Delaware-headquartered company, set up to explore for petroleum in Thailand, also considering PV project development. Coordinates: 13.75333,...

  9. Sentry Power Technology | Open Energy Information

    Open Energy Info (EERE)

    Place: New Castle, Delaware Zip: 19720 Product: The company develop and sell battery-driven back up uninterrupted power supply power supply systems. References: Sentry...

  10. Sentry Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Sentry Power LLC Place: New Castle, Delaware Zip: 19720 Product: Sentry Power sells battery-driven back up uninterrupted power supply systems for commercial and residential...

  11. GreenTech Construction | Open Energy Information

    Open Energy Info (EERE)

    GreenTech Construction Jump to: navigation, search Name: GreenTech Construction Address: 7591 Perry Rd. Place: Delaware, Ohio Zip: 43015 Sector: Buildings, Efficiency Phone Number:...

  12. Beemer Energy | Open Energy Information

    Open Energy Info (EERE)

    Name: Beemer Energy Place: Delaware Product: Engaged in the development of green-field ethanol sites, the conversion of existing industrial facilities to ethanol production and the...

  13. Knoxville Energy Deal to Net Big Savings for Taxpayers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility How One Delaware County is Saving Money and Creating Jobs EAA Executive ...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels Net Metering In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of...

  17. National Idling Reduction Network News - December 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... provider of pre- and post-production mill services for the steel industry, is set to receive a ... Delaware Iowa* Minnesota New Mexico Rhode Island Washington States in ...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering In Delaware, net metering is...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering In Delaware, net metering is...

  20. Cleantech Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Energy Inc. Place: San Diego, California Zip: 92130-2035 Product: Delaware-based firm that invests in and advises organizations with emerging technologies and projects....