Powered by Deep Web Technologies
Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vice President Biden Announces Reopening of Former GM Boxwood Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reopening of Former GM Boxwood Plant Reopening of Former GM Boxwood Plant Vice President Biden Announces Reopening of Former GM Boxwood Plant October 27, 2009 - 12:00am Addthis Wilmington, DE - As part of the of the Administration's commitment to jumpstarting the production of fuel efficient vehicles in America, Vice President Joe Biden today announced Fisker Automotive is re-opening a shuttered former GM factory in Wilmington, Delaware, to produce long-range, plug-in, electric hybrid vehicles. The Wilmington assembly plant was selected by Fisker Automotive for its primary global production facility based on its size, production capacity; and access to shipping ports, rail lines and skilled workforce. "While some wanted to write off America's auto industry, we said no. We knew that we needed to do something different - in Delaware and all across

2

Electric Cars Coming to Former Delaware GM Plant | Department...  

Office of Environmental Management (EM)

"Another reason we chose the site is because it can be very difficult and expensive to train workers to build world-class cars. The team over there had won several awards, so...

3

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

4

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

5

Delaware Strategic Fund (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Fund (Delaware) Strategic Fund (Delaware) Delaware Strategic Fund (Delaware) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Grant Program Provider Business Financing The Delaware Strategic Fund represents the primary funding source used by Delaware Economic Development Authority (DEDA) to provide customized loans and grants to businesses for job creation, relocation and expansion. For businesses considering locating in the state of Delaware, financial assistance may be provided in the form of low interest loans, grants, or other creative instruments to support the attraction of businesses that pay sustainable wages. Assistance terms are negotiated specific to each

6

Delaware Land Protection Act (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1990 State Delaware Program Type Environmental Regulations Provider Delaware Department of Natural Resources and Environmental Control The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the existence and location

7

Accidental Release Program (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Accidental Release Prevention Regulation contains requirements for owners or operators of stationary sources having regulated extremely hazardous substances onsite to develop and...

8

University of Delaware | Contact CCEI  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory (ISE Lab) at the University of Delaware. Address Catalysis Center for Energy Innovation University of Delaware 221 Academy Street Newark, DE 19716 Phone Number...

9

Delaware/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Delaware Jump to: navigation, search Contents 1 Financial Incentive Programs for Delaware 2 Rules, Regulations and Policies for Delaware Download All Financial Incentives and Policies for Delaware CSV (rows 1 - 61) Financial Incentive Programs for Delaware Download Financial Incentives for Delaware CSV (rows 1 - 22) Incentive Incentive Type Active DEMEC - Green Energy Program Incentives (Delaware) State Rebate Program No DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) (Delaware) Utility Rebate Program Yes Delaware Electric Cooperative - Green Energy Program Incentives Utility Rebate Program Yes Delaware Energy An$wers Home Performance Program (Delaware) State Rebate Program No Delaware Energy An$wers for Business (Delaware) State Grant Program No

10

Natural Gas Regulation - Delaware Public Service Commission (Delaware) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Regulation - Delaware Public Service Commission Natural Gas Regulation - Delaware Public Service Commission (Delaware) Natural Gas Regulation - Delaware Public Service Commission (Delaware) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Fuel Distributor Program Info State Delaware Program Type Generating Facility Rate-Making Provider Delaware Public Service Commission The Delaware Public Service Commission regulates only the distribution of natural gas to Delaware consumers. The delivery and administrative costs associated with natural gas distribution are determined in base rate proceedings before the Commission. The recovery of costs associated with the natural gas used by customers is determined annually as part of fuel adjustment proceedings. As a result of this process, rates for natural gas

11

Delaware State University | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Delaware State University Delaware State University Research Office of the Associate Provost for Research General Research Capability Center for Integrated Biological & Environmental Research Experimental Program to Stimulate Competitive Research Delaware IDeA Network of Biomedical Research Excellence Faculty Research DSU Leads the Way in Better Buildings DSU is one of the first university partners in the US to join the Department of Energy's Better Buildings inititative to reduce its carbon footprint by 25% by 2015. Secretary of Energy Chu participated in the DSU kick-off program to commemorate the school's efforts in July 2012. Read more about this showcase project. Search this site: Search Prestigious research projects underway by Delaware State University (DSU) serve to enhance DSU's land-grant mission and its contributions to the

12

Delaware Transportation Infrastructure Forum Problem Identification Statements  

E-Print Network (OSTI)

2013 Delaware Transportation Infrastructure Forum Problem Identification Statements Sponsored by The Delaware Center for Transportation and the Delaware Department of Transportation Delaware Center for Transportation Your main resource for transportation education and research Identifying Important Issues Related

Firestone, Jeremy

13

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

14

Delaware.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

15

Delaware Basin Monitoring Annual Report  

SciTech Connect

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2004-09-30T23:59:59.000Z

16

Delaware Basin Monitoring Annual Report  

SciTech Connect

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2003-09-30T23:59:59.000Z

17

Delaware Basin Monitoring Annual Report  

SciTech Connect

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2005-09-30T23:59:59.000Z

18

Argonne Transportation - GM Award  

NLE Websites -- All DOE Office Websites (Extended Search)

GM Lauds Argonne's Bob Larsen at Challenge X Competition GM Lauds Argonne's Bob Larsen at Challenge X Competition Senior executives at General Motors (GM) praised Argonne's Bob Larsen during the 2006 Challenge X Competition awards ceremony. Mark Maher, GM's Executive Director for Vehicle and Powertrain Integration, asked all GM staff to come on stage to recognize Bob's role in making the collaboration between industry and government such a success for nearly 20 years. Bob has used the vehicle competitions program as a springboard to the highest levels of the automotive industry to open many doors for Argonne, and indeed, change the entire direction of the automotive industry for the country's benefit. Bob Larsen and GM executives at Challenge X Competition. At the 2006 Challenge X Awards Ceremony, General Motors senior executives recognized Argonne's Bob Larsen for his role in making the collaboration between the auto industry and government such a success for nearly 20 years.

19

Recovery Act State Memos Delaware  

Energy Savers (EERE)

go to energyempowers.govDelaware Recovery Act Success Stories ENERGYEMPOWERS.GOV less heat and cooling loss so our facility is more efficient." Buying domestically For the...

20

University of Delaware | About CCEI  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis Center for Energy Innovation About CCEI The Catalysis Center for Energy Innovation (CCEI) is a multi-institutional research center at the University of Delaware. It was...

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

University of Delaware | CCEI Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

and Its Partner Institutions The Catalysis Center for Energy Innovation (CCEI) is a partnership between the University of Delaware, 8 academic institutions and 1 national...

22

Brownfield Assistance Program (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brownfield Assistance Program (Delaware) Brownfield Assistance Program (Delaware) Brownfield Assistance Program (Delaware) < Back Eligibility Commercial Agricultural Industrial Construction Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Delaware Strategic Fund State Delaware Program Type Grant Program Provider Business Financing The Brownfield Assistance Program, administrated by the Delaware Economic Development Office (DEDO) and funded from Delaware Strategic Fund, provides matching grants to owners and developers to encourage the redevelopment of environmentally distressed sites within the state. Brownfield redevelopment is an important tool for Delaware's livable growth, recycling the state's

23

Alternative Fuels Data Center: Delaware Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Information Delaware Information to someone by E-mail Share Alternative Fuels Data Center: Delaware Information on Facebook Tweet about Alternative Fuels Data Center: Delaware Information on Twitter Bookmark Alternative Fuels Data Center: Delaware Information on Google Bookmark Alternative Fuels Data Center: Delaware Information on Delicious Rank Alternative Fuels Data Center: Delaware Information on Digg Find More places to share Alternative Fuels Data Center: Delaware Information on AddThis.com... Delaware Information This state page compiles information related to alternative fuels and advanced vehicles in Delaware and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

24

Delaware | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Delaware Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Agriculture structures are excluded. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Delaware (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 07/29/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Delaware DOE Determination Letter, May 31, 2013 Delaware State Certification of Commercial and Residential Building Energy Codes

25

City of Dover, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Dover, Delaware (Utility Company) Dover, Delaware (Utility Company) Jump to: navigation, search Name Dover City of Place Delaware Utility Id 5335 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Private Outdoor Lighting: Decorative Lighting, Metered, 150 watt HPS w/o ladder rest Lighting Private Outdoor Lighting: Decorative Lighting, Metered, 70 watt HPS w/o ladder rest Lighting Private Outdoor Lighting: Decorative Lighting, Unmetered, 150 watt HPS w/o

26

Forestry Policies (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Forestry Policies (Delaware) < Back Eligibility Commercial Agricultural Program Info State Delaware Program Type Environmental Regulations Provider Agriculture Delaware's forests are managed by the State Forest Service (DFS), within the State Department of Agriculture. In 2010, the Forest Service issued its Resource Assessment and Strategy documents: Delaware Forest Resource Assessment: http://dda.delaware.gov/forestry/061810_DFS_ResourceAssessment.pdf Statewide Forest Strategy: http://dda.delaware.gov/forestry/061810_DFS_Strategy.pdf The Forest Strategy document sets several goals with respect to biomass energy, including an analysis of the resource, developing restrictions on wood energy facilities, promoting a Fuels for Schools program, and developing at least one new market for low-value wood such as bio-energy

27

Categorical Exclusion Determinations: Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Categorical Exclusion Determinations: Delaware Location Categorical Exclusion Determinations issued for actions in Delaware. DOCUMENTS AVAILABLE FOR DOWNLOAD August 12, 2013 CX-011107: Categorical Exclusion Determination High Efficiency Thin Film Fe2SiS4 and Fe2GeS4-based Cells Prepared from Low-Cost Solution CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Delaware Offices(s): Golden Field Office September 18, 2012 CX-010528: Categorical Exclusion Determination Durability Investigation for Quarternary Phosphonium-based Polymer Hydroxide Exchange Membranes CX(s) Applied: B3.6 Date: 09/18/2012 Location(s): Delaware Offices(s): Advanced Research Projects Agency-Energy September 6, 2012 CX-009147: Categorical Exclusion Determination Delaware State Energy Program Formula Grant Application

28

SREC Procurement Program (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SREC Procurement Program (Delaware) SREC Procurement Program (Delaware) SREC Procurement Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Utility Savings Category Solar Buying & Making Electricity Program Info Start Date 04/02/2012 State Delaware Program Type Performance-Based Incentive Provider Delaware Sustainable Energy Utility '''''Note: The SREC procurement program will accept applications from March 25 to April 12, 2013. The summary below is intended to reflect the 2013 program as described in the [http://depsc.delaware.gov/electric/12-526%20Staff%20Report.pdf Public Service Commission Staff Report] and [http://depsc.delaware.gov/orders/8281.pdf Order No. 8281]. More information on bid requirements, the application process and payments

29

Applying a weed risk assessment approach to GM crops  

Science Journals Connector (OSTI)

Current approaches to environmental risk assessment of genetically modified (GM) plants are modelled on chemical risk assessment methods, which have a strong focus on toxicity. There are additional types of ha...

Paul K. Keese; Andrea V. Robold; Ruth C. Myers; Sarah Weisman

2014-12-01T23:59:59.000Z

30

Delaware City, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

City, Delaware: Energy Resources City, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5778901°, -75.588815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5778901,"lon":-75.588815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

University of Delaware Wind | Open Energy Information  

Open Energy Info (EERE)

University of Delaware Wind University of Delaware Wind Jump to: navigation, search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of Delaware Developer First Marine Wind Energy Purchaser University of Delaware Location Lewes DE Coordinates 38.783739°, -75.160654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.783739,"lon":-75.160654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Dam Safety (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dam Safety (Delaware) Dam Safety (Delaware) Dam Safety (Delaware) < Back Eligibility Construction Fed. Government Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info Start Date 2004 State Delaware Program Type Safety and Operational Guidelines Provider Delaware Department of Natural Resources and Environmental Control The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety, and welfare. The law requires licensing, inspections and preparation of emergency action plans (EAPs) for publicly owned dams with a high or significant hazard potential.

33

Categorical Exclusion Determinations: Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Categorical Exclusion Determinations: Delaware Location Categorical Exclusion Determinations issued for actions in Delaware. DOCUMENTS AVAILABLE FOR DOWNLOAD September 28, 2010 CX-004018: Categorical Exclusion Determination High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization Systems CX(s) Applied: B3.6, B5.1 Date: 09/28/2010 Location(s): Newport, Delaware Office(s): Energy Efficiency and Renewable Energy August 23, 2010 CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08/23/2010 Location(s): Newark, Delaware Office(s): Fossil Energy, National Energy Technology Laboratory August 18, 2010 CX-003402: Categorical Exclusion Determination

34

DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy  

Energy Savers (EERE)

in Delaware are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to solar power and energy research. Through these...

35

Pollution Prevention Act (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Prevention Act (Delaware) Pollution Prevention Act (Delaware) Pollution Prevention Act (Delaware) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Delaware Program Type Environmental Regulations This act lays out objectives for pollution prevention, education and outreach. The Department shall create a multimedia waste reduction assistance program to provide technical assistance to targeted industries, focusing on small

36

EV Community Readiness projects: Delaware Valley Regional Planning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Valley Regional Planning Commission (PA); Metropolitan Energy Information Center, Inc. (KS, MO) EV Community Readiness projects: Delaware Valley Regional Planning...

37

Chrome Deposit Corporation and the University of Delaware IAC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Delaware students Joseph Camp and Nicole Suto; Keith Goossen, director of the Industrial Assessment Center; and Cesar Duarte, University of Delaware grad student. | Image...

38

Climate Action Plan (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Climate Action Plan (Delaware) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Climate Policies Provider Delaware Division of Energy and Climate To better understand the current and future vulnerabilities and risks to climate change, DNREC Secretary Collin O'Mara directed the Division of

39

Energy Incentive Programs, Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Energy Incentive Programs, Delaware October 29, 2013 - 11:29am Addthis Updated August 2013 What public-purpose-funded energy efficiency programs are available in my state? Delaware's 1999 restructuring legislation mandated the creation of a systems benefit charge to fund low-income, energy efficiency, and renewable energy programs. Also, in the late 2000s, the state created the Delaware Sustainable Energy Utility, a non-profit corporation initially funded from bond issues, proceeds from the Regional Greenhouse Gas Initiative (RGGI), and federal government stimulus monies. The SEU's business and institutional programs have not been sustained, but the state's systems benefit charge continues to fund renewable energy programs for customers of the three largest utilities (see section below).

40

Delaware Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

78-2005 78-2005 Citygate 7.58 8.32 6.54 5.67 9.03 7.19 1984-2012 Residential 16.21 16.07 17.79 15.12 15.38 15.24 1967-2012 Commercial 14.48 14.24 15.87 13.26 13.58 13.31 1967-2012 Industrial 8.93 12.54 13.99 10.18 11.69 11.61 1997-2012 Vehicle Fuel 21.90 26.48 14.12 24.55 28.76 30.97 1995-2012 Electric Power W W W W W -- 1997-2012 Underground Storage (Million Cubic Feet) Injections 1967-1975 Withdrawals 1967-1975 Net Withdrawals 1967-1975 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 215 122 121 73 64 117 1980-2012 Withdrawals 220 104 118 76 96 66 1980-2012 Net Withdrawals -6 17 3 -2 -31 51 1980-2012 Consumption (Million Cubic Feet) Total Consumption 48,155 48,162 50,148 54,825 79,715 101,676 1997-2012 Lease and Plant Fuel

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Delaware Electric Cooperative - Green Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Rural Electric Cooperative Savings Category Appliances & Electronics Commercial Lighting Lighting Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Delaware Program Type Public Benefits Fund Provider Delaware Department of Natural Resources and Environmental Control '''''Note: The Green Energy Fund regulations are currently under revision to improve program function and meet the requirements of the Delaware Energy Act. The Delaware Division of Energy and Climate

42

Alternative Fuels Data Center: Delaware Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Points of Delaware Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Delaware Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Delaware Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Delaware Points of Contact on Google Bookmark Alternative Fuels Data Center: Delaware Points of Contact on Delicious Rank Alternative Fuels Data Center: Delaware Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Delaware Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Points of Contact The following people or agencies can help you find more information about Delaware's clean transportation laws, incentives, and funding

43

Alternative Fuels Data Center: Delaware Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Laws and Delaware Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Delaware. Your Clean Cities coordinator at

44

Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9108325,"lon":-75.5276699,"alt":0,"address":"Delaware","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Environmental Control (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control (Delaware) Control (Delaware) Environmental Control (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Environmental Regulations This act has various provisions set for the local governments for greenhouse gas trading initiatives, solid waste recycling and water protection. The act also includes the Clean Air Act Operating Permit Program with a detailed account of fees to be paid for air pollution sources. The act establishes the collection of CO2 allowances, with 65 percent of

46

University of Delaware | Open Energy Information  

Open Energy Info (EERE)

Delaware Delaware Jump to: navigation, search Name University of Delaware Place Newark, Delaware Sector Solar Product University with a research department leading a solar cell development consortium. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

WHOLE BASIN MANAGEMENT: POLICY IMPLICATIONS FOR DELAWARE  

E-Print Network (OSTI)

Richard T. Sylves, Senior Policy Fellow Yda Schreuder, Senior Policy Fellow Center for Energy....................................................................37 A. DelawareWatershed Assessment.........................................................37 B and physical science, as well as industrial and economic interests, into natural resource management plans

Delaware, University of

48

Environmental Permit Application Background Statement (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of Chapter 79 of Delaware Title 7 is to ensure that the State has adequate information about the background of applicants or regulated parties for the purposes of processing permits and...

49

Tax-Exempt Bond Financing (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond Financing (Delaware) Bond Financing (Delaware) Tax-Exempt Bond Financing (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Systems Integrator Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Bond Program Provider Delaware Economic Development Office The Delaware Economic Development Authority provides tax-exempt bond financing for financial assistance to new or expanding businesses, governmental units and certain organizations that are exempt from federal

50

ELEG620: Solar Electric Systems University of Delaware Spring 2008 1 University of Delaware  

E-Print Network (OSTI)

obtained as an approximation to your design load, using 200Ws of solar panels. Existing loads which we haveELEG620: Solar Electric Systems University of Delaware Spring 2008 1 University of Delaware Department of Electrical and Computer Engineering ELEG620: Solar Electric Systems Photovoltaic System Design

Honsberg, Christiana

51

Alternative Fuels Data Center: Delaware Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for EVs The list below contains summaries of all Delaware laws and incentives

52

Clean Cities: State of Delaware Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of Delaware Clean Cities Coalition State of Delaware Clean Cities Coalition The State of Delaware Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Delaware Clean Cities coalition Contact Information Morgan Ellis 302-739-9053 morgan.ellis@state.de.us Clean Cities Coordinator Morgan Ellis Photo of Morgan Ellis Morgan Ellis has been with the Delaware Division of Energy and Climate for three years and became the Clean Cities coordinator in 2013. Her roles and responsibilities include representing the State of Delaware on the Transportation Climate Initiative, the Regional Greenhouse Gas Initiative, as well as working on climate related policies for the State of Delaware. Ellis worked with Delaware's Clean Cities Coalition on implementing the

53

Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Exemptions The list below contains summaries of all Delaware laws and incentives

54

Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Ethanol The list below contains summaries of all Delaware laws and incentives

55

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

56

Alternative Fuels Data Center: Delaware Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Other The list below contains summaries of all Delaware laws and incentives

57

Alternative Fuels Data Center: Delaware Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives Listed below are the summaries of all current Delaware laws, incentives, regulations, funding opportunities, and other initiatives related to

58

Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for NEVs The list below contains summaries of all Delaware laws and incentives

59

Alternative Fuels Data Center: Delaware Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Other The list below contains summaries of all Delaware laws and incentives

60

Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rebates to someone by E-mail Rebates to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Rebates The list below contains summaries of all Delaware laws and incentives

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Delaware Electric Cooperative - Green Energy Program Incentives |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate PV: $7,500 for Class A, $10,000 for Class B or non-profits Solar Thermal (domestic water): $3,000 for residential, $7,500 for non-residential Solar Thermal (radiant space heating): $5,000 for residential, $7,500 for non-residential Wind: $2,500 Fuel Cells: $7,500 for residential, $10,000 for non-residential Geothermal Heat Pumps: $5,000 for residential, $10,000 for non-residential

62

Delaware/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources < Delaware Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

63

Delaware River Basin Commission (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Systems Integrator Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1961 State Delaware Program Type Environmental Regulations Siting and Permitting Provider Project Review Section The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states (Pennsylvania, New York, New

64

Alternative Fuels Data Center: Delaware Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Idle Reduction

65

Alternative Fuels Data Center: Delaware Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Driving / Idling

66

Alternative Fuels Data Center: Delaware Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Tax Incentives

67

Chrome Deposit Corporation and the University of Delaware IAC: Another  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chrome Deposit Corporation and the University of Delaware IAC: Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story November 2, 2011 - 2:11pm Addthis Pictured left to right: University of Delaware students Joseph Camp and Nicole Suto; Keith Goossen, director of the Industrial Assessment Center; and Cesar Duarte, University of Delaware grad student. | Image courtesy of UD. Pictured left to right: University of Delaware students Joseph Camp and Nicole Suto; Keith Goossen, director of the Industrial Assessment Center; and Cesar Duarte, University of Delaware grad student. | Image courtesy of UD. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs

68

Alternative Fuels Data Center: Delaware Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Propane (LPG)

69

Delaware Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delaware Mountain Wind Farm Delaware Mountain Wind Farm Jump to: navigation, search Name Delaware Mountain Wind Farm Facility Delaware Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer American National Wind Power/Orion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX Coordinates 31.670717°, -104.739534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.670717,"lon":-104.739534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Delaware Identity in the Cherokee Nation  

E-Print Network (OSTI)

This article examines how the Delawares responded to the challenges that living among the Cherokees posed to their identity. It also focuses on the question of how this forced co-residence developed and what the United States role in the matter was...

Haake, Claudia

2002-03-01T23:59:59.000Z

71

DOE Solar Decathlon: The University of Delaware: Soaring to New Heights  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Technology Exploration Center that shows the solar panels on the University of Delaware house. Innovation Technology Exploration Center that shows the solar panels on the University of Delaware house. Enlarge image The University of Delaware's Solar Decathlon entry has been integrated into the Innovation Technology Exploration Center at the Delaware AeroSpace Education Foundation. (Courtesy of Lynn Bloom, Delaware AeroSpace Education Foundation) Who: University of Delaware What: Solar House Where: Delaware AeroSpace Education Foundation 585 Big Oak Road Smyrna, Delaware 19977 Map This House Public tours: Contact the Delaware AeroSpace Education Foundation at 302-659-5003 for information about visiting the Innovation Technology Exploration Center. Solar Decathlon 2002 The University of Delaware: Soaring to New Heights The University of Delaware donated its solar-powered house to the Delaware

72

Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Purchaser to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State Advanced Search

73

Renewable Energy Facilities Revolving Loan Fund (Delaware) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Revolving Loan Fund (Delaware) Facilities Revolving Loan Fund (Delaware) Renewable Energy Facilities Revolving Loan Fund (Delaware) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source U.S. Department of Commerce, Delaware Strategic Fund State Delaware Program Type Loan Program Provider Delaware Economic Development Office Renewable Energy Facilities Revolving Loan Fund provides loans at market to below-market interest rates to businesses that cannot otherwise obtain capital, provided that those businesses will create or retain jobs in industries that promote energy efficiency and/or recycling. The new fund was made possible with a $500,000 grant from the U.S. Department of

74

Delaware's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Delaware's At-large congressional district: Energy Resources Delaware's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Delaware. Registered Energy Companies in Delaware's At-large congressional district AstroPower Inc Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) Butamax Advanced Biofuels LLC Citizenre Group Delmarva Power Light Company Delmarva Power DuPont DuPont Biofuels Dupont Fuel Cells Galt Power Inc GlobalWatt Inc Ion Power Inc Naveen Energy Hydra Energy LLC O2Diesel Corporation formerly Dynamic Ventures RNK Capital LLC Sentry Power LLC Sentry Power Technology Textronics Inc Tristabella Consulting LLC University of Delaware Registered Financial Organizations in Delaware's At-large congressional

75

Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

76

Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on

77

Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

78

Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

79

Delaware Company Breathes New Life into Old Post Office Building |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 12:51pm Addthis Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What are the key facts? Delaware company Brandywine CAD Design, Inc., (B-CAD) purchased a

80

Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

82

Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

83

Newport, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7137237°, -75.6093709° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7137237,"lon":-75.6093709,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Bear, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bear, Delaware: Energy Resources Bear, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6292788°, -75.6582628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6292788,"lon":-75.6582628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Delaware, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware, Ohio: Energy Resources Delaware, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2986724°, -83.067965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2986724,"lon":-83.067965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Edgemoor, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edgemoor, Delaware: Energy Resources Edgemoor, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7501139°, -75.4996414° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7501139,"lon":-75.4996414,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Ardentown, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ardentown, Delaware: Energy Resources Ardentown, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.808446°, -75.4829752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.808446,"lon":-75.4829752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Arden, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arden, Delaware: Energy Resources Arden, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8092794°, -75.4865866° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8092794,"lon":-75.4865866,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Delaware Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Electric Cooperative Electric Cooperative Jump to: navigation, search Name Delaware Electric Cooperative Place Delaware Utility Id 5070 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Energy Efficiency Rider Residential General Service--Schedule GS Commercial General Service--Schedule GS-TOU Commercial Home Surge Protection Program--Schedule HSPP Residential Irrigation Service--Schedule IR Commercial Irrigation-Demand Off-Peak--Schedule IR-DOP Lighting Service--Schedule L-1 - Yard Light (100w) Halide Lighting

90

Hockessin, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hockessin, Delaware: Energy Resources Hockessin, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7876112°, -75.6966001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7876112,"lon":-75.6966001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Odessa, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Odessa, Delaware: Energy Resources Odessa, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.457334°, -75.6613184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.457334,"lon":-75.6613184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Wilmington, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wilmington, Delaware: Energy Resources Wilmington, Delaware: Energy Resources (Redirected from Wilmington, DE) Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7459467°, -75.5465889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7459467,"lon":-75.5465889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Brookside, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6670561°, -75.7268779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6670561,"lon":-75.7268779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Claymont, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Claymont, Delaware: Energy Resources Claymont, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8006685°, -75.4596404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8006685,"lon":-75.4596404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Clayton, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2906671°, -75.6343727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2906671,"lon":-75.6343727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Ardencroft, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ardencroft, Delaware: Energy Resources Ardencroft, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8051323°, -75.4861752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8051323,"lon":-75.4861752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Elsmere, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Elsmere, Delaware: Energy Resources Elsmere, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7392796°, -75.5979812° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7392796,"lon":-75.5979812,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Think Tank: Delaware Department of Natural Resources  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Spring 2009 Number 58 Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal Energy Policy Act (EPACT) dictated that states make several chang- es to their UST programs. The changes required by EPACT have deadlines rang- ing from 2008 to August 2009. Delaware could not make all the required changes by January 11, 2008 because the United States Environmental Protection Agency

99

Delaware Recovery Act State Memo | Department of Energy  

Energy Savers (EERE)

in Delaware are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to solar power and energy research. Through these...

100

,"Delaware Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EECBG Success Story: Delaware Community Saves with Solar | Department...  

Energy Savers (EERE)

from the shore, an administration building in Ocean View, Delaware, is soaking up the sun -- saving taxpayer dollars on town utility bills. Learn more. Addthis Related Articles...

102

UGI Energy Services, Inc. (Delaware) | Open Energy Information  

Open Energy Info (EERE)

References "EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleUGIEnergyServices,Inc.(Delaware)&oldid788741...

103

Qualifying RPS State Export Markets (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Qualifying RPS State Export Markets (Delaware) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Delaware as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

104

Delaware Community Saves with Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Community Saves with Solar Delaware Community Saves with Solar Delaware Community Saves with Solar November 28, 2012 - 4:41pm Addthis With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program

105

Delaware-Val Verde gas drilling busy  

SciTech Connect

Deep and not so deep exploration is under way in the southeastern Delaware and northwestern Val Verde basins in West Texas. Northern Terrell County is seeing a good agenda of Permian Wolfcamp development drilling in spite of testy gas prices. This paper reports that none of the drilling appears to be targeted to Ouachita facies along the Marathon portion of the Ouachita Overthrust, although oil production from several of those fields has been respectable. And a number of exploratory tests to 20,000 ft and deeper are under way or on tap in eastern Pecos County and Terrell County.

Petzet, G.A.

1992-01-13T23:59:59.000Z

106

GM SAIC JV | Open Energy Information  

Open Energy Info (EERE)

Motors and Shanghai Automotive to work on developing and commercializing hybrid and fuel cell vehicles. References: GM-SAIC JV1 This article is a stub. You can help OpenEI...

107

Microsoft Word - 15-GM.03 Rev 7  

NLE Websites -- All DOE Office Websites (Extended Search)

10/04/13 10/04/13 WP 15-GM.03 Revision 7 Integrated Safety Management System Description Tim Rotert / 10/03/13 Manager, Environmental, Safety and Health Date Working Copy Integrated Safety Management System Description WP15-GM.03, Rev. 7 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 3 ABBREVIATIONS AND ACRONYMS ............................................................................. 5 EXECUTIVE SUMMARY ................................................................................................. 7 1.0 INTRODUCTION 1, 2, 3 ........................................................................................ 10 2.0 PURPOSE AND OBJECTIVES .......................................................................... 11

108

District heating and cooling feasibility study for Dover, Delaware: Final report (September 2, 1986-May 31, 1988)  

SciTech Connect

The following is a general description of the Burns and Roe study for Dover, Delaware. The study assesses the feasibility of district heating in Dover, Delaware, and develops a conceptual district heating system. The system would use the McKee Run Station, and a new boiler plant as the heat source, and the area surrounding the plant and the legislative areas as the heat load. The study assesses the available heat load for the city, determines the available heat from the McKee Run Station, and develops a conceptual distribution network and system implementation plan. The study analyzes the environmental impacts, institutional issues, and project economics of the conceptual system. 24 figs., 26 tabs.

Not Available

1988-04-11T23:59:59.000Z

109

Town of Clayton, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Clayton, Delaware (Utility Company) Clayton, Delaware (Utility Company) Jump to: navigation, search Name Town of Clayton Place Delaware Utility Id 3732 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand (less than 300 KW) Commercial Commercial/ non-demand (less than 3500 kwh) Commercial Residential Rate Residential Average Rates Residential: $0.1630/kWh Commercial: $0.1590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Clayton,_Delaware_(Utility_Company)&oldid=411710"

110

Delaware Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Delaware Regions Delaware Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Delaware Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Delaware Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

111

University of Delaware Energy Institute Inauguration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

112

Delaware Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Delaware Regions Delaware Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Delaware Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Delaware Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

113

Public Utilities Tax Rebate (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Tax Rebate (Delaware) Utilities Tax Rebate (Delaware) Public Utilities Tax Rebate (Delaware) < Back Eligibility Commercial Agricultural Industrial Retail Supplier Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Corporate Tax Incentive Provider Department of Finance This rebate is part of the Blue Collar Jobs Act, which establishes tax breaks for businesses that have sustainable jobs and make significant investments in the state. Firms meeting the criteria for targeted industry tax credits are eligible for a rebate of 50 percent of the public utilities tax imposed on new or increased consumption of natural gas and electricity for four years. The

114

Delaware - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware - Seds - U.S. Energy Information Administration (EIA) Delaware - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

115

Washington Gas Energy Services (Delaware) | Open Energy Information  

Open Energy Info (EERE)

Services (Delaware) Services (Delaware) Jump to: navigation, search Name Washington Gas Energy Services Place Delaware Utility Id 20659 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1080/kWh Commercial: $0.0893/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Washington_Gas_Energy_Services_(Delaware)&oldid=412876" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes

116

Delaware Natural Gas LNG Storage Additions (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Additions (Million Cubic Feet) Delaware Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

117

Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

118

Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

119

Constellation NewEnergy, Inc (Delaware) | Open Energy Information  

Open Energy Info (EERE)

Constellation NewEnergy, Inc Place: Delaware References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility Id 13374 This article is a stub. You...

120

Hess Retail Natural Gas and Elec. Acctg. (Delaware) | Open Energy...  

Open Energy Info (EERE)

"EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleHessRetailNaturalGasandElec.Acctg.(Delaware)&oldid786279...

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

University of Delaware Department of Electrical and Computer Engineering  

E-Print Network (OSTI)

University of Delaware Department of Electrical and Computer Engineering Computer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Curve fit to calculate Var[ffi] in plot ffi 2 vs Norm . . . . . . . . . . . . . . 9 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 8 Error Curve analysis: tan (`) vs P i . . . . . . . . . . . . . . . . . . . . . 11 9 Dupont

Gao, Guang R.

122

University of Delaware Department of Electrical and Computer Engineering  

E-Print Network (OSTI)

University of Delaware Department of Electrical and Computer Engineering Computer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Curve t to calculate Var ] in plot 2 vs Norm . . . . . . . . . . . . . . 9 7 Distribution Error Curve analysis: tan ( ) vs Pi . . . . . . . . . . . . . . . . . . . . . 11 9 Dupont's Data: Square

Gao, Guang R.

123

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13...

124

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

125

Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

126

University of Delaware Energy Institute Inauguration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Energy Institute Inauguration Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

127

Vehicle Technologies Office: Workplace Charging Challenge Partner: GM  

NLE Websites -- All DOE Office Websites (Extended Search)

GM to someone by E-mail GM to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Workplace Charging Challenge Partner: GM

128

Impacts of the 2009 IECC for Residential Buildings at State Level - Delaware  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Delaware Summary Delaware recently adopted the 2009 International Energy Conservation Code (IECC). The code becomes effective July 1, 2010. Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above-

129

Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency August 14, 2014 - 11:25am Addthis Pictured here is an...

130

Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Natural Gas The list below contains summaries of all Delaware laws and incentives

131

City of Lewes, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lewes, Delaware (Utility Company) Lewes, Delaware (Utility Company) Jump to: navigation, search Name City of Lewes Place Delaware Utility Id 10935 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial, Three Phase Commercial Industrial Single Phase Industrial Industrial, Three Phase Industrial Residential Residential Average Rates Residential: $0.1880/kWh Commercial: $0.1690/kWh Industrial: $0.1300/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

132

Department of Energy Official in Newark, Delaware, to Highlight $168  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Official in Newark, Delaware, to Highlight Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects Department of Energy Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects March 16, 2007 - 12:00pm Addthis Funding will help further President Bush's Solar America Initiative NEWARK, DE - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Andy Karsner today highlighted DOE's selection of 13 industry-led solar technology development projects for negotiation of up to $168 million (FY'07-'09), subject to appropriation from Congress. These solar projects serve as the centerpiece of the President's Solar America Initiative (SAI), which aims to make solar energy cost-competitive with conventional forms of electricity by 2015 - helping

133

City of Seaford, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Seaford, Delaware (Utility Company) Seaford, Delaware (Utility Company) Jump to: navigation, search Name City of Seaford Place Delaware Utility Id 16852 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL NON-DEMAND METERING Commercial COMMERCIAL WITH DEMAND METERING Commercial LARGE GENERAL SERVICE -PRIMARY ENERGY Industrial LARGE GENERAL SERVICE ENERGY Industrial MEDIUM GENERAL SERVICE Industrial RESIDENTIAL Residential SECURITY LIGHTS Lighting STREET CHARGE Commercial Average Rates Residential: $0.1580/kWh

134

City of Newark, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Delaware (Utility Company) Delaware (Utility Company) Jump to: navigation, search Name Newark City of Place Delaware Utility Id 13519 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service Demand Industrial Large Light and Power Service(Classification UD) Industrial Large Light and Power Service(P) Industrial Large Light and Power Service(U) Industrial Residential Service Residential Average Rates Residential: $0.1550/kWh

135

Delaware/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources/Full Version < Delaware‎ | Wind Resources Jump to: navigation, search Print PDF Delaware Wind Resources DelawareMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

136

www.landesbioscience.com GM Crops and Food: Biotechnology in Agriculture and the Food Chain 1 GM Crops and Food: Biotechnology in Agriculture and the Food Chain 3:4, 1-5; October/November/December 2012; 2012 Landes Bioscience  

E-Print Network (OSTI)

www.landesbioscience.com GM Crops and Food: Biotechnology in Agriculture and the Food Chain 1 GM Crops and Food: Biotechnology in Agriculture and the Food Chain 3:4, 1-5; October/November/December 2012, the 35S pro- moter (P35S) and terminator are widely used in research and plant biotechnology.3,4 The P35S

137

Building Green in Greensburg: Dwane Shank Motors GM Dealership  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Shank Motors GM Dealership building in Greensburg, Kansas.

138

Mississippi State University Wins DOE and GM Challenge X 2008...  

Energy Savers (EERE)

environmental impact. Those technologies were then integrated into GM vehicles and powered by a variety of alternative fuels including B20 biodiesel, E85 ethanol, reformulated...

139

Sandia National Laboratories: GM-Sandia Strategic Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

GM-Sandia Strategic Alliance Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF, Energy, Partnership,...

140

Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82: University of Delaware Lewes Campus Onsite Wind Energy 82: University of Delaware Lewes Campus Onsite Wind Energy Project EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project SUMMARY The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware's Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been

142

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Delaware  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN DELAWARE BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN DELAWARE Delaware Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2001 IECC. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Delaware. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings. Main Differences Between the Current State Code and Standard 90.1-2007

143

New Castle, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6620572°, -75.5663132° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6620572,"lon":-75.5663132,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

North Star, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7612226°, -75.7191006° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7612226,"lon":-75.7191006,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

New Castle County, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Castle County, Delaware: Energy Resources Castle County, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5392979°, -75.667356° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5392979,"lon":-75.667356,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Delaware Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

147

Pike Creek, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7309451°, -75.704099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7309451,"lon":-75.704099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Wilmington Manor, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wilmington Manor, Delaware: Energy Resources Wilmington Manor, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6867795°, -75.5843694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6867795,"lon":-75.5843694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Kent County, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2713804°, -76.1319953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2713804,"lon":-76.1319953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

City of Milford, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Milford Milford Place Delaware Utility Id 12540 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Contract Service-Primary Voltage Industrial General Service- Primary Voltage Industrial Large General Industrial Medium General Industrial Residential Residential Small General Commercial Average Rates Residential: $0.1470/kWh Commercial: $0.1450/kWh Industrial: $0.1200/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Milford,_Delaware_(Utility_Company)&oldid=409946

151

Town of Smyrna, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Town of Smyrna Town of Smyrna Place Delaware Utility Id 17457 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Electric Hot Water/Heat Commercial Industrial Industrial Residential Residential Residential Electric Heat Only Residential Average Rates Residential: $0.1570/kWh Commercial: $0.1580/kWh Industrial: $0.1190/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Smyrna,_Delaware_(Utility_Company)&oldid=411816

152

Derivation of Delaware Bay tidal parameters from space shuttle photography  

SciTech Connect

The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O[sup 9] m[sup 3]. Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts.

Zheng, Quanan; Yan, Xiaohai; Klemas, V. (Univ. of Delaware, Newark (United States))

1993-06-01T23:59:59.000Z

153

GM crop escapes into the American wild  

Science Journals Connector (OSTI)

... to Monsanto's Roundup herbicide (glyphosate), and one resistant to Bayer Crop Science's Liberty herbicide (gluphosinate). They also found some plants that were resistant to both herbicides, ... least one herbicide-resistant transgene (41% were resistant to Roundup and 40% resistant to Liberty). They also found two plants that contained both transgenes. ...

Natasha Gilbert

2010-08-06T23:59:59.000Z

154

The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions...

155

Valuing Public Preferences for Offshore Wind Power Andrew D. Krueger, University of Delaware, College of Marine and Earth Studies  

E-Print Network (OSTI)

Valuing Public Preferences for Offshore Wind Power Andrew D. Krueger, University of Delaware there are no offshore projects operating in the U.S. to date, proposals for such developments are pending in Massachusetts, New York, Delaware, and Texas. For Delaware, offshore wind power is currently the only cost

Firestone, Jeremy

156

Delaware Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 IECC Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows

157

Microsoft Word - 15-GM.02, Rev. 8 - ready to issue  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Effective Date: 09/9/13 WP 15-GM.02 Revision 8 Worker Safety and Health Program Description Cognizant Section: Safety Programs Approved by: Signature Approval on File Farok Sharif, President & Project Manager, NWP Approved by: Signature Approval on File Joe Franco, Manager, CBFO Working Copy Worker Safety and Health Program Description WP 15-GM.02, Rev. 8 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 4 ABBREVIATIONS AND ACRONYMS ............................................................................. 6 1.0 INTRODUCTION .................................................................................................. 8

158

The Department of Energy's Innovation in GM's Chevrolet Volt | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's Innovation in GM's Chevrolet Volt The Department of Energy's Innovation in GM's Chevrolet Volt The Department of Energy's Innovation in GM's Chevrolet Volt January 11, 2011 - 11:49am Addthis Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager Last Thursday was a big day in the world of advanced vehicle batteries. On January 6, the Department of Energy's Argonne National Laboratory announced that General Motors and its battery cell supplier, LG Chem Power Inc., have each signed licensing agreements to use Argonne's breakthrough battery technology. Funded by the Department, scientists at Argonne have developed a unique suite of cathode materials - a 'family' of lithium-rich

159

The Department of Energy's Innovation in GM's Chevrolet Volt | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation in GM's Chevrolet Volt Innovation in GM's Chevrolet Volt The Department of Energy's Innovation in GM's Chevrolet Volt January 11, 2011 - 11:49am Addthis Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager Last Thursday was a big day in the world of advanced vehicle batteries. On January 6, the Department of Energy's Argonne National Laboratory announced that General Motors and its battery cell supplier, LG Chem Power Inc., have each signed licensing agreements to use Argonne's breakthrough battery technology. Funded by the Department, scientists at Argonne have developed a unique suite of cathode materials - a 'family' of lithium-rich

160

Surface Currents and Winds at the Delaware Bay Mouth  

SciTech Connect

Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

2011-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

How One Delaware County is Saving Money and Creating Jobs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Delaware County is Saving Money and Creating Jobs One Delaware County is Saving Money and Creating Jobs How One Delaware County is Saving Money and Creating Jobs April 26, 2011 - 3:23pm Addthis Tweedie Doe Project Officer, Golden Field Office What does this project do? New Castle County will carry out 158 conservation measures, including heat pump and boiler replacements, high-efficiency motors, lighting retrofits and controls, and a white reflective roof. The project impacts over 20 facilities and 461,643 square feet of building space. Solar arrays, installed on the Government Center and Hockessin Library roofs, will provide 128 kilowatts of electricity to the two buildings. Federal, state and county officials were in New Castle County, Delaware last week to kick off the next phase of the county's Smart Energy

162

Weatherization Builds on Delaware's Innovative Past: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect

Delaware demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

163

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project Site  

E-Print Network (OSTI)

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project wind power project site, we conducted an analysis of the suitability of habitat within the project

Firestone, Jeremy

164

UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND  

E-Print Network (OSTI)

UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS FOR STATE ENERGY POLICY by Jacqueline D Piero Approved ................................................................................................. 3 Offshore wind: a new option in the United States.............................................. 4

Firestone, Jeremy

165

An unusually large turtle barnacle (Chelonibia p. patula) on a blue crab from Delaware Bay  

Science Journals Connector (OSTI)

A turtle barnacle,Chelonibia patula patula (Ranzani) of unusually large size was found on a large female blue crab in Delaware Bay in September, 1954. This appears to be the largest known specimen ofC. p. patula....

Austin B. Williams; Hugh J. Portner

1964-01-01T23:59:59.000Z

166

GM Cotton in China: Innovation integration and seed market disintegration  

E-Print Network (OSTI)

GM Cotton in China: Innovation integration and seed market disintegration Michel FOK A.C.1 , Naiyin advantages of Bt-cotton have permitted the successful diffusion of Genetically Modified Cotton in China. The efficiency of Bt-cotton however fluctuates between cotton production regions. In Jiangsu Province, along

Paris-Sud XI, Université de

167

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

plants with specific energy and cost savings data whena significant reduction in energy and costs. Generally, twoDelaware) and found energy and cost savings of 40,700 MBtu

Galitsky, Christina

2008-01-01T23:59:59.000Z

168

September/October 2006 Out of the Ivory Tower Safety of HFCS GM plants: GM-less Pollen  

E-Print Network (OSTI)

printed in the article was a little more information that I shared on Imperial Valley beekeeping. I also on to say that honey bee colonies survived in Imperial County where temperatures reached 120 degrees F in the Imperial County area, at least one beekeeper said that if they wanted to know what went on in deep

Ferrara, Katherine W.

169

Building Green in Greensburg: Dwane Shank Motors GM Dealership  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dwane Shank Motors Dwane Shank Motors GM Dealership The Dwane Shank GM Dealership was completely destroyed by the tornado, but within just a few days the Shank family was up and running and selling cars to residents who had lost their vehicle in the tornado. The dealership also hurried to build their new 8,300-square-foot building and designed it to maximize energy efficiency and green strategies. This was vital to telling the story and demonstrating the commitment of Greensburg, Kansas, to rebuild green. The new building features a tubular daylighting device and high sidelighting panels to maximize natural light in the sales room and service shop. ENERGY EFFICIENCY FEATURES * South-facing building orientation and windows maximize the use of natural light to reduce electrical lighting loads

170

Implementation of the El Mar (Delaware) Unit CO2 flood  

SciTech Connect

Union Royalty, Inc., Amoco Production Company, and Enron Liquids Pipeline Company recently announced that they have commenced operations of an innovative enhanced oil recovery project at the El Mar (Delaware) Unit in Loving County, Texas, about 100 miles west of Midland, Texas. The project will convert the unit`s existing oil recovery system from a secondary (waterflood) system to a tertiary (CO2 flood) system designed to use carbon dioxide and water to increase crude oil production from the unit. What makes this EOR project unique is the creative deal structured by the partners involved. Amoco, Union Royalty, and Enron have worked out an unprecedented arrangement whereby Amoco essentially trades CO2 for an interest in Union Royalty`s future oil production from the unit. By pioneering this innovative deal new production life has been restored to a field that otherwise might dry up. Enron is participating in the project by transporting CO2 to the unit via a 40-mile expansion of its Central Basin Pipeline system from the Dollarhide oil field in Andrews county, Texas. The project will be implemented in four phases. The first phase in operation today comprises seven CO2 injection wells which have begun to process the reservoir with CO2. Plans now call for more CO2 injectors to be installed during the next three to five years until a total of 65 CO2 injectors and an on-site CO2 compression facility serve the unit`s 70 production wells.

McKnight, T.N. Jr. [Union Royalty, Inc., Midland, TX (United States); Merchant, D.L.

1995-12-31T23:59:59.000Z

171

American Ref-Fuel of Delaware Valley Biomass Facility | Open Energy  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley Sector Biomass Facility Type Municipal Solid Waste Location Delaware County, Pennsylvania Coordinates 39.907793°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.907793,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Cost Transfer Procedure The University of Delaware has a stewardship responsibility for all sponsored funds; proper  

E-Print Network (OSTI)

- 1 - Cost Transfer Procedure Summary The University of Delaware has a stewardship responsibility this obligation. The University recognizes that cost transfers are sometimes necessary to correct bookkeeping, and inadequately explained transfers, especially those involving projects with cost overruns or unexpended balances

Firestone, Jeremy

173

Impaired Fungicide Activity in Plants Blocked in Disease Resistance Signal Transduction  

Science Journals Connector (OSTI)

...physiological immunity in plants Church G.M. Gilbert W. Genomic sequencing Dangl J.L...Animals Arabidopsis drug effects genetics microbiology Cyclopentanes metabolism Drug Synergism...pathogenicity Oxylipins Plant Diseases genetics microbiology Signal Transduction genetics Thiadiazoles...

Antonio Molina; Michelle D. Hunt; John A. Ryals

174

Regional geologic characterization of the Second Bone Spring Sandstone, Delaware basin, Lea and Eddy Counties, New Mexico  

E-Print Network (OSTI)

The Bone Spring Formation is a series of interbedded siliciclastics and carbonates that were deposited in the Delaware basin during the Leonardian (Early Permian). It consists of the First, Second and Third Carbonate and the First, Second and Third...

Downing, Amanda Beth

2012-06-07T23:59:59.000Z

175

Mississippi State University Wins DOE and GM Challenge X 2008 Advanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State University Wins DOE and GM Challenge X 2008 State University Wins DOE and GM Challenge X 2008 Advanced Vehicle Competition Mississippi State University Wins DOE and GM Challenge X 2008 Advanced Vehicle Competition May 21, 2008 - 12:00pm Addthis Launches EcoCAR: The NeXt Challenge WASHINGTON - U.S. Secretary of Energy Samuel W. Bodman today announced that Mississippi State University in Starkville, Miss. is the first place winner of Challenge X, in which 17 university teams from across the U.S. and Canada competed to reengineer a General Motors (GM) Chevrolet Equinox Crossover SUV with advanced powertrain configurations. The winner of the competition achieved high fuel economy and low emissions, all while maintaining driver comfort and vehicle performance. Department of Energy (DOE), GM and Natural Resources Canada also kicked off EcoCAR: The NeXt

176

TODAY: Secretary Chu and GM to Hold Conference Call with Virginia Tech |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TODAY: Secretary Chu and GM to Hold Conference Call with Virginia TODAY: Secretary Chu and GM to Hold Conference Call with Virginia Tech TODAY: Secretary Chu and GM to Hold Conference Call with Virginia Tech June 17, 2011 - 12:00am Addthis Washington, D.C. - Today, Energy Secretary Steven Chu will join Kent Helfrich, Executive Director of electronic controls and software at General Motors (GM), on a conference call to congratulate Virginia Tech as the overall winners of EcoCAR: The NeXt Challenge. Students from Virginia Tech will join the call to discuss the real world experience they gained in the program and the winning fuel-efficient vehicle they designed and built. Sixteen schools competed in the EcoCAR: The NeXt Challenge, a three-year collegiate student engineering competition - sponsored by the Department of Energy and GM - that focuses on advanced vehicle technologies that minimize

177

,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035de3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035de3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:04 PM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.37 36937,4.61

178

,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM" "Back to Contents","Data 1: Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SDE_2" "Date","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,1 34880,1

179

Unsound science? Transatlantic regulatory disputes over GM crops  

Science Journals Connector (OSTI)

In the risk debate over genetically modified (GM) crops, Europe's regulatory delays have often been branded as ''political'', i.e. not based on science. Yet the US slogan ''sound science'' tends to conceal value-laden features of safety claims, their weak scientific basis, their normative framing and their socio-political influences. By contrast a ''precautionary approach'' can more readily identify scientific unknowns to be investigated, while acknowledging the agricultural-environmental values which inform risk assessment. These issues underlie transatlantic regulatory disputes over insect-protected Bt maize. In both the USA and Europe, public protest has stimulated risk-assessment research on broader cause-effect pathways, as well as more stringent regulation. For harm to non-target insects, however, new evidence of risk has been disparaged as unsound. It has been criticized on various grounds, which could apply just as well to evidence of safety; thus double standards have served to protect safety claims. And non-target harm is deemed acceptable through unsubstantiated comparisons to agrochemical usage. In these ways, ''sound science'' operates as an ideology, pre-empting debate on the framing of scientific uncertainty. The real choice is not between ''science versus politics'', but rather between ways of linking them.

Les Levidow; Susan Carr

2000-01-01T23:59:59.000Z

180

Vehicle Technologies Office: Fact #669: April 4, 2011 GM Sells More  

NLE Websites -- All DOE Office Websites (Extended Search)

9: April 4, 2011 9: April 4, 2011 GM Sells More Vehicles in China than in the U.S. to someone by E-mail Share Vehicle Technologies Office: Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. on Facebook Tweet about Vehicle Technologies Office: Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. on Twitter Bookmark Vehicle Technologies Office: Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. on Google Bookmark Vehicle Technologies Office: Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. on Delicious Rank Vehicle Technologies Office: Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. on Digg Find More places to share Vehicle Technologies Office: Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. on

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

S0 STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL MOTORS CORPORATION (GM) FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S0 S0 STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL MOTORS CORPORATION (GM) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-03AL67635, DOE WAIVER NO. W(A) 03-019. The Petitioner, GM, has requested a waiver of all domestic and foreign patent rights to inventions that GM may conceive or first actually reduce to practice in the course of GM's work under Cooperative Agreement Number DE-FC04-03AL67635 entitled "Innovative Emission Control Device." The petition was originally submitted as part of a response to a funding proposal - known at that time as DE-RP04-01AL67057. The work to be done under the cooperative agreement will be the development of new microwave soot combustion components in compression-ignition, direct-injection (CIDI)

182

The Application of Improved Grey GM(1,1) Model in Power System Load Forecast  

Science Journals Connector (OSTI)

According to existing Grey prediction model GM (1,1) in the data fluctuation, mutation, turning under uncertainty such as the problem of poor prediction accuracy, this paper presents an original data sequence ...

Zhengyuan Jia; Zhou Fan; Chuancai Li

2012-01-01T23:59:59.000Z

183

,"Delaware Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

184

,"Delaware Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

185

,"Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (MMcf)" Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1350_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1350_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:42:28 PM"

186

,"Delaware Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (MMcf)" Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Withdrawals (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5060de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5060de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:19 PM"

187

Box, Hunter and Hunter Pilot Plant Example C oe yield (gm)  

E-Print Network (OSTI)

calculations of fitted effects are: combination cycle #1 cycle #2 cycle #3 cycle #3 (1) a b ab c ac C ?" (# ) vs "high" (# ) # 7 oe #$ factorial run with observations per combination A B C name 's (1) a b ab c calculations of 's (for A and B Main Effects and AC InteractionsCs Model): effect value cycle #1 cycle #2 cycle

Vardeman, Stephen B.

188

Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project  

SciTech Connect

The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

1997-08-01T23:59:59.000Z

189

UNIVERSITY OF DELAWARE-FACILITIES DESIGN STANDARDS Rev. 1/03 -1 -fds\\pdf\\fpc\\introduction.pdf  

E-Print Network (OSTI)

environment, these standards may be deficient in some areas. It is the responsibility of the prime consultant to architects and engineers designing facilities for the University of Delaware. These guidelines are offered requirements should not be limited to those codes. It is the consultant's responsibility to investigate

Firestone, Jeremy

190

STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL MOTORS LLC (GM) FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GENERAL MOTORS LLC (GM) FOR AN ADVANCE WAIVER OF GENERAL MOTORS LLC (GM) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZCI- 1-40497-01; W(A) 2011-041 GM has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its work under subcontract number ZCI-40497-01 under the prime contract DE-AC36-08G028308, the contract between DOE and the Alliance for Sustainable Energy, LLC, as the contractor of the National Renewable Laboratory. The subcontract is entitled "Development of Computer-Aided Design Tools for Automotive Batteries." The objective of the project funded through the subcontract is to develop suites of software tools that enable automobile and battery manufacturers, pack integrators, and other end-

191

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III  

SciTech Connect

The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

2001-05-08T23:59:59.000Z

192

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: GM  

NLE Websites -- All DOE Office Websites (Extended Search)

GM Marion & Orion GM Marion & Orion Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

193

,"Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (MMcf)" Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:45 PM"

194

,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM"

195

Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report  

SciTech Connect

This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

None

1980-07-01T23:59:59.000Z

196

Low power architecture and circuit techniques for high boost wideband Gm-C filters  

E-Print Network (OSTI)

of such 'Equalizing Filter' (boost filter) for read channel applications. Specifically, a 330MHz, 5th order Gm-C continuous time lowpass filter with 24dB boost is designed. Existing architectures are found to be unsuitable for low power, wideband and high boost...

Gambhir, Manisha

2007-09-17T23:59:59.000Z

197

IEEE PES GM07 June 24-28, 2007 I. INTRODUCTION  

E-Print Network (OSTI)

-locating merchant generation and wholesale electric power markets that are using the transmission system in ways utilize the waste heat. The realities facing future power systems that require rethinking the distributionIEEE PES GM07 June 24-28, 2007 I. INTRODUCTION The electric power industry is in the midst

198

Contextual appraisal of GM cotton diffusion in South Africa Michel Fok1  

E-Print Network (OSTI)

Contextual appraisal of GM cotton diffusion in South Africa Michel Fok1 , Jean-Luc Hofs1 , Marnus Gouse2 , Johann Kirsten2 1 CIRAD, France ; 2 University of Pretoria, South Africa Published in: Life the introduction of GMC and this causes observers to question the so-called success story of GMC in South Africa

Paris-Sud XI, Université de

199

Robust Optimization of Oil Reservoir Flooding G.M. van Essen, M.J. Zandvliet,  

E-Print Network (OSTI)

Robust Optimization of Oil Reservoir Flooding G.M. van Essen, M.J. Zandvliet, P.M.J. Van den Hof the reservoir to the subsurface. The injection wells inject water into the oil reservoir with the aim to push reservoirs, the oil-water front does not travel uniformly towards the pro- duction wells, but is usually

Van den Hof, Paul

200

Depositional environment and hydrodynamic flow in Guadalupian Cherry Canyon sandstone, West Ford and West Geraldine fields, Delaware Basin, Texas  

E-Print Network (OSTI)

and entrapment of hydrocarbons. Delaware Mountain Group sediments are currently generating oil. Decementation enhances the reservoir by the formation of secondary porosity. The reservoir sandstones have an aver age porosity of 26$ and an aver age permeability... of 24 md. Oil accumulates in stratigraphic traps located along the updip meander loops of tur bidite channels. A tilted oil/water contact in West Ford and West Ger aldine fields indicates that hydrodynamic flow is pr esent. Heads calculated...

Linn, Anne Marie

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Engineering evaluation of the General Motors (GM) diesel rating and capabilities  

SciTech Connect

K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

Gross, R.E.

1992-04-01T23:59:59.000Z

202

Engineering evaluation of the General Motors (GM) diesel rating and capabilities  

SciTech Connect

K-Reactor's number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine's original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators Was excessive wear of the piston pin bushings a result of having exceeded the engine's capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts Considering the engine's overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine's original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine's failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines' 12OOkw continuous rating.

Gross, R.E.

1992-04-01T23:59:59.000Z

203

G.M. Allen & Sons Wind Farm | Open Energy Information  

Open Energy Info (EERE)

M. Allen & Sons Wind Farm M. Allen & Sons Wind Farm Jump to: navigation, search Name G.M. Allen & Sons Wind Farm Facility G.M. Allen & Sons Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Endless Energy Developer Endless Energy Energy Purchaser G.M. Allen & Sons farm Location Orland ME Coordinates 44.5704°, -68.7379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5704,"lon":-68.7379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

"Eat more foods that grow on plants and less that are processed in plants."  

E-Print Network (OSTI)

Cal 0gm Fruited Yogurt 8oz 237 Cal 2gm Lite Ranch Dressing 2tbsp 50 Cal 4gm Regular Ranch Dressing 2

Hardy, Christopher R.

205

Mutations in the GM1 Binding Site of Simian Virus 40 VP1 Alter Receptor Usage and Cell Tropism  

Science Journals Connector (OSTI)

...shGM3) and glucosylceramide synthase (shGC), cells were infected with concentrated...5-GCACTACTTCGACAGTCAATGCGAACATTGACTGTCGAAGTAGTGC-3 shGC-1, 5-GCAACTGACAAACAGCCTTATCGAAATAAGGCTGTTTGTCAGTTGC-3; shGC-2, 5-GCTTACTGACATGGTGAATCACGAATGATTCACCATGTCAGTAAGC-3...

Thomas G. Magaldi; Michael H. C. Buch; Haruhiko Murata; Kimberly D. Erickson; Ursula Neu; Robert L. Garcea; Keith Peden; Thilo Stehle; Daniel DiMaio

2012-04-18T23:59:59.000Z

206

Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas  

SciTech Connect

In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

2014-01-29T23:59:59.000Z

207

2009 Botany and Plant Pathology Publications Armstrong, Donald  

E-Print Network (OSTI)

2009 Botany and Plant Pathology Publications Armstrong, Donald REFEREED JOURNAL ARTICLES Banowetz, G.M., Azevedo, M. D., Armstrong, D. J., and Mills, D. I., 2009. Germination-arrest factor (GAF): 2 fluorescens strain WH6. Biological Control 50: 103-110. Armstrong, D., Azevedo, M., Mills, D., Bailey, B

Grünwald, Niklaus J.

208

Plant Odor Analysis of Potato: Response of Guatemalan Moth to Above- and Belowground Potato Volatiles  

Science Journals Connector (OSTI)

Plant Odor Analysis of Potato: Response of Guatemalan Moth to Above- and Belowground Potato Volatiles ... Potatoes were planted in fertilized and limed peat soil (NPK 180:90:195 g/m3; Hydro Agri AB, Landskrona, Sweden) in 5-L plastic pots. ...

Miriam Frida Karlsson; Gran Birgersson; Alba Marina Cotes Prado; Felipe Bosa; Marie Bengtsson; Peter Witzgall

2009-06-04T23:59:59.000Z

209

MotorWeek Video Transcript: BlueTec Clean Diesel and GM's Cylinder Cut-off  

NLE Websites -- All DOE Office Websites (Extended Search)

BlueTec Clean Diesel and GM's Cylinder Cut-off BlueTec Clean Diesel and GM's Cylinder Cut-off Jessica Shea Choksey:Mercedes-Benz has over 80 years of diesel experience. So it's no surprise they are on the cutting edge of making them environmentally friendly. The full-size seven-passenger 2007 Mercedes-Benz GL320 BlueTec is the cleanest diesel sport-utility vehicle in the world. Named after the color of the emission reducing urea fluid injected into the catalyst system, BlueTec is the technology that can ultimately make clean diesels the obvious choice for Americans. Using Mercedes latest 3.2 liter Turbo diesel V-6, the GL320 will also be the most efficient big SUV with an anticipated highway fuel economy of over 25 miles per gallon. The GL BlueTec goes on sale in January. Also making fuel-saving automotive news is General Motors. As part of

210

The dicer-like1 Homolog fuzzy tassel Is Required for the Regulation of Meristem Determinacy in the Inflorescence and Vegetative Growth in Maize  

Science Journals Connector (OSTI)

...Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714 c Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 d Pioneer, A Dupont Company, Johnston, Iowa 50131 e Plant Gene Expression...

Beth E. Thompson; Christine Basham; Reza Hammond; Queying Ding; Atul Kakrana; Tzuu-Fen Lee; Stacey A. Simon; Robert Meeley; Blake C. Meyers; Sarah Hake

2014-12-02T23:59:59.000Z

211

Reservoir Character of the Avalon Shale (Bone Spring Formation) of the Delaware Basin, West Texas and Southeast New Mexico: Effect of Carbonate-rich Sediment Gravity Flows  

E-Print Network (OSTI)

play is not considered to extend to the top of the first Bone Spring carbonate because hydraulic fracturing in the upper parts may penetrate overlying water-bearing units within the Delaware Mountains Group. The Avalon has been reported to range from...

Stolz, Dustin

2014-05-31T23:59:59.000Z

212

Assessment of Delaware and Groningen effects on dual-laterolog measurements with a self-adaptive hp finite-element method  

E-Print Network (OSTI)

Assessment of Delaware and Groningen effects on dual-laterolog measurements with a self-adaptive hp and Groningen effects. Both effects give rise to abnormally high readings of DLL measurements under extreme laterolog mea- surements, generating the so-called Groningen effect. INTRODUCTION The electrical resistivity

Torres-Verdín, Carlos

213

Authors' Note: Address correspondence to John Byrne, Center for Energy & Environmental Policy, University of Delaware, Newark, DE 19716-7301; e-mail: jbbyrne@udel.edu.  

E-Print Network (OSTI)

, University of Delaware, Newark, DE 19716-7301; e-mail: jbbyrne@udel.edu. In an October, 2008 New York Times81 Authors' Note: Address correspondence to John Byrne, Center for Energy & Environmental Policy article, journalist John Tierney argued that recent discus- sions about energy futures ". . . have

Delaware, University of

214

Fusion procedure for Coxeter groups of type B and complex reflection groups G(m,1,n)  

E-Print Network (OSTI)

A complete system of primitive pairwise orthogonal idempotents for the Coxeter groups of type $B$ and, more generally, for the complex reflection groups $G(m,1,n)$ is constructed by a sequence of evaluations of a rational function in several variables with values in the group ring. The evaluations correspond to the eigenvalues of the two arrays of Jucys--Murphy elements.

O. V. Ogievetsky; L. Poulain d'Andecy

2011-11-27T23:59:59.000Z

215

Detection of GM Soybean by Multiplex-Touchdown PCR-Microchip Capillary Electrophoresis with Response Surface Methodology Optimization  

Science Journals Connector (OSTI)

......2). In the course of the commercialization of GM organisms (GMOs...much effort to accomplish the process of GMOs detection as a single...about the on-chip working process was shown in Figure-1...diagram of the on-chip working process. The figures-indicate different......

Yongxin Li; Ning Su; Bo Zheng; Jia Ruan; Yang Li; Chunying Luo; Yuanqian Li

2014-05-01T23:59:59.000Z

216

Optimal Quantum Pumps J. E. Avron (a) , A. Elgart (b) , G.M. Graf (c) and L. Sadun (d)  

E-Print Network (OSTI)

Optimal Quantum Pumps J. E. Avron (a) , A. Elgart (b) , G.M. Graf (c) and L. Sadun (d) (a) Department of Mathematics, University of Texas, Austin Texas 78712, USA Optimal pumps saturate a lower bound on energy dissipation. We give a characterization of optimal pumps in terms of the energy shift matrix

217

Transport and Dissipation in Quantum Pumps J. E. Avron # , A. Elgart + , G.M. Graf # and L. Sadun  

E-Print Network (OSTI)

Transport and Dissipation in Quantum Pumps J. E. Avron # , A. Elgart + , G.M. Graf # and L. Sadun § May 25, 2003 Abstract This paper is about adiabatic transport in quantum pumps. The notion of ``energy: It determines the current, the dissipation, the noise and the entropy currents in quantum pumps. We discuss

218

Power Plant Power Plant  

E-Print Network (OSTI)

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

219

One-Micron Beams for Macromolecular Crystallography at GM/CA-CAT  

SciTech Connect

GM/CA-CAT has developed a 1-{mu}m beam for challenging micro-diffraction experiments with macromolecular crystals (e.g. small crystals) and for radiation damage studies. Reflective (Kirkpatrick-Baez mirrors) and diffractive (Fresnel zone plates) optics have been used to focus the beam. Both cases are constrained by the need to maintain a small beam convergence. Using two different zone plates, 1.0x1.0 and 0.8x0.9 {mu}m{sup 2} (VxH,FWHM) beams were created at 15.2 keV and 18.5 keV, respectively. Additionally, by introducing a vertical focusing mirror upstream of the zone plate, a line focus at 15.2 keV was created (28x1.4 {mu}m{sup 2} VxH,FWHM) with the line oriented perpendicular to the X-ray polarization and the crystal rotation axis. Crystal-mounting stages with nanometer resolution have been assembled to profile these beams and to perform diffraction experiments.

Yoder, D. W.; Sanishvili, R.; Xu, S.; Makarov, O.; Benn, R.; Corcoran, S.; Fischetti, R. F. [GMCA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Vogt, S. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

2010-06-23T23:59:59.000Z

220

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)  

SciTech Connect

The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

1999-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

THE EXPERIMENTAL STUDY OF A SINGLE STAGE G-M REFRIGERATOR WITH THE REGENERATOR SET OUTSIDE THE CYLINDER.  

SciTech Connect

In this paper, a single-stage G-M refrigerator with the regenerator set outside the cylinder is presented. The experimental system for testing the performance of the cryocooler was constructed. The lowest temperature was 14K when the operating frequency was 0.6 Hz. The cooling capacity of 4.4W has been obtained at 20K. The effects of operating parameters of the refrigerator on cooling performance were also experimentally studied.

WANG,L.

1999-07-12T23:59:59.000Z

222

The Electroweak Supersymmetry (EWSUSY) from the GmSUGRA in the MSSM  

E-Print Network (OSTI)

Considering the Generalized Minimal Supergravity Model (GmSUGRA) in the Minimal Supersymmetric Standard Model (MSSM), we study the Electroweak Supersymmetry (EWSUSY), where the squarks and/or gluino are heavy around a few TeVs while the sleptons, sneutrinos, Bino, Winos, and/or Higgsinos are light within one TeV. We resolves the $(g_{\\mu}-2)/2$ discrepancy for the muon anomalous magnetic moment in the Standard Model (SM) successfully and identifies a parameter space where such solutions also have the electroweak fine-tuning measures $\\Delta_{EW}~16.5$ (6$\\%$) and $\\Delta_{EW}~25$ (4$\\%$) without and with the WMAP bounds, respectively. We find that the allowed mass ranges consistent within 3$\\sigma$ of the $g-2$ discrepancy for the lightest neutralino, charginos, stau, stau neutrinos, and first two-family sleptons are $[44,390]$ GeV, $[100,700]$ GeV, $[100,700]$, and $[52,700]$ GeV, respectively. Moreover, our solutions satisfy the latest bounds reported by the ATLAS and CMS Collaborations on electroweakinos and sleptons. The colored sparticles such as light stop, gluinos, and the first two-generation squark masses have been found in the mass ranges of $[500, 3000]$ GeV,[1300, 4300] GeV, and $[1800, 4200]$ GeV, respectively. To obtain the observed dark matter relic density for the Lightest Supersymmetric Particle (LSP) neutralino, we have the bino-wino, LSP neutralino-stau, and LSP neutralino-tau sneutrinos coannihilation scenarios, and the resonance solutions such as $A$-pole, Higgs-pole, and $Z$-pole. We identify the higgsino-like LSP neutralino and display its spin-independent and spin-dependent cross sections with nucleons. We present ten benchmark points which can be tested at the up coming collider searches as well.

Tianjun Li; Shabbar Raza

2014-11-20T23:59:59.000Z

223

An Atlas of Soybean Small RNAs Identifies Phased siRNAs from Hundreds of Coding Genes  

Science Journals Connector (OSTI)

...edu . a Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware...Delaware 19711 c Division of Plant Science, University of Missouri, Columbia...Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia...

Siwaret Arikit; Rui Xia; Atul Kakrana; Kun Huang; Jixian Zhai; Zhe Yan; Oswaldo Valdés-López; Silvas Prince; Theresa A. Musket; Henry T. Nguyen; Gary Stacey; Blake C. Meyers

2014-12-02T23:59:59.000Z

224

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report  

SciTech Connect

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

Dutton, S.P.

1996-04-30T23:59:59.000Z

225

Proposed Action Title: (0470-1517) Donald Danforth Plant Science Center -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(0470-1517) Donald Danforth Plant Science Center - (0470-1517) Donald Danforth Plant Science Center - Center for Enahnced Camelina Oil Program or Field Office: Advanced Research Projects Agency - Energy Location(s) (City/County/State): Michigan, Missouri, Montana, Nebraska, New Mexico Proposed Action Description: Funding will support development of genetically modified (GM) camelina that grows at an increased yield and produces more seed oil than wild- type camelina for use as a biofuel feedstock. Proposed work will consist of (1) genetically modifying camelina to improve carbon capturel assimilation and light utilization, and to redirect carbon flux towards seed oil synthesis, including synthesis of oleic acid; (2) fabricating and testing phenomics chambers used to analyze plant metabolism under varying conditions (e.g. humidity, temperature); (3) growing selected lines of non-GM, wild-type camelina in contained

226

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 26290 of 28,904 results. 81 - 26290 of 28,904 results. Article Florida company looks to put algae in your gas tank Algenol Biofuels Inc., receives a grant to develop a biorefinery in Freeport, Texas. http://energy.gov/articles/florida-company-looks-put-algae-your-gas-tank Article Electric Cars Coming to Former Delaware GM Plant If a company's cars are luxurious enough for the Crown Prince of Denmark, then just imagine how the vehicles - which have a 50-mile, emission-free range on a single electric charge - might be received by folks in the U.S. http://energy.gov/articles/electric-cars-coming-former-delaware-gm-plant Article Portland Advancing Green Image With Solar Installs A quick Internet search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large

227

Don't break the pipeline: Ensuring a workforce for the burning plasma era G.M. Olynyk, Z.S. Hartwig, and R.T. Mumgaard  

E-Print Network (OSTI)

Don't break the pipeline: Ensuring a workforce for the burning plasma era G.M. Olynyk, Z.S. Hartwig, creating and sustaining a workforce requires a robust "pipeline" of people--from undergraduates to Ph.D stu uninterrupted and the decades of accumulated expertise are not lost due to a discontinuity in the pipeline. An e

228

Kernel density in the use of the strong stability method to evaluate the proximity of G/M/1 and M/M/1 systems  

Science Journals Connector (OSTI)

Bouallouche [3] has applied the strong stability method to study the proximity of the G/M/1 and M/M/1 systems when the general distribution of arrivals G is assumed to be hyper-exponantial. In this paper, we show the applicability of the strong stability ... Keywords: approximation, bandwidth, boundary effects, kernel density, queueing systems, strnog stability

Acha Bareche; Djamil Assani

2007-10-01T23:59:59.000Z

229

High resolution cortical thickness measurement from clinical CT data G.M. Treece, A.H. Gee, P.M. Mayhew and K.E.S. Poole  

E-Print Network (OSTI)

) methods of assessing hip structure, most notably with multi-detector computed tomography, MDCT (Bouxsein and technically limited by thresholding errors caused by relatively low resolution data sets. Ideally, we wouldHigh resolution cortical thickness measurement from clinical CT data G.M. Treece, A.H. Gee, P

Drummond, Tom

230

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",9,"Annual",2013,"...

231

Developer Installed Treatment Plants  

E-Print Network (OSTI)

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

232

E-Print Network 3.0 - archael system ignicoccus Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Source: Green, Pamela - Delaware Biotechnology Institute & Department of Plant and Soil Sciences, University of Delaware; Lowe, Todd M. - Department of Biomolecular...

233

E-Print Network 3.0 - alpha-herpesvirus infection induces Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

... Source: Green, Pamela - Delaware Biotechnology Institute & Department of Plant and Soil Sciences, University of Delaware Collection: Biotechnology ; Biology and Medicine 16...

234

Recirculation of In-Plant Air at General Motors  

E-Print Network (OSTI)

(fitted around the drum itself) is a coarse fiber, non-woven polyester and is designed for use in oil mist and smoke applications. This inner layer holds the outside media away from the drum keeping it from contacting the expanded metal; thus... for cleaning up the in-plant environment at GM is the rotary drum filter. This rotary drum filter is an air cleaning unit manufactured by two indus trial concerns. It consists of an expanded metal drum fitted with two layers of media. The inner layer...

McKibben, V. L.

1983-01-01T23:59:59.000Z

235

Frozen plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

236

Carnivorous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

237

A 0.45NW, 0.5V, 59-DB DR, Gm-C LOW-PASS FILTER FOR PORTABLE ECG RECORDING  

E-Print Network (OSTI)

A 0.45NW, 0.5V, 59-DB DR, Gm-C LOW-PASS FILTER FOR PORTABLE ECG RECORDING Chutham Sawigun, Senad. Abstract: This paper presents the design of a sub-threshold CMOS G,,,-C low-pass filter in a portable ECG.23Vpp. 1 INTRODUCTION As a consequence of the heart activity, electrocardiograms (ECGs) can be recorded

Serdijn, Wouter A.

238

_MainReportGM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 285...

239

GM Team Project  

E-Print Network (OSTI)

) Incorporate weather data into database 4) Estimate paint shop energy usage Project Objectives ESL-IE-14-05-05 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Psychrometric Charts 101 ? Psychrometrics... of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Defining Paths Region Step 1?2 Step 2? 3 Step 3? 4 A Sensible Heating Evaporative Cooling B Evaporative Cooling Sensible Cooling C Sensible Cooling Latent Cooling...

Deng, J.; Laveman, J.; MacAdam, K.; Kunyao, Y.

2014-01-01T23:59:59.000Z

240

Historical Background on the Performance Assessment for the Waste Isolation Pilot Plant  

SciTech Connect

In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the U.S. Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a Research and development facility for the safe management storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and after site selection, the U.S. Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance. assessment conducted in 1996, which is summarized in this special issue of Reliability Engineering and System Safety. This performance assessment was the culmination of four preliminary performance assessments conducted between 1989 and 1992. This paper provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project.

RECHARD,ROBERT P.

1999-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Medicinal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

242

Bog Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

243

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996  

SciTech Connect

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

Dutton, S.P.

1996-10-01T23:59:59.000Z

244

Availability to Plants of Potash in Polyhalite.  

E-Print Network (OSTI)

Table 3-Potash recovered by corn grown on quartz sand No. 31116. 5 z P 4 bb Pot numbers Dried Potash in Potash Per cent Additions 1 we of 1 corn, 1 1 rezd, 1 Potash corn, grams per cent recovered 31 DNKa Muriate of potash, .2545 gm. potash... ............................................................................. 10.3 1 1.87 75.7 ....................... 34 DN2Ka Muriate of potash, .5090 gm. potash .3740 !5 DN2Ka Muriate of potash, .5090 gm. potash ....................... .a408 ............. a6 DN2Ka Muriate of potash, .5090 gm. potash Average...

Fraps, G. S. (George Stronach); Schmidt, H.

1932-01-01T23:59:59.000Z

245

Poisonous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

246

Bagdad Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bagdad Plant Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was planning to make the following closing comments at the DOE Public Meeting on February 23, 2012, but since the extended building evacuation caused the meeting to run well past the scheduled completion time I decided to submit my comments directly to you for the record.

247

Preliminary geohydrologic conceptual model of the Los Medanos region near the Waste Isolation Pilot Plant for the purpose of performance assessment  

SciTech Connect

This report describes a geohydrologic conceptual model of the northern Delaware Basin to be used in modeling three-dimensional, regional ground-water flow for assessing the performance of the Waste Isolation Pilot Plant (WIPP) in the Los Medanos region near Carlsbad, New Mexico. Geochemical and hydrological evidence indicates that flow is transient in the Rustler Formation and the Capitan aquifer in response to changing geologic, hydrologic, and climatic conditions. Before the Pleistocene, ground-water flow in the Rustler Formation was generally eastward, but uneven tilting of the Delaware Basin lowered the regional base level and formed fractures in the evaporitic sequence of rocks approximately parallel to the basin axis. Dissolution along the fractures, coupled with erosion, formed Nash Draw. Also, the drop in base level resulted in an increase in the carrying power of the Pecos River, which began incising the Capitan/aquifer near Carlsbad, New Mexico. Erosion and downcutting released hydraulic pressure that caused a reversal in Rustler ground-water flow direction near the WIPP. Flow in the Rustler west of the WIPP is toward Nash Draw and eventually toward Malaga Bend; flow south of the WIPP is toward Malaga Bend. 126 refs., 70 figs., 18 tabs.

Brinster, K.F. (Science Applications International Corp., Albuquerque, NM (USA))

1991-01-01T23:59:59.000Z

248

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Plant Databases News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

249

Plant Rosettes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rosettes Rosettes Nature Bulletin No. 662 January 13, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist PLANT ROSETTES In winter our landscape is mostly leafless trees silhouetted against the sky, and the dead stalks of wildflowers, weeds and tall grasses -- with or without a blanket of snow. Some snows lie on the ground for only a few days. Others follow one after another and cover the ground with white for weeks at a time. Soon the eye begins to hunger for a glimpse of something green and growing. Then, in sunny spots where the snow has melted or where youngsters have cleared it away, there appear clusters of fresh green leaves pressed tight to the soil. Whether it is a dandelion in the lawn, a pansy in a flower border, or a thistle in a vacant lot, such a typical leaf cluster -- called a winter rosette -- is a ring of leaves around a short central stem. The leaves are narrow at the base, wider toward the tip, and spread flat on the ground with little or no overlap. This arrangement gives full exposure to sunlight and close contact with the warmer soil beneath. Such plants continue to grow, sometimes faster, sometimes slower, even under snow, throughout winter.

250

University of Delaware | CCEI Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

CCEI Staff Sheila Boulden Business Administrator Phone: (302) 831-4061 Email: Send email Location:250P ISE Lab Weihua Deng Catalyst Lab Manager and Senior Scientist Phone: (302)...

251

University of Delaware | CCEI Outreach  

NLE Websites -- All DOE Office Websites (Extended Search)

career opportunities from across the web Clean Tech Recruits Specialists in Renewable Energy Jobs Green Careers Guide Resources for finding jobs in the green industry...

252

University of Delaware | CCEI Events  

NLE Websites -- All DOE Office Websites (Extended Search)

(during CCEI's Spring Symposium) Dr. Prasanna Joshi ExxonMobil Research & Engineering "Energy in the 21st Century - Outlook for Energy to 2040" 7:15 p.m. - 8:15 p.m. Embassy Suites...

253

University of Delaware | CCEI Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Patents and Patent Applications Production of Para-xylene by Catalytically Reacting 2,5-Dimethylfuran and Ethylene in a Solvent Dauenhauer, P. J.; Williams, C. L.; Vlachos, D. G.;...

254

University of Delaware | CCEI Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

CCEI Equipment Click column headings to sort Type Equipment Details Institution Type Equipment Details Institution: Lab Lab BACK TO TOP...

255

University of Delaware | CCEI News  

NLE Websites -- All DOE Office Websites (Extended Search)

with complementary research skills to collaborate on solving the world's most pressing energy challenges. (UDaily article) April 2014 Alex Mironenko Wins Best Poster Award...

256

University of Delaware | CCEI Outreach  

NLE Websites -- All DOE Office Websites (Extended Search)

by CCEI engage students in learning by facilitating discussions on alternative energy and giving campers the opportunities to perform hands-on activities. In 2011, the...

257

Seafood Plant Sanitation  

Science Journals Connector (OSTI)

A hygienically designed plant can improve the wholesomeness of seafood and the sanitation program. The location of the seafood plant can contribute to the sanitation of...

2006-01-01T23:59:59.000Z

258

Polyhydroxyalkanoate synthesis in plants  

DOE Patents (OSTI)

Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.

Srienc, Friedrich (Lake Elmo, MN); Somers, David A. (Roseville, MN); Hahn, J. J. (New Brighton, MN); Eschenlauer, Arthur C. (Circle Pines, MN)

2000-01-01T23:59:59.000Z

259

Ethylene insensitive plants  

SciTech Connect

Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

Ecker, Joseph R. (Carlsbad, CA); Nehring, Ramlah (La Jolla, CA); McGrath, Robert B. (Philadelphia, PA)

2007-05-22T23:59:59.000Z

260

Planted Obsolescence: Synagriculture and the Law  

E-Print Network (OSTI)

Supporters of GM agriculture have had a long row to hoe in achieving public acceptance for the safety of this important technology. Controversy has surrounded the foundational technology of recombinant DNA methods, the application of genetic...

Torrance, Andrew W.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plant immune systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant immune systems Plant immune systems Name: stephanie Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Do plants have an immune system? How does it work? Are plants able to "fight off" infections such as Dutch Elm disease? Replies: In the broadest sense, an immune system is any method an organism has protect itself from succeeding to another organism's efforts to undermine its health and integrity. In this sense, yes, plants have immune systems. Plants do NOT have "active" immune systems, like humans, including macrophages, lymls, antibodies, complements, interferon, etc., which help us ward off infection. Rather, plants have "passive" mechanisms of protection. For instance, the waxy secretion of some plants (cuticle) functions to help hold in moisture and keep out microorganisms. Plants can also secrete irritating juices that prevent insects and animals from eating it. The thick bark of woody plants is another example of a defensive adaptation, that protects the more delicate tissues inside. The chemical secretions of some plants are downright poisonous to many organisms, which greatly enhance the chances of survival for the plant. Fruits of plants contain large amounts of vitamin C and bioflavonoids, compounds which have been shown in the lab to be anti-bacterial and antiviral. So in these ways, plants can improve their chances of survival. Hundreds of viruses and bacteria attack plants each year, and the cost to agriculture is enormous. I would venture to guess that once an organism establishes an infection in a plant, the plant will not be able to "fight" it. However, exposure to the sun's UV light may help control an infection, possibly even defeat it, but the plant does not have any inherent "active" way to fight the infection

262

Plant Phenotype Characterization System  

SciTech Connect

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

263

Technology Data for Energy Plants June 2010  

E-Print Network (OSTI)

............................................................................................... 79 13 Centralised Biogas Plants

264

173. NICKEL SORPTION KINETICS ON THE CLAY FRACTION OF A SOIL. D.R. Roberts and D.L. Sparks, Department of Plant and Soil Sciences, University of Delaware, Newark,  

E-Print Network (OSTI)

173. NICKEL SORPTION KINETICS ON THE CLAY FRACTION OF A SOIL. D.R. Roberts and D.L. Sparks the fate of heavy metal contaminants in the soil environment. Past studies of heavy metal sorption kinetics. This study exannines Ni(II) sorption and desorption kinetics on the clay fraction (

Sparks, Donald L.

265

Plant Biology 2001  

Science Journals Connector (OSTI)

...Park, PA b Graduate Research Assistant Michigan...University-Department of Energy Plant Research Laboratory East Lansing...complete listing of abstracts can be found at http...University-Department of Energy Plant Research Laboratory, East...

Nancy A. Eckardt; Hyung-Taeg Cho; Robyn M. Perrin; Matthew R. Willmann

266

Types of Hydropower Plants  

Energy.gov (U.S. Department of Energy (DOE))

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.

267

kansas city plant  

National Nuclear Security Administration (NNSA)

0%2A en Kansas City Plant http:nnsa.energy.govaboutusourlocationskansas-city-plant

Page...

268

Plants & Animals  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants & Animals Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. April 12, 2012 A rabbit on LANL land. A rabbit on LANL land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as other plants and animals not considered food sources. What plants and animals do we monitor? LANL monitors both edible and non-edible plants and animals to determine whether Laboratory operations are impacting human health via the food chain, or to find contaminants that indicate they are being moved in the

269

Plant design: Integrating Plant and Equipment Models  

SciTech Connect

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process EngineeringOpen), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

270

Power Plant Cycling Costs  

SciTech Connect

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

271

NUCLEAR PLANT AND CONTROL  

E-Print Network (OSTI)

for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital, the missiles, and the digital protection systems embed- ded in nuclear power plants. Obviously, safety

272

No universal scale-dependent impacts of invasive species on native plant species richness  

Science Journals Connector (OSTI)

...Resource Ecology Laboratory, Colorado State University, Fort Collins...and some sites affected by wildfires [9-11]. The plots are...by state: Utah (379), Colorado (274), Wyoming (42...the numbers vary by state: Colorado (33), Delaware (39...

2014-01-01T23:59:59.000Z

273

Annotated bibliography of paleoclimate studies relevant to the Waste Isolation Pilot Plant, southeastern New Mexico  

SciTech Connect

A selective, partially annotated bibliography on paleoclimate literature (through 1984) presents the various interpretations of the nature of past climate in New Mexico and adjacent areas in the Southwest. Groundwater flow and concomitant dissolution of evaporites in the Delaware Basin of southeastern New Mexico, the geologic setting of the Waste Isolation Pilot Plant (WIPP) site, has occurred since Permian deposition and may be continuing at some places in the basin. An understanding of patterns of past rainfall may contribute to an understanding of the history of groundwater flow and evaporite dissolution at and near the WIPP site and may help to predict the relative magnitudes of groundwater flow and evaporite dissolution to be expected during the required period of repository performance. Although most references in this list are annotated and pertain to paleoclimate in the vicinity of New Mexico, other references have been included that (1) place the Southwest in the context of world climatic change, (2) pertain to principles and methods of collecting climatic data for past geologic time, and (3) complement such a collection of references because of their historic interest. 35 refs.

Bachman, G.O. (Bachman (George O.), Albuquerque, NM (USA))

1989-09-01T23:59:59.000Z

274

Historical Background on Assessment the Performance of the Waste Isolation Pilot Plant  

SciTech Connect

In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the US Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a research and development facility for the safe management, storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and 25 years after site selection, the US Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance assessment conducted in 1996. This performance assessment was the culmination of four preliminary performance assessments conducted between 1989 and 1992. This report provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project. For example, the federal requirement to provide environmental impact statements and negotiated agreements with the State of New Mexico influenced the type of scientific areas that were investigated and the engineering analysis prior to 1989 for the WIPP.

Rechard, R.P.

1999-06-01T23:59:59.000Z

275

Communications mensuelles de l'lnstitut International dela Potasse, Berne (Suisse) Science du sol N 5/1981  

E-Print Network (OSTI)

sciences vc!igc!itales, Universitc!i de Delaware, Newark, Delaware 19711, USA Resume condense des publications suivantes: Sparks D.L., Martens D.C., Zelazny L. W.: Plant Uptake and Leaching of applied

Sparks, Donald L.

276

prairie plant list  

NLE Websites -- All DOE Office Websites (Extended Search)

List of Native Prairie Plant Illustrations List of Native Prairie Plant Illustrations Select the common name of the plant you want to view. Common Name Scientific Name Grasses BIG BLUESTEM Andropogon gerardii INDIAN GRASS Sorghastrum nutans LITTLE BLUESTEM Andropogon scoparius SWITCH GRASS Panicum virgatum CORD GRASS Spartina pectinata NEEDLEGRASS Stipa spartea PRAIRIE DROPSEED Sporobolus pectinata SIDE-OATS GRAMA Bouteloua curtipendula FORBS ROSINWEED Silphium integrifolium SAW-TOOTHED SUNFLOWER Helianthus grossesserratus WILD BERGAMOT Monarda fistulosa YELLOW CONEFLOWER Ratibida pinnata BLACK-EYED SUSAN Rudbeckia hirta COMPASS PLANT Silphium lactiniatum CUP PLANT Silphium perfoliatum NEW ENGLAND ASTER Aster novae-angilae PRAIRIE DOCK Silphium terebinthinaceum RATTLESNAKE MASTER Eryngium yuccifolium STIFF GOLDENROD Solidaga rigida

277

Prep plant population rebounds  

SciTech Connect

Demand and higher prices allows more operators to build and upgrade plants. The 2005 US Prep Plant Census found that the number of coal preparation plants has grown from 212 to 265 in five years - a 53 plant gain or a 20% increase over that reported by Coal Age in 2000. The number of bituminous coal washing facilities grew by 43 to 250. The article discusses the survey and the companies involved and presents a table giving key details of plants arranged by state. 6 tabs.

Fiscor, S.

2005-10-01T23:59:59.000Z

278

Host Plants and Their Diseases  

Science Journals Connector (OSTI)

The information telescoped into this section is taken in large part from the records of the Plant Disease Survey as given in the Plant Disease Reporter, Plant Diseases and from the Index of Plant Diseases in the ...

R. Kenneth Horst Ph.D.

2001-01-01T23:59:59.000Z

279

Host Plants and Their Diseases  

Science Journals Connector (OSTI)

The information telescoped in this section is taken in large part from the records of the Plant Disease Survey as given in the Plant Disease Reporter, Plant Diseases, and the Index of Plant Diseases in the United...

R. Kenneth Horst Ph.D.

1990-01-01T23:59:59.000Z

280

prairie restoration plant ident  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Identification Plant Identification Once your restoration is started and plants begin to germinate, the next issue you are faced with is the identification of what is growing. From my experience, the seeds you planted should start germinating after about a week to ten days. Of course, this is dependent on the weather conditions and the amount of moisture in the soil. If you are watering regularly, you will get growth much more quickly than if you are just waiting for nature to take its course. Identifying prairie plants as they germinate is very difficult. If you are an experienced botanist or an expert on prairie plants, your identification will still be a little more than an educated guess. In other words identifying prairie species from non-native species will take some time.

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Crystals and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Crystals and Plants Crystals and Plants Name: Diab Location: N/A Country: N/A Date: N/A Question: What will the likely effects of crystallized filaments in plant cells be? I had noticed that moth balls (para dichlorbenzene) tends within a very short temperature range to transform from a solid to gas and back to solid in the form of crystal filaments. I been wondering about the likely effects of an experiment in which a plant is placed in a chamber saturated with the fumes of a substance that had the same transformation properties of its state but none of the toxic effects be on the plants and will such filaments form inside the cell and rearrange its DNA strands or kill it outright? Replies: The following might be helpful: http://biowww.clemson.edu/biolab/mitosis.html http://koning.ecsu.ctstateu.edu/Plant_Physiology/osmosis.html

282

Poisonous Plant Management.  

E-Print Network (OSTI)

are relatively unpalatable and must be consumed in substantial quantities to be lethal. Generally, animals do not graze poisonous plants by choice and are rarely poisoned if other forage is readily available. Plants do not always fall into easily defined... quickly. Control may be accomplished using mechanical, biological, chemical or prescribed burning methods. Most poisonous plants are herbaceous in growth form; thus, mechanical control methods are rarely used. There are a few exceptions. Whitebrush, a...

McGinty, Allan

1985-01-01T23:59:59.000Z

283

Plant Growth and Photosynthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Growth and Photosynthesis Plant Growth and Photosynthesis Name: Jack Location: N/A Country: N/A Date: N/A Question: Do plants have any other way of growing besides photosythesis? Plants do not use photosynthesis to grow!!! They use cellular respiration just like every other organism to process energy into work. Plants use oxygen just like we do. Photosynthesis is principally only a process to change sunlight into a chemical form for storage. Replies: Check out our archives for more information. www.newton.dep.anl.gov/archive.htm Steve Sample Jack, Several kinds of flowering plants survive without the use of chlorophyll which is what makes plants green and able to produce sugar through photosynthesis. Dodder is a parasitic nongreen (without chlorophyll) plant that is commonly found growing on jewelweed and other plants in damp areas. Dodder twines around its host, (A host is an organism that has fallen victim to a parasite.), like a morning glory and attaches itself at certain points along the stem where it absorbs sugar and nutrients from the hosts sap.

284

Repurposing a Hydroelectric Plant.  

E-Print Network (OSTI)

??This thesis project explores repurposing a hydroelectric plant along Richmond Virginia's Canal Walk. The building has been redesigned to create a community-oriented space programmed as (more)

Pritcher, Melissa

2008-01-01T23:59:59.000Z

285

Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression  

SciTech Connect

A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

Stein, C.L.

1985-09-01T23:59:59.000Z

286

Plant pathogen resistance  

DOE Patents (OSTI)

Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

2012-11-27T23:59:59.000Z

287

RESEARCH ARTICLE PLANT GENETICS  

E-Print Network (OSTI)

relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of s of regulation among alleles. S porophytic self-incompatibility (SI) is a genetic system that evolved in hermaph

Napp, Nils

288

Modulating lignin in plants  

SciTech Connect

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

289

Ethylene in Plants  

Science Journals Connector (OSTI)

... as the master controller of all plant growth and developmental processes. It now seems that ethylene, whose dramatic effects on plants have been known for more than 70 years, is ... 10 years there has been a veritable explosion of research into the physiological actions of ethylene directed towards assessing its significance as a 'natural' hormone.

L. J. AUDUS

1973-11-23T23:59:59.000Z

290

Plant Ecology An Introduction  

E-Print Network (OSTI)

1 Plant Ecology An Introduction Ecology as a Science Study of the relationships between living and causes of the abundance and distribution of organisms Ecology as a Science We'll use the perspective of terrestrial plants Basic ecology - ecological principles Applied ecology - application of principles

Cochran-Stafira, D. Liane

291

Purdue extension Toxic Plants  

E-Print Network (OSTI)

Service PLANTS Database/N.L.Britton,and A.Brown's An Illustrated Flora of the Northern United States Poisonous to Live- stock and Pets.See References (page 23) and Online Resources (page 24) for details is as safe as possible is to keep these plants out of your fields and pastures. To do this,proper weed

Holland, Jeffrey

292

Granby Pumping Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Granby Pumping Plant Granby Pumping Plant Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Western owns and operates a 12-mile, 69-kV electric transmission line in Grand County, Colo., that originates at Windy Gap Substation and terminates at Granby Pumping Plant Switchyard. The proposed project would rebuild the single circuit line as a double circuit transmission line and add a second power transformer. One circuit would replace the existing 69-kV line; the other circuit would be a new 138-kV line. Granby Pumping Plant Switchyard would be expanded to accommodate the second line and power transformer. Windy Gap Substation would be modified to accommodate the second line.

293

BNL | Plant Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Sciences Plant Sciences The Plant Sciences group's goal is to understand the principles underlying carbon capture, conversion, and storage in living systems; and develop the capability to model, predict and optimize these processes in plants and microorganisms. Staff Members John Shanklin Jason Candreva Jilian Fan Hui Liu Qin Liu Edward Whittle Xiaohong Yu Dax Fu Jin Chai Chang-Jun Liu Yuanheng Cai Mingyue Gou Guoyin Kai Zhaoyang Wei Huijun Yang Kewei Zhang Xuebin Zhang Jörg Schwender Jordan Hay Inga Hebbelmann Hai Shi Zhijie Sun Changcheng Xu Chengshi Yan Zhiyang Zhai Plant Sciences Contact John Shanklin, (631)344-3414 In the News No stories available Funding Agencies DOE Basic Energy Sciences Bayer CropScience The Biosciences Department is part of the Environment and Life Sciences Directorate at Brookhaven National Laboratory

294

Top 10 plant pathogenic bacteria in molecular plant pathology.  

E-Print Network (OSTI)

plants are being closely grouped together, for example pv.oryzae pv. oryzae AvrXa21 and implications for plant innatePseudomonas syringae pv. tomato in Tanzania. Plant Dis. 91,

2012-01-01T23:59:59.000Z

295

Waste Isolation Pilot Plant Transportation Security | Department...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security More Documents &...

296

AVESTAR® - Smart Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Plant In the area of smart plant operations, AVESTAR's dynamic simulators enable researchers to analyze plant-wide performance over a wide range of operating scenarios, including plant startup (cold, warm, hot), shutdown, fuel switchovers, on-load cycling, high-load operations of 90-120% of rated capacity, and high frequency megawatt changes for automatic generation control. The dynamic simulators also let researchers analyze the plant's response to disturbances and malfunctions. The AVESTAR team is also using dynamic simulators to develop effective strategies for the operation and control of pre-combustion capture technology capable of removing at least 90% of the CO2 emissions. Achieving operational excellence can have significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. If deployment of new CO2 capture technologies is to be accelerated, power generators must be confident in ensuring efficient, flexible, reliable, environmentally-friendly, and profitable plant operations.

297

Factors Affecting Ni and Zn Hydroxide Precipitate Formation in Soils. (S02-peltier222185-oral)  

E-Print Network (OSTI)

Factors Affecting Ni and Zn Hydroxide Precipitate Formation in Soils. (S02-peltier222185-oral) Authors: E.F. Peltier* - Univ. of Delaware D.L. Sparks - Univ. of Delaware Abstract: The formation matter in the soil. Speaker Information: Edward Peltier, Univ. of Delaware, Dept. of Plant and Soil

Sparks, Donald L.

298

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

299

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

300

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

302

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

303

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

304

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

305

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

306

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

307

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

308

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

309

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

310

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

311

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

312

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

313

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

314

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

315

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

316

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

317

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

318

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

319

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

320

Fermilab Prairie Plant Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Crack the Quadrat* Code! Crack the Quadrat* Code! compass plasnt * What is a Quadrat? It's a one-meter square plot. Plants in the quadrat are identified and counted. Fermilab quadrat specialists can! Attention Citizen Scientists Are you a prairie enthusiast? Learn scientific plant monitoring techniques while enjoying our beautiful prairie. Join a unique science program open to the public, adult groups, families, scouts and more …. Become a prairie quadrat specialist and do real science at Fermilab! In the Fermilab Prairie Plant Survey you will learn how to identify prairie plants, map a prairie plot and track restoration progress along with our experts. Use our Website to contribute data you collect. Come once or come back two or three times to see how the prairie changes. Keep an eye on this prairie for years to come!

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

prairie restoration planting  

NLE Websites -- All DOE Office Websites (Extended Search)

Planting Planting The most common method of planting is to broadcast spread your seeds. This is usually done by hand, but you can also use a lawn-type spreader. After you have spread your seeds, rake the area over lightly. For seeds to germinate correctly they need to have good seed to soil contact, but you also don't want to bury the seeds too deeply. The general rule is to cover seeds to a depth no deeper than twice the seed's size. For example, if a seed is 4 mm in size, you would not want to bury it any deeper than 8 mm. The seeds commonly found in a prairie matrix are usually small enough, that raking over the spread seed to mix and cover them with a thin layer of soil, is adequate. If you are involving large numbers of people in the planting, a plastic cup

322

Pollution adn Plant Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution adn Plant Growth Pollution adn Plant Growth Name: Virdina Location: N/A Country: N/A Date: N/A Question: What are the effcts off water polltuion on plant growth? Are there any good websites where I can find current or on going research being done by other scientist? Replies: Dear Virdina, Possibly helpful: http://www.ec.gc.ca/water/en/manage/poll/e_poll.htm http://www.epa.vic.gov.au/wq/info/wq987.htm Sincerely, Anthony R. Brach This is a very complicated question, there are so many different types of water pollution and different species of plants react very differently. Good places to start are the U.S. environmental protection agency, the office of water is at: http://www.epa.gov/ow/ and there is a link to a kid's page from there: http://www.epa.gov/OST/KidsStuff/ You might also try state EPA's, Illinois is at:

323

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

324

Economics of Hydropower Plants  

Science Journals Connector (OSTI)

The feed-in tariff scheme, as its name suggests is based ... plant. The most important aspect of a feed-in tariff system is that the grid operator cannot ... stations must reduce their power generation. The feed-in

Prof. Dr.-Ing Hermann-Josef Wagner

2011-01-01T23:59:59.000Z

325

Plant Vascular Biology 2010  

SciTech Connect

This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

Ding, Biao

2014-11-17T23:59:59.000Z

326

Plant Operations Executive Director  

E-Print Network (OSTI)

Campus North Campus Recycling Operations Materials Human Resources Payroll Misc Svs Special Projects Planning Spray Shop Glass Shop Upholstery Shop Plant IT Painting Services G. Weincouff Human Resources Business Services Estimating Shutdown Coordination Scheduling L. Rastique Human Resources 67398 M

Awtar, Shorya

327

Plant indicators in Iraq  

Science Journals Connector (OSTI)

Native plants of Iraq have shown considerable variation in their ability...Seidlitzia rosmarinus andHalocnemum strobilaceum indicate very high soil sodium contents, and others high magnesium and sulphate contents...

T. A. Al-Ani; I. M. Habib; A. I. Abdulaziz; N. A. Ouda

1971-08-01T23:59:59.000Z

328

Better Buildings, Better Plants:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to 1,800 plants and about 8% of the U.S. manufacturing energy footprint 2012 average energy intensity improvement 2.7% Cumulative Energy Savings 190 TBtus ...

329

B Plant facility description  

SciTech Connect

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

330

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

331

Maintaining plant safety margins  

SciTech Connect

The Final Safety Analysis Report Forms the basis of demonstrating that the plant can operate safely and meet all applicable acceptance criteria. In order to assure that this continues through each operating cycle, the safety analysis is reexamined for each reload core. Operating limits are set for each reload core to assure that safety limits and applicable acceptance criteria are not exceeded for postulated events within the design basis. These operating limits form the basis for plant operation, providing barriers on various measurable parameters. The barriers are refereed to as limiting conditions for operation (LCO). The operating limits, being influenced by many factors, can change significantly from cycle to cycle. In order to be successful in demonstrating safe operation for each reload core (with adequate operating margin), it is necessary to continue to focus on ways to maintain/improve existing safety margins. Existing safety margins are a function of the plant type (boiling water reactor/pressurized water reactor (BWR/PWR)), nuclear system supply (NSSS) vendor, operating license date, core design features, plant design features, licensing history, and analytical methods used in the safety analysis. This paper summarizes the experience at Yankee Atomic Electric Company (YAEC) in its efforts to provide adequate operating margin for the plants that it supports.

Bergeron, P.A.

1989-01-01T23:59:59.000Z

332

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

333

How do plants grow?  

NLE Websites -- All DOE Office Websites (Extended Search)

How do plants grow? How do plants grow? Name: Sally McCombs Location: N/A Country: N/A Date: N/A Question: A 4th grade class at our school is doing plant research and would like to know if plants grow from the top up or from the bottom up? Thanks for your help! Replies: Plants grow from the top up (or from the bottom down, in the case of root growth). Right at the tip, more cells form by division, and just behind that is an area where cells get bigger). More amazing than all of this is where your question comes from. I went to 4th grade there!!! Amazing, Just after the school was built, I think, maybe around 1959 to about early 1960's. Then I moved on to St. Pete High School, then my parents got jobs in Alabama, where I did the last year of High School. Then onto college in New England, graduate school in California, a research job in England, and now finally as a professor at the University of Washington in Seattle. Brings back memories...

334

Texas Plants Poisonous to Livestock.  

E-Print Network (OSTI)

TEXAS PLANTS POISONOUS TO LIVESTOCK TEXAS A&M UNIVERSITY TEXAS AGRICULTURAL EXPERIMENT STATION TEXAS AGRICULTURAL EXTENSION SERVICE College Station, Texas THE PROBLEM POISONOUS PLANT RESEARCH IN TEXAS TOXIC PLANT CONSTITUENTS TEXAS PLANTS... list includes plants growing in Texas and reported to be poisonous in other areas. Some species described seldom cause trouble but are included since they have been proved toxic and may, under conditions, bring about livestock losses. Poisoning...

Sperry, Omer Edison

1964-01-01T23:59:59.000Z

335

Plant Tumor Growth Rates  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Tumor Growth Rates Plant Tumor Growth Rates Name: Gina and Maria Location: N/A Country: N/A Date: N/A Question: We are doing a science fair project on if B. Carotene, Green tea, and Grape Seed Extract helps plants against the crown gall disease. We injected sunflowers with agrobacterium tum. one week ago (Sun. Feb. 27, 2000). Our questions is how long will it take for the tumors to grow? We scratched the surface of the stems and injected the agrobacterium in the wound. Also which do you think, in your opinion, will do the best, if any? Our science fair is April 13, do you think we'll have growth before then, atleast enough time to do our conclusion and results? Thank you, any information you forward will be very helpful. Replies: Sunflowers form galls relatively quickly. I usually get them in two weeks at least. Good luck.

336

Plant and Animal Immigrants  

NLE Websites -- All DOE Office Websites (Extended Search)

and Animal Immigrants and Animal Immigrants Nature Bulletin No. 43 December 1, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation PLANT AND ANIMAL IMMIGRANTS When foreign plants and animals are brought to a new country they either become naturalized and thrive, or they cling to their old ways and die out. after they, too, find new freedoms because they leave their enemies, competitors, parasites, and some of their diseases behind them -- much as immigrant people do. The United States now supports about 300 times as many people as it did when Columbus discovered America. This is possible because the domesticated plants and animals that the early settlers brought with them give much higher yields of food and clothing than the Indians got from wild ones.

337

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

338

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

339

Plants making oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants making oxygen Plants making oxygen Name: Doug Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How many plants are needed to make enough oxygen for one person for one hour? We are experimenting with Anacharis plants. Replies: The problem can be solved when broken down into smaller questions: 1. How much oxygen does a person need in an hour? 2. How much oxygen does a plant produce in an hour? 3. Based on the above, how many plants will provide the oxygen needs of the person for the hour? Here is the solution to the first question: A resting, healthy adult on an average, cool day breathes in about 53 liters of oxygen per hour. An average, resting, health adult breathes in about 500 mL of air per breath. This is called the normal tidal volume. Now, 150 mL of this air will go to non- functioning areas of the lung, called the "dead space." The average breath rate for this average person is 12 breaths per minute. So, the amount of air breathed in by the person which is available for use is 12 x (500 mL -150 mL) = 4,200 mL/minute. Multiply by 60 to get 252,000 mL/hour. That is, every hour, the person will breathe in 252 L of air. Now, on an average, cool, clear day, only 21% of that air is oxygen. So, 21% of 252 L is 53 L. So, in an hour, the person breathes in about 53 L of oxygen.

340

Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to the penalties provided in 18 U.S.C. 1001. ____________________________ SIGNATURE NOTARIZATION: SUBSCRIBED and SWORN to before me this ______day of __________, 20_____

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Snakes and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snakes and Plants Snakes and Plants Name: kathy Location: N/A Country: N/A Date: N/A Question: We live in the southern most tip of Illinois,on horseshoe lake. I would like to know what time of the year do snakes come out and when do they go back in? Also is there any plants to plant to keep them away? Replies: What kind of snakes, in what kind of habitat? All snakes in Illinois hibernate in winter, but their habits differ by species. I'm not sure of the range of dates for southern Illinois, but they start to come out of hibernation in northern Illinois around the end of March or in April, depending on the weather. Advance of spring is usually about 3 weeks earlier in southern Illinois than northern, so i guess snake emergence would be about that much advanced as well. They will come out when there are warm sunny days to get them warmed up, and nights are not so cold that they will be harmed. Fall entry into hibernation is roughly parallel, snakes will often bask in the sun on sunny fall days before going into hibernation, again in no. Ill usually in October but widely varying.

342

Alex Benson Cement Plants  

E-Print Network (OSTI)

with steel balls which grind mix into a fine powder -> Final Cement Product Associated Air Pollution: o From health effects Relative News; o "EPA Clamps down on Cement Plant Pollution" http.4 million dollars for violating the Clean Air Act and 2 million dollars for pollution controls #12

Toohey, Darin W.

343

Plants: novel developmental processes  

Science Journals Connector (OSTI)

...J.K., SOYBEAN SEED LECTIN GENE AND FLANKING...EVIDENCE ON THEIR METABOLISM + TOTIPOTENCY, SCIENCE...GENETIC MANIPULATION OF CEREAL CROPS, BIO-TECHNOLOGY...MESSENGER-RNAS FOR SEED LECTIN AND KUNITZ...vascular seedless and seed-producing plants...store glucose as starch in their chloroplasts...

RB Goldberg

1988-06-10T23:59:59.000Z

344

Chemical Plant Expansion  

Science Journals Connector (OSTI)

Despite $4 billion of capital expenditure for plant expansion over the past seven years, a high level of construction activity is expected to continue ... A marked increase in capital expenditures of t h e six largest chemical companies too place in 1951 over 1950. ...

JOHN M. WEISS

1952-06-09T23:59:59.000Z

345

Solar Tracking by Plants  

Science Journals Connector (OSTI)

...University of Utah, Salt Lake City 84112...Solar Tracking in Desert Plants In the arid...were coastal sage scrub, which grows during...Mohave and Colorado desert scrub, which grow in...Mohave and Colorado desert scrub communities at sites...

James Ehleringer; Irwin Forseth

1980-12-05T23:59:59.000Z

346

BIOLOGY AND AQUATIC PLANTS  

E-Print Network (OSTI)

Handbook First published in the United States of America in 2009 by Aquatic Ecosystem Restoration plant management. The Aquatic Ecosystem Restoration Foundation (AERF) is pleased to bring you Biology for the environmentally and scientifically sound management, conservation and restoration of aquatic ecosystems. One

Jawitz, James W.

347

Delaware Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Volumes Delivered to Consumers

348

Delaware Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

349

Smyrna, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

998339°, -75.6046494° 998339°, -75.6046494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2998339,"lon":-75.6046494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Bellefonte, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

663°, -75.498313° 663°, -75.498313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7663,"lon":-75.498313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Glasgow, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

048338°, -75.7452119° 048338°, -75.7452119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6048338,"lon":-75.7452119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Greenville, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

790012°, -75.5982599° 790012°, -75.5982599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7790012,"lon":-75.5982599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Wilmington, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7459467°, -75.5465889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7459467,"lon":-75.5465889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Delaware Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

355

Delaware Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

356

Clean Energy Technology Device Manufacturers' Credits (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

357

University of Delaware | CCEI Visiting Scholars  

NLE Websites -- All DOE Office Websites (Extended Search)

Scholars Blaz Likozar- Visiting Professor National Institute of Chemistry Slovenia Advisor: Vlachos, Dion Office: 250J ISE Lab Phone: (302) 831-6384 Email: Send email Adriano...

358

Energy Incentive Programs, Delaware | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

programs are currently available to federal customers. What load managementdemand response options are available to me? The PJM Interconnection (PJM), a regional...

359

THE I TERIOR h V Delaware II  

E-Print Network (OSTI)

accommodations Propulsion system Auxiliary-po w ered equipment. Central hydraulic system (hoists and winches of fishing and research tasks. George G. Sharp, Inc. of New York City, 1 naval architects and marine

360

December 11, 2008 UNIVERSITY OF DELAWARE  

E-Print Network (OSTI)

:10 Photoelectric Catalysis for Hydrogen Generation Ismat Shah 9:10 ­ 9:30 Fuel Cells and Batteries Ajay Prasad

Firestone, Jeremy

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Contact us at: 420 Delaware St. SE  

E-Print Network (OSTI)

and counseling patients/family during MDA clinic visits. We use a team approach in the MDA sponsored Clinic patient, situation and disease course is unique; although you can get many useful general facts from websites, patients must interpret that information based on their own situation as described by their MD

Thomas, David D.

362

Delaware Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2012 (EIA)

Apr-14 May-14 Jun-14 Jul-14 Aug-14 Sep-14 View History Delivered to Consumers 1,051 1,045 1,049 1,063 1,065 1,062 2013-2014...

363

University of Delaware | CCEI Students & Postdoctoral Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Graduate Students and Postdoctoral Researchers Click column headings to sort Name Institution Title Advisor Name Institution Title Advisor BACK TO TOP...

364

UNIVERSITY OF DELAWARE DEPARTMENT OF MECHANICAL ENGINEERING  

E-Print Network (OSTI)

for delivery. A hydrogen refueling station was also established at Air Liquide for our Fuel Cell Bus Program with the fuel cell bus program, the hydrogen refueling station, and the fuel cell bus parking and maintenance and demonstration projects with the fuel cell bus program, the hydrogen refueling station, and the fuel cell bus

Gao, Guang R.

365

University of Delaware | CCEI Principal Investigators  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Investigators Image Name - Affiliation Title Email Phone: Phone Research Interests: ResearchInterests Profile ResearchGroupWebsite BACK TO TOP...

366

University of Delaware | CCEI Faculty Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Carlson, T.R., Cheng, Y.-T., Jae, J. and Huber, G.W., "Production of Green Aromatics and Olefins by Catalytic Fast Pyrolysis of Wood Sawdust," Energy Environ....

367

University of Delaware | CCEI Advisory Board  

NLE Websites -- All DOE Office Websites (Extended Search)

Advisory Board Our advisory board is comprised of the following distinguished board members: Image Name Affiliation BACK TO TOP...

368

University of Delaware | CCEI Industrial Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

we advance the research of viable catalytic technologies for applications in renewable energy. The director and faculty work with industrial partners to define their needs and...

369

University of Delaware | CCEI Past Events  

NLE Websites -- All DOE Office Websites (Extended Search)

p.m. December 2, 2014 Guest Speaker Seminar Dr. Thomas D. Foust National Renewable Energy Laboratory Abstract Title: to be announced 11:30 a.m. - 12:30 p.m. November 6, 2014...

370

University of Delaware | CCEI Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Discovering New Catalytic Technologies Click on the links below to learn about our exciting new discoveries impacting the scientific community. (beginning with...

371

Delaware Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2012 (EIA)

2008 2009 2010 2011 2012 2013 View History Delivered to Consumers 1,033 1,030 1,023 1,025 1,027 1,049 2007-2013...

372

Newark, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9.6837226°, -75.7496572° 9.6837226°, -75.7496572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6837226,"lon":-75.7496572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Townsend, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3951115°, -75.6915973° 3951115°, -75.6915973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3951115,"lon":-75.6915973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Middletown, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

449556°, -75.7163207° 449556°, -75.7163207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.449556,"lon":-75.7163207,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Extremely Hazardous Substances Risk Management Act (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

376

Technology Data for Electricity and Heat Generating Plants  

E-Print Network (OSTI)

.................................................................................63 13 Centralised Biogas Plants

377

The Colorado Rare Plant Technical Committee Rare Plant Symposium  

E-Print Network (OSTI)

The Colorado Rare Plant Technical Committee presents: 4th Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado: G2G3/S2S3 Global distribution: Colorado (Larimer and Boulder counties). Possibly extending

378

Annual Report 2001 -Plant Research Departme Plant Research Department  

E-Print Network (OSTI)

Organisation DLF-Risø Biotechnology Programme Plant Environment Interactions Programme Plant Nutrition agronomic traits and to engineer high-value plants, which are able to meet the growth conditions of the future environment. The department is divided into six research programmes that are linked through

379

Ecology of Plants and Light CAM plants have thick,  

E-Print Network (OSTI)

orientation to maximize light exposure. Species Adaptations-Sun Solar tracking by leaves increases light1 Ecology of Plants and Light CAM plants have thick, succulent tissues to allow for organic acid and Light Some CAM plants not obligated to just CAM Can use C3 photosynthesis during day if conditions

Cochran-Stafira, D. Liane

380

Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Plant Pantex Plant Pantex Plant Pantex Plant | September 2010 Aerial View Pantex Plant | September 2010 Aerial View The primary mission of the Pantex Plant is the assembly, disassembly, testing, and evaluation of nuclear weapons in support of the NNSA stockpile stewardship program. Pantex also performs research and development in conventional high explosives and serves as an interim storage site for plutonium pits removed from dismantled weapons. Enforcement January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant November 21, 2006 Preliminary Notice of Violation, BWXT Pantex, LLC - EA-2006-04 Issued to BWXT Pantex, LLC, related to Quality Assurance and Safety Basis Requirements Violations at the Pantex Plant

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

382

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

383

Production of virus resistant plants  

DOE Patents (OSTI)

A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

Dougherty, W.G.; Lindbo, J.A.

1996-12-10T23:59:59.000Z

384

Gene encoding plant asparagine synthetase  

DOE Patents (OSTI)

The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

Coruzzi, Gloria M. (New York, NY); Tsai, Fong-Ying (New York, NY)

1993-10-26T23:59:59.000Z

385

US prep plant census 2008  

SciTech Connect

Each year Coal Age conducts a fairly comprehensive survey of the industry to produce the US coal preparation plant survey. This year's survey shows how many mergers and acquisitions have given coal operators more coal washing capacity. The plants are tabulated by state, giving basic details including company owner, plant name, raw feed, product ash %, quality, type of plant builder and year built. 1 tab., 1 photo.

Fiscor, S.

2008-10-15T23:59:59.000Z

386

Independent Activity Report, Hanford Waste Treatment Plant -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

387

Okeanskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

388

Mendeleevskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

389

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

390

Jennings Demonstration PLant  

SciTech Connect

Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

Russ Heissner

2010-08-31T23:59:59.000Z

391

TERRORISM AT THE PLANT LEVEL  

Science Journals Connector (OSTI)

TERRORISM AT THE PLANT LEVEL ... IN THE DAYS FOLLOWING THE Sept. 11 terrorist attacks, chemical plant officials say they have increased security through greater plant surveillance, more guards, intense vehicle inspections, and plans to better coordinate security with similar facilities, fire departments, and police. ...

JEFF JOHNSON

2001-09-24T23:59:59.000Z

392

Special Better Plants Training Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

In-Plant Trainings (INPLTs) are system-specific workshops led by Better Plants experts that train participants on how to identify, implement, and replicate energy-saving projects. Better Plant partners host an on-site, three-day training at one of their facilities, and invite others to attend.

393

ENDING PLANTS WASTING WAYS  

Science Journals Connector (OSTI)

Small DOE industrial energy auditing program shows BIG ENERGY EFFICIENCY, financial gains ... FREDERICK FENDT DIDNT EXPECT too much from a Department of Energy-led, three-day energy audit of Rohm and Haass Deer Park, Texas, chemical plant. ... So when Paul Scheihing, who manages the DOE Industrial Technologies Program and coordinates the audits, urged Fendt to take part in a free energy assessment, he agreed. ...

JEFF JOHNSON

2008-01-14T23:59:59.000Z

394

Plants of the Bible  

NLE Websites -- All DOE Office Websites (Extended Search)

Bible Bible Nature Bulletin No. 188-A April 16, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation PLANTS OF THE BIBLE When Jesus suffered on the cross, we are told in the Gospel according to St. Matthew (27:48) that at the ninth hour he thirsted and a sponge, filled with vinegar and put upon a reed, was raised to His lips. It is so related in St. Mark (15:36) but according to St. John (19:29), "they filled a sponge with vinegar, and put it upon hyssop, and put it into his mouth. " What was hyssop. The plant is mentioned frequently in the Bible. The hyssop of our herb gardens is not native to Palestine, Syria or Egypt, but there is evidence that when Solomon "spoke of trees, from the cedar tree that is in Lebanon even unto the hyssop that springeth out of the wall" (I Kings 4:23), he spoke of the herb we call marjoram. The hyssop dipped in the blood of a sacrificial lamb and used by the Israelites in Egypt to mark their doorways (Exodus 12:22), and the hyssop referred to by St. John but called a reed by St. Matthew and St. Mark, was probably sorghum, a tall cereal plant grown by the Jews for food and also used for brushes and brooms.

395

Poinsettia -- The Christmas Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Poinsettia -- The Christmas Plant Poinsettia -- The Christmas Plant Nature Bulletin No. 699 December 22, 1962 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor POINSETTIA -- THE CHRISTMAS PLANT Christmas is a day of family gatherings. In each home they have their own traditional customs. Some of us cherish those that are peculiar to the region where we were children, or the land from whence our forefathers came. Most of us have also adopted customs -- such as decorating with holly and mistletoe -- that stem from ancient pagan ceremonies or festivals but have lost their original significance. There are many myths and legends about the origin of our Yuletide customs. (See Bulletins No. 135, 173, 211, 326 and 475). In this country most families have a Christmas tree, a custom that was introduced from Germany by Hessian troops in the British army during the Revolutionary War. It prevails in Britain and most of northern Europe but is unusual in Italy, Spain and Latin America. There, the symbol of Christmas and heart of the celebration in a home is not an Evergreen tree but a miniature reproduction of the stable and manger where Christ was born.

396

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 8: Appendices HYDRO, IRD, LTM, NUTS, PAR, PMR, QAPD, RBP  

SciTech Connect

Geohydrologic data have been collected in the Los Medanos area at the US Department of Energy`s proposed Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico since 1975 as part of a study evaluating the feasibility of storing defense-associated nuclear wastes within the bedded salt of the Salado Formation of Permian age. Drilling and hydrologic testing have identified three principal water-bearing zones above the Salado Formation and one below that could potentially transport wastes to the biosphere if the proposed facility were breached. The zones above the Salado are the contact between the Rustler and Salado Formations and the Culebra and Magenta Dolomite Members of the Rustler Formation of Permian age. The zone below the Salado Formation consists of channel sandstones in the Bell Canyon Formation of the Permian Delaware Mountain Group. Determinations of hydraulic gradients, directions of flow, and hydraulic properties were hindered because of the negligible permeability of the water-bearing zones. Special techniques in drilling, well completion, and hydraulic testing have been developed to determine the hydrologic characteristics of these water-producing zones.

NONE

1995-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - acoustic desorption combined Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Mathematics 44 Kinetics of nickel precipitate formation in soils Edward Peltier and D. L. Sparks. Department of Plant and Soil Sciences, University of Delaware, 152...

402

Waste Isolation Pilot Plant - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

403

Intimate Alliances: Plants and their Microsymbionts  

Science Journals Connector (OSTI)

...November 2011 other Teaching Tools in Plant Biology Intimate Alliances: Plants and their Microsymbionts www.plantcell.org...the plant and microsymbiont. Collectively these intimate alliances play a major role in nutrient assimilation by plants, and...

404

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

405

Propagation of Ornamental Plants.  

E-Print Network (OSTI)

is well filled with roots. In the other types of layering, select shooi 1 of young growth that bend easily. It usuall: is advisable to wound the stem where it is covered with soil. This cut limits free movemen: ! of food materials and induces root... cuttings. lecent research findings have taken much of uesswork out of this type of propagation t now can be done for many plants with rlrative ease by the home gardener. Some alants remain difficult to propagate by any ' method, but most...

DeWerth, A. F.

1955-01-01T23:59:59.000Z

406

Energy News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 23, 2010 April 23, 2010 Department of Energy Announces 20th Annual National Science Bowl 105 Teams from Around the Country Head to Washington DC to Compete for National Championship April 23, 2010 Department of Energy Announces Closing of $529 Million Loan to Fisker Automotive Manufacturing at Shuttered Delaware GM Plant Expected to Create Over 2,000 Jobs April 22, 2010 Secretary Chu Announces more than $200 Million for Solar and Water Power Technologies New funding will create jobs, expand the availability of cost-effective renewable energy, and reduce America's dependence on fossil fuels April 22, 2010 Secretary Chu Webchat with the Washington Post Washington, DC - Today, on the 40th anniversary of Earth Day, Secretary Chu participated in an online chat on washingtonpost.com. He answered questions

407

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 17, 2010 February 17, 2010 Energy Savers in the Community: Fuel Cell Vehicle Pioneer As the communications coordinator for EERE's Clean Cities program, I'm always on the lookout for interesting stories about alternative fuel vehicles. February 4, 2010 How Has Saving Energy Affected Your Health? We don't often speak of it in these terms, but saving energy can sometimes have a positive influence on your health. February 2, 2010 Sites I Thought About Last Wednesday While President Obama was talking about his plans and goals for the future, it made me think of a lot of the work that EERE is already doing. January 26, 2010 Electric Cars Coming to Former Delaware GM Plant If a company's cars are luxurious enough for the Crown Prince of Denmark, then just imagine how the vehicles - which have a 50-mile, emission-free

408

Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 23, 2010 April 23, 2010 Department of Energy Announces Closing of $529 Million Loan to Fisker Automotive Manufacturing at Shuttered Delaware GM Plant Expected to Create Over 2,000 Jobs March 5, 2010 DOE Offers $72 Million Conditional Loan Guarantee to SAGE Electrochromics Project will create over 200 jobs and significantly reduce heating, lighting and cooling costs February 22, 2010 DOE Announces Nearly $1.4 billion in Conditional Loan Guarantees for BrightSource Energy Innovative solar energy projects expected to create more than 1,000 jobs February 16, 2010 President Obama Announces Loan Guarantees to Construct New Nuclear Power Reactors in Georgia Conditional deal is major step towards restarting the domestic nuclear industry December 9, 2009 Department of Energy Offers $245 Million Conditional Loan Guarantee to Red

409

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 25, 2010 February 25, 2010 Bluegrass State Getting Greener To help reduce Kentucky's energy appetite, the state set a goal of 25-percent energy reduction by 2025 and is using Recovery Act funding from the U.S. Department of Energy to improve the energy-efficiency of its buildings. February 19, 2010 Homes Weatherized by State for Calendar Year 2009 February 19, 2010 Secretary Chu's Remarks on the Anniversary of the Recovery Act February 19, 2010 January 26, 2010 Electric Cars Coming to Former Delaware GM Plant If a company's cars are luxurious enough for the Crown Prince of Denmark, then just imagine how the vehicles - which have a 50-mile, emission-free range on a single electric charge - might be received by folks in the U.S. January 15, 2010 Secretary Chu Announces More than $37 Million for Next Generation Lighting

410

Energy Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 26, 2010 February 26, 2010 Faces of the Recovery Act: Sun Catalytix February 25, 2010 Bluegrass State Getting Greener To help reduce Kentucky's energy appetite, the state set a goal of 25-percent energy reduction by 2025 and is using Recovery Act funding from the U.S. Department of Energy to improve the energy-efficiency of its buildings. February 16, 2010 Investing in Clean, Safe Nuclear Energy February 3, 2010 Secretary Chu Speaks at the 2010 Washington Auto Show February 2, 2010 Sites I Thought About Last Wednesday While President Obama was talking about his plans and goals for the future, it made me think of a lot of the work that EERE is already doing. January 26, 2010 Electric Cars Coming to Former Delaware GM Plant If a company's cars are luxurious enough for the Crown Prince of Denmark,

411

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

412

Another Nuclear Plant To Close  

Science Journals Connector (OSTI)

The Vermont Yankee Nuclear Power Station in Vernon, Vt., will permanently shut down in 2014, according to plant owner Entergy. ... In the Vermont Yankee case, Entergys announcement ends a long-simmering dispute between the utility and state officials and residents over the continued operation of the 620-MW plant. ... The Vermont Yankee plant design nearly mirrors that of the Fukushima reactor facility. ...

JEFF JOHNSON

2013-09-02T23:59:59.000Z

413

GM Li-Ion Battery Pack Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

414

GM Li-Ion Battery Pack Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

415

How plants grow toward light  

NLE Websites -- All DOE Office Websites (Extended Search)

How plants grow toward light How plants grow toward light Name: schwobtj Location: N/A Country: N/A Date: N/A Question: When a seed is planted below the surface of the ground, how does it "know" to grow toward the light? Replies: Plants don't know where the light is, they do respond to gravity. Since light is usually up, a plant seed grows up and finds light enough to keep things going. Psych One way that plants below ground can tell which way is up is with the use of STATOLITHS. Statoliths are dense pieces of material that settle to the bottom of a STATOCYST. In plants, pieces of starch or another material denser than water will settle to the bottom of the cell. Somehow the plant cell determines on what side the statolith has fallen, and then somehow relays a message (probably a chemical) that tells the bottom cells to grow faster than the top cells, therefore causing upward growth. There is still quite a lot of mystery in there to be discovered. I got this explanation from BIOLOGY by Neil Campbell. This is similar to the way in which plants use chemical signals to help them grow towards light.

416

Owners of nuclear power plants  

SciTech Connect

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

417

Development of the merchant plant  

SciTech Connect

The co-authors of this paper are currently involved in over 1500 megawatts of merchant plant developments in the US. This paper will discuss the latest in combined cycle steam reheat ``H and G'' technology. Big improvements in heat rates along with substantial drop in installed cost will make this power cycle the leading merchant plant of the future. This paper will compare the actual present day performance and clearing price of a state-of-the-art merchant plant versus utility dispatch cost duration curves, known as ``system lambda''. Deregulation of the power market will ultimately provide an open market for these efficient plants to compete effectively against aging utility plants. Comparison of utility system heat rates versus merchant plant heat rates along with an increase need for generation capacity and forecasts of stable gas prices supports to the potential for a large scale building program of these high efficiency generators. This paper will also review the capacity crunch in the Northeast and Wisconsin and how problems with nuclear plants may accelerate the need for merchant plants. This paper will compare the required capacity for the population growth in the SERC Region and in Florida and how this will produce a potential ``hot bed'' for merchant plant development.

Wolfinger, R.; Gilliss, M.B.

1998-07-01T23:59:59.000Z

418

Better Plants Partnership Agreement Form  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings, Better Plants Partnership Agreement Form commits organizations to work with DOE to reduce energy intensity by 25% over ten years.

419

Pantex Plant Emergency Response Exercise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Information Center Emergency Manager Offsite Interface Coordinator DOE Technical Advisor Emergency Press Center Radiation Safety Figure 1. Pantex Plant Emergency Response...

420

Next Generation Nuclear Plant Phenomena  

NLE Websites -- All DOE Office Websites (Extended Search)

5 ORNLTM-2007147, Vol. 5 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs Office of Nuclear Regulatory Research...

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Quality In-Plant Environment  

E-Print Network (OSTI)

, the Quality of In-plant Envi~onment. How can employees be expected to p~oduce Wo~ld-class quality pa~ts with a "di~ty" plant? Obviously, the wo~k environment has an effect on the attitude of the wo~k force. Quality of In-plant Environment con sists... reduced to .87 years. CONCLUSION The changing business climate can present opportunities for dramatic energy savings. Concepts such as Quality of Work LiEe and Quality In-Plant Environment may initially appear to have a very negative efE~ct on total...

Petzold, M. A.

422

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2013,"6301967" ,"Release Date:","1031...

423

The northeast Georgia hydroelectric plants.  

E-Print Network (OSTI)

??The Northeast Georgia hydroelectric plants are important cultural resources to the state of Georgia and the communities immediately adjacent. If the early technology of these (more)

Kelly, Nancy Elizabeth

2005-01-01T23:59:59.000Z

424

Better Plants Progress Update 2014  

Energy.gov (U.S. Department of Energy (DOE))

The 2014 Progress Update details Better Buildings, Better Plants Program accomplishments, including new partners, new initiatives, and energy and cost savings experienced by partners.

425

THE SCIOTO ORDNANCE PLANT  

Office of Legacy Management (LM)

' ' 1 . \." _ j. .I > * .A; .i ,' / / ,/ ' , ( , ( 1: 1 i I l-1 5 ' / ,,' :A' ' , THE SCIOTO ORDNANCE PLANT . and THE MARION ENGINEER DEPOT of Marion, Ohio A Profile AFTER FORTY YEARS BY Charles D. Mosher and Delpha Ruth Mosher . . . 111 THE AUTHORS Charles D. Mosher was born on a farm located in Morrow County on Mosher Road near Mt. Gilead. He received his TH.B. from Malone College, B.A. from Baldwin-Wallace College and his B.Div. and M.Div. at the Nazarene Theological Seminary in Kansas City, MO. He did additional graduate work at Western Reserve University, Kent State University and Florida State University. He has taught in Cleveland and in Morrow County and has been an Occupational Work Adjustment teacher at Harding High School in Marion

426

Fuel cell generating plant  

SciTech Connect

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

427

(Photosynthesis in intact plants)  

SciTech Connect

Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

Not Available

1990-01-01T23:59:59.000Z

428

Geothermal electric power plant status  

SciTech Connect

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

429

NETL Water and Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

430

Plants and Night Oxygen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants and Night Oxygen Production Plants and Night Oxygen Production Name: Ashar Status: other Grade: other Location: Outside U.S. Country: India Date: Winter 2011-2012 Question: I would like to know if there are any plants which produces oxygen at night (without photosynthesis). I was told by a friend that Holy Basil (Ocimum tenuiflorum) produces oxygen even at night and I'm not convinced. I would like to get confirmation from experts. Replies: Some plants (particularly those of dry regions, e.g., deserts) only open their stomates at night to avoid drying out to intake CO2 (and output O2) (CAM photosynthesis) http://en.wikipedia.org/wiki/Crassulacean_acid_metabolism Sincerely, Anthony R. Brach, PhD Missouri Botanical Garden Bringing oxygen producing plants into your home is a way to mimic the healthy lifestyle factors of longevity in humans from the longest lived cultures.

431

Overview of enrichment plant safeguards  

SciTech Connect

The relationship of enrichment plant safeguards to US nonproliferation objectives and to the operation and management of enrichment facilities is reviewed. During the review, the major components of both domestic and international safeguards systems for enrichment plants are discussed. In discussing domestic safeguards systems, examples of the technology currently in use to support nuclear materials accountability are described including the measurement methods, procedures and equipment used for weighing, sampling, chemical and isotopic analyses and nondestructive assay techniques. Also discussed is how the information obtained as part of the nuclear material accountancy task is useful to enrichment plant operations. International material accountancy verification and containment/surveillance concepts for enrichment plants are discussed, and the technologies presently being developed for international safeguards in enrichment plants are identified and the current development status is reported.

Swindle, D.W. Jr.; Wheeler, L.E.

1982-01-01T23:59:59.000Z

432

Plant maintenance and plant life extension issue, 2007  

SciTech Connect

The focus of the March-April issue is on plant maintenance and plant life extension. Major articles/reports in this issue include: Three proposed COLs expected in 2007, by Dale E. Klein, U.S. Nuclear Regulatory Commission; Delivering behaviors that our customers value, by Jack Allen, Westinghouse Electric Company; Facilitating high-level and fuel waste disposal technologies, by Malcolm Gray, IAEA, Austria; Plant life management and long-term operation, by Pal Kovacs, OECD-NEA, France; Measuring control rod position, by R. Taymanov, K. Sapozhnikova, I. Druzhinin, D.I. Mendeleyev, Institue for Metrology, Russia; and, 'Modernization' means higher safety, by Svetlana Genova, Kozluduy NPP plc, Bulgaria.

Agnihotri, Newal (ed.)

2007-03-15T23:59:59.000Z

433

Early Entrance Coproduction Plant  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

2004-01-26T23:59:59.000Z

434

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2001-02-15T23:59:59.000Z

435

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2000-10-26T23:59:59.000Z

436

Aquatic plant control research  

SciTech Connect

The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

1997-05-01T23:59:59.000Z

437

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

2001-05-17T23:59:59.000Z

438

Oversight Reports - Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant December 31, 2013 Independent Oversight Review, Pantex Plant, December 2013 Targeted Review of the Safety Significant Blast Door and Personnel Door Interlock Systems and Review of Federal Assurance Capability at the Pantex Plant June 6, 2013 Independent Activity Report, Pantex Plant - May 2013 Operational Awareness Oversight of the Pantex Plant [HIAR PTX-2013-05-20] December 11, 2012 Independent Activity Report, Pantex Plant - November 2012 Pantex Plant Operational Awareness Site Visit [HIAR PTX-2012-11-08] November 28, 2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex Plant - July 2012

439

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

440

Valuable Plants Native to Texas.  

E-Print Network (OSTI)

"in the wild" indicates that the. plant may be found growing as a native and should be procured'from such a location. Whenever possible plants should be secured from floriculturists and nurserymen. In Texas there is a large number of small... it on another tree. It is not only a curiosity but a thing of beauty. For demonstrating the recovery power of desert plants this is one of the best organisms. nunda cinnamomea L. Cinnamon Fern. Too well known to need -iption; native to the eastern part...

Parks, Harris Braley

1937-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers (EERE)

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

442

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

As part of the Department of Energy's (DOE) Gasification Technologies and Transportation Fuels and Chemicals programs, DOE and Texaco are partners through Cooperative Agreement DE-FC26-99FT40658 to determine the feasibility of developing, constructing and operating an Early Entrance Coproduction Plant (EECP). The overall objective of the project is the three-phase development of an EECP that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The specific work requirements of Phase I included: Prepare an EECP Preliminary Concept Report covering Tasks 2-8 specified in the Cooperative Agreement; Develop a Research, Development, and Testing (RD and T) Plan as specified in Task 9 of the Cooperative Agreement for implementation in Phase II; and Develop a Preliminary Project Financing Plan for the EECP Project as specified in Task 10 of the Cooperative Agreement. This document is the Preliminary Project Financing Plan for the design, construction, and operation of the EECP at the Motiva Port Arthur Refinery.

John H. Anderson; William K. Davis; Thomas W. Sloop

2001-03-21T23:59:59.000Z

443

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

444

Independent Oversight Assessment, Pantex Plant - November 2012...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oversight Assessment, Pantex Plant - November 2012 November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant This report provides the results of an independent...

445

Oversight Reports - Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex...

446

Independent Activity Report, Hanford Plutonium Finishing Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford...

447

Oversight Reports - Waste Isolation Pilot Plant | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Orientation Visit to the Waste Isolation Pilot Plant HIAR-WIPP-2011-09-07 November 26, 2007 Independent Oversight Inspection, Waste Isolation Pilot Plant - December 2007...

448

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

449

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

450

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

451

Matsukawa Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Matsukawa Geothermal Power Plant Facility ower Plant Sector Geothermal energy Location Information Location Iwate, Japan Coordinates 39.980897288029,...

452

Tuzla Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tuzla Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Ayvacik, Canakkale Coordinates 39.553940696342, 26.161228192504 Loading...

453

Independent Oversight Inspection, Waste Isolation Pilot Plant...  

Office of Environmental Management (EM)

Plant, Summary Report - August 2002 Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August 2002 August 2002 Inspection of Environment, Safety, and...

454

Independent Oversight Inspection, Pantex Plant - June 2009 |...  

Energy Savers (EERE)

Inspection, Pantex Plant - June 2009 June 2009 Inspection of Environment, Safety, and Health Programs at the Pantex Plant This report documents the results of an inspection of the...

455

Camptothecine, a selective plant growth regulator  

Science Journals Connector (OSTI)

Camptothecine, a selective plant growth regulator ... The literature documents several hundred plant products that appear to exhibit growth-regulating activity. ...

J. George Buta; Joseph F. Worley

1976-05-01T23:59:59.000Z

456

Advanced Plant Pharmaceuticals Inc | Open Energy Information  

Open Energy Info (EERE)

Pharmaceuticals Inc Jump to: navigation, search Name: Advanced Plant Pharmaceuticals, Inc. Place: New York, New York Product: String representation "Advanced Plant ... f its...

457

Independent Oversight Inspection, Pantex Plant, Summary Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Pantex Plant, Summary Report - November 2002 November 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Pantex Plant This report...

458

Independent Oversight Inspection, Pantex Plant, February 2005...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Inspection, Pantex Plant, February 2005 February 2005 Inspection of Environment, Safety, and Health Programs at the Pantex Plant This report provides the results...

459

Waste Treatment and Immobilation Plant Pretreatment Facility...  

Office of Environmental Management (EM)

Treatment and Immobilation Plant Pretreatment Facility Waste Treatment and Immobilation Plant Pretreatment Facility Full Document and Summary Versions are available for download...

460

Waste Isolation Pilot Plant | Department of Energy  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare...

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Better Tools for Better Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Tools for Better Plants Better Tools for Better Plants Andre de Fontaine Bill Orthwein, CEM Advanced Manufacturing Office, Office of Energy Efficiency and Renewable Energy U.S. Department of Energy November 15, 2011 2 | Advanced Manufacturing Office eere.energy.gov Today * New opportunities - AMO Overview - Better Buildings, Better Plants Program - Better Buildings, Better Plants Challenge * New and revised tool suite - Energy Management Toolkit - Updated system assessment tools - Tool-related training 3 | Advanced Manufacturing Office eere.energy.gov Manufacturing Matters * 11% of U.S. GDP * 12 million U.S. jobs * 60% of U.S. engineering and science jobs % Manufacturing Job Growth or Loss 31.8% of all manufacturing jobs lost from 2000-2011 Jobs 31% of all 2010 U.S. total energy consumption

462

Gasification of selected woody plants  

Science Journals Connector (OSTI)

The article contains laboratory data comparing the rate of gasification of five types of woody plantsbeech, ... oak, willow, poplar and rose. The gasification rate was determined thermogravimetrically. Carbon di...

Buryan Petr

2014-07-01T23:59:59.000Z

463

Energy Efficiency in Chilling Plants  

E-Print Network (OSTI)

1 Energy Efficiency in Chilling Plants Xin Wang????PhD. CandidateBuilding Energy Research Centre, Tsinghua University2006.10.11 2 Index ? Improve COP of chillers ? Increase load ratio? Decrease cooling water temperature? Increase chilled water...

Wang, X.

2006-01-01T23:59:59.000Z

464

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

0.5 hours" "NATURAL GAS PROCESSING PLANT SURVEY" "FORM EIA-757" "Schedule A: Baseline Report " "This report is mandatory under the Federal Energy Administration Act of 1974 (Public...

465

Freeport Begins Offshore Sulfur Plant  

Science Journals Connector (OSTI)

Freeport Begins Offshore Sulfur Plant ... Discovered by Humble Oil & Refining, the sulfur deposit off Grand Isle is believed by industry observers to be one of the largest discovered in recent years. ...

1958-07-07T23:59:59.000Z

466

Pantex Plant | Department of Energy  

Energy Savers (EERE)

including explosives, at DOE's Pantex Plant. January 7, 2013 Enforcement Letter, NEL-2013-01 - January 7, 2013 Issued to B&W Pantex, LLC related to the Conduct of Nuclear...

467

Description Plants ESIS ESD FSGD  

E-Print Network (OSTI)

Ecological Site Description Plants ESIS ESD FSGD ESI Forestland ESI Rangeland Data Access > Return CHARACTERISTICS Site Type: Rangeland Site Name: Red Sandy Loam 25-32" PZ Site ID: R082AY369TX Major Land Resource

468

Computer Control of Unattended Plants  

E-Print Network (OSTI)

Providing a cost-effective and reliable computer monitoring, control, and optimization package is a greater challenge for small, unattended plants than for large energy intensive facilities. This paper describes the successful application of a...

Vinson, D. R.; Chatterjee, N.

1984-01-01T23:59:59.000Z

469

Intercellular Communication during Plant Development  

Science Journals Connector (OSTI)

...metabolic processes; however, levels are tightly regulated as excess ROS can be cytotoxic. Plants also actively produce ROS through...circadian and ultradian clocks, such as their disruption by lithium, suggest that these clocks may share some regulatory mechanisms...

Jaimie M. Van Norman; Natalie W. Breakfield; Philip N. Benfey

2011-03-08T23:59:59.000Z

470

Issues for New Nuclear Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

to Explore * Idaho's energy picture * Nuclear power in the U.S. * Potential for a nuclear power plant in Idaho 0 5 10 15 20 25 1960 1970 1980 1990 2000 Million Megawatt-Hours Total...

471

Balancing people, plants, and practices  

SciTech Connect

Two of the biggest challenges facing the US power industry today are retaining an experienced, capable workforce and operating and maintaining a reliable, diversified fleet of generating plants. Success in the marketplace requires a proper balancing of staff and new technology, something few gencos do well. Following this introductory paper in this issue are several technical articles representing a small sample of the steps that gencos nationwide are taking to prolong plant life. Unlike the false promise of Ponce de Leon's fountain of youth in Florida, the promise of longer life for aging plants is real wherever experienced engineers and technicians are on the job. The article looks at problems across America, from the East Coast to the West Coast. It is supported by diagrams projecting US new capacity and plant type additions up to 2014. 5 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

472

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

473

Plant salt-tolerance mechanisms  

Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

2014-06-01T23:59:59.000Z

474

Overview BETTER BUILDINGS, BETTER PLANTS  

Energy Savers (EERE)

1,700 Cumulative Avoided CO 2 Emissions (Million Metric Ton) 18.5 Average Annual Energy Intensity Improvement Rate through 2013 2.4% Better Plants Snapshot, February 2015...

475

A neighborhood alternative energy plant  

E-Print Network (OSTI)

A design that proposes the redefinition of the role of a power plant facility within a community by creating a humane environment for recreation, education, community gathering, living, and energy production; rather than ...

Brooks, Douglas James

1982-01-01T23:59:59.000Z

476

Mixtec plant nomenclature and classification  

E-Print Network (OSTI)

Capsicum pubescens L. , SOLANACEAE yutu tuyaa kun: la matade chile amarillo (PIN) tuyaa: chili plants (JAM) cha:nikandi yaa: chilar (CAB) tuyaa (COI) Clethra mexicana

de Avila, Alejandro

2010-01-01T23:59:59.000Z

477

Water Filtration Using Plant Xylem  

E-Print Network (OSTI)

Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees a readily available, ...

Boutilier, Michael Stephen Ha

478

DSM Power Plant in India  

Science Journals Connector (OSTI)

India is facing acute energy shortage that is likely to affect its economic development. There are severe supply side constraints in term of coal and gas shortages that are likely to continue in the near future. Hence, in its current focus to solving the energy shortage problem and sustaining the development trajectory, the country should aim at a balance between supply side and demand side measures. Energy Efficiency in end use is increasingly gaining importance as one of the most cost effective options for achieving short to medium term energy savings. India has initiated the National Mission for Enhanced Energy Efficiency under National Action Plan for Climate Change which addresses various aspects of energy efficiency such as technology, financing, fiscal incentive and also creation of energy efficiency as a market instrument. However, even though energy efficiency has substantial scope in the Indian subcontinent, the market for energy efficiency has been limited. This paper discusses the concept of mega Demand Side Management projects as a DSM Power Plant. A DSM Power Plant acts as an umbrella with multiple energy efficiency schemes under its ambit aimed at transforming energy efficiency into a business by providing a push to the scale of operation as well as financial sustenance to energy efficiency projects. This paper expounds on the various aspects of DSM Power Plant in terms of its policy and institutional mechanism for the large scale implementation of energy efficiency in India. This paper provides an illustration of the concept of DSM Power Plant model through a case study in one of the states (Rajasthan) of India. Further, a comparative analysis of the cost of generation from DSM Power Plant and a representative conventional power plant (CPP) in Rajasthan has been undertaken and the DSM Power Plant comes out to be a more cost effective option. The concept of DSM Power Plant will not only address the issue of energy shortages but will also help the financially thwarted utilities to reduce their revenue deficit in the near future.

Saurabh Gupta; Tanushree Bhattacharya

2013-01-01T23:59:59.000Z

479

Researching power plant water recovery  

SciTech Connect

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

480

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

2004-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "delaware gm plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

2004-01-12T23:59:59.000Z

482

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The decision to proceed with Phase III centers on locating a new site and favorable commercial and economic factors.

John Anderson; Charles Schrader

2004-01-26T23:59:59.000Z

483

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

484

Montana State University -College of Agriculture Plant Science & Plant Pathology Department Program of Study for: Biotechnology -Plant Systems Options  

E-Print Network (OSTI)

Program of Study for: Biotechnology - Plant Systems Options 2010-2012 Catalog Student ID #: Required Cr- Intro to Biotechnology 3 F W BIOB 160 - Prin Living Systems (or BIOB 260 F) 4 F,S Q BIOB 375 - Genetics,S,Su BIOB 430 - Plant Biotechnology 3 S even BIOO 433 - Plant Physiology 3 S HORT 447 - Advanced Plant

Lawrence, Rick L.

485

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the goals of DOE's Vision 21 Program. The gasification section offers several opportunities to maximize the environmental benefits of an EECP. The spent F-T catalyst can be sent to landfills or to the gasification section. Testing in Phase II shows that the spent F-T catalyst with a small wax coating can safely meet federal landfill requirements. As an alternative to landfilling, it has been proposed to mix the spent F-T catalyst with the petroleum coke and feed this mixture to the gasification unit. Based on ChevronTexaco's experience with gasification and the characteristics of the spent F-T catalyst this appears to be an excellent opportunity to reduce one potential waste stream. The slag from the gasification unit can be commercially marketed for construction or fuel (such as cement kiln fuel) uses. The technical and economic benefits of these options must be reviewed for the final EECP before incorporating a specific alternative into the design basis. Reducing greenhouse gas emissions, particularly carbon dioxide, is an important goal of the EECP. The Texaco gasification process provides opportunities to capture high purity streams of carbon dioxide. For Phase II, a carbon fiber composite molecular sieve (CFCMS) was tested to determine its potential to remove high purity carbon dioxide from the exhaust of a gas turbine. Testing on with a simulated gas turbine exhaust shows that the CFCMS is able to remove high purity carbon dioxide from the exhaust. However, more development is required to optimize the system.

John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

2004-01-12T23:59:59.000Z

486

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and secondary catalyst/wax separation systems. The team evaluated multiple technologies for both primary and secondary catalyst/wax separation. Based on successful testing at Rentech (outside of DOE funding) and difficulties in finalizing a contract to demonstrate alternative primary catalyst/wax separation technology (using magnetic separation technology), ChevronTexaco has selected the Rentech Dynamic Settler for primary catalyst/wax separation. Testing has shown the Dynamic Settler is capable of producing filtrate exceeding the proposed EECP primary catalyst/wax separation goal of less than 0.1 wt%. The LCI Scepter{reg_sign} Microfiltration system appeared to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of 10 parts per million (weight) [ppmw]. The other technologies, magnetic separation and electrostatic separation, were promising and able to reduce the solids concentrations in the filtrate. Additional RD&T will be needed for magnetic separation and electrostatic separation technologies to obtain 10 ppmw filtrate required for the proposed EECP. The Phase II testing reduces the technical and economic risks and provides the information necessary to proceed with the development of an engineering design for the EECP Fischer-Tropsch catalyst/wax separation system.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

2003-08-21T23:59:59.000Z

487

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for secondary catalyst/wax separation systems as part of Task 2.3--Catalyst/Wax Separation. The LCI Scepter{reg_sign} Microfiltration system was determined to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of producing F-T wax containing less than10 ppmw solids. As part of task 2.3, micro-filtration removal efficiencies and production rates for two FT feeds, Rentech Inc. bubble column reactor (BCR) product and LaPorte Alternative Fuels Development Unit (AFDU) product, were evaluated. Based on comparisons between the performances of these two materials, the more readily available LaPorte AFDU material was judged an acceptable analog to the BCR material that would be produced in a larger-scale F-T synthesis. The present test was initiated to obtain data in an extended range of concentration for use in the scale-up design of the secondary catalyst/wax separation system that would be operating at the EECP capacity.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

2004-01-12T23:59:59.000Z

488

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In developmental work outside the scope of this project, historical data, literature references, and a scale-up from a 1 1/2-in. (3.8 cm) to 6-ft (1.8 m) SPBC reactor have been reviewed. This review formed the background for developing scale-up models for a SPBC reactor operating in the churn-turbulent flow regime. The necessary fundamental physical parameters have been measured and incorporated into the mathematical catalyst/kinetic model developed from the SPBC and CSTR work outside the scope of this EECP project. The mathematical catalyst/kinetic model was used to compare to experimental data obtained at Rentech during the EECP Fischer-Tropsch Confirmation Run (Task 2.1; reported separately). The prediction of carbon monoxide (CO) conversion as a function of days on stream compares quite closely to the experimental data.

Randy Roberts

2003-04-25T23:59:59.000Z

489

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs of treating the water to meet the locally applicable environmental standards. This option may require expensive chemicals and treatment facilities. EECP Phase II included tests conducted to confirm the viability of integrating F-T water in the slurry feed for the gasifier. Testing conducted at ChevronTexaco's Montebello Technology Center (MTC) included preparing slurries made using petroleum coke with F-T water collected at the LaPorte Alternative Fuels Development Unit (AFDU). The work included bench scale tests to determine the slurry ability of the petroleum coke and F-T water. The results of the tests show that F-T water does not adversely affect slurries for the gasifier. There are a few cases where in fact the addition of F-T water caused favorable changes in viscosity of the slurries. This RD&T task was executed in Phase II and results are reported herein.

Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

490

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making assumptions for the basis of design for various technologies that are part of the EECP concept. The Phase I Preliminary Concept Report was approved by the DOE in May 2001. The Phase I work identified technical and economic risks and critical research, development, and testing that would improve the probability of the technical and economic success of the EECP. The Project Management Plan (Task 1) for Phase II was approved by the DOE in 2001. The results of RD&T efforts for Phase II are expected to improve the quality of assumptions made in Phase I for basis of design for the EECP concept. The RD&T work plan (Task 2 and 3) for Phase II has been completed. As the RD&T work conducted during Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Basic Engineering Design. Also due to the merger of Chevron and Texaco, the proposed refinery site for the EECP was not available. It became apparent that some additional technical development work would be needed to correctly apply the technology at a specific site. The objective of Task 4 of Phase II is to update the concept basis of design produced during Phase I. As part of this task, items that will require design basis changes and are not site dependent have been identified. The team has qualitatively identified the efforts to incorporate the impacts of changes on EECP concept. The design basis has been modified to incorporate those changes. The design basis changes for those components of EECP that are site and feedstock dependent will be done as part of Phase III, once the site has been selected.

Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

2003-09-15T23:59:59.000Z

491

Waste Treatment Plant - 12508  

SciTech Connect

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

492

Career Map: Site/Plant Manager  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program's Career Map provides job description information for Site/Plant Manager positions.

493

Method of identifying plant pathogen tolerance  

DOE Patents (OSTI)

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07T23:59:59.000Z

494

Method of identifying plant pathogen tolerance  

DOE Patents (OSTI)

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

Ecker, Joseph R. (Erial, NJ); Staskawicz, Brian J. (Castro Valley, CA); Bent, Andrew F. (Piedmont, CA); Innes, Roger W. (Bloomington, IN)

1997-10-07T23:59:59.000Z

495

Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator Plants  

Science Journals Connector (OSTI)

...the protocol developed by Church and Gilbert (1984). DNA gel blot analysis was...8333-8339. Church, G.M., and Gilbert, W. (1984). Genomic sequencing...Washington, DC: American Society for Microbiology), pp. 395-411. Wycisk, K., Kim...

Robert A. Ingle; Sam T. Mugford; Jonathan D. Rees; Malcolm M. Campbell; J. Andrew C. Smith

2005-05-27T23:59:59.000Z

496

Tomato Protein Kinase 1b Mediates Signaling of Plant Responses to Necrotrophic Fungi and Insect Herbivory  

Science Journals Connector (OSTI)

...were performed as described (Church and Gilbert, 1984). For RT-PCR, cDNA was synthesized...497-500. Church, G.M., and Gilbert, W. (1984). Genomic sequencing...Interactions Lycopersicon esculentum genetics microbiology parasitology Manduca physiology Molecular...

Synan AbuQamar; Mao-Feng Chai; Hongli Luo; Fengming Song; Tesfaye Mengiste

2008-07-03T23:59:59.000Z

497

Plants having modified response to ethylene  

DOE Patents (OSTI)

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

1997-11-18T23:59:59.000Z

498

Plants having modified response to ethylene  

DOE Patents (OSTI)

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

Meyerowitz, Elliot M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

1998-01-01T23:59:59.000Z

499

Plants having modified response to ethylene  

DOE Patents (OSTI)

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

Meyerowitz, Elliott M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

1997-01-01T23:59:59.000Z

500

Cement Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Cement Plant EPI Cement Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation