National Library of Energy BETA

Sample records for del bio bio

  1. Energias Renovables del Bio Bio ERBB | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, NewLtd EIL Jump to: navigation,Inc JumpRenovables del

  2. Scientific Bio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| StanfordOffice of ScienceDiscoveredScientificScientific Bio

  3. Red de Bibliotecas del CSIC. Apoyo a la publicacin para autores del CSIC en revistas de BioMed Central http://bibliotecas.csic.es 1

    E-Print Network [OSTI]

    Red de Bibliotecas del CSIC. Apoyo a la publicación para autores del CSIC en revistas de BioMed Central http://bibliotecas.csic.es 1 Apoyo a la publicación para autores del CSIC en revistas de BioMed Central BioMed Central publica más de 200 revistas electrónicas de biología y biomedicina de reconocido

  4. World Bio Markets

    Broader source: Energy.gov [DOE]

    Held in Amsterdam, Netherlands, the 10th anniversary World Bio Markets convened from March 1 4, 2015.

  5. BioInformatics BioInformatics

    E-Print Network [OSTI]

    Shamir, Ron

    BigRoc The BioInformatics and Genome Research Open Club The BioInformatics and Genome Research Open Bioinformatics group, Utrecht University, the Netherlands Patterns in genome and regulome evolution: insights information is coded in the genome and how this information is transformed into traits on which selection

  6. Bio Medical & Officers

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The objective of this study was to evaluate the effects of inclusion of Bio-Mos in the growing ration for weaned lambs on growth rate, feed efficiency, and clinical measures of health of the lambs. Mannan oligosaccharides (MOS), when included as a...

  7. BioEnergy Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement at the National Press

  8. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  9. Distributed Bio-Oil Reforming

    Broader source: Energy.gov [DOE]

    Presentation by NREL's Robert Evans at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  10. Bio2Nano

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene Gets aVehicles and FuelsBio2Nano

  11. Speaker Bios: Daniel Cohen | Department of Energy

    Office of Environmental Management (EM)

    Daniel Cohen Speaker Bios: Daniel Cohen Speaker Bios: Daniel Cohen More Documents & Publications US Department of Energys Regulatory Negotiations Convening on Commercial...

  12. Bio-threat microparticle simulants

    DOE Patents [OSTI]

    Farquar, George Roy; Leif, Roald

    2014-09-16

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  13. Distributed Bio-Oil Reforming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mines Bio-Derived Liquids Distributed Reforming Working Group Meeting HFC&IT Program Baltimore, MD October 24, 2006 1 Gasification Partial oxidation CH 1.46 O .67 + 0.16 O 2 ...

  14. Bio-oil fractionation and condensation

    DOE Patents [OSTI]

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  15. BioMEMS DeviceBioMEMS Device Integration, PackagingIntegration, Packaging

    E-Print Network [OSTI]

    Rubloff, Gary W.

    BioMEMS DeviceBioMEMS Device Integration, PackagingIntegration, Packaging and Control forandMEMS Device Integration, Packaging andBioMEMS Device Integration, Packaging and Control for Bio Nonpermanent sealing provides ex situ, post-process analysis Reusable packaging components Microfluidic Control

  16. BIOTECH JOBS AND INTERNSHIPS Bio Online: Life on the Net www.bio.com

    E-Print Network [OSTI]

    BIOTECH JOBS AND INTERNSHIPS Bio Online: Life on the Net www.bio.com Biotech Employment.com www.biotechemployment.com Biotech Jobs www.biofind.com/jobs BioView http://www.bioview.com Careerbuilder.com www & ENGINEERING TEMP AGENCIES BioSource Technical Service (Biotech/Environmental) www.biosource-tech.com/ Kelly

  17. Dr. Campbell's Bio111 Exam #3 Spring 2007 Spring 2007 Biology 111 Take Home Exam #3 BioEnergetics

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    Dr. Campbell's Bio111 Exam #3 Spring 2007 1 Spring 2007 Biology 111 Take Home Exam #3 BioEnergetics

  18. Dr. Campbell's Bio111 Exam #3 Spring 2008 Spring 2008 Biology 111 Take Home Exam #3 BioEnergetics

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    Dr. Campbell's Bio111 Exam #3 Spring 2008 1 Spring 2008 Biology 111 Take Home Exam #3 BioEnergetics

  19. The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge

    E-Print Network [OSTI]

    Lee, Dongwon

    The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12; The Pennsylvania State The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

  20. The minimum information for a qualified BioBrick

    E-Print Network [OSTI]

    Zhou, Mubing

    2012-10-11

    Since the information of many existing BioBricks is incomplete, thus the usage of the BioBricks will be affected. It is necessary to standardize the minimum information required for a qualified BioBrick. Furthermore this ...

  1. BIO DZL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece: EnergyMontana) JumpAyuda:VigiladosBEoptBID JumpBIO

  2. Bio-inspired nanocomposite assemblies as smart skin components...

    Office of Scientific and Technical Information (OSTI)

    Bio-inspired nanocomposite assemblies as smart skin components. Citation Details In-Document Search Title: Bio-inspired nanocomposite assemblies as smart skin components. There is...

  3. Conversion Technologies for Advanced Biofuels ? Bio-Oil Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stability and quality metrics for bio-oil Identify and minimize bio-oil impurities (ash elements, chlorides, water) that reduce the performance of downstream upgrading...

  4. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Energy Savers [EERE]

    Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Challenge 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain...

  5. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007...

  6. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targets (Presentation) Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming...

  7. Marine Bio-Technologies Center of Innovation

    E-Print Network [OSTI]

    Marine Bio-Technologies Center of Innovation Supporting the Blue Economy #12;A Nexus for Marine Biotechnology www.MBCOI.net Marine Category Market Share Market Category Biotechnology 8% Biotechnology compounds Marine Biotechnologies Global Market ~$172 Billion1 1Source: BioMarine Business Convention 2013

  8. Dr. Campbell's Bio111 Exam #3 Spring 2008 Spring 2008 Biology 111 In-Class Exam #3 BioEnergetics

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    Dr. Campbell's Bio111 Exam #3 Spring 2008 1 Spring 2008 Biology 111 In-Class Exam #3 BioEnergetics

  9. Dr. Campbell's Bio111 Exam #3 Spring 2007 Spring 2007 Biology 111 In-Class Exam #3 BioEnergetics

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    Dr. Campbell's Bio111 Exam #3 Spring 2007 1 Spring 2007 Biology 111 In-Class Exam #3 BioEnergetics

  10. Bio-informatica I (C002374) Academiejaar 2014-2015

    E-Print Network [OSTI]

    Gent, Universiteit

    Bio-informatica I (C002374) Academiejaar 2014-2015 Studiefiche Lesgevers in academiejaar 2014, sequentie-alignering, homologie, motiefdetectie, genpredictie en -annotatie Het opleidingsonderdeel Bio-informatica belang van bio-informatica voor de biologische wetenschappen. · Wat is bio-informatica? · Biologische

  11. General Safety Guidelines for Bio-Hazardous Waste Disposal

    E-Print Network [OSTI]

    Holland, Jeffrey

    General Safety Guidelines for Bio-Hazardous Waste Disposal Determine if you have a Bio-Hazardous, cell cultures, Petri dishes, and etc. NOT fitting the category 1 description. ALL BIO-HAZARDOUS WASTE OF CATEGORY 1 NEEDS TO BE TREATED BY AUTOCLAVE OR WITH HIV/HBV KILLING AGENT BEFORE PICK-UP Bio-hazardous

  12. BioComms Training: Strategic Communications and Message Development

    Broader source: Energy.gov [DOE]

    Strategic Communications and Message Development: Presentation to EERE BioComms Group by Kearns & West.

  13. BioJet Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to:BioGas Energy Inc JumpBioJet

  14. BioXchange Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to:BioGas EnergyBioXchange Ltd

  15. Math Bio Documentation - Department of Mathematics, Purdue ...

    E-Print Network [OSTI]

    $author.value

    You can also change the _bio.config so these types of fields do not display at all. All you have to do is remove the # sign and not add any information after the...

  16. ANR @ MSUANR @ MSU AgBioResearchAgBioResearch Expert Search

    E-Print Network [OSTI]

    SKIP TO CONTENT ANR @ MSUANR @ MSU AgBioResearchAgBioResearch Home Background & Projects Calendar REPORTS Apple grower's main concern remains apple scab. The last two days left us with a light to moderate temperatures have kept the brown rot pressure light, but the risk is always there. There are no competent

  17. Bio PowerBio Power The City of Gresham WastewaterThe City of Gresham Wastewater

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    power=small scale turbinehydro power=small scale turbineMicroMicro--hydro power=small scale turbinehydro Power Micro-Hydro Power #12;Awards League of Oregon Cities 2006 Award of Excellence American PublicBio PowerBio Power The City of Gresham WastewaterThe City of Gresham Wastewater Treatment Plant

  18. ANR @ MSUANR @ MSU AgBioResearchAgBioResearch Expert Search

    E-Print Network [OSTI]

    SKIP TO CONTENT ANR @ MSUANR @ MSU AgBioResearchAgBioResearch Home Background & Projects Calendar 92 GDD50 32 22 20 64 54 33 WEATHER Two major cold events have affected fruit crops in NW Michigan of the remaining live flowers, be sure to have ample bees present in sweet cherry orchards (approximately two good

  19. Bio-Based Product Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from...

  20. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOE Patents [OSTI]

    Elliott, Douglas C. (Richland, WA); Hu, Jianli (Kennewick, WA); Hart, Todd R. (Kennewick, WA); Neuenschwander, Gary G. (Burbank, WA)

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  1. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOE Patents [OSTI]

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  2. Speaker Bios: Matthew McMillen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Matthew McMillen More Documents & Publications Transcript from 120108 Speaker Bios: Daniel Cohen Lessons Learned Quarterly Report, June 20...

  3. Speaker Bios: Matthew McMillen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Matthew McMillen More Documents & Publications Transcript from 120108 Lessons Learned Quarterly Report, June 2008 Speaker Bios: Daniel Cohen...

  4. Fuel Cells on Bio-Gas (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-03-04

    The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

  5. BioGenerator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to:BioGas Energy Inc Jump

  6. BioProcess Algae | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to:BioGas Energy

  7. Elec 331 -Bio-Potential Electrodes Review Definitions

    E-Print Network [OSTI]

    Pulfrey, David L.

    Elec 331 - Bio-Potential Electrodes 1 Review Definitions Ion Charged particle (molecule / atom - Bio-Potential Electrodes 2 Polarizable Electrodes No chemical reaction / electron / ion exchange minimizes motion artifact Pull hard to remove #12;Elec 331 - Bio-Potential Electrodes 3 Non

  8. BioElectrochemically Assisted Microbial Reactor

    E-Print Network [OSTI]

    Lee, Dongwon

    microbial fuel cell-based technologies. Bruce Logan and John M. Regan Hydrogen Energy CenterBioElectrochemically Assisted Microbial Reactor (BEAMR) The BEAMR reactor uses only >0.2 V needed/mol) expected Energy recovery from acetate: 5x the energy in electricity used recovered as H2 (heat

  9. Biofuels and bio-products derived from

    E-Print Network [OSTI]

    Ginzel, Matthew

    NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

  10. BIO-OPTICAL PRESENTATIONS YEARS 2000 2004

    E-Print Network [OSTI]

    Gilbes, Fernando

    BIO-OPTICAL PRESENTATIONS YEARS 2000 2004 YEAR 00-01 Armstrong, R.A., F. Gilbes, R. Guerrero. Lopez, and F. Gilbes, 2000, "Apparent Optical Properties at the Caribbean Time Station", Ocean Optics XV, Monaco. Gilbes, F., and R.A. Armstrong, 2000, "Inherent Optical Properties at the Caribbean Time Series

  11. Epi Bio 305 Data Management and Programming

    E-Print Network [OSTI]

    Chisholm, Rex L.

    is to prepare students for computer-based data management, statistical data processing, and programming using SAS systems. There will also be a brief introduction to other statistical packages including R (whichEpi Bio 305 Data Management and Programming 1.0 Credit Fall 2011 (September 20-December 06, 2011

  12. INVITATION: PRAKTISK TEMADAG OM INDHENTNING AF BIO-

    E-Print Network [OSTI]

    INVITATION: PRAKTISK TEMADAG OM INDHENTNING AF BIO- MASSE FRA LAVBUNDSOMRDE TIL BIOGAS 24 lavbundsomrdet til biogas vret stigende de senere r. Der sker en spndende teknologisk udvikling indenfor som har draget erfaringer med hst og anvendelse af enggrs til biogas, og se udstyr til slning af

  13. Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States

    E-Print Network [OSTI]

    Gray, Matthew

    Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

  14. Oceanografia Bio-ptica BIO-OPTICAL OCEANOGRAPHY

    E-Print Network [OSTI]

    Gilbes, Fernando

    . Propiedades pticas inherentes - dispercin 13 de febrero 6. El campo de luz submarino 21 de febrero ------ Examen parcial ------ 27 de febrero 7. Modelaje del campo de luz submarino: Monte Carlo 5 de marzo 8. Modelaje del campo de luz submarino: Hydrolight & WASI 12 de marzo #12;9. Fotosintesis en el oceano 1 19 de

  15. Bio-Terrorism Threat and Casualty Prevention

    SciTech Connect (OSTI)

    NOEL,WILLIAM P.

    2000-01-01

    The bio-terrorism threat has become the ''poor man's'' nuclear weapon. The ease of manufacture and dissemination has allowed an organization with only rudimentary skills and equipment to pose a significant threat with high consequences. This report will analyze some of the most likely agents that would be used, the ease of manufacture, the ease of dissemination and what characteristics of the public health response that are particularly important to the successful characterization of a high consequence event to prevent excessive causalities.

  16. Southeast BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergyHouston,Windsor,Southchase, Florida:BioDiesel Jump

  17. Southern Iowa Bio Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to: navigation, search Name: Southern Indiana GasBio

  18. BIOMASS TO BIO-OIL BY LIQUEFACTION

    SciTech Connect (OSTI)

    Wang, Huamin; Wang, Yong

    2013-01-10

    Significant efforts have been devoted to develop processes for the conversion of biomass, an abundant and sustainable source of energy, to liquid fuels and chemicals, in order to replace diminishing fossil fuels and mitigate global warming. Thermochemical and biochemical methods have attracted the most attention. Among the thermochemical processes, pyrolysis and liquefaction are the two major technologies for the direct conversion of biomass to produce a liquid product, often called bio-oil. This chapter focuses on the liquefaction, a medium-temperature and high-pressure thermochemical process for the conversion of biomass to bio-oil. Water has been most commonly used as a solvent and the process is known as hydrothermal liquefaction (HTL). Fundamentals of HTL process, key factors determining HTL behavior, role of catalyst in HTL, properties of produced bio-oil, and the current status of the technology are summarized. The liquefaction of biomass by using organic solvents, a process called solvolysis, is also discussed. A wide range of biomass feedstocks have been tested for liquefaction including wood, crop residues, algae, food processing waste, and animal manure.

  19. Method to upgrade bio-oils to fuel and bio-crude

    DOE Patents [OSTI]

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  20. BioPower Atlas and BioFuels Atlas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectricBioCleanBioPowerAtlas

  1. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  2. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ebinarbiooilsupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  3. Sandia Energy - "Bionic" Liquids from Lignin: Joint BioEnergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries Home Renewable Energy Energy Transportation Energy Biofuels Facilities Partnership...

  4. Mass spectrometry on bio-renewable fuels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology, chemical processes involved in the production of bio-oils, and how analytical chemistry can help in developing sustainable technology. ii) They will study...

  5. Advanced Biofuels (and Bio-products) Process Demonstration Unit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels (and Bio-products) Process Demonstration Unit Todd Pray, PhD, MBA March 25, 2015 Biochemical Conversion Area DOE Bioenergy Technologies Office (BETO) Project Peer Review...

  6. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Short Contact Time Hydrogen Generator, Wei Wei, GE Global Research Distributed Bio-Oil Reforming, Darlene Steward, National Renewable Energy Laboratory High-Pressure Steam...

  7. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Arlene Anderson at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  8. Next Generation Bio-Based & Sustainable Chemicals Summit

    Broader source: Energy.gov [DOE]

    The 6th Annual Next Generation Bio-Based & Sustainable Chemicals Summit will be hosted in New Orleans, Louisiana, from February 35.

  9. BioDelivery Sciences International, Inc. - Product Pipeline Review...

    Open Energy Info (EERE)

    BioDelivery Sciences International, Inc. - Product Pipeline Review - 2014 By Radiant Insights Home > Groups > Future of Condition Monitoring for Wind Turbines Marketresearchri's...

  10. BioInvent International AB - Product Pipeline Review - 2014 According...

    Open Energy Info (EERE)

    BioInvent International AB - Product Pipeline Review - 2014 According To Radiant Insights Home > Groups > Future of Condition Monitoring for Wind Turbines Marketresearchri's...

  11. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Purification Working Group (PURIWG) & Hydrogen Production Technical Team Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen Separation...

  12. BioSystems Review 59 BioNano/Micro System in Nanobiotechnology

    E-Print Network [OSTI]

    Park, Je-Kyun

    of BioNano/Micro System applies both nanotechnology and MEMS (microelectromechanical systems) to solve nanotechnology and MEMS (microelectromechanical systems) to solve biological and medical problems as well biological and medical problems as well as biological structures and principles to solve engineering MEMS

  13. United Bio Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S.UnifinPark,Unitech Printed Circuit BoardBio

  14. Complex biological and bio-inspired systems

    SciTech Connect (OSTI)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to accurately model biological systems at the molecular and cellular level. The project's impact encompasses applications to biofuels, to novel sensors and to materials with broad use for energy or threat reduction. The broad, interdisciplinary approach of CNLS offers the unparalleled strength of combining science backgrounds and expertise -a unique and important asset in attacking the complex science of biological organisms. This approach also allows crossfertilization, with concepts and techniques transferring across field boundaries.

  15. Foothills Bio Energies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood,Pevafersa JV Jump to:Bio Energies Jump to:

  16. Fuel Bio One LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorthIdaho:FroniusFruitdale,FryeBio One LLC

  17. Point Bio Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas: Energy Resources JumpOhio:Pod GeneratingPoint Bio

  18. New Bio LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio: Energy Resources Jump to:Wisconsin: EnergyOpenBio

  19. EcoBio Carbon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetekof Economic Activities on theEcoBio

  20. BioFinance | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectricBioClean

  1. Brasil Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence JumpJersey Logo: BostonStation LLCBrancoBio Fuels

  2. Phoenix Bio Industries LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3Perrysburg,AlpenaNRELUNEP GreenBio

  3. Ternion Bio Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValleyTermoDeckTernion Bio

  4. Bio Energias Renov veis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)DaddyInformation BinhaiBio

  5. Bio Pure Maryland LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)DaddyInformationSystemsGasBio

  6. Kent BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanosh TownKenetech/Wintech Wind FarmKent BioEnergy

  7. BioSolar Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcherCarbonAlgeneBioLogical Capital BLC

  8. Blue Sky Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpIICalifornia:BlueBio Fuels Jump to:

  9. Prime BioSolutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsenBioSolutions Jump to: navigation, search

  10. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement at the National PressNews »

  11. Examenrooster 1MA Bio-ingenieurswetenschappen: Cel-en Genbiotechnologie + Chemie en Bioprocestechnologie

    E-Print Network [OSTI]

    Einmahl, Uwe

    Examenrooster 1MA Bio-ingenieurswetenschappen: Cel- en Genbiotechnologie + Chemie en (UGent) Mondeling examen: maandag 15/06/2015 Industrile bio-organische chemie (G. VERNIEST) Partim

  12. The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies

    E-Print Network [OSTI]

    2013-01-01

    as: Katayama et al. : The 3rd DBCLS BioHackathon: improvingSEMANTICS Open Access The 3rd DBCLS BioHackathon: improving

  13. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007...

  14. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  15. Quercetin as natural stabilizing agent for bio-polymer

    SciTech Connect (OSTI)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  16. MS.5 MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2009 MEMS & BioMEMS MEMS & BioMEMS

    E-Print Network [OSTI]

    microelectromechanical systems (MEMS) present several drawbacks including expense, incompatibility with flexibleMS.5 MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2009 MEMS & BioMEMS MEMS & BioMEMS MATERiALS Direct Patterning of Metallic MEMS through Microcontact Printing C. E. Packard, A. Murarka, V

  17. Dr. Campbell's Bio111 Exam #3 Fall 2002 Fall 2002 Biology 111 Exam #3 BioEnergetics

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    a list with the names of leaf pigments in one column and colors of light absorbed in the second column. List as many as you can remember. #12;Dr. Campbell's Bio111 Exam #3 Fall 2002 3 6 pts. 4) Why do plants need water? b) Do plants ever produce CO2 as a waste product? #12;Dr. Campbell's Bio111

  18. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect (OSTI)

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-15

    Highlights: Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. Investigated the effects of main parameters on pyrolysis products distribution. Determined the suitable conditions for the production of the maximum of bio-oil. Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 C and a heating rate of 5 C/min. The chemical (GCMS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compoundsetc.), carboxylic acids, aldehydes, ketones, esters,etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  19. University of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at Chicago ----BioE Seminar SeriesBioE Seminar SeriesBioE Seminar SeriesBioE Seminar Series FridayFridayFridayFriday,,,, SeptemberSep

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    University of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at Chicago ---- BioE Seminar SeriesBioE Seminar SeriesBioE Seminar SeriesBioE Seminar Series- heat to higher elevation/temperature, cyclone or crystal formation, in life-creating processes

  20. EVALUATION AND DEVELOPMENT OF BIO-OPTICAL ALGORITHMS FOR CHLOROPHYLL RETRIEVAL IN

    E-Print Network [OSTI]

    Gilbes, Fernando

    algoritmos bio-pticos para estimar clorofila a (Chl a). Anlisis espectroscpico de cuarta derivada fueron

  1. BioPower Systems Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to:BioGas Energy IncBioPower

  2. Integrating NABC bio-oil intermediates into the petroleum refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory

  3. Past, Present, and Future Production of Bio-oil

    SciTech Connect (OSTI)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers have developed means to increase the anhydrosugars content of bio-oil above the usual 3% produced during normal pyrolysis by mild acid pretreatment of the biomass feedstock. Mississippi State University has developed a proprietary method to produce an aqueous fraction containing more than 50% of anhydrosugars content. These anhydrosugars can be catalyzed to hydrogen or hydrocarbons; alter-nately, the aqueous fraction can be hydrolyzed to pro-duce a high-glucose content. The hydrolyzed product can then be filtered to remove microbial inhibitor compounds followed by production of alcohols by fer-mentation. Production of bio-oil is now considered a major candidate as a technology promising production of drop-in transportation and boiler fuels.

  4. USDA BioPreferred Program Public Meeting for Stakeholders

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture's (USDA) BioPreferred program will host a public meeting for interested stakeholders to discuss the issue of incorporating previously excluded mature market...

  5. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets

    E-Print Network [OSTI]

    Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells BILI panel. Bio-Derived Renewable Liquids Dist. Electrolysis Central Wind Electrolysis Biomass Gasification Solar

  6. BioCarbon Fund (BioCF T3) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectric PowerOleoBioCarbon

  7. A New Standard to Connect BioBrick Parts for Precise Extraction of an Enzyme Digestion Product

    E-Print Network [OSTI]

    Uekusa, Kousuke

    2010-12-05

    This BioBricks Foundation Request for Comments (BBF RFC) introduces a new standard to connect BioBrick parts using BglI site.

  8. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  9. Hydroprocessing Bio-oil and Products Separation for Coke Production

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2013-04-01

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

  10. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies ftp01lee.pdf More...

  11. DuPont's Journey to Build a Global Cellulosic BioFuel Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Plenary I: Progress in Advanced...

  12. Investigating Evolvable Hardware Classification for the BioSleeve Electromyographic Interface

    E-Print Network [OSTI]

    Glette, Kyrre

    Investigating Evolvable Hardware Classification for the BioSleeve Electromyographic Interface Kyrre signals. The BioSleeve is equipped with a high number of electromyographic (EMG) channels, with more

  13. BioDiesel Content On-board monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring onboard fuel monitoring of fuel and biofuel qualities using an optical sensor for engine...

  14. Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium

    E-Print Network [OSTI]

    Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium 200 The Application of 3-D X phases in a material in a non-destructive #12;Proceedings of the 8th Pacific Rim Bio-Based Composites

  15. Proceedings of the 8 Pacific Rim Bio-Based Composites Symposium

    E-Print Network [OSTI]

    Wang, Siqun

    Proceedings of the 8 th Pacific Rim Bio-Based Composites Symposium 328 Investigating Nano feature demonstrated in these #12;Proceedings of the 8 th Pacific Rim Bio-Based Composites Symposium 329

  16. Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium

    E-Print Network [OSTI]

    Wang, Siqun

    Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium 301 Cellulose Microfibril are expected to be have #12;Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium 302 improved

  17. OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 | Tags: Basic Energy...

  18. BioPower Application (United States) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectricBioCleanBioPower

  19. BioDiesel One Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to: navigation, searchBioDiesel

  20. BioGas Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to:BioGas Energy Inc Jump to:

  1. BioPartners ApS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to:BioGas Energy Inc

  2. BioPortal: A Web Portal to Biomedical Ontologies Daniel L. Rubin,1

    E-Print Network [OSTI]

    Rubin, Daniel L.

    BioPortal: A Web Portal to Biomedical Ontologies Daniel L. Rubin,1 Dilvan A. Moreira,1 Pradip P, and to provide feedback or critiques to ontology devel- opers. We have created BioPortal, a Web portal, critique, and improve on- tologies. The BioPortal library contains over 50 ontologies from the biological

  3. The All Terrain Bio nano Gear for Space Radiation Detection System

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    The All Terrain Bio nano Gear for Space Radiation Detection System Ajay Ummat, Constantinos in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one the current or any other future space suits. The proposed All Terrain Bio nano (ATB) gear is one such concept

  4. ARTICLE IN PRESS BioMEMS: state-of-the-art in detection,

    E-Print Network [OSTI]

    Bashir, Rashid

    or Biological Micro-Electro-Mechanical Systems [BioMEMS]) have become increasingly prevalent and have found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 1. Introduction and BioMEMS defined Since the inception of micro-electro-mechanical systemsARTICLE IN PRESS BioMEMS: state-of-the-art in detection, opportunities and prospects Rashid Bashir

  5. Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications. Micromech. Microeng. 18 (2008) 115017 (9pp) doi:10.1088/0960-1317/18/11/115017 Bio-implantable passive on designed novel, bio-implantable, passive, on-chip, RF-MEMS strain sensors that rely on the resonance

  6. Engineering model reduction of bio-chemical kinetic David Csercsik, Katalin M. Hangos

    E-Print Network [OSTI]

    Gorban, Alexander N.

    Engineering model reduction of bio-chemical kinetic models David Csercsik, Katalin M. Hangos, Hungary Significance and Aim Bio-chemical kinetic models of enzyme kinetic processes, as well reaction kinetic scheme. Therefore it is of great importance to develop bio-chemically meaningful

  7. Bio-Char Soil Management on Highly Weathered Soils in the Humid Tropics

    E-Print Network [OSTI]

    Lehmann, Johannes

    36 Bio-Char Soil Management on Highly Weathered Soils in the Humid Tropics Johannes Lehmann1), ColombiaQ1 CONTENTS 36.1 Bio-Char Management and Soil Nutrient Availability ............................................. 518 36.2 Microbial Cycling of Nutrients in Soils with Bio-Char

  8. A Glucose BioFuel Cell Implanted in Rats Philippe Cinquin1

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    A Glucose BioFuel Cell Implanted in Rats Philippe Cinquin1 *, Chantal Gondran2 , Fabien Giroud2 powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators applications. Citation: Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, et al. (2010) A Glucose BioFuel

  9. INTRODUCTION Open Access Highlights of the BioTM 2010 workshop on

    E-Print Network [OSTI]

    Gent, Universiteit

    Daelemans2 , Yvan Saeys1 From Workshop on Advances in Bio Text Mining Ghent, Belgium. 10-11 May 2010INTRODUCTION Open Access Highlights of the BioTM 2010 workshop on advances in bio text mining- tributed presentations. The workshop was held in Gent, Belgium on May 10-11. It featured a tutorial aimed

  10. Modeling and Analysis of SiNW BioFET as Molecular Antenna for Bio-Cyber Interfaces towards the Internet of Bio-NanoThings

    E-Print Network [OSTI]

    Kuscu, Murat

    2015-01-01

    Seamless connection of molecular nanonetworks to macroscale cyber networks is envisioned to enable the Internet of Bio-NanoThings, which promises for cutting-edge applications, especially in the medical domain. The connection requires the development of an interface between the biochemical domain of molecular nanonetworks and the electrical domain of conventional electromagnetic networks. To this aim, in this paper, we propose to exploit field effect transistor based biosensors (bioFETs) to devise a molecular antenna capable of transducing molecular messages into electrical signals. In particular, focusing on the use of SiNW FET-based biosensors as molecular antennas, we develop deterministic and noise models for the antenna operation to provide a theoretical framework for the optimization of the device from communication perspective. We numerically evaluate the performance of the antenna in terms of the Signal-to-Noise Ratio (SNR) at the electrical output.

  11. Analysis of Bio-Inspired Propulsors Melissa A. Green

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Analysis of Bio-Inspired Propulsors Melissa A. Green A Dissertation Presented to the Faculty by the Department of Mechanical and Aerospace Engineering Advisors: C.W. Rowley and A.J. Smits April 2009 #12;c propulsors. In the current work, a new nondimensional scaling parameter is proposed which, for a rigid

  12. Datamining: Discovering Information From BioData Limsoon Wong

    E-Print Network [OSTI]

    Wong, Limsoon

    and Zeleznikow, 1999) of Kent Ridge Digital Labs and the University of Pittsburgh. The classification of diabetesChapter 13 Datamining: Discovering Information From BioData Limsoon Wong Kent Ridge Digital Labs techniques. Datamining has many functionalities such as association analysis, classification, prediction

  13. Bio-inspired Design of Intelligent Materials Minoru Taya*

    E-Print Network [OSTI]

    Taya, Minoru

    Bio-inspired Design of Intelligent Materials Minoru Taya* , Professor and Director Center for Intelligent Materials and Systems Department of Mechanical Engineering University of Washington, Box 352600 Seattle, WA 98195-2600 ABSTRACT Several examples of sensors and actuators inherent in biological species

  14. Life History Theory Anthro Bio 668/Psych 630

    E-Print Network [OSTI]

    Life History Theory Anthro Bio 668/Psych 630 Instructor: Dr. Jacinta Beehner Office: 3026 East Hall: Wed 2:00-4:00 pm Website: https://ctools.umich.edu/portal COURSE DESCRIPTION Life history theory tries intrinsic to the organism. In this seminar, we will take an in-depth look at the literature on life history

  15. BioMed Central Page 1 of 10

    E-Print Network [OSTI]

    Cotton, Sam

    chromosome zygosity Martin Carr1, Samuel Cotton2, David W Rogers2, Andrew Pomiankowski2, Hazel Smith3, London, WC1E 6BT, UK Email: Martin Carr - mc528@york.ac.uk; Samuel Cotton - s.cotton@ucl.ac.uk; David W Carr et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms

  16. An Implantable Bio-Micro-system for Drug Monitoring

    E-Print Network [OSTI]

    De Micheli, Giovanni

    An Implantable Bio-Micro-system for Drug Monitoring Sara Ghoreishizadeh, Enver G. Kilinc, Camilla of the implantable monitoring system for long- term duration has many challenges. First, a multi-target biosen- sor coil; (ii) A power manage- ment IC dealing with the energy source of the implantable microsystem

  17. Montana State University 1 Bio-Resources Engineering

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Bio-Resources Engineering Option Freshman Year Credits Fall Spring CHMY 141 - College Chemistry I* 4 M 171Q - Calculus I* 4 EGEN 115 - Engineering Graphics* 1 - Principles of Living Systems 4 SRVY 230 - Intro to Srvyg for Engineers 3 EGEN 201 - Engineering Mechanics

  18. BioMed Central Page 1 of 14

    E-Print Network [OSTI]

    Eddy, Sean

    prediction Robin D Dowell and Sean R Eddy* Address: Howard Hughes Medical Institute and Department USA Email: Robin D Dowell - robin@genetics.wustl.edu; Sean R Eddy* - eddy-2105/5/71 2004 Dowell and Eddy; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying

  19. European Market Study for BioOil (Pyrolysis Oil)

    E-Print Network [OSTI]

    European Market Study for BioOil (Pyrolysis Oil) Dec 15, 2006 Doug Bradley President Climate Change of Contents Scope Executive Summary 1. Background 2. Pyrolysis Oil-Char Supply and Export Potential 2 Competitiveness 3.1. Substitute Fuels 3.2. Price of Fossil Fuels 3.3. Delivered Costs of Pyrolysis Oil/Char 4

  20. The BioASP Library: ASP Solutions for Systems Biology

    E-Print Network [OSTI]

    Schaub, Torsten

    The BioASP Library: ASP Solutions for Systems Biology Martin Gebser, Arne Konig, Torsten Schaub--Today's molecular biology is confronted with enor- mous amounts of data, generated by new high-throughput tech- nologies, along with an increasing number of biological models available over web repositories. This poses

  1. Engineering for sustainable development for bio-diesel production

    E-Print Network [OSTI]

    Narayanan, Divya

    2009-05-15

    on their performance. The SD indicator priority score and each individual alternatives performance score together are used to determine the most sustainable alternative. The proposed methodology for ESD is applied for bio-diesel production in this thesis. The results...

  2. BioMed Central Page 1 of 6

    E-Print Network [OSTI]

    Lee, Doheon

    Address: 1Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 373@postech.ac.kr; Doheon Lee* - dhlee@biosoft.kaist.ac.kr * Corresponding author Abstract Background: Basic region. Malfunctions in these proteins lead to cancer and various other diseases. For detailed characterization

  3. Roles of discontinuities in bio-inspired adhesive pads

    E-Print Network [OSTI]

    Chaudhury, Manoj K.

    Roles of discontinuities in bio-inspired adhesive pads Jun Young Chung and Manoj K. Chaudhury adhesion to various surfaces. Motivated by the adhesive microstructures of insects, we examine the behaviour of adhesion and crack propagation in patterned adhesive films. These films are made of silicone

  4. Page 1 Summers Bio Sketch Adam P. Summers

    E-Print Network [OSTI]

    Summers, Adam P.

    of vertebral cartilage from the smooth-hound shark (Mustelus californicus). Journal of Experimental Biology 210 for Natural History magazine 10 columns per year on topics of my choosing. As of the June 2009 issue I have written 66 columns. The text of all columns is archived at www.biomechanics.bio.uci.edu. One column

  5. Dr. Campbell's Bio111 Exam #3 Spring 2008 Spring 2008 Biology 111 Take Home Exam #3 BioEnergetics

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    water. c. In 2 sentences or less, explain why animals need to consume water. #12;Dr. Campbell's Bio111 the phrase "consume less energy" can produce a misconception in the general population. 6 pts. 3) a. Explain components of protein that cannot be catabolized for energy? Explain your answer in 2 sentences or less. #12;

  6. Dr. Campbell's Bio111 Exam #3 Spring 2007 Spring 2007 Biology 111 In-Class Exam #3 BioEnergetics

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    3 pts. 6) List 3 different pigments in plants. 1. chlorophyll a 2. chlorophyll b 3. carotenoids 3 in class. #12;Dr. Campbell's Bio111 Exam #3 Spring 2007 3 4 pts. 3) List two possible products___ carbons 3 pts. 4) Pi + ADP ATP G = ___+7.3 kcal/mole ATP_____ 3 pts. 5) List 3 parts of a photosystem. 1

  7. Dr. Campbell's Bio111 Exam #3 Spring 2007 Spring 2007 Biology 111 In-Class Exam #3 BioEnergetics

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    pts. 5) List 3 parts of a photosystem. 1. 2. 3. 3 pts. 6) List 3 different pigments in plants. 1. 2. 3's Bio111 Exam #3 Spring 2007 3 4 pts. 3) List two possible products of fermentation and how many

  8. BioCycle, Advancing Composting, Organics Recycling & Renewable E... http://www.jgpress.com/archives/_free/001332.html 1 of 4 6/19/2007 5:04 PM

    E-Print Network [OSTI]

    Lovley, Derek

    BioCycle, Advancing Composting, Organics Recycling & Renewable E... http & Links BioCycle Advertisers BioCycle Data Update Compost Science In Business findacomposter.com Site

  9. New York Nano-Bio Molecular Information Technology (NYNBIT) Incubator

    SciTech Connect (OSTI)

    Das, Digendra K

    2008-12-19

    This project presents the outcome of an effort made by a consortium of six universities in the State of New York to develop a Center for Advanced technology (CAT) in the emerging field of Nano-Bio-Molecular Information Technology. The effort consists of activities such as organization of the NYNBIT incubator, collaborative research projects, development of courses, an educational program for high schools, and commercial start-up programs.

  10. The Bio-Chemistry of Life The Commonality of the

    E-Print Network [OSTI]

    Walter, Frederick M.

    carbon chemistry in aqueous solutions. All life uses the same 20 amino acids All life uses DNA (or RNAThe Bio-Chemistry of Life #12;The Commonality of the Chemistry of Life All life on Earth utilizes://www.biology.arizona.edu/biochemistry #12;Amino Acids of Life Glycine: NH2CH2COOH the simplest - 10 atoms Arginine: HN=C(NH2)-NH-(CH2)3-CH

  11. Xixi Wei | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout

  12. BioEnergy of America | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to:

  13. Borgford BioEnergy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:EnergyIdaho | Open Energy

  14. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement at the National Press Club

  15. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    SciTech Connect (OSTI)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  16. Marine Bio-Nanotechnology: High-Performance Materials from Sponge Silicatein

    E-Print Network [OSTI]

    Morse, Daniel E.

    2007-01-01

    Title: Marine Bio-Nanotechnology: High-Performance MaterialsChemical Biology (2005); Nanotechnology Review (2005, 2006);Marine biotechnology; nanotechnology; sponge; silica;

  17. Miscible, multi-component, diesel fuels and methods of bio-oil transformation

    DOE Patents [OSTI]

    Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

    2010-10-26

    Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

  18. Meeting Action Items and Highlights from the Bio-Derived Liquids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming Targets Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Kick-Off Meeting Proceedings Hilton Garden Inn-BWI,Baltimore, MD October 24, 2006...

  19. Plastics or Fibers from Bio-Based Polymers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymers Plastics or Fibers from Bio-Based Polymers Plastics from Renewable Resources Offer Significant Commercial and Environmental Benefits Each year, 60 billion pounds of...

  20. Sustainable BioMaterials Fall/Spring Semester Sustainable Enterprise, Sustainable Residential Structures,

    E-Print Network [OSTI]

    Sustainable BioMaterials Fall/Spring Semester Sustainable Enterprise, Sustainable Residential" for the desired semester. To help you explore your interest in the Department of Sustainable Biomaterials

  1. TransAtlas and BioPower Tools | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    transatlasandbiopowertools.pdf More Documents & Publications Web Mapping and Online GIS Applications for Renewable Energy Geospatial Technology Summit BioFuels Atlas...

  2. StrBioLib: a Java library for development of custom computationalstruc...

    Office of Scientific and Technical Information (OSTI)

    research.StrBioLib contains classes to represent and manipulate proteinstructures, biopolymer sequences, sets of biopolymer sequences, andalignments between biopolymers based on...

  3. Dr. Piotr Zelenay's Professional Bio Dr. Zelenay's expertise is in polymer electrolyte fuel cells, electrocatalysis, surface

    E-Print Network [OSTI]

    of polymer electrolyte fuel cell science and technology, electrocatalysis, and electrode kinetics. PiotrDr. Piotr Zelenay's Professional Bio Dr. Zelenay's expertise is in polymer electrolyte fuel cells

  4. Bio-Economic Analyses of Biofuel-Based Integrated Farm Drainage Management Systems on Marginal Land in a Salinity and Drainage Impacted Region: The Case of California's Central Valley

    E-Print Network [OSTI]

    Levers, Lucia

    2015-01-01

    digestion in global bio-energy production: potential andand potential energy production. We develop a bio- economic

  5. Varam Bio Energy P Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: Energy Resources Jump to:WertVanderburghPomonaBio

  6. Nanomaterials for bio-functionalized electrodes: recent trends

    SciTech Connect (OSTI)

    Walcarius, Alain; Minteer, Shelley D.; Wang, Joseph; Lin, Yuehe; Merkoci, Arben

    2013-09-10

    This review intends to highlight the interest of nanomaterials for building biologically-modified electrodes. Rather than giving a comprehensive overview of the topic, the present work intends to give a flavour on the most exciting achievements and most recent approaches to get (and use) nanostructured electrode surfaces (or electrodes modified with nano-objects) comprising biomolecules. It will mainly consider nano-engineered functional polymers, nano-sized objects such as nanoparticles, carbon nanotubes, graphene or related materials, as well as template-based nanostructures, as modifiers for bio-functionalised electrodes.

  7. Hawaii BioEnergy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio: EnergyMinnesota:Havre deBioEnergy LLC Jump to:

  8. File:NREL-BioMap.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdfgasp 03.pdfMmpa 2007.pdf Jump to:ModifyBioMap.pdf Jump

  9. Gowthami Bio Energies Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia: EnergyGorlitz AG Jump to:Gotha,GoveGowanda, NewBio

  10. Mid America Bio Energy and Commodities LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickey HotMicrosemiMicrosolMidBio Energy and

  11. Mangalam Bio Energen Private Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5Transport ProjectsIMichigan: EnergyManco EnergyBio

  12. Iroquois Bio Energy Co LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIrem Geothermal PowerBio Energy Co LLC Jump

  13. Novatec BioSol AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota: EnergyOhio: EnergyNottingham,Novatec BioSol

  14. Yan Liu | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named MineralogicalComplexSecurity/UTAna Moore Anne

  15. Yuichi Terazono | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named| Princeton Plasma Physics LabYourYu Lok

  16. Zhao Zhao | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named| Princeton Plasma PhysicsZacharyZerklePrincipal

  17. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named|Gotchemistryworld.org 46 | Chemistry WorldP.O.

  18. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named|Gotchemistryworld.org 46 | Chemistry WorldP.O.AZ

  19. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named|Gotchemistryworld.org 46 | Chemistry WorldP.O.AZprev

  20. Sudhanshu Sharma | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1: Total systemsSuccess Stories T E C H

  1. Thomas Moore | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:February 25, 2015 |7 D I S C L APrincipal

  2. BioClean Energy Brazil | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectricBioClean Energy Brazil

  3. BioConstruct GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectricBioClean Energy

  4. BioEnergy of Colorado LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectricBioClean EnergyLLC

  5. Four Rivers BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergy InformationBioEnergy Jump to:

  6. Green Lion Bio Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydro Electric CoGreenHighlandLion Bio Fuels

  7. HR BioPetroleum HRBP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co LtdGuntherGreen Power Co JumpBioPetroleum

  8. Hubei Xinda Bio oil Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring Tool JumpHuaningXinda Bio oil Technology Co

  9. Sri Vel Bio Diesel Energy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin JumpOpenColorado)SpiderSreyasVel Bio Diesel Energy

  10. Bio-Oil Deployment in the Home Heating Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy| DepartmentofEnergyiT1(BILIWG),Bio-Oil

  11. US BioGen LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP)BioGen LLC Jump to: navigation, search

  12. Amrit Bio Energy Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation, search Name:Amrit Bio Energy

  13. Bio-Gas Technologies, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to: navigation, search Name:

  14. BioEnergy Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to: navigation,Engineering LLC

  15. BioEnergy International LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to: navigation,Engineering

  16. BioEnergy of America Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to: navigation,EngineeringAmerica

  17. Harvest BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy Resources JumpConsultingHarfordHarvard,BioFuels LLC

  18. MHK Projects/BioSTREAM Pilot Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31 <AvalonBelairBioSTREAM

  19. BioFuels Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcherCarbonAlgene JumpSolutionsBioFuels

  20. BioLogical Capital BLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcherCarbonAlgeneBioLogical Capital BLC Jump

  1. Western BioEnergy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWest Plains Electric Coop IncWestarBioEnergy

  2. Hydrogen from Bio-Derived Liquids (Presentation) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activityfrom Bio-Derived Liquids

  3. Advanced Bio-based Jet Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDIT REPORT:FederalEconomicAdmirals ADRApplicationBio-based

  4. Effect of Acid, Alkali, and Steam Explosion Pretreatments on Characteristics of Bio-Oil Produced from Pinewood

    SciTech Connect (OSTI)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian

    2011-06-21

    Bio-oil produced from pinewood by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. Pretreatment prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we tested three pretreatment methods: dilute acid, dilute alkali, and steam explosion. Bio-oils were produced from untreated and pretreated pinewood feedstocks in an auger reactor at 450 C. The bio-oils?¢???? physical properties including pH, water content, acid value, density, viscosity, and heating value were measured. Chemical characteristics of the bio-oils were determined by gas chromatographymass spectrometry. Results showed that bio-oil yield and composition were influenced by biomass pretreatment. Of the three pretreatment methods, 1%H2SO4 pretreatment resulted in the highest bio-oil yield and best bio-oil quality.

  5. Aalborg Universitet Hydrothermal Processing of Lignin for Bio-Crude Production

    E-Print Network [OSTI]

    Rosendahl, Lasse

    Aalborg Universitet Hydrothermal Processing of Lignin for Bio-Crude Production Grigoras, Ionela.aau.dk on: juli 04, 2015 #12;Hydrothermal Processing of Lignin for Bio-crude Production Ionela F. Grigoras) per day, and with an oil production capacity questioned constantly, together with the increasing CO2

  6. Sneak peek at electrofuels: Geobacter team aims for bio-based solution to solar energy storage

    E-Print Network [OSTI]

    Lovley, Derek

    Sneak peek at electrofuels: Geobacter team aims for bio-based solution to solar energy storage a hybrid of solar and bio-power and also solve the most perplexing problem facing solar energy: energy compounds, and oxygen is released as a byproduct," Lovley explains. Solar energy powers the microbes

  7. Research Journal Highlights The silk road to bio-integrated electronics

    E-Print Network [OSTI]

    Rogers, John A.

    Research Journal Highlights The silk road to bio-integrated electronics Nature Materials, April 19, 2010 A strategy for making flexible electronic circuits for bio-implants is reported online this week in Nature Materials. Dissolvable silk substrates enable the use of ultrathin, finely spaced electronic

  8. Bio-energy Logistics Network Design Under Price-based Supply and Yield Uncertainty

    E-Print Network [OSTI]

    Memisoglu, Gokhan

    2014-12-10

    In this dissertation, we study the design and planning of bio-energy supply chain networks. This dissertation consists of 3 studies that focus on different aspects of bio-energy supply chain systems. In the first study, we consider planning...

  9. New Catalyst Might Expand Bio-Ethanol's Possible uses: fuel additives, rubber and solvents

    E-Print Network [OSTI]

    and solvents RESULTS To turn bio-ethanol into chemicals that are typically made from petroleum, re- searchers-boosting gas and fuel ad- ditives, bio-based rubber for tires and a safer solvent for the chemicals industry Univer- sity have potentially found a renewable path to fuel additives, rubber and solvents. Scientists

  10. Bio-optical properties of oceanic waters: A reappraisal Andre Morel

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Bio-optical properties of oceanic waters: A reappraisal Andre Morel Laboratoire de Physique et, California Abstract. The apparent optical properties (AOPs) of oceanic case 1 waters were previously analyzed describing the trophic conditions of water bodies. From these empirical relationships a bio-optical model

  11. Bio-oil Quality Improvement and Catalytic Hydrotreating of Bio-oils Presentation for BETO 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy| DepartmentofEnergyiT1(BILIWG),Bio-Oil

  12. Bio-Inspired Cyber Security for Smart Grid Deployments

    SciTech Connect (OSTI)

    McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.; Fink, Glenn A.; Fulp, Errin W.

    2013-05-01

    mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants framework is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.

  13. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect (OSTI)

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely controlled, the nanocrystals boast a defined shape, morphology, orientation and size and are synthesized at benign reaction conditions. Adapting the methods of biomineralization towards the synthesis of platinum nanocrystals will allow effective control at a molecular level of the synthesis of highly active metal electrocatalysts, with readily tailored properties, through tuning of the biochemical inputs. The proposed research will incorporate many facets of biomineralization by: (1) isolating peptides that selectively bind particular crystal faces of platinum (2) isolating peptides that promote the nucleation and growth of particular nanocrystal morphologies (3) using two-dimensional DNA scaffolds to control the spatial orientation and density of the platinum nucleating peptides, and (4) combining bio-templating and soluble peptides to control crystal nucleation, orientation, and morphology. The resulting platinum nanocrystals will be evaluated for their electrocatalytic behavior (on common carbon supports) to determine their optimal size, morphology and crystal structure. We expect that such rational biochemical design will lead to highly uniform and efficient platinum nanocrystal catalysts for fuel cell applications.

  14. Bio-Engineering High Performance Microbial Strains for MEOR

    SciTech Connect (OSTI)

    Xiangdong Fang; Qinghong Wang; Patrick Shuler

    2007-12-30

    The main objectives of this three-year research project are: (1) to employ the latest advances in genetics and bioengineering, especially Directed Protein Evolution technology, to improve the effectiveness of the microbial enhanced oil recovery (MEOR) process. (2) to improve the surfactant activity and the thermal stability of bio-surfactant systems for MEOR; and (3) to develop improved laboratory methods and tools that screen quickly candidate bio-systems for EOR. Biosurfactants have been receiving increasing attention as Enhanced Oil Recovery (EOR) agents because of their unique properties (i.e., mild production conditions, lower toxicity, and higher biodegradability) compared to their synthetic chemical counterparts. Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including EOR and bioremediation. During the three-year of the project period, we have successfully cloned the genes involved in the rhamnolipid bio-synthesis. And by using the Transposon containing Rhamnosyltransferase gene rhlAB, we engineered the new mutant strains P. aeruginosa PEER02 and E. coli TnERAB so they can produce rhamnolipid biosurfactans. We were able to produce rhamnolipds in both P. aeroginosa PAO1-RhlA- strain and P. fluorescens ATCC15453 strain, with the increase of 55 to 175 fold in rhamnolipid production comparing with wild type bacteria strain. We have also completed the first round direct evolution studies using Error-prone PCR technique and have constructed the library of RhlAB-containing Transposon to express mutant gene in heterologous hosts. Several methods, such as colorimetric agar plate assay, colorimetric spectrophotometer assay, bioactive assay and oil spreading assay have been established to detect and screen rhamnolipid production. Our engineered P. aeruginosa PEER02 strain can produce rhamnolipids with different carbon sources as substrate. Interfacial tension analysis (IFT) showed that different rhamnolipids from different substrates gave different performance. Those rhamnolipids with plant oil as substrate showed as low an IFT as 0.05mN/m in the buffer solution with pH5.0 and 2% NaCl. Core flooding tests showed that rhamnolipids produced by our engineered bacteria are effective agents for EOR. At 250ppm rhamnolipid concentration from P. aeruginosa PEER02, 42% of the remaining oil after waterflood was recovered. These results were therefore significant towards considering the exploration of the studied rhamnolipids as EOR agents.

  15. Study of the Neutralization and Stabilization of a Mixed Hardwood Bio-Oil

    SciTech Connect (OSTI)

    Moens, L.; Black, S. K.; Myers, M. D.; Czernik, S.

    2009-01-01

    Fast-pyrolysis bio-oil that is currently produced from lignocellulosic biomass in demonstration and semicommercial plants requires significant modification to become an acceptable transportation fuel. The high acidity and chemical instability of bio-oils render them incompatible with existing petroleum refinery processes that produce gasoline and diesel fuels. To facilitate the use of bio-oil as a feedstock in a traditional refinery infrastructure, there is considerable interest in upgrading bio-oils through chemical pathways that include converting the carboxylic acids and reactive carbonyl compounds into esters and acetals using low-cost alcohols. In this article, we discuss our observations with different approaches to esterification and etherification chemistry using a crude bio-oil derived from mixed hardwoods. The high water content in crude bio-oils (ca. 20?30%) creates equilibrium limitations in the condensation reactions that hamper the upgrading process in that the neutralization and stabilization steps cannot easily be driven to completion. The lowest acid number that we were able to obtain without causing serious degradation of the flow properties of the bio-oil had a total acid number of about 20, a value that is still too high for use in a traditional petroleum refinery.

  16. A Bio-Polymer Transistor: Electrical Amplification by Microtubules

    E-Print Network [OSTI]

    Avner Priel; Arnolt J. Ramos; Jack A. Tuszynski; Horacio F. Cantiello

    2006-06-09

    Microtubules (MTs) are important cytoskeletal structures, engaged in a number of specific cellular activities, including vesicular traffic, cell cyto-architecture and motility, cell division, and information processing within neuronal processes. MTs have also been implicated in higher neuronal functions, including memory, and the emergence of "consciousness". How MTs handle and process electrical information, however, is heretofore unknown. Here we show new electrodynamic properties of MTs. Isolated, taxol-stabilized microtubules behave as bio-molecular transistors capable of amplifying electrical information. Electrical amplification by MTs can lead to the enhancement of dynamic information, and processivity in neurons can be conceptualized as an "ionic-based" transistor, which may impact among other known functions, neuronal computational capabilities.

  17. Invited Review Article: Review of centrifugal microfluidic and bio-optical disks

    E-Print Network [OSTI]

    Nolte, David D.

    of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugalInvited Review Article: Review of centrifugal microfluidic and bio-optical disks David D. Nolte

  18. Using Bio-electrical Signals to Influence the Social Behaviours of Domesticated Robots

    E-Print Network [OSTI]

    Greenberg, Saul

    devices read bio-electrical signals (e.g., electro-corticographic signals, skin biopotential or facial are actually being read, but one reviewer [3] suggests that its sensors read skin biopotentials, i.e., small

  19. DuPonts Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary I: Progress in Advanced Biofuels DuPonts Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, DirectorScience and Technology External Affairs, DuPont

  20. Energy management techniques for ultra-small bio-medical implants

    E-Print Network [OSTI]

    Sanchez, William R

    2012-01-01

    Trends in the medical industry have created a growing demand for implantable medical devices. In particular, the need to provide medical professionals a means to continuously monitor bio-markers over long time scales with ...

  1. Precision medicine in chronic disease management: The multiple sclerosis BioScreen

    E-Print Network [OSTI]

    2014-01-01

    Disease Management: The Multiple Sclerosis BioScreen Pierre-unpredictable disease like multiple sclerosis? Eur J NeurolHL. The challenge of multiple sclerosis: how do we cure a

  2. Examenrooster 2MA Bio-ingenieurswetenschappen: Cel-en Genbiotechnologie + Chemie en Bioprocestechnologie

    E-Print Network [OSTI]

    Einmahl, Uwe

    Examenrooster 2MA Bio-ingenieurswetenschappen: Cel- en Genbiotechnologie + Chemie en-ingenieurswetenschappen (PROMOTOR) Maandag 29/06/2015 (tijdstip en lokaal navragen op secretariaat IMDO) Medicinale Chemie (S

  3. True Polar Wander: linking Deep and Shallow Geodynamics to Hydro-and Bio-Spheric Hypotheses

    E-Print Network [OSTI]

    True Polar Wander: linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses T. D on the bulk solid Earth over longer tirnescales 565 #12;566 Linking Deep and Shallow Geodynamics to Hydro

  4. Energy 2050: Bio-inspired Renewable Non-Fossil Liquid Fuel

    E-Print Network [OSTI]

    Datta, Shoumen

    We propose an intelligent Energy Transparency model and a bio-inspired hypothetical mechanical mitochondria to optimize energy efficiency. iET seeks learning algorithms to build intelligence in order to pursue carbon-based ...

  5. Global Synthetic & Bio-Based Lubricants Market | OpenEI Community

    Open Energy Info (EERE)

    picture Submitted by John55364(100) Contributor 14 May, 2015 - 05:53 Expansion of Automotive Industries to Boost the Global Synthetic and Bio-Based Lubricants Market Global...

  6. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    SciTech Connect (OSTI)

    Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G

    2011-12-23

    The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are known to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic products: condensable vapors, non-condensable gases, and liquid aerosols. Traditionally these are recovered by a spray quencher or a conventional shell and tube condenser. The spray quencher or condenser is typically followed by an electrostatic precipitator to yield 1 or 2 distinct fractions of bio-oil. The pyrolyzer system developed at Iowa State University incorporates a proprietary fractionating condenser train. The system collects the bio-oil into five unique fractions. For conditions typical of fluidized bed pyrolyzers, stage fractions have been collected that are carbohydrate-rich (anhydrosugars), lignin-rich, and an aqueous solution of carboxylic acids and aldehydes. One important feature is that most of the water normally found in bio-oil appears in the last stage fraction along with several water-soluble components that are thought to be responsible for bio-oil aging (low molecular weight carboxylic acids and aldehydes). Research work on laser diagnostics for hot-vapor filtration and bio-oil recovery centered on development of analytical techniques for in situ measurements during fast pyrolysis, hot-vapor filtration, and fractionation relative to bio-oil stabilization. The methods developed in this work include laser-induced breakdown spectroscopy (LIBS), laser-induced incandescence (LII), and laser scattering for elemental analysis (N, O, H, C), detection of particulates, and detection of aerosols, respectively. These techniques were utilized in simulated pyrolysis environments and applied to a small-scale pyrolysis unit. Stability of Bio-oils is adversely affected by the presence of particulates that are formed as a consequence of thermal pyrolysis, improving the CFD simulations of moving bed granular filter (MBGF) is useful for improving the design of MBGF for bio-oil production. The current work uses fully resolved direct numerical simulation (where the flow past each granule is accurately represented) to calculate the filter efficiency that is used in the CFD model at all flow speeds. This study shows that fully-resolved direct numerical simulation (DNS

  7. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics

    E-Print Network [OSTI]

    Rogers, John A.

    -integrated electronics; flexible electronics; semiconductor nanomaterials; stretchable electronics; transfer printing flexible/stretchable electronics, in which semiconductor nanomaterials serve as the active componentsREVIEW Inorganic semiconductor nanomaterials for flexible and stretchable bio

  8. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Background Paper

    Broader source: Energy.gov [DOE]

    Paper by Arlene Anderson and Tracy Carole presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group, with a focus on key drivers, purpose, and scope.

  9. The effects of Bio-Mos on lamb growth and immune function

    E-Print Network [OSTI]

    Thayne, Jeffrey Thomas

    2009-05-15

    The objective of this study was to evaluate the effects of inclusion of Bio-Mos in the growing ration for weaned lambs on growth rate, feed efficiency, and clinical measures of health of the lambs. Mannan oligosaccharides ...

  10. Development of a mechanical counter pressure Bio-Suit System for planetary exploration

    E-Print Network [OSTI]

    Sim, Zhe Liang

    2006-01-01

    Extra-vehicular activity (EVA) is critical for human spaceflight and particularly for human planetary exploration. The MIT Man Vehicle Laboratory is developing a Bio-Suit EVA System, based on mechanical counterpressure ...

  11. Bio-Imaging With Liquid-Metal-Jet X-ray Sources | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bio-Imaging With Liquid-Metal-Jet X-ray Sources Wednesday, September 9, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Daniel Larsson, Stanford Program Description...

  12. Kinetics of dissolution and bio-availability of iron in amorphous siliceous iron oxides

    E-Print Network [OSTI]

    Seaman, John C.

    1990-01-01

    KINETICS OF DISSOLUTION AND BIO-AVAILABILITY OF IRON IN AMORPHOUS SILICEOUS IRON OXIDES A Thesis By John C. Seaman Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1990 Major Subject: Soil Science KINETICS OF DISSOLUTION AND BIO-AVAILABILITY OF IRON IN AMORPHOUS SILICEOUS IRON OXIDES A Thesis By John C. Seaman Approved as to style and content by: Richard H. Loeppert (Chair of Committee...

  13. Health Impacts of Traditional Medicines and Bio-prospecting: A World Scenario Accentuating Bhutan's Perspective

    E-Print Network [OSTI]

    Wangchuk, Phurpa

    2008-01-01

    -an anti-HIV agent was discovered as a result of random approach of screening. Drugs such as artemisinin, morphine, quinine, and ephedrine were discovered using bio-rational approach. Out of these three search strategies, bio-rational approach... and developing nations as their resistance to many conventional drugs is increasing. For example, plasmodium falciparum have already developed resistance to the existing traditional anti-malarial drugs like quinine, chloroquene mefloquene and even...

  14. Klutts 4/2004 Bio-Rad Protein Assay (Traditional Bradford)

    E-Print Network [OSTI]

    Doering, Tamara

    standards (typically IgG) of 10, 30, 100, 300 and 1000 g/ml in water Bio-Rad assay reagent (catalog number 81694A), stored at 4 C, typically in hall fridge 96-well plate (no lid needed) 1. Pipette 5 ul of water. 3. Dilute the Bio-Rad assay dye 1:4 with DI water, and add 200 l to each well. 4. Allow color

  15. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect (OSTI)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-01-01

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  16. Low-Severity Hydroprocessing to Stabilize Bio-oil: TechnoEconomic Assessment

    SciTech Connect (OSTI)

    Tews, Iva J.; Elliott, Douglas C.

    2014-08-31

    The impetus for this study was the suggestion that recent developments in fast pyrolysis (FP) bio-oil production had indicated instability of the bio-oil in storage which might lead to unacceptable viscosity increases. Commercial operation of FP in Finland began in 2014 and the distribution of the bio-oil to isolated users has been proposed as the long-term plan. Stability of the shipped bio-oil therefore became a concern. Experimental results at PNNL with low-severity hydroprocessing of bio-oil for stabilization has validated a process in which the stability of the bio-oil could be improved, as measured by viscosity increase following storage of the product at 80 C for 24h. In the work reported here the assessed process configuration consists of fast pyrolysis followed by low temperature and pressure hydroprocessing to produce a stable fuel oil product. The product could then be stored for an extended period of time without significant viscosity increase. This work was carried out as part of a collaborative project between Technical Research Centre of Finland (VTT) and Pacific Northwest National Laboratory (PNNL). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an evaluation of the process developed in earlier collaboration and jointly invented by VTT and PNNL researchers.

  17. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect (OSTI)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  18. Modeling the Kinetics of Deactivation of Catalysts during the Upgrading of Bio-Oil

    SciTech Connect (OSTI)

    Weber, Robert S.; Olarte, Mariefel V.; Wang, Huamin

    2015-01-25

    The fouling of catalysts for the upgrading of bio-oils appears to be very different from the fouling of catalysts for the hydroprocessing of petroleum-derived streams. There are two reasons for the differences: a) bio-oil contains polarizable components and phases that can stabilize reaction intermediates exhibiting charge separation and b) bio-oil components contain functional groups that contain O, notably carbonyls (>C=O). Aldol condensation of carbonyls affords very different pathways for the production of oligomeric, refractory deposits than does dehydrogenation/polymerization of petroleum-derived hydrocarbons. Colloquially, we refer to the bio-oil derived deposits as gunk to discriminate them from coke, the carbonaceous deposits encountered in petroleum refining. Classical gelation, appears to be a suitable model for the gunking reaction. Our work has helped explain the temperature range at which bio-oil should be pre-processed (stabilized) to confer longer lifetimes on the catalysts used for more severe processing. Stochastic modeling (kinetic Monte Carlo simulations) appears suitable to capture the rates of oligomerization of bio-oil. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  19. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (morefrom 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.less

  20. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  1. BioCraft : : Using Gamification to Stimulate Students' Motivation and Acquisition of Scientific Terms in a Bilingual Classroom

    E-Print Network [OSTI]

    Turner, Kent Alan

    2014-01-01

    BioCraft. During this, a lightbulb went off in my head and Ibuzz in, the first lightbulb to flash gets the opportunity

  2. Macro-ions collapse leading to hybrid bio-nanomaterials.

    SciTech Connect (OSTI)

    Achyuthan, Komandoor E.

    2009-10-01

    I used supramolecular self-assembling cyanine and the polyamine spermine binding to Escherichia coli genomic DNA as a model for DNA collapse during high throughput screening. Polyamine binding to DNA converts the normally right handed B-DNA into left handed Z-DNA conformation. Polyamine binding to DNA was inhibited by the supramolecular self-assembling cyanine. Self-assembly of cyanine upon DNA scaffold was likewise competitively inhibited by spermine as signaled by fluorescence quench from DNA-cyanine ensemble. Sequence of DNA exposure to cyanine or spermine was critical in determining the magnitude of fluorescence quench. Methanol potentiated spermine inhibition by >10-fold. The IC{sub 50} for spermine inhibition was 0.35 {+-} 0.03 {micro}M and the association constant Ka was 2.86 x 10{sup -6}M. Reversibility of the DNA-polyamine interactions was evident from quench mitigation at higher concentrations of cyanine. System flexibility was demonstrated by similar spermine interactions with {lambda}DNA. The choices and rationale regarding the polyamine, the cyanine dye as well as the remarkable effects of methanol are discussed in detail. Cyanine might be a safer alternative to the mutagenic toxin ethidium bromide for investigating DNA-drug interactions. The combined actions of polyamines and alcohols mediate DNA collapse producing hybrid bio-nanomaterials with novel signaling properties that might be useful in biosensor applications. Finally, this work will be submitted to Analytical Sciences (Japan) for publication. This journal published our earlier, related work on cyanine supramolecular self-assembly upon a variety of nucleic acid scaffolds.

  3. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect (OSTI)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  4. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation 2014 Final Report

    SciTech Connect (OSTI)

    Foster Agblevor; Lucia Petkovic; Edward Bennion; Jason Quinn; John Moses; Deborah Newby; Daniel Ginosar

    2014-03-01

    The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalytic pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by near critical propane extraction had minimal impact in the overall energetics of the process with NER contributions of 0.03. Based on the LCA, the overall conversion pathways were found to be energy intensive with a NER of about 2.3 and 1.2 for catalytic pyrolysis and HTL, respectively. GHG emissions for the catalytic pyrolysis process were greater than that of petroleum diesel at 210 g CO2 eq compared to 18.9 g CO2 eq. Microalgae bio-oil based diesel with thermochemical conversion through HTL meets renewable fuel standards with favorable emission reductions of -10.8 g CO2 eq. The importance of the outcomes is that the critical fluid extraction and stabilization process improved product stability and did so with minimal energy inputs and processing costs. The LCA and GHG emission calculations point toward the HTL pathway as the more favorable thermochemical route towards upgrading algae to bio-fuels. Since the quality of the HTL oil was significantly lower than that of the catalytic pyrolysis bio-oil, the next steps point toward improving the quality of the HTL oils from algae biomass and focusing the critical fluid stabilization on that bio-oil product.

  5. BioPig: Developing Cloud Computing Applications for Next-Generation Sequence Analysis

    SciTech Connect (OSTI)

    Bhatia, Karan; Wang, Zhong

    2011-03-22

    Next Generation sequencing is producing ever larger data sizes with a growth rate outpacing Moore's Law. The data deluge has made many of the current sequenceanalysis tools obsolete because they do not scale with data. Here we present BioPig, a collection of cloud computing tools to scale data analysis and management. Pig is aflexible data scripting language that uses Apache's Hadoop data structure and map reduce framework to process very large data files in parallel and combine the results.BioPig extends Pig with capability with sequence analysis. We will show the performance of BioPig on a variety of bioinformatics tasks, including screeningsequence contaminants, Illumina QA/QC, and gene discovery from metagenome data sets using the Rumen metagenome as an example.

  6. 21A.216J / SP.622J / WGS.622J Dilemmas in Bio-Medical Ethics: Playing God or Doing Good?, Spring 2005

    E-Print Network [OSTI]

    James, Erica

    This course is an introduction to the cross-cultural study of bio-medical ethics. It examines moral foundations of the science and practice of western bio-medicine through case studies of abortion, contraception, cloning, ...

  7. WS-BioZard: A Wizard for Composing Bioinformatics Web Services Zhiming Wang, John A. Miller, Jessica C. Kissinger,

    E-Print Network [OSTI]

    Miller, John A.

    WS-BioZard: A Wizard for Composing Bioinformatics Web Services Zhiming Wang, John A. Miller tools efficiently is becoming an important issue. Web service technology is a promising solution because biological Web services, such as BioMoby and Taverna, these existing tools are still too difficult

  8. ISSN: 1314-6246 Mollov & Petrova J. BioSci. Biotech. 2013, 2(1): 57-62. RESEARCH ARTICLE

    E-Print Network [OSTI]

    Mollov, Ivelin Aldinov

    ISSN: 1314-6246 Mollov & Petrova J. BioSci. Biotech. 2013, 2(1): 57-62. RESEARCH ARTICLE http: 1314-6246 Mollov & Petrova J. BioSci. Biotech. 2013, 2(1): 57-62. RESEARCH ARTICLE http

  9. Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity

    SciTech Connect (OSTI)

    Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

    2012-05-04

    An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

  10. What's wrong with the field of bio-neutron scattering? 1) Not enough professional science and not enough professional scientists

    E-Print Network [OSTI]

    Doster, Wolfgang

    What's wrong with the field of bio-neutron scattering? 1) Not enough professional science a paper in this field. Anybody can do it! The most detailed analysis of bio-neutron scattering data up independent moment analysis of the neutron scattering spectrum. Up to today nobody, not even MD people, picked

  11. ENS'05 Paris, France, 14-16 December 2005 PROTOTYPING BIO-NANOROBOTS USING MOLECULAR DYNAMIC SIMULATION

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    @coe.neu.edu ABSTRACT This paper presents a molecular mechanics study using a molecular dynamics software (NAMD) coupled the operator can design, characterize and prototype the behavior of bio-nanorobotic components and structures) in their native environment. Their use as elementary bio-nanorobotic components are also simulated and the results

  12. The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy

    E-Print Network [OSTI]

    Giger, Christine

    The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy was investigated by electrochemical im- pedance spectroscopy in two body-similar fluids. The heat treatments.a.32350 Abstract: In this study the bio-degradation behavior of a Mg-Y-RE alloy in different heat

  13. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils

    SciTech Connect (OSTI)

    Diebold, J.P.

    1999-01-27

    Understanding the fundamental chemical and physical aging mechanisms is necessary to learn how to produce a bio-oil that is more stable during shipping and storage. This review provides a basis for this understanding and identifies possible future research paths to produce bio-oils with better storage stability.

  14. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Kick-Off Meeting Proceedings Hilton Garden Inn-BWI,Baltimore, MD October 24, 2006

    Broader source: Energy.gov [DOE]

    Proceedings from the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  15. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOE Patents [OSTI]

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  16. Failure by fracture and fatigue in 'NANO' and 'BIO'materials

    SciTech Connect (OSTI)

    Ritchie, R.O.; Muhlstein, C.L.; Nalla, R.K.

    2003-12-19

    The behavior of nanostructured materials/small-volumestructures and biologi-cal/bio-implantable materials, so-called "nano"and "bio" materials, is currently much in vogue in materials science. Oneaspect of this field, which to date has received only limited attention,is their fracture and fatigue properties. In this paper, we examine twotopics in this area, namely the premature fatigue failure ofsilicon-based micron-scale structures for microelectromechanical systems(MEMS), and the fracture properties of mineralized tissue, specificallyhuman bone.

  17. Bio Centers Announcement at the National Press Club | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement at the National Press Club Bio

  18. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement at the National Press Club Bio-

  19. THE FOLLOWING TEXT ON BIO-OIL EXTRACTION IS AN EXCERPT FROM THE FINAL TECHNICAL REPORT SUBMITTED BY HNEI TO OFFICE OF NAVAL

    E-Print Network [OSTI]

    shown to execute one-step extractions of both bio-oils and proteins at low pressure and moderateTHE FOLLOWING TEXT ON BIO-OIL EXTRACTION IS AN EXCERPT FROM THE FINAL TECHNICAL REPORT SUBMITTED Solvent-Based Extraction of Bio-oils and Protein from Biomass The overall objective of this project

  20. Bio-Optical Variability in Mayaguez Bay during the Rainy Season Joel A. Quiones Rivera, ja23_degrees@hotmail.com

    E-Print Network [OSTI]

    Gilbes, Fernando

    Bio-Optical Variability in Mayaguez Bay during the Rainy Season Joel A. Quiones Rivera, ja23 by suspending particles in the water that affects light penetration. This is critical for the bio-optical from different stations collected with an bio-optical rosette along the Mayagez Bay and considering

  1. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect (OSTI)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170C and 405C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  2. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils

    SciTech Connect (OSTI)

    George W. Huber, Aniruddha A Upadhye, David M. Ford, Surita R. Bhatia, Phillip C. Badger

    2012-10-19

    This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8 ???µm were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments with model AFBO excluding guaiacol were also conducted. NF membranes showed retention factors of glucose greater than 80% and of acetic acid less than 15% when operated at transmembrane pressures near 60 bar. Task 3.0 Acid Removal by Catalytic Processing It was found that the TAN reduction in bio-oil was very difficult using low temperature hydrogenation in flow and batch reactors. Acetic acid is very resilient to hydrogenation and we could only achieve about 16% conversion for acetic acid. Although it was observed that acetic acid was not responsible for instability of aqueous fraction of bio-oil during ageing studies (described in task 5). The bimetallic catalyst PtRe/ceria-zirconia was found to be best catalyst because its ability to convert the acid functionality with low conversion to gas phase carbon. Hydrogenation of the whole bio-oil was carried out at 125???°C, 1450 psi over Ru/C catalyst in a flow reactor. Again, negligible acetic acid conversion was obtained in low temperature hydrogenation. Hydrogenation experiments with whole bio-oil were difficult to perform because of difficulty to pumping the high viscosity oil and reactor clogging. Task 4.0 Acid Removal using Ion Exchange Resins DOWEX M43 resin was used to carry out the neutralization of bio-oil using a packed bed column. The pH of the bio-oil increased from 2.43 to 3.7. The GC analysis of the samples showed that acetic acid was removed from the bio-oil during the neutralization and recovered in the methanol washing. But it was concluded that process would not be economical at large scale as it is extremely difficult to regenerate the resin once the bio-oil is passed over it. Task 5.0 Characterization of Upgraded Bio-oils We investigated the viscosity, microstructure, and chemical composition of bio-oils prepared by a fast pyrolysis approach, upon aging these fuels at 90???ºC for periods of several days. Our results suggest that the viscosity increase is not correlated with the acids or char present in the bio-oils. The

  3. Optimal Simultaneous Production of Bio-i-butene and Bioethanol from Switchgrass

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    and water consumption standpoint its use for the enhanced production of diesel substitutives is competitive1 Optimal Simultaneous Production of Bio-i- butene and Bioethanol from Switchgrass Mariano Martn1a Abstract. In this work, we propose the optimal flowsheet for the production of i-butene from switchgrass

  4. The Tubercles on Humpback Whales' Flippers: Application of Bio-Inspired Technology

    E-Print Network [OSTI]

    Fish, Frank

    SYMPOSIUM The Tubercles on Humpback Whales' Flippers: Application of Bio-Inspired Technology Frank complex, costly, high-maintenance, and heavy control mechanisms, while improving performance for lifting, skeletal mechanics involved an understanding of architecture, material science and beam theory, while

  5. BioCONCUR 2004 Preliminary Version From Logical Regulatory Graphs to Standard

    E-Print Network [OSTI]

    Ruet, Paul

    Bio­CONCUR 2004 Preliminary Version From Logical Regulatory Graphs to Standard Petri Nets/Universit??e de la M??editerran??ee ­ Marseille, France Abstract Logical modelling and Petri nets constitute two complementary approaches for the dynamical modelling of biological regulatory networks. On the one hand

  6. Vortex Rings in Bio-inspired and Biological Jet Propulsion Paul S. Krueger1, a

    E-Print Network [OSTI]

    Horth, Lisa

    of the latter, vortex rings are generated by the transient ejection of a jet from a tube or orifice, which leadsVortex Rings in Bio-inspired and Biological Jet Propulsion Paul S. Krueger1, a , Ali A. Moslemi1,b@odu.edu, e wstewart@uci.edu Keywords: Vortex rings, pulsed jets, propulsion, thrust, propulsive efficiency

  7. ENVIRONMENTAL MICROBIOLOGY Arcellacea (Testate Amoebae) as Bio-indicators of Road Salt

    E-Print Network [OSTI]

    Patterson, Timothy

    ENVIRONMENTAL MICROBIOLOGY Arcellacea (Testate Amoebae) as Bio-indicators of Road Salt in a significant reduction in road accidents. Deicing salts can, however, pose a major threat to water quality lakes that have become contaminated by winter deicing salts, particularly sodium chloride. We analysed

  8. Micromachining of non-fouling coatings for bio-MEMS applications Yael Haneina,*

    E-Print Network [OSTI]

    Hanein, Yael

    Micromachining of non-fouling coatings for bio-MEMS applications Yael Haneina,* , Y. Vickie Panb,1 substrates. The coating has excellent non-fouling properties and good adhesion to various substrate materials cultures and to protect metallic electrodes from protein and cell adhesion. We show that the thin coatings

  9. E. coli for Energy: Ginkgo BioWorks and the Entrepreneurial Mentorship Program

    Broader source: Energy.gov [DOE]

    Ginkgo BioWorks, a small business founded by five PhDs from MIT, who are working to re-engineer organisms like E. coli into something else. In this case, they want to use the bacteria to turn carbon dioxide into a liquid transportation fuel.

  10. 484 BioScience June 2004 / Vol. 54 No. 6 Cassey and Blackburn's article on the

    E-Print Network [OSTI]

    Ehrlich, Paul R.

    submissions of manuscripts (and that even people at the top of their field still can generate unpublishable-funding policies and programs fostered and created in large part through the efforts of ecologist and bio- logist and political support for pro- ducing high-quality scientists and high- value basic and applied scientific

  11. A MULTI-LAYER PLASTIC PACKAGING TECHNOLOGY FOR MINIATURIZED BIO ANALYSIS SYSTEMS CONTAINING INTEGRATED

    E-Print Network [OSTI]

    A MULTI-LAYER PLASTIC PACKAGING TECHNOLOGY FOR MINIATURIZED BIO ANALYSIS SYSTEMS CONTAINING, GA 30332, USA Abstract A multi-layer plastic packaging technology has been developed and A. Bruno Frazier School of Electrical & Computer Engineering Georgia Institute of Technology Atlanta

  12. October 2004 / Vol. 54 No. 10 BioScience 895 Rising atmospheric carbon dioxide (CO2

    E-Print Network [OSTI]

    October 2004 / Vol. 54 No. 10 BioScience 895 Articles Rising atmospheric carbon dioxide (CO2 reduce the concen- tration of atmospheric carbon dioxide. Understanding biological and edaphic processes of the 21st century (IPCC 2001a). Management of vegetation and soils for terrestrial carbon sequestration

  13. A Wireless Powered Implantable Bio-Sensor Tag System-on-Chip for Continuous Glucose Monitoring

    E-Print Network [OSTI]

    Mason, Andrew

    and a digital baseband (Fig. 1). The high frequency tag works passively and gain power from the RF energy of blood sugar level from the bio-sensor is detected and converted into digital data, and then the data of the reader. The high frequency band is selected since it is an industrial-scientific- medical (ISM) frequency

  14. Letter to the editor The bio-fuel debate and fossil energy use in palm oil

    E-Print Network [OSTI]

    Letter to the editor The bio-fuel debate and fossil energy use in palm oil production: a critique-fuels based on palm oil to re- duce greenhouse gas emissions, due account should be taken of carbon emissions fuel use in palm oil pro- duction, making a number of assumptions that I believe to be incorrect

  15. Civil Engineering & Bio-Resources Option Montana State University-Bozeman

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    E3 8/7/02 Civil Engineering & Bio-Resources Option Montana State University-Bozeman Mission, Objectives, Outcomes -- Evaluation and Assessment February 10, 2011 Engineering Accreditation Commission Accreditation Board for Engineering and Technology 111 Market Place, Suite 1050 Baltimore, Maryland 21202

  16. Biodiversity, Entropy and Thermodynamics http://math.ucr.edu/home/baez/bio info/

    E-Print Network [OSTI]

    Baez, John

    . In biodiversity studies, the entropy of an ecosystem is the expected amount of information we gain about 29, 2014 Biological and Bio-Inspired Information Theory BIRS #12;Shannon entropy S(p) = - n i=1 pi ln(pi ) is fundamental to thermodynamics and information theory. But it's also used to measure biodiversity, where pi

  17. Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

    2009-10-01

    Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

  18. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  19. Microelectronics Journal 39 (2008) 190201 Prototyping bio-nanorobots using molecular dynamics simulation and

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    2008-01-01

    Abstract This paper presents a molecular mechanics study using a molecular dynamics software (NAMD) coupled-nano environments in VR, the operator can design and characterize through physical simulation and 3D visualization) in their native environment. Their use as elementary bio-nanorobotic components are also simulated and the results

  20. BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels - Fundamentals for substitution of fossil fuels since they are natural extensions of fossil fuels, and the existing energy in transportation to replace fossil fuels. Energy is the cause for all processes across all space and time scales

  1. BioCONCUR 2004 Preliminary Version Modelling the influence of RKIP on the ERK

    E-Print Network [OSTI]

    Calder, Muffy

    BioCONCUR 2004 Preliminary Version Modelling the influence of RKIP on the ERK signalling pathway Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signalling pathway [1] through modelling stochastic durations and probabilistic choices. The system which we consider is the Ras/Raf1/MEK/ERK

  2. Thesis proposal CSF Brazil 2014 Sustainability based decision making framework for bio-refining processes

    E-Print Network [OSTI]

    Bordenave, Charles

    are forcing industries to investigate the sustainable environmental performance of their processesThesis proposal CSF Brazil 2014 Title: Sustainability based decision making framework for bio: Diverse policies such as REACH regulation, VOC directives, AIChE sustainability metrics and indicators

  3. Design and Control of a Bio-Inspired Human-Friendly Robot

    E-Print Network [OSTI]

    Park, Yong-Lae

    Design and Control of a Bio-Inspired Human-Friendly Robot Dongjun Shin1 Irene Sardellitti3 Yong {djshin, ok}@robotics.stanford.edu 2 Mechanical Engineering, Stanford University, USA {ylpark, cutkosky for physical interaction between humans and robots has led to the development of robots that guarantee safe

  4. BioControl 47: 657666, 2002. 2002 Kluwer Academic Publishers. Printed in the Netherlands.

    E-Print Network [OSTI]

    Lucas, ric

    BioControl 47: 657666, 2002. 2002 Kluwer Academic Publishers. Printed in the Netherlands present in the Mediterranean area, is an effective biological control agent of vegetable crop pests. kuehniella), raises the cost of production and limits their use as biological control agents. A meat

  5. arxiv.org:0805.3851 [q-bio.PE] Entomogenic Climate Change

    E-Print Network [OSTI]

    Crutchfield, Jim

    arxiv.org:0805.3851 [q-bio.PE] Entomogenic Climate Change David Dunn1, and James P. Crutchfield2 expanding insect populations, deforestation, and global climate change threaten to desta- bilize key requiring independent climate-change drivers. Current research regimes and insect control strategies

  6. Fracture mode control: a bio-inspired strategy to combat catastrophic damage

    E-Print Network [OSTI]

    Dao, Ming

    Fracture mode control: a bio-inspired strategy to combat catastrophic damage Haimin Yao1 , Zhaoqian mechanisms. Nevertheless, no material is unconquerable under sufficiently high load. If fracture to be fractured, under sufficiently high indentation load, through ring cracking which is more localized and hence

  7. Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region Burton H.boss@maine.edu ABSTRACT The optical structure and variability of the Lombok Straits region is poorly understood, but available remotely sensed ocean color indicates that there is a strong optical response and signal

  8. Simulating Anti-adhesive and Antibacterial Bifunctional Polymers for Surface Coating using BioScape

    E-Print Network [OSTI]

    Compagnoni, Adriana

    Simulating Anti-adhesive and Antibacterial Bifunctional Polymers for Surface Coating using Bio a computational model of anti-adhesive and antibacterial bifunctional polymers for sur- face coating developed by Henk Busscher's Group in Gronin- gen, The Netherlands. The bifunctional brushes act as anti- adhesive

  9. BioSPLASH: A sample workload for bioinformatics and computational biology for optimizing next-generation

    E-Print Network [OSTI]

    Bader, David A.

    @ece.unm.edu. This work was supported in part by DARPA Contract NBCH30390004; and NSF Grants CAREER ACI-00-93039, NSF DBI to the understanding of bio- chemical pathways, disease prevention and cure, and the mechanisms of life itself power. This is not clear; and hence, a part of our research interest. Since current architectures have

  10. SecureSwitch: BIOS-Assisted Isolation and Switch between Trusted and Untrusted Commodity OSes

    E-Print Network [OSTI]

    Stavrou, Angelos

    was supported in part by the U.S. Army Research Of- fice (ARO) through contract WF911NF-11-C-0048, the U.S. Air modifications. Our aim is to eliminate any mutable, non-BIOS code sharing while se- curely reusing existing Force Research Laboratory (AFRL) through contract FA8650-10-C-7024, NSF grant CNS-TC 0915291

  11. Bio-inspired MEMS Pressure and Flow Sensors for Underwater Navigation and Object Imaging "

    E-Print Network [OSTI]

    Bio-inspired MEMS Pressure and Flow Sensors for Underwater Navigation and Object Imaging " MIT. - A. G. P. Kottapalli et. al., "Liquid crystal polymer membrane MEMS sensor for flow rate and flow for waterproofing. Fabrication Kayak Testing Commercial Sensors (Reference) MEMS Sensor When mounted on the side

  12. Special issue CellBio-X Engineered materials and the cellular

    E-Print Network [OSTI]

    Chen, Christopher S.

    Special issue CellBio-X Engineered materials and the cellular microenvironment: a strengthening have elucidated the significance of the cellular microenvironment. Here, we highlight some of the major. In contrast, the current understand- ing of how insoluble cues, such as adhesion to the extra- cellular matrix

  13. Passive liquid dispensing in capillary-based bio-adhesion Research teams Microfluidics Lab, GRASP (ULg)

    E-Print Network [OSTI]

    Wolper, Pierre

    Passive liquid dispensing in capillary-based bio-adhesion Research teams Microfluidics Lab, GRASP-81 (2010) #12;Coalescence strategies in droplet microfluidic systems Research team Microfluidics Lab, GRASP, mechanics) Droplet microfluidics is a new technology that aims at miniaturizing assays in life science (Lab

  14. Semi-Supervised Bio-Named Entity Recognition with Word-Codebook Learning Pavel P. Kuksa

    E-Print Network [OSTI]

    learning, information extraction, sequence labeling, biomedical natural language processing, named entity-supervised method learns target-class label patterns from unlabeled data using supervised signals from trained bio recognition 1 Introduction For biomedical research, efficient access to information contained in online

  15. Reasoning about the ERK signal transduction pathway using BioSigNet-RR

    E-Print Network [OSTI]

    Baral, Chitta

    receiving and processing of external and internal signals, is essential for the proper functioning of cellsReasoning about the ERK signal transduction pathway using BioSigNet-RR Carron Shanklanda , Nam Institute for Cancer Research, and Institute of Biomedical and Life Sciences, University of Glasgow, UK

  16. In search of an alternative fuel: Bio-Solar Hydrogen Production

    E-Print Network [OSTI]

    Petta, Jason

    In search of an alternative fuel: Bio-Solar Hydrogen Production from Arthrospira maxima Dariya of the Project Description of Arthrospira maxima Methods and Materials Alternatives for increasing hydrogen- Carbohydrates, Amino Acids, Lipids ... Inorganic H+,C,N,S,P... Facts and Alternatives #12;PSII: 2H2O + sunlight

  17. Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Solantausta, Yrjo

    2012-06-01

    Catalytic hydroprocessing has been applied to the fast pyrolysis liquid product (bio-oil) from softwood biomass in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. This paper is focused on the process experimentation and product analysis. The paper describes the experimental methods used and relates the results of the product analyses. A range of operating parameters including temperature, and flow-rate were tested with bio-oil derived from pine wood as recovered and pyrolyzed in the pilot pyrolyzer of Metso Power in Tampere, Finland. Effects of time on stream and catalyst activity were assessed. Details of the process results were presented included product yields and hydrogen consumption. Detailed analysis of the products were provided including elemental composition and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an initial understanding of the efficacy of hydroprocessing as applied to the Finnish pine bio-oil.

  18. A bio-inspired limb controller for avatar animation AL. Cruz Ruiza,b

    E-Print Network [OSTI]

    of the limb position with the objective to enhance virtual avatar animation. 2. Methods Let us considerA bio-inspired limb controller for avatar animation AL. Cruz Ruiza,b *, C. Pontonniera,c and G-Cyr Cotquidan, Guer, France Keywords: motor control; musculoskeletal modeling; human motion synthesis

  19. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Cincinnati, University of

    -7707 USA. We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs. DNA has been used in organic light-emitting diodes (OLEDs)4,5,714 yielding significant increasesDNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes Eliot F. Gomez1 , Vishak

  20. GRADUATE STUDY IN BIOENGINEERING The Bioengineering (BioE) Graduate Program

    E-Print Network [OSTI]

    GRADUATE STUDY IN BIOENGINEERING The Bioengineering (BioE) Graduate Program prepares students. Multidisciplinary Approach Because of the breadth of bioengineer- ing, along with the diminishing barriers between disciplines, the bioengineering graduate program emphasizes an inter- disciplinary approach to our education

  1. Measuring Bio-Oil Upgrade Intermediates and Corrosive Species with Polarity-Matched Analytical Approaches

    SciTech Connect (OSTI)

    Connatser, Raynella M [ORNL; Lewis Sr, Samuel Arthur [ORNL; Keiser, James R [ORNL; Choi, Jae-Soon [ORNL

    2014-01-01

    Integrating biofuels with conventional petroleum products requires improvements in processing to increase blendability with existing fuels. This work demonstrates analysis techniques for more hydrophilic bio-oil liquids that give improved quantitative and qualitative description of the total acid content and organic acid profiles. To protect infrastructure from damage and reduce the cost associated with upgrading, accurate determination of acid content and representative chemical compound analysis are central imperatives to assessing both the corrosivity and the progress toward removing oxygen and acidity in processed biomass liquids. Established techniques form an ample basis for bio-liquids evaluation. However, early in the upgrading process, the unique physical phases and varied hydrophilicity of many pyrolysis liquids can render analytical methods originally designed for use in petroleum-derived oils inadequate. In this work, the water solubility of the organic acids present in bio-oils is exploited in a novel extraction and titration technique followed by analysis on the water-based capillary electrophoresis (CE) platform. The modification of ASTM D664, the standard for Total Acid Number (TAN), to include aqueous carrier solvents improves the utility of that approach for quantifying acid content in hydrophilic bio-oils. Termed AMTAN (modified Total Acid Number), this technique offers 1.2% relative standard deviation and dynamic range comparable to the conventional ASTM method. The results of corrosion product evaluations using several different sources of real bio-oil are discussed in the context of the unique AMTAN and CE analytical approaches developed to facilitate those measurements. Keywords: biomass, capillary electrophoresis, Total Acid Number, pyrolysis oil upgrading, carboxylic acid, corrosion

  2. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds

    SciTech Connect (OSTI)

    Wang, Huamin; Male, Jonathan L.; Wang, Yong

    2013-05-01

    There is considerable world-wide interest in discovering renewable sources of energy that can substitute for fossil fuels. Lignocellulosic biomass, which is the most abundant and inexpensive renewable feedstock on the planet, has a great potential for sustainable production of fuels, chemicals, and carbon-based materials. Fast pyrolysis integrated with hydrotreating is one of the simplest, most cost-effective and most efficient processes to convert lignocellulosic biomass to liquid hydrocarbon fuels for transportation, which has attracted significant attention in recent decades. However, effective hydrotreating of pyrolysis bio-oil presents a daunting challenge to the commercialization of biomass conversion via pyrolysis-hydrotreating. Specifically, development of active, selective, and stable hydrotreating catalysts is the bottleneck due to the poor quality of pyrolysis bio-oil feedstock (high oxygen content, molecular complexity, coking propensity, and corrosiveness). Significant research has been conducted to address the practical issues and provide the fundamental understanding of the hydrotreating/hydrodeoxygenation (HDO) of bio-oils and their oxygen-containing model compounds, including phenolics, furans, and carboxylic acids. A wide range of catalysts have been studied, including conventional Mo-based sulfide catalysts and noble metal catalysts, with the latter being the primary focus of the recent research because of their excellent catalytic performances and no requirement of environmentally unfriendly sulfur. The reaction mechanisms of HDO of model compounds on noble metal catalysts as well as their efficacy for hydrotreating or stabilization of bio-oil have been recently reported. This review provides a survey of the relevant literatures of recent 10 years about the advances in the understanding of the HDO chemistry of bio-oils and their model compounds mainly on noble metal catalysts.

  3. Bio-processing of solid wastes and secondary resources for metal extraction - A review

    SciTech Connect (OSTI)

    Lee, Jae-chun; Pandey, Banshi Dhar

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.

  4. U-152: OpenSSL "asn1_d2i_read_bio()" DER Format Data Processing Vulnerability

    Broader source: Energy.gov [DOE]

    The vulnerability is caused due to a type casting error in the "asn1_d2i_read_bio()" function when processing DER format data and can be exploited to cause a heap-based buffer overflow.

  5. BioLabs-On-A-Chip: Monitoring Cells Using CMOS Biosensors Somashekar B. Prakash, Nicole M. Nelson,

    E-Print Network [OSTI]

    Maryland at College Park, University of

    BioLabs-On-A-Chip: Monitoring Cells Using CMOS Biosensors Somashekar B. Prakash, Nicole M. Nelson integrated biosensors is an ob- vious one: how to keep the electrical leads dry and insulated, while exposing

  6. The Bio-Resources Option in a Civil Engineering program2 applies mathematics, physics, chemistry and biology to

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    The Bio-Resources Option in a Civil Engineering program2 applies mathematics, physics, chemistry, enduring, cost effective, attractive and sustainable. Students study the basic engineering principles associated with, geotechnical engineering (soil mechanics and soil structure), environmental engineering

  7. High Throughput Plasmid Sequencing with Illumina and CLC Bio (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Athavale, Ajay [Monsanto

    2013-01-25

    Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  8. Oral Probiotic Microcapsule Formulation Ameliorates Non-Alcoholic Fatty Liver Disease in Bio F1B Golden Syrian Hamsters

    E-Print Network [OSTI]

    Bhathena, Jasmine; Martoni, Christopher; Kulamarva, Arun; Tomaro-Duchesneau, Catherine; Malhotra, Meenakshi; Paul, Arghya; Urbanska, Aleksandra Malgorzata; Prakash, Satya

    2013-03-12

    The beneficial effect of a microencapsulated feruloyl esterase producing Lactobacillus fermentum ATCC 11976 formulation for use in non-alcoholic fatty liver disease (NAFLD) was investigated. For which Bio F1B Golden Syrian hamsters were fed a...

  9. Economics as if science mattered: the BioOne business model and the transformation of scholarly publishing

    E-Print Network [OSTI]

    Fyffe, Richard; Shulenburger, David E.

    2002-09-01

    The BioOne database of scholarly journals in the biological and ecological sciences was established in the belief that broad and enduring access to scholarly literature is essential not just to the health of the scientific enterprise but also...

  10. Investigation of Reaction Networks and Active Sites In Bio-Ethanol Steam Reforming Over Co-Based Catalysts

    Broader source: Energy.gov [DOE]

    Paper by Umit S. Ozkan, Hua Song, and Lingzhi Zhang (Ohio State University) on the fundamental understanding of reaction networks, active sites of deactivation mechanisms of potential bio-ethanol steam reforming catalysts.

  11. A Carbon Molecular Sieve-based Catalyst with Encapsulated Ruthenium Nanoparticles for Bio-oil Stabilization and Upgrading

    E-Print Network [OSTI]

    Mironenko, Alexander

    2012-08-31

    Pyrolysis oil derived from biomass (bio-oil) is regarded as a potential substitute for petroleum crude for producing environmentally friendly fuels of the future. However, pyrolysis oil upgrading still remains an issue due to its complex composition...

  12. MEMS & BioMEMS Chip-Scale Quadrupole Mass Filters for a Micro Gas Analyzer ...................................................................................................................MS.1

    E-Print Network [OSTI]

    Reif, Rafael

    MEMS & BioMEMS Chip-Scale Quadrupole Mass Filters for a Micro Gas Analyzer...................................................................................................................MS.2 MEMS-based Plasma Probes for Spacecraft Re-entry Monitoring.........................................................................MS.4 Direct Patterning of Metallic MEMS through Microcontact Printing

  13. Bio-Inspired Design: An Overview Investigating Open Questions from the Broader Field of Design-by-Analogy

    E-Print Network [OSTI]

    Fu, Katherine

    Bio-inspired design and the broader field of design-by-analogy have been the basis of numerous innovative designs throughout history; yet there remains much to be understood about these practices of design, their underlying ...

  14. High Throughput Plasmid Sequencing with Illumina and CLC Bio (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    SciTech Connect (OSTI)

    Athavale, Ajay [Monsanto] [Monsanto

    2012-06-01

    Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  15. Dr. Campbell's Bio111 Exam #1 Fall 2010 Biology 111 Closed Book Take-Home Exam #1 Information

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    Dr. Campbell's Bio111 Exam #1 Fall 2010 1 Biology 111 Closed Book Take-Home Exam #1 Information long did this exam take you to complete? #12;Dr. Campbell's Bio111 Exam #1 Fall 2010 2 Lab Questions a stock solution of 350 mM NaCl. 2.5 L of 350 mM stock plus 32.5 L water = 25 mM NaCl. b) Make 175 m

  16. Systematic modulation and enhancement of CO{sub 2} : N{sub 2} selectivity and water stability in an isoreticular series of bio-MOF-11 analogues

    SciTech Connect (OSTI)

    Li, Tao; Chen, De-Li; Sullivan, Jeanne E.; Kozlowski, Mark T.; Johnson, J. Karl; Rosi, Nathaniel L.

    2013-02-01

    An isoreticular series of cobalt-adeninate bio-MOFs (bio-MOFs 11-14) is reported. The pores of bio-MOFs 11-14 are decorated with acetate, propionate, butyrate, and valerate, respectively. The nitrogen (N{sub 2}) and carbon dioxide (CO{sub 2}) adsorption properties of these materials are studied and compared. The isosteric heats of adsorption for CO{sub 2} are calculated, and the CO{sub 2}:N{sub 2} selectivities for each material are 10 determined. As the lengths of the aliphatic chains decorating the pores in bio-MOFs 11-14 increase, the BET surface areas decrease from 1148 m{sup 2}/g to 17 m{sup 2}/g while the CO{sub 2}:N{sub 2} selectivities predicted from ideal adsorbed solution theory at 1 bar and 273 K for a 10:90 CO{sub 2}:N{sub 2} mixture range from 73:1 for bio-MOF-11 to 123:1 for bio-MOF-12 and finally to 107:1 for bio-MOF-13. At 298 K, the selectivities are 43:1 for bio-MOF-11, 52:1 for bio-MOF-12, and 40:1 for bio-MOF-13. Additionally, it is shown that 15 bio-MOF-14 exhibits a unique molecular sieving property that allows it to adsorb CO{sub 2} but not N{sub 2} at 273 and 298 K. Finally, the water stability of bio-MOFs 11-14 increases with increasing aliphatic chain length. Bio-MOF-14 exhibits no loss of crystallinity or porosity after soaking in water for one month.

  17. Positioning Nuclear Spins in Interacting Clusters for Quantum Technologies and Bio-imaging

    E-Print Network [OSTI]

    Zhen-Yu Wang; Jan F. Haase; Jorge Casanova; Martin B. Plenio

    2015-10-09

    We propose a method to measure the hyperfine vectors between a nitrogen-vacancy (NV) center and an environment of interacting nuclear spins. Our protocol enables the generation of tunable electron-nuclear coupling Hamiltonians while suppressing unwanted inter-nuclear interactions. In this manner, each nucleus can be addressed and controlled individually thereby permitting the reconstruction of the individual hyperfine vectors. With this ability the 3D-structure of spin ensembles and spins in bio-molecules can be identified without the necessity of varying the direction of applied magnetic fields. We demonstrate examples including the complete identification of an interacting spin cluster in diamond and 3D imaging of all the nuclear spins in a bio-molecule of L-malic acid.

  18. BioSAVE: Display of scored annotation within a sequence context

    E-Print Network [OSTI]

    Pollock, Richard F; Adryan, Boris

    2008-03-20

    additional numerical annotation (e.g., the Utopia Toolset [7]). However, these programs are comparable to the static display of Artemis and the Inte- grated Genome Browser, and do not allow for the on-the- fly customisation found in BioSAVE. In the following... Authors' contributions RFP wrote the software and created the web site. BA defined the software architecture and created demonstra- tion and test datasets. Both authors wrote the manuscript. Acknowledgements We thank Sarah Teichmann and Madan Babu...

  19. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (4050%), hemicellulose (2535%), and lignin (1633%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  20. BioMed CentralBMC Bioinformatics BMC Bioinformatics2001,2 :7

    E-Print Network [OSTI]

    Eddy, Sean

    Annotation System Robin D Dowell1, Rodney M Jokerst1, Allen Day2, Sean R Eddy1 and Lincoln Stein*2 Address: 1-mail: Robin D Dowell - robin@genetics.wustl.edu; Rodney M Jokerst - jokerst@genetics.wustl.edu; Allen Day is available from: http://www.biomedcentral.com/1471-2105/2/7 2001 Dowell et al; licensee BioMed Central Ltd

  1. Dr. Campbell's Bio111 Exam #1 Fall 2001 Fall 2001 Biology 111 Exam #1 -Cellular Communications

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    this exam take you to complete (excluding typing)? #12;Dr. Campbell's Bio111 Exam #1 Fall 2001 2 Lab/v IDH if your stock solutions are 28.8 mM NADP+ , 500 mM isocistrate and 100 mM IDH (to be considered 100% IDH stock solution). 10 mL NADP stock + 20 mL isocitrate + 14 mL IDH + water to a final volume

  2. Microsoft PowerPoint - ShanasBioSlides121307 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease | Department of0 InspectionShanasBioSlides121307 Microsoft PowerPoint -

  3. BioEnergie Park Soesetal GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to: navigation,

  4. Webinar: Demonstration of NREL's BioEnergy Atlas Tools | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration of NREL's BioEnergy Atlas Tools Webinar:

  5. Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques

    SciTech Connect (OSTI)

    Deng, Yangyang; Parajuli, Prem B.

    2011-08-10

    Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

  6. Proceedings of the Bio-Energy '80 world congress and exposition

    SciTech Connect (OSTI)

    1980-01-01

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

  7. Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

  8. The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies

    E-Print Network [OSTI]

    Katayama, Toshiaki; Wilkinson, Mark D.; Micklem, Gos; Kawashima, Shuichi; Yamaguchi, Atsuko; Nakao, Mitsuteru; Yamamoto, Yasunori; Okamoto, Shinobu; Oouchida, Kenta; Chun, Hong-Woo; Aerts, Jan; Afzal, Hammad; Antezana, Erick; Arakawa, Kazuharu; Aranda, Bruno; Belleau, Francois; Bolleman, Jerven; Bonnal, Raoul J. P.; Chapman, Brad; Cock, Peter J. A.; Eriksson, Tore; Gordon, Paul M. K.; Goto, Naohisa; Hayashi, Kazuhiro; Horn, Heiko; Ishiwata, Ryosuke; Kaminuma, Eli; Kasprzyk, Arek; Kawaji, Hideya; Kido, Nobuhiro; Kim, Young Joo; Kinjo, Akira R.; Konishi, Fumikazu; Kwon, Kyung-Hoon; Labarga, Alberto; Lamprecht, Anna-Lena; Lin, Yu; Lindenbaum, Pierre; McCarthy, Luke; Morita, Hideyuki; Murakami, Katsuhiko; Nagao, Koji; Nishida, Kozo; Nishimura, Kunihiro; Nishizawa, Tatsuya; Ogishima, Soichi; Ono, Keiichiro; Oshita, Kazuki; Park, Keun-Joon; Prins, Pjotr; Saito, Taro L.; Samwald, Matthias; Satagopam, Venkata P.; Shigemoto, Yasumasa; Smith, Richard; Splendiani, Andrea; Sugawara, Hideaki; Taylor, James; Vos, Rutger A.; Withers, David; Yamasaki, Chisato; Zmasek, Christian M.; Kawamoto, Shoko; Okubo, Kosaku; Asai, Kiyoshi; Takagi, Toshihisa

    2013-02-11

    stream_source_info 2041-1480-4-6.pdf.txt stream_content_type text/plain stream_size 85006 Content-Encoding UTF-8 stream_name 2041-1480-4-6.pdf.txt Content-Type text/plain; charset=UTF-8 REVIEW Open Access The 3rd DBCLS Bio... showing its power over traditional data and knowledge frameworks. Among the most prom- inent of these early-adopters have been the life and health science communities [3] where numerous Linked Data initiatives have emerged. Notable examples include...

  9. Subtask 2: Water oxidation complex | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1: Total systems analysis, assembly

  10. Subtask 3: Fuel production complex | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1: Total systems analysis,

  11. Bio-oil Upgrading with Novel Low Cost Catalysts Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy| DepartmentofEnergyiT1(BILIWG),Bio-Oil is

  12. BioCentric Energy Inc formerly Nano Chemical Systems Holdings | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to: navigation, search

  13. Voorkennis chemie voor 1 Ba Bio-ir, Chemie, Fysica en sterrenkunde Voor meer informatie: contacteer csb.etterbeek@vub.ac.be

    E-Print Network [OSTI]

    Einmahl, Uwe

    Voorkennis chemie voor 1 Ba Bio-ir, Chemie, Fysica en sterrenkunde Voor meer informatie: contacteer verwacht wordt bij aanvang van een studie bachelor Bio-ingenieurswetenschappen, Chemie of Fysica en, telkens gellustreerd met een of meerdere voorbeeldopgaven. 1. Elementaire chemie en chemisch rekenen 1

  14. Zelftest chemie voor 1 Ba Bio-ir, Chemie, Fysica en sterrenkunde Voor meer informatie: contacteer csb.etterbeek@vub.ac.be

    E-Print Network [OSTI]

    Einmahl, Uwe

    Zelftest chemie voor 1 Ba Bio-ir, Chemie, Fysica en sterrenkunde Voor meer informatie: contacteer opgenomen in het bijhorend overzicht van de verwachte voorkennis chemie. 1. Elementaire chemie en chemisch, whisky, fruitsap met pulp, keukenzout #12;Zelftest chemie voor 1 Ba Bio-ir, Chemie, Fysica en

  15. Ocean Optics XVI Conference, Santa Fe, New Mexico, November 18-22, 2002 BIO-OPTICAL EVIDENCE OF LAND-SEA INTERACTIONS

    E-Print Network [OSTI]

    Gilbes, Fernando

    Ocean Optics XVI Conference, Santa Fe, New Mexico, November 18-22, 2002 BIO-OPTICAL EVIDENCE Rico. However, the complexity of the bay's optical properties and certain limitations of the technology, allowing a better understanding of such bio-optical variability. A new sampling design with twenty

  16. Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been Contact us My IOPscience #12;Syngas production by plasma treatments of alcohols, bio-oils and wood K conversion of biomass provide a great variety of products: oils, alcohols and gases. After treatment

  17. Vendor Catalog # Description Bio-Rad 3450009 CriterionTM Tris-HCl Gel, 10%, 12+2 well, 45 l

    E-Print Network [OSTI]

    Emmons, Scott

    Vendor Catalog # Description Bio-Rad 3450009 CriterionTM Tris-HCl Gel, 10%, 12+2 well, 45 l Bio PRESTAIN PROT LADDER 2 X 250 UL Life 15230162 DISTILLED WATER 500ML Life 11965092 DMEM 500ML Life 26140087

  18. BioPS'06, October 24-25, III.19-III.26 3D HP Protein Folding Problem using Ant Algorithm

    E-Print Network [OSTI]

    Fidanova, Stefka

    BioPS BioPS'06, October 24-25, III.19-III.26 3D HP Protein Folding Problem using Ant Algorithm for the correct structure in the huge conformation space. Due to the complexity of the protein folding problem protein folding problem. It is based on very simple design choices in particular with respect

  19. The reaction of the grass shrimp, Palaemonetes pugio Holthuis (1952), to phenol in bio-assay and behavioral tests

    E-Print Network [OSTI]

    Matthews, Geoffrey A

    1969-01-01

    , ment) il, (Member) (member) I&'fo&y ) 1 9' 9 433. 988 The Reaction of the Grass Shrimp, Palaemonetes augie HolthuI. s (1952), to Phenol in Bio-assay and Behavioral Tests. (Nay, 1969) Geoffrev A. i~iatthcws, B. S. , University of Puget Sound... Directed by: Dr. John G. i~lackin ABSTRACT The grass shrimp, Palaemonetes pugio (Crustacea; Decapoda), which is common in the estuarine marsh- lands along the Texas Gull' Coa't, was shown to bc a suitabie organism for bio-assays and behavioral tests...

  20. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  1. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    SciTech Connect (OSTI)

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agencys R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our clients efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  2. Epitaxial crystals of Bi?Pt?O? pyrochlore through the transformation of ?Bi?O? fluorite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    GutirrezLlorente, Araceli; Joress, Howie; Woll, Arthur; Holtz, Megan E.; Ward, Matthew J.; Sullivan, Matthew C.; Muller, David A.; Brock, Joel D.

    2015-03-01

    Bi?Pt?O? pyrochlore is thought to be one of the most promising oxide catalysts for application in fuel cell technology. Unfortunately, direct film growth of Bi?Pt?O? has not yet been achieved, owing to the difficulty of oxidizing platinum metal in the precursor material to Pt??. In this work, in order to induce oxidation of the platinum, we annealed pulsed laser deposited films consisting of epitaxial ?Bi?O? and co-deposited, comparatively disordered platinum. We present synchrotron x-ray diffraction results that show the nonuniform annealed films contain the first epitaxial crystals of Bi?Pt?O?. We also visualized the pyrochlore structure by scanning transmission electron microscopy,moreand observed ordered cation vacancies in the epitaxial crystals formed in a bismuth-rich film but not in those formed in a platinum-rich film. The similarity between the ?Bi?O? and Bi?Pt?O? structures appears to facilitate the pyrochlore formation. These results provide the only route to date for the formation of epitaxial Bi?Pt?O?.less

  3. AgBioResearch (Formerly MAES) Guidelines for Approval and Recruiting for Faculty AgBioResearch supports programs that align with our university-wide mission in agricultural

    E-Print Network [OSTI]

    providing, support for a faculty position. Step 1: Before any formal actions are taken, the unit leaderBioResearch and other partners will review the position request and approve or request revisions. All paperwork it goes to central administration for processing. This formalizes our commitment. Step 4: Approval

  4. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

    E-Print Network [OSTI]

    One's Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited. Estimamos que la tasa promedio ( EE) de crecimiento de las remeras fue 3.94 0.13 mm da1 , ligeramente el crecimiento del 77% de la novena primaria, un porcentaje similar a o mayor que el de la mayora de

  5. Project Profile Medical Cell BioPhysics Circulating Tumor Cells Sanne de Wit: s.dewit@utwente.nl

    E-Print Network [OSTI]

    Twente, Universiteit

    by Islam et al. to prepare full length barcoded cDNA from single cells in a single step. This assignmentProject Profile Medical Cell BioPhysics Circulating Tumor Cells Contact: Sanne de Wit: s.dewit@utwente.nl Visit us: Carr 4.435 Catching metastasizing cells in the act Novel characterization methods

  6. Center for BioEnergy Sustainability http://www.ornl.gov/cbes/ Bioenergy, Sustainability, and Land-Use Change Report

    E-Print Network [OSTI]

    Pennycook, Steve

    versus coal. March 23-27 Several ORNL researchers participated in the Department of Energy's BioEnergy Technologies Office (BETO) 2015 Project Peer Review in Alexandria, Virginia. The following presentations were Durability Relationships for Improved Low-Cost Clean Cookstoves by Tim Theiss Increasing Biofuel Deployment

  7. Chemical/Bio Engineering Computer Engineering Computer Science/IT Mechanical Engineering Aspen Technology abi HUB abi HUB Adecco

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    Chemical/Bio Engineering Computer Engineering Computer Science/IT Mechanical Engineering Aspen Insurance Teledyne D. G. O'Brien U.S. Army Corps of Engineers Systems Engineering Measured Progress The Timken Company Taxware MEDITECH The Whiting-Turner Contracting Company Civil Engineering Tyler

  8. Development of a Bio-inspired Structural Health Monitoring System Based on Multi-scale Sample Entropy

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Development of a Bio-inspired Structural Health Monitoring System Based on Multi-scale Sample electrocardiogram. As similar circumstance is also faced in the field of structural health monitoring, where health monitoring, Multi-scale entropy, Sample entropy INTRODUCTION The concept of structural health

  9. Genetics and genomics of disease and development What: CCNY_BIO_Lecture V0005_2LP_2363 and

    E-Print Network [OSTI]

    Sun, Yi

    Genetics and genomics of disease and development Fall 2013 What: CCNY_BIO_Lecture V0005_2LP Genes to Genomes Hartwell et al., McGraw Hill (not mandatory). On reserve in the Biology Resource will also cover methods in genomics as these are completely integrated into model system genetics

  10. Thesis proposal CSF Brazil 2014 Computer Aided Design of bio-based molecules. Application to lipid derivatives.

    E-Print Network [OSTI]

    Bordenave, Charles

    Thesis proposal CSF Brazil 2014 Title: Computer Aided Design of bio-based molecules. Application of value-added molecules. To improve the lipids usage in chemical industry, this collaborative work France-Brazil in France and 2) the knowledge in modeling of lipid-based systems in Brazil. Following a Process System

  11. Center for BioEnergy Sustainability http://www.ornl.gov/cbes/ Bioenergy, Sustainability, and Land-Use Change Report

    E-Print Network [OSTI]

    Pennycook, Steve

    designs. Renewable & Sustainable Energy Review. ORNL Presentations: February 2-4 Esther Parish "Sustainability, Ecosystem Services, and Bioenergy Development across the Americas" Project. February 27 UpdateCenter for BioEnergy Sustainability http://www.ornl.gov/cbes/ 1 Bioenergy, Sustainability, and Land

  12. August 2002 / Vol. 52 No. 8 BioScience 659 Dams are structures designed by humans to capture

    E-Print Network [OSTI]

    Poff, N. LeRoy

    August 2002 / Vol. 52 No. 8 BioScience 659 Articles Dams are structures designed by humans to capture water and modify the magnitude and timing of its movement downstream. The damming of streams, dams have reduced flood hazard and allowed humans to settle and farm pro- ductive alluvial soils

  13. Bio-logging of marine migratory species in the law of the sea James Kraska a,b,n

    E-Print Network [OSTI]

    Huang, Wei

    Bio-logging of marine migratory species in the law of the sea James Kraska a,b,n , Guillermo Ortuo Crespo a , David W. Johnston a a Division of Marine Science and Conservation, Nicholas School of the Environment Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA b Stockton

  14. In vitro bio-functionality of gallium nitride sensors for radiation biophysics

    SciTech Connect (OSTI)

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adiguezel, Denis; Stutzmann, Martin; Sharp, Ian D.; Thalhammer, Stefan

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on the cellular environment confirms that this material is well suited for future biosensing applications without the need for additional chemical surface modification.

  15. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220C and a sulfided CoMo on alumina catalyst bed operated at 400C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  16. Multi-layer micro/nanofluid devices with bio-nanovalves

    DOE Patents [OSTI]

    Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.

    2013-01-01

    A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.

  17. The SYRMEP Beamline of Elettra: Clinical Mammography and Bio-medical Applications

    SciTech Connect (OSTI)

    Tromba, G.; Abrami, A.; Casarin, K.; Chenda, V.; Dreossi, D.; Mancini, L.; Menk, R. H.; Quai, E.; Sodini, N.; Vascotto, A.; Longo, R.; Arfelli, F.; Castelli, E.; Astolfo, A.; Bregant, P.; Brun, F.; Hola, M.; Kaiser, J.

    2010-07-23

    At the SYnchrotron Radiation for MEdical Physics (SYRMEP) beamline of Elettra Synchrotron Light Laboratory in Trieste (Italy), an extensive research program in bio-medical imaging has been developed since 1997. The core program carried out by the SYRMEP collaboration concerns the use of Synchrotron Radiation (SR) for clinical mammography with the aim of improving the diagnostic performance of the conventional technique. The first protocol with patients, started in 2006 has been completed at the end of 2009 and the data analysis is now in progress.Regarding applications different from clinical imaging, synchrotron X-ray computed microtomography (micro-CT) is the most used technique, both in absorption and phase contrast. A new software tool, Pore3D, has been developed to perform a quantitative morphological analysis on the reconstructed slices and to access textural information of the sample under study.

  18. Method of increasing anhydrosugars, pyroligneous fractions and esterified bio-oil

    DOE Patents [OSTI]

    Steele, Philip H; Yu, Fei; Li, Qi; Mitchell, Brian

    2014-12-30

    The device and method are provided to increase anhydrosugars yield during pyrolysis of biomass. This increase is achieved by injection of a liquid or gas into the vapor stream of any pyrolysis reactor prior to the reactor condensers. A second feature of our technology is the utilization of sonication, microwave excitation, or shear mixing of the biomass to increase the acid catalyst rate for demineralization or removal of hemicellulose prior to pyrolysis. The increased reactivity of these treatments reduces reaction time as well as the required amount of catalyst to less than half of that otherwise required. A fractional condensation system employed by our pyrolysis reactor is another feature of our technology. This system condenses bio-oil pyrolysis vapors to various desired fractions by differential temperature manipulation of individual condensers comprising a condenser chain.

  19. Economic Assessment of a Conceptual Biomass to Liquids Bio-Syntrolysis Plant

    SciTech Connect (OSTI)

    M. M. Plum; G. L. Hawkes

    2010-06-01

    A series of assessments evaluated the economic efficiency of integrating a nuclear electric power plant with a biomass to SynFuel plant under three market scenarios. Results strongly suggest that a nuclear assisted-BioSyntrolysis Process would be as cost competitive as other carbon feedstock to liquid fuels concepts while having significant advantages regarding CO2 greenhouse gas production. This concept may also be competitive for those energy markets where energy dense, fossil fuels are scarce while wind, hydroelectric, or other renewable energy sources can be produced at a relatively low cost. At this time, a realistic vision of this technologys deployment of a biomass to synfuel plants powered by a nuclear 1100 MWe reactor. Accompanying an area of 25 miles by 25 miles, this integrated Enterprise could produce 24,000 BBLs of SynFuel daily; or 0.2% of the U.S.s imported oil.

  20. Demonstration of the BioBaler harvesting system for collection of small-diameter woody biomass

    SciTech Connect (OSTI)

    Langholtz, Matthew H; Caffrey, Kevin R; Barnett, Elliott J; Webb, Erin; Brummette, Mark W; Downing, Mark

    2011-12-01

    As part of a project to investigate sustainable forest management practices for producing wood chips on the Oak Ridge Reservation (ORR) for the ORNL steam plant, the BioBaler was tested in various Oak Ridge locations in August of 2011. The purpose of these tests and the subsequent economic analysis was to determine the potential of this novel woody biomass harvesting method for collection of small-diameter, low value woody biomass. Results suggest that opportunities may exist for economical harvest of low-value and liability or negative-cost biomass. (e.g., invasives). This could provide the ORR and area land managers with a tool to produce feedstock while improving forest health, controlling problem vegetation, and generating local employment.

  1. Bio-energy feedstock yields and their water quality benefits in Mississippi

    SciTech Connect (OSTI)

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  2. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments

    SciTech Connect (OSTI)

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jrme [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Bowler, Matthew W. [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Ashton, Alun [DLS, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0QX (United Kingdom); Franke, Daniel; Svergun, Dmitri [European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Building 25A, Notkestrasse 85, 22603 Hamburg (Germany); McSweeney, Sean; Gordon, Elspeth [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Round, Adam, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France)

    2015-01-01

    The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments. Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.

  3. Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems

    SciTech Connect (OSTI)

    Guest, Geoffrey Bright, Ryan M. Cherubini, Francesco Strmman, Anders H.

    2013-11-15

    Temporary and permanent carbon storage from biogenic sources is seen as a way to mitigate climate change. The aim of this work is to illustrate the need to harmonize the quantification of such mitigation across all possible storage pools in the bio- and anthroposphere. We investigate nine alternative storage cases and a wide array of bio-resource pools: from annual crops, short rotation woody crops, medium rotation temperate forests, and long rotation boreal forests. For each feedstock type and biogenic carbon storage pool, we quantify the carbon cycle climate impact due to the skewed time distribution between emission and sequestration fluxes in the bio- and anthroposphere. Additional consideration of the climate impact from albedo changes in forests is also illustrated for the boreal forest case. When characterizing climate impact with global warming potentials (GWP), we find a large variance in results which is attributed to different combinations of biomass storage and feedstock systems. The storage of biogenic carbon in any storage pool does not always confer climate benefits: even when biogenic carbon is stored long-term in durable product pools, the climate outcome may still be undesirable when the carbon is sourced from slow-growing biomass feedstock. For example, when biogenic carbon from Norway Spruce from Norway is stored in furniture with a mean life time of 43 years, a climate change impact of 0.08 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year time horizon (TH)) would result. It was also found that when biogenic carbon is stored in a pool with negligible leakage to the atmosphere, the resulting GWP factor is not necessarily ? 1 CO{sub 2}eq per kg CO{sub 2} stored. As an example, when biogenic CO{sub 2} from Norway Spruce biomass is stored in geological reservoirs with no leakage, we estimate a GWP of ? 0.56 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year TH) when albedo effects are also included. The large variance in GWPs across the range of resource and carbon storage options considered indicates that more accurate accounting will require case-specific factors derived following the methodological guidelines provided in this and recent manuscripts. -- Highlights: Climate impacts of stored biogenic carbon (bio-C) are consistently quantified. Temporary storage of bio-C does not always equate to a climate cooling impact. 1 unit of bio-C stored over a time horizon does not always equate to ? 1 unit CO{sub 2}eq. Discrepancies of climate change impact quantification in literature are clarified.

  4. Casting 12 BioRad Mini SDS PAGE Gels 1. Assemble multicasting chamber. Make sure ALL plates and spacers are flush with bottom. Clean

    E-Print Network [OSTI]

    Aris, John P.

    120 Casting 12 BioRad Mini SDS PAGE Gels 1. Assemble multicasting chamber. Make sure ALL plates, disassemble casting chamber. Carefully separate gels. Rinse with ddH2O. Remove excess polyacrylamide. Place

  5. arXiv:0810.3042v1[physics.bio-ph]16Oct2008 Single-domain protein folding: a multi-faceted

    E-Print Network [OSTI]

    Ritort, Felix

    arXiv:0810.3042v1[physics.bio-ph]16Oct2008 Single-domain protein folding: a multi-faceted problem protein-like models can help to understand many controversial issues. Keywords: Protein folding, energy

  6. Bio-compatibility, surface and chemical characterization of glow discharge plasma modified ZnO nanocomposite polycarbonate

    SciTech Connect (OSTI)

    Bagra, Bhawna, E-mail: bhawnacct@gmail.com; Pimpliskar, Prashant, E-mail: bhawnacct@gmail.com [Centre for Converging Technologies, University of Rajasthan, Jaipur-302004 (India); Agrawal, Narendra Kumar [Department of Physics, Malaviya National Institute of Technology, Jaipur-302004 (India)

    2014-04-24

    Bio compatibility is an important issue for synthesis of biomedical devices, which can be tested by bioadoptability and creations of active site to enhance the bacterial/cell growth in biomedical devices. Hence a systematic study was carried out to characterize the effects of Nitrogen ion plasma for creations of active site in nano composite polymer membrane. Nano particles of ZnO are synthesized by chemical root, using solution casting nano composite polymeric membranes were prepared and treated with Nitrogen ion plasma. These membranes were characterized by different technique such as optical microscopy, SEM- Scanning electron microscope, optical transmittance, Fourier transform infrared spectroscopy. Then biocompatibility for membranes was tested by testing of bio-adoptability of membrane.

  7. Charge transport through bio-molecular wires in a solvent: Bridging molecular dynamics and model Hamiltonian approaches

    E-Print Network [OSTI]

    R. Gutierrez; R. Caetano; P. B. Woiczikowski; T. Kubar; M. Elstner; G. Cuniberti

    2009-01-22

    We present a hybrid method based on a combination of quantum/classical molecular dynamics (MD) simulations and a mod el Hamiltonian approach to describe charge transport through bio-molecular wires with variable lengths in presence o f a solvent. The core of our approach consists in a mapping of the bio-molecular electronic structure, as obtained f rom density-functional based tight-binding calculations of molecular structures along MD trajectories, onto a low di mensional model Hamiltonian including the coupling to a dissipative bosonic environment. The latter encodes fluctuat ion effects arising from the solvent and from the molecular conformational dynamics. We apply this approach to the c ase of pG-pC and pA-pT DNA oligomers as paradigmatic cases and show that the DNA conformational fluctuations are essential in determining and supporting charge transport.

  8. Implementation of an Innovative Bio Inspired GA and PSO Algorithm for Controller design considering Steam GT Dynamics

    E-Print Network [OSTI]

    Shivakumar, R

    2010-01-01

    The Application of Bio Inspired Algorithms to complicated Power System Stability Problems has recently attracted the researchers in the field of Artificial Intelligence. Low frequency oscillations after a disturbance in a Power system, if not sufficiently damped, can drive the system unstable. This paper provides a systematic procedure to damp the low frequency oscillations based on Bio Inspired Genetic (GA) and Particle Swarm Optimization (PSO) algorithms. The proposed controller design is based on formulating a System Damping ratio enhancement based Optimization criterion to compute the optimal controller parameters for better stability. The Novel and contrasting feature of this work is the mathematical modeling and simulation of the Synchronous generator model including the Steam Governor Turbine (GT) dynamics. To show the robustness of the proposed controller, Non linear Time domain simulations have been carried out under various system operating conditions. Also, a detailed Comparative study has been don...

  9. Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Oasmaa, Anja; Meier, Dietrich; Preto, Fernando; Bridgwater, Anthony V.

    2012-11-06

    An international round robin study of the viscosity and aging of fast pyrolysis bio-oil has been undertaken recently and this work is an outgrowth from that effort. Two bio-oil samples were distributed to the laboratories for aging tests and extended viscosity studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 C. The test was repeated 10 times over consecutive days to determine the repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21 C, 4 C and -17 C for a period up to a year to evaluate the change in viscosity. The variation in the results of the aging test was shown to be low within a given laboratory. Storage of bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gives a measure of change similar to that of 6-12 months of storage at room temperature. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.

  10. Vertical One-Dimensional Photonic Crystal Platforms for Label-Free (Bio)Sensing: Towards Drop-And- Measure Applications

    E-Print Network [OSTI]

    Barillaro, Giuseppe

    2015-01-01

    In this work, all-silicon, integrated optofluidic platforms, fabricated by electrochemical micromachining technology, making use of vertical, one-dimensional high-aspect- ratio photonic crystals for flow-through (bio)sensing applications are reviewed. The potential of such platforms for point-of-care applications is discussed for both pressure-driven and capillarity- driven operations with reference to refractometry and biochemical sensing.

  11. Characterization of the Neutron Detector Upgrade to the GP-SANS and BIO-SANS Instruments at HFIR

    SciTech Connect (OSTI)

    Berry, Kevin D [ORNL; Bailey, Katherine M [ORNL; Beal, Justin D [ORNL; Diawara, Yacouba [ORNL; Funk, Loren L [ORNL; Hicks, J Steve [ORNL; Jones, Amy Black [ORNL; Littrell, Ken [ORNL; Summers, Randy [ORNL; Urban, Volker S [ORNL; Vandergriff, David H [ORNL; Johnson, Nathan [GE Energy Services; Bradley, Brandon [GE Energy Services

    2012-01-01

    Over the past year, new 1 m x 1 m neutron detectors have been installed at both the General Purpose SANS (GP-SANS) and the Bio-SANS instruments at HFIR, each intended as an upgrade to provide improved high rate capability. This paper presents the results of characterization studies performed in the detector test laboratory, including position resolution, linearity and background, as well as a preliminary look at high count rate performance.

  12. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  13. Interlayer Water Regulates the Bio-nano Interface of a \\b{eta}-sheet Protein stacking on Graphene

    E-Print Network [OSTI]

    Wenping Lv; Guiju Xu; Hongyan Zhang; Xin Li; Shengju Liu; Huan Niu; Dongsheng Xu; Renan Wu

    2014-12-03

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a \\b{eta}-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH...{\\pi} interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water.

  14. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deo, Vincent [Ecole Polytechnique, Palaiseau (France); Virginia Tech, Blacksburg, VA (United States); Zhang, Yao [Virginia Tech, Blacksburg, VA (United States); Soghomonian, Victoria [Virginia Tech, Blacksburg, VA (United States); Heremans, Jean J. [Virginia Tech, Blacksburg, VA (United States)

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  15. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmorefunctions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.less

  16. Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le, Thao Thanh; Francis, Arokiasamy J.; Nguyen, Hoang Khanh; Jeon, Jong -Rok; Chang, Yoon -Seok

    2015-04-01

    The persistence of polychlorinated biphenyl (PCB) Aroclor 1248 in soils and sediments is a major concern because of its toxicity and presence at high concentrations. In this study, we developed an integrated remediation system for PCBs using chemical catalysis and biodegradation. The dechlorination of Aroclor 1248 was achieved by treatment with bimetallic nanoparticles Pd/nFe under anoxic conditions. Among the 32 PCB congeners of Aroclor 1248 examined, our process dechlorinated 99%, 92%, 84%, and 28% of tri-, tetra-, penta-, and hexachlorinated biphenyls, respectively. The resulting biphenyl was biodegraded rapidly by Burkholderia xenovorans LB400. Benzoic acid was detected as an intermediate during the biodegradation process. The toxicity of the residual PCBs after nano-bio treatment was evaluated in terms of toxic equivalent values which decreased from 33.8 10-5 ?g g-1 to 9.5 10-5 ?g g-1. The residual PCBs also had low cytotoxicity toward Escherichia coli as demonstrated by lower reactive oxygen species levels, lower glutathione peroxidase activity, and a reduced number of dead bacteria.

  17. Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le, Thao Thanh; Francis, Arokiasamy J.; Nguyen, Hoang Khanh; Jeon, Jong -Rok; Chang, Yoon -Seok

    2015-02-03

    The persistence of polychlorinated biphenyl (PCB) Aroclor 1248 in soils and sediments is a major concern because of its toxicity and presence at high concentrations. In this study, we developed an integrated remediation system for PCBs using chemical catalysis and biodegradation. The dechlorination of Aroclor 1248 was achieved by treatment with bimetallic nanoparticles Pd/nFe under anoxic conditions. Among the 32 PCB congeners of Aroclor 1248 examined, our process dechlorinated 99%, 92%, 84%, and 28% of tri-, tetra-, penta-, and hexachlorinated biphenyls, respectively. The resulting biphenyl was biodegraded rapidly by Burkholderia xenovorans LB400. Benzoic acid was detected as an intermediate duringmorethe biodegradation process. The toxicity of the residual PCBs after nano-bio treatment was evaluated in terms of toxic equivalent values which decreased from 33.8 10-5 ?g g-1 to 9.5 10-5 ?g g-1. The residual PCBs also had low cytotoxicity toward Escherichia coli as demonstrated by lower reactive oxygen species levels, lower glutathione peroxidase activity, and a reduced number of dead bacteria.less

  18. Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass

    SciTech Connect (OSTI)

    Oasmaa, Anja; van de Beld, Bert; Saari, Pia; Elliott, Douglas C.; Solantausta, Yrjo

    2015-04-16

    Fast pyrolysis of woody biomass is close to full maturity, with first-of-its-kind commercial size installations for fuel production being commissioned in Finland (Fortum) and in The Netherlands (Empyro), and in the design phase in Brazil (Ensyn). In the industrial-scale combustion tests, the use of fast pyrolysis bio-oil (FPBO) has been demonstrated to be a viable option to replace heavy fuel oil in district heating applications. Commercially usable district heating boilers and burners suitable for FPBO are available. There is research on diesel-engine and gas-turbine applications but, so far, no proven demonstrations. FPBO is completely different from mineral oils; hence, standards are needed. Analytical methods have been systematically validated and modifications to the standards as well as completely new methods have been made. Two ASTM burner fuel standards already exist and European boiler fuel grades are being developed under CEN. The focus on CEN standardization is on boiler use, because of its commercial readiness.

  19. A Review and Perspective of Recent Bio-Oil Hydrotreating Research

    SciTech Connect (OSTI)

    Zacher, Alan H.; Olarte, Mariefel V.; Santosa, Daniel M.; Elliott, Douglas C.; Jones, Susanne B.

    2014-02-28

    The pathway for catalytic hydrodeoxygenation of biomass derived fast pyrolysis oil represents a compelling route for production of liquid transportation fuels. There has been continued progress and advancements in both the public and private research areas towards driving this technology to completion. Published research and patent literature have demonstrated that continued development of HDO as a part of a processes for production liquid transportation using biomass is being advanced for both fuel blend stocks and for refinery intermediates for co-processing. Much of the research has still focused on quality metrics around single or groups of unit operations generating partially treated bio-oil streams without assessing upstream and downstream implications. However, there is an encouraging amount of research that is now being targeted and assessed with attempts to understand the impact on the final fuel product, regardless of the route. Much of the most important research is moving towards continuous, industrially relevant processes where data can be generated to adequately inform process and economic modeling. As the technology for producing liquid transportation fuels from pyrolysis/HDO/coprocessing is driving towards commercialization, further research should be prioritized on the basis of impact to a techno-economic analyses.

  20. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    SciTech Connect (OSTI)

    Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  1. Thickness controlled sol-gel silica films for plasmonic bio-sensing devices

    SciTech Connect (OSTI)

    Figus, Cristiana Quochi, Francesco Artizzu, Flavia Saba, Michele Marongiu, Daniela Mura, Andrea; Bongiovanni, Giovanni; Floris, Francesco; Marabelli, Franco; Patrini, Maddalena; Fornasari, Lucia; Pellacani, Paola; Valsesia, Andrea

    2014-10-21

    Plasmonics has recently received considerable interest due to its potentiality in many fields as well as in nanobio-technology applications. In this regard, various strategies are required for modifying the surfaces of plasmonic nanostructures and to control their optical properties in view of interesting application such as bio-sensing, We report a simple method for depositing silica layers of controlled thickness on planar plasmonic structures. Tetraethoxysilane (TEOS) was used as silica precursor. The control of the silica layer thickness was obtained by optimizing the sol-gel method and dip-coating technique, in particular by properly tuning different parameters such as pH, solvent concentration, and withdrawal speed. The resulting films were characterized via atomic force microscopy (AFM), Fourier-transform (FT) spectroscopy, and spectroscopic ellipsometry (SE). Furthermore, by performing the analysis of surface plasmon resonances before and after the coating of the nanostructures, it was observed that the position of the resonance structures could be properly shifted by finely controlling the silica layer thickness. The effect of silica coating was assessed also in view of sensing applications, due to important advantages, such as surface protection of the plasmonic structure.

  2. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    SciTech Connect (OSTI)

    Michael Petrik; Robert Ruhl

    2012-03-31

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled ??Small Scale SOFC Demonstration using Bio-based and Fossil Fuels.? Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  3. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    SciTech Connect (OSTI)

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-15

    Highlights: Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. Optimization of process temperature was done. Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 montmorillonite K10, KSF montmorillonite KSF, B Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 C with heating rate of 100 C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.379.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.

  4. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    E-Print Network [OSTI]

    2012-01-01

    microalgae grow faster, have higher photosynthetic productivity [1,5], and accumulate bio- fuel feedstocks to a much higher percentage of their total biomass

  5. In Situ Microbial Community Control of the Stability of Bio-reduced Uranium

    SciTech Connect (OSTI)

    Baldwin, Brett, R.; Peacock, Aaron, D.; Resch, Charles, T.; Arntzen, Evan; Smithgall, Amanda, N.; Pfiffner, Susan; Gan, M.; McKinley, James, P.; Long, Philip, E.; White, David, C.

    2008-03-28

    In aerobic aquifers typical of many Department of Energy (DOE) legacy waste sites, uranium is present in the oxidized U(VI) form which is more soluble and thus more mobile. Field experiments at the Old Rifle UMTRA site have demonstrated that biostimulation by electron donor addition (acetate) promotes biological U(VI) reduction (2). However, U(VI) reduction is reversible and oxidative dissolution of precipitated U(IV) after the cessation of electron donor addition remains a critical issue for the application of biostimulation as a treatment technology. Despite the potential for oxidative dissolution, field experiments at the Old Rifle site have shown that rapid reoxidation of bio-reduced uranium does not occur and U(VI) concentrations can remain at approximately 20% of background levels for more than one year. The extent of post-amendment U(VI) removal and the maintenance of bioreduced uranium may result from many factors including U(VI) sorption to iron-containing mineral phases, generation of H2S or FeS0.9, or the preferential sorption of U(VI) by microbial cells or biopolymers, but the processes controlling the reduction and in situ reoxidation rates are not known. To investigate the role of microbial community composition in the maintenance of bioreduced uranium, in-well sediment incubators (ISIs) were developed allowing field deployment of amended and native sediments during on-going experiments at the site. Field deployment of the ISIs allows expedient interrogation of microbial community response to field environmental perturbations and varying geochemical conditions.

  6. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots

    SciTech Connect (OSTI)

    Chen Zhen; Chen Hu; Meng Huan; Xing Gengmei Gao Xueyun; Sun Baoyun; Shi Xiaoli; Yuan Hui; Zhang Chengcheng; Liu Ru; Zhao Feng

    2008-08-01

    With the rapid development of quantum dot (QD) technology, water-soluble QDs have the prospect of being used as a biological probe for specific diagnoses, but their biological behaviors in vivo are little known. Our recent in vivo studies concentrated on the bio-kinetics of QDs coated by hydroxyl group modified silica networks (the QDs are 21.3 {+-} 2.0 nm in diameter and have maximal emission at 570 nm). Male ICR mice were intravenously given the water-soluble QDs with a single dose of 5 nmol/mouse. Inductively coupled plasma-mass spectrometry was used to measure the {sup 111}Cd content to indicate the concentration of QDs in plasma, organs, and excretion samples collected at predetermined time intervals. Meanwhile, the distribution and aggregation state of QDs in tissues were also investigated by pathological examination and differential centrifugation. The plasma half-life and clearance of QDs were 19.8 {+-} 3.2 h and 57.3 {+-} 9.2 ml/h/kg, respectively. The liver and kidney were the main target organs for QDs. The QDs metabolized in three paths depending on their distinct aggregated states in vivo. A fraction of free QDs, maintaining their original form, could be filtered by glomerular capillaries and excreted via urine as small molecules within five days. Most QDs bound to protein and aggregated into larger particles that were metabolized in the liver and excreted via feces in vivo. After five days, 8.6% of the injected dose of aggregated QDs still remained in hepatic tissue and it was difficult for this fraction to clear.

  7. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    SciTech Connect (OSTI)

    Jackson, Sam; Harper, David; Womac, Al

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomass and Biomass Deconstruction and Evaluation. Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.

  8. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    SciTech Connect (OSTI)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  9. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina

    SciTech Connect (OSTI)

    Sudasinghe, Nilusha; Dungan, Barry; Lammers, Peter; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Schaub, Tanner

    2014-03-01

    We report a detailed compositional characterization of a bio-crude oil and aqueous by-product from hydrothermal liquefaction of Nannochloropsis salina by direct infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) in both positive- and negative-ionization modes. The FT-ICR MS instrumentation approach facilitates direct assignment of elemental composition to >7000 resolved mass spectral peaks and three-dimensional mass spectral images for individual heteroatom classes highlight compositional diversity of the two samples and provide a baseline description of these materials. Aromatic nitrogen compounds and free fatty acids are predominant species observed in both the bio-oil and aqueous fraction. Residual organic compounds present in the aqueous fraction show distributions that are slightly lower in both molecular ring and/or double bond value and carbon number relative to those found in the bio-oil, albeit with a high degree of commonality between the two compositions.

  10. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Curet, Oscar M.

    Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor This article (9pp) doi:10.1088/1748-3182/6/2/026004 Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor Oscar M Curet1,4, Neelesh A Patankar1, George V Lauder2 and Malcolm A MacIver1,3,5 1

  11. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

    E-Print Network [OSTI]

    Ryan, Michael J.

    BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published likely neither the mobility as in the adult male larynx. S EXUAL selection is responsible

  12. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

    E-Print Network [OSTI]

    Pfrender, Michael

    BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over environments and greater human mobility and penetration into wild areas, organisms are being discovered

  13. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to

    E-Print Network [OSTI]

    BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published. Waterbirds 26(1): 88-93, 2003 Flight-feather molt in birds is of interest because it affects mobility, which

  14. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

    E-Print Network [OSTI]

    Downie, Stephen R.

    BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit of Life Sciences, Sichuan University, Chengdu 610064, China. 2 Present address: College of Architecture

  15. Uranium Immobilization through Fe(II) bio-oxidation: A Column study

    SciTech Connect (OSTI)

    Coates, John D.

    2009-09-14

    Current research on the bioremediation of heavy metals and radionuclides is focused on the ability of reducing organisms to use these metals as alternative electron acceptors in the absence of oxygen and thus precipitate them out of solution. However, many aspects of this proposed scheme need to be resolved, not the least of which is the time frame of the treatment process. Once treatment is complete and the electron donor addition is halted, the system will ultimately revert back to an oxic state and potentially result in the abiotic reoxidation and remobilization of the immobilized metals. In addition, the possibility exists that the presence of more electropositive electron acceptors such as nitrate or oxygen will also stimulate the biological oxidation and remobilization of these contaminants. The selective nitrate-dependent biooxidation of added Fe(II) may offer an effective means of capping off and completing the attenuation of these contaminants in a reducing environment making the contaminants less accessible to abiotic and biotic reactions and allowing the system to naturally revert to an oxic state. Our previous DOE-NABIR funded studies demonstrated that radionuclides such as uranium and cobalt are rapidly removed from solution during the biogenic formation of Fe(III)-oxides. In the case of uranium, X-ray spectroscopy analysis indicated that the uranium was in the hexavalent form (normally soluble) and was bound to the precipitated Fe(III)-oxides thus demonstrating the bioremediative potential of this process. We also demonstrated that nitrate-dependent Fe(II)- oxidizing bacteria are prevalent in the sediment and groundwater samples collected from sites 1 and 2 and the background site of the NABIR FRC in Oakridge, TN. However, all of these studies were performed in batch experiments in the laboratory with pure cultures and although a significant amount was learned about the microbiology of nitrate-dependent bio-oxidation of Fe(II), the effects of complex processes (such as advective flow) present in the natural environment are unknown. The objective of the current studies was to address some of these short-comings in an attempt to develop this bioremediative strategy into a robust, field applicable technology. This objective was approached by both pure culture studies investigating the mechanism of Fe(II) oxidation by nitrate reducing bacteria and examining the flow dynamics and microbial processes in advective flow columns amended with Fe(II) and nitrate over an extended period.

  16. BIO-MONITORING FOR URANIUM USING STREAM-SIDE TERRESTRIAL PLANTS AND MACROPHYTES

    SciTech Connect (OSTI)

    Caldwell, E.; Duff, M.; Hicks, T.; Coughlin, D.; Hicks, R.; Dixon, E.

    2012-01-12

    This study evaluated the abilities of various plant species to act as bio-monitors for environmental uranium (U) contamination. Vegetation and soil samples were collected from a U processing facility. The water-way fed from facility storm and processing effluents was the focal sample site as it represented a primary U transport mechanism. Soils and sediments from areas exposed to contamination possessed U concentrations that averaged 630 mg U kg{sup -1}. Aquatic mosses proved to be exceptional accumulators of U with dry weight (dw) concentrations measuring as high as 12500 mg U kg{sup -1} (approximately 1% of the dw mass was attributable to U). The macrophytes (Phragmites communis, Scripus fontinalis and Sagittaria latifolia) were also effective accumulators of U. In general, plant roots possessed higher concentrations of U than associated upper portions of plants. For terrestrial plants, the roots of Impatiens capensis had the highest observed levels of U accumulation (1030 mg kg{sup -1}), followed by the roots of Cyperus esculentus and Solidago speciosa. The concentration ratio (CR) characterized dry weight (dw) vegetative U levels relative to that in associated dw soil. The plant species that accumulated U at levels in excess of that found in the soil were: P. communis root (CR, 17.4), I. capensis root (CR, 3.1) and S. fontinalis whole plant (CR, 1.4). Seven of the highest ten CR values were found in the roots. Correlations with concentrations of other metals with U were performed, which revealed that U concentrations in the plant were strongly correlated with nickel (Ni) concentrations (correlation: 0.992; r-squared: 0.984). Uranium in plant tissue was also strongly correlated with strontium (Sr) (correlation: 0.948; r-squared: 0.899). Strontium is chemically and physically similar to calcium (Ca) and magnesium (Mg), which were also positively-correlated with U. The correlation with U and these plant nutrient minerals, including iron (Fe), suggests that active uptake mechanisms may influence plant U accumulation.

  17. Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: Potential synergies with ocean color remote sensing

    SciTech Connect (OSTI)

    Claustre, H.; Bishop, J.; Boss, E.; Bernard, S.; Berthon, J.-F.; Coatanoan, C.; Johnson, K.; Lotiker, A.; Ulloa, O.; Perry, M.J.; D'Ortenzio, F.; D'andon, O.H.F.; Uitz, J.

    2009-10-01

    Profiling floats now represent a mature technology. In parallel with their emergence, the field of miniature, low power bio-optical and biogeochemical sensors is rapidly evolving. Over recent years, the bio-geochemical and bio-optical community has begun to benefit from the increase in observational capacities by developing profiling floats that allow the measurement of key biooptical variables and subsequent products of biogeochemical and ecosystem relevance like Chlorophyll a (Chla), optical backscattering or attenuation coefficients which are proxies of Particulate Organic Carbon (POC), Colored Dissolved Organic Matter (CDOM). Thanks to recent algorithmic improvements, new bio-optical variables such as backscattering coefficient or absorption by CDOM, at present can also be extracted from space observations of ocean color. In the future, an intensification of in situ measurements by bio-optical profiling floats would permit the elaboration of unique 3D/4D bio-optical climatologies, linking surface (remotely detected) properties to their vertical distribution (measured by autonomous platforms), with which key questions in the role of the ocean in climate could be addressed. In this context, the objective of the IOCCG (International Ocean Color Coordinating Group) BIO-Argo working group is to elaborate recommendations in view of a future use of bio-optical profiling floats as part of a network that would include a global array that could be 'Argo-relevant', and specific arrays that would have more focused objectives or regional targets. The overall network, realizing true multi-scale sustained observations of global marine biogeochemistry and biooptics, should satisfy the requirements for validation of ocean color remote sensing as well as the needs of a wider community investigating the impact of global change on biogeochemical cycles and ecosystems. Regarding the global profiling float array, the recommendation is that Chla as well as POC should be the key variables to be systematically measured. A first target would be to implement 20% of the Argo floats with these measurements within a five-year term. The yearly additional cost is estimated to 1.5 M$, including additional management structure in each of the two Global Data Assembly Centers.

  18. Clusters of proteins in bio-membranes: insights into the roles of interaction potential shapes and of protein diversity

    E-Print Network [OSTI]

    Nicolas Meilhac; Nicolas Destainville

    2011-06-07

    It has recently been proposed that proteins embedded in lipidic bio-membranes can spontaneously self-organize into stable small clusters, or membrane nano-domains, due to the competition between short-range attractive and longer-range repulsive forces between proteins, specific to these systems. In this paper, we carry on our investigation, by Monte Carlo simulations, of different aspects of cluster phases of proteins in bio-membranes. First, we compare different long-range potentials (including notably three-body terms) to demonstrate that the existence of cluster phases should be quite generic. Furthermore, a real membrane contains hundreds of different protein species that are far from being randomly distributed in these nano-domains. We take this protein diversity into account by modulating protein-protein interaction potentials both at short and longer range. We confirm theoretical predictions in terms of biological cluster specialization by deciphering how clusters recruit only a few protein species. In this respect, we highlight that cluster phases can turn out to be an advantage at the biological level, for example by enhancing the cell response to external stimuli.

  19. An Energy Management IC for Bio-Implants Using Ultracapacitors for Energy Storage William Sanchez, Charles Sodini, and Joel L. Dawson

    E-Print Network [OSTI]

    Dawson, Joel

    energy storage elements. The IC, fabricated in a 0.18 m CMOS process, consists of a switched-capacitor DCAn Energy Management IC for Bio-Implants Using Ultracapacitors for Energy Storage William Sanchez tradition- ally relying on batteries as energy storage elements, there is emerging interest in using

  20. arXiv:1205.6074v1[physics.bio-ph]28May2012 Mesoscale symmetries explain dynamical equivalence of food webs

    E-Print Network [OSTI]

    arXiv:1205.6074v1[physics.bio-ph]28May2012 Mesoscale symmetries explain dynamical equivalence is to identify mesoscale structures that have distinct dynamical implications. In this paper we present show that this equivalence is rooted in mesoscale symmetries that exist in these webs. Certain

  1. www.biosciencemag.org November 2006 / Vol. 56 No. 11 BioScience 875 Green Plants, Fossil Fuels, and Now Biofuels

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    www.biosciencemag.org November 2006 / Vol. 56 No. 11 BioScience 875 Green Plants, Fossil Fuels about 4.5 percent of the world population, the United States accounts for a quarter of total fossil fuel and distillation operations confirms that 29 percent more energy (derived from fossil fuels) is required to produce

  2. Dr. Campbell's Bio111 In-Class Exam #2.5 Spring 2007 Spring 2007 Biology 111 Exam #2.5 -Molecular Genetics In-Class Exam

    E-Print Network [OSTI]

    Campbell, A. Malcolm

    that you should be able to complete within 20 minutes. You are not allowed to use your notes, old tests's Bio111 In-Class Exam #2.5 Spring 2007 3 For question 2: A pure breeding thin, round, open adult mated with a fat, square, closed adult. All the offspring were fat, round, and open. The F1 generation

  3. Travel support has been generously provided by the Transducers Research Foundation and by the DARPA MEMS and DARPA BioFlips programs. A MEMBRANE BREATHER FOR

    E-Print Network [OSTI]

    Cubaud, Thomas

    successful gas separation from methanol fuel with a concentration as high as 10M and with pressure tolerance gas/liquid separator, essentially an open tank, and get released there. But unique problems occur MEMS and DARPA BioFlips programs. A MEMBRANE BREATHER FOR MICRO FUEL CELL WITH HIGH CONCENTRATION

  4. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan

    E-Print Network [OSTI]

    . 133, 164505 (2010); 10.1063/1.3495973 Phase separation in three-component lipid membranes: From MonteTowards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas

  5. Bio: Joel R. Primack, Professor of Physics, University of California, Santa Cruz Joel Primack is one of the world's leading cosmologists, specializing in the formation and

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    data. Primack was made a Fellow of the American Physical Society (APS) in 1988 "for pioneeringBio: Joel R. Primack, Professor of Physics, University of California, Santa Cruz Joel Primack" of particle physics, Dr. Primack began working in cosmology in the late 1970s and he became a leader

  6. Abstract--We report on the design and implementation of a simple bio-inspired hexapod driven by a single motor. Aiming

    E-Print Network [OSTI]

    Lin, Pei-Chun

    Abstract--We report on the design and implementation of a simple bio-inspired hexapod driven on the motion of a spring loaded inverted pendulum (SLIP) and then expanded to the hexapod morphology, the quadruped Scout series [2], quadruped Tekken series [3], hexapod Sprawl series [4, 5], hexapod RHex [6, 7

  7. Proceedings of the BioNLP Shared Task 2013 Workshop, pages 4549, Sofia, Bulgaria, August 9 2013. c 2013 Association for Computational Linguistics

    E-Print Network [OSTI]

    text are necessary because standard Natural Language Processing tools can- not be readily applied for the BioNLP 2013 GE task. argument), in contrast to standard pipeline models which first extract detect "recruit" as an event trigger and then extract two formulas: ( "recruit", Theme:"Tax", Theme2:"CBP

  8. Bio 4023 How Plants Work: Physiology, Growth and Metabolism MWF 1:00-2:00 pm; Location: Life Sciences 118 (& LS310 on Fridays). 3 credits

    E-Print Network [OSTI]

    Kornfeld, S. Kerry

    Bio 4023 How Plants Work: Physiology, Growth and Metabolism MWF 1:00-2:00 pm; Location: Life photosynthesis; source-sink relationships, long-distance transport of carbon and carbon storage; water uptake of chemicals for medicinal uses and potential biofuels. The course will consist of lectures and small group

  9. Proceedings of the BioNLP Shared Task 2013 Workshop, pages 2634, Sofia, Bulgaria, August 9 2013. c 2013 Association for Computational Linguistics

    E-Print Network [OSTI]

    Gent, Universiteit

    2013 Association for Computational Linguistics EVEX in ST'13: Application of a large-scale text mining, Belgium 4. Dept. of Plant Biotechnology and Bioinformatics, Ghent University, Belgium kahaka@utu.fi, solan novel text mining algorithms have been de- veloped in the context of the BioNLP Shared Tasks on Event

  10. Accepted for publication in Deep Sea Res. I (December 2005) 1 A SPECIES-DEPENDENT BIO-OPTICAL MODEL OF CASE I WATERS

    E-Print Network [OSTI]

    Boyer, Edmond

    Accepted for publication in Deep Sea Res. I (December 2005) 1 A SPECIES-DEPENDENT BIO-OPTICAL MODEL OF CASE I WATERS FOR GLOBAL OCEAN COLOR PROCESSING S. Alvain1 , C. Moulin*1 , Y. Dandonneau2 , H. Loisel3 on the normalized water-leaving radiance (nLw) spectra, is applied to coincident in situ measurements of both

  11. MvirDB: Microbial Database of Protein Toxins, Virulence Factors and Antibiotic Resistance Genes for Bio-Defense Applications

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zhou, C. E.; Smith, J.; Lam, M.; Zemla, M. D.; Slezak, T.

    MvirDB is a cenntralized resource (data warehouse) comprising all publicly accessible, organized sequence data for protein toxins, virulence factors, and antibiotic resistance genes. Protein entries in MvirDB are annotated using a high-throughput, fully automated computational annotation system; annotations are updated periodically to ensure that results are derived using current public database and open-source tool releases. Tools provided for using MvirDB include a web-based browser tool and BLAST interfaces. MvirDB serves researchers in the bio-defense and medical fields. (taken from page 3 of PI's paper of same title published in Nucleic Acids Research, 2007, Vol.35, Database Issue (Open Source)

  12. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

    E-Print Network [OSTI]

    invaders in national parks and the costs of cleaning industrial facilities that become infested research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online. This has occurred in Mexico, w

  13. Bio390 Study Questions for S-N Ch. 2 --Blood 1. Know S-N's list of 10 general functions/properties of blood.

    E-Print Network [OSTI]

    Prestwich, Ken

    effects of temperature, pH, CO2, PO4 2-, and ionic strength on the ability of hemoglobin to bind oxygenBio390 Study Questions for S-N Ch. 2 -- Blood Spring '01 1. Know S-N's list of 10 general functions/properties tends to decrease as body size increases. How does a relatively high P50 serve as an adaptation in small

  14. Modulo di adesione al piano di completamento del percorso formativo Anno accademico 2014/2015

    E-Print Network [OSTI]

    Geomorfologia 9 GEO/04 Fisiologia generale con elementi di Fisiologia Vegetale 9 BIO/09/BIO/04 Geochimica 6 GEO

  15. Modulo di adesione al piano di completamento del percorso formativo Anno accademico 2014/2015

    E-Print Network [OSTI]

    Fisiologia generale con elementi di Fisiologia Vegetale 9 BIO/09/BIO/04 Geochimica 6 GEO/08 Antropologia 6

  16. Process Modeling Results of Bio-Syntrolysis: Converting Biomass to Liquid Fuel with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    G. L. Hawkes; M. G. McKellar; R. Wood; M. M. Plum

    2010-06-01

    A new process called Bio-Syntrolysis is being researched at the Idaho National Laboratory (INL) investigating syngas production from renewable biomass that is assisted with high temperature steam electrolysis (HTSE). The INL is the world leader in researching HTSE and has recently produced hydrogen from high temperature solid oxide cells running in the electrolysis mode setting several world records along the way. A high temperature (~800C) heat source is necessary to heat the steam as it goes into the electrolytic cells. Biomass provides the heat source and the carbon source for this process. Syngas, a mixture of hydrogen and carbon monoxide, can be used for the production of synthetic liquid fuels via Fischer-Tropsch processes. This concept, coupled with fossil-free electricity, provides a possible path to reduced greenhouse gas emissions and increased energy independence, without the major infrastructure shift that would be required for a purely hydrogen-based transportation system. Furthermore, since the carbon source is obtained from recyclable biomass, the entire concept is carbon-neutral

  17. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    SciTech Connect (OSTI)

    Holzman, M.I.

    1995-08-01

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  18. Conceptual design assessment for the co-firing of bio-refinery supplied lignin project. Quarterly report, June 23--July 1, 2000

    SciTech Connect (OSTI)

    Berglund, T.; Ranney, J.T.; Babb, C.L.

    2000-07-27

    The Conceptual Design Assessment for the Co-Firing of Bio-Refinery Supplied Lignin Project was successfully kicked off on July 23, 2000 during a meeting at the TVA-PPI facility in Muscle Shoals, AL. An initial timeline for the study was distributed, issues of concern were identified and a priority actions list was developed. Next steps include meeting with NETL to discuss de-watering and lignin fuel testing, the development of the mass balance model and ethanol facility design criteria, providing TVA-Colbert with preliminary lignin fuel analysis and the procurement of representative feed materials for the pilot and bench scale testing of the hydrolysis process.

  19. Evaluation of Electrostatic Particle Ionization and BioCurtain Technologies to Reduce Dust, Odor and other Pollutants from Broiler Houses Final Report

    E-Print Network [OSTI]

    Jerez, S.; Muhktar, S.; Faulkner, W.; Casey, K.; Borhan, S.; Hoff, A.; VanDelist, B.

    2011-01-01

    geotextile fabric stretched over a quadrant-shaped, metal frame skeleton, and placed over the exhaust fans of the poultry houses. Air moving out of the house flows down along the top of the quadrant and particulate matter settles out on the ground. The air...-limited to no more than 2 mA to ensure worker and animal safety. The BioCurtain? technology for reducing dust and odor consists of a metal frame structure covered with a woven geotextile fabric and functions by settling airborne dust particles on the ground after...

  20. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  1. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  2. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  3. Bio-corrosion and cytotoxicity studies on novel Zr55Co30Ti15 and Cu60Zr20Ti20 metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vincent, S.; Daiwile, A.; Devi, S. S.; Kramer, M. J.; Besser, M. F.; Murty, B. S.; Bhatt, Jatin

    2014-09-26

    Metallic glasses are a potential and compatible implant candidate for biomedical applications. In the present investigation, a comparative study between novel Zr55Co30Ti15 and Cu60Zr20Ti20 metallic glasses is carried out to evaluate in vitro biocompatibility using simulated body fluids. The bio-corrosion behavior of Zr- and Cu-based metallic glasses in different types of artificial body fluids such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hanks balanced saline solution is evaluated using potentiodynamic polarization studies at a constant body temperature of 310.15 K (37 C). Surface morphology of samples after bio-corrosion experiments was observed by scanning electron microscopy.moreIn vitro cytotoxicity test on glassy alloys were performed using human osteosarcoma cell line as per 10993-5 guidelines from International Organization for Standardization. As a result, the comparative study between Zr- and Cu-based glassy alloys provides vital information about the effect of elemental composition on biocompatibility of metallic glasses.less

  4. Bio-Oxo Technology

    Broader source: Energy.gov (indexed) [DOE]

    by equivalent of 50 million barrels of liquid petroleum gas per year. Reduce natural gas consumption by 13 billion cubic feet per year. Additional revenue stream for...

  5. Climate Prisms Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j e c t D eClimate Models:

  6. Scientist Ambassadors Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA(SC) Scientific GrandParticipate

  7. Bio-Oxo Technology

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy|| Department- Director ofEasel Biotechnologies

  8. canon-bio.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidationENCOAL®April 8,9 Operationalcanfield

  9. new Global Bio Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National1-2130 1 AN APPROACH TO

  10. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect (OSTI)

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  11. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

    E-Print Network [OSTI]

    Agnarsson, Ingi

    in the common goal of maximizing access to critical research. Darwin's bark spider: giant prey in giant orb webs societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site holder. #12;Darwin's bark spider: giant prey in giant orb webs (Caerostris darwini, Araneae: Araneidae

  12. A bio-robotic platform for integrating internal and external mechanics during muscle-powered This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Richards, Chris

    A bio-robotic platform for integrating internal and external mechanics during muscle for integrating internal and external mechanics during muscle-powered swimming Christopher T Richards function and propulsor shape in swimming animals, we built a robotic foot to mimic the morphology and hind

  13. The FIA BioSum model was used to simulate three fire-hazard-reduction policies in an area comprising northern California. southwestern Oregon. and the east slopes of the Cascade Mountains in Oregon. The policy

    E-Print Network [OSTI]

    Fried, Jeremy S.

    The FIA BioSum model was used to simulate three fire-hazard-reduction policies in an area. The policy scenarios. all subject to a stand-scale fire-hazard-reduction effectiveness constraint. included merchantable timber removal (Min Merch). Differences in the area treated under each scenario were considerable

  14. 1/12/14 Technologyuses micro-windmills to recharge cell phones news.bio-medicine.org/?q=biology-technology-1/technology-uses-micro-windmills-to-recharge-cell-phones-29375 1/2

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    1/12/14 Technologyuses micro-windmills to recharge cell phones news.bio-medicine.org/?q=biology-technology-1/technology-uses-micro-windmills-to-recharge-cell-phones-29375 1/2 Navigation Links Biology News >> BIOLOGY >> TECHNOLOGY Technology uses micro-windmills to recharge cell phones Date:1/11/2014 [RSS

  15. VCU Innovation Gateway BioTech One, Suite 3000 800 E Leigh St PO Box 980568 Richmond, Virginia 23219 Phone (804) 828-5188 http://www.research.vcu.edu/ott

    E-Print Network [OSTI]

    Hammack, Richard

    an appropriate treatment plan, resulting in lower quality of life and increased health care cost. FurtherVCU Innovation Gateway BioTech One, Suite 3000 800 E Leigh St PO Box 980568 Richmond assessments Highly reliable Non-invasive and rapid Cost effective Inventors Paul Wetzel, Ph.D. Mark Baron, M

  16. 348 WILEY-VCH-Verlag GmbH, 69451 Weinheim, Germany, 2002 1439-4227/02/03/04 $ 20.00+.50/0 ChemBioChem 2002, 3, 348 355 Combined Biosynthetic Pathway For De Novo

    E-Print Network [OSTI]

    Chen, Xi

    BioChem 2002, 3, 348 355 Combined Biosynthetic Pathway For De Novo Production of UDP-Galactose: Catalysis to produce uridine diphosphate galactose (UDP-galactose). The combined biosynthetic pathway, which involves in catalytic amounts. The nucleotide portions are reused in the biosynthetic cycle. Previously, we have

  17. The Emergency Response Network of the Great Lakes Regional Center of Excellence exists to provide aid during a bio-defense emergency related to emerging infectious diseases or an act of bioterrorism.

    E-Print Network [OSTI]

    Sherman, S. Murray

    The Emergency Response Network of the Great Lakes Regional Center of Excellence exists to provide aid during a bio- defense emergency related to emerging infectious diseases or an act of bioterrorism in the field of infectious disease and special pathogen treatment and research. The Emergency Response Network

  18. The Impact of Emerging Technologies: Proteins' Baby Pictures -Techno... http://www.technologyreview.com/BioTech-Genomics/wtr_16635,312,p... 1 of 2 3/30/2006 9:06 AM

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    The Impact of Emerging Technologies: Proteins' Baby Pictures - Techno... http://www.technologyreview.com/BioTech-Genomics/wtr_16635,312,p... 1 of 2 3/30/2006 9:06 AM Tuesday, March 28, 2006 Proteins' Baby Pictures A technique and becomes immobile; since the protein is still, the researchers could take its picture. In a second set

  19. This new system will allow researchers to much more rapidly screen large numbers of samples and identify the most promising biomass feedstocks for higher efficiency and lower cost bio-

    E-Print Network [OSTI]

    of samples and identify the most promising biomass feedstocks for higher efficiency and lower cost bio- fuels conversion processes. NREL will be screening thousands of variants of different biomass feedstocks to link to develop the next generation of low-cost, easily convert- ible biomass feedstocks. To identify superior

  20. Algoritmos bio-inspirados aplicados a problemas de Procesamiento del Lenguaje Natural

    E-Print Network [OSTI]

    Rosso, Paolo

    Lenguaje Natural ya que esta presente en aplicaciones como mineria de da- tos, extraccion de informaci

  1. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  2. PLANTS AS BIO-MONITORS FOR 137CS, 238PU, 239, 240PU AND 40K AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Caldwell, E.; Duff, M.; Ferguson, C.

    2010-12-16

    The nuclear fuel cycle generates a considerable amount of radioactive waste, which often includes nuclear fission products, such as strontium-90 ({sup 90}Sr) and cesium-137 ({sup 137}Cs), and actinides such as uranium (U) and plutonium (Pu). When released into the environment, large quantities of these radionuclides can present considerable problems to man and biota due to their radioactive nature and, in some cases as with the actinides, their chemical toxicity. Radionuclides are expected to decay at a known rate. Yet, research has shown the rate of elimination from an ecosystem to differ from the decay rate due to physical, chemical and biological processes that remove the contaminant or reduce its biological availability. Knowledge regarding the rate by which a contaminant is eliminated from an ecosystem (ecological half-life) is important for evaluating the duration and potential severity of risk. To better understand a contaminants impact on an environment, consideration should be given to plants. As primary producers, they represent an important mode of contamination transfer from sediments and soils into the food chain. Contaminants that are chemically and/or physically sequestered in a media are less likely to be bio-available to plants and therefore an ecosystem.

  3. Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Wan -Hui; Fujita, Etsuko; Ertem, Mehmed Z.; Xu, Shaoan; Onishi, Naoya; Manaka, Yuichi; Suna, Yuki; Kambayashi, Hide; Muckerman, James T.; Himeda, Yuichiro

    2015-07-30

    Hydrogen generation from formic acid (FA), one of the most promising hydrogen storage materials, has attracted much attention due to the demand for the development of renewable energy carriers. Catalytic dehydrogenation of FA in an efficient and green manner remains challenging. Here, we report a series of bio-inspired Ir complexes for highly robust and selective hydrogen production from FA in aqueous solutions without organic solvents or additives. One of these complexes bearing an imidazoline moiety (complex 6) achieved a turnover frequency (TOF) of 322,000 h? at 100 C, which is higher than ever reported. The novel catalysts are very stablemoreand applicable in highly concentrated FA. For instance, complex 3 (1 ?mol) affords an unprecedented turnover number (TON) of 2,050,000 at 60 C. Deuterium kinetic isotope effect experiments and density functional theory (DFT) calculations employing a speciation approach demonstrated a change in the rate-determining step with increasing solution pH. This study provides not only more insight into the mechanism of dehydrogenation of FA but also offers a new principle for the design of effective homogeneous organometallic catalysts for H? generation from FA.less

  4. www.biosciencemag.org November 2012 / Vol. 62 No. 11 BioScience 977 A Global System for Monitoring

    E-Print Network [OSTI]

    Vermont, University of

    to regularly track changes in ecosystem services across the globe. This information will serve diverse for Monitoring Ecosystem Service Change HeatHer tallis, HarOlD MOOney, sanDy anDelMan, Patricia Balvanera systems. We present a conceptual framework envisioned by the GEO BON Ecosystem Services Working Group

  5. BioSAXS Sample Changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments

    SciTech Connect (OSTI)

    Round, Adam, E-mail: around@embl.fr; Felisaz, Franck [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Fodinger, Lukas; Gobbo, Alexandre [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Huet, Julien [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Villard, Cyril [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Blanchet, Clement E., E-mail: around@embl.fr [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Pernot, Petra; McSweeney, Sean [ESRF, 6 Rue Jules Horowitz, 38000 Grenoble (France); Roessle, Manfred; Svergun, Dmitri I. [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Cipriani, Florent, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France)

    2015-01-01

    A robotic sample changer for solution X-ray scattering experiments optimized for speed and to use the minimum amount of material has been developed. This system is now in routine use at three high-brilliance European synchrotron sites, each capable of several hundred measurements per day. Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 l with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.

  6. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Molnr, Istvn; Lopez, David; Wisecaver, Jennifer H.; Devarenne, Timothy P.; Weiss, Taylor L.; Pellegrini, Matteo; Hackett, Jeremiah D.

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga thatmorecompete for photosynthetic carbon and energy.less

  7. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Molnr, Istvn [Univ. of Arizona, Tucson, AZ (United States). Natural Products Center and Bio5 Institute; Lopez, David [Univ. of California, Los Angeles, CA (United States). Dept. of Molecular, Cell and Developmental Biology; Wisecaver, Jennifer H. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Ecology and Evolutionary Biology; Devarenne, Timothy P. [Texas A & M Univ., College Station, TX (United States). Dept. of Biochemistry and Biophysics; Weiss, Taylor L. [Texas A & M Univ., College Station, TX (United States). Dept. of Biochemistry and Biophysics; Pellegrini, Matteo [Univ. of California, Los Angeles, CA (United States). Dept. of Molecular, Cell and Developmental Biology; Hackett, Jeremiah D. [Univ. of Arizona, Tucson, AZ (United States). Bio5 Institute and Dept. of Ecology and Evolutionary Biology

    2012-01-01

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy.

  8. Bando n. 01/2012 del 24 luglio 2012 per il conferimento di incarico di professore straordinario con rapporto di lavoro a tempo determinato

    E-Print Network [OSTI]

    Di Pillo, Gianni

    rapporto di lavoro a tempo determinato APPROVAZIONE ATTI Il Direttore del Dipartimento di Fisiologia e convenzione, per il settore S/D BIO/14, settore concorsuale 05/G1 presso il Dipartimento di Fisiologia e Farmacologia; Vista la delibera del Consiglio di Dipartimento di Fisiologia e Farmacologia "Vittorio Erspamer

  9. BioMedical Sciences BioMedical Sciences

    E-Print Network [OSTI]

    Saldin, Dilano

    management skills, and technical expertise. As an undergraduate, you'll learn from distinguished faculty emphasis areas: Biomedical Research, Management or Education. It requires a thesis-based research project Blood Banks Research testing laboratories Pharmaceutical or biotechnology companies Health departments

  10. Comments on: BioFuels and BioEnergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibility Mode ClusterProteinReactions | Argonne

  11. BioFuels and BioEnergy - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools toBadging, BadgeBecomingReactions in thebio

  12. ExecutiveBios2012.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael is responsible for the vision and leadership of Sandia's information technology, information management, and cyber security strategy. e balance between information...

  13. Mill Designed Bio bleaching Technologies

    SciTech Connect (OSTI)

    Institute of Paper Science Technology

    2004-01-30

    A key finding of this research program was that Laccase Mediator Systems (LMS) treatments on high-kappa kraft could be successfully accomplished providing substantial delignification (i.e., > 50%) without detrimental impact on viscosity and significantly improved yield properties. The efficiency of the LMS was evident since most of the lignin from the pulp was removed in less than one hour at 45 degrees C. Of the mediators investigated, violuric acid was the most effective vis-a-vis delignification. A comparative study between oxygen delignification and violuric acid revealed that under relatively mild conditions, a single or a double LMS{sub VA} treatment is comparable to a single or a double O stage. Of great notability was the retention of end viscosity of LMS{sub VA} treated pulps with respect to the end viscosity of oxygen treated pulps. These pulps could then be bleached to full brightness values employing conventional ECF bleaching technologies and the final pulp physical properties were equal and/or better than those bleached in a conventional ECF manner employing an aggressively O or OO stage initially. Spectral analyses of residual lignins isolated after LMS treated high-kappa kraft pulps revealed that similar to HBT, VA and NHA preferentially attack phenolic lignin moieties. In addition, a substantial decrease in aliphatic hydroxyl groups was also noted, suggesting side chain oxidation. In all cases, an increase in carboxylic acid was observed. Of notable importance was the different selectivity of NHA, VA and HBT towards lignin functional groups, despite the common N-OH moiety. C-5 condensed phenolic lignin groups were overall resistant to an LMS{sub NHA, HBT} treatments but to a lesser extent to an LMS{sub VA}. The inactiveness of these condensed lignin moieties was not observed when low-kappa kraft pulps were biobleached, suggesting that the LMS chemistry is influenced by the extent of delignification. We have also demonstrated that the current generation of laccase has a broad spectrum of operating parameters. Nonetheless, the development of future genetically engineered laccases with enhanced temperature, pH and redox potentials will dramatically improve the overall process. A second challenge for LMS bleaching technologies is the need to develop effective, catalytic mediators. From the literature we already know this is feasible since ABTS and some inorganic mediators are catalytic. Unfortunately, the mediators that exhibit catalytic properties do not exhibit significant delignification properties and this is a challenge for future research studies. Potential short-term mill application of laccase has been recently reported by Felby132 and Chandra133 as they have demonstrated that the physical properties of linerboard can be improved when exposed to laccase without a chemical mediator. In addition, xxx has shown that the addition of laccase to the whitewater of the paper machine has several benefits for the removal of colloidal materials. Finally, this research program has presented important features on the delignification chemistry of LMS{sub NHA} and LMS{sub VA} that, in the opinion of the author, are momentous contributions to the overall LMS chemistry/biochemistry knowledge base which will continue to have future benefits.

  14. Bio-Inspired Energy Dynamics

    E-Print Network [OSTI]

    Datta, Shoumen

    2010-03-27

    Energy policies based on empirical assumptions without a foundation in granular real-time data may be limited in scope. It may sputter ineffectively in its role as the engine of energy economics. For energy efficiency and ...

  15. Integrative Biosurveillance at Bio Symposium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosurveillance Symposium sponsored by Oak Ridge National Laboratory June 12 in Baltimore. - 2 - Biosurveillance requires the integration of complex data from a variety of...

  16. Bio-inspired optical components

    E-Print Network [OSTI]

    Walish, Joseph John

    2008-01-01

    Guiding electro-magnetic radiation is fundamental to optics. Lenses, mirrors, and photonic crystals all accomplish this task by different routes. Understanding the interaction of light with materials is fundamental to ...

  17. Hybrid bio-templated catalysts

    E-Print Network [OSTI]

    Neltner, Brian (Brian Thomas)

    2010-01-01

    For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense,liquid form. Over the last decade the ability to reform ethanol into hydrogen gas suitable for fuel cell use has drawn ...

  18. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  19. BioEnergy Supply Chain

    Broader source: Energy.gov [DOE]

    Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec eget tincidunt massa, sed sagittis nisl. Nullam feugiat vehicula dignissim. Donec id diam eu justo aliquet luctus vitae id nulla....

  20. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    576-2489 trent@ornl.gov Technical Expertise: Ultramicrotomy and cryomicrotomy of polymers Focused Ion Beam TEM sample preparation Powder sample preparation Particle size...

  1. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Albina Borisevich, Ph.D. Research Scientist, Electron Microscopy Group Materials Science & Technology Division Oak Ridge National Laboratory 1 Bethel Valley Rd. Building...

  2. National Association of Bio Eng.

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    This thesis is concerned with God's relationship to time. In the first chapter of this thesis I first provide a historical account, in the next two chapters I critique two contemporary accounts and, in the last chapter I provide my own account. I...

  3. INEOS Bio | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro Industries Ltd JumpUSINGINEOS

  4. ARM - User Executive Committee Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, AlaskaManus Site-Inactive TWP Related LinksgovDataTime inARMUser Executive

  5. BioChem Cover story

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium and ChronicBestBeyondBigger'sReactionsLSU

  6. Bio Oleo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectric PowerOleo Jump to:

  7. Tecmed Bio | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLC JumpJump to:SolutionsTechtium

  8. Bio Algene | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcherCarbonAlgene Jump to: navigation,

  9. bio | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuanWindeyZibo BaoyunZoukask queriesbio Home

  10. OpenEI Community - bio

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data available for download onst,/0 en Big CleanGRR

  11. Integrative Biosurveillance at Bio Symposium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISMscientist discusses Integrative

  12. Research Highlights (Bio-Health) Bio-instruments, Bio-sensors, Nano-Tech

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    porous structures can be created in CO2 saturated PMMA samples. (1) To develop a novel fabrication: Selective Ultrasonic Foaming System: Cell Culture of Smooth Muscle Cell (SMC): Potential Applications of the proposed selective ultrasonic foaming process. Fig 1. A schematic of the experimental setup The system

  13. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    SciTech Connect (OSTI)

    Molnr, Istvn; Lopez, David; Wisecaver, Jennifer H.; Devarenne, Timothy P.; Weiss, Taylor L.; Pellegrini, Matteo; Hackett, Jeremiah D.

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy.

  14. Bio-corrosion and cytotoxicity studies on novel Zr55Co30Ti15 and Cu60Zr20Ti20 metallic glasses

    SciTech Connect (OSTI)

    Vincent, S.; Daiwile, A.; Devi, S. S.; Kramer, M. J.; Besser, M. F.; Murty, B. S.; Bhatt, Jatin

    2014-09-26

    Metallic glasses are a potential and compatible implant candidate for biomedical applications. In the present investigation, a comparative study between novel Zr55Co30Ti15 and Cu60Zr20Ti20 metallic glasses is carried out to evaluate in vitro biocompatibility using simulated body fluids. The bio-corrosion behavior of Zr- and Cu-based metallic glasses in different types of artificial body fluids such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hanks balanced saline solution is evaluated using potentiodynamic polarization studies at a constant body temperature of 310.15 K (37 C). Surface morphology of samples after bio-corrosion experiments was observed by scanning electron microscopy. In vitro cytotoxicity test on glassy alloys were performed using human osteosarcoma cell line as per 10993-5 guidelines from International Organization for Standardization. As a result, the comparative study between Zr- and Cu-based glassy alloys provides vital information about the effect of elemental composition on biocompatibility of metallic glasses.

  15. Conference Report: 8a. Sesin del ISTA, Escuela Internacional de Antropologa Teatral, en Londrina, Brasil: "Tradiciones y Fundadores de Tradicin"

    E-Print Network [OSTI]

    Seibel, Beatriz

    1995-10-01

    , "trabajo sobre la energa, elaboracin del bios escnico." Cinco grupos asisten cada da a un entrenamiento diferente. Comienzo con los artistas balineses. La danza balinesa, muy expresiva, trabaja desde la cabeza hasta los talones, con numerosos... mezclan. Kanichi Hanayagi, el actor japons, hace una demostracin de trabajo con distintas cualidades de energa, aragoto o wagoto, fuerte o suave, para roles masculinos y femeninos. A las 20.30, "Quetzal," espectculos de diferentes culturas. La...

  16. Tough, bio-inspired hybrid materials

    E-Print Network [OSTI]

    Munch, Etienne

    2009-01-01

    S. Magonov, B. Ozturk, Nature Materials 2, 413 (Jun, L. J.Ager, R. O. Ritchie, Nature Materials 7, 672 (Aug, 2008). A.Guiden, Journal of Composite Materials D. R. Johnson, X. F.

  17. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. for their Winning Bioenergy Infographic A team of five freshmen from Williamsburg High School for Architecture and Design in Brooklyn, New York-designed an infographic on the...

  18. Retrofitting analysis of integrated bio-refineries

    E-Print Network [OSTI]

    Cormier, Benjamin R.

    2007-04-25

    Industrial processes are currently facing many challenges. Market conditions are forcing changes in quantities and qualities of various products. With the qualitative and quantitative changes, production technologies and feedstocks must be re.... The different types of feedstock are shown in Table 2.1. Herbaceous and woody biomass are composed of carbohydrate polymers such as cellulose and hemicellulose, lignin and small parts of acids, salts and minerals. The cellulose and hemicellulose compose about...

  19. Michigan State University AgBioResearch

    E-Print Network [OSTI]

    resources . . . . . . 13 Monitoring the effects of biomass production on climate . . . . . . . . . . . . . . . . . . . . . . 32 34 Families and Community Vitality Helping military families cope with the stress of deployment

  20. Microsoft Word - panel members bios.doc

    Office of Environmental Management (EM)

    DANIEL COHEN Daniel Cohen is the Assistant General Counsel for Legislation and Regulatory Law at the U.S. Department of Energy. His office provides legal support and advice on...

  1. PVD Instructions BioMEMS Laboratory Cleanroom

    E-Print Network [OSTI]

    Zahn, Jeffrey

    ). 7. Turn OFF filament. 8. Set turbo pump speed to 50% and let it spin down to 80% or less before Engineering * Chamber should be under vacuum, with turbo and roughing pumps OFF, when not in use 1. Turn on Recirculating chiller, open the Air valve on the wall behind the machine. Temp should be set to ~20 deg C. 2

  2. Three Essays on Bio-security

    E-Print Network [OSTI]

    Gao, Qi

    2010-07-14

    mitigation strategies for all four scenarios are regular surveillance, slaughter of the infected animals, and early detection. We then used the Mixed Integer Programming to estimate costs of disposing of animal carcasses and transportation. Results show...

  3. The Biofuel Project: Creating Bio-diesel

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This activity introduces students to alternative fuels and gives them an opportunity to produce their own biodiesel fuel. The text of the exercise gives students a brief background in the environmental benefits of using biodiesel as a diesel substitute. The lab portion of this exercise demonstrates the basic chemistry involved in making biodiesel from vegetable oils and waste oils.

  4. H89-cpm-bios.asm

    E-Print Network [OSTI]

    NOP SET67: XRA A STA HSTSEC LHLD DPBX MOV A,M ANI DPETYPF CPI DPEH67F IF H67FLOPPY JZ SET671 ELSE JZ SET679 ENDIF ; H67FLOPPY LXI

  5. Bio -Anita Poulsen Research Faculty I

    E-Print Network [OSTI]

    and detritus, or be passed on to higher organisms, including humans, via food web transfer and biomagnification approaches to study the environmental fate and transport of organic pollutants. My work has focused mainly on petroleum hydrocarbons and persistent organic pollutants, also known as POPs. I am particularly interested

  6. BioMed Central Open Access

    E-Print Network [OSTI]

    (LCL) gene expression in subjects with schizophrenia compared to non-psychotic relatives. Methods: LCLs of five genes found to be altered by diagnosis and glucose deprivation in LCLs and found a significant in LCLs (p = 0.0001), DLPFC (p = 0.007), and anterior cingulate cortex (p = 0.002). Conclusion

  7. BioMed Central Open Access

    E-Print Network [OSTI]

    Bailey, Donovan

    , William J Hahn7, Samuel GM Bridgewater6 and Rob DeSalle8 Address: 1Department of Ecology, EvolutionDepartment of Biology, New Mexico State University, P.O. Box 30001 MSC 3AF, Las Cruces, NM 88003, USA, 3 Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA, 9Department

  8. Developing the New Bio-economy Workforce

    Broader source: Energy.gov [DOE]

    Daniel Cassidy, National Institute of Food and Agriculture, presents on developing the new bioeconomy workforce for the Biomass/Clean Cities States Webinar.

  9. Microsoft Word - ATVMLP BIO_Seward.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for large commercial liability risks. - 1966-1970 - US Navy including service in Vietnam. - Education Cornell University - AB Economics American University - MBA...

  10. Microsoft Word - panel members bios.doc

    Office of Environmental Management (EM)

    Officer for the Office of the Chief Financial Officer. Before joining DOE he spent seven years with the Federal Aviation Administration heading up the agency's NEPA program...

  11. BioCat 2.0

    SciTech Connect (OSTI)

    Corley, Courtney D.; Noonan, Christine F.; Bartholomew, Rachel A.; Franklin, Trisha L.; Hutchison, Janine R.; Lancaster, Mary J.; Madison, Michael C.; Piatt, Andrew W.

    2013-09-16

    The U.S. Department of Homeland Security (DHS) National Biosurveillance Integration Center (NBIC) was established in 2008 with a primary mission to (1) enhance the capability of the Federal Government to (A) rapidly identify, characterize, localize, and track a biological event of national concern by integrating and analyzing data relating to human health, animal, plant, food, and environmental monitoring systems (both national and international); and (B) disseminate alerts and other information to Member Agencies and, in coordination with (and where possible through) Member Agencies, to agencies of State, local, and tribal governments, as appropriate, to enhance the ability of such agencies to respond to a biological event of national concern; and (2) oversee development and operation of the National Biosurveillance Integration System (NBIS). Inherent in its mission then and the broader NBIS, NBIC is concerned with the identification, understanding, and use of a variety of biosurveillance models and systems. The goal of this project is to characterize, evaluate, classify, and catalog existing disease forecast and prediction models that could provide operational decision support for recognizing a biological event having a potentially significant impact. Additionally, gaps should be identified and recommendations made on using disease models in an operational environment to support real-time decision making.

  12. National Bio-fuel Energy Laboratory

    SciTech Connect (OSTI)

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEMs. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and another co-founder, based on a novel heterogeneous catalyst that may be retrofitted into idled biodiesel manufacturing facilities to restart production at a greatly reduced cost. 3.Three patents have been filed by WSU and granted based on the NextCAT focus. 4.The next-generation advanced biodiesel dispensing unit (CEF F.A.S.T. unit version 2) was developed by Clean Emission Fluids (CEF). 5.NBEL aided in the preparing a sound technical basis for setting an ASTM B20 standard: ASTM Standard D7467-08 was passed in June of 2008 and officially published on October of 2008. 6.NBEL has helped to understand composition-property-performance relationships, from not only a laboratory and field testing scale, for biodiesel blends from a spectrum of feedstocks. 7.NBEL helped propel the development of biodiesel with improved performance, cetane numbers, cold flow properties, and oxidative stability. 8.Data for over 30,000 miles has been logged for the fleet testing that select members of the consortia participated in. There were five vehicles that participated in the fleet testing. Art Van provided two vehicles, one that remained idle for most of the time and one that was used often for commercial furniture deliveries, Oakland University provided one vehicle, NEC provided one vehicle, and The Night Move provided one vehicle. These vehicles were light to medium duty (2.0 to 6.6 L displacement), used B5 or B20 blends from multiple sources of feedstock (corn-, choice white grease-, and soybean-based blends) and sources (NextDiesel, BDI, or Wacker Oil), experienced a broad range in ambient temperatures (from -9 F in Michigan winters to 93 F in the summertime), and both city and highway driving conditions.

  13. Special Publication 800-155 BIOS Integrity

    E-Print Network [OSTI]

    , including Bill Burr, Donna Dodson, Tim Polk, Matthew Scholl, Murugiah Souppaya, Bill Burr, and David

  14. Tough, bio-inspired hybrid materials

    E-Print Network [OSTI]

    Munch, Etienne

    2009-01-01

    obtained by freeze casting of ceramic suspensions. Thebeen fabricated using freeze casting of ceramic suspensionsi.e. , tape or slip casting; however, the resulting layer

  15. Microstructure Bio-Material for Behavioral Analysis

    E-Print Network [OSTI]

    Samarasinghe, Punsiri

    2014-12-08

    Biological applications have a limitation of creating tissue like structures in order to mimic the advanced real like structures, such as human tissues in a small scale. Conventional methods of using lab mice for cancer behavior have limitations due...

  16. 4, 15851631, 2007 Bio-optical modeling

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    to study the ocean's biogeochemistry, but most of these models use simple formulations to describe light penetration and spectral quality. Given that processes such as photosynthesis and photo-oxidation are uniquely important for biogeochemical processes in the upper ocean, it is necessary to5 model light distribution

  17. Microsoft Word - panel members bios.doc

    Office of Environmental Management (EM)

    and deployment which will lead to the increased use of energy efficiency and renewables in the US. Her most recent roles at BP included: - Vice President, Policy and...

  18. Challenges in Bio-Inspired Membranes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    membranes using self-assembly Using self-assembly to control pore structures of ceramics and polymers Artificial pumping or switching Build in functionality in the pore...

  19. Short Bio Nora Noffke Professional Preparation

    E-Print Network [OSTI]

    Noffke, Nora

    . Geology & Paleontology Area: Paleontology, Sedimentology, Geobiology Inclusive Data: 1998 1999, Biology, Sedimentology Inclusive Data: 2000-2001 Appointments 2009 - present Visiting Scholar, Carnegie

  20. BioMed Central Open Access

    E-Print Network [OSTI]

    Timmer, Jens

    is validated by comparing it to experimental data from kinetics of cytochrome c release and caspase activation in wildtype and Bid knockout cells grown on different substrates. Pathophysiological modifications with experimental data. Conclusion: A network model for apoptosis and crosstalk in hepatocytes shows four different