National Library of Energy BETA

Sample records for deka deci centi

  1. So How Do THey DeciDe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do THey DeciDe wHaT To Do aT THe iNL? nuclear energy Nuclear energy is a clean, safe, vital part of this country's energy mix. S takeholders frequently tell us they're impressed by all the nuclear research we do at the idaho National Laboratory, but they wonder why we don't do more work on renewable energy, like wind, solar and hydro. well, the answer is, we do research in those areas, but our history and our expertise is in nuclear energy research. we don't apologize for that: nuclear

  2. Annual Site Environmental Report Paducah Site

    Energy Savers [EERE]

    Site Environmental Report Paducah Site 2011 PAD-REG-1012 BACK TABLE OF CONTENTS FORWARD Fractions and Multiples of Units Multiple Decimal Equivalent Prefix Symbol Engineering Format 10 6 1,000,000 mega- M E+06 10 3 1,000 kilo- k E+03 10 2 100 hecto- h E+02 10 10 deka- da E+01 10 -1 0.1 deci- d E-01 10 -2 0.01 centi- c E-02 10 -3 0.001 milli- m E-03 10 -6 0.000001 micro- μ E-06 10 -9 0.000000001 nano- n E-09 10 -12 0.000000000001 pico- P E-12 10 -15 0.000000000000001 femto- F E-15 10 -18

  3. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Special thanks to Sprint, ReliOn, Altergy, Cummins Generator, Deka Batteries, AC Systems, ... K.; Judd, K.; Stone, H.; Zewatsky, J.; Thomas, A.; Mahy, H.; Paul, D. Identification ...

  4. Machine Learning for the Grid (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Machine Learning for the Grid Citation Details In-Document Search Title: Machine Learning for the Grid Authors: Deka, Deepjyoti [1] ; Backhaus, Scott N. [1] ; Chertkov, Michael [1] ; Lokhov, Andrey [1] ; Misra, Sidhant [1] ; Vuffray, Marc Denis [1] ; Dvijotham, Krishnamurthy [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2016-02-02 OSTI Identifier: 1237248 Report Number(s): LA-UR-16-20576 DOE Contract Number: AC52-06NA25396 Resource Type: Conference

  5. Structure Learning in Power Distribution Networks (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: Structure Learning in Power Distribution Networks Citation Details In-Document Search Title: Structure Learning in Power Distribution Networks Authors: Deka, Deepjyoti [1] ; Chertkov, Michael [2] ; Backhaus, Scott N. [2] + Show Author Affiliations Electrical & Computer Engineering, University of Texas at Austin Los Alamos National Laboratory Publication Date: 2015-01-13 OSTI Identifier: 1167238 Report Number(s): LA-UR-15-20213 DOE Contract Number:

  6. Microsoft Word - 2016_CNS_Strategic_Plan_December 21 2015 FINAL...

    Office of Environmental Management (EM)

    ... used and the resulting fa- cility ranking. ... Docu- mentation and Critical Deci- sions DOE O 413.3B, Program and Project ... 460.2A Departmental Materials Transportation and ...


    Office of Environmental Management (EM)

    as Facility Support Services Contract Award Fee Plan Contract Number DE-CI0000004 3 editorial or personnel changes may be made and implemented without being provided to the...

  8. Award Fee Evaluation Period 6 Determination Scorecard Contractor...

    Office of Environmental Management (EM)

    6 Determination Scorecard Contractor: Wastren-EnergX Mission Support, LLC Contract: DE-CI0000004 Award Fee Evaluation Period: Fiscal Year 2015 (October 1, 2014 to September 30, ...

  9. Conceptual Design RM

    Office of Environmental Management (EM)

    Conceptual Design Review Module March 2010 CD-0 O 0 OFFICE OF C CD-1 F ENVIRO Standard R Concep Rev Critical Decis CD-2 M ONMENTAL Review Plan ptual De view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) sign e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of

  10. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    SciTech Connect (OSTI)

    Cusumano, Davide; Fumagalli, Maria L.; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena


    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  11. Feasibility of RACT for 3D dose measurement and range verification in a water phantom

    SciTech Connect (OSTI)

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M.


    Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2? about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 ?s pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 ?m) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly impact beam commissioning, treatment verification during particle beam therapy and image guided techniques.

  12. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect (OSTI)

    Tumer, Kagan


    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards “what to observe” rather than “how to observe” in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using “sensor teams,” system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].