Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dehumidifying Heat Pipes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dehumidifying Heat Pipes Dehumidifying Heat Pipes Dehumidifying Heat Pipes June 24, 2012 - 4:32pm Addthis In order to make a room comfortable in hot, humid climates, an air conditioner must lower the indoor humidity level as well as the air temperature. If an air conditioner fails to lower the humidity adequately, the air will be cool, but will feel uncomfortably damp. Inappropriately sized air conditioners are prone to this problem; large units quickly cool the air, but cycle off before they can properly dehumidify it. In extremely humid climates, even correctly sized air conditioning equipment could fail to maintain a home at a comfortable humidity level. One technology that addresses this problem is the dehumidifying heat pipe, a device that enables an air conditioner to dehumidify better and still

2

Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier  

E-Print Network [OSTI]

Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

Zhao, X.; Li, Q.; Yun, C.

2006-01-01T23:59:59.000Z

3

Water-Heating Dehumidifier  

Energy Innovation Portal (Marketing Summaries) [EERE]

A small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run a conventional water heater by an estimated 50 per cent....

2010-12-08T23:59:59.000Z

4

Heat and mass transfer in bubble column dehumidifiers for HDH desalination  

E-Print Network [OSTI]

Heat and mass transfer processes governing the performance of bubble dehumidifier trays are studied in order to develop a predictive model and design rules for efficient and economical design of bubble column dehumidifiers ...

Tow, Emily W

2014-01-01T23:59:59.000Z

5

Dehumidifying water heater  

SciTech Connect (OSTI)

Drawings and specifications are included for the system to heat water for the swimming pool and dehumidify the building of the Glen Cove YMCA. An overview is presented of the Nautica product used in this system. (MHR)

Not Available

1992-08-18T23:59:59.000Z

6

List of Dehumidifiers Incentives | Open Energy Information  

Open Energy Info (EERE)

Dehumidifiers Incentives Dehumidifiers Incentives Jump to: navigation, search The following contains the list of 159 Dehumidifiers Incentives. CSV (rows 1 - 159) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio (Gas) - Residential Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Residential Building Insulation Ceiling Fan Central Air conditioners Custom/Others pending approval Dehumidifiers Duct/Air sealing Heat pumps Lighting Motors Programmable Thermostats Windows Yes Alexandria Light and Power - Residential Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Minnesota Residential Central Air conditioners Clothes Washers Dehumidifiers Dishwasher Energy Mgmt. Systems/Building Controls Heat pumps Lighting

7

Heat Pipes: An Industrial Application  

E-Print Network [OSTI]

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

8

Dehumidifying water heater  

SciTech Connect (OSTI)

The indoor swimming pool at the Glen Cove YMCA in Glen Cove, New York, has been selected for the dehumidification/water heating system demonstration project. This report provides the specifications for this system which includes a dehumidifier/air handler, condenser/water heater, and outdoor condenser. Current progress underway includes construction, vendor selection, and control system selection. (SM)

Stark, W.

1991-05-31T23:59:59.000Z

9

Geothermal energy utilization with heat pipes  

Science Journals Connector (OSTI)

Several variants of heat pipes for utilization of geothermal energy and underground rock heat are studied. An...

L. L. Vasil'ev

1990-09-01T23:59:59.000Z

10

Dual manifold heat pipe evaporator  

DOE Patents [OSTI]

An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

1994-01-01T23:59:59.000Z

11

Dual manifold heat pipe evaporator  

DOE Patents [OSTI]

An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

Adkins, D.R.; Rawlinson, K.S.

1994-01-04T23:59:59.000Z

12

Heat pipe with embedded wick structure  

DOE Patents [OSTI]

A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

1998-06-23T23:59:59.000Z

13

Dehumidifying water heater. Technical progress report  

SciTech Connect (OSTI)

Drawings and specifications are included for the system to heat water for the swimming pool and dehumidify the building of the Glen Cove YMCA. An overview is presented of the Nautica product used in this system. (MHR)

Not Available

1992-08-18T23:59:59.000Z

14

Effect of nanofluids on thermal performance of heat pipes.  

E-Print Network [OSTI]

?? A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat… (more)

Ferizaj, Drilon

2014-01-01T23:59:59.000Z

15

Solar powered dehumidifier apparatus  

DOE Patents [OSTI]

A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

Jebens, Robert W. (Skillman, NJ)

1980-12-30T23:59:59.000Z

16

Fabric composite heat pipe technology development  

SciTech Connect (OSTI)

Testing has been performed on a variety of fabric composite technology feasibility issues. These include an evaluation of the effective radiation heat transfer rate from a heated metallic surface covered by a ceramic fabric with the intent of determining the effective emissivity'' of the combination of materials, studies of the wicking properties of ceramic fabrics, and the construction of fabric composite heat pipes to test their working properties under both steady state and transient conditions. Results of these experiments shown that fabric composite combinations have greatly enhanced effective emissivities'' resulting from the increases surface area of the fabric, ceramic fabrics can work very well as the wick for heat pipes, ceramic fabric heat pipes have been demonstrated to operate under typical space conditions, and large mass reductions are possible by using fabric composite heat pipes for heat rejection radiator systems.

Klein, A.C.; Gulshan-Ara, Z.; Kiestler, W.; Snuggerud, R.; Marks, T.S. (Department of Nuclear Engineering, Oregon State University, Corvallis, Oregon 97331 (United States))

1993-01-10T23:59:59.000Z

17

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

18

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

19

Thermionic generator module with heat pipes  

SciTech Connect (OSTI)

A thermionic converter module is described comprising: a first heat pipe with an annular casing which has a first surface located on an inside surface of the annular casing, at least part of the first surface of the casing of the first heat pipe having constructed upon it a thermionic converter emitter located so that heat will be transferred by conduction from the first heat pipe casing to the thermionic converter emitter; a second heat pipe with a casing which has a second surface, the second surface being located within the first surface of the annular casing of the first heat pipe so that it is surrounded by the first surface; a thermionic converter collector located so as to transfer heat by conduction to the second surface of the casing of the second heat pipe with the thermionic converter collector being adjacent to the thermionic converter emitter but being separated from the thermionic converter emitter by an inter electrode space; and end fitting structures located so that, with the thermionic converter collector and the thermionic converter emitter, they complete an enclosure around the inter electrode space and form an evacuated enclosure within which are located the thermionic converter collector and the thermionic converter emitter.

Horner-Richardson, K.; Ernst, D.M.

1993-06-15T23:59:59.000Z

20

Neutron imaging of alkali metal heat pipes  

SciTech Connect (OSTI)

High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had already cooled and solidified.

Kihm, Ken [University of Tennessee, Knoxville (UTK); Kirchoff, Eric [University of Tennessee, Knoxville (UTK); Golden, Matt [University of Tennessee, Knoxville (UTK); Rosenfeld, J. [Thermacore Inc.; Rawal, S. [Lockheed Martin Space Systems Company; Pratt, D. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Bilheux, Hassina Z [ORNL; Walker, Lakeisha MH [ORNL; Voisin, Sophie [ORNL; Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Heat pipes for use in a magnetic field  

DOE Patents [OSTI]

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19T23:59:59.000Z

22

Experimental Investigation of the Padding Tower for Air Dehumidifier  

E-Print Network [OSTI]

dehumidifying efficien Fig. 3 the variety of outlet parameters with inlet solution flux erature is, the less the vapour pressure of solution is, so that the impetus of mass transfer is larger, and mass augments, the heat and mass transfer gets enhanced. When... in inlet air absolute humidity. The larger the dehumidification quantity is, the more the potential heat released by the vapour dehumidified, so the solution temperature will rise correspondently. Usually the range of temperature rise does not exceed...

Wang, J.; Liu, J.; Li, C.; Zhang, G.; An, S.

2006-01-01T23:59:59.000Z

23

AWSWAH - the heat pipe solar water heater  

SciTech Connect (OSTI)

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

24

The Economics of Steam Vs. Electric Pipe Heating  

E-Print Network [OSTI]

To properly design a pipe heating system, the basic principles of heat transfer from an insulated pipe must be understood. The three methods of heat flow are conduction, convection (both forced and natural) and radiation. The total heat loss from a...

Schilling, R. E.

25

Solid0Core Heat-Pipe Nuclear Batterly Type Reactor  

SciTech Connect (OSTI)

This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

Ehud Greenspan

2008-09-30T23:59:59.000Z

26

Magnetohydrodynamic power generation, electromagnetic pumps, heat pipes, and thermionic convertors  

SciTech Connect (OSTI)

The basic principles of operation, components, and design of MHD generators, electromagnetic pumps, heat pipes and thermionic converters are described. 66 references. (WHK)

Pierson, E.S.; Bonyhady, K.A.; Dunn, P.F.; Nathenson, R.D.; Uherka, K.L.

1984-01-01T23:59:59.000Z

27

Heat pipe cooling for scramjet engines. Final report  

SciTech Connect (OSTI)

Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

Silverstein, C.C.

1986-12-01T23:59:59.000Z

28

Numerical Analysis of Fluid Flow and Heat Transfer within Grooved Flat Mini Heat Pipes  

Science Journals Connector (OSTI)

A Theoretical study is carried out in order to verify the Mini Heat Pipe (MHP) concept for cooling high ... as an integrated part of a Flat Mini Heat Pipe (FMHP). Hence, a detailed ... with axial microchannels is...

Jed Mansouri; Samah Maalej; Mohamed Sassi…

2013-01-01T23:59:59.000Z

29

Measured Performance of Residential Dehumidifiers Under Cyclic Operation  

SciTech Connect (OSTI)

Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Tight homes require intentional mechanical ventilation to ensure healthy indoor air. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. There is currently not sufficient information available at a wide enough range of operating points to design dehumidification systems for high performance homes in hot-humid climates. The only industry information available on dehumidifier moisture removal and energy consumption are performance ratings conducted at a single test condition, which does not provide a full representation of dehumidifier operation under real-world conditions. Winkler et al. (2011) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, we tested the part load performance of four residential dehumidifiers in the National Renewable Energy Laboratory's (NREL) Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

Winkler, J.; Christensen, D.; Tomerlin, J.

2014-01-01T23:59:59.000Z

30

Performance analysis of wick-assisted heat pipe solar collector and comparison with experimental results  

Science Journals Connector (OSTI)

The performance of heat pipe solar collector is investigated theoretically and experimentally. The system employs wick-assisted heat pipe for the heat transfer from ... pipe temperature and also the thermal effic...

E. Azad

2009-03-01T23:59:59.000Z

31

Membrane heat pipe development for space radiator applications  

SciTech Connect (OSTI)

A self-deploying membrane heat pipe (SMHP) is being designed and fabricated to operate in an in-cabin experiment aboard a STS flight. The heat pipe comprises a mylar membrane with a woven fabric arterial wick and R-11 as the working fluid. Preliminary results indicate that this SMHP design will successfully expand and retract in response to an applied heat load; the retraction force is provided by a constant force spring.

Woloshun, K.; Merrigan, M.

1986-01-01T23:59:59.000Z

32

Heat transfer effectiveness of three-fluid separated heat pipe exchanger  

Science Journals Connector (OSTI)

A heat transfer model for three-fluid separated heat pipe exchanger was analyzed, and the temperature transfer matrix for general three-fluid separated heat exchanger working in parallel-flow or counter- ... It w...

Chengming Shi; Yang Wang; Ying Yang; Quan Liao

2011-02-01T23:59:59.000Z

33

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

§1.4 – Heat Pipes for Waste Heat Recovery…..…………………………………analysis involving waste heat recovery of solar energyOverview of Industrial Waste Heat Recovery Technologies for

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

34

Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump  

E-Print Network [OSTI]

In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground...

Song, Y.; Yao, Y.; Na, W.

2006-01-01T23:59:59.000Z

35

Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system  

Science Journals Connector (OSTI)

A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system.

H.D. Fu; G. Pei; J. Ji; H. Long; T. Zhang; T.T. Chow

2012-01-01T23:59:59.000Z

36

Building Technologies Office: Residential Dishwashers, Dehumidifiers, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting to someone by E-mail Share Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Facebook Tweet about Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Twitter Bookmark Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Google Bookmark Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR

37

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

and solar concentration, for a gravity-assisted heat pipevs. solar concentration with a gravity-assisted heat pipe inand solar concentration, for a gravity-assisted heat pipe

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

38

Heat transfer during laminar fluid flow in a pipe with radiative heat removal  

Science Journals Connector (OSTI)

The heat-transfer problem is analyzed for laminar fluid flow in the initial section of a ... pipe having a parabolic entry velocity distribution and heat removal by radiation from the surface of...

Ya. S. Kadaner; Yu. P. Rassadkin; É. L. Spektor

1971-01-01T23:59:59.000Z

39

LiCl dehumidifier/LiBr absorption chiller hybrid air conditioning system with energy recovery  

SciTech Connect (OSTI)

This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

Ko, S.M.

1980-06-03T23:59:59.000Z

40

LiCl dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery  

SciTech Connect (OSTI)

This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system. 4 figs.

Ko, S.M.

1980-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal response of a flat heat pipe sandwich structure to a localized heat flux  

E-Print Network [OSTI]

metal foam wick and distilled water as the working fluid. Heat was applied via a propane torch and radiative heat transfer. A novel method was developed to estimate experimentally, the heat flux distribution rights reserved. Keywords: Flat heat pipe; Thermal spreader; Heat transfer; Evaporator; Condenser 1

Wadley, Haydn

42

Hybrid sodium heat pipe receivers for dish/Stirling systems  

SciTech Connect (OSTI)

The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

Laing, D.; Reusch, M. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Thermodynamik

1997-12-31T23:59:59.000Z

43

Enchancement of heat pipes with ion-drag pumps  

E-Print Network [OSTI]

ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Submitted to the Office of Graduate Studies of Texas AE'M I. niversity in partial fulfillment of the requirements for the degree of MASTER OF SCIEiVCE August 1991... Malor Subject: Mechanical Engineering ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Approved as to style and content by G. P. Peterson (Charr of Committee) L. S. Fletcher (Member) . Hassan ( Member) W. L...

Babin, Bruce Russell

1991-01-01T23:59:59.000Z

44

Radiant heating tests of several liquid metal heat-pipe sandwich panels  

SciTech Connect (OSTI)

Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

Camarda, C.J.; Basiulis, A.

1983-08-01T23:59:59.000Z

45

Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe  

SciTech Connect (OSTI)

The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

1993-04-01T23:59:59.000Z

46

Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion. Final report  

SciTech Connect (OSTI)

NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

Moriarty, M.P.

1993-11-01T23:59:59.000Z

47

Optimization of the configuration and working fluid for a micro heat pipe thermal control device  

E-Print Network [OSTI]

of a micro heat pipe system containing a working fluid with physical properties having been speciffcally selected such that the heat pipes, as a whole, vary in effective thermal conductance, thereby providing a level of temperature regulation...

Coughlin, Scott Joseph

2006-04-12T23:59:59.000Z

48

Heat-pipe technology: a bibliography with abstracts. Quarterly update, April-June 1981  

SciTech Connect (OSTI)

A bibliography of 93 publications on heat pipes is presented. The citations are arranged by categories of general information and heat pipe uses, theory, design, fabrication, and performance. An author index and title/keyword index are provided. Five heat-pipe related patents are listed. (LCL)

Srinivasan, R.; Feldman, K.T. Jr. (eds.)

1981-07-01T23:59:59.000Z

49

Biomass heat pipe reformer—design and performance of an indirectly heated steam gasifier  

Science Journals Connector (OSTI)

Indirectly heated dual fluidized bed (DFB) gasifiers are a promising option for the production ... syngas, in particular in the small- and medium-scale range. The application of so-called ... pipes solves the key...

Jürgen Karl

2014-03-01T23:59:59.000Z

50

Method of manufacturing a heat pipe wick with structural enhancement  

DOE Patents [OSTI]

Heat pipe wick structure wherein a stout sheet of perforated material overlays a high performance wick material such as stainless steel felt affixed to a substrate. The inventive structure provides a good flow path for working fluid while maintaining durability and structural stability independent of the structure (or lack of structure) associated with the wick material. In one described embodiment, a wick of randomly laid .about.8 micron thickness stainless steel fibers is sintered to a metal substrate and a perforated metal overlay.

Andraka, Charles E. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM); Showalter, Steven K. (Albuquerque, NM); Moss, Timothy A. (Albuquerque, NM)

2006-10-24T23:59:59.000Z

51

Laboratory Performance Testing of Residential Dehumidifiers  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Performance Laboratory Performance Testing of Residential Dehumidifiers Building America Stakeholders Meeting Jon Winkler March 2, 2012 2 Motivation * Solution: Performance map across a variety of operating conditions Dehumidifier Manufacturer Data ( ) in in RH T f e Performanc , = 80 F 60% RH Normalized Energy Factor Entering Drybulb Temperature (°C) Simulation Tool Input ? 3 ENERGY STAR Efficiency Criteria 1 2 3 4 0 30 60 90 120 150 Energy Factor (L/kWh) Dehumidifier Capacity (pints/day) ENERGY STAR v2.0 Efficiency Criteria Dehumidifiers Tested ENERGY STAR Products Non ENERGY STAR Products v3.0 Criteria 4 NREL Technical Report Laboratory Test Report for Six ENERGY STAR® Dehumidifiers Jon Winkler, Dane Christensen, and Jeff Tomerlin NREL/TP-5500-52791 December 2011

52

Applications of heat pipes for high thermal load beam lines  

SciTech Connect (OSTI)

The high flux beam produced by insertion devices often requires special heat removal techniques. For the optical elements used in such high thermal load beam lines, the required precision demands a highly accurate design. Heat pipe cooling of critical elements of the X-1 beam line at the National Synchrotron Light Source is described. This method reduces vibrations caused by water cooling systems and simplifies the design. In some of these designs, deposited heat must be transferred through unbonded contact interfaces. A pinhole assembly and a beam position monitor designed for the X-1 beam line both transfer heat through such interfaces in an ultrahigh vacuum environment. The fundamental design objective is that of removing the heat with minimal interface thermal resistance. We present our test method and results for measuring the thermal resistance across metallic interfaces as a function of contact pressure. The design of some devices which utilize both heat pipes and thermal contact interfaces will also be described. 12 refs., 8 figs.

Shu, D.; Mortazavi, P.; Rarback, H.; Howells, M.R.

1985-01-01T23:59:59.000Z

53

Piping network design of geothermal district heating systems: Case study for a university campus  

Science Journals Connector (OSTI)

Geothermal district heating system design consists of two parts: heating system and piping network design. District heating system design and a case study for a university campus is given in Yildirim et al. [1] in detail. In this study, piping network design optimisation is evaluated based on heat centre location depending upon the cost and common design parameters of piping networks which are pipe materials, target pressure loss (TPL) per unit length of pipes and installation type. Then a case study for the same campus is presented.

Nurdan Yildirim; Macit Toksoy; Gulden Gokcen

2010-01-01T23:59:59.000Z

54

E-Print Network 3.0 - advanced heat pipes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

buried pipes J.C. Morud1 and A. Simonsen1 1 SINTEF Materials and Chemistry... for the heat loss from buried pipes have been known for a long time. In this paper, we derive...

55

Heat pipes for wing leading edges of hypersonic vehicles. Final report  

SciTech Connect (OSTI)

Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is internally instrumented with thermocouples and pressure transducers to measure sodium vapor qualities. Large thermal gradients and consequently large thermal stresses, which have the potential of limiting heat pipe life, were predicted to occur during startup. A test stand and test plan were developed for subsequent testing of this heat pipe. Heat pipe manufacturing technology was advanced during this program, including the development of an innovative technique for wick installation.

Boman, B.L.; Citrin, K.M.; Garner, E.C.; Stone, J.E.

1990-01-01T23:59:59.000Z

56

Testability of a heat pipe cooled thermionic reactor  

Science Journals Connector (OSTI)

As part of the Air Force Phillips Laboratory thermionics program Rocketdyne performed a design study for an in?core thermionic fuel element (TFE) heat pipe cooled reactor power system. This effort involved a testability evaluation that was performed starting with testing of individual components followed by testing at various stages of fabrication and concluding with full system acceptance and qualification testing. It was determined that the system could be thoroughly tested to ensure a high probability of successful operation in space after launch.

Richard E. Durand

1992-01-01T23:59:59.000Z

57

Testing of a loop heat pipe experimental apparatus under varied acceleration.  

E-Print Network [OSTI]

??An experimental apparatus was designed and fabricated to test a Loop Heat Pipe under varied acceleration. The experiment consisted of both flight and ground testing… (more)

Kurwitz, Richard Cable

2012-01-01T23:59:59.000Z

58

An Investigation and Characterization of Metal Foam Filled Double-Pipe Heat Exchangers.  

E-Print Network [OSTI]

??The effect of using metal foams in double-pipe heat exchangers is investigated in this work. The advantages and drawbacks of using metal foams in these… (more)

Chen, Xi

2014-01-01T23:59:59.000Z

59

Heating and Cooling System Support Equipment Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

60

Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system  

Science Journals Connector (OSTI)

This study was performed to investigate the convective heat transfer coefficient of nanofluids made of several alumina ... transformer oil which flow through a double pipe heat exchanger system in the laminar flo...

Byung-Hee Chun; Hyun Uk Kang; Sung Hyun Kim

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An evaluation of the thermal characteristics of a flat plate heat pipe spreader  

E-Print Network [OSTI]

loss could bc determined. Duc to the axisymmetric nature of the i. echnique, it was necessary to define the effective radial heat pipe dimensions. ln the case of a disk shaped flat heat pipe, the effective radius is equal to the radius of the disk...

Chesser, Jason Blake

2000-01-01T23:59:59.000Z

62

Heat pipe technology: a bibliography with abstracts. Quarterly update, April-June 1980  

SciTech Connect (OSTI)

This is the second quarterly update for 1980 in the Heat Pipe Technology Bibliographic Series. In addition to the abstract and bibliographic data for each item, the following indexes are provided: authors; title/keywords; and patents by number, author or permuted title. This quarter contains a large number of citations on heat pipe applications in energy conservation and also in solar energy systems.

Srinivasan, R.; Feldman, K.T. Jr. (eds.)

1980-08-01T23:59:59.000Z

63

Heat pipe technology. A bibliography with abstracts. Quarterly update, October-December, 1980  

SciTech Connect (OSTI)

This bibliography presents 57 pages of citations and abstracts of publications on heat pipe uses, design, fabrication, performance, and testing. Author and permuted title indexes are provided. Heat pipe related patents are listed and indexed separately by author, title and patent number. (LCL)

Not Available

1980-12-31T23:59:59.000Z

64

Supercritical CO2-Corrosion in Heat Treated Steel Pipes during Carbon Capture and Storage CCS  

Science Journals Connector (OSTI)

Heat treatment of steels used for engineering a saline aquifer Carbon Capture and Storage (CCS) site may become...2...) into deep geological rock formations. 13% Chromium steel injection pipes heat treated differ...

Anja Pfennig; Phillip Zastrow…

2013-01-01T23:59:59.000Z

65

Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings  

E-Print Network [OSTI]

units hot water and space heating from flue-gas, fireplaces industrial process heat recycle utility boiler preheater aircraft wing deicing solar energy collectors warming carburetors & intakes geothermal energy recovery Sterling engines...HEAT PIPE IMPACT ON DEHUMIDIFICATION, INDOOR AIR QUALITY AND ENERGY SAVINGS by J. Thomas Cooper Heat Pipe Technology, Inc Alachua, Florida, USA TENTH SYMPOSIUM ON IMPROVING BUILDING SYSTEMS IN HOT AND HUMID CLIMATES MAY 13-14, 1996 FT...

Cooper, J. T.

1996-01-01T23:59:59.000Z

66

Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors  

SciTech Connect (OSTI)

A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

2012-07-01T23:59:59.000Z

67

Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids  

SciTech Connect (OSTI)

An experimental study was performed to investigate the operation characteristics of a cylindrical miniature grooved heat pipe using aqueous CuO nanofluid as the working fluid at some steady cooling conditions. The experiments were carried out under both the steady operation process and the unsteady startup process. The experiment results show that substituting the nanofluid for water as the working fluid can apparently improve the thermal performance of the heat pipe for steady operation. The total heat resistance and the maximum heat removal capacity of the heat pipe using nanofluids can maximally reduce by 50% and increase by 40% compared with that of the heat pipe using water, respectively. For unsteady startup process, substituting the nanofluid for water as the working fluid, cannot only improve the thermal performance, but also reduce significantly the startup time. (author)

Wang, Guo-Shan; Song, Bin; Liu, Zhen-Hua [School of Mechanical Engineering, Shanghai Jiaotong University, 200240 Shanghai (China)

2010-11-15T23:59:59.000Z

68

Design and analysis of megawatt-class heat-pipe reactor concepts  

SciTech Connect (OSTI)

There is growing interest in finding an alternative to diesel-powered systems at locations removed from a reliable electrical grid. One promising option is a 1- to 10-MW mobile reactor system, that could provide robust, self-contained, and long-term ({>=} 5 years) power in any environment. The reactor and required infrastructure could be transported to any location within one or a few standard transport containers. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than 'traditional' reactors that rely on pumped coolant through the core. This paper examines a heat pipe reactor that is fabricated and shipped as six identical core segments. Each core segment includes a heat-pipe-to-gas heat exchanger that is coupled to the condenser end of the heat pipes. The reference power conversion system is a CO{sub 2}-Brayton system. The segments by themselves are deeply subcritical during transport, and they would be locked into an operating configuration (with control inserted) at the final destination. Two design options are considered: a near-term option and an advanced option. The near-term option is a 5-MWt concept that uses uranium-dioxide fuel, a stainless-steel structure, and potassium as the heat-pipe working fluid. The advanced option is a 15-MWt concept that uses uranium-nitride fuel, a molybdenum/TZM structure, and sodium as the heat-pipe working fluid. The materials used in the advanced option allow for higher temperatures and power densities, and enhanced power throughput in the heat pipes. Higher powers can be obtained from both concepts by increasing the core size and the number of heat pipes. (authors)

Poston, D.; Kapernick, R. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

2012-07-01T23:59:59.000Z

69

Heat transfer characteristics of a two-pass trapezoidal channel and a novel heat pipe  

E-Print Network [OSTI]

of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, S.C. Lau Ed Marotta Committee Members, J.C. Han N.K. Anand Y.A. Hassan Head of Department, Dennis O?Neal August 2007 Major Subject: Mechanical... Engineering iii ABSTRACT Heat Transfer Characteristics of a Two-pass Trapezoidal Channel and a Novel Heat Pipe. (August 2007) Sang Won Lee, B.En., Inha University, Korea; M.S., Texas A&M University Co-Chairs of Advisory Committee: Dr. S. C. Lau...

Lee, Sang Won

2009-06-02T23:59:59.000Z

70

High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems  

SciTech Connect (OSTI)

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

2009-03-16T23:59:59.000Z

71

Water heat pipe frozen startup and shutdown transients with internal temperature, pressure and visual observations  

E-Print Network [OSTI]

temperatures can be very low, many heat pipes will have the working fluid in an initially frozen state. To insure that the heat pipes will work as desired, it is important to be able to model the frozen startup. Transient modeling of heat pipe operation has... startup. The same sort of measurements are also rare for transients that do not include frozen conditions, and could be equally important in verifying appropriate transient computational models. The objective of the work presented here is to obtain...

Reinarts, Thomas Raymond

2012-06-07T23:59:59.000Z

72

Building, Testing, and Post Test Analysis of Durability Heat Pipe No.6  

SciTech Connect (OSTI)

The Solar Thermal Program at Sandia supports work developing dish/Stirling systems to convert solar energy into electricity. Heat pipe technology is ideal for transferring the energy of concentrated sunlight from the parabolic dish concentrators to the Stirling engine heat tubes. Heat pipes can absorb the solar energy at non-uniform flux distributions and release this energy to the Stirling engine heater tubes at a very uniform flux distribution thus decoupling the design of the engine heater head from the solar absorber. The most important part of a heat pipe is the wick, which transports the sodium over the heated surface area. Bench scale heat pipes were designed and built to more economically, both in time and money, test different wicks and cleaning procedures. This report covers the building, testing, and post-test analysis of the sixth in a series of bench scale heat pipes. Durability heat pipe No.6 was built and tested to determine the effects of a high temperature bakeout, 950 C, on wick corrosion during long-term operation. Previous tests showed high levels of corrosion with low temperature bakeouts (650-700 C). Durability heat pipe No.5 had a high temperature bakeout and reflux cleaning and showed low levels of wick corrosion after long-term operation. After testing durability heat pipe No.6 for 5,003 hours at an operating temperature of 750 C, it showed low levels of wick corrosion. This test shows a high temperature bakeout alone will significantly reduce wick corrosion without the need for costly and time consuming reflux cleaning.

MOSS, TIMOTHY A.

2002-03-01T23:59:59.000Z

73

Analyzing the efficiency of a photovoltaic-thermal solar collector based on heat pipes  

Science Journals Connector (OSTI)

The structure of a photovoltaic/thermal solar collector based on aluminum heat pipes and ... , along with the results from analyzing its efficiency. Its optimum mode of operation is shown...

S. M. Khairnasov

2014-01-01T23:59:59.000Z

74

A steady state analysis code for prediction of behavior in loop heat pipes  

E-Print Network [OSTI]

The purpose of this work is to prepare an analysis raphics. code for the prediction of Loop Heat Pipe (LHP) behavior in steady-state operation. The FORTRAN program is then benchmarked with experimental data obtained in two orientations: 1...

Hamm, Trenton Allen

1998-01-01T23:59:59.000Z

75

Testing of a loop heat pipe experimental apparatus under varied acceleration  

E-Print Network [OSTI]

An experimental apparatus was designed and fabricated to test a Loop Heat Pipe under varied acceleration. The experiment consisted of both flight and ground testing as well as comparisons to a model developed from models found in literature...

Kurwitz, Richard Cable

1997-01-01T23:59:59.000Z

76

Heat-pipe technology: a bibliography with abstracts. Quarterly update, July-September, 1981  

SciTech Connect (OSTI)

This bibliography presents 41 pages of citations and abstracts of publications on heat pipe uses, operation, materials design, fabrication and testing. Author and permuted title indexes are provided. (LCL)

Not Available

1981-10-01T23:59:59.000Z

77

Theoretical and experimental study of a heat pipe in zero-G for electrochemical cell cooling  

SciTech Connect (OSTI)

A new thermal concept to be used with Li/SOCL2 batteries is presented. A thermal model of a grooved nickel heat pipe under uniform heat input is developed, and an experimental assembly is made to simulate the operating conditions in zero-G. It is shown how this new thermal concept can provide the following for the electrochemical cell: thermal cooling by heat pipe, mechanical reinforcement, and current collection. The thermal behavior of a Li/SOCL2 cell under high rate discharge using this concept is compared with that of a traditional concept (aluminum corset around the cell which is fixed to a coldplate). A thermal model is established that uses ESACAP software including about 100 nodes to represent the cell and the aluminum pipe or the heat pipe. 10 refs.

Alain, A.; Ali, S.; Luc, F.J. (Ecole Nationale Superieure de Mecanique et d'Aerotechnique, Poitiers, (France) SAFT, Poitiers, (France))

1991-07-01T23:59:59.000Z

78

Finite element analysis of conjugate heat transfer in axisymmetric pipe flows  

E-Print Network [OSTI]

FINITE ELEMENT ANALYSIS OF CONJUGATE HEAT TRANSFER IN AXISYMMETRIC PIPE FLOWS A Thesis by ROBERT MILLER FITHEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MA STER... OF S CI EN CE August 1987 Major Subject: Mechanical Engineering FINITE ELEMENT ANALYSIS OF CONJUGATE HEAT TRANSFER IN AXISYMMETRIC PIPE FLOWS A Thesis by ROBERT MILLER FITHEN Approved ss to style and content by: N. K. Anand (Chairman of Committee...

Fithen, Robert Miller

2012-06-07T23:59:59.000Z

79

Development of design tools for ground-source heat pump piping  

SciTech Connect (OSTI)

High-density polyethylene (HDPE) piping systems with thermal fusion joints have several attractive characteristics when applied to ground-source heat pump (GSHP) systems. However, engineers may not have access to GSHP piping and fitting head loss data or to easy-to-use tools for piping design/pump sizing. Some GSHP systems have been conservatively designed with pumps that are grossly oversized. Systems have been installed in which the pump energy use exceeds heat pump energy. In some cases, engineers completely avoid the use of GSHPs because they are not comfortable with the low level of sophistication and the difficulty of using current GSHP design tools. A project has been undertaken to measure head loss in common GSHP fittings and pipe design and to develop a set of easy-to-use and accurate piping design tools. These tools will not only give designers more confidence but will reduce the cost of GSHPs by reducing oversizing and piping complexity that has been common in some installations. The results of this project are presented in a format similar to the tools currently used by practicing HVAC design engineers. Tables for fitting equivalent lengths and k-factors have been developed. Log-log plots of head loss vs. flow rate and liquid velocity are presented in a format similar to the plots appearing in the 1993 ASHRAE Handbook--Fundamentals. These tables and charts for HDPE piping components complement existing charts and tables for traditional piping systems.

Kavanaugh, S. [Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Mechanical Engineering

1998-10-01T23:59:59.000Z

80

Heat pipe based passive emergency core cooling system for safe shutdown of nuclear power reactor  

Science Journals Connector (OSTI)

Abstract On March 11th, 2011, a natural disaster created by earthquakes and Tsunami caused a serious potential of nuclear reactor meltdown in Fukushima due to the failure of Emergency Core Cooling System (ECCS) powered by diesel generators. In this paper, heat pipe based ECCS has been proposed for nuclear power plants. The designed loop type heat pipe ECCS is composed of cylindrical evaporator with 62 vertical tubes, each 150 mm diameter and 6 m length, mounted around the circumference of nuclear fuel assembly and 21 m × 10 m × 5 m naturally cooled finned condenser installed outside the primary containment. Heat pipe with overall thermal resistance of 1.44 × 10?5 °C/W will be able to reduce reactor temperature from initial working temperature of 282 °C to below 250 °C within 7 h. The overall ECCS also includes feed water flooding of the core using elevated water tank for initial 10 min which will accelerate cooling of the core, replenish core coolant during loss of coolant accident and avoids heat transfer crisis phenomena during heat pipe start-up process. The proposed heat pipe system will operate in fully passive mode with high runtime reliability and therefore provide safer environment to nuclear power plants.

Masataka Mochizuki; Randeep Singh; Thang Nguyen; Tien Nguyen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An experimental approach to compare wicking abilities of fabric materials for heat pipe applications  

SciTech Connect (OSTI)

Replacement of components of a space reactor heat pipe by advanced ceramic fabrics will decrease system mass considerably. Replacement of the metal wick by a fibrous materials makes calculation of the wicking ability difficult. An experimental approach is necessary to ensure that heat transport ability is not affected considerably and to optimize material chosen for wicking structure. Variables such as material composition, surface preparation, weave type and density, and pressure/temperature variations need to be examined. Two experiments are discussed which allow complete comparison of all these variables and measurement of the wicking ability. These experiments are unique in their approach to simulation of operating conditions of the heat pipe.

Marks, T.S.; Klein, A.C. (Department of Nuclear Engineering Radiation Center, C116 Oregon State University Corvallis, OR 97331-5902 (US))

1991-01-05T23:59:59.000Z

82

16th International Heat Pipe Conference (16th IHPC) Lyon, France, May 20-24, 2012  

E-Print Network [OSTI]

-change materials (PCM), thermo electric coolers, etc. are some of the routine techniques available for thermal for maintaining a safe operating temperature inside the enclosure. Transient numerical modeling was performed enclosure volume. Keywords: Microelectronic thermal management, numerical modeling, heat pipes and heat

Khandekar, Sameer

83

Evaluation of a sodium/Hastelloy-X heat pipe for wing leading edge cooling  

SciTech Connect (OSTI)

This report covers assembly of a sodium heat pipe, testing to verify performance during start-up and under steady-state conditions with stagnation point heat loads to about 80 W/cm{sup 2}, performance analysis and evaluation. Evaluation of this leading edge cooling concept is offered and recommendations for further research discussed.

Merrigan, M.A.; Sena, J.T. [Los Alamos National Lab., NM (United States); Glass, D.E. [Analytical Services and Materials, Hampton, VA (United States)

1996-12-31T23:59:59.000Z

84

High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System  

SciTech Connect (OSTI)

A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at {approx} 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the shortest water heat pipes in the forward segments operate much cooler (427 K and 0.52 MPa), and reject a much lower power of 45 W each. The radiator with six fixed and 12 rear deployable segments rejects a total of 324 kWth, weights 994 kg and has an average specific power of 326 Wth/kg and a specific mass of 5.88 kg/m2.

El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

2006-01-20T23:59:59.000Z

85

Heat transfer enhancement of micro oscillating heat pipes with self-rewetting fluid  

Science Journals Connector (OSTI)

Abstract This paper discusses the heat transfer enhancement of micro oscillating heat pipes (MOHPs) using self-rewetting fluid (SRWF). To clarify the heat transfer enhancement mechanism, the thermo-physical properties (including surface tensions, contact angles and thermal conductivities) of \\{SRWFs\\} and deionized water have been comparatively analyzed. Furthermore, to find out the strengthening effect, experimental studies were performed on MOHPs. During the experiments, \\{MOHPs\\} with heat transfer length (L) of 100, 150 and 200 mm, consisting of 4 meandering turns and inner diameter (Di) of 0.4, 0.8, 1.3 mm were adopted. SRWF and deionized water were employed as the working fluids. The results showed that, due to the unique property that the surface tension increases with increasing temperature, the SRWF can spontaneously wet the hotter region. The capillary resistance of the SRWF was much smaller than that of the deionized water, which is conductive to improving the circulation efficiency of the working fluid. Compared with the water, as the working fluid of the MOHPs, the SRWF exhibited much better thermal performance, which can decrease the thermal resistance and extend the effective operation range of MOHPs.

Yanxin Hu; Tengqing Liu; Xuanyou Li; Shuangfeng Wang

2014-01-01T23:59:59.000Z

86

Insoluble coatings for Stirling engine heat pipe condenser surfaces. Final report  

SciTech Connect (OSTI)

The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in).

Dussinger, P.M.

1993-09-01T23:59:59.000Z

87

Heat pipe cooled reactors for multi-kilowatt space power supplies  

SciTech Connect (OSTI)

Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

Ranken, W.A.; Houts, M.G.

1995-01-01T23:59:59.000Z

88

Case study of underground pipe ground coupled heat pump system  

Science Journals Connector (OSTI)

Aiming to give some advices on the ground coupled heat pump system design in Sichuan Province, China, a typical ground source heat pump (GSHP) system in Sichuan Province was tested in a whole operational year,...

Min Zheng ??; Bai-yi Li ???; Zheng-yong Qiao ???

2012-03-01T23:59:59.000Z

89

1.12.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/24 8. Heat pumps, heat pipes,  

E-Print Network [OSTI]

pumps, heat pipes, cold thermal energy storage Ron Zevenhoven Ã?bo Akademi University Thermal and Flow for heating is referred to as a heat pump (mostly based on a vapour-compression cycle) Heat pumps make use electricity!) for heating and air conditioning purposes Heat pumps became popular in the 1970s

Zevenhoven, Ron

90

Reflux heat-pipe solar receiver for a Stirling dish-electric system  

SciTech Connect (OSTI)

The feasibility of competitive, modular bulk electric power from the sun is enhanced by the use of a reflux heat-pipe receiver to combine a Stirling engine with a paraboloidal dish concentrator. This combination represents a potential improvement over previous successful demonstrations of Stirling dish-electric technology in terms of enhanced performance, lower cost, and longer life. In the reflux (i.e. gravity assisted) heat-pipe receiver, concentrated solar radiation causes liquid sodium to evaporate, the vapor flows to the Stirling engine heaters where it condenses on the heater tubes. The condensate is returned to and distributed over the receiver by gravity (refluxing) and by capillary forces in a wick lining the receiver. It is essentially an adaptation of sodium heat pipe technology to the peculiar requirements of concentrated solar flux and provides many potential advantages over conventional tube receiver technology. This paper describes the preliminary design of a reflux heat-pipe solar receiver to match the STM4-120 variable swashplate Stirling engine to a Test Bed Concentrator at Sandia National Laboratories Distributed Receiver Test Facility. Performance analysis and other design considerations are presented and discussed.

Ziph, B.; Godett, T.M.; Diver, R.B.

1987-01-01T23:59:59.000Z

91

Entirely passive heat-pipe apparatus capable of operating against gravity  

DOE Patents [OSTI]

The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

Koenig, D.R.

1981-02-11T23:59:59.000Z

92

A Refined Model of Stationary Heat Transfer in Composite Bodies Reinforced with Pipes Containing a Heat-Transfer Fluid Moving in Laminar Flow Conditions  

Science Journals Connector (OSTI)

Equations describing the stationary heat conduction of composite bodies spatially reinforced with ... of smooth pipes, through which an incompressible heat-transfer fluid is pumped in laminar flow conditions, are...

A. P. Yankovskii

2014-03-01T23:59:59.000Z

93

Advantages and applications of megawatt-sized heat-pipe reactors  

SciTech Connect (OSTI)

Recently, worldwide interest in nuclear energy has focused on small reactors (10 to 300 MWe) to address emerging energy needs in remote locations. These designs are new to varying degrees but share similar approaches and common weaknesses with regard to primary heat rejection that differ little from reactor designs of the late 1950's. Here, an innovative concept, heat-pipe reactors, is discussed. The concept is unique in its simplicity and potential for safe, affordable, and reliable energy. Given the potential for reactors to meet worldwide energy needs and the pivotal role of heat rejection in overall reactor safety, the potential societal impact of this type of innovation is substantial. Heat-pipe-cooled, fast-spectrum reactors have been proposed for government applications requiring a robust, reliable, remotely controlled system with capacity much less than 1 MWe; however, they have not been designed for power ranges greater than 1 MWe. Los Alamos National Laboratory has initiated a study to design heat-pipe-cooled, fast-fission reactors and to generate a point design of a > 10-MWe-class machine suitable for next-generation compact reactors at remote locations. (authors)

McClure, P. R.; Reid, R. S.; Dixon, D. D. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

2012-07-01T23:59:59.000Z

94

Numerical analysis of vapor flow in a micro heat pipe  

E-Print Network [OSTI]

be modeled as a classical blowing and suction problem, i. e. ?(00) = v(00) = o ?(I, p) = v(L0) = 0 ?(x, 0) = ?(x, H) = 0 i(x, 0) = v(x), v(x, H) = -i'(x) 0&x&I. , (2. 6) v(x, 0) = 0, v(x, H) = 0 I. , &x&(L, +L, ) i(x, 0) = -v(x), v(x, H) = v(x) (L, +L... are considerably smoother and appear more reasonable Figure 5. 6 presents the velocity vector which is under q=40W/cm2, H=0. 003m uniform heat flux linear heat flux 0 00 0 O'I 0 02 0. 03 0. 04 0. 05 0 06 x(m) Fig. 5. 2 Heat flux distribution influence...

Liu, Xiaoqin

2012-06-07T23:59:59.000Z

95

Analysis of a Fabric/Desiccant Window Cavity Dehumidifier  

E-Print Network [OSTI]

This paper presents the results of an exploratory study of a fabric/desiccant window cavity dehumidifier system for possible use in commercial buildings. The objective was to evaluate fabrics commonly used in buildings, and system concepts...

Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

1994-01-01T23:59:59.000Z

96

Micro loop heat pipe evaporator coherent pore structures  

E-Print Network [OSTI]

and 5360 K for water, Pv is vapor pressure, sigma is surface tension, Rc is the radius of curvature, Psat(Tl) is water saturation pressure at liquid temperature for flat interface, A is Hamaker constant, delta is liquid film thickness, )vib... is the vibrational partion function, w s pore wall temperature, hfg is water latent heat of vaporization, kl is liquid conductivity. The FPEM was developed by Ward1 and applied by Oinuma2 in order to eliminate the need for empirical constants required by Kinetic...

Alexseev, Alexandre Viktorovich

2005-02-17T23:59:59.000Z

97

Fabrication and development of several heat pipe honeycomb sandwich panel concepts. Final report  

SciTech Connect (OSTI)

The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon, a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals, potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation, nine panels were processed as heat pipes, and two panels were left unprocessed.

Tanzer, H.J.

1982-06-01T23:59:59.000Z

98

Surface cooling of scramjet engine inlets using heat pipe, transpiration, and film cooling  

SciTech Connect (OSTI)

This article reports the results of applying a finite-difference-based computational technique to the problem of predicting the transient thermal behavior of a scramjet engine inlet exposed to a typical hypersonic flight aerodynamic surface heating environment, including type IV shock interference heating. The leading-edge cooling model utilized incorporates liquid metal heat pipe cooling with surface transpiration and film cooling. Results include transient structural temperature distributions, aerodynamic heat inputs, and surface coolant distributions. It seems that these cooling techniques may be used to hold maximum skin temperatures to near acceptable values during the severe aerodynamic and type IV shock interference heating effects expected on the leading edge of a hypersonic aerospace vehicle scramjet engine. 15 refs.

Modlin, J.M.; Colwell, G.T. (U.S. Army, Strategic Defense Command, Huntsville, AL (United States) Georgia Institute of Technology, Atlanta (United States))

1992-09-01T23:59:59.000Z

99

Simulation of heat pipe rapid transient performance using a multi-nodal implicit finite difference scheme  

E-Print Network [OSTI]

capillary pumping head is given by 2 0' Ap C XXX z erst where 6 = the surface tension of the working fluid r?rc = the minimum radius of curvature and is given for wire meshes as w+d r CIlt where w = width of pore d = wire diameter. The maximum... Difference Scheme James Samuel Peery, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Frederick R. Best A multi ? nodal, implicit, finite difference model, Heat Pipe Transient Analysis Code (HPTAC), has been developed to simulate heat...

Peery, James Samuel

2012-06-07T23:59:59.000Z

100

DOE Publishes Notice of Proposed Rulemaking Regarding the Compliance Date for the Dehumidifier Test Procedure  

Broader source: Energy.gov [DOE]

The Department of Energy has published a notice of proposed rulemaking regarding the compliance date for the dehumidifier test procedure.

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Residence time distribution and heat transfer in circular pipe fitted with longitudinal rectangular wings  

Science Journals Connector (OSTI)

Abstract Numerical simulations are used to analyze the heat and mass transfer in a circular pipe fitted with longitudinal rectangular vortex generators for Reynolds number between 7500 and 15,000 based on the pipe diameter. The aim of the present study is to test and quantify the mixing efficiency of a new solution able to avoid the bypass region that exists in the center of the high efficiency vortex static mixer (HEV), and also to enhance the heat transfer without increasing the pressure losses. The rectangular wings used here generate each a streamwise counter-rotating vortex pair sweeping the volume of the mixer and act as internal agitator on the flow. The particle dispersion is investigated by analyzing Poincaré sections and by studying the residence time distribution (RTD). The two approaches show much better mass transfer performance and better mixing homogeneity for the new wings arrangement. The heat transfer is also investigated and it is shown that the thermal enhancement factor in the new arrangement is much greater than that of the conventional systems used in the industry. When compared to the HEV heat exchangers it is shown that the thermal enhancement in the present configuration reaches about 40% relative to the classic HEV and 15% relative to the reversed HEV.

Charbel Habchi; Jean-Luc Harion

2014-01-01T23:59:59.000Z

102

Underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents [OSTI]

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

Hampel, Viktor E. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

103

An underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents [OSTI]

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

Hampel, V.E.

1988-05-17T23:59:59.000Z

104

Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990  

SciTech Connect (OSTI)

Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

Mahrle, P.

1990-12-01T23:59:59.000Z

105

ISSUANCE 2015-01-27: Energy Conservation Program: Test Procedures for Dehumidifiers Supplemental Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

Energy Conservation Program: Test Procedures for Dehumidifiers Supplemental Notice of Proposed Rulemaking

106

Experimental investigation of a pulsating heat pipe for hybrid vehicle applications  

Science Journals Connector (OSTI)

This paper deals with the experimental results of an unlooped pulsating heat pipe (PHP) developed and tested in an electronic thermal management field with hybrid vehicle applications in mind. The 2.5 mm inner tube diameter device was cooled by an air heat exchanger to replicate the environment of a vehicle. In order to characterize this pulsating heat pipe, four working fluids have been tested. They are acetone, methanol, water, and n-pentane, with applied thermal power ranging from 25 W to 550 W, air temperature ranging from 10 °C to 60 °C and air velocity ranging from 0.25 m s?1 to 2 m s?1. Three inclinations have also been tested according to their horizontal positions: +45° (condenser above the evaporator), 0° and ?45° (condenser below the evaporator). Among the different results, some of the most revelatory were obtained with regard to unfavourable inclination (?45°), for which the performances were very interesting considering a terrestrial application. On the other hand, one also observed low temperature limitations for water as a working fluid and degradation of performances for n-pentane tested at 60 °C air temperature. On an overall basis, however, it should be noted that the PHP functioned with high reliability and reproducibility and without any failure during the start-up or working stage.

G. Burban; V. Ayel; A. Alexandre; P. Lagonotte; Y. Bertin; C. Romestant

2013-01-01T23:59:59.000Z

107

Close-spaced thermionic converters with active spacing control and heat-pipe isothermal emitters  

SciTech Connect (OSTI)

Thermionic converters with interelectrode gaps smaller than 10 microns are capable of substantial performance improvements over conventional ignited mode diodes. Previous devices which have demonstrated operation at such small gaps have done so at low power densities and emitter temperatures. Higher power operation requires overcoming two primary design issues: thermal distortion of the emitter due to temperature gradients and degradation of the in-gap spacers at higher emitter temperatures. This work describes two innovations for solution of these issues. The issue of thermal distortion was addressed by an isothermal emitter incorporating a heat-pipe into its structure. Such a heat-pipe emitter, with a single-crystal emitting surface, was fabricated and characterized. Finite-element computational modeling was used to analyze its distortion with an applied heat flux. The calculations suggested that thermal distortion would be significantly reduced as compared with a solid emitter. Ongoing work and preliminary experimental results are described for a system of active interelectrode gap control. In the present design an integral transducer determines the interelectrode gap of the converter. Initial designs for spacing actuators and their required cesium vapor seals are discussed. A novel hot-shell converter design incorporating active spacing control and low-temperature seals is presented. A converter incorporating the above features would be capable of near ideal-converter performance at high power densities. In addition, active spacing control can potentially completely eliminate short-circuit failures in thermionic converter systems.

Fitzpatrick, G.O.; Koester, J.K.; Chang, J.; Britt, E.J.; McVey, J.B. [Space Power, Inc., San Jose, CA (United States)

1996-12-31T23:59:59.000Z

108

Analysis of Selection of Single or Double U-bend Pipes in a Ground Source Heat Pump System  

E-Print Network [OSTI]

The ground source heat pump (GSHP) system is widely used because of its energy-saving and environmental-friendly characteristics. The buried pipes heat exchangers play an important role in the whole GSHP system design. However, in most cases, single...

Shu, H.; Duanmu, L.; Hua, R.

2006-01-01T23:59:59.000Z

109

Heat Pipe Science and Technology, An International Journal 1(3), 279302 (2010) 2151-7975/10/$35.00 2010 by Begell House, Inc. 279  

E-Print Network [OSTI]

Heat Pipe Science and Technology, An International Journal 1(3), 279­302 (2010) 2151 Innovative heat exchangers are needed to harness or transport energy from various pro- cess industry management and transport requirements. The #12;Heat Pipe Science and Technology, An International Journal

Khandekar, Sameer

110

Proc. 5th Minsk International Seminar (Heat Pipes, Heat Pumps and Refrigerators), Minsk, Belarus, 2003. 21 7+( '(),1,7,21 2) 38/6$7,1* +($7 3,3(6 $1 29(59,(  

E-Print Network [OSTI]

Proc. 5th Minsk International Seminar (Heat Pipes, Heat Pumps and Refrigerators), Minsk, Belarus)-711-685-2142, Fax: (+49)-711-685-2010, E-mail: khandekar@ike.uni-stuttgart.de $EVWUDFW Pulsating heat pipes (PHPs) have emerged as interesting alternatives to conventional heat transfer technologies. These simple

Khandekar, Sameer

111

Environmentally Friendly Systems: Earth Heat Pump System with Vertical Pipes for Heat Extraction for Domestic Heating and Cooling  

Science Journals Connector (OSTI)

Geothermal heat pumps (GSHPs), or direct expansion (DX) ground source heat pumps, are highly efficient renewable energy technology, ... the earth, groundwater or surface water as heat sources when operating in heating

Saffa Riffat; Siddig Omer; Abdeen Omer

2014-01-01T23:59:59.000Z

112

Hypersonic aerospace vehicle leading-edge cooling using heat-pipe, transpiration and film-cooling techniques  

SciTech Connect (OSTI)

The feasibility of cooling hypersonic-vehicle leading-edge structures exposed to severe aerodynamic surface heat fluxes was studied, using a combination of liquid-metal heat pipes and surface-mass-transfer cooling techniques. A generalized, transient, finite-difference-based hypersonic leading-edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading-edge section. The hypersonic leading-edge cooling model was developed using an existing, experimentally verified heat-pipe model. Then the existing heat-pipe model was modified by adding both transpiration and film-cooling options as new surface boundary conditions. The models used to predict the leading-edge surface heat-transfer reduction effects of the transpiration and film cooling were modifications of more-generalized, empirically based models obtained from the literature. It is concluded that cooling leading-edge structures exposed to severe hypersonic-flight environments using a combination of liquid-metal heat pipe, surface transpiration, and film cooling methods appears feasible.

Modlin, J.M.

1991-01-01T23:59:59.000Z

113

An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract An effective battery thermal management (BTM) system is required for lithium-ion batteries to ensure a desirable operating temperature range with minimal temperature gradient, and thus to guarantee their high efficiency, long lifetime and great safety. In this paper, a heat pipe and wet cooling combined BTM system is developed to handle the thermal surge of lithium-ion batteries during high rate operations. The proposed BTM system relies on ultra-thin heat pipes which can efficiently transfer the heat from the battery sides to the cooling ends where the water evaporation process can rapidly dissipate the heat. Two sized battery packs, 3 Ah and 8 Ah, with different lengths of cooling ends are used and tested through a series high-intensity discharges in this study to examine the cooling effects of the combined BTM system, and its performance is compared with other four types of heat pipe involved BTM systems and natural convection cooling method. A combination of natural convection, fan cooling and wet cooling methods is also introduced to the heat pipe BTM system, which is able to control the temperature of battery pack in an appropriate temperature range with the minimum cost of energy and water spray.

Rui Zhao; Junjie Gu; Jie Liu

2015-01-01T23:59:59.000Z

114

Demonstration and testing of an all-electric desiccant dehumidifying system at a New Jersey supermarket  

SciTech Connect (OSTI)

A novel all-electric desiccant dehumidifying system was demonstrated and evaluated at a supermarket field test site in New Jersey during 1995. Unlike traditional desiccant systems, this system uses waste heat from vapor-compression refrigerating condensers to regenerate a recently developed desiccant material. The 7,000-cfm (3,300-L/s) unit has a latent capacity of approximately 7 tons (25 kW), with fan energy as the only purchased energy source. This paper discusses the performance of the desiccant system under field conditions and its interactions with the refrigerating and conventional heating, ventilating, and air-conditioning (HVAC) systems. Results indicate that the system is three to four times more efficient for moisture removal than a conventional HVAC system with no deleterious effects on refrigerating system operations.

Brandemuehl, M.J. [Univ. of Colorado, Boulder, CO (United States). Joint Center for Energy Management; Khattar, M.K. [Electric Power Research Inst., Palo Alto, CA (United States)

1997-12-31T23:59:59.000Z

115

Correct conditions for heat treatment of butt welded oil drilling pipes  

Science Journals Connector (OSTI)

The application of optimum normalization conditions decreases the hardness and increases the impact strength of drilling pipes used in geological survey work by 100% and that of oil drilling pipes by 25–30%, the ...

F. N. Tavadze; Z. G. Napetvaridze

1965-10-01T23:59:59.000Z

116

Laboratory Test Report for Six ENERGY STAR Dehumidifiers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Report for Six Test Report for Six ENERGY STAR ® Dehumidifiers Jon Winkler, Ph.D., Dane Christensen, Ph.D., and Jeff Tomerlin Technical Report NREL/TP-5500-52791 December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Laboratory Test Report for Six ENERGY STAR ® Dehumidifiers Jon Winkler, Ph.D., Dane Christensen, Ph.D., and Jeff Tomerlin Prepared under Task No. BE11.0201 Technical Report NREL/TP-5500-52791 December 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

117

Using Field-Metered Data to Quantify Annual Energy Use of Residential Portable Unit Dehumidifiers  

E-Print Network [OSTI]

index.cfm? c =dehumid.pr_basics_dehumidifiers> AHAM.2006. AHAM Comments on Framework Document for Home ApplianceAppliance Manufacturers (AHAM). Other sources suggest using

Willem, Henry

2014-01-01T23:59:59.000Z

118

Case Study of an Innovative HVAC System with Integral Dehumidifier  

E-Print Network [OSTI]

prototype air conditioning/dehumidification system was initiated and focused on integrating a standalone room air dehumidifier and a conventional residential air handler into a single package. Potential benefits of the integrated system include lower... and construction of the prototype unit and the laboratory and field tests that were performed to evaluate the performance of the prototype system. Further details are available in the final task report (Raustad et al. 2007). PROTOTYPE CONSTRUCTION...

Shirey, D. B.; Raustad, R. A.

119

Study of Heat Transfer in Non-boiling Two-phase Gas-liquid Flow in Pipes for Horizontal, Slightly Inclined, and Vertical Orientations.  

E-Print Network [OSTI]

??The main objective of this research is to establish a fundamental understanding of heat transfer in non-boiling two-phase pipe flow. The key processes that govern… (more)

Tang, Clement Chih-Wei

2011-01-01T23:59:59.000Z

120

Heat transfer in a horizontal coiled pipe in a transient regime and at a near-critical pressure of a fluid  

Science Journals Connector (OSTI)

It has been established that in the region of pressures close to a critical one, heat transfer in a transient regime of motion of a single-phase flow in a horizontal coil pipe changes nonuniformly over the cro...

R. F. Kelbaliev; R. Yu. Aliev…

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

14th International Heat Pipe Conference (14th IHPC), Florianpolis, Brazil, April 22-27, 2007. TWO-PHASE CLOSED THERMOSYPHON WITH NANOFLUIDS  

E-Print Network [OSTI]

14th International Heat Pipe Conference (14th IHPC), Florianópolis, Brazil, April 22-27, 2007. TWO Engineering Indian Institute of Technology Kanpur Kanpur 208016 India. Tel: +91-512-2597038, Fax: +91 transfer fluids due

Khandekar, Sameer

122

Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report  

SciTech Connect (OSTI)

Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

Not Available

1994-09-01T23:59:59.000Z

123

Innovative Porous Media Approach in Modeling Biofilm Applications, Human Eye and Nanofluid Based Heat Pipes  

E-Print Network [OSTI]

Hydrodynamic and heat transfer study of dispersed fluidsHydrodynamic and heat transfer study of dispersed fluidsand heat transfer in variable porosity media, Journal of Fluid

Shafahi, Maryam

2010-01-01T23:59:59.000Z

124

Laboratory Test Report for ThermaStor Ultra-Aire XT150H Dehumidifier  

SciTech Connect (OSTI)

This report documents the performance of the ThermaStor Ultra-Aire XT150H Dehumidifier. Its performance was measured across a wide range of inlet air conditions and fit to a numerical model.

Christensen, D.; Winkler, J.

2009-12-01T23:59:59.000Z

125

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network [OSTI]

4.5.1 Fluid Flow and Heat Transfer Characteristics . . 4.5.2v ? T i = 5 K. Fluid Flow and Heat Transfer Characteristicsmodeling of heat transfer and fluid flow phenomena at the

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

126

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

on a flat-plate solar heat collector with integrated solarBinary Mixture Nucleate Boiling Heat Transfer CorrelationsG.E. , 1965, “A study of heat transfer in nucleate pool

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

127

NREL Tests Dehumidifiers, Defines Simplified Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

residential dehumidifiers residential dehumidifiers results in practical performance curves for use in whole-building simulation tools. Dehumidifiers remove moisture from a home's indoor environment, thereby increasing occupant comfort, improving air quality, and reducing the likelihood of mold, rot, and dust mites. To help energy professionals more easily evaluate this technology for the market, National Renewable Energy Laboratory (NREL) researchers tested the efficiency and capacity of a variety of dehumidifiers and developed a generalized approach to simulate any residential dehumidifier. The test results and modeling method are documented in a new report. Typically, dehumidifiers are only rated at a single temperature and humidity, so rating data alone cannot determine whether a product will meet the moisture removal

128

A WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground Insulated Piping  

Office of Scientific and Technical Information (OSTI)

WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground Insulated Piping Systems by K. C. Kwon Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808 A document prepared for ASME CONFERENCE - HEAT EXCHANGER COMMITTEE MEETING 8 , INTERNATIONAL JOINT POWER GENERATION CONFERENCE 1998 at Baltimore, MA, USA from 8/23/98 - 8/26/98. DOE Contract No. DE-AC09-96SR18500 This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

129

Parametric modelling of a bellows heat pipe for electronic component cooling  

E-Print Network [OSTI]

Page 1. Version I: heat transport limits with two layers of 50 mesh. . . . 52 2. Version I: heat transport limits with two layers of 100 mesh. . . . 54 3. Version I: heat transport limits with two layers of 150 mesh. . . . 57 4. Version I: heat... transport limits with two layers of 200 mesh. . . . 59 5. Version I: maximum heat transport at various meshes. 62 6. Version I: maximum heat transport with different number of layers. 64 7. Version I: variation of heat transport with inclination. 8...

Patnaik, Preetam

2012-06-07T23:59:59.000Z

130

Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect  

E-Print Network [OSTI]

)" #12;1. Introduction Brazed aluminium heat exchangers are composed of flat tubes on the refrigerant exchangers with round tube, such as charge reduction and higher heat transfer coefficient. But, according are thus not suitable to small-channel heat exchangers. As a consequence, the refrigerant distribution

Boyer, Edmond

131

Heat and Mass Transfer in a Wetted Thermal Insulation of hot Water Pipes Operating Under Flooding Conditions  

Science Journals Connector (OSTI)

We present the results of numerical simulation of the thermal regimes of hot water pipes under flooding conditions with account for evaporation and diffusion ... modeling thermal regimes of hot water pipes under

V. Yu. Polovnikov; E. V. Gubina

2014-09-01T23:59:59.000Z

132

Heat transfer rate of a closed-loop oscillating heat pipe with check valves using silver nanofluid as working fluid  

Science Journals Connector (OSTI)

This research investigated the effect of aspect ratios (evaporator length to inner diameter of capillary tube), inclination angles, and concentrations of silver nanofluid on the heat transfer rate of a closed-loo...

S. Wannapakhe; S. Rittidech; B. Bubphachot…

2009-06-01T23:59:59.000Z

133

Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier, Windermere, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Maintaining comfort in a home can be challenging in hot-humid climates. At the common summer temperature set point of 75 degrees F, the perceived air temperature can vary by 11 degrees F because higher indoor humidity reduces comfort. Often the air conditioner (AC) thermostat set point is lower than the desirable cooling level to try to increase moisture removal so that the interior air is not humid or "muggy." However, this method is not always effective in maintaining indoor relative humidity (RH) or comfort. In order to quantify the performance of a combined whole-house dehumidifier (WHD) AC system, researchers from the U.S. Department of Energy's Building America team Consortium of Advanced Residential Buildings (CARB) monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period. By using a WHD to control moisture levels (latent cooling) and optimizing a central AC to control temperature (sensible cooling), improvements in comfort can be achieved while reducing utility costs. Indoor comfort for this study was defined as maintaining indoor conditions at below 60% RH and a humidity ratio of 0.012 lbm/lbm while at common dry bulb set point temperatures of 74 degrees -80 degrees F. In addition to enhanced comfort, controlling moisture to these levels can reduce the risk of other potential issues such as mold growth, pests, and building component degradation. Because a standard AC must also reduce dry bulb air temperature in order to remove moisture, a WHD is typically needed to support these latent loads when sensible heat removal is not desired.

Not Available

2013-11-01T23:59:59.000Z

134

Whole-Home Dehumidifiers: Field-Monitoring Study  

SciTech Connect (OSTI)

Lawrence Berkeley National Laboratory (LBNL) initiated a WHD field-metering study to expand current knowledge of and obtain data on WHD operation and energy consumption in real-world applications. The field study collected real-time data on WHD energy consumption, along with information regarding housing characteristics, consumer behavior, and various outdoor conditions expected to affect WHD performance and efficiency. Although the metering study collected similar data regarding air conditioner operation, this report discusses only WHDs. The primary objectives of the LBNL field-metering study are to (1) expand knowledge of the configurations, energy consumption profiles, consumer patterns of use (e.g., relative humidity [RH] settings), and environmental parameters of whole-home dehumidification systems; and (2) develop distributions of hours of dehumidifier operation in four operating modes: off, standby, fan-only, and compressor (also called dehumidification mode). Profiling energy consumption entails documenting the power consumption, duration of power consumption in different modes, condensate generation, and properties of output air of an installed system under field conditions of varying inlet air temperature and RH, as well as system configuration. This profiling provides a more detailed and deeper understanding of WHD operation and its complexities. This report describes LBNL’s whole-home dehumidification field-metering study conducted at four homes in Wisconsin and Florida. The initial phase of the WHD field-metering study was conducted on one home in Madison, Wisconsin, from June to December of 2013. During a second phase, three Florida homes were metered from June to October of 2014. This report presents and examines data from the Wisconsin site and from the three Florida sites.

Burke, Tom; Willem, Henry; Ni, Chun Chun; Stratton, Hannah; Whitehead, Camilla Dunham; Johnson, Russell

2014-09-23T23:59:59.000Z

135

Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm  

E-Print Network [OSTI]

conservation, and it is urgent. At the same time, the energy consumption about air-conditioning of buildings continues to increase and the new wind energy accounts for 4%~12% of the buildings total energy consumption [1]. A heat recovery system for air...

Qian, J.; Sun, D.; Li, G.

2006-01-01T23:59:59.000Z

136

Determination of optimum pipe diameter along with energetic and exergetic evaluation of geothermal district heating systems: Modeling and application  

Science Journals Connector (OSTI)

This study deals with determination of optimum pipe diameters based on economic analysis and the performance analysis of geothermal district heating systems along with pipelines using energy and exergy analysis methods. In this regard, the Dikili geothermal district heating system (DGDHS) in Izmir, Turkey is taken as an application place, to which the methods presented here are applied with some assumptions. The system mainly consists of three cycles, namely (i) the transportation network, (ii) the Danistay region, and (iii) the Bariskent region. The thermal capacities of these regions are 21,025 and 7975 kW, respectively, while the supply (flow) and return temperature values of those are 80 and 50 °C, respectively. Based upon the assessment of the transportation network using the optimum diameter analysis method, minimum cost is calculated to be US$ 561856.906 year?1 for a nominal diameter of DN 300. The exergy destructions in the overall DGDHS are quantified and illustrated using exergy flow diagram. Furthermore, both energy and exergy flow diagrams are exhibited for comparison purposes. It is observed through analysis that the exergy destructions in the system particularly take place due to the exergy of the thermal water (geothermal fluid) reinjected, the heat exchanger losses, and all pumps losses, accounting for 38.77%, 10.34%, 0.76% of the total exergy input to the DGDHS. Exergy losses are also found to be 201.12817 kW and 1.94% of the total exergy input to the DGDHS for the distribution network. For the system performance analysis and improvement, both energy and exergy efficiencies of the overall DGDHS are investigated, while they are determined to be 40.21% and 50.12%, respectively.

Yildiz Kalinci; Arif Hepbasli; Ismail Tavman

2008-01-01T23:59:59.000Z

137

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

E-Print Network [OSTI]

Outdoor Temperature for District Heating Systems. ” ASHRAEAssessment of Buried District Heating Piping. ” ASHRAE

Warner, J.L.

2009-01-01T23:59:59.000Z

138

2014-05-05 Issuance: Test Procedures for Dehumidifiers; Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for dehumidifiers, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 2, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

139

A Refined Model of Stationary Heat Transfer in Composite Bodies Reinforced With Pipes Containing a Heat-Transfer Fluid Moving in Laminar Flow Conditions. 2. A Model Problem**  

Science Journals Connector (OSTI)

Particular calculations of temperature fields in cylindrical shells spirally reinforced with pipes in which a heattransfer fluid moves are carried out. The effect of reinforcement parameters, the speed of the ...

A. P. Yankovskii

2014-05-01T23:59:59.000Z

140

Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks: A case study in Gladsaxe, Denmark  

Science Journals Connector (OSTI)

Abstract This paper presents a method for the dimensioning of the low-energy District Heating (DH) piping networks operating with a control philosophy of supplying heat in low-temperature such as 55 °C in supply and 25 °C in return regularly while the supply temperature levels are being boosted in cold winter periods. The performance of the existing radiators that were formerly sized with over-dimensions was analyzed, its results being used as input data for the performance evaluation of the piping network of the low-energy DH system operating with the control philosophy in question. The optimization method was performed under different mass flow limitations that were formed with various temperature configurations. The results showed that reduction in the mass flow rate requirement of a district is possible by increasing the supply temperature in cold periods with significant reduction in heat loss from the DH network. Sensitivity analysis was carried out in order to evaluate the area of applicability of the proposed method. Hence varied values of the original capacity and the current capacity of the existing radiators were evaluated with the design temperature values that were defined by two former radiator sizing standards.

Hakan ?. Tol; Svend Svendsen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal district piping - A primer  

SciTech Connect (OSTI)

Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

Rafferty, K.

1989-11-01T23:59:59.000Z

142

An Experimental Study of Upward and Downward Flow of Supercritical Carbon Dioxide in a Straight Pipe Heat Exchanger with Constant Wall Heat Flux  

E-Print Network [OSTI]

An experimental analysis was conducted on a single circular tube heat exchanger using supercritical carbon dioxide as the working fluid. The heat exchanger was operated in two different orientations: vertically upward and downward. The experimental...

Umrigar, Eric Dara

2014-05-01T23:59:59.000Z

143

Heat-pipe-coupled planar thermionic converter: Performance characterization, nondestructive testing, and evaluation. Final report, 1 Aug 90-30 Nov 91  

SciTech Connect (OSTI)

This report provides the technical details on the research activities conducted by Wright Laboratory and UES, Inc. personnel during the period of August 1990 to November 1991. The performance of two heat pipe coupled, planar thermionic energy converters was characterized using experimental and analytical methods. Nondestructive failure analysis was performed to evaluate the causes for the failure of a molybdenum-rhenium converter. The experimentation was carded out at the thermionic facilities at the USAF Wright Laboratory while the computer simulations were performed at Wright Laboratory and the University of Central Florida. A maximum current density of 10.1 amps/cm[sup 2] and a peak power density of 7.7 watts/cm[sup 2] were obtained from the rhenium-rhenium diode operating in the ignited mode.

Young, T.J.; Lamp, T.R.; Tsao, B.H.; Ramalingam, M.L.

1992-03-15T23:59:59.000Z

144

SERI Desiccant Cooling Test Facility. Status report. Preliminary data on the performance of a rotary parallel-passage silica-gel dehumidifier  

SciTech Connect (OSTI)

This report describes the SERI Desiccant Cooling Test Facility. The facility can test bench-scale rotary dehumidifiers over a wide range of controlled conditions. We constructed and installed in the test loop a prototype parallel-passage rotary dehumidifier that has spirally wound polyester tape coated with silica gel. The initial tests gave satisfactory results indicating that approximately 90% of the silica gel was active and the overall Lewis number of the wheel was near unity. The facility has several minor difficulties including an inability to control humidity satisfactorily and nonuniform and highly turbulent inlet velocities. To completely validate the facility requires a range of dehumidifier designs. Several choices are available including constructing a second parallel-passage dehumidifier with the passage spacing more uniform.

Schultz, K.J.

1986-04-01T23:59:59.000Z

145

2014-10-06 DOE Certification, Compliance, and Enforcement Overview for Refrigerators, Refrigerator-Freezers, Freezers, Dehumidifiers, Room Air Conditioners, Clothes Washers, Clothes Dryers, and Dishwashers  

Broader source: Energy.gov [DOE]

This presentation provides an overview of DOE Certification, Compliance, and Enforcement for Refrigerators, Refrigerator-Freezers, Freezers, Dehumidifiers, Room Air Conditioners, Clothes Washers, Clothes Dryers, and Dishwashers. It was presented via webinar on October 6, 2014.

146

Design and Analysis of High-Performance Air-Cooled Heat Exchanger with an Integrated Capillary-Pumped Loop Heat Pipe  

E-Print Network [OSTI]

We report the design and analysis of a high-power air-cooled heat exchanger capable of dissipating over 1000 W with 33 W of input electrical power and an overall thermal resistance of less than 0.05 K/W. The novelty of the ...

McCarthy, Matthew

147

E-Print Network 3.0 - air source heat pumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat pumps, heat pipes,Heat pumps, heat pipes, Summary: vcmfiles electricity) for heating and air conditioning purposes Heat pumps became popular in :www.bge.c Heat pumps......

148

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to… (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

149

CRAD, Nuclear Facility Construction - Piping and Pipe Supports...  

Office of Environmental Management (EM)

Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012 CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012...

150

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

The DLM accounts for the distribution heat loss within eachHot-Water Distribution System Piping Heat Loss Factors—PhaseHot Water Distribution System Piping Heat Loss Factors-

Lutz, Jim

2014-01-01T23:59:59.000Z

151

Extension of the semi-empirical correlation for the effects of pipe diameter and internal surface roughness on the decompression wave speed to include High Heating Value Processed Gas mixtures  

Science Journals Connector (OSTI)

Abstract The decompression wave speed, which is used throughout the pipeline industry in connection with the Battelle two-curve method for the control of propagating ductile fracture, is typically calculated using GASDECOM (GAS DECOMpression). GASDECOM, developed in the 1970's, idealizes the decompression process as isentropic and one-dimensional, taking no account of pipe wall frictional effects or pipe diameter. Previous shock tube tests showed that decompression wave speeds in smaller diameter and rough pipes are consistently slower than those predicted by GASDECOM for the same conditions of mixture composition and initial pressure and temperature. Previous analysis based on perturbation theory and the fundamental momentum equation revealed a correction term to be subtracted from the ‘idealized’ value of the decompression speed calculated by GASDECOM. One parameter in this correction term involves a dynamic spatial pressure gradient of the outflow at the rupture location. While this is difficult to obtain without a shock tube or actual rupture test, data from 14 shock tube tests, as well as from 14 full scale burst tests involving a variety of gas mixture compositions, were analyzed to correlate the variation of this pressure gradient with two characteristics of the gas mixture, namely; the molecular weight and the higher heating value (HHV). For lean to moderately-rich gas mixes, the developed semi-empirical correlation was found to fit very well the experimentally determined decompression wave speed curve. For extremely rich gas mixes, such as High Heating Value Processed Gas (HHVPG) mixtures of HHV up to 58 MJ/m3, it was found that it overestimates the correction term. Therefore, additional shock tube tests were conducted on (HHVPG) mixes, and the previously developed semi-empirical correlation was extended (revised) to account for such extremity in the richness of the gas mixtures. The newly developed semi-empirical correlation covers a wider range of natural gas mixtures from as lean as pure methane up to HHVPG mixtures of HHV = 58 MJ/m3.

K.K. Botros; L. Carlson; M. Reed

2013-01-01T23:59:59.000Z

152

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Broader source: Energy.gov (indexed) [DOE]

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

153

Vapor spill pipe monitor  

DOE Patents [OSTI]

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

154

Flexible ocean upwelling pipe  

DOE Patents [OSTI]

In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

Person, Abraham (Los Alamitos, CA)

1980-01-01T23:59:59.000Z

155

Pipe crawlers: Versatile adaptations for real applications  

SciTech Connect (OSTI)

A problem at the Savannah River Site requires the unique application of a pipe crawler. A number of stainless steel pipes buried in concrete require ultrasonic inspection of the heat affected zones of the welds for detection of flaws or cracks. The paper describes the utilization of an inch-worm motion pipe crawler which negotiates a 90 degree reducing elbow with significant changes in diameter and vertical sections before entering the area of concern. After a discussion of general considerations and problem description, special requirements to meet the objectives and the design approach regarding the tractor, control system, instrument carriage, and radiation protection are discussed. 2 refs., 11 figs. (MB)

Hapstack, M.; Talarek, T.R.

1990-01-01T23:59:59.000Z

156

Using Flexible Pipe (poly-pipe) with Surface Irrigation  

E-Print Network [OSTI]

Aimed at farmers and irrigators who want to irrigate their crops using flexible plastic pipes (commonly called "poly-pipe), this publication highlights (1) advantages of using poly-pipe, (2) factors to consider in selecting such pipe, and (3...

Peries, Xavier; Enciso, Juan

2005-10-05T23:59:59.000Z

157

CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection -  

Broader source: Energy.gov (indexed) [DOE]

Construction - Piping and Pipe Supports Construction - Piping and Pipe Supports Inspection - March 29, 2012 CRAD, Nuclear Facility Construction - Piping and Pipe Supports Inspection - March 29, 2012 March 29, 2012 Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0) For the purpose of this criteria review and approach, this Criteria Review and Approach Document (CRAD) includes piping and pipe supports and attachments of the pipe supports to structures (concrete, structural steel, or embed plates). Pipe supports include rigid restraints, welded attachments to piping, struts, snubbers, spring cans, and constant supports. Inspection of pipe whip restraints are also included in this CRAD. Selection of nuclear facility piping systems for inspection should be

158

Covered Product Category: Residential Geothermal Heat Pumps ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heat exchangers. Most large systems use vertical heat exchangers, which consist of polyethylene u-tube pipes in deep (typically 150-250 feet) boreholes. Horizontal loops require...

159

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

160

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993  

SciTech Connect (OSTI)

This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

Nimmo, B.G.; Thornbloom, M.D.

1995-04-01T23:59:59.000Z

162

Passive heat transfer means for nuclear reactors  

DOE Patents [OSTI]

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

Burelbach, James P. (Glen Ellyn, IL)

1984-01-01T23:59:59.000Z

163

Pipe crawler apparatus  

DOE Patents [OSTI]

A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

Hovis, Gregory L. (North Augusta, SC); Erickson, Scott A. (Augusta, GA); Blackmon, Bruce L. (Aiken, SC)

2002-01-01T23:59:59.000Z

164

In situ heat treatment process utilizing a closed loop heating system  

DOE Patents [OSTI]

Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

2010-12-07T23:59:59.000Z

165

Development and Testing of Insulated Drill Pipe  

SciTech Connect (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

166

Flexible ultrasonic pipe inspection apparatus  

DOE Patents [OSTI]

Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

Jenkins, C.F.; Howard, B.D.

1994-01-01T23:59:59.000Z

167

Analysis of heat transfer in unlooped and looped pulsating  

E-Print Network [OSTI]

Analysis of heat transfer in unlooped and looped pulsating heat pipes M.B. Sha®i and A. Faghri of Mechnical Engineering, New Mexico State University, Las Cruces, USA Keywords Heat transfer, Condensation, Tubing Abstract An advanced heat transfer model for both unlooped and looped Pulsating Heat Pipes (PHPs

Zhang, Yuwen

168

Thulium-170 heat source  

SciTech Connect (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

169

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

170

Energy consumption and optimization of internally cooled/heated liquid desiccant air-conditioning system: A case study in Hong Kong  

Science Journals Connector (OSTI)

Abstract LDAC (liquid desiccant air-conditioning system) is promising for reducing the energy consumption, and improving the indoor air quality. In this paper, the operation performance of LDAC with internally cooled/heated dehumidifier/regenerator was simulated and optimized. The cooling tower and solar collectors were employed as the cooling/heating source. Four nested iteration loops were developed and solved for system modeling. A typical commercial building in Hong Kong was selected as a case study, which air-conditioning load was obtained by Energy-plus. Results show that with the increase of solar collector area, the electricity consumption of AC (air-conditioning systems) system reduced by 11–35% in original system, but only a part of dehumidification demand was handled with liquid desiccant ventilation, which led to a low chiller COP (coefficient of performance). By adding a cooling coil for the solution entering dehumidifier, the electricity saving effectively increased to 22–47%, while the heat demand for regeneration also increased by 17%. So, a heat exchanger between water leaving regenerator and solution leaving dehumidifier was introduced. With the lower thermal requirement (reduced by 20%) and higher solar fraction (increased from 30 to 40%), the saving further increased to 29–49%, and the required collector area obviously reduced by 50–60% for the similar energy saving purpose.

Ronghui Qi; Lin Lu

2014-01-01T23:59:59.000Z

171

Composite drill pipe  

DOE Patents [OSTI]

A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

Leslie, James C. (Fountain Valley, CA); Leslie, II, James C. (Mission Viejo, CA); Heard, James (Huntington Beach, CA); Truong, Liem (Anaheim, CA), Josephson; Marvin (Huntington Beach, CA), Neubert; Hans (Anaheim, CA)

2008-12-02T23:59:59.000Z

172

Apparatus for moving a pipe inspection probe through piping  

DOE Patents [OSTI]

A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

1995-07-18T23:59:59.000Z

173

What Have You Done to Ensure Your Water Pipes are Efficient and Safe? |  

Broader source: Energy.gov (indexed) [DOE]

Have You Done to Ensure Your Water Pipes are Efficient and Have You Done to Ensure Your Water Pipes are Efficient and Safe? What Have You Done to Ensure Your Water Pipes are Efficient and Safe? March 17, 2011 - 7:30am Addthis This week, Elizabeth told you about her unfortunate experience with burst pipes this winter. These accidents always seem to happen at the most inconvenient times and can be a real mess to fix and clean up. But there are a few things you can do to prevent them-namely, check your pipes and be sure they are insulated, especially if they are located in cold areas of your home. In addition, insulating your hot water pipes can help you save money and energy on water heating. What have you done to ensure your water pipes are efficient and safe? Each Thursday, you have the chance to share your thoughts on a question

174

What Have You Done to Ensure Your Water Pipes are Efficient and Safe? |  

Broader source: Energy.gov (indexed) [DOE]

What Have You Done to Ensure Your Water Pipes are Efficient and What Have You Done to Ensure Your Water Pipes are Efficient and Safe? What Have You Done to Ensure Your Water Pipes are Efficient and Safe? March 17, 2011 - 7:30am Addthis This week, Elizabeth told you about her unfortunate experience with burst pipes this winter. These accidents always seem to happen at the most inconvenient times and can be a real mess to fix and clean up. But there are a few things you can do to prevent them-namely, check your pipes and be sure they are insulated, especially if they are located in cold areas of your home. In addition, insulating your hot water pipes can help you save money and energy on water heating. What have you done to ensure your water pipes are efficient and safe? Each Thursday, you have the chance to share your thoughts on a question

175

Heat pipe transient measurements incorporating visual methods  

E-Print Network [OSTI]

, but were sufficient for the pur pose of this design. Prior to sunning the code, cer tain constr aints wer e already placed on the design: the heater section could be no more than 22. 75 241 inches in length and two inches in width, the over all length..., but were sufficient for the pur pose of this design. Prior to sunning the code, cer tain constr aints wer e already placed on the design: the heater section could be no more than 22. 75 241 inches in length and two inches in width, the over all length...

DeHart, Mark David

2012-06-07T23:59:59.000Z

176

Probabilistic assessment of critically flawed LMFBR PHTS piping elbows  

SciTech Connect (OSTI)

One of the important functions of the Primary Heat Transport System (PHTS) of a large Liquid Metal Fast Breeder Reactor (LMFBR) plant is to contain the circulating radioactive sodium in components and piping routed through inerted areas within the containment building. A significant possible failure mode of this vital system is the development of cracks in the piping components. This paper presents results from the probabilistic assessment of postulated flaws in the most-critical piping elbow of each piping leg. The criticality of calculated maximum sized flaws is assessed against an estimated material fracture toughness to determine safety factors and failure probability estimates using stress-strength interference theory. Subsequently, a different approach is also employed in which the randomness of the initial flaw size and loading are more-rigorously taken into account. This latter approach yields much smaller probability of failure values when compared to the stress-strength interference analysis results.

Balkey, K.R.; Wallace, I.T.; Vaurio, J.K.

1982-01-01T23:59:59.000Z

177

Guidable pipe plug  

DOE Patents [OSTI]

A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

Glassell, Richard L. (Knoxville, TN); Babcock, Scott M. (Farragut, TN); Lewis, Benjamin E. (Farragut, TN)

2001-01-01T23:59:59.000Z

178

Pipe-to-pipe impact analysis - Nuclear Engineering Multimedia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pipe-to-pipe impact analysis Pipe-to-pipe impact analysis Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Engineering Analysis Multimedia Bookmark and Share EA Multimedia, a collection of videos and audios featuring activities related to the Engineering Analysis Department Pipe-to-pipe impact analysis Quicktime video Quicktime Format - High Bandwidth | Size: 12 MB | Bit Rate:

179

Thermally Activated Desiccant Technology for Heat Recovery and Comfort  

SciTech Connect (OSTI)

Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

Jalalzadeh, A. A.

2005-11-01T23:59:59.000Z

180

HEAT TRANSFER IN POROUS MEDIA WITH FLUID PHASE CHANGES  

E-Print Network [OSTI]

R. T. , and Kesaran, K. : "Heat Transfer From CylindersProc. of 4th Internal. Heat Transfer Conference, Paris-Cotter, T. P. : "Theory of Heat Pipe," Report No. LA-3246-

Su, Ho-Jeen.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Significance of Smoking Machine Toxicant Yields to Blood-Level Exposure in Water Pipe Tobacco Smokers  

Science Journals Connector (OSTI)

...yields of polyaromatic hydrocarbons, volatile aldehydes...charcoal is used to heat sweetened and flavored...pipe, hot charcoal combustion products are drawn...and polyaromatic hydrocarbons (PAH) were quantified...Polycyclic aromatic hydrocarbons, carbon monoxide...

Alan L. Shihadeh and Thomas E. Eissenberg

2011-11-01T23:59:59.000Z

182

Damping in LMFBR pipe systems  

SciTech Connect (OSTI)

LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems.

Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

1983-06-01T23:59:59.000Z

183

Rehabilitating underground pipes  

SciTech Connect (OSTI)

Nearly 500,000 miles of industrial pipeline in the US are almost three times older than their expected usefulness. And aging pipes that are improperly maintained can cause a variety of environmental problems. It is essential for facilities to have a system of planned maintenance procedures to prevent structural failures related to inflow/infiltration and exfiltration. Trenchless repair methods, often referred to as pipeline rehabilitation, require the plant engineer to consider a range of activities, including demand projection, system performance assessment, investigation, evaluation of defects and deficiencies, remedial options, and implementation. Two methods of pipeline rehabilitation, slip lining and cured-in-place, are described.

Sorrell, P. [Insituform Technologies, Inc., Memphis, TN (United States)

1995-06-05T23:59:59.000Z

184

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

185

Energy 101: Geothermal Heat Pumps  

SciTech Connect (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2011-01-01T23:59:59.000Z

186

Energy 101: Geothermal Heat Pumps  

ScienceCinema (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2013-05-29T23:59:59.000Z

187

Prometheus Hot Leg Piping Concept  

SciTech Connect (OSTI)

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

Gribik, Anastasia M. [Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, West Mifflin, PA 15122 (United States); DiLorenzo, Peter A. [KAPL, Inc., Knolls Atomic Power Laboratory, Schenectady, NY 12301 (United States)

2007-01-30T23:59:59.000Z

188

Subterranean well pipe guiding apparatus  

SciTech Connect (OSTI)

A pipe guiding apparatus is described for vertically aligning pipe section joints in a derrick having a worktable and an elevator for vertically suspending at least one pipe section above the worktable. The apparatus is comprised of a rotary axle for horizontal attachment in the derrick, a frame attached to the rotary axle, a power cylinder for rotating the rotary axle, a pair of guide jaws pivotally attached to the forward end of the frame, and a cylinder for moving the guide jaws between open and closed positions. The power cylinder for rotating the axle and the cylinder for moving the guide jaws between open and closed positions. The power cylinder for rotating the axle and the cylinder for moving the guide jaws are remotely operated so that the frame can be selectively moved to a position whereby the guide jaws are adjacent a vertically suspended pipe section and the guide jaws thereafter are closed on the pipe section. 6 claims.

Scaggs, O.C.

1981-06-23T23:59:59.000Z

189

Flexible ultrasonic pipe inspection apparatus  

DOE Patents [OSTI]

A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

Jenkins, Charles F. (Aiken, SC); Howard, Boyd D. (Augusta, GA)

1998-01-01T23:59:59.000Z

190

E-Print Network 3.0 - auxiliary heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

buried pipes J.C. Morud1 and A. Simonsen1 1 SINTEF Materials and Chemistry... for the heat loss from buried pipes have been known for a long time. In this paper, we derive...

191

E-Print Network 3.0 - auxiliary heating system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

buried pipes J.C. Morud1 and A. Simonsen1 1 SINTEF Materials and Chemistry... for the heat loss from buried pipes have been known for a long time. In this paper, we derive...

192

Taylor bubble-train flows and heat transfer in the context of Pulsating Balkrishna Mehta, Sameer Khandekar  

E-Print Network [OSTI]

Taylor bubble-train flows and heat transfer in the context of Pulsating Heat Pipes Balkrishna Mehta Nusselt number Heat transfer enhancement a b s t r a c t Understanding the performance of Pulsating Heat Pipes (PHPs) requires spatio-temporally coupled, flow and heat transfer information during the self

Khandekar, Sameer

193

Equations shorten pipe collapse calculations  

SciTech Connect (OSTI)

The API suggests collapse pressure equations for long, perfectly round, steel oil field casing, tubing, drill pipe, and line pipe. Operating and service company engineers can substitute two pipe collapse pressure equations for the 12 API equations now in general use. The shorthand results are almost the same as those from the API equations. The shorthand method has the additional advantage of allowing units from any measurement system. The API equations restrict calculations to US units only. The equation box lists the API (Equations 1--12) and the shorthand (Equations 13--14) equations. The API equations are based on work started shortly after the turn of the century.

Avakov, V.A. [Halliburton Energy Services, Duncan, OK (United States)

1995-04-10T23:59:59.000Z

194

Jamaican red clay tobacco pipes  

E-Print Network [OSTI]

JAMAICAN RED CLAY TOBACCO PIPES A Thesis by KENAN PAUL HEIDTKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF ARTS December 1992 Major Subject...: Anthropology JAMAICAN RED CLAY TOBACCO PIPES A Thesis by KENAN PAUL HEIDTKE Approved as to style and content by: Dorm L. Hamilton (Chair of Committee) Frederick H. van Doorninck, J (Member) enry C. Schmidt (Member) Vaughn M. Bryant (Head...

Heidtke, Kenan Paul

2012-06-07T23:59:59.000Z

195

In situ conversion process utilizing a closed loop heating system  

DOE Patents [OSTI]

An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

Sandberg, Chester Ledlie (Palo Alto, CA); Fowler, Thomas David (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Schoeber, Willen Jan Antoon Henri (Houston, TX)

2009-08-18T23:59:59.000Z

196

IMPROVED STEAM APPARATUS FOR HEATING AND VENTILATING  

Science Journals Connector (OSTI)

...iilprovenments in these heaters, The hleatei is...all parts of the heater. The pipes in the...foot of pipe. In operation for heating andl...at or towards the cold outer v but it must...changes in the weather always have a serious...passing through the heater causes such a rapid...

1889-05-03T23:59:59.000Z

197

Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.  

E-Print Network [OSTI]

Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment. In a Ground Coupled Heat Pump (GCHP) system a length of pipe is buried in the ground and the ground acts as a reservoir to store the heat

Wisconsin at Madison, University of

198

CRAD, Nuclear Facility Construction- Piping and Pipe Supports Inspection- March 29, 2012  

Broader source: Energy.gov [DOE]

Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0)

199

Pipe crawler with extendable legs  

DOE Patents [OSTI]

A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

Zollinger, W.T.

1992-06-16T23:59:59.000Z

200

Pipe crawler with extendable legs  

DOE Patents [OSTI]

A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

Zollinger, William T. (3927 Almon Dr., Martinez, GA 30907)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings  

E-Print Network [OSTI]

simulation and experimental verification. The unique characteristic of such system consists in the integrated loop heat pipe and heat pump unit (LHP-HP), which was proposed to improve solar photovoltaic (PV) generation, capture additional solar heat...

Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

2012-01-01T23:59:59.000Z

202

Structural Assessment of Small Bore Feeder Piping  

E-Print Network [OSTI]

Frasheri MIE491 - Capstone Team 9 March 2012 Client: W. Reinhardt Industry Partner: Candu Energy Inc. Supervisor: A. N. Sinclair CASE ONE CANDU REACTORS HAVE 380+ SMALL BORE FEEDER PIPES. THE PIPES PIPES AND VALIDATE COMPUTATIONAL METHODS COMPARED TO FULL SCALE TESTS TO FAILURE. THE CLIENT CANDU

203

Comparison of an impedance heating system to mineral insulated heat trace for power tower applications  

SciTech Connect (OSTI)

A non-conventional type of heating system is being tested at Sandia National Laboratories for solar thermal power tower applications. In this system, called impedance heating, electric current flows directly through the pipe to maintain the desired temperature. The pipe becomes the resistor where the heat is generated. Impedance heating has many advantages over previously used mineral insulated (MI) heat trace. An impedance heating system should be much more reliable than heat trace cable since delicate junctions and cabling are not used and the main component, a transformer, is inherently reliable. A big advantage of impedance heating is the system can be sized to rapidly heat up the piping to provide rapid response times necessary in cyclic power plants such as solar power towers. In this paper, experimental results from testing an impedance heating system are compared to MI heat trace. The authors found impedance heating was able to heat piping rapidly and effectively. There were not significant stray currents and impedance heating did not affect instrumentation.

Pacheco, J.E.; Kolb, W.J.

1997-03-01T23:59:59.000Z

204

E-Print Network 3.0 - an-04-07 absorption-sorption heat Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We... Engineer- ing." low distribution temperature is key One explanation for the reduced heat loss is twin pipes Source: Mosegaard, Klaus - Institut for Informatik og Matematisk...

205

Energy-efficient water heating  

SciTech Connect (OSTI)

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

206

Radiological assessment of BWR recirculatory pipe replacement  

SciTech Connect (OSTI)

Replacement of primary recirculating coolant pipe in BWRs is a major effort that has been carried out at a number of nuclear generating stations. This report reviews the planned or actual pipe replacement projects at six sites: Nine Mile Point-1, Monticello, Cooper, Peach Bottom-2, Vermont Yankee, and Browns Ferry-1. It covers the radiological issues of the pipe replacement, measures taken to reduce doses to ALARA, estimated and actual occupational doses, and lessons learned during the various replacements. The basis for the decisions to replace the pipes, the methods used for preparation and decontamination, the removal of old pipe, and the installation of the new pipe are briefly described. Methods for reducing occupational radiation dose during pipe repairs/replacements are recommended. 32 refs., 12 figs., 17 tabs.

Parkhurst, M.A.; Hadlock, D.E.; Harty, R.; Pappin, J.L.

1986-02-01T23:59:59.000Z

207

INSPECTION OF FUSION JOINTS IN PLASTIC PIPE  

SciTech Connect (OSTI)

The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

Alex Savitski; Connie Reichert; John Coffey

2004-07-13T23:59:59.000Z

208

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

209

A model of heat and moisture transfer through clothing integrated with the UC Berkeley comfort model  

E-Print Network [OSTI]

E, Zhang H, Huizenga C. Heat and moisture transfer throughMG, Wang XX, et al. Apparent latent heat of evaporation fromclothing: attenuation and "heat pipe" effects. J Appl

Fu, Ming; Yu, Tiefeng; Zhang, Hui; Arens, Edward; Weng, Wenguo; Yuan, Hongyong

2014-01-01T23:59:59.000Z

210

Hot Leg Piping Materials Issues  

SciTech Connect (OSTI)

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

211

Hot clamp design for LMFBR piping systems  

SciTech Connect (OSTI)

Thin-wall, large-diameter piping for liquid metal fast breeder reactor (LMFBR) plants can be subjected to significant thermal transients during reactor scrams. To reduce local thermal stresses, an insulated cold clamp was designed for the fast flux test facility and was also applied to some prototype reactors thereafter. However, the cost minimization of LMFBR requires much simpler designs. This paper presents a hot clamp design concept, which uses standard clamp halves directly attached to the pipe surface leaving an initial gap. Combinations of flexible pipe and rigid clamp achieved a self-control effect on clamp-induced pipe stresses due to the initial gap. A 3-D contact and inelastic history analysis were performed to verify the hot clamp concept. Considerations to reduce the initial stress at installation, to mitigate the clamp restraint on the pipe expansion during thermal shocks, and to maintain the pipe-clamp stiffness desired during a seismic event were discussed.

Kobayashi, T.; Tateishi, M. (Nippon MARC Co., Ltd., Tokyo (Japan))

1993-02-01T23:59:59.000Z

212

Piping inspection carriage having axially displaceable sensor  

DOE Patents [OSTI]

A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

Zollinger, William T. (Martinez, GA); Treanor, Richard C. (Augusta, GA)

1994-01-01T23:59:59.000Z

213

Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

214

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect (OSTI)

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

215

Downhole pipe selection for acoustic telemetry  

DOE Patents [OSTI]

A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

Drumheller, D.S.

1995-12-19T23:59:59.000Z

216

Stress analysis of piping elbows  

SciTech Connect (OSTI)

The problem undertaken in this paper is the investigation of the stresses generated in circular piping elbows of variable thickness, under the influence of uniform internal pressure. It is observed now that the material region and the imposed loading conform to the same axial symmetry. This fact strongly suggests the employment of toroidal coordinates and the Boussinesq-Papkovitch-Neuber (BPN) potential function approach towards obtaining the solution to the above posed problem. The results obtained by this BPN approach are compared with the numerical solution generated by a boundary integral equation approach. The comparison yields a good agreement.

Choi, J.; Rentzepis, G.M. [Georgia Inst. of Tech., Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

1996-12-31T23:59:59.000Z

217

ABSORPTION-DELAY MODELS OF HEAT TRANSPORT R.E. SHOWALTER AND D.B. VISARRAGA  

E-Print Network [OSTI]

ABSORPTION-DELAY MODELS OF HEAT TRANSPORT R.E. SHOWALTER AND D.B. VISARRAGA Abstract. A temperature jump in the water traveling through a pipe is delayed by the absorption of heat into the pipe wall transfer, absorption, memory, kinetic models, approximation. 1 #12;2 R.E. SHOWALTER AND D.B. VISARRAGA 1

218

The Simulation Research of Solar Assisted Heat Pump System with the Neutral Network  

Science Journals Connector (OSTI)

This paper mainly explores the simulation studies for SAHP system and takes the heating system as research object, sets up the heat pipe evacuated tubular collectors model with the neutral network. Based on th...

Wang Kai; Fan Bo; Zhang Yilin; Xia Qi

2009-01-01T23:59:59.000Z

219

Asymptotic scaling in turbulent pipe flow  

Science Journals Connector (OSTI)

...obtained in industrial piping such as a transcontinental natural gas pipelines. D is the pipe diameter and is the volume-averaged...Marati, N , C.M Casciola, and R Piva2004Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech...

2007-01-01T23:59:59.000Z

220

Stability analysis of pipe racks for industrial facilities.  

E-Print Network [OSTI]

??Pipe rack structures are used extensively throughout industrial facilities worldwide. While stability analysis is required in pipe rack design per the AISC Specification for Structural… (more)

Nelson, David Aaron

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hydrogen Piping Experience in Chevron Refining  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Piping Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few) problem areas. Related industry work: American Petroleum Institute corrosion and materials work on high temperature hydrogen attack. Overall Perspectives 3 Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well- defined limits H2S contamination presents many more problems, beyond the scope of this talk We will note a couple of specific vulnerabilities Refining tracks materials performance in

222

Pipe supports and anchors - LMFBR applications  

SciTech Connect (OSTI)

Pipe design and support design can not be treated as separate disciplines. A coordinated design approach is required if LMFBR pipe system adequacy is to be achieved at a reasonable cost. It is particularly important that system designers understand and consider those factors which influence support train flexibility and thus the pipe system dynamic stress levels. The system approach must not stop with the design phase but should continue thru the erection and acceptance test procedures. The factors that should be considered in the design of LMFBR pipe supports and anchors are described. The various pipe support train elements are described together with guidance on analysis, design and application aspects. Post erection acceptance and verification test procedures are then discussed.

Anderson, M.J.

1983-06-01T23:59:59.000Z

223

Ultrasonic guided waves in eccentric annular pipes  

SciTech Connect (OSTI)

This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.

Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu [Centre for NDE, Indian Institute of Technology - Madras Chennai 600036, T. N. (India)

2014-02-18T23:59:59.000Z

224

The Design of Ground-Coupled Heat Pump Systems  

E-Print Network [OSTI]

Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

Parker, J. D.

1985-01-01T23:59:59.000Z

225

High flux heat transfer in a target environment  

E-Print Network [OSTI]

High flux heat transfer in a target environment T. Davenne High Power Targets Group Rutherford Valid for: Consider turbulent heat transfer in a 1.5mm diameter pipe ­ Dittus Boelter correlation Achenbach correlation for heat transfer in a packed bed of spheres Max power density for a sphere

McDonald, Kirk

226

ADEPT. aerosol deposition in cylindrical pipes  

SciTech Connect (OSTI)

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C (Burns and Roe, Oradell, NJ (United States))

1985-01-01T23:59:59.000Z

227

ADEPT. Aerosol Deposition in Cylindrical Pipes  

SciTech Connect (OSTI)

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C [Burns and Roe, Oradell, NJ (United States)

1985-01-01T23:59:59.000Z

228

A Gas-Fired Heat Pipe Zone Heater  

E-Print Network [OSTI]

in this table were obtained from the 1983 Qas Rel~earch Inrtitute Baseline Projection Data Book. 4verage Resldentlal Gas Prlces ($/Wtu) (1982 do1 lars) New England Middle Atlantlc South Atlantlc East North Central West North Central East South Central... West South Central kuntaln #I Mountaln I2 Paclflc #I Paclf lc 12 The conservation factor may be exprerred as lABLEm Gas Research lnstltute Fuel lnflatlon Estlmates natural Gas 1- ~2 1983-1990 1990-ZMO Nc* England 1.7 2.1 Mlddle Atlantlc 2.1 2...

Winn, C. B.; Burns, P.; Guire, J.

1984-01-01T23:59:59.000Z

229

Thermohydraulic Simulation of Heat Exchanger Networks  

Science Journals Connector (OSTI)

The determination of network temperatures is carried out together with the evaluation of flow rates and pressures along the network, considering head losses in heat exchangers and associated piping. ... The HEN responsible to distribute cooling water in an industrial unit is composed by three heat exchangers in parallel. ... However, the cooling water distribution among the three exchangers presents a considerable unbalance, where heat exchanger E-101 receives much less cooling water than the design specification. ...

Viviane B. G. Tavares; Eduardo M. Queiroz; Andre? L. H. Costa

2010-04-26T23:59:59.000Z

230

Heat transport system, method and material  

DOE Patents [OSTI]

A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

Musinski, D.L.

1987-04-28T23:59:59.000Z

231

Dry Pipe Sprinkler Piping Replacement Project (4588), 4/30/2012  

Broader source: Energy.gov (indexed) [DOE]

Pipe System Sprinkler Piping Replacement Projects (4588) Pipe System Sprinkler Piping Replacement Projects (4588) Program or Field Office: Y-12 Site Office Location(s) (City/County/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is to replace sections of dry pipe system sprinkler piping which include heads, hangers, fittings, and valves. Categorical Exclusion(s) Applied: 81.3- Routine maintenance For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of I 0 CFR Part I 021. Regulatory Requirements in 10 CFR 1021.410(b): (See full text in regulation) [{Jrhe proposal fits within a class of actions that is listed in Appendix A orB to 10 CFR Part 1021, Subpart D.

232

Hydraulic fracturing slurry transport in horizontal pipes  

SciTech Connect (OSTI)

Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

Shah, S.N.; Lord, D.L. (Halliburton Services (US))

1990-09-01T23:59:59.000Z

233

Hydrogen Piping Experience in Chevron Refining  

Broader source: Energy.gov [DOE]

Overall Perspectives: Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well-defined limits

234

Apparatus for stringing well pipe of casing  

SciTech Connect (OSTI)

An apparatus for use in running a string of threaded well pipe or casing in a vertical configuration in a deep well bore which is adapted to convert a top head drive drilling rig for use in running each length of pipe into the well bore. A drive spindle adaptor is provided which may be securely attached in a removably mounted manner to the rotary drive spindle or sub of a top head drive drilling rig. The drive spindle includes a pair of opposing, outwardly extending lugs disposed at a right angle to the axial direction of the spindle and a true centering guide means. A collar is included which is provided with frictional gripping members for removably securing the collar to one end of a length of conventional pipe and a pair of axially extending, spaced ears which cooperate upon engagement with said lugs on said spindle adaptor to transfer rotary motion of said spindle to said length of pipe.

Sexton, J.L.

1984-04-17T23:59:59.000Z

235

Apparatus for rotating and reciprocating well pipe  

SciTech Connect (OSTI)

This patent describes an apparatus for simultaneously rotating and reciprocating well pipe, having an upper end, and mechanically utilizing a rotary table attached to a drilling rig, comprising: a rotating pipe clamp assembly having an irregular cross-sectional mid-member and clamp members for releasably gripping the well pipe connected to the ends of the mid-member for rotation therewith; a square block for fitting to the rotary table square and having a selected grooved interior configuration; a torque transmitting means fitted into the grooves having openings therethrough having the same irregular cross-section as the mid-member cross-section; and a torque limiting means connecting the torque transmitting means and the block for limiting torque applied through the well pipe via the clamp assembly and the torque transmitting means.

Davis, K.D.

1988-04-12T23:59:59.000Z

236

Aerogel Impregnated Polyurethane Piping and Duct Insulation  

Broader source: Energy.gov (indexed) [DOE]

Aerogel Impregnated Polyurethane Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation system that will adhere to housing duct work and pipe structures while conforming to complex geometries. New insulations must increase the R-value of existing materials and be easy to apply or retrofit to existing structures.

237

Building Equipment Technologies | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

desiccant cycles Magnetocaloricelectrocaloric cycles Working fluids, materials Heat Pumps, air conditioners, dehumidifiers Packaged rooftop units Appliances Water heaters...

238

ASME Journal of Heat Transfer Vol.118, pp.592-598, 1996  

E-Print Network [OSTI]

. The coupled governing equations for time- dependent convective heat transfer in the fluid flow and conduction to pay increasing attention to the study of heat transfer and fluid flow characteristicsASME Journal of Heat Transfer Vol.118, pp.592-598, 1996 OSCILLATORY HEAT TRANSFER IN A PIPE

Zhao, Tianshou

239

Beam Pipe HOM Absorber for 750 MHz RF Cavity Systems  

SciTech Connect (OSTI)

This joint project of Muons, Inc., Cornell University and SLAC was supported by a Phase I and Phase II grant monitored by the SBIR Office of Science of the DOE. Beam line HOM absorbers are a critical part of future linear colliders. The use of lossy materials at cryogenic temperatures has been incorporated in several systems. The design in beam pipes requires cylinders of lossy material mechanically confined in such a way as to absorb the microwave energy from the higher-order modes and remove the heat generated in the lossy material. Furthermore, the potential for charge build-up on the surface of the lossy material requires the conductivity of the material to remain consistent from room temperature to cryogenic temperatures. In this program a mechanical design was developed that solved several design constraints: a) fitting into the existing Cornell load vacuum component, b) allowing the use of different material compositions, c) a thermal design that relied upon the compression of the lossy ceramic material without adding stress. Coating experiments were performed that indicated the design constraints needed to fully implement this approach for solving the charge build-up problem inherent in using lossy ceramics. In addition, the ACE3P program, used to calculate the performance of lossy cylinders in beam pipes in general, was supported by this project. Code development and documentation to allow for the more wide spread use of the program was a direct result of this project was well.

Johnson, Rolland; Neubauer, Michael

2014-10-29T23:59:59.000Z

240

Building Energy Software Tools Directory: Pipe-Flo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pipe-Flo Pipe-Flo Pipe-flo logo Flow analysis software used to design, optimize, troubleshoot and simulate the operation of piping systems of any size or configuration. PIPE-FLO provides a total picture of the piping system including the flow and pressures in pipelines, along with the interaction of pumps, control valves, and flow meters. PIPE-FLO products are used worldwide in a variety of applications throughout many industries including HVAC, fire sprinkler, wastewater collection and treatment, mining, ultra-pure water, chemical processing, power generation, pulp & paper and general industrial. Screen Shots Keywords piping analysis, pump selection, piping design, hydraulic analysis, pump sizing, pressure drop calculator, hydraulic modeling, steam distribution,

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NREL: Learning - Geothermal Heat Pump Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Pump Basics Heat Pump Basics Photo of the West Philadelphia Enterprise Center. The West Philadelphia Enterprise Center uses a geothermal heat pump system for more than 31,000 square feet of space. Geothermal heat pumps take advantage of the nearly constant temperature of the Earth to heat and cool buildings. The shallow ground, or the upper 10 feet of the Earth, maintains a temperature between 50° and 60°F (10°-16°C). This temperature is warmer than the air above it in the winter and cooler in the summer. Geothermal heat pump systems consist of three parts: the ground heat exchanger, the heat pump unit, and the air delivery system (ductwork). The heat exchanger is a system of pipes called a loop, which is buried in the shallow ground near the building. A fluid (usually water or a mixture of

242

Chapter 5 - Solar Water-Heating Systems  

Science Journals Connector (OSTI)

Abstract Chapter 5 is on solar water-heating systems. Both passive and active systems are described. Passive systems include thermosiphon and integrated collector storage systems. The former include theoretical performance of thermosiphon solar water heaters, reverse circulation in thermosiphon systems, vertical against horizontal tank configurations, freeze protection, and tracking thermosiphons. Subsequently, active systems are described, which include direct circulation systems, indirect water-heating systems, air water-heating systems, heat pump systems and pool heating systems, which include the analysis of various heat losses like evaporation, radiation, convection heat losses, make-up water load, and solar radiation-heat gain. Then the characteristics and thermal analysis of heat storage systems for both water and air systems are presented. The module and array design methods are then described and include the effects of shading, thermal expansion, galvanic corrosion, array sizing, heat exchangers, pipe and duct losses, partially shaded collectors and over-temperature protection—followed by an analysis of the characteristics of differential thermostats. Finally, methods to calculate the hot water demand are given as well as a review of international standards used to evaluate the solar water heaters performance. The chapter includes also simple system models and practical considerations for the setup of solar water-heating systems, which include: pipes, supports and insulation; pumps; valves and instrumentation.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

243

A general heat transfer correlation for non-boiling gasliquid flow with different flow patterns  

E-Print Network [OSTI]

, such as oil wells and pipelines, solar collectors, chemical reactors, and nuclear reactors, and its in horizontal pipes Jae-yong Kim, Afshin J. Ghajar * School of Mechanical and Aerospace Engineering, Oklahoma patterns in horizontal pipes is proposed. In order to overcome the effect of flow pattern on heat transfer

Ghajar, Afshin J.

244

Heat Insulation in Electric Power Stations  

Science Journals Connector (OSTI)

... HEAT insulation of pipes, boilers and generating sets, which used to be indicated by the general ... in steam generating plants, it is common experience to find that cracks develop in the insulation on water-cooled furnace walls as the result of: (a) expansion and contraction ...

1940-12-28T23:59:59.000Z

245

Evaluating an experimental setup for pipe leak detection  

E-Print Network [OSTI]

An experimental setup with 4 inch inner diameter PVC pipe modules is designed to mimic a real life piping system in which to test possible leak detection mechanisms. A model leak detection mechanism is developed which ...

Garay, Luis I. (Luis Ignacio)

2010-01-01T23:59:59.000Z

246

Smoothing of pipe system completion processes in a shipyard environment/  

E-Print Network [OSTI]

Due to a number of different production issues, the manufacture of template pipes is often delayed. These delays hold up pipe system completion on board the ships in production and can delay payments from the Ministry of ...

Zojwalla, Shaheen J. (Shaheen Joyab), 1977-

2004-01-01T23:59:59.000Z

247

On-Site Wastewater Treatment Systems: Gravel-less Pipe  

E-Print Network [OSTI]

Gravel-less pipe systems distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of gravel-less pipe systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-04-10T23:59:59.000Z

248

Statistical estimation of water distribution system pipe break risk  

E-Print Network [OSTI]

The deterioration of pipes in urban water distribution systems is of concern to water utilities throughout the world. This deterioration generally leads to pipe breaks and leaks, which may result in reduction in the water-carrying capacity...

Yamijala, Shridhar

2009-05-15T23:59:59.000Z

249

Sizing safety valve vent pipes for saturated steam  

SciTech Connect (OSTI)

A generalized procedure based on pressure and entropy as independent variables is used to calculate choked flow conditions at the valve orifice, valve pipe outlet and vent pipe outlet. At the third location, the results are independent of whether flow in the vent pipe is supersonic or subsonic. An integral method is used to calculate the vent pipe length required to choke the flow. 16 refs.

Brandmaier, H.E.

1982-01-01T23:59:59.000Z

250

Evaluation of temporary non-code repairs in safety class 3 piping systems  

SciTech Connect (OSTI)

Temporary non-ASME Code repairs in safety class 3 pipe and piping components are permissible during plant operation in accordance with Nuclear Regulatory Commission Generic Letter 90-05. However, regulatory acceptance of such repairs requires the licensee to undertake several timely actions. Consistent with the requirements of GL 90-05, this paper presents an overview of the detailed evaluation and relief request process. The technical criteria encompasses both ductile and brittle piping materials. It also lists appropriate evaluation methods that a utility engineer can select to perform a structural integrity assessment for design basis loading conditions to support the use of temporary non-Code repair for degraded piping components. Most use of temporary non-code repairs at a nuclear generating station is in the service water system which is an essential safety related system providing the ultimate heat sink for various plant systems. Depending on the plant siting, the service water system may use fresh water or salt water as the cooling medium. Various degradation mechanisms including general corrosion, erosion/corrosion, pitting, microbiological corrosion, galvanic corrosion, under-deposit corrosion or a combination thereof continually challenge the pressure boundary structural integrity. A good source for description of corrosion degradation in cooling water systems is provided in a cited reference.

Godha, P.C.; Kupinski, M.; Azevedo, N.F. [Northeast Utilities System, Hartford, CT (United States)

1996-12-01T23:59:59.000Z

251

Drill pipe management extends drillstring life  

SciTech Connect (OSTI)

Better handling procedures and frequent drill pipe inspections prolong the life of a drillstring. Crews taught to make quick visual inspections during rig moves and tripping can spot problem pipe early, thus preventing downtime or extensive repairs. Because of escalating costs of drillstring repair and replacement, Global Marine Drilling Co. organized a task force in March 1989 to define problem areas and establish new handling and maintenance procedures. The task force estimated that one 20,000-ft drillstring costs abut $600,000 and has a 7-year life span. Assuming the average rig life is 21 years, each rig will wear out three strings, totaling $1.8 million. The addition of $30,000/year for full rack inspections, repairs and downhole loss brings the total to approximately $2.4 million/rig over the 21 years. A contractor with a fleet of 25 rigs could expend $60 million on drill pipe-the construction cost of a well-equipped, 300-ft jack up rig. The task force reported on in this paper identifies four basic caused of drill pipe failures: Tool joint and tube OD wear, Internal corrosion, Fatigue cracking in the slip and internal upset areas, Physical damage to the tool joint threads and shoulders, and the tube.

Shepard, J.S. (Global Marine Drilling Co., Houston, TX (US))

1991-10-28T23:59:59.000Z

252

ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM  

SciTech Connect (OSTI)

This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

Unknown

2000-09-15T23:59:59.000Z

253

Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

1997-09-30T23:59:59.000Z

254

Design and Study of Gas Calorimeter for Absolute Measurements of the Combustion Heat of Natural Gas  

Science Journals Connector (OSTI)

A novel burning calorimeter design based on a heat pipe is presented. A circuit for automated control over operation of the proposed device is considered. The stability of the results is assessed. Several acce...

Yu. I. Aleksandrov; V. P. Varganov; S. Sarge

2001-09-01T23:59:59.000Z

255

Characterization of pipes, drain lines, and ducts using the pipe explorer system  

SciTech Connect (OSTI)

As DOE dismantles its nuclear processing facilities, site managers must employ the best means of disposing or remediating hundreds of miles of potentially contaminated piping and duct work. Their interiors are difficult to access, and in many cases even the exteriors are inaccessible. Without adequate characterization, it must be assumed that the piping is contaminated, and the disposal cost of buried drain lines can be on the order of $1,200/ft and is often unnecessary as residual contamination levels often are below free release criteria. This paper describes the program to develop a solution to the problem of characterizing radioactive contamination in pipes. The technical approach and results of using the Pipe Explorer {trademark} system are presented. The heart of the system is SEA`s pressurized inverting membrane adapted to transport radiation detectors and other tools into pipes. It offers many benefits over other pipe inspection approaches. It has video and beta/gamma detection capabilities, and the need for alpha detection has been addressed through the development of the Alpha Explorer{trademark}. These systems have been used during various stages of decontamination and decommissioning of DOE sites, including the ANL CP-5 reactor D&D. Future improvements and extensions of their capabilities are discussed.

Cremer, C.D.; Kendrick, D.T.; Cramer, E.

1997-05-01T23:59:59.000Z

256

Performance investigation of a cogeneration plant with the efficient and compact heat recovery system  

Science Journals Connector (OSTI)

This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity (ii) steam (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator (ii) an absorption chiller (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments both part load and full load of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

2012-01-01T23:59:59.000Z

257

Modeling and analysis of water-hammer in coaxial pipes  

E-Print Network [OSTI]

The fluid-structure interaction is studied for a system composed of two coaxial pipes in an annular geometry, for both homogeneous isotropic metal pipes and fiber-reinforced (anisotropic) pipes. Multiple waves, traveling at different speeds and amplitudes, result when a projectile impacts on the water filling the annular space between the pipes. In the case of carbon fiber-reinforced plastic thin pipes we compute the wavespeeds, the fluid pressure and mechanical strains as functions of the fiber winding angle. This generalizes the single-pipe analysis of J. H. You, and K. Inaba, Fluid-structure interaction in water-filled pipes of anisotropic composite materials, J. Fl. Str. 36 (2013). Comparison with a set of experimental measurements seems to validate our models and predictions.

Cesana, Pierluigi

2015-01-01T23:59:59.000Z

258

Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure  

E-Print Network [OSTI]

Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure Keywords: Supercritical pressure Aviation kerosene Convective heat transfer Numerical study a b s t r a c convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China

Guo, Zhixiong "James"

259

Marathon pipe line's new control system  

SciTech Connect (OSTI)

A new control system for Marathon Pipe Line Company's 4200 mile long oil pipeline is described. The pipeline transports 1 1/2 million barrels/day of crude oil and refined products. A comprehensive, centralized computer control system in Findlay, Ohio was developed to provide precision control of the system. Marathon is almost finished with the supervisory control and data acquisition system which can almost instantaneously control fluid movements throughout the network with the push of a few buttons.

Ross, J.

1983-03-01T23:59:59.000Z

260

Advanced materials for flexible pipe construction  

SciTech Connect (OSTI)

New materials have been developed for use in the construction of non-bonded flexible pipe for offshore oil and gas production in sever environmental conditions. Internal environmental conditions include high conveyed fluid temperatures with sour and waxy production fluids. External environmental conditions include low water temperatures and water depths of up to 2,000 m. In this paper, the results of test to verify the suitability of materials developed by Wellstream and its vendors specifically for these severe applications is presented.

Kalman, M.D.; Belcher, J.R.; Plaia, J.R. [Wellstream Company, L.P., Panama City, FL (United States). Dept. of Engineering

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Calculator programs for pipe stress engineering  

SciTech Connect (OSTI)

This book contains a collection of programs for solving a wide variety of stress problems using both the TI-59 and HP-41CV calculators. Each program is prefaced with a description of the problem to be solved, nomenclature, code restrictions and program limitations. Solutions are explained analytically and then followed by the complete program listing, documentation and checklists. Topics include calculations for pipewall thickness, pressure vessel analysis, reinforcement pads, allowable span, vibration, stress, and two-anchor piping systems.

Morgan, K.S.

1985-01-01T23:59:59.000Z

262

Pipe overpack container for trasuranic waste storage and shipment  

DOE Patents [OSTI]

A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

1999-01-01T23:59:59.000Z

263

Common causes of material degradation in buried piping  

SciTech Connect (OSTI)

Buried pipe may fail for innumerable reasons. Causes can be mechanical damage/breakage, chemically initiated corrosion, or a combination. Failures may originate either internally or externally on the pipe. They may be related to flaws in the design, to excessive or unanticipated internal pressure or ground level loading, and/or to poor or uncertain installation practice. Or the pipe may simply ``wear out`` in service. Steel is strong and very forgiving in underground applications, especially with regard to backfill. However, soil support developed through densification or compaction is critical for brittle concrete and vitrified clay tile pipe, and is very important for cast iron and plastic pipe. Chemistry of the soil determines whether or not it will enhance corrosion or other types of degradation. Various causes and mechanisms for deterioration of buried pipe are indicated. Some peculiarities of the different materials of construction are characterized. Repair methods and means to circumvent special problems are described.

Jenkins, C.F.

1997-01-20T23:59:59.000Z

264

On the Radiation of Sound from an Unflanged Circular Pipe  

Science Journals Connector (OSTI)

A rigorous and explicit solution is obtained for the problem of sound radiation from an unflanged circular pipe, assuming axially symmetric excitation. The solution is valid throughout the wave-length range of dominant mode (plane wave) propagation in the pipe. The reflection coefficient for the velocity potential within the pipe and the power-gain function, embodying the characteristics of the radiation pattern, are evaluated numerically. The absorption cross section of the pipe for a plane wave incident from external space, and the gain function for this direction, are found to satisfy a reciprocity relation. In particular, the absorption cross section for normal incidence is just the area of the mouth. At low frequencies of vibration, the velocity potential within the pipe is the same as if the pipe were lengthened by a certain fraction of the radius and the open end behaved as a loop. The exact value of the end correction turns out to be 0.6133.

Harold Levine and Julian Schwinger

1948-02-15T23:59:59.000Z

265

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pumps Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. Duration 2:32 Topic Tax Credits, Rebates, Savings Heating & Cooling Geothermal Consumption Credit Energy Department Video MR. : We all want to save money heating or cooling our house or office, right? The answer may be under your feet, literally. Much of the heating and cooling can come from the ground, below the surface, with something called a geothermal heat pump. You see, below the frost line

266

Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT  

E-Print Network [OSTI]

Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT Yan Zhan, Foluso Ladeinde;Straight Pipe flow Ph i l bl-- Physical problem Isothermal mercury/ water flow through a 60D straight pipe* Mercury 1500 41.844 m 4.04 m/s 18.5 bar 15.67 bar Water 1500 331.404 m 4.04 m/s 18.5 bar 18.291bar *uave

McDonald, Kirk

267

CRAD, Equipment and Piping Labeling Assessment Plan | Department...  

Broader source: Energy.gov (indexed) [DOE]

and Piping Labeling Assessment Plan More Documents & Publications CRAD, Conduct of Operations Assessment Plan DOE-STD-1044-93 CRAD, Verification and Validation of...

268

International Piping Integrity Research Group (IPIRG) Program. Final report  

SciTech Connect (OSTI)

This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

Wilkowski, G.; Schmidt, R.; Scott, P. [and others

1997-06-01T23:59:59.000Z

269

Capacitive sensor technology for polyethylene pipe fault detection.  

E-Print Network [OSTI]

??This work develops a Finite Element Analysis simulation to determine if capacitive sensors can be used to detect defects in polyethylene gas distribution pipes. Currently,… (more)

Kirby, Travis W.

2009-01-01T23:59:59.000Z

270

A pipe cleaning machine: ERIP recommendation No. 571  

SciTech Connect (OSTI)

The subject invention, ``A Pipe Cleaning Machine,`` known as ``Buffy,`` is a device that strips pipeline of its coating down to the metal. The apparatus consists of a series of motor-driven metal brushes mounted on a ring structure that fits the around the pipe`s circumference. Once stripped, the pipeline may or may not be abrasive-blasted, but is then coated and wrapped, and the trench is back-filled. Present models of the Buffy can be used on pipe up to 36`` in diameter. One of the device`s unique features is its ability to operate while the pipeline remains in service.

Bratcher, H. Jr.; Hinick, M.B.; Balsam, J.W.

1992-06-12T23:59:59.000Z

271

Fracture mechanics models developed for piping reliability assessment in light water reactors: piping reliability project  

SciTech Connect (OSTI)

The efforts concentrated on modifications of the stratified Monte Carlo code called PRAISE (Piping Reliability Analysis Including Seismic Events) to make it more widely applicable to probabilistic fracture mechanics analysis of nuclear reactor piping. Pipe failures are considered to occur as the result of crack-like defects introduced during fabrication, that escape detection during inspections. The code modifications allow the following factors in addition to those considered in earlier work to be treated: other materials, failure criteria and subcritical crack growth characteristic; welding residual and vibratory stresses; and longitudinal welds (the original version considered only circumferential welds). The fracture mechanics background for the code modifications is included, and details of the modifications themselves provided. Additionally, an updated version of the PRAISE user's manual is included. The revised code, known as PRAISE-B was then applied to a variety of piping problems, including various size lines subject to stress corrosion cracking and vibratory stresses. Analyses including residual stresses and longitudinal welds were also performed.

Harris, D.O.; Lim, E.Y.; Dedhia, D.D.; Woo, H.H.; Chou, C.K.

1982-06-01T23:59:59.000Z

272

Numerical study of heat loss from a non-evacuated receiver of a solar collector  

Science Journals Connector (OSTI)

Abstract Heat loss from receivers of solar collectors is a major reason for drop in their efficiency. Receiver pipes enclosed in glass tubes with evacuated annulus show considerable reduction in heat losses. However, manufacturing and maintenance costs for such receivers are high. An inexpensive alternative is a similar receiver with non-evacuated annulus. This paper presents a numerical study of heat loss from a non-evacuated receiver typically used in parabolic trough collectors, generating moderate temperatures and designed particularly for process heat applications. In order to come closer to the realistic situation, rather than assuming uniform temperature distribution on it, receiver pipe temperature has been assumed to be varying along the surface. Sinusoidal and square wave functions are employed in modeling, since actual temperature distributions on solar receiver pipes are combinations of these two functions. Main goal of the paper is to optimize the design of the non-evacuated solar receiver for minimum heat loss, by using CFD technique. Also effects on heat loss from receivers due to different parameters like average temperature (Ta) of the pipe, non-uniformity in the temperature (?) along its surface, hour angle (?), denoting position of the sun in the sky and radius ratio (RR) of radius of receiver pipe to that of outer glass tube have been studied. It is seen that as non-uniformity in temperature distribution increases in both types of temperature distribution, heat losses from receiver pipes decrease up to 10%. Also as hour angle increases from 0° to 90°, heat loss decreases by 20% in case of sinusoidal temperature distribution and 24% in case of square wave temperature distribution. The effect of radius ratio (RR) on heat loss has been studied. In present study, we found out that 1.375 is critical radius ratio for which heat losses from receiver are minimum

Ramchandra G. Patil; Dhanaji M. Kale; Sudhir V. Panse; Jyeshtharaj B. Joshi

2014-01-01T23:59:59.000Z

273

A mathematical model for the simulation of closed-loop earth-coupled heat exchangers for a water source heat pump  

E-Print Network [OSTI]

and Braud, 1986). Conditions in Texas are well suited for earth-coupled heat pumps. Groundwater temperatures across Texas range from 17 to 22 'C (Kemler, 1947). Hildenbrandt and Elite t (1979) found that this temperature range gives a high coefficient... the element is (Dusinberre, 1961): (TF. + TF. where: Qout the rate at which heat leaves the element, W; h = a surface heat transfer coefficient, W/m2 'C; As = the pipe surface area in contact with the fluid, m2; TPS = the temperature of the pipe surface...

De Lange, Kevin Jon

1988-01-01T23:59:59.000Z

274

Calculating limits for torsion and tensile loads on drill pipe  

SciTech Connect (OSTI)

Drill pipe used for drilling horizontal and extended reach holes experiences much higher torsional and tensile loads than normally seen while drilling vertical holes. This is particularly true for rigs with top drives vs. rigs with rotary tables. When pipe is rotated while pulling out of the hole, which is commonly done on top drive rigs, the drill pipe can experience high tensile and torsional loading simultaneously. These conditions increase the probability of overload on tool joints and require that the drill pipe and tool joint selection process include consideration of combined loading. Calculating the required drill pipe strength for vertical holes is straightforward and spelled out in Section 5 of API RP7G. In vertical hole applications, pipe is almost always selected for its tensile capacity and the torsional strength of the pipe generally does not require special consideration. In Section 4 of API Sec 7, API recommends that the tool joints have a torsional strength of 80% of the pipe`s torsional strength; this is usually adequate. The torsional strength and tensile strength of commonly used drill pipe and tool joint combinations are tabulated in Tables 2 through 10 of API RP7G. Appendix A.8.3 in API RP7G shows a method for plotting a graphical representation of the combined torsional and tensile operational limits of tool joints. How to calculate the limits of the drill pipe tube is shown in Appendix A.9.2. This paper defines terms and limits, and discusses building and using a diagram to determine safe loads.

Bailey, E.I. [Stress Engineering Service Inc., Houston, TX (United States); Smith, J.E. [Grant Prideco, Houston, TX (United States)

1998-02-01T23:59:59.000Z

275

Development and testing of non-bonded flexible pipe for high temperature/high pressure/deep water/dynamic sour service applications  

SciTech Connect (OSTI)

Non-bonded flexible risers are a critical element of floating systems for offshore oil and gas production. This paper reviews product innovations and prototype testing of risers developed to cope with severe environments. Full scale dynamic test results with combined tension, bending, internal pressure and heating, and with these structural loads combined with sour production fluids introduced into the bore of the pipe are presented. The loading conditions for the tests were based on floating production systems in North Sea environments. End fittings must assure a leak tight transition to subsea and surface facilities when subjected to the pipe applied loads, thermal cycling during startup and shutdowns, and changing of the fluid barrier material properties over the service life. The results of analyses and tests conducted to verify the integrity of the end fitting with thermal cycling and fluid barrier changes due to the high temperature production fluids is presented. Conventional flexible pipe employs carbon steel for axial and hoop structural reinforcement. In deeper water, the tension loads induced by pipe weight increase stress levels in the pipe structure and deck and installation loads. As pipe stresses increase, larger cross sectional areas of the steel members are required, further increasing the weight. To reduce the unit weight, while retaining the required strength levels, composite materials have been developed to replace the steel tensile armor. The composite consists of carbon fibers in a thermoplastic matrix. Tests to verify the suitability of the material in the flexible pipe annulus environment and to evaluate the performance of the composite pipe structure are presented.

Kalman, M.; Belcher, J.; Chen, B.; Fraser, D.; Ethridge, A.; Loper, C.

1996-12-31T23:59:59.000Z

276

Capabilities of Ultrasonic Techniques for the Far-Side Examination of Austenitic Stainless Steel Piping Welds.  

SciTech Connect (OSTI)

A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, four circumferential welds in 610mm diameter, 36mm thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and with low-frequency/Synthetic Aperture Focusing Technique (SAFT) methods in the 250-400 kHz regime. These results were compared to conventional ultrasonic techniques as a baseline. The examinations showed that both phased-array and low-frequency/SAFT were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.

Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.; Doctor, Steven R.

2006-02-01T23:59:59.000Z

277

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

278

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

279

Geothermal Heat Pumps- Heating Mode  

Broader source: Energy.gov [DOE]

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

280

CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING  

SciTech Connect (OSTI)

The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

Rawls, G.

2012-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet  

Science Journals Connector (OSTI)

Abstract The flow structure and heat transfer of the air pulsed turbulent impinging jet are studied numerically. The gas turbulence is modelled with the Reynolds stress model. The effects of pulse frequency, ratio of on time to total cycle time, distance between pipe outlet and impinging flat plate and Reynolds number on heat transfer are numerically studied. The impingement heat transfer increases with distance from the pipe edge and target surface. The heat transfer decreases at high distance from the pipe edge and target surface. An increase in the Reynolds number causes reduction of heat transfer enhancement. Reduced heat transfer in comparison with the steady-state impinging jet is typical in the range of low frequencies of the pulse impinging jet.

M.A. Pakhomov; V.I. Terekhov

2015-01-01T23:59:59.000Z

282

Retrofit of a Heat-Exchanger Network by Considering Heat-Transfer Enhancement and Fouling  

Science Journals Connector (OSTI)

Besides, for network-topology modifications the capital cost associated with the related pipe and civil work is high, and the negative financial impact of production losses resulting from plant shut down during the lengthy periods of a retrofit is also a concern. ... One way is to add heat-transfer enhancement to the cold side in a heat exchanger to increase the cold-side heat-transfer coefficients, and the other is to change the network structure to reassign the temperature distribution in the network. ... An existing industrial PHT network is simulated using a dynamic, distributed math. ...

Yufei Wang; Robin Smith

2013-06-07T23:59:59.000Z

283

Buffalo district heating system design and construction  

SciTech Connect (OSTI)

This report addresses the introduction of district heating in Buffalo, NY from feasibility study to implementation. The reemergence of district heating in the US and associated advantages are reviewed. Advanced piping technology which has enabled district heating to compete economically with alternative technologies is summarized. Identification and analysis of the customer heat load considered in downtown Buffalo for the pilot system and future expansion is discussed. Various options for initiating construction of a district heating system were considered as exemplified by the configuration for the pilot system which was selected to serve five downtown buildings. A conceptual plan is presented which permits the system to expand in an economically viable manner. The report concludes with an economic analysis which simulates the operation and expansion of the system. 4 figs., 8 tabs.

Oliker, I.

1987-11-01T23:59:59.000Z

284

CRAD, Equipment and Piping Labeling Assessment Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Equipment and Piping Labeling Assessment Plan Equipment and Piping Labeling Assessment Plan CRAD, Equipment and Piping Labeling Assessment Plan Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as opposed to tracing its schematic, and to reduce personnel exposure to radiation and hazardous materials. This assessment provides a basis for evaluating the effectiveness of the contractor's program for labeling equipment and piping and for establishing compliance with DOE requirements.

285

Surveillance Guide - OPS 9.18 Equipment and Piping Labeling  

Broader source: Energy.gov (indexed) [DOE]

EQUIPMENT AND PIPING LABELING EQUIPMENT AND PIPING LABELING 1.0 Objective The objective of this surveillance is to verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. This surveillance provides a basis for evaluating the effectiveness of the contractor's program for labeling equipment and piping and for establishing compliance with DOE requirements. 2.0 References 2.1 DOE 5480.19, Conduct of Operations Requirements for DOE Facilities 2.2 DOE-STD-1044-93, Guide to Good Practices for Equipment and Piping Labeling 3.0 Requirements Implemented This surveillance is conducted to implement requirements of the Functions, Requirements and Authorities Manual, Section 20,

286

Uncertainty analysis for probabilistic pipe fracture evaluations in LBB applications  

SciTech Connect (OSTI)

During the NRC`s Short Cracks in Piping and Piping Welds Program at Battelle, a probabilistic methodology was developed to conduct fracture evaluations of circumferentially cracked pipes for application to leak-rate detection. Later, in the IPIRG-2 program, several parameters that may affect leak-before-break and other pipe flaw evaluations were identified. This paper presents new results from several uncertainty analyses to evaluate the effects of normal operating stresses, normal plus safe-shutdown earthquake stresses, off-centered cracks, restraint of pressure-induced bending, and dynamic and cyclic loading rates on the conditional failure probability of pipes. systems in BWR and PWR. For each parameter, the sensitivity to conditional probability of failure and hence, its importance on probabilistic leak-before-break evaluations were determined.

Rahman, S.; Ghadiali, N.; Wilkowski, G.

1997-04-01T23:59:59.000Z

287

Acoustic quality factor and energy losses in cylindrical pipes  

Science Journals Connector (OSTI)

The quality factor Q of a damped oscillator equals 2? times the ratio of stored energy to the energy dissipated per cycle. This makes Q a sensitive probe of energy losses. Using modest equipment we measured the acoustical Q for a set of cylindrical pipes having the same resonant frequency but different diameters D. The graph of Q vs D could be well fitted with two parameters one of which corresponds to energy loss via radiation from the ends of the pipe and the other to thermal and viscous losses very close to the pipe wall. The wall loss parameter was quite constant no matter where the pipes were located but the radiative loss parameter varied significantly with location inside a room suggesting that room reflections affected the sound radiated from the pipe. This study offers valuable insights at no great expense and could be the basis of an upper-division undergraduatelaboratory experiment.

Michael J. Moloney; Daniel L. Hatten

2001-01-01T23:59:59.000Z

288

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

289

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

290

Characterization of Pipes, Drain Lines, and Ducts using the Pipe Explorer System  

Office of Scientific and Technical Information (OSTI)

MC/30172-97/C0803 MC/30172-97/C0803 Title: Characterization of Pipes, Drain Lines, and Ducts Using the Pipe Explorer System TM Authors: C.D. Cremer D.T. Kendrick E. Cramer Contractor: Science and Engineering Associates, Inc. 6100 Uptown Blvd, NE Albuquerque, NM 87100 Contract Number: DE-AC21-93MC30172 Conference: Industry Partnerships to Deploy Environmental Technology Conference Location: Morgantown, West Virginia Conference Dates: October 22-24, 1996 Conference Sponsor: Morgantown Energy Technology Center Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

291

Fouling of carbon steel heat exchanger caused by iron bacteria  

SciTech Connect (OSTI)

A carbon steel heat exchanger installed in a reverse osmosis unit failed after 1 1/2 years from start-up as a result of tubes, lids, tube sheets, and connection pipes clogging from rust deposits. Chemical analysis of cooling water and scraped precipitates, as well laboratory screening of the deposits for bacteria, revealed that activity of iron-oxidizing bacteria present in cooling water could lead to heat exchanger blockage.

Starosvetsky, J.; Armon, R.; Starosvetsky, D. (Technion-Israel Inst. of Tech. (Israel)); Groysman, A.

1999-01-01T23:59:59.000Z

292

Heat transfer characteristics of circular impinging jet arrays in an annular section with cross flow effects  

E-Print Network [OSTI]

. . Heat transfer and Flutd flow results ? Counter flow . 32 64 CONCLUSIONS . 101 REFERENCES . 104 APPENDIX A. APPENDIX B APPENDIX C LIST OF FIGURES FIGURE 1 Detailed Schematic of the Test Section with the Flow Loop for 81. 27cm Inner pipe... with Parallel Flow. . 2 Schematic Diagram showing the arrangement of the mner pipes with different diameters with the copper segments. 3 Schematic of the test section showmg the two different flow arrangements (Parallel Flow and Counter Flow) . Page 12 14...

Mhetras, Shantanu Prakash

2012-06-07T23:59:59.000Z

293

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

294

Optimization of non-evacuated receiver of solar collector having non-uniform temperature distribution for minimum heat loss  

Science Journals Connector (OSTI)

Abstract The present paper contains a numerical study of heat loss from a non-evacuated receiver typically used in parabolic trough collectors. To calculate temperature distributions on the receiver pipe (TP), an energy balance has been established over the entire cross-section of the receiver pipe at different fluid temperatures. In the energy balance, the flux distribution has been estimated by assuming normal incidence of solar insolation considering the sun as a point source. The temperature distributions of the receiver pipe are found, as per expectation, to be non-uniform. These temperature distributions have been fitted by sinusoidal and step functions and are used as temperature boundary conditions in a CFD study to optimize the size of the receiver. The mechanisms of heat loss that have been considered in this study are heat loss from (1) pipe to glass tube by conduction, convection and radiation and (2) glass tube to surrounding by convection (natural and forced) and radiation. The values of diameters of receiver pipe taken in this study are 33 mm, 48 mm, 60 mm, 70 mm, 89 mm and 102 mm. The radius ratio (RR) varied from 1.2 to 3 by changing diameter of glass tube. It is observed that, the critical value of RR for minimum heat loss is dependent upon receiver pipe diameter (DPo). The critical values of RR for pipe diameter (DPo) 33 mm, 48 mm, 60 mm, 70 mm, 89 mm and 102 mm are 1.5, 1.4, 1.375, 1.35, 1.3 and 1.25 respectively. The value of critical RR is lower for higher values of pipe diameter. The value of critical RR for a particular diameter of receiver is independent of receiver temperature and external wind velocity. Comparison of heat losses in non-uniform and uniform temperature cases shows that the values of heat losses in the two cases differ only by 1.5%.

Ramchandra G. Patil; Sudhir V. Panse; Jyeshtharaj B. Joshi

2014-01-01T23:59:59.000Z

295

Natural Gas Pipe Line Companies (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipe Line Companies (Connecticut) Pipe Line Companies (Connecticut) Natural Gas Pipe Line Companies (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Public Utilities Regulatory Authority These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records, complaints, and service

296

Capacitance Probe for Detection of Anomalies in Nonmetallic Plastic Pipe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacitance Probe for Detection of Anomalies in Capacitance Probe for Detection of Anomalies in Nonmetallic Plastic Pipe Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Patent Number 7,839,282 entitled "Capacitance Probe for Detection of Anomalies in Nonmetallic Plastic Pipe." Disclosed in this patent is an analysis of materials using a capacitive sensor to detect anomalies in nonmetallic plastic pipe through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor to generate a capacitance versus location output for the detection and localization of anomalies

297

Acoustic imaging in a water filled metallic pipe  

SciTech Connect (OSTI)

A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

Kolbe, W.F.; Turko, B.T.; Leskovar, B.

1984-04-01T23:59:59.000Z

298

Phased?Array Focusing Potential in Pipe with Viscoelastic Coating  

Science Journals Connector (OSTI)

This work investigates the effectiveness of traditional guided?wave focusing techniques in piping with viscoelastic coating. Focusing results for an uncoated pipe are compared to that of pipe with a fusion?bonded epoxy coating a coal?tar mastic coating a coal?tar epoxy coating a coal?tar tape coating a wax coating and an enamel coating. Experimental results are compared to computationally derived models. Results show that for most coating types focusing can be achieved without special consideration of the coating. This is significant in that it demonstrates the immediate applicability of traditional focusing techniques to coated pipeline.

J. K. Van Velsor; L. Zhang; L. J. Breon; J. L. Rose

2007-01-01T23:59:59.000Z

299

Solar Assisted Heat Pump Systems with Ground Heat Exchanger – Simulation Studies  

Science Journals Connector (OSTI)

Abstract Different concepts of solar assisted heat pump systems with ground heat exchanger are simulated according to IEA SHC Task44/HPP Annex38 reference conditions. Two aspects of the concepts are investigated using TRNSYS simulations. First, the solar impact on system efficiency is assessed by the seasonal performance factor. Second, the solar impact on the possible shortening of the ground heat exchanger is evaluated by the minimum temperature at the ground heat exchanger inlet. The simulation results reveal diverging optimums for the concepts. The direct use of solar energy clearly achieves the best effect on the efficiency improvement. A simple domestic hot water system reaches a seasonal performance factor of 4.5 and solar combi-systems seasonal performance factors up to 6. In contrast, the use of solar energy on the cold side of the heat pump achieves the best effects on the shortening of the ground heat exchanger of up to 20%. Two highly sensitive influences are investigated with the developed transient system model. First, the minimum allowed heat source temperature is varied. Here 1 K equals a variation of 0.25 in the seasonal performance or of around 10% ground heat exchanger length. Second, the ground heat exchanger model is simulated without and with a pre-pipe that improves the transient model behavior. The influence of this pre-pipe on the SPF is small for conventionally designed ground heat exchangers, but of around 2 K for the minimum inlet temperature. Therefore, the dynamic model quality reveals potential to reduce the size of the ground heat exchanger corresponding to investment costs.

Erik Bertram

2014-01-01T23:59:59.000Z

300

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pantex erects nearly 400 piping metal supports | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

erects nearly 400 piping metal supports | National Nuclear Security erects nearly 400 piping metal supports | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex erects nearly 400 piping metal supports Pantex erects nearly 400 piping metal supports Posted By Office of Public Affairs Workers at the Pantex Plant are in the process of erecting nearly 400 metal

302

Pantex erects nearly 400 piping metal supports | National Nuclear Security  

National Nuclear Security Administration (NNSA)

erects nearly 400 piping metal supports | National Nuclear Security erects nearly 400 piping metal supports | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex erects nearly 400 piping metal supports Pantex erects nearly 400 piping metal supports Posted By Office of Public Affairs Workers at the Pantex Plant are in the process of erecting nearly 400 metal

303

Robot design for leak detection in water-pipe systems  

E-Print Network [OSTI]

Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

Choi, Changrak

2012-01-01T23:59:59.000Z

304

Compressed air piping, 241-SY-101 hydraulic pump retrieval trailer  

SciTech Connect (OSTI)

The following Design Analysis was prepared by the Westinghouse Hanford Company to determine pressure losses in the compressed air piping installed on the hydraulic trailer for the 241-SY-101 pump retrieval mission.

Wilson, T.R.

1994-12-12T23:59:59.000Z

305

SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS  

Broader source: Energy.gov [DOE]

Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011

306

Composite drill pipe and method for forming same  

DOE Patents [OSTI]

A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

2012-10-16T23:59:59.000Z

307

The nickel pipes of Vlakfontein and vicinity, western Transvaal  

Science Journals Connector (OSTI)

...feet of pneumaticand diamond drilling) on Vlaldontein and vicinity...the centrallylocatedVredefort dome within the Witwatersrand Basin...NICKEL PIPES' OF VLAKFONTEIN TAtum 4. Microscopicand Microprobe...ft. The orebody,proved by drilling,haddimensionsof about200...

C. F. Vermaak

308

Selection of minimum earthquake intensity in calculating pipe failure probabilities  

SciTech Connect (OSTI)

In a piping reliability analysis, it is sometimes necessary to specify a minimum ground motion intensity, usually the peak acceleration, below which the ground motions are not considered as earthquakes and, hence, are neglected. The calculated probability of failure of a piping system is dependent on this selected minimum earthquake intensity chosen for the analysis. A study was conducted to determine the effects of the minimum earthquake intensity on the probability of pipe failure. The results indicated that the probability of failure of the piping system is not very sensitive to the variations of the selected minimum peak ground acceleration. However, it does have significant effects on various scenarios that make up the system failure.

Lo, T.Y.

1985-01-01T23:59:59.000Z

309

Acoustical wave propagation in buried water filled pipes  

E-Print Network [OSTI]

This thesis presents a comprehensive way of dealing with the problem of acoustical wave propagation in cylindrically layered media with a specific application in water-filled underground pipes. The problem is studied in ...

Kondis, Antonios, 1980-

2005-01-01T23:59:59.000Z

310

Seismic fragility analysis of buried steel piping at P, L, and K reactors  

SciTech Connect (OSTI)

Analysis of seismic strength of buried cooling water piping in reactor areas is necessary to evaluate the risk of reactor operation because seismic events could damage these buried pipes and cause loss of coolant accidents. This report documents analysis of the ability of this piping to withstand the combined effects of the propagation of seismic waves, the possibility that the piping may not behave in a completely ductile fashion, and the distortions caused by relative displacements of structures connected to the piping.

Wingo, H.E.

1989-10-01T23:59:59.000Z

311

The effect of pipe spacing on marine pipeline scour  

E-Print Network [OSTI]

THE EFFECT OF PIPE SPACING ON MARINE PIPELINE SCOUR A Thesis by JOSEPH HENRY WESTERHORSTMANN Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1988 Major Subject: Ocean Engineering THE EFFECT OF PIPE SPACING ON MARINE PIPELINE SCOUR A Thesis by JOSEPH HENRY WESTERHORSTMANN Approved as to style and content by: r L. Machemehl (Chair of Committee) Robert E. Randall (Member) W yne...

Westerhorstmann, Joseph Henry

2012-06-07T23:59:59.000Z

312

Stability analysis of buried flexible pipes: a biaxial buckling equation  

E-Print Network [OSTI]

STABILITY ANALYSIS OF BURIED FLEXIBLE PIPES: A BIAXIAL BUCKLING EQUATION A Thesis by MELISSA TUYET-MAI CHAU Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1990 Major Subject: Civil Engineering STABLILITY ANALYSIS OF BURIED FLEXIBLE PIPES: A BIAXIAL BUCKLING EQUATION A Thesis by MELISSA TUYET-MAI CHAU Approved as to style and content by: r. obert L. Lytt n (Chair of Committee...

Chau, Melissa Tuyet-Mai

2012-06-07T23:59:59.000Z

313

MHK Technologies/Electric Generating Wave Pipe | Open Energy Information  

Open Energy Info (EERE)

Generating Wave Pipe Generating Wave Pipe < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Generating Wave Pipe.jpg Technology Profile Primary Organization Able Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The EGWAP incorporates a specially designed environmentally sound hollow noncorroding pipe also known as a tube or container whose total height is from the ocean floor to above the highest wave peak The pipe is anchored securely beneath the ocean floor When the water level in the pipe rises due to wave action a float rises and a counterweight descends This action will empower a main drive gear and other gearings to turn a generator to produce electricity The mechanism also insures that either up or down movement of the float will turn the generator drive gear in the same direction Electrical output of the generator is fed into a transmission cable

314

Electrode wells for powerline-frequency electrical heating of soils  

DOE Patents [OSTI]

An electrode well is described for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichloroethylene (TCE) as it is heated. 4 figs.

Buettner, H.M.; Daily, W.D.; Aines, R.D.; Newmark, R.L.; Ramirez, A.L.; Siegel, W.H.

1999-05-25T23:59:59.000Z

315

Decontamination Process of Internal Part Pipes - 13442  

SciTech Connect (OSTI)

The Marcoule Site, created in 1955 is one of the first nuclear sites in France. It combines the activities of the Research Centre of the French Atomic Energy Commission (CEA) and AREVA industrial operations. Today, a large part of the operations on this site consists of the cleaning and the dismantling of nuclear Installations, once the end of their life cycle has been reached. An example can be the reprocessing plant UP1. This unit, started in 1958 has been stopped in 1997 and its dismantling started quickly thereafter. Technical challenges of the UP1 dismantling are mainly linked to a very high risk of exposure due to a large variety of contaminated equipments and residuals of fission products, potential sources of irradiation. The dismantling of Hall 71 is a typical example of such challenge. This paper will present a solution developed by AREVA Clean-Up business unit, in collaboration with COFIM Industry, to remove contamination incrusted inside the pipes before starting the cutting operations, thus reducing irradiation risk. (authors)

Ladet, X.; Sozet, O.; Cabanillas, P.; Macia, G. [STMI, Site de MARCOULE - Batiment 423 - 30204 Bagnols-sur-Ceze (France)] [STMI, Site de MARCOULE - Batiment 423 - 30204 Bagnols-sur-Ceze (France); Moggia, F.; Damerval, F. [STMI, 1 route de la Noue 91196 - Gif-sur-Yvette (France)] [STMI, 1 route de la Noue 91196 - Gif-sur-Yvette (France)

2013-07-01T23:59:59.000Z

316

Particle transport in turbulent curved pipe flow  

E-Print Network [OSTI]

Direct numerical simulations (DNS) of particle-laden turbulent flow in straight, mildly curved and strongly bent pipes are performed in which the solid phase is modelled as small heavy spherical particles. The objective is to examine the effect of the curvature on particle transport and accumulation, in particular how the turbophoretic drift of the particles is affected by weak and strong secondary motions of the carrier phase and geometry-induced centrifugal forces. A total of seven populations of dilute particles with different Stokes numbers, one-way coupled with their carrier phase, are simulated. Even a slight non-zero curvature in the flow configuration shows a strong impact on the particle dynamics. Near-wall helicoidal particle streaks are observed in the curved configurations with their inclination varying with the strength of the secondary motion of the carrier phase. A reflection layer, as previously observed in particle laden turbulent S-shaped channels, is also apparent in the strongly curved pip...

Noorani, Azad; Brandt, Luca; Schlatter, Philipp

2015-01-01T23:59:59.000Z

317

DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)  

SciTech Connect (OSTI)

The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

Culver, G.

1990-11-01T23:59:59.000Z

318

Results from dynamic tests and analyses of a medium diameter LMFBR piping system  

SciTech Connect (OSTI)

This paper presents results and observations from dynamic tests and analyses performed on a 0.20 m (8 in.) diameter, thin walled piping system. The piping system is a scaled representation of a Liquid Metal Fast Breeder Reactor (LMFBR) large diameter piping loop. Prototypic piping restraints were employed, including mechanical snubbers, rigid struts, pipe hangers and non-integral pipe clamps. Snapback, sine-sweep and seismic tests were performed for various restraint configurations and piping conditions. The test results are compared to analytical predictions for verification of the methods and models used in the seismic design of LMFBR piping systems. Test program conclusions and general recommendations for piping seismic analyses are presented along with a discussion of test and analysis results.

Schott, G.A.; Heberling, C.F.; Hulbert, G.M.

1984-06-01T23:59:59.000Z

319

Results from dynamic tests and analyses of a medium diameter LMFBR piping system  

SciTech Connect (OSTI)

This paper presents results and observations from dynamic tests and analyses performed on an 8-in. (0.20-m) diameter, thin-walled piping system. The piping system is a scaled representation of a Liquid Metal Fast Breeder Reactor (LMFBR) large diameter piping loop. Prototypic piping restraints were employed, including mechanical snubbers, rigid struts, pipe hangers and nonintegral pipe clamps. Snapback, sine-sweep and seismic tests were performed for various restraint configurations and piping conditions. The test results are compared to analytical predictions for verification of the methods and models used in the seismic design of LMFBR piping systems. Test program conclusions and general recommendations for piping seismic analyses are presented along with a discussion of test and analysis results.

Schott, G.A.; Hulbert, G.M.; Heberling, C.F. II

1986-08-01T23:59:59.000Z

320

Pump and control unit for a solar heating installation for a water tank and particularly for a swimming pool  

SciTech Connect (OSTI)

The invention relates to a pump and control unit for a solar heating installation system for a water tank, particularly for a swimming pool. The system contains a solar collector, a hydraulic circuit which includes an outward-flow pipe, a return-flow pipe, a pump, a derivative-action control unit and two sensors mounted on the outward-flow pipe and on the return-flow pipe, respectively. The pump, the control unit and the two sensors are integrated into a single case. The case is provided in its top wall with a transparent opening which faces the return-flow sensor and through which said sensor can be exposed to solar radiation, such that the pump may be automatically activated during periods of sunshine, i.e., when the solar collector is heating the water returning to the tank, and stopped due to lack of sunshine.

Cannaux, G.; Calvet, G.

1985-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Similarity Analysis for Heat Transfer in Newtonian and Power Law Fluids Using the Instantaneous Wall Shear Stress  

E-Print Network [OSTI]

This paper presents a technique that collapses existing experimental data of heat transfer in pipe flow of Newtonian and power law fluids into a single master curve. It also discusses the theoretical basis of heat, mass and momentum analogies and the implications of the present analysis to visualisations of turbulence.

Trinh, K T; Kiaka, N K

2010-01-01T23:59:59.000Z

322

Heat Stroke  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms â–  High body temperature â–  Confusion â–  Loss of coordination â–  Hot, dry skin or profuse sweating â–  Throbbing headache â–  Seizures, coma First Aid â–  Request immediate medical assistance. â–  Move the worker to a cool, shaded area. â–  Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms â–  Rapid heart beat â–  Heavy sweating â–  Extreme weakness or fatigue â– 

323

Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector  

SciTech Connect (OSTI)

This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

Backfish, Michael

2013-04-01T23:59:59.000Z

324

Have You Looked at Your Pipes Lately? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Have You Looked at Your Pipes Lately? Have You Looked at Your Pipes Lately? Have You Looked at Your Pipes Lately? March 14, 2011 - 1:27pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, it doesn't matter that some of you are probably already thinking about spring. It doesn't matter that the bulk of winter is over for a lot of you. I'm going to say this anyway, because sometime, someday, it might be useful. Or, well, it might not be if you live in Florida. But for the rest of you, I will repeat this suggestion: Check the insulation on your pipes! You see, early this February we had a nasty bit of weather here in Colorado. One day the low was somewhere near -15°F, and the high was a balmy -2°F. The next day, when it reached a scalding 6-or-so degrees, a pipe in my apartment exploded.

325

Fabrication Flaw Density and Distribution in Piping Weldments  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission supported the Pacific Northwest National Laboratory (PNNL) to develop empirical data on the density and distribution of fabrication flaws in nuclear reactor components. These data are needed to support probabilistic fracture mechanics calculations and studies on component structural integrity. PNNL performed nondestructive examination inspections and destructive testing on archived piping welds to determine the fabrication flaw size and distribution characteristics of the flaws in nuclear power plant piping weldments. Eight different processes and product forms in piping weldments were studied including wrought stainless steel and dissimilar metal weldments. Parametric analysis using an exponential fit was performed on the data. Results were created as a function of the through-wall size of the fabrication flaws as well as the length distribution. The results are compared and contrasted with those developed for reactor pressure vessel processes and product forms. The most significant findings were that the density of fabrication flaws versus through-wall size was higher in piping weldments than that for the reactor pressure vessel weldments, and the density of fabrication flaws versus through-wall size in both reactor pressure vessel weld repairs and piping weldments were greater than the density in the original weldments. Curves showing these distributions are presented.

Doctor, Steven R.

2009-09-01T23:59:59.000Z

326

Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat  

E-Print Network [OSTI]

Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

Levens, Kurt Antony, 1961-

1997-01-01T23:59:59.000Z

327

Fast ultrasonic imaging in a liquid filled pipe  

SciTech Connect (OSTI)

A new method is described for the imaging of the interior of a liquid filled metallic pipe using acoustical techniques. The experimental system incorporates an array of 20 acoustical transducers and is capable of capturing the images of moving bubbles at a frame rate in excess of 300/s. The transducers are mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echoes reflected from vapor bubbles in the interior are detected, digitized and processed by a computer to generate an image. The high rate of speed was achieved by the use of newly developed software and electronic circuitry. This approach has eliminated most of the spurious echo signals which degraded the performance of previous imaging systems. The capability of the method is illustrated by imaging actual vapor bubbles in rapid sequence in the pipe. 13 refs.

Kolbe, W.F.; Turko, B.T.; Leskovar, B.

1985-10-01T23:59:59.000Z

328

Light weight underground pipe or cable installing device  

SciTech Connect (OSTI)

This invention pertains to a light weight underground pipe or cable installing device adapted for use in a narrow and deep operating trench. More particularly this underground pipe installing device employs a pair of laterally movable gates positioned adjacent the bottom of the operating trench where the earth is more solid to securely clamp the device in the operating trench to enable it to withstand the forces exerted as the actuating rod is forced through the earth from the so-called operating trench to the target trench. To accommodate the laterally movable gates positioned adjacent the bottom of the narrow pipe installing device, a pair of top operated double-acting rod clamping jaws, operated by a hydraulic cylinder positioned above the actuating rod are employed.

Schosek, W. O.

1985-01-08T23:59:59.000Z

329

Drill pipe with helical ridge for drilling highly angulated wells  

SciTech Connect (OSTI)

This patent describes a method for drilling a highly angulated wellbore with a rotary rig having a drill string terminated with a bit which method employs drilling fluid. The improvement comprises: employing a length of drill pipe in the highly angulated drill string which has a helical ridge disposed thereabout, wherein the flight of the helical ridge is wound in the same direction as the rotation of the drill string such as to move drill cuttings in a direction from the bit to the surface upon rotation, and wherein the height of the helical ridge above the circumferential surface of the length of the drill pipe is 1 to 15 percent of the diameter of the drill pipe.

Finnegan, J.E.; Williams, J.G.

1991-08-27T23:59:59.000Z

330

HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS  

SciTech Connect (OSTI)

Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

Leishear, R

2010-05-02T23:59:59.000Z

331

Investigation of guided waves propagation in pipe buried in sand  

SciTech Connect (OSTI)

The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

Leinov, Eli; Cawley, Peter; Lowe, Michael J.S. [NDE Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

2014-02-18T23:59:59.000Z

332

Guide to good practices for equipment and piping labeling  

SciTech Connect (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Equipment and Piping Labeling, Chapter XVIII of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing labeling programs. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Equipment and Piping Labeling is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for a coordinated labeling program to promote safe and efficient operations.

NONE

1998-12-01T23:59:59.000Z

333

A unified model for slug flow in upward inclined pipes  

SciTech Connect (OSTI)

The effect of pipe inclination on upward two-phase slug flow characteristics has been studied both experimentally and theoretically. Experimental data were acquired for the entire range of inclination angles, from horizontal to vertical. New correlations were developed for slug length and liquid holdup in the slug body as a function of inclination angle. A unified model has been developed for the prediction of slug flow behavior in upward inclined pipes. Reasonable agreement is observed between the pressure drop predicted by the model and the experimental data.

Felizola, H.; Shoham, O. [Univ. of Tulsa, OK (United States). Petroleum Engineering Dept.

1995-03-01T23:59:59.000Z

334

DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE  

SciTech Connect (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2003 through September 30, 2004 and contains the following discussions: (1) Direct Electrical Connection for Rotary Shoulder Tool Joints; (2) Conductors for inclusion in the pipe wall (ER/DW-CDP); (3) Qualify fibers from Zoltek; (4) Qualify resin from Bakelite; (5) First commercial order for SR-CDP from Integrated Directional Resources (SR-CDP); and (6) Preparation of papers for publication and conference presentations.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Peter Manekas

2005-03-18T23:59:59.000Z

335

A Monte Carlo code describing the neutral gas transport in pipe configurations with attenuating media  

Science Journals Connector (OSTI)

A three-dimensional Monte Carlo description of the neutral gas transport in pipe configurations with almost arbitrary torsion and curvature is presented. To avoid quadratic or even transcendental expressions describing the pipe surfaces confining and ...

A. Nicolai

1993-06-01T23:59:59.000Z

336

The Transport of LNG by Pipe Lines: Technical and Economic Aspects  

Science Journals Connector (OSTI)

It has been suggested [1...] that natural gas pipe lines may be replaced by special pipe lines carrying LNG. By almost completely eliminating the recompression losses ... It will be shown that the transportation ...

E. Carbonell; J. Y. Guerin; P. Solente

1967-01-01T23:59:59.000Z

337

What Have You Done to Ensure Your Water Pipes are Efficient and...  

Energy Savers [EERE]

What Have You Done to Ensure Your Water Pipes are Efficient and Safe? What Have You Done to Ensure Your Water Pipes are Efficient and Safe? March 17, 2011 - 7:30am Addthis This...

338

Seismic vibration analysis of fluid-structure interaction in LMFBR piping systems  

SciTech Connect (OSTI)

This paper is a basic study on the vibrational characteristics of an LMFBR piping system containing liquid sodium under one-dimensional seismic excitation. Using Z-shaped piping, the authors formulate coupled equations for the pipe's bending vibration and pressure wave, and transform them into two-degree-of-freedom vibration equations for the first modes of the piping vibration and pressure wave. A numerical study using the vibration model shows that: 1) the coupling effect appears between piping acceleration and liquid pressure for a piping configuration having a natural frequency ratio ..nu.. = about 0.5 to 2.0; 2) the magnitude of seismically induced pressure reaches 0.7 kPa to 1 kPa per gal; and 3) the dead-mass model of liquid gives a nonconservative response depending on the pipe's geometrical configuration, compared to that from the pressure-wave-piping-interaction model.

Hara, F.

1988-05-01T23:59:59.000Z

339

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water...

340

Experimental and numerical study of gas dynamics of exhaust pipe of gas turbine unit  

Science Journals Connector (OSTI)

A few geometrical configurations of exhaust pipe of marine gas turbine unit were investigated experimentally in NPP “Mashproeykt...

Valery Solodov; Juriy Starodubtsev; Boris Isakov…

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High-performance lubricants from Honeywell certified for PVC water pipe formulations  

Science Journals Connector (OSTI)

Honeywell Specialty Materials reports that its Rheochem® line of high-performance lubricants (HPLs) has received certifications from independent, not-for-profit organization NSF International and the Plastics Pipe Institute for use in PVC water pipe formulations. The certifications indicate that the \\{HPLs\\} are safe and effective for use in plastic pipes that carry water throughout homes and municipalities.

2009-01-01T23:59:59.000Z

342

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

343

BOA: Pipe-asbestos insulation removal robot system  

SciTech Connect (OSTI)

This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY `95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee.

Schempf, H.; Bares, J.; Mutschler, E. [and others

1995-12-31T23:59:59.000Z

344

Pumps, pipes and valves: The heart of a system  

SciTech Connect (OSTI)

This is a guide to suppliers of pumps, pipes and valves for construction or repair of hazardous materials. The article contains a compilation of the suppliers/manufacturers and how to contact them, the corrosion resistance of the component, whether double-secondary containment is available, and the material used to construct the component.

NONE

1996-05-01T23:59:59.000Z

345

Determination of petroleum pipe scale solubility in simulated lung fluid  

E-Print Network [OSTI]

referred to as ??scale.?? This thesis is concerned with the presence of 226Ra in scale deposited on the inner surfaces of oil drilling pipes and the internal dose consequences of inhalation of that scale once released. In the process of normal operation...

Cezeaux, Jason Roderick

2005-08-29T23:59:59.000Z

346

Assessment of suspended dust from pipe rattling operations  

E-Print Network [OSTI]

Gaussian plume model is applicable to the data of pipe rattling operations for finding an attainment area. It is estimated that workers who remain within 1 m of the machine centerline and directly downwind have an 8-hour TWA exposure opportunity of (13.3 Ã...

Park, Ju-Myon

2006-10-30T23:59:59.000Z

347

Prioritizing Water Pipe Replacement and Rehabilitation by Evaluating Failure Risk  

E-Print Network [OSTI]

..................................................................... 84 4.3.5.1 Exfoliation Percentage of Coating Materials ................. 84 4.3.6 Changes in EIS Characteristics of Coating Materials in Steel Pipes according to Years of Laying ........................................... 88 4....3.6.1 EIS Measurement ........................................................... 89 4.3.6.1.1 Overview of Electro-Impedance Spectroscopy (EIS) Measurement ......................................... 89 4.3.6.1.2 Principles of EIS...

Lee, Sang Hyun

2012-02-14T23:59:59.000Z

348

Thermally Enhanced Pipe for Geothermal Applications Stphane Gonthier  

E-Print Network [OSTI]

in St-Lazare, QC, Canada · Leaders in Pipe and Tubing in Niche Markets · Over 30 years of experience in the Market : 2009 in Canada (CGC Conference, Toronto, ON) 2010 in USA (IGSHPA Technical Conference and Expo Field (2010), Designer: Ecosystem, QC · 3 Geo-Solar Hybrid Systems in NH and MA, 250 X ¾" slinkies (2011

349

Challenges and Capabilities for Inspection of Cast Stainless Steel Piping  

SciTech Connect (OSTI)

Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the reliability of nondestructive examination (NDE) approaches for inspecting coarse-grained, cast stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effec¬tiveness and limitations of NDE techniques as related to the inservice inspec¬tion of primary system piping components in pressurized water reactors (PWRs). This paper describes results from recent assessments built upon early work with low frequency ultrasonic testing (UT) coupled with synthetic aperture focusing technique (SAFT) signal processing, and has subsequently evolved into an approach using low frequency phased array technology as applied from the outer diameter surface of the piping. In addition, eddy current examination as performed from the inner diameter surface of these piping welds is also reported. Cast stainless steel (CSS) pipe specimens were examined that contain thermal and mechanical fatigue cracks located close to the weld roots and have inside/outside surface geometrical conditions that simulate several PWR primary piping weldments and configurations. In addition, segments of vintage centrifugally cast piping were also examined to understand inherent acoustic noise and scattering due to grain structures and determine consistency of UT responses from different locations. The advanced UT methods were applied from the outside surface of these specimens using automated scanning devices and water coupling. The phased array approach was implemented with a modified instrument operating at low frequencies and composite volumetric images of the samples were generated with 500 kHz, 750 kHz, and 1.0 MHz arrays. Eddy current studies were conducted on the inner diameter surface of these piping welds using a commercially available instrument and a cross point probe design operating at a frequency of 250 kHz. Results from the laboratory studies indicate that 500 kHz phased array methods are capable of detecting flaws greater than 30% through-wall in the cast specimens. Length-sizing of flaws is possible, but no diffracted signals could be observed to support time-of-flight depth sizing. The work with eddy current examinations on the inner diameter surface indicate that, while certain cast austenitic microstructures provide excessive background noise due to permeability variations, surface-breaking flaws are quite easily detected. This work was sponsored by the U.S. Nuclear Regulatory Commission under Contract DE-AC06-76RLO 1830; NRC JCN Y6604; Mr. Wallace Norris, NRC Project Monitor.

Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

2007-12-31T23:59:59.000Z

350

Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material  

E-Print Network [OSTI]

of the energy storage floor is designed,which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The PCM thermal storage time is studied in relation to the floor surface temperature under different low-temperature hot...

Qiu, L.; Wu, X.

2006-01-01T23:59:59.000Z

351

Numerical Analysis of Heat Transfer and Fluid Characteristics of Flowing Liquid Nitrogen in HTS Cable  

Science Journals Connector (OSTI)

Abstract High-temperature superconducting (HTS) cable has heat intrusion from the termination including joule heat generation at the terminal joint and from the room temperature cable through the Cu current lead. According to the length of the HTS cable, this heat loss may become a considerable amount which cannot be ignored in the HTS cable system. In this study, referring to a high-voltage cable (HV cable) which was developed in M-PACC project, the effect of heat transfer at the interface between the terminal joint and LN2 in the terminal vessel (ho) on the temperature of the HTS cable were calculated and evaluated. The condition of flow in the terminal vessel was assumed to be natural convection, forced flow or static condition for evaluating this effect with various heat transfer condition. As a result, in the case of the natural convection, most of heats flow into the LN2 in the terminal vessel where the volumetric flow of the LN2 is large since ho becomes high. Accordingly, the temperature rise of the LN2 in the inner pipe of Cu former and the terminal vessel can be restricted. However, in the cases of the forced flow and the static condition, most of heats flow into the LN2 in the inner pipe where the volumetric flow of the LN2 is small since ho becomes small. Accordingly, the temperature rise of the LN2 in the inner pipe becomes high. This temperature rise of the LN2 in the inner pipe makes the temperature of the HTS conductor large resulting in remarkable increase of AC losses. Consequently, on the HV cable design, for restriction of the AC loss increase, it is expected that designing the HTS cable termination such as extending outer surface of the terminal joint for increasing of the heat inflow from the terminal joint to the LN2 in the vessel is effective.

O. Maruyama; T. Ohkuma; T. Izumi; Y. Shiohara

2014-01-01T23:59:59.000Z

352

SEISMIC DESIGN EVALUATION GUIDELINES FOR BURIED PIPING FOR THE DOE HLW FACILITIES'  

Office of Scientific and Technical Information (OSTI)

6 1 6 1 7 1 1 SEISMIC DESIGN EVALUATION GUIDELINES FOR BURIED PIPING FOR THE DOE HLW FACILITIES' Chi-Wen Lin Consultant, Martinez, CA George Antaki Westinghouse Savannah River Co., Aiken, SC Kamal Bandyopadhyay Brookhaven National Lab., Upton, NY ABSTRACT This paper presents the seismic design and evaluation guidelines for underground piping for the Department of Energy (DOE) High-Level-Waste (HLW) Facilities. The underground piping includes both single and double containment steel pipes and concrete pipes with steel lining, with particular emphasis on the double containment piping. The design and evaluation guidelines presented in this paper follow the generally accepted beam-on-elastic- foundation analysis principle and the inertial response calculation method, respectively, for piping directly

353

The Pipe-Quadrupole, an Alternative for High Gradient Interaction Region Quadrupole Designs  

SciTech Connect (OSTI)

In the design of interaction region (IR) quadrupoles for high luminosity colliders such as the LHC or a possible upgrade of the Tevatron, the radiation heating of the coil windings is an important issue. Two obvious solutions to this problem can be chosen. The first is to reduce the heat load by added shielding, increased cooling with fins or using Nb{sub 3}Sn to increase the temperature margin. The second solution eliminates the conductor from the areas with the highest radiation intensity, which are located on the symmetry-axes of the midplanes of the coils. A novel quadrupole design is presented, in which the conductor is wound on four half-moon shaped supports, forming elongated toroid sections. The assembly of the four shapes yields a quadrupole field with an active flux return path, and a void in the high radiation area. This void can be occupied by a liquid helium cooling pipe to lower the temperature of the windings from the inside. The coil layout, harmonic optimization and mechanical design are shown, together with the calculated temperature rise for the radiation load of the LHC interaction region quadrupoles.

Oort, J.M. van; Scanlan, R.M.

1996-12-12T23:59:59.000Z

354

Structural problems in connection with panel heating  

E-Print Network [OSTI]

Of FLPOe ~ e e ~ ' 1 a ~ ~ ~ e ~ e ~ ~ ' ~ ~ ~ ~ e g SL 3e 4L 31 4I 7 stereos strain Servo ?' Cno-half inoh et4i pipe ~ ~, ~ ~, . ' ll-Q r 8, . CROOHROtian Ot SPOOiRLOn POXLRO ~ e ~ e a' ~ ~ 1 a ~ e ~ a" ~ r DOn4 SPOOiRLS14a' e e ~, a, ~ ~ a ~ ~ ~ e a...?tone, tho heating y?nolo wee ~ ylaeeL Ln * ' 4ho floors sna w?11?) bnt 14 La ncN' rsogniaoL that 'tbo best Loo?CLO?' ia goat Last?nosey io ih tho ?oiling oi ths rosa ta be, heateL? 51 3L?L?4% bnilging so?stra?tish, whar? rsinforooa ?on?rats Li ns?4, 4hs...

Langdale, Frederick Darrow

2012-06-07T23:59:59.000Z

355

Thermal Analysis of a Lorentz Force Accelerator with an Open Lithium Heat Pipe  

E-Print Network [OSTI]

%[1]. High efficiency (above 30%) is typically reached only at high power levels (above 100 kW) (see Ref. [2 significantly raising the thrust efficiency at 1 #12;2 EMSELLEM, KODYS, CHOUEIRI: LITHIUM LFA moderately high thus causing lithium vapor to condense in the cathode. An empirically inspired solution was first

Choueiri, Edgar

356

Fabrication process development for micro heat pipes using orientation dependent etching  

E-Print Network [OSTI]

components and devices in the past. The IBM 4381 mid- range processor [3], the Hitachi SiC RAM module (4], and the Mitsubishi High Thermal Conduction Module [5] are based on the free and forced convection scheme. Other methods such as direct Journal model...

Ahmed, Akther Salehuddin

1991-01-01T23:59:59.000Z

357

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

solar cell electrical properties vs. solar concentration.solar cell electrical properties vs. solar concentrationsolar cell electrical properties vs. solar concentration.

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

358

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network [OSTI]

Q is the thermal power output of the ceramic heater, Q” isQ is the thermal power output of the ceramic heater, Q” isQ is the thermal power output of the ceramic heater, Q” is

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

359

Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads  

E-Print Network [OSTI]

% of energy used in the commercial sector; commercial use is about 18.2% of the total energy used (EIA, 2010). Air conditioning is becoming more widely used in commercial buildings. The chilled water system is a very important component in large air....1 Simulation baseline Total face area / Face velocity 44 ft2 / 477.3 cfm Coil FH?FL 36 inch?88 inch Rows ? FPI 8 ? 11 Fin thickness / Material 0.008 inch / AL Tube outside diameter / Wall 5/8 inch / 0.025 inch Interior tube wall area Ai 759 ft2 Exterior...

Li, Nanxi 1986-

2012-12-05T23:59:59.000Z

360

Analysis of a flexible polymeric film with imbedded micro heat pipes for spacecraft radiators  

E-Print Network [OSTI]

fluid. Compared to a competing graphite fiber weave, the polymeric material has an effective conductivity over ten times higher. Its area power density (kW/m²) is 18% to 60% lower than the graphite weave, but its mass power density (kW/kg) is several...

McDaniels, Deborah Marie

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network [OSTI]

cooling of concentrating photovoltaic cells. In Photovoltaic31] B. Siegal. Solar photovoltaic cell thermal measurementof cooling concentrating photovoltaic cells using a copper/

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

362

Innovative Porous Media Approach in Modeling Biofilm Applications, Human Eye and Nanofluid Based Heat Pipes  

E-Print Network [OSTI]

individual cells and continuum EPS matrix, Biotechnology andglu cell yield coefficient (g Pa/ g glu ) r reaction Y EPS/glu EPS yield coefficient (g EPS/ g glu ) superscript W

Shafahi, Maryam

2010-01-01T23:59:59.000Z

363

2102, Page 1 Experimental Investigation of Closed Loop Oscillating Heat Pipe as the  

E-Print Network [OSTI]

, a fan coil unit and a condensing unit which the fan coil unit is located inside the room and another one

Ghajar, Afshin J.

364

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

B, 25 , No.9, pp. 679- [104] Wanlass, M.W. , Coutts, T.J. ,For multijunction cells, Wanlass et al. [104] developed a

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

365

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network [OSTI]

electro-thermal modeling of lithium-ion battery system forKim. Improving battery design with electro-thermal modeling.thermal management and accurate temperature control are major concerns for both these battery

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

366

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

photovoltaic and photovoltaic/thermal system design”, Solar Energy,of solar photovoltaic/thermal systems”, Solar Energy, 70 ,photovoltaic/thermal solar collector”, Solar Energy, 78 ,

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

367

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

of combined quantum/thermal solar energy converters”, Proc.of solar photovoltaic/thermal systems”, Solar Energy, 70 ,photovoltaic/thermal solar collector”, Solar Energy, 78 ,

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

368

Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states  

E-Print Network [OSTI]

, refrigeration, HVAC, auto- mobile sector, space, nuclear and other emerging systems. While in many applications

Khandekar, Sameer

369

Innovative Porous Media Approach in Modeling Biofilm Applications, Human Eye and Nanofluid Based Heat Pipes  

E-Print Network [OSTI]

Gilbert, Clonal variation in maximum specific growth rate and susceptibility rowards antimicrobials, Journal of applied microbiology,

Shafahi, Maryam

2010-01-01T23:59:59.000Z

370

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network [OSTI]

seriously pursued Automobile Electric Batteries Due to thefor a typical electric automobile are shown in Figure 1.5.Electric batteries for automobiles: (a) Power components in

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

371

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network [OSTI]

8]; (b) A lithium-ion (Li-ion) battery pack consisting of 488]; (b) A lithium-ion (Li-ion) battery pack consisting of 48

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

372

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network [OSTI]

AUTO_WRITE mFlux * h_fg pEqn.H volScalarField rUA("rUA", 1.0/UEqn.A()); surfaceScalarField rUAf("(1|A(U))", fvc::interpolate(rUA)); U = rUA*UEqn.H();

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

373

Influence of Hydraulics and Control of Thermal Storage in Solar Assisted Heat Pump Combisystems  

Science Journals Connector (OSTI)

Abstract This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44/HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as well as use of internal and external heat exchangers for DHW preparation were investigated as well as sensor height for charging of the DHW zone in the store. The temperature in this zone was varied to ensure the same DHW comfort was achieved in all cases. The results show that the four pipe connection results in 9% improvement in SPF compared to three pipe and that the external heat exchanger for DHW preparation leads to a 2% improvement compared to the reference case. Additionally the sensor height for charging the DHW zone of the store should not be too low, otherwise system performance is adversely affected.

Stefano Poppi; Chris Bales

2014-01-01T23:59:59.000Z

374

Geothermal district heating systems  

SciTech Connect (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

375

NETL: News Release - New Carbon Drill Pipe Signals Technical Achievement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 17, 2004 May 17, 2004 New Carbon Drill Pipe Signals Technical Achievement Technology May Benefit American Energy Production WASHINGTON, DC -- The Department of Energy (DOE) announced today the development of a new "composite" drill pipe that is lighter, stronger and more flexible than steel, which could significantly alter the ability to drain substantially more oil and gas from rock than traditional vertical wells. MORE INFO Read about January, 2003 field test Read about October, 2003 field test - "This is another example of the technology breakthroughs in the arena of domestic energy production being carried out by our Office of Fossil Energy," said Secretary of Energy Spencer Abraham. "To reach and recover untapped domestic oil and gas reserves, we must have the ability to

376

OBSERVATION REPORT BendKing Pipe Bending Machine.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BENDKING PIPE BENDING MACHI\NE BENDKING PIPE BENDING MACHI\NE DEMONSTRATION Field Observation Report for December 3 - 4, 2001 Date Published: March 2002 Brian Meindinger, RMOTC PREPARED FOR THE U.S. DEPARTMENT OF ENERGY ROCKY MOUNTAIN OILFIELD TESTING CENTER 907 N. POPLAR, SUITE 150 CASPER, WY 82601 1-888-599-2200 Approval: RMOTC Manager_____________________________ Date:______________ Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any

377

Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints  

Broader source: Energy.gov (indexed) [DOE]

SEISMIC CAPACITY OF THREADED, SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 Motivation * Understand the behavior and failure mode of common joints under extreme lateral loads * Static and shake table tests conducted of pressurized - Threaded, - Brazed, - Mechanical joints Static Testing o Pressurized spool to 150 psi o Steady downward force applied while recording deflections o Grooved clamped mech. joints * 16 tests performed o Threaded joints * 4 tests o Brazed (copper) * 4 tests Grooved Couplings o Catalog items o ASTM A106 Grade B piping o ASTM A 536 couplings o Lateral deflections imposed well above manufacturer's angular installation tolerance

378

Program sizes flange or pipe-tap orifice plates  

SciTech Connect (OSTI)

A program has been developed for the HP-41CV programmable calculator that is designed to compute differential pressure across an orifice, gas flow through an orifice, or the orifice-plate bore for orifice plates with flange or pipe taps. It is designed to save time in extracting values from charts, tables, and graphs which are required to perform the calculations. It is based on equations and data from Spink. The program is run by inputing appropriate data via execution of a program entitled ''DATA IN,'' calculating differential pressure via program ''dH20,'' gas flow via program ''FLOW,'' and via program ''BORE.'' Flange-tap calculations are performed with FLAG 01 not set, while pipe-tap calculations are selected by setting FLAG 01.

Hogsett, J.E.

1984-03-12T23:59:59.000Z

379

BOA: Asbestos pipe insulation removal robot system. Phase 1  

SciTech Connect (OSTI)

The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

Schempf, H.; Bares, J.E.

1995-02-01T23:59:59.000Z

380

Guide to good practices for equipment and piping labeling  

SciTech Connect (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Equipment and Piping Labeling, Chapter XVIII of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities.'' The practices in this guide should be considered when planning or reviewing labeling programs. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19.

Not Available

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Guide to good practices for equipment and piping labeling  

SciTech Connect (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Equipment and Piping Labeling, Chapter XVIII of Department of Energy (DOE) Order 5480.19, ``Conduct of Operations Requirements for DOE Facilities.`` The practices in this guide should be considered when planning or reviewing labeling programs. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19.

Not Available

1993-06-01T23:59:59.000Z

382

Reactor Materials Program process water piping indirect failure frequency  

SciTech Connect (OSTI)

Following completion of the probabilistic analyses, the LOCA Definition Project has been subject to various external reviews, and as a result the need for several revisions has arisen. This report updates and summarizes the indirect failure frequency analysis for the process water piping. In this report, a conservatism of the earlier analysis is removed, supporting lower failure frequency estimates. The analysis results are also reinterpreted in light of subsequent review comments.

Daugherty, W.L.

1989-10-30T23:59:59.000Z

383

A LOW-COST GPR GAS PIPE & LEAK DETECTOR  

SciTech Connect (OSTI)

A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

David Cist; Alan Schutz

2005-03-30T23:59:59.000Z

384

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

385

An investigation of evaluation methods for internal FBE pipe coatings  

SciTech Connect (OSTI)

The corrosivity of CO{sub 2}-containing water used for injection into formations is very high. One of the means for mitigating this corrosion is through the use of internal Fusion Bonded Epoxy (FBE) pipe coatings. However, these are very demanding services for coatings. Pressures and temperatures are high enough in some cases to severely stress the coating. Most FBE coatings are permeated by CO{sub 2}, and when pressures are released, blistering of the coating may occur. This compromises the integrity of the coating which may result in premature failure of the coating followed by corrosion of the pipe metal. The identification of coatings with good performance is absolutely essential. The failure of the coating alone can result in great losses due to the initial cost of the coating application, plus potential operating problems. When corrosive penetrations of the pipe occur, the costs escalate even higher as a result of required maintenance and down time. This paper describes the test work conducted to determine how to evaluate coatings for such services, and to determine which coatings will give successful, long-term performance. Test methods contained in an industry standard have been validated, and suitable coatings identified. Future test work needed to add to these findings has also been recommended. Although this work was designed for CO{sub 2} services, it does give valuable insight into tests that are required to properly qualify FBE coatings for non-CO{sub 2} services.

Thompson, S.P. [Thompson (Stanley P.), Paris, TX (United States); Varughese, K. [Al-Qahtani Pipe Coating Terminal, Dammam (Saudi Arabia)

1994-12-31T23:59:59.000Z

386

Trials of flexible pipe in sour service reveal degradation  

SciTech Connect (OSTI)

Field trials on flexible pipe offshore Qatar have shown that, under sour conditions, the layered, composite material can suffer severe degradation leading to failure. The failure demonstrates the significant effects of stress level, environmental aggressiveness, and localized hard zones in promoting sulfide stress cracking. Permeability of the sour gas through the composite layer of the flexible pipe resulted in varying degrees of sulfide attack and hydrogen embrittlement, depending on the susceptibility of the multilayered material. In the trials, the material was used as a gas-lift line in a sour-oil field in the Arabian Gulf. Flexible pipes have been used successfully for transporting methanol, benzene, and gas condensates in wet sweet environments at temperatures of up to 80 C. Little or no information, however, has been available as to its corrosion resistance in sour-service wells containing 6% CO{sub 2} with 3% H{sub 2}S partial pressures and at moderate temperatures. The paper discusses an underwater survey to evaluate the damage, visual inspection, mechanical tests, metallographic exam, and trial results.

Al-Maslamani, M.J. [Qatar General Petroleum Corp., Doha (Qatar)

1996-11-04T23:59:59.000Z

387

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

plastic pipes. Installation Issues Current plumbing practice does not commonly address energy efficiency.

Lutz, Jim

2014-01-01T23:59:59.000Z

388

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

389

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lower Water Heating Temperature Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

390

Heat transfer and heat exchangers reference handbook  

SciTech Connect (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

391

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

392

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

393

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

394

NETL: News Release - Carbon Fiber Drill Pipe Performs Flawlessly in First  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 9, 2003 January 9, 2003 Carbon Fiber Drill Pipe Performs Flawlessly in First Field Test Private Company to Use DOE-Sponsored Technology To Help Restore Domestic Production from Older Oil Wells TULSA COUNTY, OK - A new lightweight, flexible drill pipe engineered from space-age composites rather than steel has passed an important field test in a U.S. Department of Energy project and is now being readied for its first commercial use. - Photo - Composite Drill Pipe Being Bent - The advanced composite drill pipe could enable drillers in the future to bore sharply-curved "short radius" horizontal wells without creating fatigue stress on the drill pipe. The Energy Department's National Energy Technology Laboratory announced that the drill pipe, made from carbon fiber resins by Advanced Composite

395

Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4  

SciTech Connect (OSTI)

This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.

Bailey, J.W.

1998-07-24T23:59:59.000Z

396

Seismic response and damping tests of small bore LMFBR piping and supports  

SciTech Connect (OSTI)

Seismic testing and analysis of a prototypical Liquid Metal Fast Breeder Reactor (LMFBR) small bore piping system is described. Measured responses to simulated seismic excitations are compared with analytical predictions based on NRC Regulatory Guide 1.61 and measured system damping values. The test specimen was representative of a typical LMFBR insulated small bore piping system, and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps.

Barta, D.A.; Anderson, M.J.; Severud, L.K.; Lindquist, M.R.

1984-01-01T23:59:59.000Z

397

Analysis and remedial treatment of a steel pipe-jacking accident in complex underground environment  

Science Journals Connector (OSTI)

Abstract Steel pipe-jacking has been widely used in the construction of water supply and sewage pipelines because of its self-sealing qualities, ability to withstand high pressure and lower environmental impact. The trend in steel pipe-jacking is towards larger diameters, longer drive lengths, and better adaptation to more complex underground conditions. Steel pipe-jacking, in which a flexible pipe is used, is different from concrete pipe-jacking where a rigid pipe is used. With increasing diameters and drive lengths, the mechanical characteristics of deep-buried steel pipe-jacking in complex underground conditions have presented new challenges for designers. In this study, the forces involved and the stability of steel pipe-jacking are analyzed by examining an example of steel pipe-jacking in a complex underground environment. The causes of high deflection under elevated water and earth pressure and local buckling incidents are investigated by the finite element method. The results show that, in this particular case, confining pressure combined with jacking force leads to buckling. Two main remedial schemes are proposed: one is to increase the wall thickness of the pipe, and the other is to install stiffening ribs on the pipe where high deflection occurs. The effect of the two remedial schemes is presented and evaluated. In particular, various stiffening ribs are used in different deflection sections with grouting to decrease friction and lower the corresponding axial jacking force. This approach demonstrates that the structural strength of the pipeline has met the requirements after the rectification action is taken. The analysis and remedial treatment for this case study will provide a reference for effective design and construction of similar steel pipe-jacking.

Liang Zhen; Jin-Jian Chen; Pizhong Qiao; Jian-Hua Wang

2014-01-01T23:59:59.000Z

398

Parametric calculations of fatigue-crack growth in piping. [PWR; BWR  

SciTech Connect (OSTI)

A major objective of this program is to provide data that can be used to formulate recommended revisions to ASME Section XI and regulatory requirements for inservice inspection of piping and pressure vessels. This study presents calculations of the growth of piping flaws produced by fatigue. Flaw growth was predicted as a function of the initial flaw size, the level and number of stress cycles, the piping material, and environmental factors.

Simonen, F.A.; Goodrich, C.W.

1983-03-01T23:59:59.000Z

399

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

400

Renewable energy of waste heat recovery system for automobiles  

Science Journals Connector (OSTI)

A system to recover waste heat comprised of eight thermoelectric generators (TEGs) to convert heat from the exhaust pipe of an automobile to electrical energy has been constructed. Simulations and experiments for the thermoelectric module in this system are undertaken to assess the feasibility of these applications. In order to estimate the temperature difference between thermoelectric elements a network of thermal resistors is constructed. The results assist in predicting power output of TEG module more precisely. Three configurations of heat sinks which are comprised of 10 22 and 44 fins are applied in this simulation. The results of the simulations show the average thermal resistance of these heat sinks in each section of the system with varied velocity of external flow. As the performance of a TEG module is influenced by an applied pressure through the effect of the thermal contact resistance we clamp the TE module to our experimental apparatus; the relation between power output and pressure applied in this case is presented. Besides simulations the system is designed and assembled. Measurements followed the connection of the system to the middle of an exhaust pipe. Through these simulations and experiments the power generated with a commercial TEG is presented. The results establish the fundamental development of materials that enhance the TEG efficiency for vehicles.

Cheng-Ting Hsu; Da-Jeng Yao; Ke-Jyun Ye; Ben Yu

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Summary Report: Control Strategies for Mixed-Mode Buildings  

E-Print Network [OSTI]

air conditioning systems include fan coil units (FCUs) and water-source heat pumpSource Heat Pump; radiant slab heating and cooling; low flow A/C dehumidifies air;

Brager, Gail; Borgeson, Sam; Lee, Yoonsu

2007-01-01T23:59:59.000Z

402

Equipment and Piping Labeling Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

EQUIPMENT AND PIPING LABELING EQUIPMENT AND PIPING LABELING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as opposed to tracing its schematic, and to reduce personnel exposure to radiation and hazardous materials. This assessment provides a basis for evaluating the effectiveness of the contractor's program for labeling equipment and piping and for establishing compliance

403

Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange  

DOE Patents [OSTI]

Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

Allais, Arnaud (D-30625 Hannover, DE); Hoffmann, Ernst (D-30855 Langenhagen, DE)

2008-02-05T23:59:59.000Z

404

E-Print Network 3.0 - auto-pipe design system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environment 2, 4 sup- ports the design and deployment... of streaming applications on hybrid systems. Auto-Pipe already contains a feder- ated simulation infrastructure... to...

405

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

Kiran M. Kothari; Gerard T. Pittard

2005-07-01T23:59:59.000Z

406

IPIRG-2 task 1 - pipe system experiments with circumferential cracks in straight-pipe locations. Final report, September 1991--November 1995  

SciTech Connect (OSTI)

This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program.

Scott, P.; Olson, R.; Marschall, C.; Rudland, D. [and others

1997-02-01T23:59:59.000Z

407

Piping retrofit reduces valve-damaging flow vibration  

SciTech Connect (OSTI)

This article describes how excessive flow-induced vibration was escalating safety relief valve maintenance at an alarming pace until simple piping modifications eliminated the problem. Public Service Co. of Colorado's (PSCO) Cherokee Station Unit 4 had been experiencing excessive hot and cold reheat safety valve maintenance. From 1990 through 1993, expenditures exceeded $150,000, including a complete refurbishing in 1990. Furthermore, from 1990 to 1992 the incurred costs of contracting VR certificate repairs accumulated to more than $50,000. Such exorbitant maintenance costs were unique among PSCO's generating system.

Webb, M.; Ellenberger, P.

1995-01-01T23:59:59.000Z

408

Pipe line pigs have varied applications in operations. Part 2  

SciTech Connect (OSTI)

In the early days of pipelining, it was discovered that running a swab equipped with leather disks through the line removed paraffin deposited on the pipe wall increasing the flow without increasing the power input. Blades were added to the device later to improve the efficiency of wax removal, which also decreased the number of runs and the cost of pigging. Pig developers learned from their successes as well as their failures. Part 1 of this work focused on the construction and kaliper pigs, and the second part describes the general form and function of the different operational pigs, i.e., calipers, cleaners, and spheres.

Vernooy, B.

1980-10-01T23:59:59.000Z

409

A kinetic scheme for pressurized flows in non uniform pipes  

E-Print Network [OSTI]

The aim of this paper is to present a kinetic numerical scheme for the computations of transient pressurised flows in closed water pipes with variable sections. Firstly, we detail the derivation of the mathematical model in curvilinear coordinates under some hypothesis and we performe a formal asymptotic analysis. Then the obtained system is written as a conservative hyperbolic partial differential system of equations, and we recall how to obtain the corresponding kinetic formulation based on an upwinding of the source term due to the "pseudo topography" performed in a close manner described by Perthame and al.

Bourdarias, Christian; Gerbi, Stéphane

2008-01-01T23:59:59.000Z

410

Handbook of experiences in the design and installation of solar heating and cooling systems  

SciTech Connect (OSTI)

A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

Ward, D.S.; Oberoi, H.S.

1980-07-01T23:59:59.000Z

411

Floatable solar heat modules  

SciTech Connect (OSTI)

A floating solar heat module for swimming pools comprises a solid surface for conducting heat from the sun's rays to the water and further includes a solid heat storage member for continual heating even during the night. A float is included to maintain the solar heat module on the surface of the pool. The solid heat storage medium is a rolled metal disk which is sandwiched between top and bottom heat conducting plates, the top plate receiving the heat of the sun's rays through a transparent top panel and the bottom plate transferring the heat conducted through the top plate and rolled disk to the water.

Ricks, J.W.

1981-09-29T23:59:59.000Z

412

Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania  

SciTech Connect (OSTI)

The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

Not Available

1980-01-01T23:59:59.000Z

413

Screening reactor steam/water piping systems for water hammer  

SciTech Connect (OSTI)

A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

Griffith, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1997-09-01T23:59:59.000Z

414

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project |  

Open Energy Info (EERE)

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title BSU GHP District Heating and Cooling System (PHASE I) Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description The Project will result in the construction of the largest ground source geothermal-based closed loop GHP heating and cooling system in America. Phase I of the Project began with the design, competitive bidding, and contract award for the drilling and "looping" of 1,800 boreholes in sports fields and parking lots on the north side of campus. The components of the entire Project include: (1) 4,100 four hundred feet deep boreholes spread over about 25 acres of sport fields and parking lots (Phase I will involve 1,800 boreholes spread over about 8 acres); (2) Each Phase will require a district energy station (about 9,000 sq. feet) that will each contain (A) two 2,500 ton heat pump chillers (which can produce 150 degree (F) water for heating purposes and 42 degree (F) water for cooling purposes); and (B) a variety of water pumps, electrical and other control systems; (3) a closed loop piping system that continuously circulates about 20,000 gallons of water (no anti-freeze) per minute through the boreholes, energy stations, a (two pipe) hot water loop and a (two pipe) chilled water loop (no water is drawn from the aquifer at any point in the operation); and (4) hot/chilled water-to-air heat exchangers in each of the buildings.

415

Evaluation of IR techniques for detection of wall thinning in service water piping  

SciTech Connect (OSTI)

Service water piping systems at electric power plants provide cooling for a variety of safety and non-safety related components and systems. Assessing integrity of the service water piping system includes detection and analysis of pipe wall thinning. Conventional inspection techniques usually involve the time-intensive process of ultrasonic thickness measurements, based on a grid system, of the entire pipe length. An alternative to this process may lie in the use of active infrared thermography techniques for detection of thin wall areas in the pipe. The EPRI NDE Center participated in a preliminary evaluation of this technology at Vermont Yankee Nuclear Power Plant. Based on the promising results of the Vermont Yankee activity, the Center worked with Thermal Wave Imaging, Inc. (TWI) in an effort to optimize the IR thermal injection technique for service water piping applications. The primary goals of this effort were to determine the practical depth resolution capabilities of the thermal injection method in carbon steel, and also to minimize the effects of pipe curvature on detection capabilities. Both of these efforts were subject to the constraint that the system be sufficiently portable for use in an electrical power plant, where space and access to the pipe surface is often limited.

Zayicek, P. [EPRI NDE Center, Charlotte, NC (United States); Shepard, S.M. [Thermal Wave Imaging, Inc., Lathrup Village, MI (United States)

1996-12-31T23:59:59.000Z

416

A Power-Law Formulation of Laminar Flow in Short Pipes Max Sherman  

E-Print Network [OSTI]

A Power-Law Formulation of Laminar Flow in Short Pipes Max Sherman Indoor Environment Program ABSTRACT This report develops a theoretical description of the hydrodynamic relationship based on a power pipes can be described with a simple power law dependence on pressure, but that the exponent

417

Investigation of PVC Pipe Failure at Terrell State Hospital – Final Report  

E-Print Network [OSTI]

At the request of Terrell State Hospital and MHMR, the Energy Systems Laboratory at Texas A&M University investigated the failure of the PVC pipes serving the chilled water loop at Terrell State Hospital. There were two PVC pipe failures where...

Wei, G.; Deng, S.; Claridge, D. E.; Turner, W. D.

2000-01-01T23:59:59.000Z

418

Development of pipe deterioration models for water distribution systems using EPR  

E-Print Network [OSTI]

Development of pipe deterioration models for water distribution systems using EPR L. Berardi, O diameter D, Dclass Equivalent diameter of the pipe class DSS Decision support system EPR Evolutionary polynomial regression ES Matrix of exponents of EPR input variables f, g Functions selected by user

Fernandez, Thomas

419

CHARACTERISATION OF AGED HDPE PIPES FROM DRINKING WATER DISTRIBUTION: INVESTIGATION OF CRACK DEPTH BY NOL RING  

E-Print Network [OSTI]

CHARACTERISATION OF AGED HDPE PIPES FROM DRINKING WATER DISTRIBUTION: INVESTIGATION OF CRACK DEPTH are used for the transport of drinking water. However, disinfectants in water seem to have a strong impact for the distribution of drinking water. HDPE pipes are exposed to an internal pressure due to water flow. Furthermore

Paris-Sud XI, Université de

420

Control Dewar Subcooler Heat Exchanger Calculations  

SciTech Connect (OSTI)

The calculations done to size the control dewar subcooler were done to obtain a sufficient subcooler size based on some conservative assumptions. The final subcooler design proposed in the design report will work even better because (1) It has more tubing length, and (2) will have already subcooled liquid at the inlet due to the transfer line design. The subcooler design described in the 'Design Report of the 2 Tesla Superconducting Solenoid for the Fermilab D0 Detector Upgrade' is the final design proposed. A short description of this design follows. The subcooler is constructed of 0.50-inch OD copper tubing with 1.0-inch diameter fins. It has ten and one half spirals at a 11.375-inch centerline diameter to provide 31 feet of tubing length. The liquid helium supply for the solenoid flows through the subcooler and then is expanded through a J-T valve. The subcooler spirals are immersed in the return two phase helium process stream. The return stream is directed over the finned tubing by an annulus created by a 10-inch pipe inside a 12-inch pipe. The transfer line from the refrigerator to the control dewar is constructed such that the liquid helium supply tube is in the refrigerator return stream, thereby subcooling the liquid up to the point where the u-tubes connect the transfer line to the control dewar. The subcooler within the control dewar will remove the heat picked up in the helium supply u-tube/bayonets. The attached subcooler/heat exchanger calculations were done neglecting any subcooling in the transfer line. All heat picked up in the transfer line from the refrigerator storage dewar to the control dewar is absorbed by the supply stream. The subcooler was sized such that the two phase supply fluid is subcooled at 1.7 atm pressure and when expanded through a JT valve to 1.45 atm pressure it is at a saturated liquid state. The calculations apply during steady state operation and at a flow rate of 16 g/s. The analysis of the heat exchanger was broken into two parts relating to the heat transfer mode taking place. The first part is considered the condensing part in which the helium supply stream is changed from two phase fluid to one phase liquid. The second part is the subcooling part where the liquid temperature is lowered, i.e.. subcooled. A summary of the calculations and results appears on the next page. The raw calculations follow the summary.

Rucinski, R.; /Fermilab

1993-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modern Compressed Air Piping Selection and Design Can Have a Great Impact on Your Compressed Air Energy Dollars  

E-Print Network [OSTI]

This paper introduces new concepts in compressed air piping, sizing, and system design beyond the conventional pipe sizing charts and standard system layout guide lines. The author shows how compressed air velocity has a very significant impact...

Van Ormer, H.

2005-01-01T23:59:59.000Z

422

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

423

Award Recipient of ENERGY STAR Challenge for Industry JM Eagle Wharton Plastic Pipe Manufacturing Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wharton Plastic Pipe Manufacturing Plant JM Eagle 10807 U.S. 59 Road Wharton, TX 77488 The Wharton Plastic Pipe Manufacturing Plant, located on an old cattle field, opened in 1985 by first manufacturing PVC pipe. The manufacturing of injection molding was added in 1988, corrugated pipe was added in 2009, and corrugated fittings were added in 2011. There are expectations for the plant to expand into manufacturing PE pipe fittings in the future. The Wharton plant achieved the ENERGY STAR Challenge for Industry in June 2010. The plant achieved a 15.5% reduction in energy intensity in the first year following its baseline. The success of achieving the Challenge for Industry came principally from an energy conservation program that focused on not operating equipment other than that needed for current production,

424

The development of mathematical model for cool down technique in the LNG pipe-line system  

SciTech Connect (OSTI)

An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

1999-07-01T23:59:59.000Z

425

Experimental Study on Fluid Mixing for Evaluation of Thermal Striping in T-Pipe Junction  

SciTech Connect (OSTI)

A water experiment is performed to investigate thermal striping phenomena in a T-pipe junction which is a typical geometry of fluid mixing. The flow velocity ratio and temperature difference were experimental parameters. The jet form was classified into four patterns; (1) impinging jet, (2) deflecting jet, (3) re-attachment jet and (4) wall jet according to the inflow condition. The parameter experiments showed that the jet form could be predicted by a momentum ratio between the two pipes. The thermo-chromic liquid crystal sheet showed that a cold spot was formed at the wall surface in the main pipe in the cases of the impinging jet and the wall jet. From the temperature measurement in the fluid, temperature fluctuation intensity was high along the edge of the jet exiting from branch piping. A database of temperature fluctuation and frequency characteristics was established for an evaluation rule of thermal striping in a T-pipe junction. (authors)

Minoru Igarashi; Masaaki Tanaka; Hideki Kamide [Japan Nuclear Cycle Development Institute 4002, Narita, O-arai, Ibaraki 311-1393 (Japan); Shigeyo Kawashima [Nuclear Energy System Incorporation (Japan)

2002-07-01T23:59:59.000Z

426

A method to define degradation mechanisms and failure rates for piping  

SciTech Connect (OSTI)

This paper describes a process currently being employed to develop an easy to use procedure for identifying degradation mechanisms and computing failure rates for piping. The procedure includes guidelines to identify degradation mechanisms that may be present in piping systems. The identified mechanisms along with other system or segment specific features of the piping determine the piping failure rate. Implementation of this procedure requires a data or knowledge base that reflects the service and operational conditions that affect piping reliability and availability. This procedure is being developed for use by plant engineers, and will not require expertise in probability, stress, or fracture mechanics analyses. The method can be used to provide input for performing plant safety assessments and defining risk based inspection programs.

Gamble, R.M. [Sartrex Corp., Rockville, MD (United States); Gosselin, S.R. [EPRI NDE Center, Charlotte, NC (United States)

1996-12-01T23:59:59.000Z

427

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

428

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

429

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

430

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

431

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

432

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

433

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

434

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Broader source: Energy.gov [DOE]

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

435

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

436

Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids  

SciTech Connect (OSTI)

Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

2013-07-22T23:59:59.000Z

437

Liquid Phase Heating Systems  

E-Print Network [OSTI]

saturation pressure is ju'st under 278 psig. To this, pump head, pump NPSH and static head due to elevated piping must l be added to arrive at total pressure in a steam cushioned HTW system. Nitrogen cushioned systems are more common, and expansion...

Mordt, E. H.

1979-01-01T23:59:59.000Z

438

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

439

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation  

E-Print Network [OSTI]

known that drill pipe fatigue in oil-gas drilling operations represents more than 30% of the drill pipeStress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau

Paris-Sud XI, Université de

440

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ARM - Heat Index Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

442

Section 38 - HVAC (Heating, Ventilation, Air Conditioning)  

Science Journals Connector (OSTI)

The term HVAC is an acronym for Heating, Ventilation (and) Air Conditioning, the industry term for any of various efforts to control conditions in a building or other enclosed area to improve comfort and efficiency. A closely related section is Refrigeration, which follows this one. Some contemporary HVAC techniques have ancient roots. Early forms of central heating and solar home heating were in use in Rome in the first century A.D. The earliest use of glass in windows (as opposed to a covering of wood, cloth, or hide, or simply an opening) is also attributed to the Romans at this same time. The first known use of solar-oriented building design in North America dates back to about the year 1050; i.e., the cliff dwellings built by the Anasazi (Ancient Pueblo) people of the Colorado Plateau area. Geothermal district heating was employed as early as the 1300s, in the Auvergne region of southern France. The foundation for modern central heating was established in the 1700s, first in England and then in France. The 1800s saw significant advances in the use of water heaters, especially the first automatic storage water heater (Edwin Ruud, 1889) and the first commercial solar water heater (Clarence Kemp, 1891). In comparison with heating, cooling technology was late in developing. The first successful method of producing ice occurred in 1851, and it was not until 1902 that Willis Haviland Carrier designed the first industrial air-conditioning system. His Carrier Air Conditioning Corporation would go on to develop air-conditioning systems for stores and theaters (1924) and for residential buildings (1928). Carrier remains the global leader in air conditioner production. The first air-conditioned automobile was produced by Packard in 1939. Recent entries in this section emphasize the use of alternative energy sources in heating and cooling, such as solar, photovoltaic, geothermal, and fuel cells. These advances include the ground-source heat pump, the Trombe wall, the heat pipe, and the PV/thermal hybrid system.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

443

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe. The fitting is now being placed into manufacture. Task 8--System Integration and Laboratory Validation continued developing the robot module inter-connects and development of a master LabView-based system display and control software.

Kiran M. Kothari; Gerard T. Pittard

2004-04-01T23:59:59.000Z

444

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe. The fitting is now being manufactured. The 12-inch ball valve for allowing no-blow access was also procured. Task 8 (System Integration and Laboratory Validation) continued with the development of the robot module inter-connects and of a master LabView-based system display and control software.

Kiran M Kothari; Gerard T. Pittard

2004-07-01T23:59:59.000Z

445

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS  

SciTech Connect (OSTI)

Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to the design, fabrication and testing of a entry fitting in a 4-inch prototype and is now being used to complete drawings for use in 12-inch diameter pipe. Task 8--System Integration and Laboratory Validation continued developing the robot module inter-connects and development of a master LabView-based system display and control software.

Kiran M. Kothari, Gerard T. Pittard

2004-01-01T23:59:59.000Z

446

Composite drill pipe and method for forming same  

DOE Patents [OSTI]

Metal inner and outer fittings configured, the inner fitting configured proximally with an external flange and projecting distally to form a cylindrical barrel and stepped down-in-diameter to form an abutment shoulder and then projecting further distally to form a radially inwardly angled and distally extending tapered inner sleeve. An outer sleeve defining a torque tube is configured with a cylindrical collar to fit over the barrel and is formed to be stepped up in diameter in alignment with the first abutment shoulder to then project distally forming a radially outwardly tapered and distally extending bonding surface to cooperate with the inner sleeve to cooperate with the inner sleeve in forming a annular diverging bonding cavity to receive the extremity of a composite pipe to abut against the abutment shoulders and to be bonded to the respective bonding surfaces by a bond.

Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem; Josephson, Marvin

2014-04-15T23:59:59.000Z

447

Stress-corrosion cracking in BWR and PWR piping  

SciTech Connect (OSTI)

Intergranular stress-corrosion cracking of weld-sensitized wrought stainless steel piping has been an increasingly ubiquitous and expensive problem in boiling-water reactors over the last decade. In recent months, numerous cracks have been found, even in large-diameter lines. A number of potential remedies have been developed. These are directed at providing more resistant materials, reducing weld-induced stresses, or improving the water chemistry. The potential remedies are discussed, along with the capabilities of ultrasonic testing to find and size the cracks and related safety issues. The problem has been much less severe to date in pressurized-water reactors, reflecting the use of different materials and much lower coolant oxygen levels.

Weeks, R.W.

1983-07-01T23:59:59.000Z

448

Development of Next Generation Multiphase Pipe Flow Prediction Tools  

SciTech Connect (OSTI)

The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and closure relation development for different flow conditions. Modeling studies were performed in two parts, Technology Assessment and Model Development and Enhancement. The results of the Technology assessment study indicated that the performance of the current state of the art two-phase flow models was poor especially for three-phase pipeline flow when compared with the existing data. As part of the model development and enhancement study, a new unified model for gas-oil-water three-phase pipe flow was developed. The new model is based on the dynamics of slug flow, which shares transition boundaries with all the other flow patterns. The equations of slug flow are used not only to calculate the slug characteristics, but also to predict transitions from slug flow to other flow patterns. An experimental program including three-phase gas-oil-water horizontal flow and two-phase horizontal and inclined oil-water flow testing was conducted utilizing a Tulsa University Fluid Flow Projects Three-phase Flow Facility. The experimental results were incorporated into the unified model as they became available, and model results were used to better focus and tailor the experimental study. Finally, during the Period 2, a new three-phase databank has been developed using the data generated during this project and additional data available in the literature. The unified model to predict the gas-oil-water three phase flow characteristics was tested by comparing the prediction results with the data. The results showed good agreements.

Tulsa Fluid Flow

2008-08-31T23:59:59.000Z

449

Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

Robinson, Sharon M [ORNL; Jubin, Robert Thomas [ORNL; Patton, Bradley D [ORNL; Sullivan, Nicholas M [ORNL; Bugbee, Kathy P [ORNL

2009-09-01T23:59:59.000Z

450

Design study of a coal-fired thermionic (THX) topped power plant. Volume IV. Thermionic heat exchanger design and costing  

SciTech Connect (OSTI)

This volume deals with the details of how thermionic conversion works, and how it is used in a coal-fired furnace to achieve power plant efficiencies of 45%, and overall costs of 36.3 mills/kWh. A review of the fundamental technical aspects of thermionic conversion is given. The overall Thermionic Heat Exchanger (THX) design, the heat pipe design, and the interaction of the heat pipes with the furnace are presented. Also, the operational characteristics of thermionic converters are described. Details on the computer program used to perform the parametric study are given. The overall program flow is reviewed along with the specifics of how the THX subroutine designed the converter to match the conditions imposed. Also, input costs and variables effecting the THX's performance are detailed. The efficiencies of the various power plants studied are given as a function of the air preheat temperature, size of the power plant, and thermionic level of performance.

Dick, R.S.; Britt, E.J.

1980-10-15T23:59:59.000Z

451

Cedarville School District Retrofit of Heating and Cooling Systems with  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description - Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School, Middle School and Elementary School. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this rural region during a period of economic recession. - The new Heat Pumps will be targeted to perform at very high efficiency with EER (energy efficiency ratios) of 22+/-. System capacity is planned at 610 tons. - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+/-. - Monitor for 3 years the performance of the new systems compared to benchmarks from the existing system, and provide data to the public to promote adoption of Geothermal technology. - The Geothermal installation contractor is able to provide financing for a significant portion of project funding with payments that fall within the energy savings resulting from the new high efficiency heating and cooling systems.

452

Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices  

SciTech Connect (OSTI)

Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

1995-11-01T23:59:59.000Z

453

HEAT TRANSFER ANALYSIS FOR FIXED CST AND RF COLUMNS  

SciTech Connect (OSTI)

In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, transient and steady state two-dimensional heat transfer models have been constructed for columns loaded with cesium-saturated crystalline silicotitanate (CST) or spherical Resorcinol-Formaldehyde (RF) beads and 6 molar sodium tank waste supernate. Radiolytic decay of sorbed cesium results in heat generation within the columns. The models consider conductive heat transfer only with no convective cooling and no process flow within the columns (assumed column geometry: 27.375 in ID with a 6.625 in OD center-line cooling pipe). Heat transfer at the column walls was assumed to occur by natural convection cooling with 35 C air. A number of modeling calculations were performed using this computational heat transfer approach. Minimal additional calculations were also conducted to predict temperature increases expected for salt solution processed through columns of various heights at the slowest expected operational flow rate of 5 gpm. Results for the bounding model with no process flow and no active cooling indicate that the time required to reach the boiling point of {approx}130 C for a CST-salt solution mixture containing 257 Ci/liter of Cs-137 heat source (maximum expected loading for SCIX applications) at 35 C initial temperature is about 6 days. Modeling results for a column actively cooled with external wall jackets and the internal coolant pipe (inlet coolant water temperature: 25 C) indicate that the CST column can be maintained non-boiling under these conditions indefinitely. The results also show that the maximum temperature of an RF-salt solution column containing 133 Ci/liter of Cs-137 (maximum expected loading) will never reach boiling under any conditions (maximum predicted temperature without cooling: 88 C). The results indicate that a 6-in cooling pipe at the center of the column provides the most effective cooling mechanism for reducing the maximum temperature with either ion exchange material. Sensitivity calculations for the RF resin porosity, the ambient external column temperature, and the cooling system configuration were performed under the baseline conditions to assess the impact of these parameters on the maximum temperatures. It is noted that the cooling mechanism at the column boundary (forced versus natural convection) and the cooling system configuration significantly impact the maximum temperatures. The analysis results provide quantitative information associated with process temperature control requirements and management of the SCIX column.

Lee, S

2007-10-17T23:59:59.000Z

454

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

455

A Combined Water Heater, Dehumidifier, and Cooler (WHDC)  

Broader source: Energy.gov [DOE]

Lead Performer: University of Florida, Gainesville, FloridaPartners: -- Oak Ridge National Laboratory - Oak Ridge, TN -- Stony Brook University - Stony Brook, NY

456

Development of a simplified model for cooling and dehumidifying coils  

E-Print Network [OSTI]

buildings at Texas excellent in both cases, predicting the thermal resistance of the coils and the return water temperature with an average deviation of 3.5% and 1.2 'F, respectively. Finally, the model is used to develop algorithms to simulate the two most...

Maldonado, Eliezer

2012-06-07T23:59:59.000Z

457

Webinar: Test Procedures for Dehumidifiers; Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

DOE is conducting a public meeting and webinar for the notice of proposed rulemaking regarding test procedures for residential dehumifiers. 79 FR 29271 (May 22, 2014). For more information, please...

458

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

459

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

460

Evaluation of solar collectors for heat pump applications. Final report  

SciTech Connect (OSTI)

The study was initiated to evaluate the potential utility of very low cost (possibly unglazed and uninsulated) solar collectors to serve as both heat collection and rejection devices for a liquid source heat pump. The approach consisted of exercising a detailed analytical simulation of the complete heat pump/solar collector/storage system against heating and cooling loads derived for typical single-family residences in eight US cities. The performance of each system was measured against that of a conventional air-to-air heat pump operating against the same loads. In addition to evaluation of solar collector options, the study included consideration of water tanks and buried pipe grids to provide thermal storage. As a supplement to the analytical tasks, the study included an experimental determination of night sky temperature and convective heat transfer coefficients for surfaces with dimensions typical of solar collectors. The experiments were conducted in situ by placing the test apparatus on the roofs of houses in the Denver, Colorado, area. (MHR)

Not Available

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Seismic fragility evaluation of a piping system in a nuclear power plant by shaking table test and numerical analysis  

SciTech Connect (OSTI)

In this study, a seismic fragility evaluation of the piping system in a nuclear power plant was performed. For the evaluation of seismic fragility of the piping system, this research was progressed as three steps. At first, several piping element capacity tests were performed. The monotonic and cyclic loading tests were conducted under the same internal pressure level of actual nuclear power plants to evaluate the performance. The cracks and wall thinning were considered as degradation factors of the piping system. Second, a shaking tale test was performed for an evaluation of seismic capacity of a selected piping system. The multi-support seismic excitation was performed for the considering a difference of an elevation of support. Finally, a numerical analysis was performed for the assessment of seismic fragility of piping system. As a result, a seismic fragility for piping system of NPP in Korea by using a shaking table test and numerical analysis. (authors)

Kim, M. K.; Kim, J. H.; Choi, I. K. [Korea Atomic Energy Research Inst., Daedeok-daero 989-111, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2012-07-01T23:59:59.000Z

462

Effect of artificial aging on the microstructure of weldment on API 5L X-52 steel pipe  

SciTech Connect (OSTI)

The effects of artificial aging on the microstructure in the weldment of an API 5L X-52 steel pipe were studied. Aging was performed at 250 deg. C over a period of 1000 h and values were recorded at every 100 h intervals. Transmission electron microscopy observations showed precipitation strengthening from nearly circular Nb-C containing nanoparticles for the base metal and heat affected zone, and cementite for the weld metal. The largest amount of precipitation in the weldment zone was obtained at 500 h, due to peak-aging, which showed the highest particle density. The weld metal was more susceptible to aging, exhibiting the highest increase in precipitation at 500 h, followed by the heat affected zone. After 500 h, the deterioration in the microstructure was caused by the coarsening of particles due to over-aging. The base metal showed the larger increment in particle size after 900 h of aging accompanied by a bigger decrease in fine particles than in the weld metal.

Vargas-Arista, B. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, Laboratorios Pesados de Metalurgia, UPALM Zacatenco, 07738 Mexico DF (Mexico)]. E-mail: bvarista26@yahoo.com.mx; Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, Laboratorios Pesados de Metalurgia, UPALM Zacatenco, 07738 Mexico DF (Mexico)]. E-mail: j_hallen@yahoo.com; Albiter, A. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, Laboratorios Pesados de Metalurgia, UPALM Zacatenco, 07738 Mexico DF (Mexico)]. E-mail: aalbiter@imp.mx

2007-08-15T23:59:59.000Z

463

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

464

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

465

Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS)  

Science Journals Connector (OSTI)

The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2 km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies.

P.J. Yekoladio; T. Bello-Ochende; J.P. Meyer

2013-01-01T23:59:59.000Z

466

NREL: News Feature - Recycled Natural Gas Pipes Shore Up Green Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recycled Natural Gas Pipes Shore Up Green Building Recycled Natural Gas Pipes Shore Up Green Building July 17, 2009 Photo of a line of four large metal tubes coming out of the ground in a construction site with blue sky, hills and buildings in the background. Early photos show the first few reclaimed gas pipes being erected at the RSF construction site. Using these recycled pipes will be help the building attain LEED platinum status. Credit: Carl Cox Building a support structure of something, tried, true and tested like "off the shelf" steel is standard practice in building construction. NREL's effort to create the most energy efficient and "green" office building is putting a twist on an old standard. The columns that will carry the weight of floors and walls in the new Research Support Facilities (RSF) are

467

Design and fabrication of a maneuverable robot for in-pipe leak detection  

E-Print Network [OSTI]

Leaks in pipelines have been causing a significant amount of financial losses and serious damages to the community and the environment. The recent development of in-pipe leak detection technologies at Massachusetts Institute ...

Wu, You, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

468

DOE - Office of Legacy Management -- U S Pipe and Foundry Co...  

Office of Legacy Management (LM)

Levine to File; Subject: Elimination Recommendation; U.S. Pipe and Foundry Co.; December 30, 1986 NJ.23-3 - Subcontract; Contract No. 7401-37-8 Research and Development;...

469

Numerical Study of Heavy Oil Flow on Horizontal Pipe Lubricated by Water  

Science Journals Connector (OSTI)

This chapter reports information related to multiphase flow with emphasis to core-annular flow. Industrial application has been given to transient water-heavy ultraviscous oil two-phase flow in horizontal pipe...

Tony Herbert Freire de Andrade…

2012-01-01T23:59:59.000Z

470

Fluid transients and fluid-structure interaction in flexible liquid-filled piping  

E-Print Network [OSTI]

conditions, ie, waterhammer. Between 1970 and 1980, a sub- stantial amount of research activity focused the nuclear power industry, where a num- ber of waterhammer incidents and resulting pipe motion occurred. Over

Tijsseling, A.S.

471

Resistance factors calibration and its application using static load test data for driven steel pipe piles  

Science Journals Connector (OSTI)

This paper presents the reliability-based resistance factor calibration of driven steel pipe piles and the implementation of Load and Resistance Factor Design (LRFD) on ... framework based on reliability theory u...

Jae Hyun Park; Jungwon Huh; Kyung Jun Kim…

2013-07-01T23:59:59.000Z

472

OPS 9.18 Equipment and Piping Labeling 8/24/98  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate.  This...

473

BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995  

SciTech Connect (OSTI)

This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

Schempf, H.; Bares, J.E.

1995-06-01T23:59:59.000Z

474

Investigation on Wave Propagation Characteristics in Plates and Pipes for Identification of Structural Defect Locations  

E-Print Network [OSTI]

For successful identification of structural defects in plates and pipes, it is essential to understand structural wave propagation characteristics such as dispersion relations. Analytical approaches to identify the dispersion relations...

Han, Je Heon

2013-07-31T23:59:59.000Z

475

Minority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram  

E-Print Network [OSTI]

results are given for several common material systems. Introduction Thermoelectric effects haveMinority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram Research Laboratory the thermoelectric performance of the electronic devices themselves. Recognizing that minority carriers play

476

RF transmission line and drill/pipe string switching technology for down-hole telemetry  

DOE Patents [OSTI]

A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.

Clark, David D. (Santa Fe, NM); Coates, Don M. (Santa Fe, NM)

2007-08-14T23:59:59.000Z

477

Towards a Visual Perception System for Pipe Inspection: Monocular Visual Odometry  

E-Print Network [OSTI]

was made possible by the support of an NPRP grant from the Qatar National Research Fund. The statements made herein are solely the responsibility of the authors. #12;Keywords: oil and gas, pipe inspection

478

Nek5000 Ready to Use after Simulations of Important Pipe Flow Benchmark |  

Broader source: Energy.gov (indexed) [DOE]

Nek5000 Ready to Use after Simulations of Important Pipe Flow Nek5000 Ready to Use after Simulations of Important Pipe Flow Benchmark Nek5000 Ready to Use after Simulations of Important Pipe Flow Benchmark January 29, 2013 - 1:42pm Addthis Velocity magnitude in MATiS-H spacer grid with swirl-type vanes. Velocity magnitude in MATiS-H spacer grid with swirl-type vanes. As part of the on-going Nek5000 validation efforts, a series of large eddy simulations (LES) have been performed for thermal stratification in a pipe. Results were in good agreement with the experiment and the simulation data has provided insight into the physics of the flow. An additional series of simulations of the OECD-NEA MATiS-H benchmark has also been completed using intermediate- fidelity modeling approaches, such as k-epsilon, k-omega shear stress transport, and ID detached eddy simulation, as well as one

479

Development of Next Generation Multiphase Pipe Flow Prediction Tools  

SciTech Connect (OSTI)

The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The basic continuity and momentum equations is established for each phase, and used for both flow pattern and flow behavior predictions. The required closure relationships are being developed, and will be verified with experimental results. Gas-oil-water experimental studies are currently underway for the horizontal pipes. Industry-driven consortia provide a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector. The Tulsa University Fluid Flow Projects (TUFFP) is one of the earliest cooperative industry-university research consortia. TUFFP's mission is to conduct basic and applied multiphase flow research addressing the current and future needs of hydrocarbon production and transportation. TUFFP participants and The University of Tulsa are supporting this study through 55% cost sharing.

Cem Sarica; Holden Zhang

2006-05-31T23:59:59.000Z

480

Development of a Remote External Repair Tool for Damaged or Defective Polyethylene Pipe  

SciTech Connect (OSTI)

Current procedures for repairing polyethylene (PE) gas pipe require excavation, isolation, and removal of the damaged section of pipe followed by fusing a new section of pipe into place. These techniques are costly and very disruptive. An alternative repair method was developed at Timberline Tool with support from Oregon State University (OSU) and funding by the U. S. Department of Energy National Energy Technology Laboratory (DOE/NETL). This project was undertaken to design, develop and test a tool and method for repairing damaged PE pipe remotely and externally in situ without squeezing off the flow of gas, eliminating the need for large-scale excavations. Through an iterative design and development approach, a final engineered prototype was developed that utilizes a unique thermo-chemical and mechanical process to apply a permanent external patch to repair small nicks, gouges and punctures under line pressure. The project identified several technical challenges during the design and development process. The repair tool must be capable of being installed under live conditions and operate in an 18-inch keyhole. This would eliminate the need for extensive excavations thus reducing the cost of the repair. Initially, the tool must be able to control the leak by encapsulating the pipe and apply slight pressure at the site of damage. Finally, the repair method must be permanent at typical operating pressures. The overall results of the project have established a permanent external repair method for use on damaged PE gas pipe in a safe and cost-effective manner. The engineered prototype was subjected to comprehensive testing and evaluation to validate the performance. Using the new repair tool, samples of 4-inch PE pipe with simulated damage were successfully repaired under line pressure to the satisfaction of DOE/NETL and the following natural gas companies: Northwest Natural; Sempra Energy, Southwest Gas Corporation, Questar, and Nicor. However, initial results of accelerated age testing on repaired pipe samples showed that the high density polyethylene (HDPE) pipe patch material developed a small crack at the high stress areas surrounding the patched hole within the first 48 hours of hot water testing, indicating that the patch material has a 25-year lifespan. Based on these results, further research is continuing to develop a stronger repair patch for a satisfactory 50-year patch system. Additional tests were also conducted to evaluate whether any of the critical performance properties of the PE pipe were reduced or compromised by the repair technique. This testing validated a satisfactory 50-year patch system for the pipe.

Kenneth H. Green; Willie E. Rochefort; Nick Wannenmacher; John A. Clark; Kevin Harris

2006-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "dehumidifying heat pipes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wound tube heat exchanger  

DOE Patents [OSTI]

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

482

The simulation of natural soil pipes and their influence on catchment hydrology  

E-Print Network [OSTI]

THE SIMULATION OF NATURAL SOIL PIPES AND THEIR INFLUENCE ON CATCHMENT HYDROLOGY A Thesis by MARK DAVID BARCELO Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1982 Major Subject: Agricultural Engineering THE SIMULATION OF NATURAL SOIL PIPES AND THEIR INFLUENCE ON CATCHMENT HYDROLOGY A Thesis by MARK DAVID BARCELO Approved as to style and content by: (Chairman of Committee) (Mem er...

Barcelo, Mark David

2012-06-07T23:59:59.000Z

483

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

484

High Operating Temperature Liquid Metal Heat Transfer Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Metal Liquid Metal Heat Transfer Fluids UCLA, UCB, Yale DE-EE0005941 | April 15, 2013 | Ju 1.1 Thermochemistry modeling * Continue CALPHAD based calculations to search for optimal ternary alloy compositions. * Initiate development of liquid density models. 1.2 Combinatorial synthesis and characterization * Pipe-Liquid interaction of compositional library * More alloys, alloy additions and effect on liquidus temperatures * Iteratively optimize the compositions. 1.3 Corrosion characterization and mitigation * Tune static corrosion testing systems for testing over an extended period of time. * Perform analysis of the micro mechanical testing on the oxide layers. 1.4 Heat transfer characterization and modeling * Complete the construction of the flow loop and perform experiments to measure

485

Installation guidelines for solar heating system, single-family residence at William O'Brien State Park, Stillwater, Minnesota  

SciTech Connect (OSTI)

The Solar Heating System installer guidelines are provided for each subsystem and testing and filling the system are included. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

Not Available

1980-05-01T23:59:59.000Z