National Library of Energy BETA

Sample records for dehumidifiers microwave ovens

  1. A container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  2. Container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Kimrey, Jr., Harold D. (Knoxville, TN); Mills, James E. (Knoxville, TN)

    1989-01-01

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  3. Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updates the Social Cost of Carbon | Department of Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon August 21, 2013 - 9:18am Addthis A typical microwave is used to heat food for about 70 hours each year, but continues to use electricity for the remaining 8,690 hours of the year to power the electronic controls and display. On

  4. Ovens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M206 Mechanical Convection Oven The M206 oven is dedicated to CAMD staff use only. M326 Mechanical Convection Oven Located next to the spinners, the M326 oven is availabe to...

  5. ISSUANCE 2016-02-09: Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

  6. New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Ernest Moniz announced today that the Energy Department has finalized new energy efficiency standards for microwave ovens that will save consumers nearly $3 billion on their energy bills through 2030.

  7. EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves

    Office of Environmental Management (EM)

    Consumers Energy and Updates the Social Cost of Carbon | Department of Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon August 21, 2013 - 9:18am Addthis A typical microwave is used to heat food for about 70 hours each year, but continues to use electricity for the remaining 8,690 hours of the year to power

  8. Dehumidifiers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dehumidifiers Dehumidifiers The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Dehumidifiers -- v3.0 More Documents & Publications Beverage Vending Machines Metal

  9. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  10. Solar powered dehumidifier apparatus

    DOE Patents [OSTI]

    Jebens, Robert W. (Skillman, NJ)

    1980-12-30

    A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

  11. Dehumidifying Heat Pipes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dehumidifying Heat Pipes Dehumidifying Heat Pipes In order to make a room comfortable in hot, humid climates, an air conditioner must lower the indoor humidity level as well as the air temperature. If an air conditioner fails to lower the humidity adequately, the air will be cool, but will feel uncomfortably damp. Inappropriately sized air conditioners are prone to this problem; large units quickly cool the air, but cycle off before they can properly dehumidify it. In extremely humid climates,

  12. A Combined Water Heater, Dehumidifier, and Cooler (WHDC) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Combined Water Heater, Dehumidifier, and Cooler (WHDC) A Combined Water Heater, Dehumidifier, and Cooler (WHDC) Figure 1: The system model for the combined Water heater, ...

  13. Water-Heating Dehumidifier - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Water-Heating Dehumidifier Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run

  14. EA-1662: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    10 CFR Part 430 Energy Conservation Program: EnergyConservation Standards for Certain Consumer Products (Dishwashers, Dehumidifiers, Microwave Ovens, and Electric and Gas Kitchen Ranges and Ovens)

  15. Lesson 9 - Solar Ovens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fridell * Place the oven on a sunny flat surface facing the sun and use masking tape to prop the aluminum flap open. Sunlight should reflect off the flap and into the solar oven...

  16. Making a Solar Oven

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

  17. Portable oven air circulator

    DOE Patents [OSTI]

    Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  18. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. In this project, researchers at the National Renewable Energy Laboratory (NREL) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, the team tested the part load performance of four residential dehumidifiers in NREL’s Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  19. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Tight homes require intentional mechanical ventilation to ensure healthy indoor air. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. There is currently not sufficient information available at a wide enough range of operating points to design dehumidification systems for high performance homes in hot-humid climates. The only industry information available on dehumidifier moisture removal and energy consumption are performance ratings conducted at a single test condition, which does not provide a full representation of dehumidifier operation under real-world conditions. Winkler et al. (2011) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, we tested the part load performance of four residential dehumidifiers in the National Renewable Energy Laboratory's (NREL) Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  20. Supercomputers Take a Cue From Microwave Ovens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for one or a few dedicated functions. "Because the ultimate goal of the embedded market is to maximize battery life, these technologies have always been driven by...

  1. DOE Publishes Notice of Proposed Rulemaking Regarding the Compliance Date for the Dehumidifier Test Procedure

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding the compliance date for the dehumidifier test procedure.

  2. Oven wall panel construction

    DOE Patents [OSTI]

    Ellison, Kenneth; Whike, Alan S.

    1980-04-22

    An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

  3. ISSUANCE 2015-01-27: Energy Conservation Program: Test Procedures for Dehumidifiers Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Dehumidifiers Supplemental Notice of Proposed Rulemaking

  4. ISSUANCE 2015-05-14: Energy Conservation Program: Energy Conservation Standards for Residential Dehumidifiers Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Residential Dehumidifiers Notice of Proposed Rulemaking

  5. EA-1662: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products (Dishwashers, Dehumidifiers, Microwave Ovens, and Electric and Gas Kitchen Ranges and Ovens) and for Certain Commercial and Industrial Equipment (Commercial Clothes Washers)

  6. Ovenized microelectromechanical system (MEMS) resonator

    DOE Patents [OSTI]

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  7. Webinar: Energy Conservation Standards for Dehumidifiers; Availability of the Preliminary Technical Support Document

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the availability of the preliminary technical support document regarding energy conservation standards for residential dehumidifiers. 79 FR 29380 ...

  8. Solar Pizza Oven Box k - 6

    Office of Environmental Management (EM)

    Ready to Build? BUILD A PIZZA BOX SOLAR OVEN Background The sun is hot enough to bake food. Here's how to make a simple solar oven that gets hot enough to warm up cookies and other...

  9. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M. (Huntsville, AL)

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  10. NREL Tests Dehumidifiers, Defines Simplified Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    residential dehumidifiers results in practical performance curves for use in whole-building simulation tools. Dehumidifiers remove moisture from a home's indoor environment, thereby increasing occupant comfort, improving air quality, and reducing the likelihood of mold, rot, and dust mites. To help energy professionals more easily evaluate this technology for the market, National Renewable Energy Laboratory (NREL) researchers tested the efficiency and capacity of a variety of dehumidifiers and

  11. A fully integrated oven controlled microelectromechanical oscillator --

    Office of Scientific and Technical Information (OSTI)

    Part I. Design and fabrication (Journal Article) | DOE PAGES - Part I. Design and fabrication This content will become publicly available on June 24, 2016 Title: A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift

  12. EERE Success Story-Energy Efficiency Standards for Microwave...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Updates the Social Cost of Carbon EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon August ...

  13. Microwave sintering of boron carbide

    DOE Patents [OSTI]

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  14. Whole-Home Dehumidifiers: Field-Monitoring Study

    SciTech Connect (OSTI)

    Burke, Tom; Willem, Henry; Ni, Chun Chun; Stratton, Hannah; Whitehead, Camilla Dunham; Johnson, Russell

    2014-09-23

    Lawrence Berkeley National Laboratory (LBNL) initiated a WHD field-metering study to expand current knowledge of and obtain data on WHD operation and energy consumption in real-world applications. The field study collected real-time data on WHD energy consumption, along with information regarding housing characteristics, consumer behavior, and various outdoor conditions expected to affect WHD performance and efficiency. Although the metering study collected similar data regarding air conditioner operation, this report discusses only WHDs. The primary objectives of the LBNL field-metering study are to (1) expand knowledge of the configurations, energy consumption profiles, consumer patterns of use (e.g., relative humidity [RH] settings), and environmental parameters of whole-home dehumidification systems; and (2) develop distributions of hours of dehumidifier operation in four operating modes: off, standby, fan-only, and compressor (also called dehumidification mode). Profiling energy consumption entails documenting the power consumption, duration of power consumption in different modes, condensate generation, and properties of output air of an installed system under field conditions of varying inlet air temperature and RH, as well as system configuration. This profiling provides a more detailed and deeper understanding of WHD operation and its complexities. This report describes LBNL’s whole-home dehumidification field-metering study conducted at four homes in Wisconsin and Florida. The initial phase of the WHD field-metering study was conducted on one home in Madison, Wisconsin, from June to December of 2013. During a second phase, three Florida homes were metered from June to October of 2014. This report presents and examines data from the Wisconsin site and from the three Florida sites.

  15. Energy Efficiency Standards for Microwave Ovens Saves Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Positive Impact Significant savings to consumer energy bills and reductions in carbon pollution. Locations Nationwide Partners Lawrence Berkeley National Laboratory, Navigant EERE ...

  16. New Energy Efficiency Standards for Microwave Ovens to Save Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Appliance efficiency standards represent a huge opportunity to help families save money by saving energy, while still delivering high quality appliances for consumers," said ...

  17. Solar Pizza Oven Box k - 6

    Energy Savers [EERE]

    Ready to Build? BUILD A PIZZA BOX SOLAR OVEN Background The sun is hot enough to bake food. Here's how to make a simple solar oven that gets hot enough to warm up cookies and other treats, like s'mores. It won't get really hot, though, so you can't bake things in it and you won't burn yourself when playing with it. Be sure to have an adult help you with this! Materials - One pizza box from a local pizza delivery store. Here's a good excuse to ask your parents to order pizza tonight! - Newspapers

  18. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  19. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency This process heating tip sheet recommends using lower flammable limit monitoring equipment to improve oven efficiency. PROCESS HEATING TIP SHEET #11 PDF icon Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency (October 2007) More Documents & Publications Check Burner

  20. Covered Product Category: Commercial Ovens | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ovens Covered Product Category: Commercial Ovens The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial ovens, which is a product category covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies purchase products that are covered by ENERGY STAR or FEMP in all acquisitions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Commercial Ovens ENERGY STAR sets efficiency requirements for commercial

  1. New process to avoid emissions: Constant pressure in coke ovens

    SciTech Connect (OSTI)

    Giertz, J.; Huhn, F.; Hofherr, K.

    1995-12-01

    A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

  2. 2014-05-05 Issuance: Test Procedures for Dehumidifiers; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for dehumidifiers, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 2, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  3. Multiple delivery cesium oven system for negative ion sources

    SciTech Connect (OSTI)

    Bansal, G.; Bhartiya, S.; Pandya, K.; Bandyopadhyay, M.; Singh, M. J.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Chakraborty, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-02-15

    Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out at Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.

  4. Prolongation technologies for campaign life of tall oven

    SciTech Connect (OSTI)

    Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei

    1997-12-31

    In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

  5. Solar Oven, Take One: FAIL | Department of Energy

    Energy Savers [EERE]

    Oven, Take One: FAIL Solar Oven, Take One: FAIL June 15, 2011 - 11:56am Addthis Our homemade solar oven. | Courtesy of Moon Choe Our homemade solar oven. | Courtesy of Moon Choe Moon Choe EERE Summer Intern The first time I ever saw solar cookers was on the news in the summer of 2009 (though that would make it their winter, as I was living in Chile at the time), as part of a development project in the north, which is mostly desert. I had no idea solar cookers were so markedly simple in all

  6. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN)

    1992-01-01

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  7. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

    1992-10-13

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  8. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  9. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  10. Build a Pizza Box Solar Oven | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Build a Pizza Box Solar Oven Build a Pizza Box Solar Oven Below is information about the student activity/lesson plan from your search. Grades K-4, 5-8, 9-12 Subject Solar Summary Check out this staightforward lesson, that can be adapted for all grade levels, on how to build a solar oven. Curriculum Science, Visual Arts, Language Arts Plan Time One class period Materials One pizza box from a local pizza delivery store, tape, scissors, black construction paper, clear plastic wrap, aluminum foil,

  11. ISSUANCE 2015-07-23: Energy Conservation Program: Energy Conservation Standards for Residential Conventional Ovens

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Residential Conventional Ovens, Comment Period Extension

  12. SERI Desiccant Cooling Test Facility. Status report. Preliminary data on the performance of a rotary parallel-passage silica-gel dehumidifier

    SciTech Connect (OSTI)

    Schultz, K.J.

    1986-04-01

    This report describes the SERI Desiccant Cooling Test Facility. The facility can test bench-scale rotary dehumidifiers over a wide range of controlled conditions. We constructed and installed in the test loop a prototype parallel-passage rotary dehumidifier that has spirally wound polyester tape coated with silica gel. The initial tests gave satisfactory results indicating that approximately 90% of the silica gel was active and the overall Lewis number of the wheel was near unity. The facility has several minor difficulties including an inability to control humidity satisfactorily and nonuniform and highly turbulent inlet velocities. To completely validate the facility requires a range of dehumidifier designs. Several choices are available including constructing a second parallel-passage dehumidifier with the passage spacing more uniform.

  13. Operating and maintenance benefits of automated oven wall temperature measurement

    SciTech Connect (OSTI)

    Leuchtmann, K.P.; Hinz, D.; Bergbau, D.; Platts, M.

    1997-12-31

    For a very long time and regardless of all shortcomings associated with it, the manual measurement of the heating flue temperature has been the only method of monitoring the temperature prevailing in a coke oven battery and discovering weak points in the heating system. In the course of the last few years a number of automated temperature measuring systems have been developed that are intended to replace or supplement the manual heating flue measurement system. These measuring systems and their advantages/disadvantages are briefly described in this paper. Additionally, operational experience gathered with the oven chamber wall temperature measuring system is discussed in detail.

  14. New packing in absorption systems for trapping benzene from coke-oven gas

    SciTech Connect (OSTI)

    V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev

    2009-07-15

    The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

  15. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    SciTech Connect (OSTI)

    Ashdown, BG

    2005-01-11

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

  16. Development of advanced technology of coke oven gas drainage treatment

    SciTech Connect (OSTI)

    Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

    1996-12-31

    In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

  17. Microwave detector

    DOE Patents [OSTI]

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  18. Scientists Train Electrons with Microwaves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Train Electrons with Microwaves

  19. Technology Solutions Case Study: Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier

    SciTech Connect (OSTI)

    2013-11-01

    In order to quantify the performance of a combined whole-house dehumidifier (WHD) AC system, researchers from the Consortium of Advanced Residential Buildings (CARB) team monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period. By using a WHD to control moisture levels (latent cooling) and optimizing a central AC to control temperature (sensible cooling), improvements in comfort can be achieved while reducing utility costs. Indoor comfort for this study was defined as maintaining indoor conditions at below 60% RH and a humidity ratio of 0.012 lbm/lbm while at common dry bulb set point temperatures of 74°-80°F. In addition to enhanced comfort, controlling moisture to these levels can reduce the risk of other potential issues such as mold growth, pests, and building component degradation. Because a standard AC must also reduce dry bulb air temperature in order to remove moisture, a WHD is typically needed to support these latent loads when sensible heat removal is not desired.

  20. INEXPENSIVE, OFF THE SHELF HYBRID MICROWAVE SYSTEM

    SciTech Connect (OSTI)

    Walters, T; Paul Burket, P; John Scogin, J

    2007-06-21

    A hybrid-heating microwave oven provides the energy to heat small 10-gram samples of spent metal tritide storage bed material to release tenaciously held decay product {sup 3}He. Complete mass balance procedures require direct measurement of added or produced gases on a tritide bed, and over 1100 C is necessary to release deep trapped {sup 3}He. The decomposition of non-radioactive CaCO{sub 3} and the quantitative measurement of CO{sub 2} within 3% of stoichiometry demonstrate the capabilities of the apparatus to capture generated (released) gases.

  1. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L.

    1997-12-31

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  2. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect (OSTI)

    Munekane, Fuminori; Yamaguchi, Yukio; Tanioka, Seiichi

    1997-12-31

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  3. The Videofil probe, a novel instrument to extend the coke oven service life

    SciTech Connect (OSTI)

    Gaillet, J.P.; Isler, D.

    1997-12-31

    To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

  4. Factors affecting coking pressures in tall coke ovens

    SciTech Connect (OSTI)

    Grimley, J.J.; Radley, C.E.

    1995-12-01

    The detrimental effects of excessive coking pressures, resulting in the permanent deformation of coke oven walls, have been recognized for many years. Considerable research has been undertaken worldwide in attempts to define the limits within which a plant may safely operate and to quantify the factors which influence these pressures. Few full scale techniques are available for assessing the potential of a coal blend for causing wall damage. Inference of dangerous swelling pressures may be made however by the measurement of the peak gas pressure which is generated as the plastic layers meet and coalesce at the center of the oven. This pressure is referred to in this report as the carbonizing pressure. At the Dawes Lane cokemaking plant of British Steel`s Scunthorpe Works, a large database has been compiled over several years from the regulator measurement of this pressure. This data has been statistically analyzed to provide a mathematical model for predicting the carbonizing pressure from the properties of the component coals, the results of this analysis are presented in this report.

  5. Cosmic Microwave Background

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cosmic Microwave Background Cosmic Microwave Background CMB.jpg The Cosmic Microwave Background (CMB) is relic radiation from a very early stage in the universe -- essentially a...

  6. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  7. Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier, Windermere, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Maintaining comfort in a home can be challenging in hot-humid climates. At the common summer temperature set point of 75 degrees F, the perceived air temperature can vary by 11 degrees F because higher indoor humidity reduces comfort. Often the air conditioner (AC) thermostat set point is lower than the desirable cooling level to try to increase moisture removal so that the interior air is not humid or "muggy." However, this method is not always effective in maintaining indoor relative humidity (RH) or comfort. In order to quantify the performance of a combined whole-house dehumidifier (WHD) AC system, researchers from the U.S. Department of Energy's Building America team Consortium of Advanced Residential Buildings (CARB) monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period. By using a WHD to control moisture levels (latent cooling) and optimizing a central AC to control temperature (sensible cooling), improvements in comfort can be achieved while reducing utility costs. Indoor comfort for this study was defined as maintaining indoor conditions at below 60% RH and a humidity ratio of 0.012 lbm/lbm while at common dry bulb set point temperatures of 74 degrees -80 degrees F. In addition to enhanced comfort, controlling moisture to these levels can reduce the risk of other potential issues such as mold growth, pests, and building component degradation. Because a standard AC must also reduce dry bulb air temperature in order to remove moisture, a WHD is typically needed to support these latent loads when sensible heat removal is not desired.

  8. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  9. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, Jr., Harold D. (Knoxville, TN); Janney, Mark A. (Knoxville, TN); Ferber, Mattison K. (Oak Ridge, TN)

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  10. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    SciTech Connect (OSTI)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  11. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  12. Heating control methodology in coke oven battery at Rourkela Steel Plant

    SciTech Connect (OSTI)

    Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

    1996-12-31

    A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

  13. Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation

    SciTech Connect (OSTI)

    Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

    1995-12-01

    The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

  14. Dehumidifiers | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  15. Using Coke Oven Gas in a Blast Furnace Saves Over $6 Million Annually at a Steel Mill (U.S. Steel Edgar Thompson Plant)

    SciTech Connect (OSTI)

    2000-12-01

    Like most steel companies, U.S. Steel (USS) had been using coke oven gas (COG), a by-product of coke manufacturing, as a fuel in their coke ovens, boilers, and reheat furnaces.

  16. High brightness microwave lamp

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  17. Microwave hemorrhagic stroke detector

    DOE Patents [OSTI]

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  18. Microwave hemorrhagic stroke detector

    DOE Patents [OSTI]

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  19. Mathematical modeling of clearance between wall of coke oven and coke cake

    SciTech Connect (OSTI)

    Nushiro, K.; Matsui, T.; Hanaoka, K.; Igawa, K.; Sorimachi, K.

    1995-12-01

    A mathematical model was developed for estimating the clearance between the wall of the coke oven and the coke cake. The prediction model is based on the balance between the contractile force and the coking pressure. A clearance forms when the contractile force exceeds the coking pressure in this model. The contractile force is calculated in consideration of the visco-elastic behavior of the thermal shrinkage of the coke. The coking pressure is calculated considering the generation and dispersion of gas in the melting layer. The relaxation time off coke used in this model was obtained with a dilatometer under the load application. The clearance was measured by the laser sensor, and the internal gas pressure was measured in a test oven. The clearance calculated during the coking process were in good agreement with the experimental results, which supported the validity of the mathematical model.

  20. Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens

    SciTech Connect (OSTI)

    Ellis, C.E.; Pruitt, C.W.

    1995-12-01

    Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

  1. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    SciTech Connect (OSTI)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tens of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.

  2. A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication

    SciTech Connect (OSTI)

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitry and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 °C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.

  3. A Fully Integrated Oven Controlled Microelectromechanical Oscillator—Part II. Characterization and Measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tensmore »of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.« less

  4. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tensmore » of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.« less

  5. A fully integrated oven controlled microelectromechanical oscillator—Part I. Design and fabrication

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitrymore »and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 °C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.« less

  6. Variable frequency microwave heating apparatus

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN); Johnson, Arvid C. (Lake in the Hills, IL); Thigpen, Larry T. (Angier, NC)

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  7. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  8. System to acquire and monitor operating machinery positions for horizontal coke oven batteries

    SciTech Connect (OSTI)

    Bierbaum, D.; Teschner, W.

    1980-02-26

    In a horizontal coke oven battery with at least one coke receiving device movable along one longitudinal side of the battery and at least one coke driving device movable along an opposite longitudinal side of the battery, an apparatus is disclosed for determining the relative position of the coke receiving device with respect to the coke driving device and for activating the coke driving device when its position corresponds with that of the coke receiving device. A first wheel is mounted on the coke receiving device for rotation with the movement of the coke receiving device, a first angle encoder is connected to the first wheel for producing a first signal corresponding to the location of the first wheel and the position of the coke receiving device along the coke oven, and an input storage in the form of a magnetic disc is connected to the first angle encoder for recording and storing the signal. A second wheel is mounted on the coke driving device for rotation with the movement of the coke driving device and a second angle encoder is connected thereto for producing a second signal which corresponds to the rotation of the second wheel and the position of the coke driving device along the coke oven. A comparator is connected to the second signal encoder for receiving the second signal and a data link is provided between the comparator and the input storage of the coke receiving device so that the first signal from the coke receiving device can be impressed on the comparator. An activator is connected to the comparator for activating the coke driving device when the first signal corresponds to the second signal indicating a corresponding positional relationship between the coke receiving device and the coke driving device.

  9. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  10. Microwave coupler and method

    DOE Patents [OSTI]

    Holcombe, C.E.

    1984-11-29

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  11. Microwave thawing apparatus and method

    DOE Patents [OSTI]

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  12. Demonstration of a fuel-saving system for paint-curing ovens

    SciTech Connect (OSTI)

    Jensen, W P

    1980-12-01

    Two curing ovens at Roll Coater, Inc. (the Greenfield, Indiana plant) were retrofitted to save fuel and cost. Included in the fuel conserving retrofit was the design, fabrication, and installation of an afterburner for each of the two ovens, piping their combustion products to each of two commonly housed waste heat boilers before discharge from those units to the atmosphere at about 450 F. Depending on the product being run and the coating applied, natural gas requirements have been reduced by 45 to 65% with operation of the zone incinerators only and by as much as 65 to 85% including the effects of both the zone incineration and heat recovery by means of the afterburners and waste heat boilers. A demonstration program on conversion work at the No. 3 line at Greenfield and results are described in Section 2. Section 3 describes the retrofit design and the system construction. System performance (tests and measurements, qualitative performance, maintenance factors, and economic performance) is described in Section 4. Conclusions and recommendations are summarized.

  13. Emitron: microwave diode

    DOE Patents [OSTI]

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  14. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A. (Albuquerque, NM)

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  15. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  16. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect (OSTI)

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  17. Microwave and Radio Frequency Workshop

    Broader source: Energy.gov [DOE]

    At the Microwave and Radio Frequency Workshop (held in Long Beach, CA, on July 25, 2012), academic and industry experts discussed the existing and emerging electrotechnologies – such as microwave ...

  18. High power microwave generator

    DOE Patents [OSTI]

    Minich, Roger W. (Patterson, CA)

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  19. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  20. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  1. Innovative Microwave Technology - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Return to Search Innovative Microwave Technology Hybrid microwave technology capable of performing functions that traditional microwave systems could not achieve. Savannah River National Laboratory New Hybrid Microwave Technology New Hybrid Microwave Technology Success Story Details Partner Location Agreement Type Publication Date Hadron Technologies, Inc. Offices in Tennessee and Colorado License October 22, 2013 Summary Hadron Technologies, Inc. has signed

  2. Microwave solidification project overview

    SciTech Connect (OSTI)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  3. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  4. Microwave sintering of multiple articles

    DOE Patents [OSTI]

    Blake, Rodger D. (Santa Fe, NM); Katz, Joel D. (Los Alamos, NM)

    1993-01-01

    Apparatus and method for producing articles of alumina and of alumina and silicon carbide in which the articles are sintered at high temperatures using microwave radiation. The articles are placed in a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  5. DRAFT Microwave Radiometer Profiler Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Radiometer Profiler Handbook Evaluation of a New Multi-Frequency Microwave Radiometer for Measuring the Vertical Distribution of Temperature, Water Vapor, and Cloud Liquid Water Prepared by James C. Liljegren Environmental Research Division Argonne National Laboratory December 4, 2002 For the DOE Atmospheric Radiation Measurement (ARM) Program 2 Table of Contents Abstract

  6. Microwave hematoma detector

    DOE Patents [OSTI]

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  7. Gigatron microwave amplifier

    DOE Patents [OSTI]

    McIntyre, Peter M. (611 Montclair, College Station, TX 77840)

    1993-01-01

    An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  8. Gigatron microwave amplifier

    DOE Patents [OSTI]

    McIntyre, P.M.

    1993-07-13

    An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  9. Microwave Regenerated DPF for Auxiliary Power Units and Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration ...

  10. Microwave heating apparatus and method

    DOE Patents [OSTI]

    Johnson, Andrew J. (Boulder, CO); Petersen, Robert D. (Thornton, CO); Swanson, Stephen D. (Brighton, CO)

    1990-01-01

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  11. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema (OSTI)

    Haase, Andy

    2014-06-13

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  12. Ignition methods and apparatus using microwave energy

    DOE Patents [OSTI]

    DeFreitas, Dennis Michael; Migliori, Albert

    1997-01-01

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  13. Microwave assisted centrifuge and related methods

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID) [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  14. Microwave Melting | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Melting Microwave Melting The mp4 video format is not supported by this browser. Download video Captions: On Time: 2:90 min. Ed Ripley and Kenneth Evans explain some of the benefits of microwave heating technology, including how its uses save energy

  15. Microwave treatment of vulcanized rubber

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL); Folz, Diane C. (Gainesville, FL)

    2002-07-16

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds broken by microwave radiation. The direct application of microwaves in combination with uniform heating of the crumb rubber renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger particle sizes and/or loading levels of the treated crumb rubber can be used in new rubber mixtures to produce recycled composite products with good properties.

  16. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  17. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  18. Scanning tip microwave near field microscope

    DOE Patents [OSTI]

    Xiang, X.D.; Schultz, P.G.; Wei, T.

    1998-10-13

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.

  19. Scanning tip microwave near field microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Schultz, Peter G. (Oakland, CA); Wei, Tao (Albany, CA)

    1998-01-01

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

  20. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Paulauskas, Felix L. (Oak Ridge, TN); Fathi, Zakaryae (Cary, NC); Wei, Jianghua (Raleigh, NC)

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  1. Controlled zone microwave plasma system

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

    2009-10-20

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  2. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  3. Microwave-enhanced chemical processes

    DOE Patents [OSTI]

    Varma, Ravi (Hinsdale, IL)

    1990-01-01

    A process for disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Effecting intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400.degree. C. in the presence of microwave radiation for a time sufficient to break the hydrocarbon chlorine bonds and provide detoxification values in excess of 80 and further detoxifying the bed followed by additional disposal of toxic wastes.

  4. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMicrowave Radiometer Profiler Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Microwave Radiometer Profiler Evaluation 2000.09.01 - 2001.03.31 Lead Scientist : James Liljegren For data sets, see below. Abstract The microwave radiometer profiler (MWRP) is a new 12-channel radiometer developed by Radiometrics Corporation for measuring vertical profiles of temperature, water vapor, and

  5. Microwave solidification development for Rocky Flats waste

    SciTech Connect (OSTI)

    Dixon, D.; Erle, R.; Eschen, V.

    1994-04-01

    The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology.

  6. Process for microwave sintering boron carbide

    DOE Patents [OSTI]

    Holcombe, Cressie E. (440 Sugarwood Dr., Knoxville, TN 37922); Morrow, Marvin S. (Rte. #3, Box 113, Kingston, TN 37763)

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  7. Process for microwave sintering boron carbide

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  8. Hybrid Microwave Energy - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undesirable environmental consequences.Description The hybrid microwave system provides a simple processing method for the reduction of waste volume, immobilization of hazardous...

  9. A Linear Theory of Microwave Instability in Electron Storage...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron...

  10. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced ...

  11. Product Standards for Microwaves (Japan) | Open Energy Information

    Open Energy Info (EERE)

    Microwaves (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Microwaves (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts...

  12. Microwave-enhanced chemical processes

    DOE Patents [OSTI]

    Varma, R.

    1990-06-19

    A process is disclosed for the disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400 C in the presence of microwave radiation for a time sufficient breaks the hydrocarbon chlorine bonds. Detoxification values in excess of 80 are provided and further detoxification of the bed is followed by additional disposal of toxic wastes. 1 figure.

  13. Microwave-triggered laser switch

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM)

    1984-01-01

    A high-repetition rate switch for delivering short duration, high-power electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

  14. Microwave-triggered laser switch

    DOE Patents [OSTI]

    Piltch, M.S.

    1982-05-19

    A high-repetition rate switch is described for delivering short duration, high-powered electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

  15. Method of sintering materials with microwave radiation

    DOE Patents [OSTI]

    Kimrey, Jr., Harold D. (Knoxville, TN); Holcombe, Jr., Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN)

    1994-01-01

    A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.

  16. Method of sintering materials with microwave radiation

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.; Holcombe, C.E. Jr.; Dykes, N.L.

    1994-06-14

    Disclosed is a method of sintering ceramic materials. A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article. No Drawings

  17. Microwave drying of ferric oxide pellets

    SciTech Connect (OSTI)

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  18. Tandem microwave waste remediation and decontamination system

    DOE Patents [OSTI]

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  19. Microwaving of normally opaque and semi-opaque substances

    DOE Patents [OSTI]

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-07-17

    Disclosed is a method of heating small particles using microwave radiation which are not normally capable of being heated by microwaves. The surfaces of the particles are coated with a material which is transparent to microwave radiation in order to cause microwave coupling to the particles and thus accomplish heating of the particles.

  20. Dehumidifying Heat Pipes | Department of Energy

    Energy Savers [EERE]

    claims that your thermostat can be set higher with the low humidity air, allowing a net energy savings. Related Information Home Cooling Systems Air Conditioning Heat Pump Systems...

  1. List of Dehumidifiers Incentives | Open Energy Information

    Open Energy Info (EERE)

    Municipal Solid Waste Renewable Fuels Small Hydroelectric Wind Fuel Cells using Renewable Fuels Yes Alternative and Clean Energy State Grant Program (Pennsylvania) State Grant...

  2. Microwave meta-atom enhanced spintronic rectification

    SciTech Connect (OSTI)

    Gou, Peng; Xi, Fuchun; Qian, Qinbai; Xu, Jie; Gui, Y. S.; Hu, C.-M.; An, Zhenghua

    2015-04-06

    An artificial meta-atom (MA), or alternatively, a plasmonic antenna, has been demonstrated to significantly enhance the microwave spin rectifying photovoltage by more than two orders in magnitude (∼280) in the ferromagnetic resonance regime. The large enhancement is attributed to the unique structure of the MA which magnifies both microwave electric (∼5) and magnetic (∼56) fields in the same near-field spatial region. Our work develops the interdisciplinary direction with artificial and natural magnetism and may find promising applications in high-frequency or opto-spintronic devices and wireless microwave energy harvesting.

  3. Microwave Excitation In ECRIS plasmas

    SciTech Connect (OSTI)

    Ciavola, G.; Celona, L.; Consoli, F.; Gammino, S.; Maimone, F.; Barbarino, S.; Catalano, R. S.; Mascali, D.; Tumino, L.

    2007-09-28

    A number of phenomena related to the electron cyclotron resonance ion sources (ECRIS) has been better understood recently by means of the improvement of comprehension of the coupling mechanism between microwave generators and ECR plasma. In particular, the two frequency heating and the frequency tuning effect, that permit a remarkable increase of the current for the highest charge states ions, can be explained in terms of modes excitation in the cylindrical cavity of the plasma chamber. Calculations based on this theoretical approach have been performed, and the major results will be presented. It will be shown that the electric field pattern completely changes for a few MHz frequency variations and the changes in ECRIS performances can be correlated to the efficiency of the power transfer between electromagnetic field and plasma.

  4. Planar slot coupled microwave hybrid

    DOE Patents [OSTI]

    Petter, Jeffrey K. (Williston, VT)

    1991-01-01

    A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

  5. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  6. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J. (Los Alamos, NM); Currier, Robert P. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Barbero, Robert S. (Santa Cruz, NM)

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  7. Modulated microwave microscopy and probes used therewith

    DOE Patents [OSTI]

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  8. Container evaluation for microwave solidification project

    SciTech Connect (OSTI)

    Smith, J.A.

    1994-08-01

    This document discusses the development and testing of a suitable waste container and packaging arrangement to be used with the Microwave Solidification System (MSS) and Bagless Posting System (BPS). The project involves the Rocky Flats Plant.

  9. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, Paul P. (4 Ledgewood Dr., Bedford, MA 01730); Smatlak, Donna L. (10 Village Hill Rd., Belmont, MA 02178); Cohn, Daniel R. (26 Walnut Hill Rd., Chestnut Hill, MA 02167); Wittle, J. Kenneth (1740 Conestoga Rd., Chester Springs, PA 19425); Titus, Charles H. (323 Echo Valley La., Newton Square, PA 19072); Surma, Jeffrey E. (806 Brian La., Kennewick, WA 99337)

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  10. ARM - Measurement - Microwave narrowband brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsMicrowave narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Microwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow bands of wavelengths. Categories Radiometric Instruments The above measurement is considered

  11. Continuous microwave regeneration apparatus for absorption media

    DOE Patents [OSTI]

    Smith, Douglas D. (Knoxville, TN)

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  12. Detection of contraband using microwave radiation

    DOE Patents [OSTI]

    Toth, Richard P.; Loubriel, Guillermo M.; Bacon, Larry D.; Watson, Robert D.

    2002-01-01

    The present invention relates to a method and system for using microwave radiation to detect contraband hidden inside of a non-metallic container, such as a pneumatic vehicle tire. The method relies on the attenuation, retardation, time delay, or phase shift of microwave radiation as it passes through the container plus the contraband. The method is non-invasive, non-destructive, low power, and does not require physical contact with the container.

  13. Momentum-Savings-Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Room Air Conditioning Residential Ceiling Fan Light Kits Electric Clothes Dryers Electric Cooktops Electric Ovens Residential Furnace Fans Microwave Ovens...

  14. Large-Volume Resonant Microwave Discharge for Plasma Cleaning...

    Office of Scientific and Technical Information (OSTI)

    Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity Citation Details In-Document Search Title: Large-Volume Resonant Microwave Discharge for...

  15. Microwave accelerator E-beam pumped laser

    DOE Patents [OSTI]

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  16. Microwave off-gas treatment apparatus and process

    DOE Patents [OSTI]

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  17. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Development of a Multi-Point Microwave Interferometry (MPMI) Method Citation Details In-Document Search Title: Development of a Multi-Point Microwave Interferometry (MPMI) Method A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design,

  18. Microwave and Radio Frequency Workshop | Department of Energy

    Office of Environmental Management (EM)

    Workshops » Microwave and Radio Frequency Workshop Microwave and Radio Frequency Workshop July 25, 2012 At the Microwave and Radio Frequency Workshop (held in Long Beach, CA, on July 25, 2012), academic and industry experts discussed the existing and emerging electrotechnologies - such as microwave (MW) and radio frequency (RF) energy - and their potential to impact advanced manufacturing. Exploiting the material interactions of MW and RF energy is a route to developing energy-saving process

  19. Apparatus for microwave heat treatment of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  20. Methods for microwave heat treatment of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  1. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing | Department of Energy Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing PDF icon mw_rf_workshop_background_july2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Advanced Manufacturing Office Overview Manufacturing Demonstration Facility Workshop

  2. Clamshell microwave cavities having a superconductive coating

    DOE Patents [OSTI]

    Cooke, D. Wayne (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM); Piel, Helmut (Wuppertal, DE)

    1994-01-01

    A microwave cavity including a pair of opposing clamshell halves, such halves comprised of a metal selected from the group consisting of silver, copper, or a silver-based alloy, wherein the cavity is further characterized as exhibiting a dominant TE.sub.011 mode is provided together with an embodiment wherein the interior concave surfaces of the clamshell halves are coated with a superconductive material. In the case of copper clamshell halves, the microwave cavity has a Q-value of about 1.2.times.10.sup.5 as measured at a temperature of 10K and a frequency of 10 GHz.

  3. Synthesis of ultrafine powders by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Knoxville, TN); Sheinberg, Haskell (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  4. Synthesis of ultrafine powders by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  5. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    SciTech Connect (OSTI)

    François, B.; Boudot, R.; Calosso, C. E.; Danet, J. M.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192?GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192?GHz output signal are measured to be ?42, ?100, ?117 dB?rad{sup 2}/Hz and ?129 dB?rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup ?14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  6. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOE Patents [OSTI]

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  7. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, Lee A. (Oak Ridge, TN)

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  8. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  9. Planar controlled zone microwave plasma system

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxvlle, TN)

    2011-10-04

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  10. Environmental assessment: South microwave communication facilities

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

  11. Apparatus and method for microwave processing of materials

    DOE Patents [OSTI]

    Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.

    1996-05-28

    Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.

  12. Apparatus and method for microwave processing of materials

    DOE Patents [OSTI]

    Johnson, Arvid C. (Lake in the Hills, IL); Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Markunas, Robert J. (Chapel Hill, NC)

    1996-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  13. Ground-Based Microwave Radiometer Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L'Aquila L'Aquil, Italy E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han Science System Applications National Aeronautics Space Administration Goddard Space Flight Center Greenbelt, Maryland S. Keihm

  14. Joining of thermoplastic substrates by microwaves

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    1997-01-01

    A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

  15. High-Power Microwave Transmission and Mode Conversion Program

    SciTech Connect (OSTI)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  16. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM

    Office of Scientific and Technical Information (OSTI)

    THE 2500 SQUARE-DEGREE SPT-SZ SURVEY (Journal Article) | SciTech Connect MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY Citation Details In-Document Search Title: A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South

  17. Development of a Multi-Point Microwave Interferometry (MPMI)...

    Office of Scientific and Technical Information (OSTI)

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a ...

  18. Microwave Plasma Monitoring System For Real-Time Elemental Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis The invention apparatus can also be used to monitor for the presence of halogens, sulfur and silicon. Available for Feynman Center (505) 665-9090 Email Microwave...

  19. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tell Us Addthis Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy Laboratory ...

  20. Method and apparatus for thickness measurement using microwaves

    DOE Patents [OSTI]

    Woskov, Paul (Bedford, MA) [Bedford, MA; Lamar, David A. (West Richland, WA) [West Richland, WA

    2001-01-01

    The method for measuring the thickness of a material which transmits a detectable amount of microwave radiation includes irradiating the material with coherent microwave radiation tuned over a frequency range. Reflected microwave radiation is detected, the reflected radiation having maxima and minima over the frequency range as a result of coherent interference of microwaves reflected from reflecting surfaces of the material. The thickness of the material is determined from the period of the maxima and minima along with knowledge of the index of refraction of the material.

  1. Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Three Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Microwave vs. ...

  2. Microwave Synthesis of Au?Rh Core?Shell Nanoparticles and Implications...

    Office of Scientific and Technical Information (OSTI)

    Microwave Synthesis of Au?Rh Core?Shell Nanoparticles and Implications of the Shell Thickness in Hydrogenation Catalysis Citation Details In-Document Search Title: Microwave ...

  3. Ground-based Microwave Cloud Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Cloud Tomography Experiment, SGP, May 15-June 15, 2009 Lead Scientist Dong Huang, BNL Co-Investigators Al Gasiewski, UC Boulder Maria Cadeddu, ANL Warren Wiscombe, BNL Radiation Processes Working Group March 30, 2009 multiple radiometers All good cloud radiation modelers should close their airplane window shades so as not to be corrupted by the spectacle of real 3D clouds. - Roger Davies In case you forget to do this, you see 3/30/2009 ARM RPWG 2 Effects of cloud structure on radiation

  4. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  5. Microwave sintering of sol-gel derived abrasive grain

    DOE Patents [OSTI]

    Plovnick, Ross (St. Louis Park, MN); Celikkaya, Ahmet (Woodbury, MN); Blake, Rodger D. (Tuscon, AZ)

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  6. Microwave sintering of single plate-shaped articles

    DOE Patents [OSTI]

    Katz, J.D.; Blake, R.D.

    1995-07-11

    Apparatus and method are disclosed for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled. 2 figs.

  7. Microwave sintering of single plate-shaped articles

    DOE Patents [OSTI]

    Katz, Joel D. (Los Alamos, NM); Blake, Rodger D. (Tucson, AZ)

    1995-01-01

    Apparatus and method for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  8. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  9. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN); Bigelow, Timothy S. (Knoxville, TN); Schaich, Charles R. (Lenoir City, TN); Foster, Jr., Don (Knoxville, TN)

    1997-01-01

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  10. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  11. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  12. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOE Patents [OSTI]

    Bible, D.W.; Crutcher, R.I.; Sohns, C.W.; Maddox, S.R.

    1995-01-24

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member. 6 figures.

  13. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Crutcher, Richard I. (Knoxville, TN); Sohns, Carl W. (Oak Ridge, TN); Maddox, Stephen R. (Loudon, TN)

    1995-01-01

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member.

  14. Method and apparatus for component separation using microwave energy

    DOE Patents [OSTI]

    Morrow, Marvin S. (Kingston, TN); Schechter, Donald E. (Ten Mile, TN); Calhoun, Jr., Clyde L. (Knoxville, TN)

    2001-04-03

    A method for separating and recovering components includes the steps of providing at least a first component bonded to a second component by a microwave absorbent adhesive bonding material at a bonding area to form an assembly, the bonding material disposed between the components. Microwave energy is directly and selectively applied to the assembly so that substantially only the bonding material absorbs the microwave energy until the bonding material is at a debonding state. A separation force is applied while the bonding material is at the debonding state to permit disengaging and recovering the components. In addition, an apparatus for practicing the method includes holders for the components.

  15. Constraints on cosmology from the cosmic microwave background power

    Office of Scientific and Technical Information (OSTI)

    spectrum of the 2500 deg{sup 2} SPT-SZ survey (Journal Article) | SciTech Connect Constraints on cosmology from the cosmic microwave background power spectrum of the 2500 deg{sup 2} SPT-SZ survey Citation Details In-Document Search Title: Constraints on cosmology from the cosmic microwave background power spectrum of the 2500 deg{sup 2} SPT-SZ survey We explore extensions to the ΛCDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along

  16. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect (OSTI)

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  17. TM01-mode microwave propagation property analysis for plasmas with

    Office of Scientific and Technical Information (OSTI)

    disk-plate windows by a finite-difference time-domain method (Journal Article) | SciTech Connect TM01-mode microwave propagation property analysis for plasmas with disk-plate windows by a finite-difference time-domain method Citation Details In-Document Search Title: TM01-mode microwave propagation property analysis for plasmas with disk-plate windows by a finite-difference time-domain method Numerical studies of microwave propagation properties in a conical horn and an adjustable

  18. Electron beam collector for a microwave power tube

    DOE Patents [OSTI]

    Dandl, Raphael A. (Oak Ridge, TN)

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  19. 2D microwave imaging reflectometer electronics

    SciTech Connect (OSTI)

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  20. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-15

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  1. 140 GHz pulsed fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  2. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  3. Virtual cathode microwave generator having annular anode slit

    DOE Patents [OSTI]

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  4. Method for curing polymers using variable-frequency microwave heating

    DOE Patents [OSTI]

    Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.

    1998-02-24

    A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.

  5. A measurement of the cosmic microwave background damping tail...

    Office of Scientific and Technical Information (OSTI)

    We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) ...

  6. TM01-mode microwave propagation property analysis for plasmas...

    Office of Scientific and Technical Information (OSTI)

    ... This comes from a reason that a larger electron density in the surface-wave plasma absorbs a larger quantity of the microwave power. From the above comparisons between results ...

  7. Constraints on Cosmology from the Cosmic Microwave Background...

    Office of Scientific and Technical Information (OSTI)

    from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Citation Details In-Document Search Title: Constraints on Cosmology from the Cosmic...

  8. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  9. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Development of a Multi-Point Microwave Interferometry (MPMI)...

    Office of Scientific and Technical Information (OSTI)

    impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a...

  11. A Linear Theory of Microwave Instability in Electron Storage...

    Office of Scientific and Technical Information (OSTI)

    Title: A Linear Theory of Microwave Instability in Electron Storage Rings The well-known ... in an analysis of this stability that are associated with the potential-well distortion. ...

  12. Method for curing polymers using variable-frequency microwave heating

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Paulauskas, Felix L. (Oak Ridge, TN)

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  13. Parity Violation Constraints Using Cosmic Microwave Background Polarization

    Office of Scientific and Technical Information (OSTI)

    Spectra from 2006 and 2007 Observations by the QUaD Polarimeter (Journal Article) | SciTech Connect Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter Citation Details In-Document Search Title: Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter Authors: Wu, E.Y.S. ; /KIPAC, Menlo Park /Harvard U. /Stanford U., Phys.

  14. Linear theory of microwave instability in electron storage rings (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Linear theory of microwave instability in electron storage rings Citation Details In-Document Search Title: Linear theory of microwave instability in electron storage rings Authors: Cai, Yunhai Publication Date: 2011-06-14 OSTI Identifier: 1099585 Type: Published Article Journal Name: Physical Review Special Topics - Accelerators and Beams Additional Journal Information: Journal Volume: 14; Journal Issue: 6; Journal ID: ISSN 1098-4402 Publisher: American Physical

  15. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot, ... has been awarded the 2006 Nobel Prize for physics. He shares the award with John C. Mather of NASA Goddard Space Flight Center. The citation reads "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando Lawrence Award. 'Smoot has

  16. Microwave mode shifting antenna system for regenerating particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  17. Expanded Capacity Microwave-Cleaned Diesel Particulate Filter | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic Solutions, LLC PDF icon 2002_deer_nixdorf.pdf More Documents & Publications Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Pleated Ceramic Fiber Diesel Particulate Filter Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape

  18. Uniform bulk material processing using multimode microwave radiation

    DOE Patents [OSTI]

    Varma, Ravi (Los Alamos, NM); Vaughn, Worth E. (Madison, WI)

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  19. Stable microwave coaxial cavity plasma system at atmospheric pressure

    SciTech Connect (OSTI)

    Song, H. [Department of Electrical and Computer Engineering, University of Colorado, Colorado Springs, Colorado 80918 (United States); Hong, J. M.; Lee, K. H. [Plasma Systems and Materials (PSM) Inc., Sungnam-Si, Gyonggi-Do 190-1 (Korea, Republic of); Choi, J. J. [Department of Radio Science and Engineering, Kwangwoon University, Nowon-Gu, Seoul 447-1 (Korea, Republic of)

    2008-05-15

    We present a systematic study of the development of a novel atmospheric microwave plasma system for material processing in the pressure range up to 760 torr and the microwave input power up to 6 kW. Atmospheric microwave plasma was reliably produced and sustained by using a cylindrical resonator with the TM{sub 011} cavity mode. The applicator and the microwave cavity, which is a cylindrical resonator, are carefully designed and optimized with the time dependent finite element Maxwell equation solver. The azimuthal apertures are placed at the maximum magnetic field positions between the cavity and the applicator to maximize the coupling efficiency into the microwave plasma at a resonant frequency of 2.45 GHz. The system consists of a magnetron power supply, a circulator, a directional coupler, a three-stub tuner, a dummy load, a coaxial cavity, and a central cavity. Design and construction of the resonant structures and diagnostics of atmospheric plasma using optical experiments are discussed in various ranges of pressure and microwave input power for different types of gases.

  20. A device for microwave sintering large ceramic articles

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.

    1987-07-24

    A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.

  1. Webinar: Test Procedures for Dehumidifiers; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the notice of proposed rulemaking regarding test procedures for residential dehumifiers. 79 FR 29271 (May 22, 2014). For more information, please...

  2. Microwave guiding in air along single femtosecond laser filament

    SciTech Connect (OSTI)

    Ren Yu; Alshershby, Mostafa; Qin Jiang; Hao Zuoqiang; Lin Jingquan

    2013-03-07

    Microwave guiding along single plasma filament generated through the propagation of femtosecond (fs) laser pulses in air has been demonstrated over a distance of about 6.5 cm, corresponding to a microwave signal intensity enhancement of more than 3-fold over free space propagation. The current propagation distance along the fs laser filament is in agreement with the calculations and limited by the relatively high resistance of the single plasma filament. Using a single fs laser filament to channel microwave radiation considerably alleviate requirements to the power of fs laser pulses compared to the case of the circular filaments waveguide. In addition, it can be used as a simple and non-intrusive method to obtain the basic parameters of laser-generated plasma filament.

  3. One piece microwave container screens for electrodeless lamps

    DOE Patents [OSTI]

    Turner, Brian; Ury, Michael

    1998-01-01

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. Replacing mesh material by solid metal material as part of the screen unit significantly reduces leakage of microwave energy from the lamp. The solid section has multiple compliant fingers defined therein for engaging the periphery of a flange on the waveguide unit so that a hose clamp can easily secure the screen to the assembly. Screen units of this type having different mesh section configurations can be interchanged in the lamp assembly to produce different respective illumination patterns.

  4. A prototype silicon double quantum dot with dispersive microwave readout

    SciTech Connect (OSTI)

    Schmidt, A. R. Henry, E.; Namaan, O.; Siddiqi, I.; Lo, C. C.; Wang, Y.-T.; Bokor, J.; Yablonovitch, E.; Li, H.; Greenman, L.; Whaley, K. B.; Schenkel, T.

    2014-07-28

    We present a unique design and fabrication process for a lateral, gate-confined double quantum dot in an accumulation mode metal-oxide-semiconductor (MOS) structure coupled to an integrated microwave resonator. All electrostatic gates for the double quantum dot are contained in a single metal layer, and use of the MOS structure allows for control of the location of the two-dimensional electron gas via the location of the accumulation gates. Numerical simulations of the electrostatic confinement potential are performed along with an estimate of the coupling of the double quantum dot to the microwave resonator. Prototype devices are fabricated and characterized by transport measurements of electron confinement and reflectometry measurements of the microwave resonator.

  5. Physics Analysis of Microwave Imaging Data from DIII-D & KSTAR. Final Technical Report

    SciTech Connect (OSTI)

    Munsat, Tobin

    2015-12-31

    Final Technical Report of the award entitled Physics Analysis of Microwave Imaging Data from DIII-D & KSTAR

  6. A Microwave Thruster for Spacecraft Propulsion (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this

  7. A Microwave Thruster for Spacecraft Propulsion (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this

  8. Temperature distribution in a flowing fluid heated in a microwave resonant cavity

    SciTech Connect (OSTI)

    Thomas, J.R. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Nelson, E.M.; Kares, R.J.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)

    1996-04-01

    This paper presents results of an analytical study of microwave heating of a fluid flowing through a tube situated along the axis of a cylindrical microwave applicator. The interaction of the microwave field pattern and the fluid velocity profiles is illustrated for both laminar and turbulent flow. Resulting temperature profiles are compared with those generated by conventional heating through a surface heat flux. It is found that microwave heating offers several advantages over conventional heating.

  9. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  10. Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination

    SciTech Connect (OSTI)

    Srogi, K.

    2007-01-15

    The aim of this paper is to review microwave-assisted digestion of coal and coal fly ash. A brief description of microwave heating principles is presented. Microwave-assisted digestion appears currently to be the most popular preparation technique, possibly due to the comparatively rapid sample preparation and the reduction of contamination, compared to the conventional hot-plate digestion methods.

  11. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect (OSTI)

    Liu, Hao; Mertsch, Philipp

    2014-07-10

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation.

  12. ARM - Field Campaign - Long-Term Microwave Radiometer Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsLong-Term Microwave Radiometer Intercomparison ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Long-Term Microwave Radiometer Intercomparison 2001.04.01 - 2001.09.30 Lead Scientist : Richard Cederwall For data sets, see below. Summary Make the spare MWR operational. Ingest data from the spare MWR. Input the output data of the spare MWR and ingest to VAP. Provide data to IOP participants.

  13. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  14. Constraints on Cosmology from the Cosmic Microwave Background Power

    Office of Scientific and Technical Information (OSTI)

    Spectrum of the 2500-square degree SPT-SZ Survey (Journal Article) | SciTech Connect Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Citation Details In-Document Search Title: Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Authors: Hou, Z. ; et al. Publication Date: 2012-12-01 OSTI Identifier: 1156457 Report Number(s): FERMILAB-PUB-13-072-A arXiv eprint

  15. Diatomic molecules in optical and microwave dipole traps

    SciTech Connect (OSTI)

    Lysebo, Marius; Veseth, Leif

    2011-03-15

    The dipole forces on rotating diatomic molecules are worked out in detail for optical as well as microwave radiation fields. The objective is in particular to investigate how the dipole forces and potentials depend on the subtle internal structure of the molecule, with special emphasis on hyperfine and Zeeman states. Dipole potentials are obtained from computations of the real part of the complex molecular polarizability, whereas the imaginary part yields the scattering force. Numerical examples are presented for {sup 23}Na{sub 2} and OH for optical (laser) fields related to strong electronic transitions and for microwave fields for the {Lambda} doubling in the OH ground state.

  16. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  17. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  18. Ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1985-01-01

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  19. Ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  20. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  1. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect (OSTI)

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2?ms-3?kW-2.45?GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  2. Microwave-assisted synthesis of transition metal phosphide

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  3. Ultra-low power microwave CHFET integrated circuit development

    SciTech Connect (OSTI)

    Baca, A.G.; Hietala, V.M.; Greenway, D.; Sloan, L.R.; Shul, R.J.; Muyshondt, G.P.; Dubbert, D.F.

    1998-04-01

    This report summarizes work on the development of ultra-low power microwave CHFET integrated circuit development. Power consumption of microwave circuits has been reduced by factors of 50--1,000 over commercially available circuits. Positive threshold field effect transistors (nJFETs and PHEMTs) have been used to design and fabricate microwave circuits with power levels of 1 milliwatt or less. 0.7 {micro}m gate nJFETs are suitable for both digital CHFET integrated circuits as well as low power microwave circuits. Both hybrid amplifiers and MMICs were demonstrated at the 1 mW level at 2.4 GHz. Advanced devices were also developed and characterized for even lower power levels. Amplifiers with 0.3 {micro}m JFETs were simulated with 8--10 dB gain down to power levels of 250 microwatts ({mu}W). However 0.25 {micro}m PHEMTs proved superior to the JFETs with amplifier gain of 8 dB at 217 MHz and 50 {mu}W power levels but they are not integrable with the digital CHFET technology.

  4. Microwave Radiometer – 3 Channel (MWR3C) Handbook

    SciTech Connect (OSTI)

    Cadeddu, MP

    2012-05-04

    The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

  5. Microwave-emitting rotor, separator apparatus including same, methods of operation and design thereof

    DOE Patents [OSTI]

    Meikrantz, David H.

    2006-12-19

    An apparatus for use in separating, at least in part, a mixture, including at least one chamber and at least one microwave generation device configured for communicating microwave energy into the at least one chamber is disclosed. The rotor assembly may comprise an electric generator for generating electricity for operating the microwave generation device. At least one microwave generation device may be positioned within a tubular interior shaft extending within the rotor assembly. At least a portion of the tubular interior shaft may be substantially transparent to microwave energy. Microwave energy may be emitted in an outward radial direction or toward an anticipated boundary surface defined between a mixture and a separated constituent thereof. A method including flowing a mixture through at least one chamber and communicating microwave energy into the at least one chamber while rotating same is disclosed. Methods of operating a centrifugal separator and design thereof are disclosed.

  6. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOE Patents [OSTI]

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  7. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2015-03-03

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  8. Satellite remote sensing of global rainfall using passive microwave radiometry

    SciTech Connect (OSTI)

    Ferriday, J.G.

    1994-12-31

    Global rainfall over land and ocean is estimated using measurements of upwelling microwaves by a satellite passive microwave radiometer. Radiative transfer calculations through a cloud model are used to parameterize an inversion technique for retrieving rain rates from brightness temperatures measured by the Special Sensor Microwave Imager (SSM/I). The rainfall retrieval technique is based on the interaction between multi-spectral microwave radiances and millimeter sized liquid and frozen hydrometeors distributed in the satellite`s field of view. The rain rate algorithm is sensitive to both hydrometeor emission and scattering while being relatively insensitive to extraneous atmospheric and surface effects. Separate formulations are used over ocean and land to account for different background microwave characteristics and the algorithm corrects for inhomogeneous distributions of rain rates within the satellite`s field of view. Estimates of instantaneous and climate scale rainfall are validated through comparisons with modeled clouds, surface radars, rain gauges and alternative satellite estimates. The accuracy of the rainfall estimates is determined from a combination of validation comparisons, theoretical sampling error calculations, and modeled sensitivity to variations in atmospheric and surface radiative properties. An error budget is constructed for both instantaneous rain rates and climate scale global estimates. At a one degree resolution, the root mean square errors in instantaneous rain rate estimates are 13% over ocean and 20% over land. The root mean square errors in global rainfall totals over a four month period are found to be 46% over ocean and 63% over land. Global rainfall totals are computed on a monthly scale for a three year period from 1987 to 1990. The time series is analyzed for climate scale rainfall distribution and variability.

  9. Kinetics of the carbon monoxide oxidation reaction under microwave heating

    SciTech Connect (OSTI)

    Perry, W.L.; Katz, J.D.; Rees, D.; Paffett, M.T. [Los Alamos National Lab., NM (United States); Datye, A. [Univ. of New Mexico, Albuquerque, NM (United States)

    1996-06-01

    915 MHz microwave heating has been used to drive the CO oxidation reaction over Pd/Al{sub 2}O{sub 3} with out significantly affecting the reaction kinetics. As compared to an identical conventionally heated system, the activation energy, pre-exponential factor, and reaction order with respect to CO were unchanged. Temperature was measured using a thermocouple extrapolation technique. Microwave-induced thermal gradients were found to play a significant role in kinetic observations. The authors chose the CO oxidation reaction over a supported metal catalyst because the reaction kinetics are well known, and because of the diverse dielectric properties of the various elements in the system: CO is a polar molecule, O{sub 2} and CO{sub 2} are non-polar, Al{sub 2}O{sub 3} is a dielectric, and Pt and Pd are conductors.

  10. Microwave measurement of the mass of frozen hydrogen pellets

    DOE Patents [OSTI]

    Talanker, Vera (Golden, CO); Greenwald, Martin (Belmont, MA)

    1990-01-01

    A nondestructive apparatus and method for measuring the mass of a moving object, based on the perturbation of the dielectric character of a resonant microwave cavity caused by the object passing through the cavity. An oscillator circuit is formed with a resonant cavity in a positive feedback loop of a microwave power amplifier. The moving object perturbs the resonant characteristics of the cavity causing a shift in the operating frequency of the oscillator proportional to the ratio of the pellet volume to the volume of the cavity. Signals from the cavity oscillation are mixed with a local oscillator. Then the IF frequency from the mixer is measured thereby providing a direct measurement of pellet mass based upon known physical properties and relationships. This apparatus and method is particularly adapted for the measurement of frozen hydrogen pellets.

  11. Dynamic characteristic of intense short microwave propagation in an atmosphere

    SciTech Connect (OSTI)

    Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.

    1983-07-01

    The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures.

  12. Critical operating parameters for microwave solidification of hydroxide sludge

    SciTech Connect (OSTI)

    Sprenger, G.S.; Eschen, V.G.

    1993-08-01

    Engineers at the Rocky Flats Plant (RFP) have developed an innovative technology for the treatment of homogeneous wet or dry solids which are contaminated with hazardous and/or radioactive materials. The process uses microwave energy to heat and melt the waste into a vitreous final form that is suitable for land disposal. The advantages include a high density, leach resistant, robust waste form; volume and toxicity reduction; favorable economics; in-container treatment; favorable public acceptance; isolated equipment; and instantaneous energy control. Regulatory certification of the final form is accomplished by meeting the limitation specified in EPA`s Toxicity Characteristic Leach Procedure (TCLP). This paper presents the results from a series of TCLP tests performed on a surrogate hydroxide coprecipitation sludge spiked with heavy metals at elevated concentrations. The results are very encouraging and support RFP`s commitment to the use of microwave technology for treatment of various mixed waste streams.

  13. Controlled synthesis of novel octapod platinum nanocrystals under microwave irradiation

    SciTech Connect (OSTI)

    Dai, Lei; Chi, Quan; Zhao, Yanxi; Liu, Hanfan; Zhou, Zhongqiang; Li, Jinlin; Huang, Tao

    2014-01-01

    Graphical abstract: Under microwave irradiation, novel octapod Pt nanocrystals were synthesized by reducing H{sub 2}PtCl{sub 6} in TEG with PVP as a stabilizer. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center. The use of KI was crucial to the formation of novel Pt octapods. Novel Octapod Platinum Nanocrystals. - Highlights: • A novel octapod Pt nanocrystals different from the common octapod were obtained. • The use of KI was crucial to the formation of the novel Pt octapods. • Microwave was readily employed in controlled synthesis of the novel Pt octapods. - Abstract: Microwave was employed in the shape-controlled synthesis of Pt nanoparticles. Novel octapod Pt nanocrystals enclosed with (1 1 1) facets were readily synthesized with H{sub 2}PtCl{sub 6} as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent, polyvinylpyrrolidone (PVP) as a stabilizer in the presence of an appropriate amount of KI under microwave irradiation for 140 s. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center and exhibited higher electrocatalytic activity than commercial Pt black in the electro-oxidations of methanol and formic acid. The results demonstrated that the use of KI was crucial to the formation of Pt octapods. KI determined the formation of the novel octapod Pt nanocrystals by tuning up the reduction kinetics and adsorbing on the surfaces of growing Pt nanoparticles. The optimum molar ratio of H{sub 2}PtCl{sub 6}/KI/PVP was 1/30/45.

  14. Effect of microwave radiation on Jayadhar cotton fibers: WAXS studies

    SciTech Connect (OSTI)

    Niranjana, A. R. Mahesh, S. S. Divakara, S. Somashekar, R.

    2014-04-24

    Thermal effect in the form of micro wave energy on Jayadhar cotton fiber has been investigated. Microstructural parameters have been estimated using wide angle x-ray scattering (WAXS) data and line profile analysis program developed by us. Physical properties like tensile strength are correlated with X-ray results. We observe that the microwave radiation do affect significantly many parameters and we have suggested a multivariate analysis of these parameters to arrive at a significant result.

  15. Microwave plasma CVD of NANO structured tin/carbon composites

    DOE Patents [OSTI]

    Marcinek, Marek (Warszawa, PL); Kostecki, Robert (Lafayette, CA)

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  16. Method for heat treating and sintering metal oxides with microwave radiation

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  17. High power microwave generation from rotating e-layers in magnetron-type

    Office of Scientific and Technical Information (OSTI)

    conducting boundary systems (Journal Article) | SciTech Connect Journal Article: High power microwave generation from rotating e-layers in magnetron-type conducting boundary systems Citation Details In-Document Search Title: High power microwave generation from rotating e-layers in magnetron-type conducting boundary systems Studies of the production of microwave and millimeter wave radiation at high harmonics of the relativistic electron cyclotron frequency by the interaction of a rotating

  18. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOE Patents [OSTI]

    Alton, Gerald D. (Kingston, TN)

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  19. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOE Patents [OSTI]

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  20. Geometry for web microwave heating or drying to a desired profile in a waveguide

    DOE Patents [OSTI]

    Habeger, Jr., Charles C.; Patterson, Timothy F.; Ahrens, Frederick W.

    2005-11-15

    A microwave heater and/or dryer has a nonlinear or curvilinear relative slot profile geometry. In one embodiment, the microwave dryer has at least one adjustable field modifier making it possible to change the geometry of the heater or dryer when drying different webs. In another embodiment, the microwave dryer provides more uniform drying of a web when the field modifier is adjusted in response to a sensed condition of the web. Finally, a method of microwave heating and/or drying a web achieves a uniform heating and/or drying profile.

  1. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect (OSTI)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  2. Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    Microwave regeneration of the DPF can be done without diesel fuel or a catalyst in less than 5 minutes with the engine off.

  3. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    #EnergyFaceoff Round 4? | Department of Energy Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in #EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in #EnergyFaceoff Round 4? November 24, 2014 - 9:38am Q&A Which appliance do you think is more efficient? Tell Us Addthis Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Microwave or

  4. Combination biological and microwave treatments of used rubber products

    DOE Patents [OSTI]

    Fliermans, Carl B. (Augusta, GA); Wicks, George G. (Aiken, SC)

    2002-01-01

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds altered by biotreatment with thermophillic microorganisms selected from natural isolates from hot sulfur springs. Following the biotreatment, microwave radiation is used to further treat the surface and to treat the bulk interior of the crumb rubber. The resulting combined treatments render the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels and sizes of the treated crumb rubber can be used in new rubber mixtures and good properties obtained from the new recycled products.

  5. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  6. Microwave diagnostics of femtosecond laser-generated plasma filaments

    SciTech Connect (OSTI)

    Papeer, J.; Ehrlich, Y.; Zigler, A.; Mitchell, C.; Penano, J.; Sprangle, P.

    2011-10-03

    We present a simple non-intrusive experimental method allowing a complete single shot temporal measurement of laser produced plasma filament conductivity. The method is based on filament interaction with low intensity microwave radiation in a rectangular waveguide. The suggested diagnostics allow a complete single shot temporal analysis of filament plasma decay with resolution better than 0.3 ns and high spatial resolution along the filament. The experimental results are compared to numerical simulations, and an initial electron density of 7 x 10{sup 16 }cm{sup -3} and decay time of 3 ns are obtained.

  7. Microwave lamp with multi-purpose rotary motor

    DOE Patents [OSTI]

    Ury, M.G.; Turner, B.; Wooten, R.D.

    1999-02-02

    In a microwave powered electrodeless lamp, a single rotary motor is used to (a) rotate the bulb and (b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooler for providing cooling gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement. 8 figs.

  8. Microwave lamp with multi-purpose rotary motor

    DOE Patents [OSTI]

    Ury, Michael G.; Turner, Brian; Wooten, Robert D.

    1999-01-01

    In a microwave powered electrodeless lamp, a single rotary motor is used to a) rotate the bulb and b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooling for providing cooler gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement.

  9. Microwave sintering of nanophase ceramics without concomitant grain growth

    DOE Patents [OSTI]

    Eastman, Jeffrey A. (Woodbridge, IL); Sickafus, Kurt E. (Santa Cruz, NM); Katz, Joel D. (Los Alamos, NM)

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  10. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, Isidoro E. (Newport News, VA)

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  11. Appliance Standards Program Schedule - CCE Overview and Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOPR Nov-2011 Metal Halide Lamp Fixtures NOPR Nov-2011 Microwave Ovens SNOPR Nov-2011 ERBR Incandescent Reflector Lamps NOPR Nov-2011 Next Scheduled Document for Active DOE ...

  12. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOE Patents [OSTI]

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  13. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN)

    1994-01-01

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  14. Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation

    SciTech Connect (OSTI)

    Gedam, Vidyadhar V.; Regupathi, Iyyaswami

    2012-03-15

    In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation highly depends on the process parameters, like microwave power, microwave absorbers, and time of irradiation. The thoroughness of pyrolysis and product recovery were studied by changing the abovesaid variables. Pyrolysis of MSW occurs in the power rating range of 450-850 W-outside this power rating range, pyrolysis is not possible. Experiments were carried out using various microwave absorbers (i.e., graphite, charcoal, and iron) to enhance the pyrolysis even at lower power rating. The results show that the pyrolysis of MSW was possible even at low power ratings. The major composition of the pyrolysis gaseous product were analyzed with GC-MS which includes CO{sub 2}, CO, CH{sub 4}, etc.

  15. Microwave-assisted synthesis of palladium nanocubes and nanobars

    SciTech Connect (OSTI)

    Yu, Yanchun; Zhao, Yanxi; Huang, Tao; Liu, Hanfan; Institute of Chemistry, Chinese Academy of Science, Beijing 100080

    2010-02-15

    Microwave was employed in the shape-controlled synthesis of palladium nanoparticles. Palladium nanocubes and nanobars with a mean size of about 23.8 nm were readily synthesized with H{sub 2}PdCl{sub 4} as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent in the presence of PVP and CTAB in 80 s under microwave irradiation. The structures of the as-prepared palladium nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and ultraviolet-visible (UV-vis) absorption spectroscopy. The formation of PdBr{sub 4}{sup 2-}due to the coordination replacement of the ligand Cl{sup -} ions in PdCl{sub 4}{sup 2-} ions by Br{sup -} ions in the presence of bromide was responsible for the synthesis of Pd nanocubes and nanobars. In addition, a milder reducing power, a higher viscosity and a stronger affinity of TEG were beneficial to the larger sizes of Pd nanocubes and nanobars.

  16. Floating data acquisition system for microwave calorimeter measurements on MTX

    SciTech Connect (OSTI)

    Sewall, N.R.; Meassick, S. )

    1989-09-13

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs.

  17. A fully integrated oven controlled microelectromechanical oscillator...

    Office of Scientific and Technical Information (OSTI)

    Authors: Wojciechowski, Kenneth E. 1 ; Baker, Michael S. 1 ; Clews, Peggy J. 1 ; Olsson, Roy H. 1 + Show Author Affiliations Sandia National Lab. (SNL-NM), Albuquerque, NM ...

  18. A fully integrated oven controlled microelectromechanical oscillator...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 24; Journal Issue: 6; Journal ID: ISSN 1057-7157 Publisher: IEEE Research Org: Sandia National Laboratories (SNL-NM), Albuquerque, ...

  19. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    SciTech Connect (OSTI)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki; Togo, Hiroyoshi; Kuninaka, Hitoshi

    2012-12-15

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  20. A measurement of the cosmic microwave background damping tail from the

    Office of Scientific and Technical Information (OSTI)

    2500-square-degree SPT-SZ survey (Journal Article) | SciTech Connect A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey Citation Details In-Document Search Title: A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich

  1. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    SciTech Connect (OSTI)

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang; Hao, Zuoqiang; Lin, Jingquan

    2013-05-20

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  2. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Workshop Date: July 25, 2012, 2:00 - 5:30 PM Venue: The 2 nd World Congress on Microwave Energy Applications July 23-27, 2012, Hilton Long Beach, Long Beach, CA http://www.mrs.org/2gcmea-2012/ PURPOSE The purpose of this workshop is to provide input that can help DOE strategically assess the potential for electrotechnologies such as microwave (MW) and radio frequency (RF) energy to impact

  3. [A variable frequency microwave furnace]. CRADA final report for CRADA Number ORNL91-0055

    SciTech Connect (OSTI)

    Lauf, R.J.

    1994-12-08

    The goals of this CRADA were to: (1) development and demonstrate a highly frequency-agile microwave furnace; (2) explore applications of the furnace for materials processing; and (3) develop control systems and packaging that are robust, user-friendly, and suitable for sale as a turnkey system. Microwave Laboratories, Inc. (MLI) designed, built, and successfully brought to market a benchtop Variable Frequency Microwave Furnace (VFMF). The concept has demonstrated advantages in polymer curing, waste remediation, and diamond (CVD). Through experimentation and modeling, the VFMF approach has gained credibility within the technical community.

  4. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    SciTech Connect (OSTI)

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Yoshinaga, T.; Yamaguchi, S.; Yoshikawa, M.; Kohagura, J.; Sugito, S.; Kogi, Y.; Mase, A.

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  5. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  6. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  7. Multichannel microwave interferometer for the levitated dipole experiment

    SciTech Connect (OSTI)

    Boxer, Alexander C.; Garnier, Darren T.; Mauel, Michael E.

    2009-04-15

    A four-channel microwave interferometer (center frequency: 60 GHz) has been constructed to measure plasma density profiles in the levitated dipole experiment (LDX). The LDX interferometer has a unique design owing to the unique geometry of LDX. The main design features of the interferometer are: (1) the transmitted beam traverses the plasma entirely in O-mode; (2) the interferometer is a heterodyne system employing two free-running oscillators; (3) four signals of data are received from just on transmitted beam; (4) phase shifts are detected in quadrature. Calibration tests demonstrate that the interferometer measures phase shifts with an uncertainty of approximately 5 deg. Plasma densities in LDX corresponding to phase shifts of up to 5{pi} are routinely and successfully measured.

  8. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect (OSTI)

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  9. Microwave determination of location and speed of an object inside a pipe

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2010-12-14

    Apparatus and method are described for measuring the location and speed of an object, such as instrumentation on a movable platform, disposed within a pipe, using continuous-wave, amplitude-modulated microwave radiation.

  10. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  11. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOE Patents [OSTI]

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  12. Microwave assisted growth of copper germanide thin films at very low temperatures

    SciTech Connect (OSTI)

    Das, Sayantan; Alford, T. L.

    2013-08-26

    Herein the synthesis of Cu{sub 3}Ge films by exposing Cu-Ge alloy films to microwave radiation is reported. It is shown that microwave radiation led to the formation of copper germanide at temperatures ca. 80 °C. The electrical properties of the Cu{sub 3}Ge films are presented and compared for various annealing times. X-ray diffraction shows that the Cu{sub 3}Ge films formed after microwave annealing is crystalline in the orthorhombic phase. Rutherford backscattering and X-ray photoelectron spectroscopy confirms the formation of copper oxide encapsulation layer. Despite the slight oxidation of Cu during the microwave anneal the lowest resistivity of Cu{sub 3}Ge films obtained is 14 ??-cm.

  13. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

  14. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, T.L.

    1994-06-28

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  15. Application of microwave energy for in-drum solidification of simulated precipitation sludge

    SciTech Connect (OSTI)

    Petersen, R.D.; Johnson, A.J.; Swanson, S.D.; Thomas, R.L.

    1987-08-17

    The application of microwave energy for in-container solidification of simulated transuranic contaminated precipitation sludges has been tested. Results indicate volume reductions to 83% are achievable by the continuous feeding of pre-dried sludge into a waste container while applying microwave energy. An economic evaluation was completed showing achievable volume and weight reductions to 87% compared with a current immobilization process for wet sludge. 7 refs., 15 figs., 16 tabs.

  16. A Comparison of Direct Heating During Radiofrequency and Microwave Ablation in Ex Vivo Liver

    SciTech Connect (OSTI)

    Andreano, Anita; Brace, Christopher L.

    2013-04-15

    This study was designed to determine the magnitude and spatial distribution of temperature elevations when using 480 kHz RF and 2.45 GHz microwave energy in ex vivo liver models. A total of 60 heating cycles (20 s at 90 W) were performed in normal, RF-ablated, and microwave-ablated liver tissues (n = 10 RF and n = 10 microwave in each tissue type). Heating cycles were performed using a 480-kHz generator and 3-cm cooled-tip electrode (RF) or a 2.45-GHz generator and 14-gauge monopole (microwave) and were designed to isolate direct heating from each energy type. Tissue temperatures were measured by using fiberoptic thermosensors 5, 10, and 15 mm radially from the ablation applicator at the depth of maximal heating. Power delivered, sensor location, heating rates, and maximal temperatures were compared using mixed effects regression models. No significant differences were noted in mean power delivered or thermosensor locations between RF and microwave heating groups (P > 0.05). Microwaves produced significantly more rapid heating than RF at 5, 10, and 15 mm in normal tissue (3.0 vs. 0.73, 0.85 vs. 0.21, and 0.17 vs. 0.09 Degree-Sign C/s; P < 0.05); and at 5 and 10 mm in ablated tissues (2.3 {+-} 1.4 vs. 0.7 {+-} 0.3, 0.5 {+-} 0.3 vs. 0.2 {+-} 0 Degree-Sign C/s, P < 0.05). The radial depth of heating was {approx}5 mm greater for microwaves than RF. Direct heating obtained with 2.45-GHz microwave energy using a single needle-like applicator is faster and covers a larger volume of tissue than 480-kHz RF energy.

  17. A Microwave Thruster for Spacecraft Propulsion (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  18. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE

    Office of Scientific and Technical Information (OSTI)

    AND INFRARED BACKGROUND ANISOTROPIES (Journal Article) | SciTech Connect PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES Citation Details In-Document Search Title: PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The

  19. A Linear Theory of Microwave Instability in Electron Storage Rings (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron Storage Rings The well-known Haissinski distribution provides a stable equilibrium of longitudinal beam distribution in electron storage rings below a threshold current. Yet, how to accurately determine this threshold, above which the Haissinski distribution becomes unstable, is not

  20. Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer J. C. Liljegren Environmental Research Division Argonne National Laboratory Argonne, Illinois Introduction Radiometrics Corporation has developed a twelve-channel microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions (Solheim et al. 1998a). Since

  1. Phonon-deficit effect in superconductors in a strong microwave field

    SciTech Connect (OSTI)

    Gulyan, A.M.; Zharkov, G.F.

    1981-08-20

    The phonon flux from a thin superconducting film irradiated by a microwave field is derived. It is shown that in intense microwave fields, as in the case of weak fields, studied previously )A. M. Gulian (Gulyan) and G. F. Zharkov, Phys. Lett. 80A, 79 (1980); Zh. Eksp. Teor. Fiz. 80, 303 (1981) (Sov. Phys. JETP 53, 154 (1981))), phonons are not emitted in a narrow spectral interval of phonon frequencies and are instead absorbed from the heat reservoir by the film.

  2. Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff November 24, 2014 - 12:13pm Addthis The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior Communicator, NREL How can

  3. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    SciTech Connect (OSTI)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

  4. Microwave pulse compression from a storage cavity with laser-induced switching

    DOE Patents [OSTI]

    Bolton, Paul R. (Menlo Park, CA)

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  5. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOE Patents [OSTI]

    Hopkins, Donald B. (Sacramento, CA)

    1993-01-01

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  6. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOE Patents [OSTI]

    Hopkins, D.B.

    1993-01-26

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  7. A fuel pellet injector for the Microwave Tokamak Experiment (MTX)

    SciTech Connect (OSTI)

    Hibbs, S.M.; Allen, S.L.; Petersen, D.E.; Sewall, N.R.

    1990-09-01

    Unlike other fueling systems for magnetically confined fusion plasmas, a pellet injector can deliver many fuel gas particles to the core of the plasma, enhancing plasma confinement. We installed a new pellet injector on the MTX (formerly Alcator-O) to provide a plasma with a high core density for experiments both with and without ultrahigh-power microwave heating. Its four-barrel pellet generator is the first to be designed and built at LLNL. Based on pipe-gun'' technology originated at Oak Ridge National Laboratory (ORNL), it incorporates our structural and thermal engineering innovations and a unique control system. The pellet transport, differential vacuum-pumping stages, and fast-opening propellant valves are reused parts of the Impurity Study EXperiment (ISX) pellet injector built by ORNL. We tailored designs of all other systems and components to the MTX. Our injector launches pellets of frozen hydrogen or deuterium into the MTX, either singly or in timed bursts of up to four pellets at velocities of up to 1000 m/s. Pellet diameters range from 1.02 to 2.08 mm. A diagnostic stage measures pellet velocities and allows us to photograph the pellets in flight. We are striving to improve the injector's performance, but its operations is already very consistent and reliable.

  8. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    SciTech Connect (OSTI)

    Li, Yangmei; Zhang, Xiaoping Zhang, Jiande; Dang, Fangchao; Yan, Xiaolu

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675?kV and the guiding magnetic field is 0.8?T, a combined microwave with an average power of about 4.0?GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diode voltage range from 675?kV to 755?kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720?kV/cm, which is relatively low corresponding to an output power of 4.0?GW. The stable combined output suggests the probability of long-pulse operation for the combined source.

  9. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect (OSTI)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  10. Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging

    SciTech Connect (OSTI)

    Nan, Hao Arbabian, Amin

    2014-06-02

    Microwave-induced thermoacoustic (TA) imaging combines the dielectric contrast of microwave imaging with the resolution of ultrasound imaging. Prior studies have only focused on time-domain techniques with short but powerful microwave pulses that require a peak output power in excess of several kilowatts to achieve sufficient signal-to-noise ratio (SNR). This poses safety concerns as well as to render the imager expensive and bulky with requiring a large vacuum radio frequency source. Here, we propose and demonstrate a coherent stepped-frequency continuous-wave (SFCW) technique for TA imaging which enables substantial improvements in SNR and consequently a reduction in peak power requirements for the imager. Constructive and destructive interferences between TA signals are observed and explained. Full coherency across microwave and acoustic domains, in the thermo-elastic response, is experimentally verified and this enables demonstration of coherent SFCW microwave-induced TA imaging. Compared to the pulsed technique, an improvement of 17?dB in SNR is demonstrated.

  11. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    SciTech Connect (OSTI)

    Waldmann, Ole; Ludewigt, Bernhard

    2010-10-11

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  12. Processing aersols and filaments in a TM sub 010 microwave cavity at 2. 45 GHz

    SciTech Connect (OSTI)

    Vogt, G.J.; Unruh, W.P.

    1992-01-01

    As part of the development of generic microwave processes for spray-drying of homogeneous complex metal oxide powders and for inorganic fiber processing, we have investigated the use of 2.45 GHz microwaves in a high-Q single-mode TM{sub 010} cavity coupled directly to aerosols and fibers. Aqueous and ethanol aerosols of ferric nitrate solutions have been successfully dried at 1.8 kW of cavity power for a loaded Q greater than 6000 in flowing nitrogen gas. Similarly, we have observed extremely rapid heating rates in the TM{sub 010} cavity for small-diameter confined cylinders of water and lossy inorganic fibers. These observations suggest using 2.45 GHz microwave power for drying, calcining, and sintering extruded ceramic filaments. Droplet modeling indicates that the large dielectric shielding for spherical droplets can significantly limit the coupling of 2.45 GHz microwave with spherical aerosols, but not with fibers. Experimental observations on the microwave interactions with ferric nitrate aerosols and with ceramic filaments in the TM{sub 010} cavity are described.

  13. Analysis of Femtosecond Timing Noise and Stability in Microwave Components

    SciTech Connect (OSTI)

    Whalen, Michael R.; /Stevens Tech. /SLAC

    2011-06-22

    To probe chemical dynamics, X-ray pump-probe experiments trigger a change in a sample with an optical laser pulse, followed by an X-ray probe. At the Linac Coherent Light Source, LCLS, timing differences between the optical pulse and x-ray probe have been observed with an accuracy as low as 50 femtoseconds. This sets a lower bound on the number of frames one can arrange over a time scale to recreate a 'movie' of the chemical reaction. The timing system is based on phase measurements from signals corresponding to the two laser pulses; these measurements are done by using a double-balanced mixer for detection. To increase the accuracy of the system, this paper studies parameters affecting phase detection systems based on mixers, such as signal input power, noise levels, temperature drift, and the effect these parameters have on components such as the mixers, splitters, amplifiers, and phase shifters. Noise data taken with a spectrum analyzer show that splitters based on ferrite cores perform with less noise than strip-line splitters. The data also shows that noise in specific mixers does not correspond with the changes in sensitivity per input power level. Temperature drift is seen to exist on a scale between 1 and 27 fs/{sup o}C for all of the components tested. Results show that any components using more metallic conductor tend to exhibit more noise as well as more temperature drift. The scale of these effects is large enough that specific care should be given when choosing components and designing the housing of high precision microwave mixing systems for use in detection systems such as the LCLS. With these improvements, the timing accuracy can be improved to lower than currently possible.

  14. Computational studies for plasma filamentation by magnetic field in atmospheric microwave discharge

    SciTech Connect (OSTI)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2014-12-01

    Plasma filamentation is induced by an external magnetic field in an atmospheric discharge using intense microwaves. A discrete structure is obtained at low ambient pressure if a strong magnetic field of more than 1 T is applied, due to the suppression of electron diffusion, whereas a diffusive pattern is generated with no external field. Applying a magnetic field can slow the discharge front propagation due to magnetic confinement of the electron transport. If the resonance conditions are satisfied for electron cyclotron resonance and its higher harmonics, the propagation speed increases because the heated electrons easily ionize neutral particles. The streamer velocity and the pattern of the microwave plasma are positively controlled by adjusting two parameters—the electron diffusion coefficient and the ionization frequency—through the resonance process and magnetic confinement, and hot, dense filamentary plasma can be concentrated in a compact volume to reduce energy loss in a plasma device like a microwave rocket.

  15. Microwave vitrification of Rocky Flats hydroxide precipitation sludge, Building 774. Progress report

    SciTech Connect (OSTI)

    Eschen, V.G.; Sprenger, G.S.; Fenner, G.S.; Corbin, I.E.

    1995-04-01

    This report describes the first set of experiments performed on transuranic (TRU) precipitation sludge produced in Building 774, to determine the operating parameters for the microwave vitrification process. Toxicity Characteristic Leach Procedure (TCLP) results of the raw sludge showed concentrations of lead, silver and cadmium which were in excess of land disposal restrictions (LDR). Crushed, borosilicate glass was used as a frit source to produce a highly desirable, vitrified, product that required less energy to produce. TCLP testing, of microwaved samples, showed favorable results for 40 and 50% waste loading. The results of this study are encouraging and support the development of microwave vitrification technology for the treatment of various mixed waste streams at Rocky Flats Environmental Technology Site. However, additional experiments are required to fully define the operating parameters for a production-scale system.

  16. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOE Patents [OSTI]

    White, Terry L. [Knoxville, TN; Paulauskas, Felix L. [Knoxville, TN; Bigelow, Timothy S. [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  17. Influence of ponderomotive force on the microwave and plasma interaction in an elliptical waveguide

    SciTech Connect (OSTI)

    Abdoli-Arani, A., E-mail: abdoliabbas@kashanu.ac.ir [Department of Photonics, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-02-15

    The interaction effect of a high-power microwave with the plasma in an elliptical waveguide taking into account the ponderomotive force is presented. Here, we assume the fundamental mode that propagates in an evacuated elliptical waveguide and encounters a plasma, which is filled in another elliptical waveguide of the same size. Here, we consider a balance between the effects of ponderomotive force and the electron pressure and consider the plasma effect through its dielectric permittivity because the electron density distribution of the plasma is modified. The propagation of the mode is described by two nonlinear coupled differential equations obtained using the Maxwell's equations. These equations are solved numerically using fourth order Runge-Kutta method for the field amplitude of the microwave in the waveguide considering the waveguide to be made up of a perfect conductor and filled with homogeneous plasma density distribution. The effects of the electron temperature, the microwave filed, and the frequency on the perturbed density profile are studied.

  18. Current-driven domain wall motion enhanced by the microwave field

    SciTech Connect (OSTI)

    Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Wang, Dao-wei; Li, Zhi-xiong; Tang, Wei; Zeng, Zhong-ming

    2014-07-14

    The magnetic domain wall (DW) motion driven by a spin-polarized current opens a new concept for memory and logic devices. However, the critical current density required to overcome the intrinsic and/or extrinsic pinning of DW remains too large for practical applications. Here, we show, by using micromagnetic simulations and analytical approaches, that the application of a microwave field offers an effective solution to this problem. When a transverse microwave field is applied, the adiabatic spin-transfer torque (STT) alone can sustain a steady-state DW motion without the sign of Walker breakdown, meaning that the intrinsic pinning disappears. The extrinsic pinning can also be effectively reduced. Moreover, the DW velocity is increased greatly for the microwave-assisted DW motion. This provides a new way to manipulate the DW motion at low current densities.

  19. Relativistic effects on the Weibel instability of circularly polarized microwave produced plasmas

    SciTech Connect (OSTI)

    Shokri, B.; Ghorbanalilu, M.

    2004-12-01

    Analyzing the production of a weakly relativistic plasma produced by microwave fields with circular polarization in the adiabatic approximation, the electron distribution function is obtained, which is nonequilibrium and anisotropic. Furthermore, it is shown that the produced plasma is accelerated in the direction of propagating microwave electric fields. The electron velocity in this direction strongly depends on electron origination phase, electric field phase, and amplitude of the microwave electric field. Making use of the dielectric tensor obtained for this plasma, it is shown that the Weibel instability develops due to the anisotropic property of the distribution function. It is shown that the growth rate in the relativistic case is higher than that obtained for the nonrelativistic case by a factor depending on the electric field strength and plasma frequency.

  20. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  1. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  2. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOE Patents [OSTI]

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  3. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin Mani, Arzhang; Ziegler, Jürgen; Alff, Lambert; Komissinskiy, Philipp; Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf

    2014-09-15

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3?nm. Layer-by-layer growth could be achieved for film thicknesses up to 400?nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29???·cm between 0.1 and 20?GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  4. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  5. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  6. Evaluation the microwave heating of spinel crystals in high-level waste glass

    SciTech Connect (OSTI)

    Christian, J. H.; Washington, A. L.

    2015-08-18

    In this report, the microwave heating of a crystal-free and a partially (24 wt%) trevorite-crystallized waste glass simulant were evaluated. The results show that a 500 mg piece of partially crystallized waste glass can be heated from room-temperature to above 1600 °C (as measured by infrared radiometry) within 2 minutes using a single mode, highly focused, 2.45 GHz microwave, operating at 300 W. X-ray diffraction measurements show that the partially crystallized glass experiences an 87 % reduction in trevorite following irradiation and thermal quenching. When a crystal-free analogue of the same waste glass simulant composition is exposed to the same microwave radiation it could not be heated above 450 °C regardless of the heating time.

  7. Chapter 5: Increasing Efficiency of Building Systems and Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Other Appliances 1.3 3.4% Desktop PC 0.8 2.1% Dehumidifiers 0.7 1.9% Microwaves 0.7 1.8% Spas 0.5 1.3% Clothes Washers 0.5 1.3% Monitors 0.4 1.2% Network Equip. 0.4 1.0% Laptops ...

  8. Microwave-induced thermoacoustic effect in dielectrics and its coupling to external medium-A thermodynamical formulation

    SciTech Connect (OSTI)

    Guo, T.C.; Guo, W.W.; Larsen, L.E.

    1984-08-01

    A thorough formulation of electromagnetic wave interaction with biological systems is presented. The thermodynamic process of the microwave-induced thermoacoustic generation is clearly defined. Couplings of the acoustic and thermal energies to the surrounding medium are included through consideration of discontinuities of thermodynamical variables and microwave exposure. Contrary to prior analyses, it is shown that acoustic waves may be generated by pulsed microwaves, even in the absence of inhomogeneity of microwave absorption, owing to discontinuities of thermodynamical variables and microwave exposure conditions across the interface. General equations for the thermoacoustic waves are derived, and the validity of the first-order linear approximation is estimated in terms of its percentage error. For a system with water as the absorbing dielectric interfacing with air of 1 atmosphere pressure, the first-order approximation becomes invalid for a peak specific absorption rate greater than 13 kW/gm.

  9. Electron heating due to microwave photoexcitation in the high mobility GaAs/AlGaAs two dimensional electron system

    SciTech Connect (OSTI)

    Ramanayaka, A. N.; Mani, R. G.; Wegscheider, W.

    2013-12-04

    We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ?{sub c}, and the microwave angular frequency, ?, satisfy 2? ? ?{sub c} ? 3.5? The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modest microwave photo-excitation, in good agreement with theoretical predictions.

  10. Field emission from bias-grown diamond thin films in a microwave plasma

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Krauss, Alan R. (Naperville, IL); Ding, Ming Q. (Beijing, CN); Auciello, Orlando (Bolinbrook, IL)

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  11. Microwave properties of RF- sputtered ZnFe{sub 2}O{sub 4} thin films

    SciTech Connect (OSTI)

    Garg, T. Kulkarni, A. R.; Venkataramani, N.; Sahu, B. N.; Prasad, Shiva

    2014-04-24

    In this work, RF- magnetron sputtering technique has been employed to deposit nanocrystalline ZnFe{sub 2}O{sub 4} thin films at room temperature. The as grown films were ex-situ annealed in air for 2 h at temperatures from 150°C to 650°C. X-ray diffraction, vibrating sample magnetometer and ferromagnetic resonance were used to analyze the phase formation, magnetic properties and microwave properties respectively. From the hysteresis loops and ferromagnetic resonance spectra taken at room temperature, a systematic study on the effect of O{sub 2} plasma on microwave properties with respect to processing temperature has been carried out.

  12. Addressing a single spin in diamond with a macroscopic dielectric microwave cavity

    SciTech Connect (OSTI)

    Le Floch, J.-M.; Tobar, M. E.; Bradac, C.; Nand, N.; Volz, T.; Castelletto, S.

    2014-09-29

    We present a technique for addressing single nitrogen-vacancy (NV) center spins in diamond over macroscopic distances using a tunable dielectric microwave cavity. We demonstrate optically detected magnetic resonance (ODMR) for a single negatively charged NV center (NV{sup –}) in a nanodiamond (ND) located directly under the macroscopic microwave cavity. By moving the cavity relative to the ND, we record the ODMR signal as a function of position, mapping out the distribution of the cavity magnetic field along one axis. In addition, we argue that our system could be used to determine the orientation of the NV{sup –} major axis in a straightforward manner.

  13. Pulsed microwave discharge in a capillary filled with atmospheric-pressure gas

    SciTech Connect (OSTI)

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Ivanov, E. V.; Kossyi, I. A.

    2013-08-15

    A pulsed microwave coaxial capillary plasma source generating a thin plasma filament along the capillary axis in an atmospheric-pressure argon flow is described. The dynamics of filament formation is studied, and the parameters of the gas and plasma in the contraction region are determined. A physical model of discharge formation and propagation is proposed. The model is based on the assumption that, under the conditions in which the electric fields is substantially below the threshold value, the discharge operates in a specific form known as a self-sustained-non-self-sustained (SNS) microwave discharge.

  14. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1987-01-01

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  15. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1987-09-22

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.

  16. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  17. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-Cell SRF Cavity (Conference) | SciTech Connect Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity Citation Details In-Document Search Title: Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five

  18. Scanning Near-Field Microwave Microscopy of VO2 and CVD Graphene (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Scanning Near-Field Microwave Microscopy of VO2 and CVD Graphene Citation Details In-Document Search Title: Scanning Near-Field Microwave Microscopy of VO2 and CVD Graphene Authors: Tselev, Alexander [1] ; Lavrik, Nickolay V [1] ; Kolmakov, Andrei [2] ; Kalinin, Sergei V [1] + Show Author Affiliations ORNL Southern Illinois University Publication Date: 2013-01-01 OSTI Identifier: 1079849 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource

  19. Microwave and plasma-assisted modification of composite fiber surface topography

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); White, Terry L. (Knoxville, TN); Bigelow, Timothy S. (Knoxville, TN)

    2003-02-04

    The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.

  20. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    DOE Patents [OSTI]

    Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

    1997-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  1. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    SciTech Connect (OSTI)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-03-31

    A microwave ion source has been designed and constructed for use with a sealed-tube, high-yield neutron generator. When operated with a tritium-deuterium gas mixture the generator will be capable of producing 5*1011 n/s in non-proliferation applications. Microwave ion sources are well suited for such a device because they can produce high extracted beam currents with a high atomic fraction at low gas pressures of 0.2-0.3 Pa required for sealed tube operation. The magnetic field strength for achieving electron cyclotron resonance (ECR) condition, 87.5 mT at 2.45 GHz microwave frequency, was generated and shaped with permanent magnets surrounding the plasma chamber and a ferromagnetic plasma electrode. This approach resulted in a compact ion source that matches the neutron generator requirements. The needed proton-equivalent extracted beam current density of 40 mA/cm^2 was obtained at moderate microwave power levels of 400 W. Results on magnetic field design, pressure dependency and atomic fraction measured for different wall materials are presented.

  2. Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity

    DOE Patents [OSTI]

    Simpson, James E.

    2000-01-01

    A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.

  3. Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Michael Y.; Kalaydzhyan, Aram; Kärtner, Franz X.

    2014-10-23

    We demonstrate that balanced optical-microwave phase detectors (BOMPD) are capable of optical-RF synchronization with sub-femtosecond residual timing jitter for large-scale timing distribution systems. RF-to-optical synchronization is achieved with a long-term stability of more »suppression ratio with potential improvement via DC offset adjustment.« less

  4. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  5. Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Blake, R.D.; Meek, T.T.

    1984-10-10

    A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  6. Method for producing ceramic-glass-ceramic seals by microwave heating

    DOE Patents [OSTI]

    Blake, Rodger D. (Santa Fe, NM); Meek, Thomas T. (Los Alamos, NM)

    1986-01-01

    Method for producing a ceramic-glass-ceramic seal by the use of microwave energy, and a sealing mixture which comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  7. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    SciTech Connect (OSTI)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-02-13

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  8. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Moorhead, A.J.

    1998-07-28

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process. 4 figs.

  9. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Johnson, Arvid C. (Lake in the Hills, IL); Moorhead, Arthur J. (Knoxville, TN)

    1998-01-01

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process.

  10. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect (OSTI)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  11. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    SciTech Connect (OSTI)

    Robert C. Brown; Robert J. Weber; Andrew A. Suby

    2003-01-01

    Three test instruments are being evaluated to determine the feasibility of using photoacoustic technology for measuring unburned carbon in fly ash. The first test instrument is a single microwave frequency system previously constructed to measure photo-acoustic signals in an off-line configuration. This system was assembled and used to test parameters thought important to photo-acoustic signal output. A standard modulation frequency was chosen based upon signal to noise data gained from experimentation. Sample heterogeneity was tested and found not to be influential. Further testing showed that sample compression and photo-acoustic volume do affect photo-acoustic signal with photoacoustic volume being the most influential. Testing in the fifth quarter focused on microwave power stability. Simultaneously, a second instrument is being constructed based in part on lessons learned with the first instrument, but also expands the capabilities of the first instrument by allowing a spectrum of microwave frequencies to be tested up to 10 GHz. The power amplifiers for this second instrument were completed and tested. Improvements were made to the current leveling loop, which will stabilize the microwave power. This loop is currently in operation with the single frequency cell. Discriminatory measurements are continuing in an attempt to differentiate between magnetic contaminants such as iron and non-magnetic contaminants such as carbon. A short coaxial test fixture was fabricated and tested showing the promise of another microwave based test method for determining carbon content in fly ash. Preliminary design iterations for the third on-line instrument (based on the experiences of the first two instruments) have begun.

  12. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect (OSTI)

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  13. Channeling of microwave radiation in a double line containing a plasma filament produced by intense femtosecond laser pulses in air

    SciTech Connect (OSTI)

    Bogatov, N A; Kuznetsov, A I; Smirnov, A I; Stepanov, A N

    2009-10-31

    The channeling of microwave radiation is demonstrated experimentally in a double line in which a plasma filament produced in air by intense femtosecond laser pulses serves as one of the conductors. It is shown that during the propagation of microwave radiation in this line, ultrashort pulses are formed, their duration monotonically decreasing with increasing the propagation length (down to the value comparable with the microwave field period). These effects can be used for diagnostics of plasma in a filament. (laser applications and other topics in quantum electronics)

  14. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

  15. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  16. Improvement of microwave feeding on a large bore ECRIS with permanent magnets by using coaxial semi-dipole antenna

    SciTech Connect (OSTI)

    Kurisu, Yosuke; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Yano, Keisuke; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-11-06

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). The first stage of this ECRIS has a large-bore with cylindrically comb-shaped permanent magnets. 2.45GHz and 11-13GHz microwaves can be supplied individually and simultaneously to the plasma chamber. For 2.45GHz, a coaxial semi-dipole antenna is used to feed the microwaves. In previous experiments, there were two problems encountered when running the 2.45GHz microwaves. High incident power was necessary to keep ECR discharge at low operating pressure because of high reflected microwave power. The surface of a support insulator between the inner and the outer electrodes of coaxial semi-dipole antenna was easily metalized by sputtering of the metal wall inside the chamber. The purpose of this study was to solve these problems. Performing several simulation experiments supports the hypothesis that the position of the support insulator is significant for microwave power efficiency. The end result was the ability to sustain ECR discharges at extremely low incident microwave power, several tens of watts, by optimized matching of the position and shape of the insulator.

  17. Optimization of microwave heating in an existing cubicle cavity by incorporating additional wave guide and control components

    SciTech Connect (OSTI)

    Erle, R.R.; Eschen, V.G.; Sprenger, G.S.

    1995-04-01

    The use of microwave energy to thermally treat Low Level (LLW), Transuranic (TRU), and mixed waste has been under development at the Rocky Flats Environmental Technology Site (Site) since 1986. During that time, the technology has progressed from bench-scale tests, through pilot-scale tests, and finally to a full-scale demonstration unit. Experimental operations have been conducted on a variety of non-radioactive surrogates and actual radioactive waste forms. Through these studies and development efforts, the Microwave Vitrification Engineering Team (MVET) at Rocky Flats has successfully proven the application of microwave energy for waste treatment operations. In the microwave solidification process, microwave energy is used to heat a mixture of waste and glass frit to produce a vitrified product that meets all the current acceptance criteria at the final disposal sites. All of the development to date has utilized a multi-mode microwave system to provide the energy to treat the materials. Currently, evaluations are underway on modifications to the full-scale demonstration system that provide a single-mode operation as a possible method to optimize the system. This poster presentation describes the modifications made to allow the single-mode operation.

  18. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect (OSTI)

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  19. Iron hydroxyl phosphate microspheres: Microwave-solvothermal ionic liquid synthesis, morphology control, and photoluminescent properties

    SciTech Connect (OSTI)

    Cao Shaowen; Zhu Yingjie; Cui Jingbiao

    2010-07-15

    A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures such as solid microspheres, microspheres with the core in the hollow shell, and double-shelled hollow microspheres were synthesized by a simple one-step microwave-solvothermal ionic liquid method. The effects of the experimental parameters on the morphology and crystal phase of the resultant materials were investigated. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres and the underlying mechanisms were discussed. - Graphical abstract: A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures were synthesized by a simple one-step microwave-solvothermal ionic liquid method. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres.

  20. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    SciTech Connect (OSTI)

    Russell, Steven J.; Carlsten, Bruce E.

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  1. Design of pulsed guiding magnetic field for high power microwave generators

    SciTech Connect (OSTI)

    Ju, J.-C. Zhang, H.; Zhang, J.; Shu, T.; Zhong, H.-H.

    2014-09-15

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  2. Energy density dependence of hydrogen combustion efficiency in atmospheric pressure microwave plasma

    SciTech Connect (OSTI)

    Yoshida, T.; Ezumi, N.; Sawada, K.; Tanaka, Y.; Tanaka, M.; Nishimura, K.

    2015-03-15

    The recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using an atmospheric pressure plasma is expected to be part of the recovery method. In this study, in order to clarify the mechanism of hydrogen oxidation by plasma chemistry, we have investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It has been found that the combustion efficiency depends on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes. Also neutral gas temperatures inside and outside the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature may affect the combustion reaction. (authors)

  3. Dipole-dipole broadening of Rb ns-np microwave transitions

    SciTech Connect (OSTI)

    Park, Hyunwook; Tanner, P. J.; Claessens, B. J.; Shuman, E. S.; Gallagher, T. F.

    2011-08-15

    The dipole-dipole broadening of ns-np microwave transitions of cold Rb Rydberg atoms in a magneto-optical trap has been recorded for 28{<=}n{<=}51. Since the electric dipole transition matrix elements scale as n{sup 2}, a broadening rate scaling as n{sup 4} is expected and a broadening rate of 8.2x10{sup -15}n{sup 4} MHz cm{sup 3} is observed. The observed broadening is smaller than expected from a classical picture due to the spin-orbit interaction in the np atoms. The broadened resonances are asymmetric and cusp shaped, and their line shapes can be reproduced by a diatomic model which takes into account the dipole-dipole interaction, including the spin-orbit interaction, the strengths of the allowed microwave transitions, and the distribution of the atomic spacings in the trap.

  4. Method for digesting spent ion exchange resins and recovering actinides therefrom using microwave radiation

    DOE Patents [OSTI]

    Maxwell, III, Sherrod L. (Aiken, SC); Nichols, Sheldon T. (Augusta, GA)

    1999-01-01

    The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.

  5. 2014-05-14 Issuance: Energy Conservation Standards for Residential Dehumidifiers; Availability of the Preliminary TSD

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting and availability of the preliminary technical support document, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 14, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  6. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  7. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect (OSTI)

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ? Microwave pretreatment of dairy WAS was studied. ? MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ? Biogas production and SS reduction was 35% and 14% higher than control. ? In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ? Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  8. Detecting Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data H. Shao and G. Liu Florida State University Tallahassee, Florida Introduction Determining the radiative effects of aerosols is one of the most important areas in climate research. There are observational evidences showing that aerosols can affect the radiative balance of the earth indirectly - as the number of aerosols increases, water in the cloud spreads over many more particles. Large concentrations of small

  9. Determining Cloud Ice Water Path from High-Frequency Microwave Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu Department of Meteorology Florida State University Tallahassee, Florida Introduction A better understanding of cloud water content and its large-scale distribution is important to climate research for improving our ability to parameterize and validate cloud/precipitation processes in global climate models. The goal of this study is to determine the distribution and large-scale advection of cloud ice/liquid water

  10. Electromagnetic model for near-field microwave microscope with atomic resolution: Determination of tunnel junction impedance

    SciTech Connect (OSTI)

    Reznik, Alexander N.

    2014-08-25

    An electrodynamic model is proposed for the tunneling microwave microscope with subnanometer space resolution as developed by Lee et al. [Appl. Phys. Lett. 97, 183111 (2010)]. Tip-sample impedance Z{sub a} was introduced and studied in the tunneling and non-tunneling regimes. At tunneling breakdown, the microwave current between probe and sample flows along two parallel channels characterized by impedances Z{sub p} and Z{sub t} that add up to form overall impedance Z{sub a}. Quantity Z{sub p} is the capacitive impedance determined by the near field of the probe and Z{sub t} is the impedance of the tunnel junction. By taking into account the distance dependences of effective tip radius r{sub 0}(z) and tunnel resistance R{sub t}(z)?=?Re[Z{sub t}(z)], we were able to explain the experimentally observed dependences of resonance frequency f{sub r}(z) and quality factor Q{sub L}(z) of the microscope. The obtained microwave resistance R{sub t}(z) and direct current tunnel resistance R{sub t}{sup dc}(z) exhibit qualitatively similar behavior, although being largely different in both magnitude and the characteristic scale of height dependence. Interpretation of the microwave images of the atomic structure of test samples proved possible by taking into account the inductive component of tunnel impedance ImZ{sub t}?=??L{sub t}. Relation ?L{sub t}/R{sub t}???0.235 was obtained.

  11. Synthesis and characterization of zinc borophosphates with ANA-zeotype framework by the microwave method

    SciTech Connect (OSTI)

    Song, Yu, E-mail: songyu@dlpu.edu.cn [Dalian Polytechnic University, Dalian 116034 (China); Ding, Ling; An, Qingda; Zhai, Shangru [Dalian Polytechnic University, Dalian 116034 (China); Song, Xiaowei [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2013-06-15

    Zinc borophosphate (NH{sub 4}){sub 16}[Zn{sub 16}B{sub 8}P{sub 24}O{sub 96}] (denoted as ZnBP-ANA) with ANA-zeotype structure has been synthesized by employing microwave-assisted solvothermal synthesis in the reaction system ZnCl{sub 2}?6H{sub 2}O-(NH{sub 4}){sub 2}HPO{sub 4}–H{sub 3}BO{sub 3} using ethylene glycol as a co-solvent. The influences of various experimental parameters, such as reaction temperature, solvent ratio, zinc precursors and reactive power, have been systematically investigated. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), and so on. Small and homogeneous ZnBP-ANA single crystal with regular cube morphology are crystallized by using microwave solvothermal synthesis method within a shorter time, and its grain size decreases with power. - Graphical abstract: Tailor-made ANA zeolites with varied size can be prepared by simply changing the reaction power. - Highlights: • Zinc borophosphate zeolites with ANA-zeotype structures were prepared by microwave technique. • The size of crystals could be controlled by tuning power. • Synthesis period can be significantly reduced by raising reaction temperature.

  12. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    SciTech Connect (OSTI)

    Robert C. Brown; Robert J. Weber; Andrew A. Suby

    2002-05-13

    Three test instruments are being evaluated to determine the feasibility of using photo-acoustic technology for measuring unburned carbon in fly ash. The first test instrument is a single microwave frequency system previously constructed to measure photo-acoustic signals in an off-line configuration. This system was assembled and used to begin testing parameters thought to be influential in the resulting photo-acoustic signal output. A standard modulation frequency was chosen based upon signal to noise data gained from experimentation. Sample heterogeneity was tested and found not to be influential. Many other tests were performed during the second quarter. Preliminary results show that compression and photo-acoustic volume have an impact on photo-acoustic signal. Conclusions regarding the data for sample bulk density, temperature, humidity, moisture content, and linearity are pending further review. Conclusions for ambient temperature and humidity are pending further review as well. Simultaneously, a second instrument is to be constructed based in part on lessons learned with the first instrument, and to expand the capabilities of the first instrument. Improvements include a control loop to allow more constant microwave power output and an ability to operate over a range of microwave frequencies. To date, the design of the second instrument has been completed and most of the components received. The third instrument will be designed based on the experiences of the first two instruments and will operate in an on-line carbon-in-ash monitoring system for coal-fired power plants.

  13. Controlling output pulse and prepulse in a resonant microwave pulse compressor

    SciTech Connect (OSTI)

    Shlapakovski, A.; Artemenko, S.; Chumerin, P.; Yushkov, Yu.

    2013-02-07

    A resonant microwave pulse compressor with a waveguide H-plane-tee-based energy extraction unit was studied in terms of its capability to produce output pulses that comprise a low-power long-duration (prepulse) and a high-power short-duration part. The application of such combined pulses with widely variable prepulse and high-power pulse power and energy ratios is of interest in the research area of electronic hardware vulnerability. The characteristics of output radiation pulses are controlled by the variation of the H-plane tee transition attenuation at the stage of microwave energy storage in the compressor cavity. Results of theoretical estimations of the parameters tuning range and experimental investigations of the prototype S-band compressor (1.5 MW, 12 ns output pulse; {approx}13.2 dB gain) are presented. The achievable maximum in the prepulse power is found to be about half the power of the primary microwave source. It has been shown that the energy of the prepulse becomes comparable with that of the short-duration (nanosecond) pulse, while the power of the latter decreases insignificantly. The possible range of variation of the prepulse power and energy can be as wide as 40 dB. In the experiments, the prepulse level control within the range of {approx}10 dB was demonstrated.

  14. Desilication of ZSM-5 zeolites for mesoporosity development using microwave irradiation

    SciTech Connect (OSTI)

    Hasan, Zubair; Jun, Jong Won; Kim, Chul-Ung; Jeong, Kwang-Eun; Jeong, Soon-Yong; Jhung, Sung Hwa

    2015-01-15

    Highlights: • Microwaves have beneficial effects on desilication of zeolites. • Produced mesopores with microwaves have narrow pore-size distribution. • Advantages and disadvantages of various desilicating agents were also reported. - Abstract: Mesoporous ZSM-5 zeolite was obtained by desilication in alkaline solutions with microwave (MW) and conventional electric (CE) heating under hydrothermal conditions. Both methods were effective in the production of mesoporous zeolites; however, MW was more efficient than CE as it led to well-defined mesopores with relatively small sizes and a narrow size distribution within a short treatment time. Moreover, the mesoporous ZSM-5 obtained through this method was effective in producing less bulky products from an acid-catalyzed reaction, specifically the butylation of phenol. Finally, various bases were found to have advantages and disadvantages in desilication. NaOH was the most reactive; however, macroporosity could develop easily under a severe condition. Ammonia water was weakly reactive; however, it could be used to precisely control the pore architecture, and no ion exchange is needed for acid catalysis. Organic amines such as ethylenediamine can also be used in desilication.

  15. ARM: G-band (183 GHz) Vapor Radiometer profiler: 15 microwave brightness temperatures from 170.0 to 183.3 GHz

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2008-04-01

    G-band (183 GHz) Vapor Radiometer profiler: 15 microwave brightness temperatures from 170.0 to 183.3 GHz

  16. Rapid Microwave Preparation of Highly Efficient Ce[superscript 3+]-Substituted Garnet Phosphors for Solid State White Lighting

    SciTech Connect (OSTI)

    Birkel, Alexander; Denault, Kristin A.; George, Nathan C.; Doll, Courtney E.; Héry, Bathylle; Mikhailovsky, Alexander A.; Birkel, Christina S.; Hong, Byung-Chul; Seshadri, Ram (UCSB); (Mitsubishi)

    2012-04-30

    Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwave technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.

  17. Processing aersols and filaments in a TM{sub 010} microwave cavity at 2.45 GHz

    SciTech Connect (OSTI)

    Vogt, G.J.; Unruh, W.P.

    1992-05-01

    As part of the development of generic microwave processes for spray-drying of homogeneous complex metal oxide powders and for inorganic fiber processing, we have investigated the use of 2.45 GHz microwaves in a high-Q single-mode TM{sub 010} cavity coupled directly to aerosols and fibers. Aqueous and ethanol aerosols of ferric nitrate solutions have been successfully dried at 1.8 kW of cavity power for a loaded Q greater than 6000 in flowing nitrogen gas. Similarly, we have observed extremely rapid heating rates in the TM{sub 010} cavity for small-diameter confined cylinders of water and lossy inorganic fibers. These observations suggest using 2.45 GHz microwave power for drying, calcining, and sintering extruded ceramic filaments. Droplet modeling indicates that the large dielectric shielding for spherical droplets can significantly limit the coupling of 2.45 GHz microwave with spherical aerosols, but not with fibers. Experimental observations on the microwave interactions with ferric nitrate aerosols and with ceramic filaments in the TM{sub 010} cavity are described.

  18. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    SciTech Connect (OSTI)

    Robert C. Brown; Robert J. Weber; Andrew A. Suby

    2002-07-01

    Three test instruments are being evaluated to determine the feasibility of using photo-acoustic technology for measuring unburned carbon in fly ash. The first test instrument is a single microwave frequency system previously constructed to measure photo-acoustic signals in an off-line configuration. This system was assembled and used to test parameters thought important to photo-acoustic signal output. A standard modulation frequency was chosen based upon signal to noise data gained from experimentation. Sample heterogeneity was tested and found not to be influential. Further testing showed that sample compression and photo-acoustic volume do affect photo-acoustic signal. Many tests were performed in the third quarter, which included the effects of ambient temperature and humidity, as well as sample moisture content, and signal linearity. Conclusions regarding the data for sample bulk density and temperature are pending further review and may require further testing. Simultaneously, a second instrument is being constructed based in part on lessons learned with the first instrument, but which also expands the capabilities of the first instrument. Improvements include a control loop to allow more constant microwave power output and an ability to operate over a range of microwave frequencies. To date, all of the components for the second instrument have been received and most of them tested with the exception of the broadband impedance transformers, as they will be incorporated into the second instrument test chamber. The third instrument will be designed based on the experiences of the first two instruments and will operate in an on-line carbon-in-ash monitoring system for coal-fired power plants.

  19. In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model

    SciTech Connect (OSTI)

    Planche, Olivier; Teriitehau, Christophe; Boudabous, Sana; Robinson, Joey Marie; Rao, Pramod; Deschamps, Frederic; Farouil, Geoffroy; Baere, Thierry de

    2013-02-15

    To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas. Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves. Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularity of the single-antenna ablation zones measured 0.64 {+-} 0.12, with a diameter of 35.7 {+-} 8.7 mm along the axis of the antenna and 32.7 {+-} 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 {+-} 7.7 along the axis of the antenna and 54.8 {+-} 8.5 mm perpendicular to the feeding point; circularity was 0.70 {+-} 0.10. A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of {<=}4 cm with no heat sink effect from vessels of {<=}6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.

  20. Proximate and Ultimate Compositional Changes in Corn Stover during Torrefaction using Thermogravimetric Analyzer and Microwaves

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru

    2012-07-01

    Abstract The world is currently aiming to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is considered carbon neutral because the carbon dioxide released during its use is already part of the carbon cycle. Increasing the use of biomass for energy can help to reduce the negative CO2 impact on the environment and help meet the targets established in the Kyoto Protocol. Energy from biomass can be produced from different processes, including thermochemical (direct combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation), or chemical (esterification) technologies. There are lot challenges in using biomass for energy applications. To name few low bulk density, high moisture content, irregular size and shape, hydrophilic nature and low calorific value. In commercial scale operation large quantities of biomass are needed and this will create problems associated with storage and transportation. Furthermore, grinding raw biomass with high moisture content is very challenging as there are no specific equipments and can increase the costs and in some cases it becomes highly impossible. All of these drawbacks led to development of some pretreatment techniques to make biomass more suitable for fuel applications. One of the promising techniques is torrefaction. Torrefaction is heating the biomass in an inert environment or reduced environment. During torrefaction biomass losses moisture, becomes more brittle and with increased energy density values. There are different techniques used for torrefaction of biomass. Fixed bed, bubbling sand bed and moving bed are the most common ones used. The use of microwaves for torrefaction purposes has not been explored. In the present study we looked into the torrefaction of biomass using the regular and microwaves and their effect on proximate and ultimate composition. Studies indicated that microwave torrefaction is a good way to torrefy the biomass in short periods of time. A maximum calorific value of 21 MJ/kg is achievable at 6 min residence time compared to 15 min using the dry torrefaction technique. Increasing the residence time increased the carbon content where a maximum carbon content of 52.20 % was achievable at lower residence time. The loss of volatiles is comparatively lower compared to dry torrefaction technique. Moisture content of microwave torrefied samples was in between 2-2.5 % (w.b).

  1. Microwave-assisted synthesis of carbon nanotubes from tannin, lignin, and derivatives

    SciTech Connect (OSTI)

    Viswanathan, Tito

    2014-06-17

    A method of synthesizing carbon nanotubes. In one embodiment, the method includes the steps of: (a) dissolving a first amount of a first transition-metal salt and a second amount of a second transition-metal salt in water to form a solution; (b) adding a third amount of tannin to the solution to form a mixture; (c) heating the mixture to a first temperature for a first duration of time to form a sample; and (d) subjecting the sample to a microwave radiation for a second duration of time effective to produce a plurality of carbon nanotubes.

  2. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    SciTech Connect (OSTI)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 ?m in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  3. Resonance overlap structure in the microwave ionization of the hydrogen atom

    SciTech Connect (OSTI)

    Farrelly, D.; Uzer, T.

    1988-12-01

    The microwave ionization of the hydrogen atom involves most of the open issues concerning classical and quantum chaos. Much recent research has considered quasi-one-dimensional extended states for which ionization thresholds have been estimated using a classical picture in which ionization proceeds through the overlap of an infinity of nonlinear resonances. Using a canonical transformation to Deprit's ''Lissajous elements'' which makes the two-dimensional nature of the problem explicit, an accurate and improved ionization threshold, compared to previous resonance overlap criteria, is obtained through the overlap of only two nonlinear resonances in the one-dimensional limit.

  4. Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation

    SciTech Connect (OSTI)

    Rashad, M.; Gaber, A.; Abdelrahim, M. A.; Abdel-Baset, A. M.; Moharram, A. H.

    2013-12-16

    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

  5. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers By John Greenwald October 28, 2014 Tweet Widget Google Plus One Share on Facebook Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. (Photo by Elle Starkman/PPPL Office of Communications) Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. Gallery: Completed stainless steel and copper mirror system. (Photo by Elle

  6. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers By John Greenwald October 28, 2014 Tweet Widget Google Plus One Share on Facebook Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. (Photo by Elle Starkman/PPPL Office of Communications) Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. Gallery: Completed stainless steel and copper mirror system. (Photo by Elle

  7. The extraordinary wave excitation in microwave gas breakdown in the adiabatic approximation

    SciTech Connect (OSTI)

    Ghorbanalilu, M.; Shokri, B.

    2008-09-15

    Making use of the electron distribution function formed in the interaction of high-frequency microwave (MW) pulsed fields with a rarefied neutral gas [M. Ghorbanalilu, Phys. Plasmas. 13, 102110 (2006)], the dielectric permittivity tensor of the produced plasma is derived under the condition that the ions are cold and nonmagnetized. According to the adiabatic approximation and using the dielectric permittivity tensor elements the dispersion relations for ordinary and extraordinary excited waves are found. The numerical solution of the dispersion relation shows that the extraordinary modes are unstable in such a nonequilibrium system. These modes are generated in a wide range of wavelengths by tuning the MW field amplitude and magnetic field strength.

  8. Parametric instability of plasmas produced by linearly polarized microwave pulsed fields

    SciTech Connect (OSTI)

    Shokri, B.; Ghorbanalilu, M.

    2005-04-15

    After analyzing the interaction of an intense linearly polarized microwave, field weaker than atomic field, with a dilute gas, the production of a plasma is studied. It is shown that the electron distribution function obtained is nonequilibrium and anisotropic. By considering the interaction of the high-frequency electric field with the produced plasma the dispersion relation of oscillations in the produced plasma is obtained. The parametric instability is studied for the produced plasma when instability frequency is higher than ion plasma frequency. Calculations show that the harmonic generation takes place in the produced plasma.

  9. High-output microwave detector using voltage-induced ferromagnetic resonance

    SciTech Connect (OSTI)

    Shiota, Yoichi Suzuki, Yoshishige; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji

    2014-11-10

    We investigated the voltage-induced ferromagnetic resonance (FMR) with various DC bias voltage and input RF power in magnetic tunnel junctions. We found that the DC bias monotonically increases the homodyne detection voltage due to the nonlinear FMR originating in an asymmetric magnetization-potential in the free layer. In addition, the linear increase of an output voltage to the input RF power in the voltage-induced FMR is more robust than that in spin-torque FMR. These characteristics enable us to obtain an output voltage more than ten times than that of microwave detectors using spin-transfer torque.

  10. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Everleigh, C.A.; Moorhead, A.J.

    1998-04-21

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads. 9 figs.

  11. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Johnson, Arvid C. (Lake in the Hills, IL); Everleigh, Carl A. (Raleigh, NC); Moorhead, Arthur J. (Knoxville, TN)

    1998-01-01

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads.

  12. NO MICROWAVE FLARE OF SAGITTARIUS A* AROUND THE G2 PERIASTRON PASSING

    SciTech Connect (OSTI)

    Tsuboi, Masato; Asaki, Yoshiharu; Kameya, Osamu; Yonekura, Yoshinori; Miyamoto, Yusuke; Kaneko, Hiroyuki; Seta, Masumichi; Nakai, Naomasa; Takaba, Hiroshi; Wakamatsu, Ken-ichi; Miyoshi, Makoto; Fukuzaki, Yoshihiro; Uehara, Kenta; Sekido, Mamoru

    2015-01-01

    In order to explore any change caused by the G2 cloud approaching, we have monitored the flux density of Sgr A* at 22 GHz from 2013 February to 2014 August with a sub-array of the Japanese Very Long Baseline Interferometry Network. The observation period included the expected periastron dates. The number of observation epochs was 283 days. We have observed no significant microwave enhancement of Sgr A* in the whole observation period. The average flux density in the period is S {sub ?} = 1.23 ± 0.33 Jy. The average is consistent with the usually observed flux density range of Sgr A* at 22 GHz.

  13. Latitudinal survey of middle atmospheric water vapor revealed by shipboard microwave spectroscopy. Master's thesis

    SciTech Connect (OSTI)

    Schrader, M.L.

    1994-05-01

    Water vapor is one of the most important greenhouse gases and is an important tracer of atmospheric motions in the middle atmosphere. It also plays an important role in the chemistry of the middle atmosphere and through its photodissociation by solar radiation, it is the major source of hydrogen escaping to space. Ground-based microwave measurements conducted in the 1980s have provided a fair understanding of the seasonal variation of mesospheric water vapor in the northern hemisphere mid-latitudes, but the global distribution of water vapor in the middle atmosphere is only beginning to be revealed by space-based measurements.

  14. Steady-state domain wall motion driven by adiabatic spin-transfer torque with assistance of microwave field

    SciTech Connect (OSTI)

    Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei; Wang, D.; Zeng, Zhong-ming

    2013-12-23

    We have studied the current-induced displacement of a 180° Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.

  15. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  16. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    SciTech Connect (OSTI)

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  17. CX-006399: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbiological Sample Preparation and Analysis For Use With Hybrid Microwave OvenCX(s) Applied: B3.6Date: 05/19/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  18. Sandia National Laboratories: Mode Stirred Chamber

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mode Stirred Chamber The Mode Stirred chamber is essentially a large microwave oven. It consists of a metal room that serves as a high-Q chamber and a metal paddle wheel to "stir"...

  19. 2003 CBECS Pre-Test Questionnaire

    U.S. Energy Information Administration (EIA) Indexed Site

    ... F1-HELP (Was any energy used...) For cooking? EXP: If there is only minimal cooking, such as microwaves, hot plates, or toaster ovens, answer "No." 1 Yes 2 No ...

  20. Controlled synthesis of snowflake-like self-assemblies palladium nanostructures under microwave irradiation

    SciTech Connect (OSTI)

    Xie, Ting; Ma, Yue; Yang, Hanmin Li, Jinlin

    2013-08-01

    Graphical abstract: - Highlights: • We demonstrated the synthesis of snowflake-like palladium nanostructures for the first time. • We discussed the influencing factors on the synthesis of snowflake-like Pd nanostructures. • The molar ratio of H{sub 2}Pd{sub 4} to PVP at 5 is the optimal selection. • The growth process was discussed. - Abstract: Self-assembly snowflake-like palladium nanostructures were synthesized under microwave irradiation using H{sub 2}PdCl{sub 4} as precursor, benzyl alcohol as both solvent and reducing agent, and PVP as stabilizer. The Pd snowflake-like nanostructures were formed and then characterized by transmission electron microscopy (TEM) and X-ray powder diffraction. The TEM images showed that the Pd nano-snowflakes were self-assemblies organized by hundreds of small spherical nanoparticles. Pd snowflake-like nanostructures with well-defined shape and uniform size can be obtained by tuning the concentration of palladium precursor, the molar ratio of H{sub 2}PdCl{sub 4}/PVP, as well as the heating time by microwave irradiation. The possible growing process of the snowflake-like Pd structures was also proposed on the basis of investigating the properties of as-synthesized Pd nanostructures under different conditions.

  1. TiO{sub 2} synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation

    SciTech Connect (OSTI)

    Moura, K.F.; Maul, J.; Albuquerque, A.R.; Casali, G.P.

    2014-02-15

    In this study, a microwave assisted solvothermal method was used to synthesize TiO{sub 2} with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed after 60 min. - Graphical abstract: FE-SEM images of anatase obtained with different periods of synthesis associated with the order–disorder degree. Display Omitted - Highlights: • Anatase microspheres were obtained by the microwave assisted hydrothermal method. • Only ethanol and titanium isopropoxide were used as precursors during the synthesis. • Raman spectra and XRD patterns were compared with quantum chemical calculations. • Time of synthesis increased the short-range disorder in one direction and decreased in another.

  2. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    SciTech Connect (OSTI)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  3. Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser

    SciTech Connect (OSTI)

    Yang, Jing; Yun, Peter [Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Tian, Yuan; Tan, Bozhong [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Gu, Sihong, E-mail: shgu@wipm.ac.cn [Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-03-07

    A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as a microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.

  4. Substrate temperature effect on the growth of carbon nanowalls synthesized via microwave PECVD

    SciTech Connect (OSTI)

    Kim, Sung Yun; Choi, Won Seok; Lee, Jae-Hyeoung; Hong, Byungyou

    2014-10-15

    Highlights: • Well grown carbon nanowalls (CNWs) were obtained by using a microwave plasma enhanced chemical vapor deposition (PECVD) with methane and hydrogen gases on Si substrates. • CNWs were grown at the growth temperature of 850 °C showed the highest contact angle. • Raman analysis showed higher I{sub D}/I{sub G} value that the CNWs were grown at more than 850 °C growth temperature. - Abstract: A carbon nanowall (CNW) is a carbon-based nanomaterial that is constructed with vertical-structure graphenes. Thus, it effectively increases the reaction surface of electrodes. In this study, the substrate temperature effect on the growth of CNWs was investigated via microwave plasma enhanced chemical vapor deposition (PECVD) with methane (CH{sub 4}) and hydrogen (H{sub 2}) gases on silicon substrates. To find the growth mechanism of a CNW, its growth temperature was changed from 700 °C to 950 °C. The vertical and surface conditions of the grown CNWs according to the growth temperature were characterized via field emission scanning electron microscopy (FE-SEM). The energy-dispersive spectroscopy (EDS) measurements showed that the CNWs were composed solely of carbon.

  5. Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

    SciTech Connect (OSTI)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt,B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-02-15

    An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.

  6. Method for microwave plasma assisted supersonic gas jet deposition of thin films

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1994-10-18

    A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets. 5 figs.

  7. Nonlinear dielectric thin films for active and electrically tunable microwave devices

    SciTech Connect (OSTI)

    Findikoglu, A.T.; Jia, Q.X.; Reagor, D.W.; Wu, X.D.

    1996-11-01

    The authors have prepared electrically tunable and active microwave devices incorporating (superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x})/(nonlinear dielectric SrTiO{sub 3}) or (normal metal Au)/(nonlinear dielectric Sr{sub 0.5}Ba{sub 0.5}TiO{sub 3}) bilayers. The dielectric layer thickness for these samples varied between 0.5 {micro}m and 2 {micro}m. The top electrode layer for each sample was patterned into a coplanar waveguide device structure. The authors have configures these devices as voltage-tunable resonators, voltage-tunable phase shifters, voltage-tunable mixers, and voltage-tunable filters. Under dc voltage bias, these prototype devices have exhibited up to 30% resonant frequency modulation, about 1{degree}/mm-GHz phase shift, more than 40 dB change in mixed microwave power, and fine-tunable symmetric filter profile with less than 2% bandwidth and more than 15% adaptive range.

  8. Microwave ECR plasma electron flood for low pressure wafer charge neutralization

    SciTech Connect (OSTI)

    Vanderberg, Bo; Nakatsugawa, Tomoya; Divergilio, William

    2012-11-06

    Modern ion implanters typically use dc arc discharge Plasma Electron Floods (PEFs) to neutralize wafer charge. The arc discharge requires using at least some refractory metal hardware, e.g. a thermionically emitting filament, which can be undesirable in applications where no metallic contamination is critical. rf discharge PEFs have been proposed to mitigate contamination risks but the gas flows required can result in high process chamber pressures. Axcelis has developed a microwave electron cyclotron resonance (ECR) PEF to provide refractory metals contamination-free wafer neutralization with low gas flow requirement. Our PEF uses a custom, reentrant cusp magnet field providing ECR and superior electron confinement. Stable PEF operation with extraction slits sized for 300 mm wafers can be attained at Xe gas flows lower than 0.2 sccm. Electron extraction currents can be as high as 20 mA at absorbed microwave powers < 70 W. On Axcelis' new medium current implanter, plasma generation has proven robust against pressure transients caused by, for example, photoresist outgassing by high power ion beams. Charge monitor and floating potential measurements along the wafer surface corroborate adequate wafer charge neutralization for low energy, high current ion beams.

  9. ON MEASURING THE COSMIC MICROWAVE BACKGROUND TEMPERATURE AT REDSHIFT 0.89

    SciTech Connect (OSTI)

    Sato, M.; Menten, K. M.; Reid, M. J.; Carilli, C. L.

    2013-02-20

    We report on a measurement of the temperature of the cosmic microwave background radiation field, T {sub CMB}, at z = 0.88582 by imaging HC{sub 3}N(3 <- 2) and (5 <- 4) absorption in the foreground galaxy of the gravitationally lens magnified radio source PKS 1830-211 using the Very Long Baseline Array and the phased Very Large Array. Low-resolution imaging of the data yields a value of T {sub rot} = 5.6{sup +2.5} {sub -0.9} K for the rotational temperature, T {sub rot}, which is consistent with the temperature of the cosmic microwave background at the absorber's redshift of 2.73(1 + z) K. However, our high-resolution imaging reveals that the absorption peak position of the foreground gas is offset from the continuum peak position of the synchrotron radiation from PKS 1830-211SW, which indicates that the absorbing cloud is covering only part of the emission from PKS 1830-211, rather than the entire core-jet region. This changes the line-to-continuum ratios, and we find T {sub rot} between 1.1 and 2.5 K, which is lower than the expected value. This shows that previous T {sub rot} measurements could be biased due to unresolved structure.

  10. Method for microwave plasma assisted supersonic gas jet deposition of thin films

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1994-01-01

    A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets.

  11. Validation and analysis of microwave-derived rainfall over the tropics. Master's thesis

    SciTech Connect (OSTI)

    Fleishauer, R.P.

    1993-01-01

    A recently developed single channel microwave rain rate retrieval algorithm exists to measure global precipitation over the data-sparse tropical oceans. The objective of this study is to retrieve and validate rainfall using this algorithm, followed by an analysis of the derived rainfall fields. Retrieval consists of applying the algorithm technique to the extraction of four years worth of achieved data from the Electrically Scanning Microwave Radiometer (ESMR) instrument flown aboard the NIMBUS 5 satellite. The Pacific Atoll Raingage Data Set is chosen as a ground truth measure to validate the ESMR-Derived rainfall data against, comparing slope, intercept and correlation between 5 deg x 5 deg area average. Despite limitations imposed by the comparison of point measurements to area-averaged rainfall, results show a 0.80 correlation. Monthly and quarterly climatological mean rainfall estimates are produced, with a consequent analysis of prominent signals, especially in the Intertropical Convergence Zone (ITCZ), South Pacific Convergence Zone (SPCZ) and the Indian monsoon. Latent heat flux is computed, using the ESMR-derived rainfall, and plotted to show qualitatively where seasonal latent thermodynamic energy sources and sinks exist in the atmosphere. A comparison of the summer and winter quarterly composites of the above products with previously compiled climatologies and Outgoing Longwave Radiation (OLR) showed only minor discrepancies in location and intensity, which are discussed in some detail.

  12. Oven rack having integral lubricious, dry porcelain surface

    SciTech Connect (OSTI)

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun

    2014-06-03

    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least 500.degree. F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  13. Covered Product Category: Commercial Ovens | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    product is available to meet the functional requirements, or that no such product is life cycle cost-effective for a specific application. Additional information on Federal...

  14. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

    1994-01-01

    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  15. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

    1994-08-23

    A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

  16. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

  17. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    SciTech Connect (OSTI)

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the U.S. steel industry. The objectives associated with this goal were to (a) generate a solid base of technical, marketing, economic, and policy data, (b) develop energy, environmental, and economic targets, (c) more definitively assess opportunities and barriers, (d) accumulate knowledge and experience for defining direction for the next phase of development, and (e) promote learning and training of students.

  18. High power water load for microwave and millimeter-wave radio frequency sources

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  19. Near-field microwave microscopy of high-? oxides grown on graphene with an organic seeding layer

    SciTech Connect (OSTI)

    Tselev, Alexander Kalinin, Sergei V.; Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C.; Department of Chemistry, Northwestern University, Evanston, Illinois 60208

    2013-12-09

    Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100?nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

  20. The design and analysis of multi-megawatt distributed single pole double throw (SPDT) microwave switches

    SciTech Connect (OSTI)

    Tantawi, S.G. [Stanford Linear Accelerator Center, SLAC, 2575 Sand Hill Rd. Menlo Park, California 94025 (United States)

    1999-05-01

    We present design methodology and analysis for an SPDT switch that is capable of handling hundreds of megawatts of power at X-band. The switch is designed for application in high power rf systems in particular future Linear Colliders (1). In these systems switching need to be fast in one direction only. We use this to our advantage to reach a design for a super high power switch. In our analysis we treat the problem from an abstract point of view. We introduce a unified analysis for the microwave circuits irrespective of the switching elements. The analysis is, then, suitable for different kinds of switching elements such as photoconductrs. PIN diodes, and plasma discharge in low-pressure gases. {copyright} {ital 1999 American Institute of Physics.}

  1. Development of a simple 2.45 GHz microwave plasma with a repulsive double hexapole configuration

    SciTech Connect (OSTI)

    Arciaga, Marko; Ulano, April; Lee, Henry Jr.; Lledo, Rumar; Ramos, Henry; Tumlos, Roy

    2008-09-15

    A simple and inexpensive 2.45 GHz microwave plasma source with a repulsive double hexapole configuration is described and characterized. In this work, the operation of the source is shown to be flexible in terms of electron density, electron temperature, and plasma uniformity even at low-pressures (approximately millitorr). It allows for easy control of the electron temperature (2-3.8 eV) and density ({approx}10{sup 9}-10{sup 10} cm{sup -3}) by removing either of the two hexapoles or by varying the separation distance between the two hexapoles. Characterization was done via information gathered from the usual Langmuir probe measurements for electron temperature and density. The source makes a resonant surface with its repulsive double hexapole magnetic configuration providing an additional longitudinal confinement near the walls midway between the two hexapoles. Magnetic field maps are presented for varying double hexapole distances. Power delivery for various settings is also presented.

  2. Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field

    SciTech Connect (OSTI)

    Ciovati, Gianluigi; Dhakal, Pashupati; Gurevich, Alexander V.

    2014-03-03

    Measurements of the quality factor, Q, of Nb superconducting microwave resonators often show that Q increases by {approx_equal} 10%–30% with increasing radio-frequency (rf) field, H, up to {approx} 15-20 mT. Recent high temperature heat treatments can amplify this rf field-induced increase of Q up to {approx_equal} 50%–100% and extend it to much higher fields, but the mechanisms of the enhancement of Q(H) remain unclear. Here, we suggest a method to reveal these mechanisms by measuring temperature dependencies of Q at different rf field amplitudes. We show that the increase of Q(H) does not come from a field dependent quasi-particles activation energy or residual resistance, but rather results from the smearing of the density of state by the rf field.

  3. High-Power Plasma Switch for 11.4 GHz Microwave Pulse Compressor

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2010-03-04

    Results obtained in several experiments on active RF pulse compression at X-band using a magnicon as the high-power RF source are presented. In these experiments, microwave energy was stored in high-Q TE01 and TE02 modes of two parallel-fed resonators, and then discharged using switches activated with rapidly fired plasma discharge tubes. Designs and high-power tests of several versions of the compressor are described. In these experiments, coherent pulse superposition was demonstrated at a 5–9 MW level of incident power. The compressed pulses observed had powers of 50–70 MW and durations of 40–70 ns. Peak power gains were measured to be in the range of 7:1–11:1 with efficiency in the range of 50–63%.

  4. Microwave plasma based single step method for free standing graphene synthesis at atmospheric conditions

    SciTech Connect (OSTI)

    Tatarova, E.; Henriques, J.; Dias, A.; Ferreira, C. M.; Luhrs, C. C.; Phillips, J.; Abrashev, M. V.

    2013-09-23

    Microwave atmospheric pressure plasmas driven by surface waves were used to synthesize graphene sheets from vaporized ethanol molecules carried through argon plasma. In the plasma, ethanol decomposes creating carbon atoms that form nanostructures in the outlet plasma stream, where external cooling/heating was applied. It was found that the outlet gas stream temperature plays an important role in the nucleation processes and the structural quality of the produced nanostructures. The synthesis of few layers (from one to five) graphene has been confirmed by high-resolution transmission electron microscopy. Raman spectral studies were conducted to determine the ratio of the 2D to G peaks (>2). Disorder D-peak to G-peak intensity ratio decreases when outlet gas stream temperature decreases.

  5. IS THE COSMIC MICROWAVE BACKGROUND ASYMMETRY DUE TO THE KINEMATIC DIPOLE?

    SciTech Connect (OSTI)

    Naselsky, P.; Zhao, W.; Kim, J.; Chen, S.

    2012-04-10

    Parity violation found in the cosmic microwave background (CMB) radiation is a crucial clue for the non-standard cosmological model or the possible contamination of various foreground residuals and/or calibration of the CMB data sets. In this paper, we study the directional properties of the CMB parity asymmetry by excluding the m = 0 modes in the definition of parity parameters. We find that the preferred directions of the parity parameters coincide with the CMB kinematic dipole, which implies that the CMB parity asymmetry may be connected with the possible contamination of the residual dipole component. We also find that such tendency is not only localized at l = 2, 3, but in the extended multipole ranges up to l {approx} 22.

  6. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    SciTech Connect (OSTI)

    Imtiaz, Atif; Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel; Weber, Joel C.; Coakley, Kevin J.

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ?}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ?}? effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ?} images.

  7. Yb:(YLa){sub 2}O{sub 3} laser ceramics produced by microwave sintering

    SciTech Connect (OSTI)

    Balabanov, S S; Bykov, Yu V; Egorov, S V; Eremeev, A G; Gavrishchuk, E M; Khazanov, Efim A; Mukhin, I B; Palashov, O V; Permin, D A; Zelenogorskii, V V

    2013-04-30

    The possibility of using microwave heating for sintering of optical oxide ceramics and the advantages of this method are considered. Sintering of Yb{sub 0.1}:(YLa){sub 1.9}O{sub 3} ceramics by heating with 24-GHz radiation is studied. The compacts for sintering are prepared from nanosized powders obtained by high-temperature synthesis from acetate-nitrates of rare-earth metals. The effect of addition of lanthanum oxide and of the uniaxial pressing conditions on the microstructure and optical transmission of ceramics is studied. Lasing at a wavelength of 1030 nm with an efficiency of 7.5 % is achieved in ceramic samples of the (Yb{sub 0.05}Y{sub 0.1}La{sub 0.85}){sub 2}O{sub 3} composition under pumping by a laser diode at a wavelength of 940 nm. (extreme light fields and their applications)

  8. Localized electrical fine tuning of passive microwave and radio frequency devices

    DOE Patents [OSTI]

    Findikoglu, Alp T. (Los Alamos, NM)

    2001-04-10

    A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.

  9. Facilely preparation and microwave absorption properties of Fe{sub 3}O{sub 4} nanoparticles

    SciTech Connect (OSTI)

    Wang, Guiqin, E-mail: wanggq@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085 (China); Chang, Yongfeng; Wang, Lifang; Liu, Lidong; Liu, Chao [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085 (China)

    2013-03-15

    Highlights: ? A bran-new method is firstly used to fabricate Fe{sub 3}O{sub 4} nanoparticles. ? The detailed analysis of formation mechanism is discussed. ? The electromagnetic absorption properties are defined. ? The effect of nanometer-sized is considered for the excellent microwave absorption. - Abstract: The Fe{sub 3}O{sub 4} nanoparticles were prepared by a novel wet-chemical method which shows its highly synthesizing efficiency and controllability. A possible formation mechanism was also proposed to explain the synthesizing process. X-ray diffraction (XRD) and transmission electron microscope (TEM) were employed and yielded an examination of an average diameter of 77 nm of the as-synthesized Fe{sub 3}O{sub 4} nanoparticles with face-centered cubic structure. Vibrating sample magnetometer (VSM) and vector network analyzer were employed to measure the magnetic property and electromagnetic parameters of the nanoparticles, then reflection losses (RL (dB)) were calculated in the frequency range of 2–18 GHz. A large saturation magnetization (72.36 emu/g) and high coercivity (95 Oe) were determined and indicated that the Fe{sub 3}O{sub 4} nanoparticles own strong magnetic performance. Following simulation results showed that the lowest reflection loss of the sample was ?21.2 dB at 5.6 GHz with layer thickness of 6 mm. Effect of nanometer-sized further provided an explanation for the excellent microwave absorption behavior shown by the Fe{sub 3}O{sub 4} nanoparticles.

  10. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    SciTech Connect (OSTI)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 ?M of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 ? coaxial input. Agreement between simulated and experimental results is shown.

  11. Correlation function analysis of the COBE differential microwave radiometer sky maps

    SciTech Connect (OSTI)

    Lineweaver, C.H.

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than {approximately}20{degree} is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9{sigma}, > 10{sigma} and > 18{sigma} above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60{degree} due to the 60{degree} separation of the DMR horns. The mean covariance of 60{degree} is 0.45%{sub {minus}0.14}{sup +0.18} of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  12. Microwave Ablation of Pulmonary Malignancies Using a Novel High-energy Antenna System

    SciTech Connect (OSTI)

    Little, Mark W.; Chung, Daniel; Boardman, Philip; Gleeson, Fergus V.; Anderson, Ewan M.

    2013-04-15

    To evaluate the technical success, safety, and imaging follow-up of malignant pulmonary nodules treated with a novel high-energy percutaneous microwave ablation (MWA) system. Between July 2010 and September 2011, a total of 23 patients, 12 men, mean age 68 (range 30-87) years with 29 pulmonary malignancies of median diameter 19 (range 8-57) mm, underwent computed tomography (CT)-guided MWA with a 16G microwave needle antenna enabling power up to 180 W. Technical success was defined as needle placement in the intended lesion without death or serious injury. Adequacy of ablation was assessed at 24 h on contrast-enhanced CT. Circumferential solid or ground glass opacification >5 mm was used to define an ideal ablation. Local tumor recurrence was assessed at 1, 3, and 6 months after ablation on contrast-enhanced CT. MWA was technically successful in 93 % (n = 27). Mean ablation duration was 3.6 (range 1-9) min. Ten patients (43 %) developed a pneumothorax as a result of the MWA; only 3 (13 %) required placement of a chest drain. Thirty-day mortality rate was 0 %. The mean hospital stay was 1.5 (range 1-7) days. A total of 22 lesions (75 %) were surrounded by {>=}5 mm ground glass or solid opacification after the procedure. At a median follow-up of 6 months, local recurrence was identified in 3 out of 26 lesions, giving a local control rate of 88 %. MWA using a high-power antenna of pulmonary malignancies is safe, technically achievable, and enables fast ablation times.

  13. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

    1994-03-15

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  14. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Omatete, Ogbemi O. (Lagos, NG); Young, Albert C. (Flushing, NY)

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  15. Spectral shape deformation in inverse spin Hall voltage in Y{sub 3}Fe{sub 5}O{sub 12}|Pt bilayers at high microwave power levels

    SciTech Connect (OSTI)

    Lustikova, J. Shiomi, Y.; Handa, Y.; Saitoh, E.

    2015-02-21

    We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spin Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.

  16. The spin Hall angle and spin diffusion length of Pd measured by spin pumping and microwave photoresistance

    SciTech Connect (OSTI)

    Tao, X. D.; Feng, Z.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Du, J.; Zhang, W.; Ding, H. F., E-mail: hfding@nju.edu.cn [Department of Physics, National Laboratory of Solid State Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-05-07

    We present the experimental study of the spin Hall angle (SHA) and spin diffusion length of Pd with the spin pumping and microwave photoresistance effects. The Py/Pd bilayer stripes are excited with an out-of-plane microwave magnetic field. The pure spin current is thus pumped and transforms into charge current via the inverse spin Hall effect (ISHE) in Pd layer, yielding an ISHE voltage. The ISHE voltage can be distinguished from the unwanted signal caused by the anisotropic magnetoresistance according to their different symmetries. Together with Pd thickness dependent measurements of in and out-of-plane precessing angles and effective spin mixing conductance, the SHA and spin-diffusion length of Pd are quantified as 0.0056?±?0.0007 and 7.3?±?0.7?nm, respectively.

  17. Faraday rotation limits on a primordial magnetic field from Wilkinson Microwave Anisotropy Probe five-year data

    SciTech Connect (OSTI)

    Kahniashvili, Tina [Department of Physics and McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C6 (Canada); National Abastumani Astrophysical Observatory, Ilia Chavchavadze State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Maravin, Yurii [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania 15260 (United States)

    2009-07-15

    A primordial magnetic field in the early universe will cause Faraday rotation of the linear polarization of the cosmic microwave background generated via Compton scattering at the surface of last scattering. This rotation induces a nonzero parity-odd (B-mode) polarization component. The Wilkinson Microwave Anisotropy Probe 5-year data puts an upper limit on the magnitude of the B-polarization power spectrum; assuming that the B-polarization signal is totally due to the Faraday rotation effect, the upper limits on the comoving amplitude of a primordial stochastic magnetic field range from 6x10{sup -8} to 2x10{sup -6} G on a comoving length scale of 1 Mpc, depending on the power spectrum of the magnetic field.

  18. Method and apparatus for mounting a dichroic mirror in a microwave powered lamp assembly using deformable tabs

    DOE Patents [OSTI]

    Ury, M.; Sowers, F.; Harper, C.; Love, W.

    1998-11-24

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector secured at the juncture of the two sections to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. The reflector is mounted in the cavity by tabs formed in the screen unit and bendable into the cavity to define support planes abutting respective surfaces of the reflector. The mesh section and tabs are preferably formed by etching a thin metal sheet. 7 figs.

  19. Method and apparatus for mounting a dichroic mirror in a microwave powered lamp assembly using deformable tabs

    DOE Patents [OSTI]

    Ury, Michael; Sowers, Frank; Harper, Curt; Love, Wayne

    1998-01-01

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector secured at the juncture of the two sections to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. The reflector is mounted in the cavity by tabs formed in the screen unit and bendable into the cavity to define support planes abutting respective surfaces of the reflector. The mesh section and tabs are preferably formed by etching a thin metal sheet.

  20. Ionic liquid assisted microwave synthesis route towards color-tunable luminescence of lanthanide- doped BiPO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cybinska, Joanna; Lorbeer, Chantal; Mudring, Anja -Verena

    2015-07-08

    Ln3+-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 °C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Furthermore, depending on the lanthanide, the nanomaterial shows intense luminescencemore » of different colors such as: orange (Sm3+), red (Eu3+), green (Tb3+) or even white (Dy3+).« less

  1. Empirical Evaluation of Four Microwave Radiative Forward Models Based on Ground-Based Radiometer Data Near 20 and 30 GHz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Empirical Evaluation of Four Microwave Radiative Forward Models Based on Ground-Based Radiometer Data Near 20 and 30 GHz C. Cimini Centre of Excellence on Atmospheric Modeling and Remote Sensing University of L'Aquila L'Aquila, Italy and Science and Technology Corporation Hampton, Virginia E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado S. J.

  2. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    SciTech Connect (OSTI)

    Atrio-Barandela, F.; Kashlinsky, A. E-mail: Alexander.Kashlinsky@nasa.gov

    2014-12-20

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ?5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ? 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (?? ? 0.05) and the temperature of the IGM (up to ?10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.

  3. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect (OSTI)

    Chen, Zhaoquan; Yin, Zhixiang Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui; Xia, Guangqing; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  4. The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air

    SciTech Connect (OSTI)

    Marian, Anca; El Morsli, Mbark; Vidal, Francois; Payeur, Stephane; Kieffer, Jean-Claude; Chateauneuf, Marc; Theberge, Francis; Dubois, Jacques

    2013-02-15

    The interaction of polarized microwaves with subwavelength arrays of parallel plasma filaments, such as those produced by the propagation of high-power femtosecond laser pulses in ambient air, was investigated by calculating the reflection and transmission coefficients as a function of the incidence angles using the finite-difference time-domain (FDTD) method. The time evolution of these coefficients was calculated and compared with experiments. It is found that the plasma filaments array becomes transparent when the polarization of the microwave radiation is perpendicular to the filaments axis, regardless the incidence angle of the microwave with respect to the filaments, except near grazing incidence. Increasing the filaments electron density or diameter, or decreasing the electron collision frequency or filaments spacing, decreases the transmission and increases the reflection. Transmission decreases when increasing the number of filament layers while reflection remains unchanged as the number of filament layers exceeds a given number ({approx}3 in our case). Transmission slightly increases when disorder is introduced in the filament arrays. The detailed calculation results are compared with those obtained from the simple birefringent slab model, which provides a convenient framework to calculate approximately the properties of filament arrays.

  5. Microwave synthesis and electrochemical characterization of mesoporous carbon@Bi{sub 2}O{sub 3} composites

    SciTech Connect (OSTI)

    Xia, Nannan; Yuan, Dingsheng; Zhou, Tianxiang; Chen, Jingxing; Mo, Shanshan; Liu, Yingliang

    2011-05-15

    Graphical abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance is up to 386 F g{sup -1}. Research highlights: {yields} An efficient and quick microwave method has been employed. {yields} A worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites have been successfully prepared. {yields} This composite exhibits excellent capacitance performance. {yields} This composite could be a potential electrode material for the supercapacitors. -- Abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. As-prepared products have been characterized by X-ray diffraction, N{sub 2} adsorption-desorption, scanning electron microscopy, transmission electron microscopy and inductive coupled plasma atomic emission spectroscopy. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance reaches 386 F g{sup -1}, three times more than the pure worm-like mesoporous carbon.

  6. 3D parallel-detection microwave tomography for clinical breast imaging

    SciTech Connect (OSTI)

    Epstein, N. R.; Meaney, P. M.; Paulsen, K. D.

    2014-12-15

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to ?130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data.

  7. A guide to designing future ground-based cosmic microwave background experiments

    SciTech Connect (OSTI)

    Wu, W. L. K.; Kuo, C. L.; Errard, J.; Dvorkin, C.; Lee, A. T.; McDonald, P.; Zahn, O.; Slosar, A.

    2014-06-20

    In this follow-up work to the high energy physics Community Summer Study 2013 (aka SNOWMASS), we explore the scientific capabilities of a future Stage IV cosmic microwave background polarization experiment under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties of cosmological parameters in ??CDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark energy equation of state, dark matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the baryon acoustic oscillation signal as measured by Dark Energy Spectroscopic Instrument to constrain parameters that would benefit from low redshift information. We find the following best 1? constraints: ?(M {sub ?}) = 15 meV, ?(N {sub eff}) = 0.0156, dark energy figure of merit = 303, ?(p {sub ann}) = 0.00588 × 3 × 10{sup –26} cm{sup 3} s{sup –1} GeV{sup –1}, ?(? {sub K}) = 0.00074, ?(n{sub s} ) = 0.00110, ?(? {sub s}) = 0.00145, and ?(r) = 0.00009. We also detail the dependencies of the parameter constraints on detector count, resolution, and sky coverage.

  8. Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

    SciTech Connect (OSTI)

    Moore, D. C.; Golwala, S. R.; Cornell, B. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125 (United States); Bumble, B.; Day, P. K.; LeDuc, H. G. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Zmuidzinas, J. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2012-06-04

    We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with < or approx. 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of {sigma}{sub E} = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for {approx}1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering.

  9. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    SciTech Connect (OSTI)

    Surducan, E.; Surducan, V.; Neamtu, C.; Limare, A.; Di Giuseppe, E.

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water?based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  10. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Dohun; Ward, D. R.; Simmons, C. B.; Gamble, John King; Blume-Kohout, Robin; Nielsen, Erik; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; et al

    2015-02-16

    An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. The qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. But, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the ‘sweet spot’. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving wemore » achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X–Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Moreover, both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.« less

  11. Measurements of the cosmic microwave background temperature at 1.47 GHz

    SciTech Connect (OSTI)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus_minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus_minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus_minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus_minus} 0.02,K global average CMB temperature.

  12. Measurements of the cosmic microwave background temperature at 1. 47 GHz

    SciTech Connect (OSTI)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

  13. Gas breakdown driven by L band short-pulse high-power microwave

    SciTech Connect (OSTI)

    Yang Yiming; Yuan Chengwei; Qian Baoliang

    2012-12-15

    High power microwave (HPM) driven gas breakdown is a major factor in limiting the radiation and transmission of HPM. A method that HPM driven gas breakdown could be obtained by changing the aperture of horn antenna is studied in this paper. Changing the effective aperture of horn antenna can adjust the electric field in near field zone, leading to gas breakdown. With this method, measurements of air and SF{sub 6} breakdowns are carried out on a magnetically insulated transmission-line oscillators, which is capable of generating HPM with pulse duration of 30 ns, and frequency of 1.74 GHz. The typical breakdown waveforms of air and SF{sub 6} are presented. Besides, the breakdown field strengths of the two gases are derived at different pressures. It is found that the effects of air and SF{sub 6} breakdown on the transmission of HPM are different: air breakdown mainly shortens the pulse width of HPM while SF{sub 6} breakdown mainly reduces the peak output power of HPM. The electric field threshold of SF{sub 6} is about 2.4 times larger than that of air. These differences suggest that gas properties have a great effect on the transmission characteristic of HPM in gases.

  14. New constraints on cosmic polarization rotation from B-mode polarization in the cosmic microwave background

    SciTech Connect (OSTI)

    Alighieri, Sperello di Serego; Ni, Wei-Tou; Pan, Wei-Ping E-mail: weitou@gmail.com

    2014-09-01

    SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations (??{sup 2}), since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint (??{sup 2}){sup 1/2} < 27.3 mrad (1.°56), with r = 0.194 ± 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.°5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.

  15. CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction

    SciTech Connect (OSTI)

    Liu, Dong; Brace, Christopher L.

    2014-11-01

    Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 × 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. The spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 ± 1.8 mm (∼20%) smaller in the radial direction and 7.1 ± 1.0 mm (∼10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ∼70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.

  16. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect (OSTI)

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  17. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

    SciTech Connect (OSTI)

    Wang, Jinguo; Zhao, Zhiqin Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

    2015-05-15

    Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity.

  18. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike

    2012-02-01

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  19. Signatures of anisotropic sources in the trispectrum of the cosmic microwave background

    SciTech Connect (OSTI)

    Shiraishi, Maresuke; Komatsu, Eiichiro; Peloso, Marco E-mail: komatsu@mpa-garching.mpg.de

    2014-04-01

    Soft limits of N-point correlation functions, in which one wavenumber is much smaller than the others, play a special role in constraining the physics of inflation. Anisotropic sources such as a vector field during inflation generate distinct angular dependence in all these correlators, and introduce a fix privileged direction in our sky. In this paper we focus on the four-point correlator (the trispectrum T). We adopt a parametrization motivated by models in which the inflaton ? is coupled to a vector field through a I{sup 2}(?)F{sup 2} interaction, namely T{sub ?}(k{sub 1},k{sub 2},k{sub 3},k{sub 4})??{sub n}d{sub n}[P{sub n}( k-circumflex {sub 1}? k-circumflex {sub 3})+P{sub n}( k-circumflex {sub 1}? k-circumflex {sub 12})+P{sub n}( k-circumflex {sub 3}? k-circumflex {sub 12})]P{sub ?}(k{sub 1})P{sub ?}(k{sub 3})P{sub ?}(k{sub 12})+(23perm), where P{sub n} denotes the Legendre polynomials. This shape is enhanced when the wavenumbers of the diagonals of the quadrilateral are much smaller than the sides, k{sub i}. The coefficient of the isotropic part, d{sub 0}, is equal to ?{sub NL}/6 discussed in the literature. A I{sup 2}(?)F{sup 2} interaction generates d{sub 2} = 2d{sub 0} which is, in turn, related to the quadrupole modulation parameter of the power spectrum, g{sub *}, as d{sub 2} ? 14|g{sub *}|N{sup 2} with N ? 60. We show that d{sub 0} and d{sub 2} can be equally well-constrained: the expected 68% CL error bars on these coefficients from a cosmic-variance-limited experiment measuring temperature anisotropy of the cosmic microwave background up to ?{sub max} = 2000 are ?d{sub 2} ? 4?d{sub 0} = 105. Therefore, we can reach |g{sub *}| = 10{sup ?3} by measuring the angle-dependent trispectrum. The current upper limit on ?{sub NL} from the Planck temperature maps yields |g{sub *}| < 0.02 (95% CL)

  20. Numerical analysis of a mixture of Ar/NH{sub 3} microwave plasma chemical vapor deposition reactor

    SciTech Connect (OSTI)

    Li Zhi [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); Zhao Zhen [Chemistry Department, Anshan Normal University, Anshan 114007 (China); School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Li Xuehui [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Physical Science and Technical College, Dalian University, Dalian 116622 (China)

    2012-06-01

    A two-dimensional fluid model has been used to investigate the properties of plasma in Ar/NH{sub 3} microwave electron cyclotron resonance discharge at low pressure. The electromagnetic field model solved by the three-dimensional Simpson method is coupled to a fluid plasma model. The finite difference method was employed to discrete the governing equations. 40 species (neutrals, radicals, ions, and electrons) are consisted in the model. In total, 75 electron-neutral, 43 electron-ion, 167 neutral-neutral, 129 ion-neutral, 28 ion-ion, and 90 3-body reactions are used in the model. According to the simulation, the distribution of the densities of the considered plasma species has been showed and the mechanisms of their variations have been discussed. It is found that the main neutrals (Ar*, Ar**, NH{sub 3}{sup *}, NH, H{sub 2}, NH{sub 2}, H, and N{sub 2}) are present at high densities in Ar/NH{sub 3} microwave electron cyclotron resonance discharge when the mixing ratio of Ar/NH{sub 3} is 1:1 at 20 Pa. The density of NH is more than that of NH{sub 2} atom. And NH{sub 3}{sup +} are the most important ammonia ions. But the uniformity of the space distribution of NH{sub 3}{sup +} is lower than the other ammonia ions.

  1. Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment V. Mattioli Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado V. Morris Pacific Northwest National

  2. Equivalence of optical and electrical noise equivalent power of hybrid NbTiN-Al microwave kinetic inductance detectors

    SciTech Connect (OSTI)

    Janssen, R. M. J.; Endo, A.; Visser, P. J. de; Klapwijk, T. M.; Baselmans, J. J. A.

    2014-11-10

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical noise equivalent power (NEP) from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature, and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail, the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  3. Abnormal electron-heating mode and formation of secondary-energetic electrons in pulsed microwave-frequency atmospheric microplasmas

    SciTech Connect (OSTI)

    Kwon, H. C.; Research and Development Division, SK Hynix Semiconductor Inc., Icheon 467-701 ; Jung, S. Y.; Kim, H. Y.; Won, I. H.; Lee, J. K.

    2014-03-15

    The formation of secondary energetic electrons induced by an abnormal electron-heating mode in pulsed microwave-frequency atmospheric microplasmas was investigated using particle-in-cell simulation. We found that additional high electron heating only occurs during the first period of the ignition phase after the start of a second pulse at sub-millimeter dimensions. During this period, the electrons are unable to follow the abruptly retreating sheath through diffusion alone. Thus, a self-consistent electric field is induced to drive the electrons toward the electrode. These behaviors result in an abnormal electron-heating mode that produces high-energy electrons at the electrode with energies greater than 50?eV.

  4. Fourier-transform microwave spectroscopy and determination of the three dimensional potential energy surface for Ar–CS

    SciTech Connect (OSTI)

    Niida, Chisato; Nakajima, Masakazu; Endo, Yasuki; Sumiyoshi, Yoshihiro; Ohshima, Yasuhiro; Kohguchi, Hiroshi

    2014-03-14

    Pure rotational transitions of the Ar–CS van der Waals complex have been observed by Fourier Transform Microwave (FTMW) and FTMW-millimeter wave double resonance spectroscopy. Rotational transitions of v{sub s} = 0, 1, and 2 were able to be observed for normal CS, together with those of C{sup 34}S in v{sub s} = 0, where v{sub s} stands for the quantum number of the CS stretching vibration. The observed transition frequencies were analyzed by a free rotor model Hamiltonian, where rovibrational energies were calculated as dynamical motions of the three nuclei on a three-dimensional potential energy surface, expressed by analytical functions with 57 parameters. Initial values for the potential parameters were obtained by high-level ab initio calculations. Fifteen parameters were adjusted among the 57 parameters to reproduce all the observed transition frequencies with the standard deviation of the fit to be 0.028 MHz.

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Power (20) Apply Combined Heat & Power filter Solar Space Heat (20) Apply Solar Space Heat filter Dehumidifiers (19) Apply Dehumidifiers filter Food Service Equipment...

  6. ISSUANCE 2015-06-26: Energy Conservation Program: Test Procedures...

    Office of Environmental Management (EM)

    6: Energy Conservation Program: Test Procedures for Dehumidifiers, Final Rule ISSUANCE 2015-06-26: Energy Conservation Program: Test Procedures for Dehumidifiers, Final Rule This ...

  7. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    SciTech Connect (OSTI)

    Li, Shou-Zhe, E-mail: lisz@dlut.edu.cn; Zhang, Xin; Chen, Chuan-Jie; Zhang, Jialiang [Key Laboratory of Materials Modification by Laser, Ion, Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); School of Physics and Optoelectronic Technology, Dalian 116024 (China); Wang, Yong-Xing [College of Electrical Engineering, Dalian 116024 (China); Xia, Guang-Qing [School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024 (China)

    2014-07-15

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.

  8. Investigations of high-energy electrons of the microwave discharge plasma at configuration of the 'Magnetor' Bi-dipole magnetic confinement system by X-ray radiation analyses

    SciTech Connect (OSTI)

    Krashevskaya, G. V. Kurnaev, V. A.; Salakhutdinov, G. Kh.; Tsventoukh, M. M.

    2011-12-15

    The results of the investigations of a group of fast electrons in a microwave discharge plasma in the 'Magnetor' magnetic trap are presented. The data on the presence and location of this group of electrons is important for estimating the total plasma pressure taking the previous probe measurements into account. Fast electrons are found to be localized within the magnetic separatrix in the region of confinement of the main plasma. The maximal energy of fast electrons is higher than 25 keV.

  9. Microwave-assisted synthesis and photovoltaic measurements of CuInS{sub 2} nanoparticles prepared by using metal–organic precursors

    SciTech Connect (OSTI)

    Hosseinpour-Mashkani, S. Mostafa; Mohandes, Fatemeh; Salavati-Niasari, Masoud; Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran ; Venkateswara-Rao, K.

    2012-11-15

    Highlights: ? CuInS{sub 2} nanoparticles were prepared using complexes via a microwave-assisted method. ? The effect of preparation parameters on the morphology of CuInS{sub 2} was investigated. ? The as-deposited CdS/CuInS{sub 2} films were used for the photovoltaic measurements. -- Abstract: In this work, CuInS{sub 2} (CIS) nanoparticles have been synthesized with the aid of (1,8-diamino-3,6-dioxaoctan)copper(II) sulfate ([Cu(DADO)]SO{sub 4}) and bis(propylenediamine)copper(II) sulfate ([Cu(pn){sub 2}]SO{sub 4}) complexes as copper precursor in the presence of microwave irradiation. Besides, L-cystine, InCl{sub 3}, and sodium dodecyl sulfate (SDS) were applied as sulfur source, indium precursor, and capping agent, respectively. To investigate the effect of preparation parameters like microwave power and irradiation time on the morphology and particle size of CuInS{sub 2}, the experiment was carried out at different conditions. The as-synthesized CuInS{sub 2} nanoparticles were characterized by XRD, FT-IR, PL, SEM, TEM, and EDS. The XRD results showed that pure tetragonal CuInS{sub 2} could be only obtained after annealing at 400 °C for 2 h. The SEM images indicated that with decreasing the microwave power and irradiation time, particle size of CuInS{sub 2} nanoparticles decreased. To fabricate a solar cell, CdS film was directly deposited on top of the CIS film prepared by Doctor's blade method through chemical bath deposition. The as-deposited CdS/CuInS{sub 2} films were used for the photovoltaic measurements.

  10. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz Electron Cyclotron Resonance Plasma Reactor

    SciTech Connect (OSTI)

    Megía-Macías, A.; Vizcaíno-de-Julián, A.; Cortázar, O. D.

    2014-03-15

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

  11. Power-dependent microwave properties of superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} films on buffered polycrystalline substrates

    SciTech Connect (OSTI)

    Findikoglu, A.T.; Arendt, P.N.; Foltyn, S.R.; Groves, J.R.; Jia, Q.X.; Peterson, E.J.; Bulaevskii, L.; Maley, M.P.; Reagor, D.W.

    1997-06-01

    We have studied the microwave properties of 0.4 {mu}m thick YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) films on polycrystalline substrates with ion-beam-assisted-deposited yttria-stabilized zirconia buffer layers using a parallel-plate resonator technique at 10 GHz. The YBCO films with similar in-plane texture grown on both forsterite and Ni-based alloy substrates show similar microwave properties. We measure low-power surface resistance R{sub s} values of about 0.5 m{Omega} at 76 K and 0.15 m{Omega} at 4 K for films with an in-plane mosaic spread of about 7{degree}. Single-tone power-dependence measurements show that the surface resistance and the surface reactance increase linearly and by the same amount with increasing microwave field level. At intermediate power levels, the intermodulation measurements show odd-order intermodulation products that increase quadratically with two-tone input power. These results indicate a hysteretic vortex penetration mechanism in the weak links as the most plausible source of the observed nonlinearities in these films. {copyright} {ital 1997 American Institute of Physics.}

  12. Fe{sub 3}O{sub 4}/Zeolite nanocomposites synthesized by microwave assisted coprecipitation and its performance in reducing viscosity of heavy oil

    SciTech Connect (OSTI)

    Iskandar, Ferry; Fitriani, Pipit; Merissa, Shanty; Khairurrijal,; Abdullah, Mikrajuddin; Mukti, Rino R.

    2014-02-24

    Fe{sub 3}O{sub 4}/Zeolite nanocomposites have been synthesized via microwave assisted coprecipitation method and show to be efficient in reducing viscosity of heavy oil compared to other Fe{sub 3}O{sub 4}/Zeolite nanocomposites prepared by conventional method. The following precursors such as FeCl{sub 3}?6H{sub 2}O, FeSO{sub 4}?7H{sub 2}O, NH{sub 4}OH, and natural zeolite of heulandite type were used in the sample preparation. In this study, the effect of Fe{sub 3}O{sub 4} composition in the composite and microwave time heating were investigated. Fe{sub 3}O{sub 4}/Zeolite nanocomposites were then characterized to study the influence on crystal structures, morphology and physicochemical properties. The characterization techniques include X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen physisorption. The results show that by increasing the microwave heating time, the degree of nanocomposite intergrowth can be enhanced. The nanocomposite was tested in catalytic aquathermolysis of heavy oil at 200°C for 6 h and the Fe{sub 3}O{sub 4}/zeolite of 1 to 4 ratios performed the highest viscosity reduction of heavy oil reaching 92%.

  13. The effect of N{sub 2} flow rate on discharge characteristics of microwave electron cyclotron resonance plasma

    SciTech Connect (OSTI)

    Ding Wanyu [Institute of Optoelectronic Materials and Devices, Dalian Jiaotong University, Dalian 116028 (China); State Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); Xu Jun; Lu Wenqi; Deng Xinlu; Dong Chuang [State Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China)

    2009-05-15

    The properties of plasma in Ar/N{sub 2} microwave electron cyclotron resonance discharge with a percentage of N{sub 2} flow rate ranging from 5% to 50% have been studied in order to understand the effect of N{sub 2} flow rate on the mechanical properties of silicon nitride films. N{sub 2}{sup +} radicals as well as N{sub 2}, N{sup +} are found by optical emission spectroscopy analysis. The evolution of plasma density, electron kinetic energy, N{sub 2}{sup +}, N{sub 2}, and N{sup +} emission lines from mixed Ar/N{sub 2} plasma on changing mixture ratio has been studied. The mechanisms of their variations have been discussed. Moreover, an Ar/N{sub 2} flow ratio of 2/20 is considered to be the best condition for synthesizing a-Si{sub 3}N{sub 4}, which has been confirmed in the as-deposited silicon nitride films with quite good mechanical properties by nanoindentation analyses.

  14. Distinctive plume formation in atmospheric Ar and He plasmas in microwave frequency band and suitability for biomedical applications

    SciTech Connect (OSTI)

    Lee, H. Wk.; Kang, S. K.; Won, I. H.; Kim, H. Y.; Kwon, H. C.; Sim, J. Y.; Lee, J. K.

    2013-12-15

    Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powers yielded opposite results from those for low-frequency plasmas (?kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N{sub 2} second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.

  15. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CFâ‚„microwave plasma treatment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less

  16. On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar

    SciTech Connect (OSTI)

    Feingold, G.; Frisch, A.S.; Cotton, W.R.

    1999-09-01

    Cloud radar, microwave radiometer, and lidar remote sensing data acquired during the Atlantic Stratocumulus Transition Experiment (ASTEX) are analyzed to address the relationship between (1) drop number concentration and cloud turbulence as represented by vertical velocity and vertical velocity variance and (2) drizzle formation and cloud turbulence. Six cases, each of about 12 hours duration, are examined; three of these cases are characteristic of nondrizzling boundary layers and three of drizzling boundary layers. In all cases, microphysical retrievals are only performed when drizzle is negligible (radar reflectivity{lt}{minus}17dBZ). It is shown that for the cases examined, there is, in general, no correlation between drop concentration and cloud base updraft strength, although for two of the nondrizzling cases exhibiting more classical stratocumulus features, these two parameters are correlated. On drizzling days, drop concentration and cloud-base vertical velocity were either not correlated or negatively correlated. There is a significant positive correlation between drop concentration and mean in-cloud vertical velocity variance for both nondrizzling boundary layers (correlation coefficient r=0.45) and boundary layers that have experienced drizzle (r=0.38). In general, there is a high correlation (r{gt}0.5) between radar reflectivity and in-cloud vertical velocity variance, although one of the boundary layers that experienced drizzle exhibited a negative correlation between these parameters. However, in the subcloud region, all boundary layers that experienced drizzle exhibit a negative correlation between radar reflectivity and vertical velocity variance. {copyright} 1999 American Geophysical Union

  17. A Measurement of Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters Using Data from the South Pole Telescope

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baxter, E. J.; Keisler, R.; Dodelson, S.; Aird, K. A.; Allen, S. W.; Ashby, M. L.N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; et al

    2015-06-22

    Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error andmore » find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M200,lens = 0.83+0.38-0.37 M200,SZ (68% C.L., statistical error only).« less

  18. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF?microwave plasma treatment

    SciTech Connect (OSTI)

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF? microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF? plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF? plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF? plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.

  19. Analysis by oxygen atom number density measurement of high-speed hydrophilic treatment of polyimide using atmospheric pressure microwave plasma

    SciTech Connect (OSTI)

    Ono, S.

    2015-03-30

    This paper describes the fundamental experimental data of the plasma surface modification of the polyimide using atmospheric pressure microwave plasma source. The experimental results were discussed from the point of view of the radical’s behavior, which significantly affects the modification mechanism. The purpose of the study is to examine how the value of the oxygen atom density will affect the hydrophilic treatment in the upstream region of the plasma where gas temperature is very high. The surface modification experiments were performed by setting the polyimide film sample in the downstream region of the plasma. The degree of the modification was measured by a water contact angle measurement. The water contact angle decreased less than 30 degrees within 1 second treatment time in the upstream region. Very high speed modification was observed. The reason of this high speed modification seems that the high density radical which contributes the surface modification exist in the upstream region of the plasma. This tendency is supposed to the measured relatively high electron density (~10{sup 15}cm{sup ?3}) at the center of the plasma. We used the electric heating catalytic probe method for oxygen radical measurement. An absolute value of oxygen radical density was determined by catalytic probe measurement and the results show that ~10{sup 15}cm{sup ?3} of the oxygen radical density in the upstream region and decreases toward downstream region. The experimental results of the relation of the oxygen radical density and hydrophilic modification of polyimide was discussed.

  20. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    SciTech Connect (OSTI)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.; Kukolich, Stephen G.

    2015-04-21

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ?J = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ?J = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ?J = ? 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.

  1. Use of a TM sub 010 microwave cavity at 2. 45 GHz for aerosol and filament drying

    SciTech Connect (OSTI)

    Christiansen, D.E.; Unruh, W.P.

    1991-01-01

    As part of the development of a generic spray-drying process for aerosol preparation of homogeneous powders of complex metal oxide systems, we have investigated the use of 2.45 GHz power in a high-Q single-mode TM{sub 010} cavity coupled directly to aerosols of aqueous solutions. Partial success was attained with a concentrated solution of ferric nitrate. Although all particulates showed drying, only a few percent of the particles were fully dried prior to collection. The cavity operated at a power level just below that sufficient to cause electric field breakdown in the carrier gas (dry nitrogen). The large inherent dielectric shielding of the spherical droplets makes it difficult to couple enough power into an aerosol at 2.45 GHz to overcome the heat loss from individual droplets to the surrounding gas and achieve full particulate drying. The calculated and measured dielectric shielding of a thin cylinder of water aligned with the cavity electric field is very much smaller. We have produced heating rates in water {approximately}600 times more rapid than could be achieved with aerosols. This suggests using 2.45 GHz microwave power for drying extruded filaments and then calcining those dried filaments to ceramic fiber. 3 refs., 4 figs.

  2. A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR

    SciTech Connect (OSTI)

    Ade, P. A. R.; Akiba, Y.; Hasegawa, M.; Anthony, A. E.; Halverson, N. W.; Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Elleflot, T.; Feng, C.; Borrill, J.; Errard, J.; Chapman, S.; Chinone, Y.; Flanigan, D.; Dobbs, M.; Gilbert, A.; Fabbian, G.; Collaboration: Polarbear Collaboration; and others

    2014-10-20

    We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early universe. Our measurement covers the angular multipole range 500 < ? < 2100 and is based on observations of an effective sky area of 25 deg{sup 2} with 3.'5 resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.2% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A{sub BB} to the measured band powers, A{sub BB}=1.12±0.61(stat){sub ?0.12}{sup +0.04}(sys)±0.07(multi), where A{sub BB} = 1 is the fiducial WMAP-9 ?CDM value. In this expression, 'stat' refers to the statistical uncertainty, 'sys' to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and 'multi' to the calibration uncertainties that have a multiplicative effect on the measured amplitude A{sub BB}.

  3. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide

    SciTech Connect (OSTI)

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145 Degree-Sign C, with a 26% increase in biogas production after 8 days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H{sub 2}O{sub 2} modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H{sub 2}O{sub 2} displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.

  4. Temperature dependence of contact resistance for Au-Ti-Pd{sub 2}Si-n{sup +}-Si ohmic contacts subjected to microwave irradiation

    SciTech Connect (OSTI)

    Belyaev, A. E.; Boltovets, N. S.; Konakova, R. V. Kudryk, Ya. Ya.; Sachenko, A. V.; Sheremet, V. N.; Vinogradov, A. O.

    2012-03-15

    Based on a theoretical analysis of the temperature dependence of the contact resistance R{sub c} for an Au-Ti-Pd{sub 2}Si-n{sup +}-Si ohmic contact, a current-transfer mechanism explaining the experimentally observed increase in R{sub c} in the temperature range 100-380 K is proposed. It is shown that microwave treatment of such contacts results in a decrease in the spread of R{sub c} over the wafer and a decrease in the value of R{sub c} whilst retaining an increase in R{sub c} in the temperatures range 100-380 K.

  5. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    SciTech Connect (OSTI)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-14

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4?K, first to avoid the low-frequency fluctuations present at around 0.1?K, and second, for a feasibility study of readout operation at 4?K for extended applications. To increase the resonant Q at 4?K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1?×?10{sup 4}???Q???2?×?10{sup 4} and the square root of spectral density of current noise referred to the SQUID input ?S{sub I}?=?31?pA/?Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S{sub 21} enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P{sub MR} make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved ?S{sub I} is dominated by the Nyquist noise from a resistor at 4?K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P{sub MR}) or the quantization noise due to the resolution of 300-K electronics (for large values of P{sub MR}). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit ?S{sub I}???5?pA/?Hz, i.e., close to ?S{sub I} of state-of-the-art DC-SQUID-based multiplexers.

  6. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)

    SciTech Connect (OSTI)

    Gaustad, KL; Turner, DD; McFarlane, SA

    2011-07-25

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  7. Effect of microwave irradiation on the resistance of Au-TiB{sub x}-Ge-Au-n-n{sup +}-n{sup ++}-GaAs(InP) ohmic contacts

    SciTech Connect (OSTI)

    Belyaev, A. E.; Sachenko, A. V.; Boltovets, N. S. Ivanov, V. N.; Konakova, R. V. Kudryk, Ya. Ya.; Matveeva, L. A.; Milenin, V. V.; Novitskii, S. V.; Sheremet, V. N.

    2012-04-15

    Temperature dependences of the contact resistivity {rho}{sub c} of Au-TiB{sub x}-Ge-Au-n-n{sup +}-n{sup ++}(GaAs)-InP ohmic contacts before and after short-term (10 s) microwave treatment have been studied both experimentally and theoretically. It is shown that {rho}{sub c} can decrease after microwave treatment in the entire temperature range of {rho}{sub c} measurements (100-400 K). Good agreement between the theoretical and experimental {rho}{sub c}(T) curves is attained and interpreted on the assumption that the dislocation density in the semiconductor near-surface region is varied as a result of microwave radiation.

  8. Method of sintering ceramic materials

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  9. Method of sintering ceramic materials

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.

    1992-11-17

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.

  10. Buildings Energy Data Book: 5.7 Appliances

    Buildings Energy Data Book [EERE]

    1 2008 Microwave Oven Manufacturer Market Shares (Percent of Products Produced) Company Market Share (%) LG Electronics (Goldstar) 33% Sharp 15% Samsung 15% Daewoo 7% Matsushita 10% Whirlpool 3% Sanyo 9% Others 8% Total 100% Source(s): Total Units Shipped: 11,340,000

  11. Spectroscopic analysis of H{sub 2}/CH{sub 4} microwave plasma and fast growth rate of diamond single crystal

    SciTech Connect (OSTI)

    Derkaoui, N.; Rond, C. Hassouni, K.; Gicquel, A.

    2014-06-21

    One of the best ways to increase the diamond growth rate is to couple high microwave power to the plasma. Indeed, increasing the power density leads to increase gas temperature the atomic hydrogen density in the plasma bulk, and to produce more hydrogen and methyl at the diamond surface. Experimental and numerical approaches were used to study the microwave plasma under high power densities conditions. Gas temperature was measured by optical emission spectroscopy and H-atom density using actinometry. CH{sub 3}-radical density was obtained using a 1D model that describes temperatures and plasma composition from the substrate to the top of the reactor. The results show that gas temperature in the plasma bulk, atomic hydrogen, and methyl densities at the diamond surface highly increase with the power density. As a consequence, measurements have shown that diamond growth rate also increases. At very high power density, we measured a growth rate of 40??m/h with an H-atom density of 5 × 10{sup 17} cm{sup ?3} which corresponds to a H{sub 2} dissociation rate higher than 50%. Finally, we have shown that the growth rate can be framed between a lower and an upper limit as a function depending only on the maximum of H-atom density measured or calculated in the plasma bulk. The results also demonstrated that increasing fresh CH{sub 4} by an appropriate injection into the boundary layer is a potential way to increase the diamond growth rates.

  12. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    SciTech Connect (OSTI)

    Das, Sayantan; Alford, T. L.

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  13. Direct correlation and strong reduction of native point defects and microwave dielectric loss in air-annealed (Ba,Sr)TiO{sub 3}

    SciTech Connect (OSTI)

    Zeng, Z. Q.; Podpirka, A.; Kirchoefer, S. W.; Asel, T. J.; Brillson, L. J.

    2015-05-04

    We report on the native defect and microwave properties of 1 ?m thick Ba{sub 0.50}Sr{sub 0.50}TiO{sub 3} (BST) films grown on MgO (100) substrates by molecular beam epitaxy (MBE). Depth-resolved cathodoluminescence spectroscopy (DRCLS) showed high densities of native point defects in as-deposited BST films, causing strong subgap emission between 2.0?eV and 3.0?eV due to mixed cation V{sub C} and oxygen Vo vacancies. Post growth air anneals reduce these defects with 2.2, 2.65, and 3.0?eV V{sub O} and 2.4?eV V{sub C} intensities decreasing with increasing anneal temperature and by nearly two orders of magnitude after 950?°C annealing. These low-defect annealed BST films exhibited high quality microwave properties, including room temperature interdigitated capacitor tunability of 13% under an electric bias of 40?V and tan?? of 0.002 at 10?GHz and 40?V bias. The results provide a feasible route to grow high quality BST films by MBE through post-air annealing guided by DRCLS.

  14. ISSUANCE 2015-06-26: Energy Conservation Program: Test Procedures for

    Office of Environmental Management (EM)

    Dehumidifiers, Final Rule | Department of Energy 6: Energy Conservation Program: Test Procedures for Dehumidifiers, Final Rule ISSUANCE 2015-06-26: Energy Conservation Program: Test Procedures for Dehumidifiers, Final Rule This document is the Energy Conservation Program: Test Procedures for Dehumidifiers, Final Rule. PDF icon dehumid_tp_finalrule.pdf More Documents & Publications ISSUANCE 2015-01-27: Energy Conservation Program: Test Procedures for Dehumidifiers Supplemental Notice of

  15. Glass-coating and cleaning system to prevent carbon deposition on coke oven walls

    SciTech Connect (OSTI)

    Takahira, Takuya; Ando, Takeshi; Kasaoka, Shizuki; Yamauchi, Yutaka

    1997-12-31

    The new technology for protecting the coking chamber bricks from damage by hard-pushing is described. The technology consists of the glass coating on the wall bricks and a wall cleaner to blow deposited carbon. For the glass coating, a specially developed glaze is sprayed onto the wall bricks by a spraying device developed to completely spray one coking chamber in a few minutes. The wall cleaner is installed on a pusher ram in the facility to automatically blow air at a sonic speed during coke pushing. The life of the glazed layer is estimated to be over two years.

  16. Microwave transient analyzer

    DOE Patents [OSTI]

    Gallegos, C.H.; Ogle, J.W.; Stokes, J.L.

    1992-11-24

    A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source and a Bragg cell for deflecting a light beam at a plurality of deflection angles dependent upon frequency content of the signal. A streak camera and a microchannel plate intensifier are used to project Bragg cell output onto either a photographic film or a charge coupled device (CCD) imager. Timing markers are provided by a comb generator and a one shot generator, the outputs of which are also routed through the streak camera onto the film or the CCD imager. Using the inventive method, the full range of the output of the Bragg cell can be recorded as a function of time. 5 figs.

  17. Microwave transient analyzer

    DOE Patents [OSTI]

    Gallegos, Cenobio H. (Santa Fe, NM); Ogle, James W. (Santa Fe, NM); Stokes, John L. (Los Alamos, NM)

    1992-01-01

    A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source (12) and a Bragg cell (14) for deflecting a light beam (22) at a plurality of deflection angles (36) dependent upon frequency content of the signal. A streak camera (26) and a microchannel plate intensifier (28) are used to project Bragg cell (14) output onto either a photographic film (32) or a charge coupled device (CCD) imager (366). Timing markers are provided by a comb generator (50) and a one shot generator (52), the outputs of which are also routed through the streak camera (26) onto the film (32) or the CCD imager (366). Using the inventive method, the full range of the output of the Bragg cell (14) can be recorded as a function of time.

  18. MWRRET (Microwave Radiometer Retrievals)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - - 3:00 3:00 Vetting & Integration Vetting & Integration Best Estimate Best Estimate * * MWR cloud prop., Flux closure, Microphysics MWR cloud prop., Flux closure, Microphysics...

  19. Morphology control of open-framework zinc phosphate Zn{sub 4}(H{sub 3}O)(NH{sub 4}){sub 3}(PO{sub 4}){sub 4} via microwave-assisted technique

    SciTech Connect (OSTI)

    Ding, Ling; Song, Yu; Yang, Wei; Xue, Run-Miao; Zhai, Shang-Ru; An, Qing-Da

    2013-08-15

    Open-framework zinc phosphates were synthesized by microwave-assisted technique, and it was shown that the morphology of as-prepared materials could be easily tailored by changing synthesis temperature, reaction time and pH value. During the synthesis, when the reaction temperature increases from 130 °C to 220 °C, the products transformed from hexagonal prisms to polyhedron along with the disappearance of the hexagonal prisms vertical plane. Simultaneously, both the reaction time and pH value could promote the nucleation and growth of crystal particles. More interestingly, the target products with different morphologies could be obtained by varying the usage of NaOH or NH{sub 3}·H{sub 2}O at 130 °C during the microwave synthesis process. - Graphical abstract: Zinc phosphates with variable morphologies can be obtained by simply tuning the microwave-heating temperatures. Display Omitted - Highlights: • Synthesis of open-framework Zn{sub 4} (H{sub 3}O) (NH{sub 4}){sub 3}(PO{sub 4}){sub 4} compounds employing microwave technique. • Dependence of morphology on the reaction conditions. • Morphology transformation from hexagonal prisms to polyhedron was observed.

  20. Analysis of the microwave, terahertz, and far infrared spectra of monodeuterated methanol CH{sub 2}DOH up to J = 26, K = 11, and o{sub 1}

    SciTech Connect (OSTI)

    Coudert, L. H.; Zemouli, M.; Motiyenko, R. A.; Margulès, L.; Klee, S.

    2014-02-14

    The first theoretical approach aimed at accounting for the energy levels of a non-rigid molecule displaying asymmetric-top asymmetric-frame internal rotation is developed. It is applied to a line position analysis of the high-resolution spectrum of the non-rigid CH{sub 2}DOH molecule and allows us to carry out a global analysis of a data set consisting of already available data and of microwave and far infrared transitions measured in this work. The analysis is restricted to the three lowest lying torsional levels (e{sub 0}, e{sub 1}, and o{sub 1}), to K ? 11, and to J ? 26. For the 8211 fitted lines, the unitless standard deviation is 2.4 and 103 parameters are determined including kinetic energy, hindering potential, and distortion effects parameters.