National Library of Energy BETA

Sample records for degrees fahrenheit high

  1. High degree of molecular orientation by a combination of THz and femtosecond laser pulses

    SciTech Connect (OSTI)

    Kitano, Kenta; Ishii, Nobuhisa; Itatani, Jiro [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan) and CREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2011-11-15

    We propose a method for achieving molecular orientation by two-step excitation with intense femtosecond laser and terahertz (THz) pulses. First, the femtosecond laser pulse induces off-resonant impulsive Raman excitation to create rotational wave packets. Next, a delayed intense THz pulse effectively induces resonant dipole transition between neighboring rotational states. By controlling the intensities of both the pulses and the time delay, we can create rotational wave packets consisting of states with different parities in order to achieve a high degree of molecular orientation under a field-free condition. We numerically demonstrate that the highest degree of orientation of >0.8 in HBr molecules is feasible under experimentally available conditions.

  2. Department of Energy Official Touts Bush Administration's Efforts...

    Office of Environmental Management (EM)

    superconductors that can operate at relatively "high" temperatures, from approximately -320 to -370 degrees Fahrenheit (50 to 77 Kelvin), and in magnetic fields from 1 to 4 Tesla. ...

  3. EA-1733: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The proposed EGS project includes the injection of water, ranging from 50 to 80 degrees Fahrenheit, into wells to enhance the permeability of an existing high temperature ...

  4. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    SciTech Connect (OSTI)

    McCluskey, F. P.

    2007-04-30

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been

  5. THE MAGNETIZATION DEGREE OF THE OUTFLOW POWERING THE HIGHLY POLARIZED REVERSE-SHOCK EMISSION OF GRB 120308A

    SciTech Connect (OSTI)

    Zhang, Shuai; Jin, Zhi-Ping; Wei, Da-Ming, E-mail: jin@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China)

    2015-01-01

    GRB 120308A, a long duration ?-ray burst (GRB) detected by Swift, was distinguished by a highly polarized early optical afterglow emission that strongly suggests an ordered magnetic field component in the emitting region. In this work, we model the optical and X-ray emission in the reverse and forward shock scenario and show that the strength of the magnetic field in the reverse-shock region is ?10 times stronger than that in the forward shock region. Consequently, the outflow powering the highly polarized reverse-shock optical emission was mildly magnetized at a degree of ? ? a few percent. Considering the plausible magnetic energy dissipation in both the acceleration and prompt emission phases of the GRB outflow, the afterglow data of GRB 120308A provides us with compelling evidence that, at least for some GRBs, a nonignorable fraction of the energy was released in the form of Poynting flux, confirming the finding first made in the reverse-forward shock emission modeling of the optical afterglow of GRB 990123 by Fan etal. in 2002 and Zhang etal. in 2003.

  6. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect (OSTI)

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  7. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  8. Development of an Energy Efficient High temperature Natural Gas Fired Furnace

    SciTech Connect (OSTI)

    Dr. Mark G. Stevens; Dr. H. Kenneth Staffin; DOE Project Officer - Keith Bennett

    2005-02-28

    The design concept is designated the ''Porous Wall Radiation Barrier'' heating mantle. In this design, combustion gas flows through a porous wall surrounding the retort, transferring its heat to the porous wall, which then radiates heat energy to the retort. Experiments demonstrate that heat transfer rates of 1.8-2.4 times conventional gas fired mantles are achievable in the temperature range of 1600-2350 degrees fahrenheit.

  9. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  10. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, C.S.

    1999-03-16

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing. 3 figs.

  11. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, Charles S.

    1999-01-01

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing.

  12. Laser hazard analysis for LASIRIS Model MAG-501L-670M-1000-45[degree]-K diode laser associated with high resolution pulsed scanner.

    SciTech Connect (OSTI)

    Augustoni, Arnold L.

    2004-11-01

    A laser hazard analysis and safety assessment was performed for the LASIRISTM Model MAG-501L-670M-1000-45o-K diode laser associated with the High Resolution Pulse Scanner based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for the Safe Use of Lasers Outdoors. The laser was evaluated for both indoor and outdoor use.

  13. Energy Efficiency Report--Glossary

    Gasoline and Diesel Fuel Update (EIA)

    Thermal Unit (Btu): The quantity of heat needed to raise the temperature of 1 pound of water by 1 degree Fahrenheit at or near 39.2 degrees Fahrenheit. Census Region: A geographic...

  14. C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP

    Gasoline and Diesel Fuel Update (EIA)

    Aquifer Field: A sub-surface facility for storing natural gas consisting of water-bearing ... temperature of 1 pound of water by 1 degree Fahrenheit at or near 39.2 degrees Fahrenheit. ...

  15. Lens positioner with five degrees of freedom

    DOE Patents [OSTI]

    Kobierecki, Marian W.; Rienecker, Jr., Frederick

    1978-01-01

    A device for positioning lenses precisely with five degrees of freedom (three translations and two angular rotations). The unique features of the device are its compact design, large clear aperture, and high degree of positioning accuracy combined with five degrees of freedom in axis motion. Thus, the device provides precision and flexibility in positioning of optical components. BACKGROUND OF THE INVENTION The invention described herein was made in the course of, or under, Contract No. AT(29-1)-1183, with the United States Energy Research and Development Administration.

  16. Development and exploitation stategies in a high-pressure-temperature reservoir with a complex hydrocarbon fluid column

    SciTech Connect (OSTI)

    Maan, N.; Rosales, E.; Medina, H.

    1995-12-31

    This paper summarizes an interdisciplinary study performed to plan final Reservoir Development and Secondary Recovery Strategies for The Carito Field discovered in late 1987. Carito is a very large oil Field located in Northeastern Venezuela, with an estimated Volumetric Oil in Place of 1.8 Billion Stb. Production is mainly from Naricual Formation with a thickness of about 1300 feet in a faulted anticline. At the time of this Study, 25 wells had been drilled below 12200 ft ss. These wells were producing about 90000 Stb/D through 39 completions. Original reservoir pressure was abnormally high (11300 psig at 14040 ft SS) and the Temperature averages 300 degrees Fahrenheit. The field shows a graded fluid system that varies from a gas condensate to a medium oil. Gas cap to oil zone ratio is about 1.2 and crude oil gravity varies with depth from 36 to 21 API degrees. The simulation study, conducted to establish the optimum exploitation strategy, incorporated a detailed geologic model based on seismic, sedimentary environment. and production geologic concepts. The data from the geologic model, routine and special test data from conventional cores, and the data from 58 fluid analysis were consolidated in a numerical reservoir simulator model, which predicted the potential reservoir performance under various Development, Production and Secondary Recovery Planning. The results of this study led us to design a Gas Injection Secondary Recovery Process encompassing a rate injection of 600 MMScf/D through 10 injector wells and the perforation of an additional 16 producer wells. We expect to double the natural depletion oil Recovery as a consequence of the Pressure Maintenance Program.

  17. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees...

  18. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  19. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  20. Comfort in High-Performance Homes in a Hot-Humid Climate

    SciTech Connect (OSTI)

    Poerschke, A.; Beach, R.

    2016-01-01

    IBACOS monitored 37 homes during the late summer and early fall of 2014 in a hot and humid climate to better understand indoor comfort conditions. These homes were constructed in the last several years by four home builders that offered a comfort and performance guarantee for the homes. The homes were located in one of four cities: Tampa, Florida; Orlando, Florida; Houston, Texas; and San Antonio, Texas. Temperature and humidity data were collected from the thermostat and each room of the house using small, battery-powered data loggers. To understand system runtime and its impact on comfort, supply air temperature also was measured on a 1-minute interval. Overall, the group of homes only exceeded a room-to-room temperature difference of 6 degrees Fahrenheit for 5% of the time.

  1. Health Physics Enrollments and Degrees, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    health physics or in an option program equivalent to a major. Twenty-four academic programs reported having health physics programs during 2011. The data for two health physics options within nuclear engineering programs are also included in the enrollments and degrees that are reported in the nuclear engineering enrollments and degrees data. Degree Trends. Bachelor degrees increased slightly between 2010 and 2011, but were 15% less than during 2005 through 2009 and 30% less than in the

  2. Microsoft Word - Blurbs for Nik.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NFPA Chemical Labeling System The NFPA diamond is a coded symbol which combines both color and numerical rating (0-4) to indicate the degree of hazard associated with the substance. Blue = Health Red = Flammability Yellow = Reactivity White = Other Flammability (flash points) Health 0 = Will not burn 0 = Normal Material 1 = above 200 degrees Fahrenheit 1 = Slight Hazard 2 = Between 100-200 degrees Fahrenheit 2 = Moderately Hazardous 3 = Below 100 degrees Fahrenheit 3 = Extremely Hazardous 4 =

  3. RAPID/Roadmap/3-NM-e | Open Energy Information

    Open Energy Info (EERE)

    Business Lease), developers pursuing geothermal projects on state trust lands where the temperature of the extractable resource is less than 250 degrees Fahrenheit may apply for...

  4. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may include fever over 100 degrees Fahrenheit, muscle or body aches, chills, headache, cough, fatigue, weakness and nasal congestion. Once infected, a person may develop no...

  5. Fermilab | Science at Fermilab | Experiments & Projects | Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At the heart of the LHC are superconducting magnets made of niobium-titanium. When cooled with liquid helium to negative 514 degrees Fahrenheit, the cable inside the ...

  6. Word Pro - Glossary

    Gasoline and Diesel Fuel Update (EIA)

    ... content of emulsions (exclusive of water), and petroleum distillates blended with ... the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature ...

  7. EM Leaders Earn National Defense Degrees

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Two EM employees were recently awarded Master of Science degrees from the National Defense University (NDU) as part of a DOE-sponsored professional development program.

  8. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Asia...

  9. Development and Implementation of Degree Programs in Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric ...

  10. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric Drive...

  11. Calculation of variable-base degree-days and degree-nights from monthly average temperatures

    SciTech Connect (OSTI)

    Sonderegger, R.; Cleary, P.; Dickinson, B.

    1985-01-01

    The Computerized Instrumented Residential Audit (CIRA), a micro-computer building energy analysis program developed at Lawrence Berkeley Laboratory, uses a monthly variable-base degree-day method to calculate heating and cooling loads. The method's unique feature is its ability to model thermostat setbacks and storage of solar gain. The program accomplishes this by dividing each day into two periods, ''average day'' (8 a.m. to 8 p.m.) and ''average night'' (8 p.m. to 8 a.m.), with different base temperatures. For each mode (heating or cooling) and for each period (day or night), the program reconstructs degree-days as a function of average monthly day or night temperature using three empirical coefficients specific to the location. A comparison is made between degree-days computed from hourly weather tapes and those predicted using this method. The root mean square error between predicted and actual degree days is typically between 3 and 12 degree-days per month. Tables of the coefficients are given for over 150 locations in the United States, computed from hourly dry-bulb temperatures on TRY and TMY tapes. Seasonal predictions of heating and cooling energy budgets using this method show good correspondence to the DOE-2 hourly simulation method.

  12. Interdiffusion and Reaction between Zr and Al Alloys from 425 degrees to 625 degrees C

    SciTech Connect (OSTI)

    J. Dickson; L. Zhou; A. Ewh; M. Fu; D. D. Keiser, Jr.; Y. H. Sohn; A. Paz y Puente

    2014-06-01

    Zirconium has recently garnered attention for use as a diffusion barrier between UMo nuclear fuels and Al cladding alloys. Interdiffusion and reactions between Zr and Al, Al-2 wt.% Si, Al-5 wt.% Si or AA6061 were investigated using solid-to-solid diffusion couples annealed in the temperature range of 425 degrees to 625 degrees C. In the binary Al and Zr system, the Al3Zr and Al2Zr phases were identified, and the activation energy for the growth of the Al3Zr phase was determined to be 347 kJ/mol. Negligible diffusional interactions were observed for diffusion couples between Zr vs. Al-2 wt.% Si, Al-5 wt.% Si and AA6061 annealed at or below 475 degrees C. In diffusion couples with the binary AlSi alloys at 560 degrees C, a significant variation in the development of the phase constituents was observed including the thick t1 (Al5SiZr2) with Si content up to 12 at.%, and thin layers of (Si,Al)2Zr, (Al,Si)3Zr, Al3SiZr2 and Al2Zr phases. The use of AA6061 as a terminal alloy resulted in the development of both T1 (Al5SiZr2) and (Al,Si)3Zr phases with a very thin layer of (Al,Si)2Zr. At 560 degrees C, with increasing Si content in the AlSi alloy, an increase in the overall rate of diffusional interaction was observed; however, the diffusional interaction of Zr in contact with multicomponent AA6061 with 0.40.8 wt.% Si was most rapid.

  13. Multiple-degree-of-freedom vehicle

    DOE Patents [OSTI]

    Borenstein, Johann

    1995-01-01

    A multi-degree-of-freedom vehicle employs a compliant linkage to accommodate the need for a variation in the distance between drive wheels or drive systems which are independently steerable and drivable. The subject vehicle is provided with rotary encodes to provide signals representative of the orientation of the steering pivot associated with each such drive wheel or system, and a linear encoder which issues a signal representative of the fluctuations in the distance between the drive elements. The wheels of the vehicle are steered and driven in response to the linear encoder signal, there being provided a controller system for minimizing the fluctuations in the distance. The controller system is a software implementation of a plurality of controllers, operating at the chassis level and at the vehicle level. A trajectory interpolator receives x-displacement, y-displacement, and .theta.-displacement signals and produces to the vehicle level controller trajectory signals corresponding to interpolated control signals. The x-displacement, y-displacement, and .theta.-displacement signals are received from a human operator, via a manipulable joy stick.

  14. ORISE: Report shows number of health physics degrees for 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the early 2000 FOR IMMEDIATE RELEASE Dec. 20, 2011 FY12-09 OAK RIDGE, Tenn.-The number of health physics graduate degrees increased for both master's and doctoral candidates in 2010, but decreased for bachelor's degrees, says a report released this year by the Oak Ridge Institute for Science and Education. The ORISE report,

  15. Heavy metals in the near-surface aerosol over the Atlantic Ocean from 60 degree south to 54 degree north

    SciTech Connect (OSTI)

    Voelkening, J.; Heumann, K.G. )

    1990-11-20

    The particulate heavy metal concentrations of Cr, Fe, Ni, Cu, Zn, Cd, Tl, and Pb were determined in the atmosphere over the Atlantic Ocean from 60{degree}S to 54{degree}N with the definitive method of isotope dilution mass spectrometry. Fe was used as a reference element for the influence of crustal material calculating the corresponding enrichment factors EF(Fe) for the other metal traces. Tl showed the lowest abundance of all heavy metals with concentrations of less than 20 pg m{sup {minus}3} for all samples except those from the area around the English Channel. The concentration ranges for the other elements were Cr = <0.08-9 ng m{sup {minus}3}, Fe = <2.6-7,500 ng m{sup {minus}3}, Ni = <0.05-10 ng m{sup {minus}3}, Cu = <0.02-20 ng m{sup {minus}3}, Zn = <0.09-450 ng m{sup {minus}3}, Cd = <0.003-3.5 ng m{sup {minus}3}, and Pb = <0.05-200 ng m{sup {minus}3}. The lowest element concentrations were usually measured in the remote areas of the South Atlantic, whereas the highest ones were detected around the English Channel. Due to high Fe concentrations, a substantial influence of crustal material was observed in the atmosphere southeast of the South American continent, in the South Atlantic area of the southeast trades, and over the North Atlantic west of North Africa. EF(Fe) values for the most part less than 10 for Cr and Ni and less than 50 for Cu indicate that the influence of crustal material for these metals is much higher than for Zn, Cd, and Pb where EF(Fe) values between 500 and 5,000 had often been determined. This is due to anthropogenic and biological influences.

  16. Degree of dispersion of latex particles in cement paste, as assessed by electrical resistivity measurement

    SciTech Connect (OSTI)

    Fu, X.; Chung, D.D.L.

    1996-12-31

    The degree of dispersion of latex particles in latex-modified cement paste was assessed by measurement of the volume electrical resistivity and modeling this resistivity in terms of latex and cement phases that are partly in series and partly in parallel. The assessment was best at low values of the latex-cement ratio; it underestimated the degree of latex dispersion when the latex/cement ratio was high, especially > 0.2.

  17. Multiple degree-of-freedom mechanical interface to a computer system

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2001-01-01

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  18. Effect of deacetylation degree in chitosan composite membranes on pervaporation performance

    SciTech Connect (OSTI)

    Lee, Y.M.; Park, H.B.; Nam, S.Y.; Won, J.M.; Kim, H.

    1998-06-01

    The effect of the degree of deacetylation in chitosan composite membranes on their pervaporation performance for ethanol dehydration was investigated. The degree of deacetylation of chitosans was measured by using an infrared spectroscopic method and elemental analysis. The chitosan composite membranes were prepared by coating a chitosan solution onto a microporous polyethersulfone membrane with 3--7 nm pore sizes. Then the surface of the top layer (chitosan) of well-dried membranes was crosslinked with sulfuric acid, and pervaporation experiments for binary mixtures (water-ethanol) were carried out at various conditions. In the case of a chitosan membrane with a high degree of deacetylation, the flux increases while the separation factor decreases compared with membranes with a low degree of deacetylation.

  19. Nuclear Engineering Enrollments and Degrees Survey, 2015 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SURVEY UNIVERSE The 2015 Nuclear Engineering Enrollments and Degrees Survey reports degrees granted between September 1, 2014 and August 31, 2015. Enrollment information refers to the fall term 2015. The enrollments and degrees data comprises students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-five academic programs reported having nuclear engineering programs during 2015, and data was received from all thirty-five programs. The report includes

  20. Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering ...

  1. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and astrophysical capture processes R.E. Tribble A.M. Mukhamedzhanov Graduate Teaching Assistant Pursuing degree at Department of Statistics, Texas A&M University Jim...

  2. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    SciTech Connect (OSTI)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  3. Brief 70 Nuclear Engineering Enrollments and Degrees, 2011 Summary Information

    SciTech Connect (OSTI)

    Dr. Don Johnson

    2012-10-31

    The survey includes degrees granted between September 1, 2010 and August 31, 2011. Enrollment information refers to the fall term 2011. The enrollment and degree data include students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during 2011, and data was received from all thirty-two programs. The data for two nuclear engineering programs include enrollments and degrees in health physics options that are also reported in the health physics enrollments and degrees data.

  4. ORISE: Report by ORISE shows health physics degrees declined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics degrees declined in 2014, enrollment trends reverse Enrollment data ... graduating with majors in health physics has declined across undergraduate, ...

  5. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE April 1, 2010 - March 31, 2011 Name Year Thesis Title Advisor Present Position Zach...

  6. Biography U. Dsterloh Degree: PD Dr.- Ing. habil. Institution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. Dsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology. Chair: chair for waste disposal technologies and geomechanics. 1982- 1988 field of study:...

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Solar Thermal Collector Domestic Shipments by Market Sector, End-Use, and Type, 2009 End Use Market Sector Type of Collector End Use by Type of Collector 294 U.S. Energy Information Administration / Annual Energy Review 2011 1 Combined space and water heating. 2 Space heating, combined heating, and space cooling. 3 Collectors that generally operate at temperatures below 110 degrees Fahrenheit. 4 Collectors that generally operate in the temperature range of 140 degrees Fahrenheit to 180 degrees

  8. Table 26. Natural gas home customer-weighted heating degree...

    U.S. Energy Information Administration (EIA) Indexed Site

    6:14:01 PM Table 26. Natural gas home customer-weighted heating degree days MonthYear... Table 26 Created on: 4262016 6:14:07 PM Table 26. Natural gas home customer-weighted ...

  9. Microsoft Word - VI_12_Degrees Awarded 2015.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear systems A. Bonasera Post Doc. at INFN - Laboratori Nazionali del Sud, Catania, Italy STUDENTS WHO RECEIVED GRADUATE DEGREES FROM NON-THESIS April 1, 2014 - March 31, 2015 ...

  10. Charm degrees of freedom in the quark gluon plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mukherjee, Swagato; Petreczky, Peter; Sharma, Sayantan

    2016-01-11

    The lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, Tc; i.e., charm degrees of freedom carrying fractional baryonic charge start to appear. When we reexamine those same lattice QCD data we show that, in addition to the contributions from quarklike excitations, the partial pressure of charm degrees of freedom may still contain significant contributions from open-charm-meson- and baryonlike excitations associated with integral baryonic charges for temperatures up to 1.2Tc. Finally, charm-quark quasiparticles become the dominant degrees of freedom for temperatures T>1.2Tc.

  11. Brief 66 Nuclear Engineering Enrollments and Degrees Survey, 2009 Data

    SciTech Connect (OSTI)

    Dr. Larry M. Blair, Analysis and Evaluation, Science Education Programs

    2010-03-01

    The survey includes degrees granted between September 1, 2008 and August 31, 2009, and fall 2009 enrollments. Thirty-two academic programs reported having nuclear engineering programs during 2009, and data was obtained from all thirty-two.

  12. VI-12 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. H. Youngblood Continue to Ph. D. degree Guangyao Chen 2013 Initial Conditions from Color Glass Condensate R. J. Fries Post. Doc. at Cyclotron Institute, Texas A&M University...

  13. Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon

    SciTech Connect (OSTI)

    Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.; Hall, Kathleen D.; Weiland, Mark A.; Deng, Zhiqun; Carlson, Thomas J.; Eppard, Matthew B.

    2013-04-30

    Animal telemetry, which requires the implantation of passive transponders or active transmitters, is used to monitor and assess fish stock and conservation to gain an understanding of fish movement and behavior. As new telemetry technologies become available, studies of their effects on species of interest are imperative as is development of implantation techniques. In this study, we investigated the effects of bevel rotation (0-, 90-, 180-degree axis rotation) on wound extent, tag loss, and wound healing rates in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the novel injectable Juvenile Salmon Acoustic Telemetry Systems (JSATS) acoustic transmitter or large passive integrated transponder (PIT) tags. Although the injection sites were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, and/or redness around the wound. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced smaller wound extent than the 180-degree bevel rotation. No axis rotation (0-degrees) resulted in the PIT tag frequently misleading or falling out upon injection. The results of this study indicated the 90-degree bevel rotation was the more efficient technique, produced less wound extent. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation in telemetry studies. Highlights •Three degrees of needle rotation were examined for effects in Chinook salmon. •Mortality, tag loss, wound extent, healing, and infection indicators were measured. •There were no mortalities, tag loss, or indications of infection. •The 90-degree needle rotation through Day 7 produced the smallest wound extent.

  14. Brief 75 Health Physics Enrollments and Degrees Survey, 2014 Data

    SciTech Connect (OSTI)

    None, None

    2015-03-05

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014. Enrollment information refers to the fall term 2014. Twenty-two academic programs were included in the survey universe, with all 22 programs providing data. Since 2009, data for two health physics programs located in engineering departments are also included in the nuclear engineering survey. The enrollments and degrees data includes students majoring in health physics or in an option program equivalent to a major.

  15. Brief 73 Health Physics Enrollments and Degrees Survey, 2013 Data

    SciTech Connect (OSTI)

    None, None

    2014-02-15

    The survey includes degrees granted between September 1, 2012 and August 31, 2013. Enrollment information refers to the fall term 2013. Twenty-two academic programs were included in the survey universe, with all 22 programs providing data. Since 2009, data for two health physics programs located in engineering departments are also included in the nuclear engineering survey. The enrollments and degrees data includes students majoring in health physics or in an option program equivalent to a major.taoi_na

  16. Health Physics Enrollments and Degrees Survey, 2013 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SURVEY UNIVERSE The survey includes degrees granted between September 1, 2012 and August 31, 2013. Enrollment information refers to the fall term 2013. Twenty-two academic programs were included in the survey universe, with all 22 programs providing data. Since 2009, data for two health physics programs located in engineering departments are also included in the nuclear engineering survey. The enrollments and degrees data includes students majoring in health physics or in an option program

  17. Health Physics Enrollments and Degrees Survey, 2014 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SURVEY UNIVERSE The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014. Enrollment information refers to the fall term 2014. Twenty-two academic programs were included in the survey universe, with all 22 programs providing data. Since 2009, data for two health physics programs located in engineering departments are also included in the nuclear engineering survey. The enrollments and degrees data includes students majoring in health physics or in an option program

  18. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect (OSTI)

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 15004500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera arrays sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  19. RAPID/Roadmap/5-CO-a | Open Energy Information

    Open Energy Info (EERE)

    five hundred (2,500) feet or that expects to encounter geothermal fluids having a temperature greater than two hundred and twelve (212) degrees Fahrenheit. (Rule 4.2.28.1)....

  20. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    ... foot at a pressure base of 14.73 pounds standard per square inch absolute and a temperature base of 60 degrees Fahrenheit; Cubic meter is a unit of measure which equals 35.314 ...

  1. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    48 contiguous states averaged 41 degrees Fahrenheit, 7% colder than the same period last winter, according to data from Bentek Energy. Average power burn through March 18 rose by...

  2. Geothermal Technology Breakthrough in Alaska: Harvesting Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal exploration at lower temperatures, thanks to a ... degrees Fahrenheit).This innovation increases the ... Hot Springs to reduce the cost of power from 0.30 per kWh ...

  3. Frequently Asked Questions Form EIA-857

    U.S. Energy Information Administration (EIA) Indexed Site

    ... For the second issue, you must carefully consider the business your customers are in. If ... This adjustment factor is the value of your pressure base at 60-degrees Fahrenheit divided ...

  4. EIA-813, Monthly Crude Oil Report Page 1 U. S. DEPARTMENT OF...

    Gasoline and Diesel Fuel Update (EIA)

    transporting Alaskan crude oil by water in the 50 States and the District of Columbia. ... month, corrected to 60 degrees Fahrenheit (F) less basic sediment and water (BS&W). ...

  5. EIA-803, Weekly Crude Oil Stocks Report Page 1 U. S. DEPARTMENT...

    Gasoline and Diesel Fuel Update (EIA)

    transporting Alaskan crude oil by water in the 50 States and the District of Columbia. ... reported corrected to 60 degrees Fahrenheit ( 0 F) less basic sediment and water (BS&W). ...

  6. A meeting of the minds when NYC CoolRoofs visits PPPL | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which collected data on three white "cool roofs," including one on the Museum of Modern Art Queens in Long Island City, and found there was a 42 degree Fahrenheit difference...

  7. EIA Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    temperatures continuing to be 4 to 9 degrees Fahrenheit below normal in the four cities (Atlanta, Chicago, Houston, and New York) monitored by this report. Prices on the spot...

  8. Glossary - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    British thermal unit: The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest ...

  9. Welding consumable selection for cryogenic (4{degrees}K) application

    SciTech Connect (OSTI)

    Kane, S.F.; Siewert, T.A.

    1994-12-31

    Brookhaven National Laboratory (BNL) has begun construction of a large (3.8 kilometer circumference) heavy ion collider for the Department of Energy. The collider uses superconducting magnets, operating at 4{degrees}K in supercritical helium, which meets the definition of a pressure vessel. The ASME Boiler & Pressure Vessel Code grants an exemption from impact testing to certain metals, but only for operating temperatures down to 20{degrees}K. Research and the latest change to ASTM Standard E23 have invalidated Charpy testing at 4{degrees}K, thus compliance with the Code is not possible. This effort was undertaken to identify the weld process and weld material necessary to comply with the intent of the Code (impact test) requirements, that is, to design a weld joint that will assure adequate fracture toughness. We will report the results of this development and testing, and conclude that nitrogen and maganese enhanced 385L provides a superior weld metal for 4{degrees}K cryogenic applications without the exaggerated purity concerns normally associated with superaustenitic weld materials. This development has been so successful that BNL has procured 15,000 pounds of this material for magnet production. Oxygen content, manifested as inclusion density, has the single most significant effect upon fracture toughness and impact strength. Finally, we report that GMAW is a viable welding process, using off-the-shelf equipment, for 4{degrees}K cryogenic applications.

  10. Higher-degree linear approximations of nonlinear systems

    SciTech Connect (OSTI)

    Karahan, S.

    1989-01-01

    In this dissertation, the author develops a new method for obtaining higher degree linear approximations of nonlinear control systems. The standard approach in the analysis and synthesis of nonlinear systems is a first order approximation by a linear model. This is usually performed by obtaining a series expansion of the system at some nominal operating point and retaining only the first degree terms in the series. The accuracy of this approximation depends on how far the system moves away from the normal point, and on the relative magnitudes of the higher degree terms in the series expansion. The approximation is achieved by finding an appropriate nonlinear coordinate transformation-feedback pair to perform the higher degree linearization. With the proposed method, one can improve the accuracy of the approximation up to arbitrarily higher degrees, provided certain solvability conditions are satisfied. The Hunt-Su linearizability theorem makes these conditions precise. This approach is similar to Poincare's Normal Form Theorem in formulation, but different in its solution method. After some mathematical background the author derives a set of equations (called the Homological Equations). A solution to this system of linear equations is equivalent to the solution to the problem of approximate linearization. However, it is generally not possible to solve the system of equations exactly. He outlines a method for systematically finding approximate solutions to these equations using singular value decomposition, while minimizing an error with respect to some defined norm.

  11. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Heat Content of Natural Gas Consumed Definitions Key Terms Definition British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees Fahrenheit). Delivered to Consumers (Heat Content) Heat content of residential, commercial, industrial, vehicle fuel and electric power deliveries to consumers. Electric Power (Heat Content) Heat content of

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Compressed natural gas motor fuel is subject to the state fuel excise tax at the rate of $0.30 per 120 cubic feet, measured at 14.73 pounds per square inch and 60 degrees Fahrenheit. Propane motor fuel is subject to the excise tax $0.30 per 1.3 gallons at 60 degrees Fahrenheit. (Reference Oregon Revised Statutes 319.530

  13. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Heating Oil & Propane Prices Definitions Key Terms Definition No. 2 Fuel Oil (Heating Oil) A distillate fuel oil for use in atomizing type burners for domestic heating or for use medium capacity commercial-industrial burner units, with distillation temperatures between 540-640 degrees Fahrenheit at the 90-percent recovery point; and the kinematic viscosities between 1.9-3.4 centistokes at 100 degrees Fahrenheit as defined in ASTM Specification D396-92. Petroleum Administration for Defense

  14. Scattering of particles with internal degrees of freedom

    SciTech Connect (OSTI)

    Slipushenko, S. V.; Tur, A. V.; Yanovsky, V. V.

    2013-08-15

    The scattering of particles with a small number of internal degrees of freedom is considered. Billiard formalism is used to study the scattering of two such structurally complex particles. The main scattering characteristics are found. Various types of scattering modes are revealed. In particular, a mode is detected when the velocity of motion of such particles away from each other is higher than their approach velocity before the collision. The scattering of such particles is shown to occur after a finite number of collisions. A generalized Newton law is proposed for the collision of particles with a small number of degrees of freedom, and the form of the effective coefficient of restitution is found.

  15. Six-degree-of-freedom multi-axes positioning apparatus

    DOE Patents [OSTI]

    Bieg, L.F.X.

    1999-05-11

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD. 9 figs.

  16. Six-degree-of-freedom multi-axes positioning apparatus

    DOE Patents [OSTI]

    Bieg, Lothar F. X.

    1999-01-01

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD.

  17. Microsoft Word - VI_13_Degrees Awarded 2016.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE April 1, 2015 - March 31, 2016 Name Year Thesis Title Advisor Present Position Paul Cammarata 2015 Ternary breaking of the reaction systems in heavy- ion collisions below the Fermi energy S.J. Yennello Senior Analyzer Sytem Engineer, Dow Chemical, Houston Texas Michael Simon Mehlman 2015 Development of TAMUTRAP beam line, RFQ, and ion traps for precision β-decay studies D. Melconian Scientist, Exponent

  18. ORISE: Nuclear engineering degrees at highest ranges since 1980s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE report shows graduation, enrollment rates for nuclear engineering candidates are still at highest ranges reported since 1980s Report also shows shifts in career opportunities beyond graduation in nuclear utilities FOR IMMEDIATE RELEASE Nov. 2, 2011 FY12-04 OAK RIDGE, Tenn.-After a one-year decline, the number of graduate and undergraduate nuclear engineering degrees earned in the United States bounced back in 2010. A recent report from the Oak Ridge Institute for Science and Education

  19. Grain boundary energy in 5 degrees of freedom space

    Energy Science and Technology Software Center (OSTI)

    2012-09-21

    GB5DOF is a program written in MatLab for computing excess energy of an arbitrary grain boundary defined by its 5 geometrical degrees of freedom. The program is written in the form of a single self-contained function callable from within commercially available MatLab software package. The function takes a geometric description of the boundary and material identity as input parameters and returns the predicted boundary energy.

  20. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  1. Elf well turns 90/degree/- and stays there

    SciTech Connect (OSTI)

    Astier, B.; Jourdan, A.; Baron, G.

    1981-01-01

    As part of an intensive research program, the French association IFP (Institut Francais du Petrole) and Elf-Aquitaine have drilled the first European horizontal hole. The well was spudded conventionally and then deviated so that its final path was horizontal, 2,198 ft (670 m) below the surface. More than 330 ft (100 m) were drilled between 89/degree/ and 92/degree/ of inclination. The project started with reservoir engineering studies aimed at demonstrating, on mathematical models, the effectiveness of a horizontal drain hole in areas where hydrocarbon recovery is poor or unsatisfactory, due to gas or water coning, poor flooding patterns, intersection of fractures in tight but fractured producing formations, or other causes. This technique has a number of potential applications both in and out of the oil industry. The well was drilled in 44 days. Horizontal displacement was 2,192 ft (668 m) with a total vertical depth of 2,198 ft (670 m). To accomplish this, it was necessary to drill 3,563 ft (1,086 m) of hole. In the 17/one-half/-in. hole, 73/4-in. drill collars and 5-in. heavy weight drill pipe were run above the bent sub and the monel collar. While reaming the hole, the drill string was rotated conventionally, one near bit and one stabilizer (30 ft above) being included in the string.

  2. Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint

    SciTech Connect (OSTI)

    Neises, T. W.; Wagner, M. J.; Gray, A. K.

    2014-04-01

    Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditional boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.

  3. Design of a Thermal Imaging Diagnostic Using 90-Degree, Off-Axis, Parabolic Mirrors

    SciTech Connect (OSTI)

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-09-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 30005000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 9001700 nm, and at 17003000 nm for timeresolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  4. Preliminary analysis of tank 241-C-106 dryout due to large postulated leak and vaporization

    SciTech Connect (OSTI)

    Piepho, M.G.

    1994-12-01

    This analysis assumes that there is a hypothetical large leak at the bottom of Tank 241-C-106 which initiates the dryout of the tank. The time required for a tank to dryout after a leak is of interest for safety reasons. As a tank dries out, its temperature is expected to increase which could affect the structural integrity of the concrete tank dome. Hence, it is of interest to know how fast and how high the temperature in a leaky tank increases, so that mitigation procedures can be planned and implemented in a timely manner. This analysis is focused on tank 241-C-106, which is known to be high thermal tank. The objective of the study was to determine how long it would take for tank 241-C-106 to reach 350 degrees Fahrenheit (about 177 degrees Centigrade) after a postulated large leak develops at the bottom center of the tank. The temperature of 350 degrees Fahrenheit is the minimum temperature that can cause structural damage to concrete (ACI 1992). The postulated leak at the bottom of the tank and the resulting dryout of the sludge in the tank make this analysis different from previous thermal analyses of the C-106 tank and other tanks, especially the double-shell tanks which are mostly liquid.

  5. Strongly coupled electronic, magnetic, and lattice degrees of freedom in LaCo5 under pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stillwell, Ryan L.; Jeffries, Jason R.; McCall, Scott K.; Lee, Jonathan R. I.; Weir, Samuel T.; Vohra, Yogesh K.

    2015-11-25

    In this study, we have performed high-pressure magnetotransport and x-ray diffraction measurements on ferromagnetic LaCo5, confirming the theoretically predicted electronic topological transition driving the magnetoelastic collapse seen in the related compound YCo5. Our x-ray diffraction results show an anisotropic lattice collapse of the c axis near 10 GPa that is also commensurate with a change in the majority charge carriers evident from high-pressure Hall effect measurements. The coupling of the electronic, magnetic, and lattice degrees of freedom is further substantiated by the evolution of the anomalous Hall effect, which couples to the magnetization of the ordered state of LaCo5.

  6. EXOPLANETS FROM THE ARCTIC: THE FIRST WIDE-FIELD SURVEY AT 80 Degree-Sign N

    SciTech Connect (OSTI)

    Law, Nicholas M.; Sivanandam, Suresh; Carlberg, Raymond; Salbi, Pegah; Ngan, Wai-Hin Wayne; Kerzendorf, Wolfgang; Ahmadi, Aida; Steinbring, Eric; Murowinski, Richard

    2013-03-15

    Located within 10 Degree-Sign of the North Pole, northern Ellesmere Island offers continuous darkness in the winter months. This capability can greatly enhance the detection efficiency of planetary transit surveys and other time domain astronomy programs. We deployed two wide-field cameras at 80 Degree-Sign N, near Eureka, Nunavut, for a 152 hr observing campaign in 2012 February. The 16 megapixel camera systems were based on commercial f/1.2 lenses with 70 mm and 42 mm apertures, and they continuously imaged 504 and 1295 deg{sup 2}, respectively. In total, the cameras took over 44,000 images and produced better than 1% precision light curves for approximately 10,000 stars. We describe a new high-speed astrometric and photometric data reduction pipeline designed for the systems, test several methods for the precision flat fielding of images from very-wide-angle cameras, and evaluate the cameras' image qualities. We achieved a scintillation-limited photometric precision of 1%-2% in each 10 s exposure. Binning the short exposures into 10 minute chunks provided a photometric stability of 2-3 mmag, sufficient for the detection of transiting exoplanets around the bright stars targeted by our survey. We estimate that the cameras, when operated over the full Arctic winter, will be capable of discovering several transiting exoplanets around bright (m{sub V} < 9.5) stars.

  7. Brief 71 Health Physics Enrollments and Degrees, 2011 Summary (11-12

    SciTech Connect (OSTI)

    Dr. Don Johnson

    2012-11-07

    The survey includes degrees granted between September 1, 2010 and August 31, 2011. Enrollment information refers to the fall term 2011. The enrollment and degree data include students majoring in health physics or in an option program equivalent to a major. Twenty-four academic programs reported having health physics programs during 2011. The data for two health physics options within nuclear engineering programs are also included in the enrollments and degrees that are reported in the nuclear engineering enrollments and degrees data.

  8. ORISE: Number of health physics degrees granted in 2013 has increased for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduates, declined for graduates Number of undergraduate health physics degrees dropped in 2015 to lowest level in more than a decade Despite number of bachelor's degrees decreasing, number of master's and doctorate degrees increased* FOR IMMEDIATE RELEASE Aug. 3, 2016 FY16-33.1 OAK RIDGE, Tenn.-The number of undergraduate students who graduated in 2015 with bachelor's degrees in health physics dropped to the lowest level in more than a decade, while the number of master's and

  9. ORISE: Number of health physics degrees granted in 2013 has increased for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduates, declined for graduates Number of undergraduate health physics degrees dropped in 2015 to lowest level in more than a decade Despite number of bachelor's degrees decreasing, number of master's and doctorate degrees increased* FOR IMMEDIATE RELEASE Aug. 3, 2016 FY16-33.1 OAK RIDGE, Tenn.-The number of undergraduate students who graduated in 2015 with bachelor's degrees in health physics dropped to the lowest level in more than a decade, while the number of master's and

  10. Thermal degradation of concrete in the temperature range from ambient to 315{degree} C (600{degree} F). Revision 10/96

    SciTech Connect (OSTI)

    Kassir, M.K.; Bandyopadhyay, K.K.; Reich, M.

    1996-10-01

    This report is concerned with determining the effect of elevated temperatures on the behavior of concrete. Emphasis is placed on quantifying the degree of potential degradation of the physical properties of concrete in high-level waste storage tanks. The temperature elevation range of interest is from ambient to 315 C (600 F). The literature has been reviewed to examine the applicable experimental data and quantify the degradation in the concrete and reinforcing steel. Since many variables and test conditions control the results in the data base, upper and lower bounds of the degraded properties at temperatures applicable to the environments of the storage tanks are summarized and presented in explicit forms. For properties with large data bases, a normal logarithmic distribution of the data is assumed and a statistical analysis is carried out to find the mean and 84% values of the degraded property in the temperature range of interest. Such results are useful in assessing the effect of elevated temperatures on the structural behavior of the tanks. In addition, the results provide the technical basis for a parametric study that may be necessary to investigate the thermal aspects of the structural integrity of the tanks. 50 refs., 23 figs.

  11. 360 Degree Photography to Decrease Exposure, Increase Safety & Minimize Waste

    SciTech Connect (OSTI)

    LEBARON, G.J.

    2002-01-31

    High-resolution digital cameras, in conjunction with software techniques. make possible 360{sup o} photos that allow a person to look all around, up and dawn, and zoom in or out. The software provides the opportunity to attach other information to a 360{sup o} photo such as sound tiles, flat photos (providing additional detail about what is behind a panel or around a corner) and text (Information which can be used to show radiological conditions or identify other hazards not readily visible). The software also allows other 360{sup o} photos to be attached creating a virtual tour where the user can move from area to area, and stop, study and zoom in on areas of interest. A virtual tour of a building or room can be used for facility documentation, informing management and others, work planning and orientation, and training, thus minimizing the need to re-enter hazardous radioactive areas. Reducing entries decreases exposure, increases safety and minimizes waste.

  12. Betatron-Function Measurement in Lattices with 90-Degrees Sections

    SciTech Connect (OSTI)

    Wienands, U.; Biagini, M.E.; /Frascati

    2012-04-24

    Lattice functions derived from betatron phase-advance measurements have been used successfully at many e{sup +}-e{sup -} facilities in the world, including at the PEP-II High Energy Ring. For the Low energy Ring of PEP-II, however, extraction of meaningful beta functions is hampered by the 90{sup o} phase advance/cell in the arcs, which causes a singularity in the expressions for beta. An algorithm has been developed calculating beta functions based on {beta} and {alpha} at the beginning of an arc and tracking the Twiss parameters through the arc while matching the observed phase advance/cell. Stability of the algorithm is improved by doing the same calculation 'backward' as well as forward and averaging the result. The algorithm allows estimating beta functions at bad BPMs in many cases. The paper presents the algorithm used as well as examples of use in PEP.

  13. ORISE: Report by ORISE shows health physics degrees declined on all levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2014 Health physics degrees declined in 2014, enrollment trends reverse Enrollment data suggests slowly declining trends FOR IMMEDIATE RELEASE June 25, 2015 FY15-37 OAK RIDGE, Tenn.-The total number of degrees awarded to students graduating with majors in health physics has declined across undergraduate, graduate and doctoral programs for the first time in four years. The report conducted by the Oak Ridge Institute for Science and Education, titled Health Physics Enrollments and Degrees

  14. Brief 72 Nuclear Engineering Enrollments and Degrees Survey, 2013 Data (2-14)

    SciTech Connect (OSTI)

    None, None

    2014-02-15

    The survey includes degrees granted between September 1, 2012 and August 31, 2013. Enrollment information refers to the fall term 2013. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during 2013, and data was received from all thirty-two programs. The data for two nuclear engineering programs include enrollments and degrees in health physics options that are also reported in the health physics enrollments and degrees data.

  15. ORISE: Number of health physics degrees granted in 2013 has increased...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Number of health physics degrees granted in 2013 has increased for undergraduates, ... OAK RIDGE, Tenn.-The number of college students graduating with majors in health physics ...

  16. The solubility of hydrogen in plutonium in the temperature range 475 to 825 degrees centigrade

    SciTech Connect (OSTI)

    Allen, T.H.

    1991-01-01

    The solubility of hydrogen (H) in plutonium metal (Pu) was measured in the temperature range of 475 to 825{degree}C for unalloyed Pu (UA) and in the temperature range of 475 to 625{degree}C for Pu containing two-weight-percent gallium (TWP). For TWP metal, in the temperature range 475 to 600{degree}C, the saturated solution has a maximum hydrogen to plutonium ration (H/Pu) of 0.00998 and the standard enthalpy of formation ({Delta}H{degree}{sub f(s)}) is (-0.128 {plus minus} 0.0123) kcal/mol. The phase boundary of the solid solution in equilibrium with plutonium dihydride (PuH{sub 2}) is temperature independent. In the temperature range 475 to 625{degree}C, UA metal has a maximum solubility at H/Pu = 0.011. The phase boundary between the solid solution region and the metal+PuH{sub 2} two-phase region is temperature dependent. The solubility of hydrogen in UA metal was also measured in the temperature range 650 to 825{degree}C with {Delta}H{degree}{sub f(s)} = (-0.104 {plus minus} 0.0143) kcal/mol and {Delta}S{degree}{sub f(s)} = 0. The phase boundary is temperature dependent and the maximum hydrogen solubility has H/Pu = 0.0674 at 825{degree}C. 52 refs., 28 figs., 9 tabs.

  17. Susceptibility of Granite Rock to scCO2/Water at 200 degrees C and 250 degrees C

    SciTech Connect (OSTI)

    Sugama, T.; Gill, S., Ecker, L., Butcher, T., Warren, J.

    2011-01-01

    Granite rock comprising anorthoclase-type albite and quartz as its major phases and biotite mica as the minor one was exposed to supercritical carbon dioxide (scCO{sub 2})/water at 250 C and 13.78 MPa pressure for 104 hours. For comparison purpose, four other rocks, albite, hornblende, diorite, and quartz, also were exposed. During the exposure of granite, ionic carbonic acid, known as the wet carbonation reactant, preferentially reacted with anorthoclase-type albite and biotite, rather than with quartz. The susceptibility of biotite to wet carbonation was higher than that of anorthoclase-type albite. All the carbonation by-products of anorthoclase-type albite were amorphous phases including Na- and K-carbonates, a kaolinite clay-like compound, and silicon dioxide, while wet carbonation converted biotite into potassium aluminum silicate, siderite, and magnesite in crystalline phases and hydrogen fluoride (HF). Three of these reaction by-products, Na- and K-carbonates and HF, were highly soluble in water. Correspondingly, the carbonated top surface layer, about 1.27 mm thick as carbonation depth, developed porous microstructure with numerous large voids, some of which have a size of {>=} 10 {mu}m, reflecting the erosion of granite by the leaching of these water-soluble reaction by-products. Comparing with this carbonation depth, its depth of other minerals was considerable lower, particularly, for hornblende and diorite with 0.07 and 0.02 mm, while no carbonate compound was detected in quartz. The major factor governing these low carbonation depths in these rocks was the formation of water-insensitive scale-like carbonate by-products such as calcite (CaCO{sub 3}), siderite (FeCO{sub 3}), and magnesite (MgCO{sub 3}). Their formation within the superficial layer of these minerals served as protective barrier layer that inhibits and retards further carbonation of fresh underlying minerals, even if the exposure time was extended. Thus, the coverage by this barrier layer

  18. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOE Patents [OSTI]

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  19. Method for determination of the degree of compensation for electrically active impurities in multivalley semiconductors

    SciTech Connect (OSTI)

    Baranskii, P. I.; Gaidar, G. P.

    2013-06-15

    A method for determination of the degree of compensation k = N{sub a}/N{sub d} for shallow impurities in n-Si crystals with a nondegenerate electron gas is suggested. Data facilitating practical determination of the degree of compensation are given.

  20. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  1. Catalytic steam gasification reactivity of HyperCoals produced from different rank of coals at 600-775{degree}C

    SciTech Connect (OSTI)

    Atul Sharma; Ikuo Saito; Toshimasa Takanohashi

    2008-11-15

    HyperCoal is a clean coal with ash content <0.05 wt %. HyperCoals were prepared from a brown coal, a sub-bituminous coal, and a bituminous raw coal by solvent extraction method. Catalytic steam gasification of these HyperCoals was carried out with K{sub 2}CO{sub 3} at 775, 700, 650, and 600 {degree}C, and their rates were compared. HyperCoals produced from low-rank coals were more reactive than those produced from the high-rank coals. XRD measurements were carried out to understand the difference in gasification reactivity of HyperCoals. Arrhenius plot of ln (k) vs 1/T in the temperature range 600-825{degree}C was a curve rather than a straight line. The point of change was observed at 700{degree}C for HyperCoals from low-rank coals and at 775{degree}C for HyperCoals from high-rank coals. Using HyperCoal produced from low-rank coals as feedstock, steam gasification of coal may be possible at temperatures less than 650{degree}C. 22 refs., 6 figs., 2 tabs.

  2. A molecular symmetry analysis of the electronic states and transition dipole moments for molecules with two torsional degrees of freedom

    SciTech Connect (OSTI)

    Obaid, R.; Leibscher, M.

    2015-02-14

    We present a molecular symmetry analysis of electronic states and transition dipole moments for molecules which undergo large amplitude intramolecular torsions. The method is based on the correlation between the point group of the molecule at highly symmetric configurations and the molecular symmetry group. As an example, we determine the global irreducible representations of the electronic states and transition dipole moments for the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1, 3-dioxole for which two torsional degrees of freedom can be activated upon photo-excitation and construct the resulting symmetry adapted transition dipole functions.

  3. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    SciTech Connect (OSTI)

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  4. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect (OSTI)

    Pankiw, Roman I; Muralidharan, G.; Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  5. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOE Patents [OSTI]

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  6. ORISE: Number of health physics degrees granted in 2013 has increased for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduates, declined for graduates Number of health physics degrees granted in 2013 has increased for undergraduates, declined for graduates Enrollment data suggests current trend likely to continue in 2014 and 2015 FOR IMMEDIATE RELEASE April 1, 2014 FY14-18 OAK RIDGE, Tenn.-The number of college students graduating with majors in health physics has increased slightly for bachelor's degrees, but decreased for both master's and doctoral candidates. The report, titled Health Physics

  7. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    SciTech Connect (OSTI)

    Pierson, Bob; Laughlin, Darren

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence

  8. High precision redundant robotic manipulator

    DOE Patents [OSTI]

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  9. High precision redundant robotic manipulator

    DOE Patents [OSTI]

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  10. Strongly coupled electronic, magnetic, and lattice degrees of freedom in LaCo5 under pressure

    SciTech Connect (OSTI)

    Stillwell, Ryan L.; Jeffries, Jason R.; McCall, Scott K.; Lee, Jonathan R. I.; Weir, Samuel T.; Vohra, Yogesh K.

    2015-11-25

    In this study, we have performed high-pressure magnetotransport and x-ray diffraction measurements on ferromagnetic LaCo5, confirming the theoretically predicted electronic topological transition driving the magnetoelastic collapse seen in the related compound YCo5. Our x-ray diffraction results show an anisotropic lattice collapse of the c axis near 10 GPa that is also commensurate with a change in the majority charge carriers evident from high-pressure Hall effect measurements. The coupling of the electronic, magnetic, and lattice degrees of freedom is further substantiated by the evolution of the anomalous Hall effect, which couples to the magnetization of the ordered state of LaCo5.

  11. High strength, tough alloy steel

    DOE Patents [OSTI]

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  12. Surface density of spacetime degrees of freedom from equipartition law in theories of gravity

    SciTech Connect (OSTI)

    Padmanabhan, T.

    2010-06-15

    I show that the principle of equipartition, applied to area elements of a surface {partial_derivative}V which are in equilibrium at the local Davies-Unruh temperature, allows one to determine the surface number density of the microscopic spacetime degrees of freedom in any diffeomorphism invariant theory of gravity. The entropy associated with these degrees of freedom matches with the Wald entropy for the theory. This result also allows one to attribute an entropy density to the spacetime in a natural manner. The field equations of the theory can then be obtained by extremizing this entropy. Moreover, when the microscopic degrees of freedom are in local thermal equilibrium, the spacetime entropy of a bulk region resides on its boundary.

  13. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  14. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    SciTech Connect (OSTI)

    Li, H.X.; Kurtz, R.J.; Jones, R.H.

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack plane rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.

  15. DEGREE-SCALE GeV 'JETS' FROM ACTIVE AND DEAD TeV BLAZARS

    SciTech Connect (OSTI)

    Neronov, A.; Semikoz, D.; Kachelriess, M.; Ostapchenko, S.; Elyiv, A.

    2010-08-20

    We show that images of TeV blazars in the GeV energy band should contain, along with point-like sources, degree-scale jet-like extensions. These GeV extensions are the result of electromagnetic cascades initiated by TeV {gamma}-rays interacting with extragalactic background light and the deflection of the cascade electrons/positrons in extragalactic magnetic fields (EGMFs). Using Monte Carlo simulations, we study the spectral and timing properties of the degree-scale extensions in simulated GeV band images of TeV blazars. We show that the brightness profile of such degree-scale extensions can be used to infer the light curve of the primary TeV {gamma}-ray source over the past 10{sup 7} yr, i.e., over a time scale comparable to the lifetime of the parent active galactic nucleus. This implies that the degree-scale jet-like GeV emission could be detected not only near known active TeV blazars, but also from 'TeV blazar remnants', whose central engines were switched off up to 10 million years ago. Since the brightness profile of the GeV 'jets' depends on the strength and the structure of the EGMF, their observation provides additional information about the EGMF.

  16. Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy

    SciTech Connect (OSTI)

    Wang, Quan; Zhang, Yanmin; Hu, Ran; Ren, Naifei; Ge, Daohan

    2013-11-14

    Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

  17. THE DEVELOPMENT OF A 1990 GLOBAL INVENTORY FOR SO(X) AND NO(X) ON A 1(DEGREE) X 1(DEGREE) LATITUDE-LONGITUDE GRID.

    SciTech Connect (OSTI)

    VAN HEYST,B.J.

    1999-10-01

    Sulfur and nitrogen oxides emitted to the atmosphere have been linked to the acidification of water bodies and soils and perturbations in the earth's radiation balance. In order to model the global transport and transformation of SO{sub x} and NO{sub x}, detailed spatial and temporal emission inventories are required. Benkovitz et al. (1996) published the development of an inventory of 1985 global emissions of SO{sub x} and NO{sub x} from anthropogenic sources. The inventory was gridded to a 1{degree} x 1{degree} latitude-longitude grid and has served as input to several global modeling studies. There is now a need to provide modelers with an update of this inventory to a more recent year, with a split of the emissions into elevated and low level sources. This paper describes the development of a 1990 update of the SO{sub x} and NO{sub x} global inventories that also includes a breakdown of sources into 17 sector groups. The inventory development starts with a gridded global default EDGAR inventory (Olivier et al, 1996). In countries where more detailed national inventories are available, these are used to replace the emissions for those countries in the global default. The gridded emissions are distributed into two height levels (0-100m and >100m) based on the final plume heights that are estimated to be typical for the various sectors considered. The sources of data as well as some of the methodologies employed to compile and develop the 1990 global inventory for SO{sub x} and NO{sub x} are discussed. The results reported should be considered to be interim since the work is still in progress and additional data sets are expected to become available.

  18. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    81299 81499 81699 81899 82099 82299 82499 82699 82899 83099 9199 9399 Degrees Fahrenheit 6 -C ity D a ily A v e ra g e H ig h D A L L A S F T W O R T H H...

  19. DISCOVERY OF A COMPACT COMPANION TO THE HOT SUBDWARF STAR BD +37 Degree-Sign 442

    SciTech Connect (OSTI)

    La Palombara, Nicola; Mereghetti, Sandro; Tiengo, Andrea; Esposito, Paolo E-mail: sandro@iasf-milano.inaf.it E-mail: paoloesp@oa-cagliari.inaf.it

    2012-05-10

    We report the results of the first X-ray observation of the luminous and helium-rich O-type subdwarf BD +37 Degree-Sign 442 carried out with the XMM-Newton satellite in 2011 August. X-ray emission is detected with a flux of about 3 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} (0.2-1 keV) and a very soft spectrum, well fit by the sum of a blackbody with temperature kT{sub BB} = 45{sup +11}{sub -9} eV, and a power law with a poorly constrained photon index. Significant pulsations with a period of 19.2 s are detected, indicating that the X-ray emission originates in a white dwarf or neutron star companion, most likely powered by accretion from the wind of BD +37 Degree-Sign 442.

  20. Quark degrees of freedom in the production of soft pion jets

    SciTech Connect (OSTI)

    Okorokov, V. A. E-mail: Okorokov@bnl.gov

    2015-05-15

    Experimental results obtained by studying the properties of soft jets in the 4-velocity space at √s ∼ 2 to 20 GeV are presented. The changes in the mean distance from the jet axis to the jet particles, the mean kinetic energy of these particles, and the cluster dimension in response to the growth of the collision energy are consistent with the assumption that quark degrees of freedom manifest themselves in processes of pion-jet production at intermediate energies. The energy at which quark degrees of freedom begin to manifest themselves experimentally in the production of soft pion jets is estimated for the first time. The estimated value of this energy is 2.8 ± 0.6 GeV.

  1. Biography U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology. Chair: chair for waste disposal technologies and geomechanics. 1982- 1988 field of study: mining engineer 1989- 1993 PhD work - geomechanical investigations on the stability of salt caverns for waste disposal. 2009 Habilitation - proof of stability and integrity of underground excavations in saliniferous formations with special regard to lab tests. 1989 - 2012 chief engineer at Clausthal University of

  2. Statistical behavior in deterministic quantum systems with few degrees of freedom

    SciTech Connect (OSTI)

    Jensen, R.V.; Shankar, R.

    1985-04-29

    Numerical studies of the dynamics of finite quantum spin chains are presented which show that quantum systems with few degrees of freedom (N = 7) can be described by equilibrium statistical mechanics. The success of the statistical description is seen to depend on the interplay between the initial state, the observable, and the Hamiltonian. This work clarifies the impact of integrability and conservation laws on statistical behavior. The relation to quantum chaos is also discussed.

  3. Structural stability of 1100{degree}C heated Pd/k during absorption cycling in protium

    SciTech Connect (OSTI)

    Fisher, I.A.

    1993-03-12

    Pd/k is a hydride forming packing material which is used in the Thermal Cycling Absorption Process (TCAP). Palladium is supported on kieselguhr to create a packing material which will provide adequate void space to prevent excessive pressure drops and flow restrictions. The use of unsupported palladium would result in blockage of columns and clogging of filters due to the small particle size of unsupported palladium hydride powder. During pilot scale demonstrations, it was noted that the Pd/k packing material had degraded causing severe flow restrictions within the TCAP column. A solution to the problem involved the heating of Pd/k at 1,110{degree}C to strengthen the packing material, and render it more resistant to breakdown. The 1, 100{degree}C heated Pd/k has been shown to be more resistant to mechanical breakdown than the Pd/k prior to heat treatment. Two primary modes of Pd/k particle degradation have been identified: mechanical breakdown caused by particle fluidization and degradation caused by absorption/desorption cycling. Absorption/desorption cycling causes the palladium particles within the packing to expanded and contract upon formation and decomposition of the hydride, respectively. This expansion and contraction causes large localized stresses within the packing material, which if these stresses can not be accommodated within the packing will cause the material to crack and degrade. The purpose of this report is to document the results of the absorption/desorption cycling of 1,100{degree}C heated Pd/k and compare these results to the results obtained from the absorption/desorption cycling of Pd/k which had not been heated at 1, 100{degree}C.

  4. New p( rvec. gamma. ,. pi. degrees ) results from LEGS and the quadrupole excitation of the. Delta

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Results from three independent measurements of the p({yields}{gamma}{pi}{sup {degrees}}) reaction are presented for incident photon energies between 243 and 314 MeV. The ratio of cross sections measured with orthogonal states of linear polarization is sensitive to the E2 excitation of the {Delta} resonance. Comparisons are made to the predictions of various models, all of which fail to reproduce these data.

  5. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  6. Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilledmaking the fuel-production process more efficient. The microorganisms dont require light, so they can be grown anywhereinside a dark reactor or even in an underground facility.

  7. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  8. On linear groups of degree 2 over a finite commutative ring

    SciTech Connect (OSTI)

    Bashkirov, Evgenii L.; Eser, Hasan

    2014-08-20

    Let p > 3 be a prime number and F{sub p} be a field of p elements. Let K be a commutative and associative ring obtained by adjoining to F{sub p} an element α such that α satisfies a polynomial over F{sub p} and a polynomial of the least degree whose root is α can be written as a product of distinct polynomials irreducible over F{sub p}. We prove that the special linear group SL{sub 2}(K) is generated by two elementary transvections ( (table) ), ( (table) )

  9. Developments in the Nuclear Safeguards and Security Engineering Degree Program at Tomsk Polytechnic University

    SciTech Connect (OSTI)

    Boiko, Vladimir I.; Demyanyuk, Dmitry G.; Silaev, Maxim E.; Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.

    2009-10-06

    Over the last six years, Tomsk Polytechnic University (TPU) has developed a 5 year engineering degree program in the field of Material Protection Control and Accounting (MPC&A). In 2009 the first students graduated with this new degree. There were 25 job offers from nuclear fuel cycle enterprises of Russia and Kazakhstan for 17 graduates of the program. Due to the rather wide selection of workplaces, all graduates have obtained positions at nuclear enterprises. The program was developed within the Applied Physics and Engineering Department (APED). The laboratory and methodological base has been created taking into consideration the experience of the similar program at the Moscow Engineering Physics Institute (MEPhI). However, the TPU program has some distinguishing features such as the inclusion of special courses pertaining to fuel enrichment and reprocessing. During the last two years, three MPC&A laboratories have been established at APED. This was made possible due to several factors such as establishment of the State innovative educational program at TPU, assistance of the U.S. Department of Energy through Pacific Northwest National Laboratory and Los Alamos National Laboratory, and the financial support of the Swedish Radiation Safety Authority and some Russian private companies. All three of the MPC&A laboratories are part of the Innovative Educational Center Nuclear Technologies and Non-Proliferation, which deals with many topics including research activities, development of new curricula for experts training and retraining, and training of masters students. In 2008, TPU developed a relationship with the International Atomic Energy Agency (IAEA), which was familiarized with APEDs current resources and activities. The IAEA has shown interest in creation of a masters degree educational program in the field of nuclear security at TPU. A future objective is to acquaint nuclear fuel cycle enterprises with new APED capabilities and involve the enterprises

  10. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization

    SciTech Connect (OSTI)

    Canale, Eduardo A.; Monzn, Pablo

    2015-02-15

    This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 115 (2012)], a sufficient condition for almost global synchronization was found in terms of the minimum degreeorder ratio of the graph. In this work, a new lower bound for this ratio is given. The improvement is achieved by a concrete infinite sequence of regular graphs. Besides, non standard unstable equilibria of the graphs studied in Wiley et al. [Chaos 16, 015103 (2006)] are shown to exist as conjectured in that work.

  11. Flux control and one-hundred and eighty degree core systems

    DOE Patents [OSTI]

    Hsu, John S

    2012-11-27

    A two-phase or four-phase electric machine includes a first stator part and a second stator part disposed about ninety electrical degrees apart. Stator pole parts are positioned near the first stator part and the second stator part. An injector injects a third-harmonic frequency current that is separate from and not produced by the fundamental current driving the first stator part and the second stator part. The electric angular speed of the third-harmonic rotating field comprises .theta. ##EQU00001## where p comprises the number of pole pairs, .theta. comprises a mechanical angle and t comprise time in seconds.

  12. Phosphate glass useful in high power lasers

    DOE Patents [OSTI]

    Hayden, Joseph S.; Sapak, David L.; Ward, Julia M.

    1990-01-01

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K.sub.90.degree. C. >0.8 W/mK, and a low coefficient of thermal expansion, .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., consists essentially of (on a batch composition basis): the amounts of Li.sub.2 O and Na.sub.2 O providing an average alkali metal ionic radius sufficiently low whereby said glass has K.sub.90.degree. C. >0.8 W/mK and .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd.sub.2 O.sub.3 can be replaced by other lasing species.

  13. Image system for three dimensional, 360{degree}, time sequence surface mapping of moving objects

    DOE Patents [OSTI]

    Lu, S.Y.

    1998-12-22

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest. Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360{degree} all around coverage of the object-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120{degree} apart from one another. 20 figs.

  14. Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects

    DOE Patents [OSTI]

    Lu, Shin-Yee

    1998-01-01

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360.degree. all around coverage of theobject-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120.degree. apart from one another.

  15. High pressure and high temperature apparatus

    DOE Patents [OSTI]

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  16. NEUTRON-INDUCED SWELLING OF Fe-Cr BINARY ALLOYS IN FFTF AT ~400 DEGREES C

    SciTech Connect (OSTI)

    Garner, Francis A.; Greenwood, Lawrence R.; Okita, Taira; Sekimura, Naoto; Wolfer, W. G.

    2002-12-31

    The purpose of this effort is to determine the influence of dpa rate, He/dpa ratio and composition on the void swelling of simple binary Fe-Cr alloys. Contrary to the behavior of swelling of model fcc Fe-Cr-Ni alloys irradiated in the same FFTF-MOTA experiment, model bcc Fe-Cr alloys do not exhibit a dependence of swelling on dpa rate at approximately 400 degrees C. This is surprising in that an apparent flux-sensitivity was observed in an earlier comparative irradiation of Fe-Cr binaries conducted in EBR-II and FFTF. The difference in behavior is ascribed to the higher helium generation rates of Fe-Cr alloys in EBR-II compared to that of FFTF, and also the fact that lower dpa rates in FFTF are accompanied by progressively lower helium generation rates.

  17. Sublimation rate of molecular crystals - role of internal degrees of freedom

    SciTech Connect (OSTI)

    Maiti, A; Zepeda-Ruiz, L A; Gee, R H; Burnham, A

    2007-01-19

    It is a common practice to estimate site desorption rate from crystal surfaces with an Arrhenius expression of the form v{sub eff} exp(-{Delta}E/k{sub B}T), where {Delta}E is an activation barrier to desorb and v{sub eff} is an effective vibrational frequency {approx} 10{sup 12} sec{sup -1}. However, such a formula can lead to several to many orders of magnitude underestimation of sublimation rates in molecular crystals due to internal degrees of freedom. We carry out a quantitative comparison of two energetic molecular crystals with crystals of smaller entities like ice and Argon (solid) and uncover the errors involved as a function of molecule size. In the process, we also develop a formal definition of v{sub eff} and an accurate working expression for equilibrium vapor pressure.

  18. Spectroscopic studies of the 110{degree}C thermal aging of PETN

    SciTech Connect (OSTI)

    Dosser, L.R.; Seliskar, C.J.

    1992-07-30

    The 110{degrees}C thermal aging parameters, including initial rates of decomposition, of four types of pentaerythritol tetranitrate (PETN) over a period of ten months are presented. Both decomposition products nitric oxide, NO, and nitrogen dioxide, N0{sub 2} were monitored from multiple, hermetically-sealed, in vacuo samples. Nitric oxide appears to be the first nitrogen oxide product evolved. Nitrogen dioxide produced by abrupt thermal aging is more slowly converted to nitric oxide by a 1:1 process. The behavior of samples of RR5K PETN was significantly different from that of other powders studied. Further work is in progress to better define the thermal aging of RR5K PETN.

  19. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes

    SciTech Connect (OSTI)

    Yio, M.H.N. Phelan, J.C.; Wong, H.S.; Buenfeld, N.R.

    2014-02-15

    A method for determining the original mix composition of hardened slag-blended cement-based materials based on analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3 days to 1 year) show that the method is very promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m{sup 3}), w/b and s/b ratios were 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. -- Highlights: •A new method for estimating w/b ratio and slag content in cement pastes is proposed. •The method is also able to calculate the degrees of reaction of slag and cement. •Reference standards or prior knowledge of the binder composition are not required. •The method was tested on samples with varying w/b ratios and slag content.

  20. Thermal fuse for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  1. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  2. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  3. Gasification of high ash, high ash fusion temperature bituminous coals

    DOE Patents [OSTI]

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  4. Test beam results on the Proton Zero Degree Calorimeter for the ALICE experiment

    SciTech Connect (OSTI)

    Arnaldi, R.; Chiavassa, E.; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Gemme, R.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Stocco, D.; Vercellin, E.; Yermia, F.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.

    2006-10-27

    The proton Zero Degree Calorimeter (ZP) for the ALICE experiment will measure the energy of the spectator protons in heavy ion collisions at the CERN LHC. Since all the spectator protons have the same energy, the calorimeter's response is proportional to their number, providing a direct information on the centrality of the collision. The ZP is a spaghetti calorimeter, which collects and measures the Cherenkov light produced by the shower particles in silica optical fibers embedded in a brass absorber. The details of its construction will be shown. The calorimeter was tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. The response of the calorimeter and its energy resolution have been studied as a function of the beam energy. Also, the signal uniformity and a comparison between the transverse profile of the hadronic and electromagnetic shower are presented. Moreover, the differences between the calorimeter's responses to protons and pions of the same energy have been investigated, exploiting the proton contamination in the positive pion beams.

  5. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Wohlgemuth, J.; Gu, X.; Haldeman, S.; Hidalgo, M.; Malguth, E.; Reid, C.; Shioda, T.; Schulze, S.; Wang, Z.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  6. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Gu, X.; Haldenman, S.; Hidalgo, M.; Malguth, E.; Reid, C. G.; Shioda, T.; Schulze, S. H.; Wang, Z. Y.; Wohlgemuth, J. H.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  7. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  8. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  9. Sierra Geothermal's Key Find in Southern Nevada

    Broader source: Energy.gov [DOE]

    In May 2010, Sierra Geothermal determined temperature at the bottom of a well drilled at the company's Alum project near Silver Peak, Nev., was hot enough for commercial-sized geothermal energy production - measured as 147 degrees Celsius (297 degrees Fahrenheit). A promising discovery by a geothermal energy company that could boost use of the renewable source in southwest Nevada, power thousands of homes and create jobs.

  10. High Temperature Phase Change Materials for Thermal Energy Storage Applications: Preprint

    SciTech Connect (OSTI)

    Gomez, J.; Glatzmaier, G. C.; Starace, A.; Turchi, C.; Ortega, J.

    2011-08-01

    To store thermal energy, sensible and latent heat storage materials are widely used. Latent heat thermal energy storage (TES) systems using phase change materials (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation. Molten salt PCM candidates for cascaded PCMs were evaluated for the temperatures near 320 degrees C, 350 degrees C, and 380 degrees C. These temperatures were selected to fill the 300 degrees C to 400 degrees C operating range typical for parabolic trough systems, that is, as one might employ in three-PCM cascaded thermal storage. Based on the results, the best candidate for temperatures near 320 degrees C was the molten salt KNO3-4.5wt%KCl. For the 350 degrees C and 380 degrees C temperatures, the evaluated molten salts are not good candidates because of the corrosiveness and the high vapor pressure of the chlorides.

  11. Development and Implementation of Degree Programs in Electric Drive Vehicle Technology

    SciTech Connect (OSTI)

    Ng, Simon

    2013-09-30

    The Electric-drive Vehicle Engineering (EVE) MS degree and graduate certificate programs have been continuing to make good progress, thanks to the funding and the guidance from DOE grant management group, the support from our University and College administrations, and to valuable inputs and feedback from our Industrial Advisory Board as well as our project partners Macomb Community College and NextEnergy. Table 1 below lists originally proposed Statement of Project Objectives (SOPO), which have all been completed successfully. Our program and course enrollments continue to be good and increasing, as shown in later sections. Our graduating students continue to get good job offers from local EV-related companies. Following the top recommendation from our Industrial Advisory Board, we were fortunate enough to be accepted into the prestigious EcoCAR2 (http://www.ecocar2.org/) North America university design competition, and have been having some modest success with the competition. But most importantly, EcoCAR2 offers the most holistic educational environment for integrating real-world engineering and design with our EVE graduate curriculum. Such integrations include true real-world hands-on course projects based on EcoCAR2 related tasks for the students, and faculty curricular and course improvements based on lessons and best practices learned from EcoCAR2. We are in the third and last year of EcoCAR2, and we have already formed a core group of students in pursuit of EcoCAR”3”, for which the proposal is due in early December.

  12. Degree-scale cosmic microwave background polarization measurements from three years of BICEP1 data

    SciTech Connect (OSTI)

    Barkats, D.; Aikin, R.; Bock, J. J.; Filippini, J.; Hristov, V. V.; Bischoff, C.; Buder, I.; Kovac, J. M.; Kaufman, J. P.; Keating, B. G.; Bierman, E. M.; Su, M.; Ade, P. A. R.; Battle, J. O.; Dowell, C. D.; Chiang, H. C.; Duband, L.; Hivon, E. F.; Holzapfel, W. L.; Jones, W. C.; and others

    2014-03-10

    BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the cosmic microwave background at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006-2008). This work extends the two-year result published in Chiang et al., with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band power window functions, improved likelihood estimation methods, and a new technique for deprojecting monopole temperature-to-polarization leakage that reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 ≤ ℓ ≤ 335 and find that the EE spectrum is consistent with Lambda cold dark matter cosmology, with the first acoustic peak of the EE spectrum now detected at 15σ. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to r=0.03{sub −0.23}{sup +0.27}, or r < 0.70 at 95% confidence level.

  13. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  14. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  15. Effectiveness of 700{degrees}C thermal treatment on primary water stress corrosion sensitivity of Alloy 600 steam generator tubes: Laboratory tests and in field experience

    SciTech Connect (OSTI)

    Cattant, F.; Keroulas, F. de; Garriga-Majo, D.; Todeschini, P.; Van Duysen, J.C.

    1992-12-31

    In France, the steam generators of some 900 MWe reactors, and of all the 1 300 MWe reactors in service are equipped with heat treated Alloy 600 tubes. The purpose of the heat treatment, performed at 700{degrees}C, is to relieve the residual stresses. Generally, it also increases the SCC resistance of the alloy. A laboratory study has been carried out in order to gain a better understanding of the metallurgical factors influencing the PWSCC resistance of Alloy 600 after heat treatment. It has been shown that there are two kinds of tubes for which the heat treatment does not produce a microstructure having a potentially high resistance to SCC: tubes with a high carbon content (over 0.032%) or tubes mill-annealed at high temperatures and heavily cold-worked by the straightening. The analysis of the behaviour of french steam generators reveals that the heat treatment generally had the expected beneficial effect. However, the early cracking in service of some treated tubes led EDF (national power company) to proceed with removals. The majority of the cracked pulled-out tubes exhibit microstructures having a potentially high PWSCC sensibility in laboratory tests. It has been shown that these microstructures can be correlated to a high carbon content.

  16. Six Degrees-of-Freedom Prostate and Lung Tumor Motion Measurements Using Kilovoltage Intrafraction Monitoring

    SciTech Connect (OSTI)

    Huang, Chen-Yu; Tehrani, Joubin Nasehi; Ng, Jin Aun; Booth, Jeremy; Keall, Paul

    2015-02-01

    Purpose: Tumor positional uncertainty has been identified as a major issue that deteriorates the efficacy of radiation therapy. Tumor rotational movement, which is not well understood, can result in significant geometric and dosimetric inaccuracies. The objective of this study was to measure 6 degrees-of-freedom (6 DoF) prostate and lung tumor motion, focusing on the more novel rotation, using kilovoltage intrafraction monitoring (KIM). Methods and Materials: Continuous kilovoltage (kV) projections of tumors with gold fiducial markers were acquired during radiation therapy for 267 fractions from 10 prostate cancer patients and immediately before or after radiation therapy for 50 fractions from 3 lung cancer patients. The 6 DoF motion measurements were determined from the individual 3-dimensional (3D) marker positions, after using methods to reject spurious and smooth noisy data, using an iterative closest point algorithm. Results: There were large variations in the magnitude of the tumor rotation among different fractions and patients. Various rotational patterns were observed. The average prostate rotation angles around the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) axes were 1.0 ± 5.0°, 0.6 ± 3.3°, and 0.3 ± 2.0°, respectively. For 35% of the time, the prostate rotated more than 5° about the LR axis, indicating the need for intrafractional adaptation during radiation delivery. For lung patients, the average LR, SI, and AP rotation angles were 0.8 ± 4.2°, −0.8 ± 4.5°, and 1.7 ± 3.1°, respectively. For about 30% of the time, the lung tumors rotated more than 5° around the SI axis. Respiration-induced rotation was detected in 2 of the 3 lung patients. Conclusions: The prostate and lung tumors were found to undergo rotations of more than 5° for about a third of the time. The lung tumor data represent the first 6 DoF tumor motion measured by kV images. The 6 DoF KIM method can enable rotational and translational

  17. Analytical theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality

    SciTech Connect (OSTI)

    Kong Qian; Wang, Q.; Bang, O.; Krolikowski, W.

    2010-07-15

    We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise repulsive soliton interaction.

  18. Predicting primary crystalline phase and liquidus temperature above or below 1050{degrees}C as functions of glass composition

    SciTech Connect (OSTI)

    Redgate, P.E.; Piepel, G.F.

    1996-02-01

    This report presents the results of applying statistical empirical modeling techniques to primary crystalline phase at the liquidus temperature (T{sub L}) and (ii) whether liquidus temperature is above or below 1050{degree}C (1OO{degree}C below a melting temperature of 1150{degree}C). Data used in modeling primary crystalline phase and liquidus temperate are from the Composition Variability Study (CVS) of Hanford waste glass compositions and properties. The majority of the 123 CVS glasses are categorized into one of 13 primary crystalline phases (at the liquidus temperature). They are also classified as to having T{sub L} Above or Below 1050{degree}C. Two common statistical methods used to model such categorical data are the multinomial logit and classification tree models. The classification tree models provided an overall better modeling approach than did the multinomial logit models. The performance of models in this report should be compared to the performance of the revised ``Development of Models and Software for Liquidus Temperature of Glasses of HWVP Products`` models from Ecole Polytechnique. If the Ecole Polytechnique models perform better than the models discussed in this report, no additional effort on these models would be needed. However, if the converse is true, it may be worthwhile to invest additional effort on statistical empirical modeling methods.

  19. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  20. High specific heat superconducting composite

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  1. VII-13 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 - March 31, 2012 Name Year Thesis Title Advisor Present Position Hyo-In Park 2011 High-Precision Measurements of the Superallowed 0 + → 0 + Beta Decays of 38 Ca and 46 V J. C. Hardy Post Doc., Cyclotron Institute, Texas A&M University, College Station, Texas Mathew McCleskey 2011 14C(n,g)15C as a Test Case in the Evaluation of a New Method to Determine Spectroscopic Factors Using Asymptotic Normalization Coefficients R. E. Tribble Post Doc., Lawerence Livermore National Laboratory,

  2. Chlorite Dissolution Rates From 25 to 275 degrees and pH 3 to 10

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-09-27

    We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated in this data submission. More information on the calculation of the rate data can be found in our FY13 Annual support (Carroll LLNL, 2013) which has been submitted to the GDR. The rate equation fills a data gap in geothemal kinetic data base and can be used directly to estimate the impact of chemical alteration on all geothermal processes. It is especially important for understanding the role of chemical alteration in the weakening for shear zones in EGS systems.

  3. Chlorite Dissolution Rates From 25 to 275 degrees and pH 3 to 10

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated in this data submission. More information on the calculation of the rate data can be found in our FY13 Annual support (Carroll LLNL, 2013) which has been submitted to the GDR. The rate equation fills a data gap in geothemal kinetic data base and can be used directly to estimate the impact of chemical alteration on all geothermal processes. It is especially important for understanding the role of chemical alteration in the weakening for shear zones in EGS systems.

  4. Rare-earth elements in hot brines (165 to 190 degree C) from the Salton Sea geothermal field

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.; Smith, M.R.

    1988-01-01

    Rare-earth element (REE) concentrations are important indicators for revealing various chemical fractionation processes (water/rock interactions) and source region geochemistry. Since the REE patterns are characteristic of geologic materials (basalt, granite, shale, sediments, etc.) and minerals (K-feldspar, calcite, illite, epidote, etc.), their study in geothermal fluids may serve as a geothermometer. The REE study may also enable us to address the issue of groundwater mixing. In addition, the behavior of the REE can serve as analogs of the actinides in radioactive waste (e.g., neodymium is an analog of americium and curium). In this paper, the authors port the REE data for a Salton Sea Geothermal Field (SSGF) brine (two aliquots: port 4 at 165{degree}C and port 5 at 190{degree}C) and six associated core samples.

  5. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  6. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    SciTech Connect (OSTI)

    Raposo, Maria Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.; Ferreira, Quirina; Botelho do Rego, Ana Maria

    2015-09-21

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.

  7. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    DOE Patents [OSTI]

    Goyal, Amit

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  8. Structural stability of 1100[degree]C heated Pd/k during absorption cycling in protium. [Palladium supported on kieselguhr

    SciTech Connect (OSTI)

    Fisher, I.A.

    1993-03-12

    Pd/k is a hydride forming packing material which is used in the Thermal Cycling Absorption Process (TCAP). Palladium is supported on kieselguhr to create a packing material which will provide adequate void space to prevent excessive pressure drops and flow restrictions. The use of unsupported palladium would result in blockage of columns and clogging of filters due to the small particle size of unsupported palladium hydride powder. During pilot scale demonstrations, it was noted that the Pd/k packing material had degraded causing severe flow restrictions within the TCAP column. A solution to the problem involved the heating of Pd/k at 1,110[degree]C to strengthen the packing material, and render it more resistant to breakdown. The 1, 100[degree]C heated Pd/k has been shown to be more resistant to mechanical breakdown than the Pd/k prior to heat treatment. Two primary modes of Pd/k particle degradation have been identified: mechanical breakdown caused by particle fluidization and degradation caused by absorption/desorption cycling. Absorption/desorption cycling causes the palladium particles within the packing to expanded and contract upon formation and decomposition of the hydride, respectively. This expansion and contraction causes large localized stresses within the packing material, which if these stresses can not be accommodated within the packing will cause the material to crack and degrade. The purpose of this report is to document the results of the absorption/desorption cycling of 1,100[degree]C heated Pd/k and compare these results to the results obtained from the absorption/desorption cycling of Pd/k which had not been heated at 1, 100[degree]C.

  9. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE„4/1/00-3/31/01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - March 31, 2006 Name Year Thesis Title Advisor First Position Present Position Elizabeth Bell 2005 N /Z Equilibration S.J. Yennello Graduate Research Assistant Chemistry Instructor st Blinn College, Texas Fakhriddin Pirlepesov 2005 Asymptotic scattering wave function for three charged particles and astrophysical capture processes R.E. Tribble/ A.M. Mukhamedzhanov Graduate Teaching Assistant Pursuing degree at Department of Statistics, Texas A&M University Jim Musser 2005 Measurement of

  10. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE„4/1/00-3/31/01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE April 1, 2010 - March 31, 2011 Name Year Thesis Title Advisor Present Position Zach Kohley 2010 Transverse Collective Flow and Emission Order of Mid- Rapidity Fragments in Fermi Energy Heavy Ion Collisions S. J. Yennello Post Doc., HRIBF, ORNL, Oak Ridge, Tennessee Xingbo Zhao 2010 Charmonium in Hot Medium Ralf Rapp Post Doc., Department of Physics, Iowa State University, Ames, Iowa Sarah Nicole

  11. Neutron structural characterization, inversion degree and transport properties of NiMn{sub 2}O{sub 4} spinel prepared by the hydroxide route

    SciTech Connect (OSTI)

    Sagua, A.; Lescano, Gabriela M.; Alonso, J.A.; Martínez-Coronado, R.; Fernández-Díaz, M.T.; Morán, E.

    2012-06-15

    Graphical abstract: A pure specimen has been synthesized by the hydroxide route. This spinel, studied by NPD, shows an important inversion degree, λ = 0.80. A bond-valence study shows that the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected 3+ and 2+ values, respectively. The mixed valence Mn{sup 3+}/Mn{sup 4+} accounts for a hopping mechanism between adjacent octahedral sites, leading to a significant conductivity. Highlights: ► A low-temperature hydroxide route allowed preparing almost pure specimens of NiMn{sub 2}O{sub 4}. ► NPD essential to determine inversion degree; contrasting Ni and Mn for neutrons. ► Bond valence establishes valence state of octahedral and tetrahedral Ni and Mn ions. ► Thermal analysis, transport measurements complement characterization of this oxide. ► A structure–properties relationship is established. -- Abstract: The title compound has been synthesized by the hydroxide route. The crystal structure has been investigated at room temperature from high-resolution neutron powder diffraction (NPD) data. It crystallizes in a cubic spinel structure, space group Fd3{sup ¯}m, Z = 8, with a = 8.3940(2) Å at 295 K. The crystallographic formula is (Ni{sub 0.202(1)}Mn{sub 0.798(1)}){sub 8a}(Ni{sub 0.790(1)}Mn{sub 1.210(1)}){sub 16d}O{sub 4} where 8a and 16d stand for the tetrahedral and octahedral sites of the spinel structure, respectively. There is a significant inversion degree of the spinel structure, λ = 0.80. In fact, the variable parameter for the oxygen position, u = 0.2636(4), is far from that expected (u = 0.25) for normal spinels. From a bond-valence study, it seems that the valence distribution in NiMn{sub 2}O{sub 4} spinel is not as trivial as expected (Ni{sup 2+} and Mn{sup 3+}), but clearly the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected +3 and +2 values, respectively. The mixed valence observed at

  12. Degree of polarization and source counts of faint radio sources from Stacking Polarized intensity

    SciTech Connect (OSTI)

    Stil, J. M.; George, S. J.; Keller, B. W.; Taylor, A. R.

    2014-06-01

    We present stacking polarized intensity as a means to study the polarization of sources that are too faint to be detected individually in surveys of polarized radio sources. Stacking offers not only high sensitivity to the median signal of a class of radio sources, but also avoids a detection threshold in polarized intensity, and therefore an arbitrary exclusion of sources with a low percentage of polarization. Correction for polarization bias is done through a Monte Carlo analysis and tested on a simulated survey. We show that the nonlinear relation between the real polarized signal and the detected signal requires knowledge of the shape of the distribution of fractional polarization, which we constrain using the ratio of the upper quartile to the lower quartile of the distribution of stacked polarized intensities. Stacking polarized intensity for NRAO VLA Sky Survey (NVSS) sources down to the detection limit in Stokes I, we find a gradual increase in median fractional polarization that is consistent with a trend that was noticed before for bright NVSS sources, but is much more gradual than found by previous deep surveys of radio polarization. Consequently, the polarized radio source counts derived from our stacking experiment predict fewer polarized radio sources for future surveys with the Square Kilometre Array and its pathfinders.

  13. Method for creating high carbon content products from biomass oil

    DOE Patents [OSTI]

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  14. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T.; Guesto-Barnak, Donna

    1992-01-01

    A low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K.sub.90.degree. C. >0.85 W/mK, a low coefficient of thermal expansion, .alpha..sub.20.degree.-300.degree. C. <80.times.10.sup.-7 /.degree.C., low emission cross section, .sigma.<2.5.times.10.sup.-20 cm.sup.2, and a high fluorescence lifetime, .tau.>325 .mu.secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): wherein Ln.sub.2 O.sub.3 is the sum of lanthanide oxides; .SIGMA.R.sub.2 O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al.sub.2 O.sub.3 and MgO is <24 unless .SIGMA.R.sub.2 O is 0, then the sum of Al.sub.2 O.sub.3 and MgO is <42; and the ratio of MgO to B.sub.2 O.sub.3 is 0.48-4.20.

  15. High PRF high current switch

    DOE Patents [OSTI]

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  16. Microsoft Word - winter.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2 1 8 9 8 1 2 2 5 9 8 1 1 9 9 1 8 9 9 1 1 5 9 9 1 2 2 Degrees in Fahrenheit A c t u a l N o r m a l ( C h i c a g o , K a n s a s C i t y , N e w Y o r k ,...

  17. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Country Definitions Key Terms Definition Imports Natural Gas received in the Continental United States (including Alaska) from a foreign country. Liquefied Natural Gas (LNG) Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Pipeline A continuous pipe conduit, complete with such equipment as valves, compressor stations, communications systems, and meters, for transporting natural and/or supplemental gas from one

  18. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Point of Entry Definitions Key Terms Definition Imports Natural Gas received in the Continental United States (including Alaska) from a foreign country. Liquefied Natural Gas (LNG) Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Pipeline A continuous pipe conduit, complete with such equipment as valves, compressor stations, communications systems, and meters, for transporting natural and/or supplemental gas

  19. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Point of Exit Definitions Key Terms Definition Exports Natural Gas deliveries out of the Continental United States and Alaska to foreign countries. Liquefied Natural Gas (LNG) Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Pipeline A continuous pipe conduit, complete with such equipment as valves, compressor stations, communications systems, and meters, for transporting natural and/or supplemental gas from

  20. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Imports & Exports by State Definitions Key Terms Definition Exports Natural Gas deliveries out of the Continental United States and Alaska to foreign countries. Imports Natural Gas received in the Continental United States (including Alaska) from a foreign country. Liquefied Natural Gas (LNG) Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Pipeline A continuous pipe conduit, complete with such equipment

  1. Draft Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor

    National Nuclear Security Administration (NNSA)

    FRONT COVER Draft Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor U.S. Department of Energy National Nuclear Security Administration DOE/EIS-0288-S1 August 2014 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CLWR commercial light water reactor CO2e carbon dioxide equivalent DOE U.S. Department of Energy EIS environmental impact statement EPA U.S. Environmental Protection Agency °F degrees Fahrenheit FR Federal Register

  2. NREL Seeks to Optimize Individual Comfort in Buildings - News Feature |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Seeks to Optimize Individual Comfort in Buildings October 7, 2015 Photo shows two people sitting in a white room, holding smartphones in front of laptops. Scott Jensen and Grace Brown were the first volunteers to take part in testing in NREL's Comfort Suite (C-Suite). Photo by Dennis Schroeder On a typical early fall morning in Golden, Colorado, the temperature outside was about 70 degrees Fahrenheit. Tucked inside a unique structure at the Energy Department's National Renewable Energy

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction Requirement A diesel- or gasoline-powered motor vehicle may not idle for more than three consecutive minutes, except under the following conditions: 1) to operate power takeoff equipment including, but not limited to, cement mixers, refrigeration systems, and delivery vehicles; 2) to operate private passenger vehicles; or 3) to operate heating equipment for five minutes when the ambient temperature is 32 degrees Fahrenheit or below. (Reference District of Columbia Municipal

  4. Research questions reality of 'supersolid' in helium-4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research questions reality of 'supersolid' in helium-4 Research questions reality of 'supersolid' in helium-4 When cooled to temperatures below minus 452 degrees below zero Fahrenheit, helium-4 becomes a liquid-and an extraordinary liquid at that. May 17, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  5. Microsoft Word - winter.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    1 0 1 6 9 8 1 0 1 7 9 8 Degrees in Fahrenheit A c tu a l N o rm a l ( C h i c a g o , K a n s a s C i ty , N e w Y o r k , a n d P i tts b u r g h ) E x p e c te d R a n g e T...

  6. Lab Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lab astrophysics Lab Astrophysics NIF experiments support studies relevant to the entire lifecycle of a star, from its formation from cold gas in molecular clouds, through its subsequent slow evolution, and on to what might be a rapid, explosive death. To determine a star's structure throughout the various stages of its life, astrophysicists need NIF's ability to mimic the temperatures (10 to 30 million kelvins or 18 to 54 million degrees Fahrenheit) found in stars' cores. One astrophysics

  7. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    LNG Storage Additions & Withdrawals Definitions Key Terms Definition Liquefied Natural Gas Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Net Withdrawals The amount by which storage withdrawals exceed storage injections. Storage Additions Volumes of gas injected or otherwise added to underground natural gas reservoirs or liquefied natural gas storage. Storage Withdrawals Total volume of gas withdrawn

  8. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  9. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  10. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  11. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Joseph Hardin; Dan Nelson; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    2011-05-24

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  12. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-09-14

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  13. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Joseph Hardin; Dan Nelson; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    1990-01-01

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  14. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  15. Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shields, Christine A.; Kiehl, Jeffrey T.; Meehl, Gerald A.

    2016-06-02

    The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to highermore » resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clear drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less

  16. Safety analysis of high pressure gasous fuel container punctures

    SciTech Connect (OSTI)

    Swain, M.R.

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  17. p-Hydroxyphenyl (H) Units Lower the Degree of Polymerization in Lignin: Chemical Control in Lignin Biosynthesis

    SciTech Connect (OSTI)

    Sangha, A. K.; Parks, J. M.; Davis, M. F.; Smith, J. C.

    2013-01-01

    Lignin, composed predominantly of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) subunits, is a major component of plant cell walls that imparts resistance toward chemical and microbial deconstruction of plant biomass, rendering its conversion inefficient and costly. Previous studies have shown that alterating lignin composition, i.e., the relative abundance of H, G and S subunits, promises more efficient extraction of sugars from plant biomass. Smaller and less branched lignin chains are more easily extracted during pretreatment, making cellulose more readily degradable. Here, using density functional theory calculations, we show that the incorporation of H subunits into lignin via b-b and b-5 interunit linkages reduces the degree of polymerization in lignin. Frontier molecular orbital analyses of lignin dimers and trimers show that H as a terminal subunit on a growing lignin polymer linked via b-b and b-5 linkage cannot undergo radical formation, preventing further chain growth by endwise polymerization resulting in lignin polymers with lower degree of polymerization. These results indicate that, for endwise polymerization in lignin synthesis, there exists a chemical control that may lay a significant role in determining the structure of lignin.

  18. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    SciTech Connect (OSTI)

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  19. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    SciTech Connect (OSTI)

    Strnsk, Pavel; Macek, Michal; Cejnar, Pavel

    2014-06-15

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the systems size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. ESQPTs related to non-analytical evolutions of classical phasespace properties. ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. ESQPT signatures identified in smoothened density and flow of energy spectrum. ESQPTs shown to induce a new type of thermodynamic anomalies.

  20. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOE Patents [OSTI]

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  1. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, John K. (New Haven, CT)

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  2. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  3. Apparatus for accurately measuring high temperatures

    DOE Patents [OSTI]

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  4. Dynamical analysis of highly excited molecular spectra

    SciTech Connect (OSTI)

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  5. High e

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e ne rgy data s am ple ● NuMI beam events provide an useful calibration sample ● Collected over 70K candidates before shutdown The highest energy events are prim arily from kaon decays. Two sam ples at high energy provide normalization and shape inform ation for kaon backgrounds to oscillation analysis: ● ν e events passing oscillation event selection cuts ● ν µ induced CCQE, CCπ+events Reconstructed neutrino energy EνQE(GeV) ν from other particles ν from pions ν from Kaons -

  6. High-temperature zirconia insulation and method for making same

    DOE Patents [OSTI]

    Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Knoxville, TN); Lewis, Jr., John (Oak Ridge, TN)

    1988-01-01

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2000.degree. C. are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600.degree. C. for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950.degree. to 1,250.degree. C. to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1800.degree. to 2000.degree. C. further improves structural rigidity.

  7. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    SciTech Connect (OSTI)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ..delta..G/sub f, 298//sup 0/ of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs.

  8. A MAGNETAR-LIKE EVENT FROM LS I +61 Degree-Sign 303 AND ITS NATURE AS A GAMMA-RAY BINARY

    SciTech Connect (OSTI)

    Torres, Diego F.; Rea, Nanda; Esposito, Paolo; Li Jian; Chen Yupeng; Zhang Shu

    2012-01-10

    We report on the Swift Burst Alert Telescope detection of a short burst from the direction of the TeV binary LS I +61 Degree-Sign 303, resembling those generally labeled as magnetar-like. We show that it is likely that the short burst was indeed originating from LS I +61 Degree-Sign 303 (although we cannot totally exclude the improbable presence of a far-away, line-of-sight magnetar) and that it is a different phenomenon with respect to the previously observed ks-long flares from this system. Accepting the hypothesis that LS I +61 Degree-Sign 303 is the first magnetar detected in a binary system, we study those implications. We find that a magnetar-composed LS I +61 Degree-Sign 303 system would most likely be (i.e., for the usual magnetar parameters and mass-loss rate) subject to a flip-flop behavior, from a rotationally powered regime (in the apastron) to a propeller regime (in the periastron) along each of the LS I +61 Degree-Sign 303 eccentric orbital motion. We prove that, unlike near an apastron, where an interwind shock can lead to the normally observed LS I +61 Degree-Sign 303 behavior, during TeV emission the periastron propeller is expected to efficiently accelerate particles only to sub-TeV energies. This flip-flop scenario would explain the system's behavior when a recurrent TeV emission only appears near the apastron, the anti-correlation of the GeV and TeV emission, and the long-term TeV variability (which seems correlated to LS I +61 Degree-Sign 303's super-orbital period), including the appearance of a low TeV state. Finally, we qualitatively put the multi-wavelength phenomenology into the context of our proposed model and make some predictions for further testing.

  9. Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)

    SciTech Connect (OSTI)

    Raich, J.W.

    2003-09-15

    We used a climate-driven regression model to develop spatially resolved estimates of soil-CO{sub 2} emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO{sub 2} fluxes. The mean annual global soil-CO{sub 2} flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO{sub 2} emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO{sub 2} emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-derived CO{sub 2} to the atmosphere than did any other vegetation type ({approx}30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO{sub 2} emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO{sub 2} production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO{sub 2} concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO{sub 2} emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO{sub 2} fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY{sup -1} per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO{sub 2} emissions, global warming is likely to stimulate CO{sub 2} emissions from soils.

  10. THIRD COMPONENT SEARCH AND ABUNDANCES OF THE VERY DUSTY SHORT-PERIOD BINARY BD +20 Degree-Sign 307

    SciTech Connect (OSTI)

    Fekel, Francis C.; Cordero, Maria J.; Galicher, Raphael; Zuckerman, B.; Melis, Carl; Weinberger, Alycia J. E-mail: majocord@indiana.edu E-mail: ben@astro.ucla.edu E-mail: weinberger@dtm.ciw.edu

    2012-04-10

    We have obtained near-infrared adaptive optics imaging and collected additional radial velocity observations to search for a third component in the extremely dusty short-period binary system BD +20 Degree-Sign 307. Our image shows no evidence for a third component at separations greater than 19 AU. Our four seasons of radial velocities have a constant center-of-mass velocity and are consistent with the systemic velocities determined at two earlier epochs. Thus, the radial velocities also provide no support for a third component. Unfortunately, the separation domains covered by our imaging and radial velocity results do not overlap. Thus, we examined the parameters for possible orbits of a third component that could have been missed by our current observations. With our velocities we determined improved circular orbital elements for the 3.4 day double-lined binary. We also performed a spectroscopic abundance analysis of the short-period binary components and conclude that the stars are a mid- and a late-F dwarf. We find that the iron abundances of both components, [Fe/H] = 0.15, are somewhat greater than the solar value and comparable to that of stars in the Hyades. Despite the similarity of the binary components, the lithium abundances of the two stars are very unequal. The primary has log {epsilon} (Li) = 2.72, while in the secondary log {epsilon} (Li) {<=}1.46, which corresponds to a difference of at least a factor of 18. The very disparate lithium abundances in very similar stars make it impossible to ascribe a single age to them. While the system is likely at least 1 Gyr old, it may well be as old as the Sun.

  11. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    SciTech Connect (OSTI)

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  12. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOE Patents [OSTI]

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  13. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  14. High temperature low friction surface coating

    DOE Patents [OSTI]

    Bhushan, Bharat

    1980-01-01

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  15. Method for synthesis of high quality graphene

    DOE Patents [OSTI]

    Lanzara, Alessandra; Schmid, Andreas K.; Yu, Xiaozhu; Hwang, Choonkyu; Kohl, Annemarie; Jozwiak, Chris M.

    2012-03-27

    A method is described herein for the providing of high quality graphene layers on silicon carbide wafers in a thermal process. With two wafers facing each other in close proximity, in a first vacuum heating stage, while maintained at a vacuum of around 10.sup.-6 Torr, the wafer temperature is raised to about 1500.degree. C., whereby silicon evaporates from the wafer leaving a carbon rich surface, the evaporated silicon trapped in the gap between the wafers, such that the higher vapor pressure of silicon above each of the wafers suppresses further silicon evaporation. As the temperature of the wafers is raised to about 1530.degree. C. or more, the carbon atoms self assemble themselves into graphene.

  16. Results of U-xMo (x=7, 10, 12 wt.%) Alloy versus Al-6061 Cladding Diffusion Couple Experiments Performed at 500, 550 and 600 Degrees C

    SciTech Connect (OSTI)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Yongho Sohn

    2013-04-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been developing low enrichment fuel systems encased in Al 6061 for use in research and test reactors. U–Mo alloys in contact with Al and Al alloys can undergo diffusional interactions that can result in the development of interdiffusion zones with complex fine-grained microstructures composed of multiple phases. A monolithic fuel currently being developed by the RERTR program has local regions where the U–Mo fuel plate is in contact with the Al 6061 cladding and, as a result, the program finds information about interdiffusion zone development at high temperatures of interest. In this study, the microstructural development of diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo, and U-12wt.%Mo vs. Al 6061 (or 6061 aluminum) cladding, annealed at 500, 550, 600 degrees C for 1, 5, 20, 24, or 132 hours, was analyzed by backscatter electron microscopy and x-ray energy dispersive spectroscopy on a scanning electron microscope. Concentration profiles were determined by standardized wavelength dispersive spectroscopy and standardless x-ray energy dispersive spectroscopy. The results of this work shows that the presence of surface layers at the U–Mo/Al 6061 interface can dramatically impact the overall interdiffusion behavior in terms of rate of interaction and uniformity of the developed interdiffusion zones. It further reveals that relatively uniform interaction layers with higher Si concentrations can develop in U–Mo/Al 6061 couples annealed at shorter times and that longer times at temperature result in the development of more non-uniform interaction layers with more areas that are enriched in Al. At longer annealing times and relatively high temperatures, U–Mo/Al 6061 couples can exhibit more interaction compared to U–Mo/pure Al couples. The minor alloying constituents in Al 6061 cladding can result in the development of many complex phases in the interaction layer of U

  17. High impact resistant ceramic composite

    DOE Patents [OSTI]

    Derkacy, James A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.

  18. High strength graphite and method for preparing same

    DOE Patents [OSTI]

    Overholser, Lyle G.; Masters, David R.; Napier, John M.

    1976-01-01

    High strength graphite is manufactured from a mixture of a particulate filler prepared by treating a particulate carbon precursor at a temperature in the range of about 400.degree. to 1000.degree. C., an organic carbonizable binder, and green carbonizable fibers in a concentration of not more than 2 weight per cent of the filler. The use of the relatively small quantity of green fibers provides a substantial increase in the flexural strength of the graphite with only a relatively negligible increase in the modulus of elasticity.

  19. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    SciTech Connect (OSTI)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  20. Strategy Guideline. Partnering for High Performance Homes

    SciTech Connect (OSTI)

    Prahl, Duncan

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  1. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The desert temperature hovered at 90 degrees Fahrenheit the morning of July 17, 1962 at the Nevada Test Site (NTS), now known at the Nevada National Security Site (NNSS). Eventually the beating sun would increase the heat to over 105 degrees later that day, but at 10:00 a.m., a crowd of 396 spectators braved the scorching temperature and relentless sun to witness the last atmospheric test ever conducted by the United States. The crowd gathered in Area 18 of the NTS, approximately two miles from

  2. Method of making high strength, tough alloy steel

    DOE Patents [OSTI]

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  3. Highly thermostable fluorescent proteins

    DOE Patents [OSTI]

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  4. Highly thermostable fluorescent proteins

    DOE Patents [OSTI]

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  5. Highly thermostable fluorescent proteins

    DOE Patents [OSTI]

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  6. High-strength iron aluminide alloys

    SciTech Connect (OSTI)

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  7. Corrosion of Fe-Ni-Cr, Fe-Cr-Al, and Fe-Ni-Cr-Al alloys in H/sub 2//H/sub 2/o/H/sub 2/s mixtures at 1200/degree/C

    SciTech Connect (OSTI)

    Loudjani, M.; Pivin, J.C.; Roques-Carmes, C.; Lacombe, P.; Davidson, J.H.

    1982-07-01

    A series of alloys has been exposed at 1200/degree/C in atmospheres of controlled oxygen and sulfur potentials, after preoxidation in air or in impure argon. The corrosion behavior is interpreted on the basis of phase-stability diagrams. The presence of iron and nickel-rich spinel particles in the outer layers of the initial oxide scale plays an essential role in resistance to sulfur attack. When the oxygen potential is sufficiently low, these spinels are reduced to a mixture of chromium oxide and an Fe-Ni alloy. The latter can then form sulfides which are liquid at high temperatures and accelerate penetration of sulfur into the underlying metal. 30 refs.

  8. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics High Energy Physics Investigating the field of high energy physics ... Through the Office of High Energy Physics (HEP), Los Alamos conducts research in particle ...

  9. Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures

    DOE Patents [OSTI]

    Laverman, Royce J.; Lai, Ban-Yen

    1993-01-01

    Apparatus and methods for cooling high temperature superconducting materials (HTSC) to superconductive temperatures within the range of 27.degree. K. to 77.degree. K. using a mixed refrigerant consisting of liquefied neon and nitrogen containing up to about ten mole percent neon by contacting and surrounding the HTSC material with the mixed refrigerant so that free convection or forced flow convection heat transfer can be effected.

  10. Oxidation resistant high creep strength austenitic stainless steel

    SciTech Connect (OSTI)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  11. Method of high purity silane preparation

    DOE Patents [OSTI]

    Tsuo, Y. Simon; Belov, Eugene P.; Gerlivanov, Vadim G.; Zadde, Vitali V.; Kleschevnikova, Solomonida I.; Korneev, Nikolai N.; Lebedev, Eugene N.; Pinov, Akhsarbek B.; Ryabenko, Eugene A.; Strebkov, Dmitry S.; Chernyshev, Eugene A.

    2000-01-01

    A process for the preparation of high purity silane, suitable for forming thin layer silicon structures in various semiconductor devices and high purity poly- and single crystal silicon for a variety of applications, is provided. Synthesis of high-purity silane starts with a temperature assisted reaction of metallurgical silicon with alcohol in the presence of a catalyst. Alcoxysilanes formed in the silicon-alcohol reaction are separated from other products and purified. Simultaneous reduction and oxidation of alcoxysilanes produces gaseous silane and liquid secondary products, including, active part of a catalyst, tetra-alcoxysilanes, and impurity compounds having silicon-hydrogen bonds. Silane is purified by an impurity adsorption technique. Unreacted alcohol is extracted and returned to the reaction with silicon. Concentrated mixture of alcoxysilanes undergoes simultaneous oxidation and reduction in the presence of a catalyst at the temperature -20.degree. C. to +40.degree. C. during 1 to 50 hours. Tetra-alcoxysilane extracted from liquid products of simultaneous oxidation and reduction reaction is directed to a complete hydrolysis. Complete hydrolysis of tetra-alcoxysilane results in formation of industrial silica sol and alcohol. Alcohol is dehydrated by tetra-alcoxysilane and returned to the reaction with silicon.

  12. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    SciTech Connect (OSTI)

    Wan, Wubo [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Zhao, Zongbin, E-mail: zbzhao@dlut.edu.cn [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Hu, Han [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Gogotsi, Yury [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Department of Materials Science and Engineering, and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104 (United States); Qiu, Jieshan, E-mail: jqiu@dlut.edu.cn [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2013-11-15

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: Graphene was synthesized by an effective and environmentally friendly approach. We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. Flexible graphene films were prepared by self-assembly of the graphene sheets. The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UVvis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded.

  13. High Temperature Quantum Well Materials

    Broader source: Energy.gov [DOE]

    Seebeck coefficients of >1,000 microvolt/degree C and resistivities of 1 milliohm-cm or less were obtained.

  14. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  15. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  16. Method for fabricating high aspect ratio structures in perovskite material

    DOE Patents [OSTI]

    Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria

    2003-10-28

    A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.

  17. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    SciTech Connect (OSTI)

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-10-06

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  18. High precision high flow range control valve

    DOE Patents [OSTI]

    McCray, John A.

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  19. High precision high flow range control valve

    DOE Patents [OSTI]

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  20. Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    1998-01-01

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  1. The degree of 5f electron localization in URu2Si2: electron energy-loss spectroscopy and spin-orbit sum rule analysis

    SciTech Connect (OSTI)

    Jeffries, J R; Moore, K T; Butch, N P; Maple, M B

    2010-05-19

    We examine the degree of 5f electron localization in URu{sub 2}Si{sub 2} using spin-orbit sum rule analysis of the U N{sub 4,5} (4d {yields} 5f) edge. When compared to {alpha}-U metal, US, USe, and UTe, which have increasing localization of the 5f states, we find that the 5f states of URu{sub 2}Si{sub 2} are more localized, although not entirely. Spin-orbit analysis shows that intermediate coupling is the correct angular momentum coupling mechanism for URu{sub 2}Si{sub 2} when the 5f electron count is between 2.6 and 2.8. These results have direct ramifications for theoretical assessment of the hidden order state of URu{sub 2}Si{sub 2}, where the degree of localization of the 5f electrons and their contribution to the Fermi surface are critical.

  2. New rocket propellant and motor design offer high-performance and safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New rocket propellant and motor design offer high-performance and safety New rocket propellant and motor design offer high-performance and safety Scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety December 22, 2014 Rocket flight test at the Energetic Materials Research and Testing Center launch site near Socorro, NM. Rocket flight test at the Energetic Materials Research and Testing Center launch

  3. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    SciTech Connect (OSTI)

    Was, Gary; Jones, J. W.

    2013-06-21

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  4. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  5. Fabrication of high exposure nuclear fuel pellets

    DOE Patents [OSTI]

    Frederickson, James R.

    1987-01-01

    A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

  6. PHOTOMETRIC PROPERTIES OF Ly{alpha} EMITTERS AT z {approx} 4.86 IN THE COSMOS 2 SQUARE DEGREE FIELD

    SciTech Connect (OSTI)

    Shioya, Y.; Taniguchi, Y.; Nagao, T.; Saito, T.; Trump, J.; Sasaki, S. S.; Ideue, Y.; Nakajima, A.; Matsuoka, K.; Murayama, T.; Scoville, N. Z.; Capak, P.; Ellis, R. S.; Sanders, D. B.; Kartaltepe, J.; Mobasher, B.; Aussel, H.; Koekemoer, A.; Carilli, C.; Garilli, B.

    2009-05-01

    We present results of a survey for Ly{alpha} emitters at z {approx} 4.86 based on optical narrowband ({lambda} {sub c} = 7126 A, {delta}{lambda} = 73 A) and broadband (B, V, r', i', and z') observations of the Cosmic Evolution Survey field using Suprime-Cam on the Subaru Telescope. We find 79 Ly{alpha} emitter (LAE) candidates at z {approx} 4.86 over a contiguous survey area of 1.83 deg{sup 2}, down to the Ly{alpha} line flux of 1.47 x 10{sup -17} erg s{sup -1} cm{sup -2}. We obtain the Ly{alpha} luminosity function with a best-fit Schechter parameters of log L* = 42.9{sup +0.5} {sub -0.3} erg s{sup -1} and {phi}* = 1.2{sup +8.0} {sub -1.1} x 10{sup -4} Mpc{sup -3} for {alpha} = -1.5 (fixed). The two-point correlation function for our LAE sample is {xi}(r) = (r/4.4{sup +5.7} {sub -2.9} Mpc){sup -1.90{+-}}{sup 0.22}. In order to investigate the field-to-field variations of the properties of Ly{alpha} emitters, we divide the survey area into nine tiles of 0.{sup 0}5 x 0.{sup 0}5 each. We find that the number density varies with a factor of {approx_equal}2 from field to field with high statistical significance. However, we find no significant field-to-field variance when we divide the field into four tiles with 0.{sup 0}7 x 0.{sup 0}7 each. We conclude that at least 0.5 deg{sup 2} survey area is required to derive averaged properties of LAEs at z {approx} 5, and our survey field is wide enough to overcome the cosmic variance.

  7. High energy cathode material

    DOE Patents [OSTI]

    Li, Bin; Caldwell, Marissa; Tong, Wei; Kaye, Steven; Bhat, Vinay

    2015-09-01

    A composition for use in a battery electrode comprising a compound including lithium, manganese, nickel, and oxygen. The composition is characterized by a powder X-ray diffraction pattern having peaks including 18.6.+-.0.2, 35.0.+-.0.2, 36.4.+-.0.2, 37.7.+-.0.2, 42.1.+-.0.2, and 44.5.+-.0.2 degrees 2.theta. as measured using Cu K.sub..alpha. radiation.

  8. High strength nickel-chromium-iron austenitic alloy

    DOE Patents [OSTI]

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  9. Ultra-high resolution computed tomography imaging

    DOE Patents [OSTI]

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  10. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, Richard K.; Kovacic, Larry

    1993-01-01

    A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.