National Library of Energy BETA

Sample records for degrees fahrenheit consisting

  1. C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP

    Gasoline and Diesel Fuel Update (EIA)

    Aquifer Field: A sub-surface facility for storing natural gas consisting of water-bearing ... temperature of 1 pound of water by 1 degree Fahrenheit at or near 39.2 degrees Fahrenheit. ...

  2. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect (OSTI)

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  3. Lazy arc consistency

    SciTech Connect (OSTI)

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  4. Energy Efficiency Report--Glossary

    Gasoline and Diesel Fuel Update (EIA)

    Thermal Unit (Btu): The quantity of heat needed to raise the temperature of 1 pound of water by 1 degree Fahrenheit at or near 39.2 degrees Fahrenheit. Census Region: A geographic...

  5. Self-consistent klystron simulations

    SciTech Connect (OSTI)

    Carlsten, B.E.; Tallerico, P.J.

    1985-01-01

    A numerical analysis of large-signal klystron behavior based on general wave-particle interaction theory is presented. The computer code presented is tailored for the minimum amount of complexity needed in klystron simulation. The code includes self-consistent electron motion, space-charge fields, and intermediate and output fields. It also includes use of time periodicity to simplify the problem, accurate representation of the space-charge fields, accurate representation of the cavity standing-wave fields, and a sophisticated particle-pushing routine. In the paper, examples are given that show the effects of cavity detunings, of varying the magnetic field profile, of electron beam asymmetries from the gun, and of variations in external load impedance. 4 refs., 7 figs.

  6. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, C.S.

    1999-03-16

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing. 3 figs.

  7. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, Charles S.

    1999-01-01

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing.

  8. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees...

  9. On the initial state and consistency relations

    SciTech Connect (OSTI)

    Berezhiani, Lasha; Khoury, Justin E-mail: jkhoury@sas.upenn.edu

    2014-09-01

    We study the effect of the initial state on the consistency conditions for adiabatic perturbations. In order to be consistent with the constraints of General Relativity, the initial state must be diffeomorphism invariant. As a result, we show that initial wavefunctional/density matrix has to satisfy a Slavnov-Taylor identity similar to that of the action. We then investigate the precise ways in which modified initial states can lead to violations of the consistency relations. We find two independent sources of violations: i) the state can include initial non-Gaussianities; ii) even if the initial state is Gaussian, such as a Bogoliubov state, the modified 2-point function can modify the q-vector ?0 analyticity properties of the vertex functional and result in violations of the consistency relations.

  10. Microsoft Word - Blurbs for Nik.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NFPA Chemical Labeling System The NFPA diamond is a coded symbol which combines both color and numerical rating (0-4) to indicate the degree of hazard associated with the substance. Blue = Health Red = Flammability Yellow = Reactivity White = Other Flammability (flash points) Health 0 = Will not burn 0 = Normal Material 1 = above 200 degrees Fahrenheit 1 = Slight Hazard 2 = Between 100-200 degrees Fahrenheit 2 = Moderately Hazardous 3 = Below 100 degrees Fahrenheit 3 = Extremely Hazardous 4 =

  11. Health Physics Enrollments and Degrees, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    health physics or in an option program equivalent to a major. Twenty-four academic programs reported having health physics programs during 2011. The data for two health physics options within nuclear engineering programs are also included in the enrollments and degrees that are reported in the nuclear engineering enrollments and degrees data. Degree Trends. Bachelor degrees increased slightly between 2010 and 2011, but were 15% less than during 2005 through 2009 and 30% less than in the

  12. On consistent kinetic and derivative interactions for gravitons

    SciTech Connect (OSTI)

    Noller, Johannes

    2015-04-17

    The only known fully ghost-free and consistent Lorentz-invariant kinetic term for a graviton (or indeed for any spin-2 field) is the Einstein-Hilbert term. Here we propose and investigate a new candidate family of kinetic interactions and their extensions to derivative interactions involving several spin-2 fields. These new terms generically break diffeomorphism invariance(s) and as a result can lead to the propagation of 5 degrees of freedom for a single spin-2 field — analogous to ghost-free Massive Gravity. We discuss under what circumstances these new terms can be used to build healthy effective field theories and in the process establish the ‘Jordan’ and ‘Einstein’ frame pictures for Massive-, Bi- and Multi-Gravity.

  13. EA-1733: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The proposed EGS project includes the injection of water, ranging from 50 to 80 degrees Fahrenheit, into wells to enhance the permeability of an existing high temperature ...

  14. Fermilab | Science at Fermilab | Experiments & Projects | Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At the heart of the LHC are superconducting magnets made of niobium-titanium. When cooled with liquid helium to negative 514 degrees Fahrenheit, the cable inside the ...

  15. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may include fever over 100 degrees Fahrenheit, muscle or body aches, chills, headache, cough, fatigue, weakness and nasal congestion. Once infected, a person may develop no...

  16. Department of Energy Official Touts Bush Administration's Efforts...

    Office of Environmental Management (EM)

    superconductors that can operate at relatively "high" temperatures, from approximately -320 to -370 degrees Fahrenheit (50 to 77 Kelvin), and in magnetic fields from 1 to 4 Tesla. ...

  17. Word Pro - Glossary

    Gasoline and Diesel Fuel Update (EIA)

    ... content of emulsions (exclusive of water), and petroleum distillates blended with ... the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature ...

  18. RAPID/Roadmap/3-NM-e | Open Energy Information

    Open Energy Info (EERE)

    Business Lease), developers pursuing geothermal projects on state trust lands where the temperature of the extractable resource is less than 250 degrees Fahrenheit may apply for...

  19. Generalized arc consistency for global cardinality constraint

    SciTech Connect (OSTI)

    Regin, J.C.

    1996-12-31

    A global cardinality constraint (gcc) is specified in terms of a set of variables X = (x{sub 1},..., x{sub p}) which take their values in a subset of V = (v{sub 1},...,v{sub d}). It constrains the number of times a value v{sub i} {epsilon} V is assigned to a variable in X to be in an interval [l{sub i}, c{sub i}]. Cardinality constraints have proved very useful in many real-life problems, such as scheduling, timetabling, or resource allocation. A gcc is more general than a constraint of difference, which requires each interval to be. In this paper, we present an efficient way of implementing generalized arc consistency for a gcc. The algorithm we propose is based on a new theorem of flow theory. Its space complexity is O({vert_bar}X{vert_bar} {times} {vert_bar}V{vert_bar}) and its time complexity is O({vert_bar}X{vert_bar}{sup 2} {times} {vert_bar}V{vert_bar}). We also show how this algorithm can efficiently be combined with other filtering techniques.

  20. Lens positioner with five degrees of freedom

    DOE Patents [OSTI]

    Kobierecki, Marian W.; Rienecker, Jr., Frederick

    1978-01-01

    A device for positioning lenses precisely with five degrees of freedom (three translations and two angular rotations). The unique features of the device are its compact design, large clear aperture, and high degree of positioning accuracy combined with five degrees of freedom in axis motion. Thus, the device provides precision and flexibility in positioning of optical components. BACKGROUND OF THE INVENTION The invention described herein was made in the course of, or under, Contract No. AT(29-1)-1183, with the United States Energy Research and Development Administration.

  1. EM Leaders Earn National Defense Degrees

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Two EM employees were recently awarded Master of Science degrees from the National Defense University (NDU) as part of a DOE-sponsored professional development program.

  2. Single-field consistency relations of large scale structure

    SciTech Connect (OSTI)

    Creminelli, Paolo; Norea, Jorge; Simonovi?, Marko; Vernizzi, Filippo E-mail: jorge.norena@icc.ub.edu E-mail: filippo.vernizzi@cea.fr

    2013-12-01

    We derive consistency relations for the late universe (CDM and ?CDM): relations between an n-point function of the density contrast ? and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale ?. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe.

  3. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric Drive...

  4. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Asia...

  5. Development and Implementation of Degree Programs in Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric ...

  6. Generalized contexts and consistent histories in quantum mechanics

    SciTech Connect (OSTI)

    Losada, Marcelo; Laura, Roberto

    2014-05-15

    We analyze a restriction of the theory of consistent histories by imposing that a valid description of a physical system must include quantum histories which satisfy the consistency conditions for all states. We prove that these conditions are equivalent to imposing the compatibility conditions of our formalism of generalized contexts. Moreover, we show that the theory of consistent histories with the consistency conditions for all states and the formalism of generalized context are equally useful representing expressions which involve properties at different times.

  7. Calculation of variable-base degree-days and degree-nights from monthly average temperatures

    SciTech Connect (OSTI)

    Sonderegger, R.; Cleary, P.; Dickinson, B.

    1985-01-01

    The Computerized Instrumented Residential Audit (CIRA), a micro-computer building energy analysis program developed at Lawrence Berkeley Laboratory, uses a monthly variable-base degree-day method to calculate heating and cooling loads. The method's unique feature is its ability to model thermostat setbacks and storage of solar gain. The program accomplishes this by dividing each day into two periods, ''average day'' (8 a.m. to 8 p.m.) and ''average night'' (8 p.m. to 8 a.m.), with different base temperatures. For each mode (heating or cooling) and for each period (day or night), the program reconstructs degree-days as a function of average monthly day or night temperature using three empirical coefficients specific to the location. A comparison is made between degree-days computed from hourly weather tapes and those predicted using this method. The root mean square error between predicted and actual degree days is typically between 3 and 12 degree-days per month. Tables of the coefficients are given for over 150 locations in the United States, computed from hourly dry-bulb temperatures on TRY and TMY tapes. Seasonal predictions of heating and cooling energy budgets using this method show good correspondence to the DOE-2 hourly simulation method.

  8. A Probabilistic Approach to Site-Specific, Hazard-Consistent

    Office of Environmental Management (EM)

    Vertical-to-Horizontal Spectral Ratio Model | Department of Energy Approach to Site-Specific, Hazard-Consistent Vertical-to-Horizontal Spectral Ratio Model A Probabilistic Approach to Site-Specific, Hazard-Consistent Vertical-to-Horizontal Spectral Ratio Model A Probabilistic Approach to Site-Specific, Hazard-Consistent Vertical-to-Horizontal Spectral Ratio Model Rizzo Associates Presented at U.S. DOE Natural Phenomena Hazards Meeting October 21, 2014 A Probabilistic Approach to

  9. Self-consistent second-order Green's function perturbation theory...

    Office of Scientific and Technical Information (OSTI)

    Self-consistent second-order Green's function perturbation theory for periodic systems ... Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud ...

  10. California Department of Fish and Wildlife Consistency Determination...

    Open Energy Info (EERE)

    California Department of Fish and Wildlife Consistency Determination Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Department of...

  11. A consistent second order projection scheme for simulating transient...

    Office of Scientific and Technical Information (OSTI)

    flow with Smoothed Particle Hydrodynamics. Citation Details In-Document Search Title: A consistent second order projection scheme for simulating transient viscous flow with ...

  12. Efficient self-consistent quantum transport simulator for quantum...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Efficient self-consistent quantum transport simulator for quantum ... DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article Resource Relation: ...

  13. Interdiffusion and Reaction between Zr and Al Alloys from 425 degrees to 625 degrees C

    SciTech Connect (OSTI)

    J. Dickson; L. Zhou; A. Ewh; M. Fu; D. D. Keiser, Jr.; Y. H. Sohn; A. Paz y Puente

    2014-06-01

    Zirconium has recently garnered attention for use as a diffusion barrier between UMo nuclear fuels and Al cladding alloys. Interdiffusion and reactions between Zr and Al, Al-2 wt.% Si, Al-5 wt.% Si or AA6061 were investigated using solid-to-solid diffusion couples annealed in the temperature range of 425 degrees to 625 degrees C. In the binary Al and Zr system, the Al3Zr and Al2Zr phases were identified, and the activation energy for the growth of the Al3Zr phase was determined to be 347 kJ/mol. Negligible diffusional interactions were observed for diffusion couples between Zr vs. Al-2 wt.% Si, Al-5 wt.% Si and AA6061 annealed at or below 475 degrees C. In diffusion couples with the binary AlSi alloys at 560 degrees C, a significant variation in the development of the phase constituents was observed including the thick t1 (Al5SiZr2) with Si content up to 12 at.%, and thin layers of (Si,Al)2Zr, (Al,Si)3Zr, Al3SiZr2 and Al2Zr phases. The use of AA6061 as a terminal alloy resulted in the development of both T1 (Al5SiZr2) and (Al,Si)3Zr phases with a very thin layer of (Al,Si)2Zr. At 560 degrees C, with increasing Si content in the AlSi alloy, an increase in the overall rate of diffusional interaction was observed; however, the diffusional interaction of Zr in contact with multicomponent AA6061 with 0.40.8 wt.% Si was most rapid.

  14. Multiple-degree-of-freedom vehicle

    DOE Patents [OSTI]

    Borenstein, Johann

    1995-01-01

    A multi-degree-of-freedom vehicle employs a compliant linkage to accommodate the need for a variation in the distance between drive wheels or drive systems which are independently steerable and drivable. The subject vehicle is provided with rotary encodes to provide signals representative of the orientation of the steering pivot associated with each such drive wheel or system, and a linear encoder which issues a signal representative of the fluctuations in the distance between the drive elements. The wheels of the vehicle are steered and driven in response to the linear encoder signal, there being provided a controller system for minimizing the fluctuations in the distance. The controller system is a software implementation of a plurality of controllers, operating at the chassis level and at the vehicle level. A trajectory interpolator receives x-displacement, y-displacement, and .theta.-displacement signals and produces to the vehicle level controller trajectory signals corresponding to interpolated control signals. The x-displacement, y-displacement, and .theta.-displacement signals are received from a human operator, via a manipulable joy stick.

  15. The consistency condition for the three-point function in dissipative single-clock inflation

    SciTech Connect (OSTI)

    Nacir, Diana López; Porto, Rafael A.; Zaldarriaga, Matias E-mail: rporto@ias.edu

    2012-09-01

    We generalize the consistency condition for the three-point function in single field inflation to the case of dissipative, multi-field, single-clock models. We use the recently introduced extension of the effective field theory of inflation that accounts for dissipative effects, to provide an explicit proof to leading (non-trivial) order in the generalized slow roll parameters and mixing with gravity scales. Our results illustrate the conditions necessary for the validity of the consistency relation in situations with many degrees of freedom relevant during inflation, namely that there is a preferred clock. Departures from this condition in forthcoming experiments would rule out not only single field but also a large class of multi-field models.

  16. BILIWG: Consistent "Figures of Merit" (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BILIWG: Consistent "Figures of Merit" A finite set of results reported in consistent units * To track progress of individual projects on a consistent basis * To enable comparing projects in a transparent manner Potential BILIWG Figures of Merit Key BILI Distributed Reforming Targets * Cost ($/kg of H2): H2A analysis - Distributed reforming station,1000 kg/day ave./daily dispensed, 5000/6250 psi (and 10,000/12,000 psi) dispensing, 500 units/yr. * nth unit vs. 500 units/yr ? * production

  17. ORISE: Report shows number of health physics degrees for 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the early 2000 FOR IMMEDIATE RELEASE Dec. 20, 2011 FY12-09 OAK RIDGE, Tenn.-The number of health physics graduate degrees increased for both master's and doctoral candidates in 2010, but decreased for bachelor's degrees, says a report released this year by the Oak Ridge Institute for Science and Education. The ORISE report,

  18. Self-consistency tests of large-scale dynamics parameterizations...

    Office of Scientific and Technical Information (OSTI)

    In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to ...

  19. Consistent description of kinetics and hydrodynamics of dusty plasma

    SciTech Connect (OSTI)

    Markiv, B.; Tokarchuk, M.; National University Lviv Polytechnic, 12 Bandera St., 79013 Lviv

    2014-02-15

    A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.

  20. Consistent interaction vertices in arbitrary topological BF theories

    SciTech Connect (OSTI)

    Bizdadea, C.; Cioroianu, E. M.; Saliu, S. O.; Sararu, S. C.; Stanciu-Oprean, L.

    2013-11-13

    Here we extend the previous results from [12] to the computation of all consistent self-interactions for topological BF theories with maximal field spectra in D =5,6,7,8 and present some partial results on possible generalizations on a space-time of arbitrary dimension D. For convenience, the deformation of the solution to the master equation in the context of the BRST-antifield formalism is used as a general method of constructing consistent interacting gauge field theories together with most of the standard hypotheses on quantum field theories on Minkowski space-times.

  1. Exact solution of the self-consistent Vlasov equation

    SciTech Connect (OSTI)

    Morawetz, K.

    1997-03-01

    An analytical solution of the self-consistent Vlasov equation is presented. The time evolution is entirely determined by the initial distribution function. The largest Lyapunov exponent is calculated analytically. For special parameters of the potential a positive Lyapunov exponent is possible. This model may serve as a check for numerical codes solving self-consistent Vlasov equations. The here presented method is also applicable for any system with an analytical solution of the Hamilton equation for the form factor of the potential. {copyright} {ital 1997} {ital The American Physical Society}

  2. Consistency test of neutrinoless double beta decay with one isotope

    SciTech Connect (OSTI)

    Duerr, Michael; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, 69029 Heidelberg (Germany); Zuber, Kai [Technical University Dresden, Institut fuer Kern- und Teilchenphysik, 01069 Dresden (Germany)

    2011-11-01

    We discuss a consistency test which makes it possible to discriminate unknown nuclear background lines from neutrinoless double beta decay with only one isotope. By considering both the transition to the ground state and to the first excited 0{sup +} state, a sufficiently large detector can reveal if neutrinoless double beta decay or some other nuclear physics process is at work. Such a detector could therefore simultaneously provide a consistency test for a certain range of Majorana masses and be sensitive to lower values of the effective Majorana mass .

  3. Consistent Data Assimilation of Isotopes: 242Pu and 105Pd

    SciTech Connect (OSTI)

    G. Palmiotti; H. Hiruta; M. Salvatores

    2012-09-01

    In this annual report we illustrate the methodology of the consistent data assimilation that allows to use the information coming from integral experiments for improving the basic nuclear parameters used in cross section evaluation. A series of integral experiments are analyzed using the EMPIRE evaluated files for 242Pu and 105Pd. In particular irradiation experiments (PROFIL-1 and -2, TRAPU-1, -2 and -3) provide information about capture cross sections, and a critical configuration, COSMO, where fission spectral indexes were measured, provides information about fission cross section. The observed discrepancies between calculated and experimental results are used in conjunction with the computed sensitivity coefficients and covariance matrix for nuclear parameters in a consistent data assimilation. The results obtained by the consistent data assimilation indicate that not so large modifications on some key identified nuclear parameters allow to obtain reasonable C/E. However, for some parameters such variations are outside the range of 1 s of their initial standard deviation. This can indicate a possible conflict between differential measurements (used to calculate the initial standard deviations) and the integral measurements used in the statistical data adjustment. Moreover, an inconsistency between the C/E of two sets of irradiation experiments (PROFIL and TRAPU) is observed for 242Pu. This is the end of this project funded by the Nuclear Physics Program of the DOE Office of Science. We can indicate that a proof of principle has been demonstrated for a few isotopes for this innovative methodology. However, we are still far from having explored all the possibilities and made this methodology to be considered proved and robust. In particular many issues are worth further investigation: • Non-linear effects • Flexibility of nuclear parameters in describing cross sections • Multi-isotope consistent assimilation • Consistency between differential and integral

  4. Nuclear Engineering Enrollments and Degrees Survey, 2015 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SURVEY UNIVERSE The 2015 Nuclear Engineering Enrollments and Degrees Survey reports degrees granted between September 1, 2014 and August 31, 2015. Enrollment information refers to the fall term 2015. The enrollments and degrees data comprises students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-five academic programs reported having nuclear engineering programs during 2015, and data was received from all thirty-five programs. The report includes

  5. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    SciTech Connect (OSTI)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  6. Brief 70 Nuclear Engineering Enrollments and Degrees, 2011 Summary Information

    SciTech Connect (OSTI)

    Dr. Don Johnson

    2012-10-31

    The survey includes degrees granted between September 1, 2010 and August 31, 2011. Enrollment information refers to the fall term 2011. The enrollment and degree data include students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during 2011, and data was received from all thirty-two programs. The data for two nuclear engineering programs include enrollments and degrees in health physics options that are also reported in the health physics enrollments and degrees data.

  7. ORISE: Report by ORISE shows health physics degrees declined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics degrees declined in 2014, enrollment trends reverse Enrollment data ... graduating with majors in health physics has declined across undergraduate, ...

  8. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and astrophysical capture processes R.E. Tribble A.M. Mukhamedzhanov Graduate Teaching Assistant Pursuing degree at Department of Statistics, Texas A&M University Jim...

  9. Biography U. Dsterloh Degree: PD Dr.- Ing. habil. Institution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. Dsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology. Chair: chair for waste disposal technologies and geomechanics. 1982- 1988 field of study:...

  10. Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering ...

  11. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE April 1, 2010 - March 31, 2011 Name Year Thesis Title Advisor Present Position Zach...

  12. Non-trivial checks of novel consistency relations

    SciTech Connect (OSTI)

    Berezhiani, Lasha; Khoury, Justin; Wang, Junpu E-mail: jkhoury@sas.upenn.edu

    2014-06-01

    Single-field perturbations satisfy an infinite number of consistency relations constraining the squeezed limit of correlation functions at each order in the soft momentum. These can be understood as Ward identities for an infinite set of residual global symmetries, or equivalently as Slavnov-Taylor identities for spatial diffeomorphisms. In this paper, we perform a number of novel, non-trivial checks of the identities in the context of single field inflationary models with arbitrary sound speed. We focus for concreteness on identities involving 3-point functions with a soft external mode, and consider all possible scalar and tensor combinations for the hard-momentum modes. In all these cases, we check the consistency relations up to and including cubic order in the soft momentum. For this purpose, we compute for the first time the 3-point functions involving 2 scalars and 1 tensor, as well as 2 tensors and 1 scalar, for arbitrary sound speed.

  13. On the grade consistent theories of micromorphic elastic solids

    SciTech Connect (OSTI)

    Iesan, D.

    2011-02-10

    For the investigation of specific nonlocal phenomena the second-order displacement gradient has been added to the independent constitutive variables used in the classical theories of elastic solids. In this paper we outline the hystorical development of the subject and present a nonlinear grade consistent theory of micromorphic elastic solids in which the independent constitutive variables are the deformation gradient, the second-order displacement gradient, microdeformation tensor, and microdeformation gradient. Then, we present the linearized theory and establish a uniqueness result with no definiteness assumption on the elastic coefficients. The theory is used to obtain the basic eqations of a grade consistent theory of microstretch elastic bodies. The field equations for an isotropic and homogeneous elastic body are presented. A counterpart of the Cauchy-Kowalevski-Somigliana solution of the classical elastodynamics is established.

  14. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: Exactly solvable two-site Hubbard model

    SciTech Connect (OSTI)

    Kutepov, A. L.

    2015-07-22

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ₁ from the first-order perturbation theory, and the exact vertex ΓE). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. Results obtained with the exact vertex are directly related to the present open question—which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on Perturbation Theory systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  15. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: Exactly solvable two-site Hubbard model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kutepov, A. L.

    2015-07-22

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ₁ from the first-order perturbation theory, and the exact vertex ΓE). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. Results obtained with the exact vertex are directly related to the present open question—which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT.more » It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on Perturbation Theory systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.« less

  16. Diagnostic Mass-Consistent Wind Field Monte Carlo Dispersion Model

    Energy Science and Technology Software Center (OSTI)

    1991-01-01

    MATHEW generates a diagnostic mass-consistent, three-dimensional wind field based on point measurements of wind speed and direction. It accounts for changes in topography within its calculational domain. The modeled wind field is used by the Langrangian ADPIC dispersion model. This code is designed to predict the atmospheric boundary layer transport and diffusion of neutrally bouyant, non-reactive species as well as first-order chemical reactions and radioactive decay (including daughter products).

  17. Consistency check for trends in surface temperature and upper-level circulation: 1950-1992

    SciTech Connect (OSTI)

    Van Den Dool, H.M.; O'Lenic, E.A. ); Klein, W.H. )

    1993-12-01

    A time series of 43 years of observed monthly mean air temperature at 109 sites in the 48 contiguous US is compared to monthly mean air temperature specified from hemispheric gridded 700-mb heights. Because both upper-air and surface data have problems that may limit their use in climate change studies, this comparison could be considered a mutual consistency check. Cooling (by about 0.5[degrees]C) from 1951 to about 1970 and subsequent warming (also by 0.5[degrees]C) that continues through the present are found in both datasets, indicating that these interdecadal changes are probably real. In the last several years the specified temperatures were often colder than those observed. This prompted an investigation of whether the [open quotes]residual[close quotes] (specified minus observed) has recently been large (and negative) compared to the earlier part of the record. It was found that for the same 700-mb height field, surface temperatures were almost a degree Celsius warmer in the last few years than they were in the early 1950s, but considering the variability of the residuals over the 1950-92 period, the recent cold residuals may not yet be strikingly unusual. By comparing the full set of 109 stations to a [open quotes]clean[close quotes] subset of 24, the impact of common problems in surface data (station relocation, urbanization, etc.) was found to be quite small. The rather favorable comparison of observed surface temperatures and specified temperatures (which suffer from upper-air analysis/observation changes over the years) indicates that their respective data problems do not appear to validate their use in studies of interdecadal temperature change. 16 refs., 6 figs.

  18. Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach

    SciTech Connect (OSTI)

    Antipov, Sergey V.; Ye, Ziyu; Ananth, Nandini

    2015-05-14

    We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Solar Thermal Collector Domestic Shipments by Market Sector, End-Use, and Type, 2009 End Use Market Sector Type of Collector End Use by Type of Collector 294 U.S. Energy Information Administration / Annual Energy Review 2011 1 Combined space and water heating. 2 Space heating, combined heating, and space cooling. 3 Collectors that generally operate at temperatures below 110 degrees Fahrenheit. 4 Collectors that generally operate in the temperature range of 140 degrees Fahrenheit to 180 degrees

  20. On the internal consistency of holographic dark energy models

    SciTech Connect (OSTI)

    Horvat, R

    2008-10-15

    Holographic dark energy (HDE) models, underpinned by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become convincing candidates for providing an explanation of the dark energy in the universe. On the other hand, the maximum number of quantum states that a conventional QFT for a box of size L is capable of describing relates to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cut-off, which cannot be chosen independently of the IR cut-off and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT.

  1. Asymptotic, multigroup flux reconstruction and consistent discontinuity factors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trahan, Travis J.; Larsen, Edward W.

    2015-05-12

    Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed fluxmore » continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.« less

  2. Self-consistent chemical model of partially ionized plasmas

    SciTech Connect (OSTI)

    Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E.

    2011-01-15

    A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.

  3. Measuring consistent masses for 25 Milky Way globular clusters

    SciTech Connect (OSTI)

    Kimmig, Brian; Seth, Anil; Ivans, Inese I.; Anderton, Tim; Gregersen, Dylan; Strader, Jay; Caldwell, Nelson

    2015-02-01

    We present central velocity dispersions, masses, mass-to-light ratios (M/Ls ), and rotation strengths for 25 Galactic globular clusters (GCs). We derive radial velocities of 1951 stars in 12 GCs from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single-mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trends of M/L with cluster mass and metallicity. The overall values of M/L and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing M/L with cluster mass and lower than expected M/Ls for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.

  4. Self-Consistent Cosmological Simulations of DGP Braneworld Gravity

    SciTech Connect (OSTI)

    Schmidt, Fabian; /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago

    2009-09-01

    We perform cosmological N-body simulations of the Dvali-Gabadadze-Porrati braneworld model, by solving the full non-linear equations of motion for the scalar degree of freedom in this model, the brane bending mode. While coupling universally to matter, the brane-bending mode has self-interactions that become important as soon as the density field becomes non-linear. These self-interactions lead to a suppression of the field in high-density environments, and restore gravity to General Relativity. The code uses a multi-grid relaxation scheme to solve the non-linear field equation in the quasi-static approximation. We perform simulations of a flat self-accelerating DGP model without cosmological constant. However, the type of non-linear interactions of the brane-bending mode, which are the focus of this study, are generic to a wide class of braneworld cosmologies. The results of the DGP simulations are compared with standard gravity simulations assuming the same expansion history, and with DGP simulations using the linearized equation for the brane bending mode. This allows us to isolate the effects of the non-linear self-couplings of the field which are noticeable already on quasi-linear scales. We present results on the matter power spectrum and the halo mass function, and discuss the behavior of the brane bending mode within cosmological structure formation. We find that, independently of CMB constraints, the self-accelerating DGP model is strongly constrained by current weak lensing and cluster abundance measurements.

  5. Table 26. Natural gas home customer-weighted heating degree...

    U.S. Energy Information Administration (EIA) Indexed Site

    6:14:01 PM Table 26. Natural gas home customer-weighted heating degree days MonthYear... Table 26 Created on: 4262016 6:14:07 PM Table 26. Natural gas home customer-weighted ...

  6. VI-12 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. H. Youngblood Continue to Ph. D. degree Guangyao Chen 2013 Initial Conditions from Color Glass Condensate R. J. Fries Post. Doc. at Cyclotron Institute, Texas A&M University...

  7. Charm degrees of freedom in the quark gluon plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mukherjee, Swagato; Petreczky, Peter; Sharma, Sayantan

    2016-01-11

    The lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, Tc; i.e., charm degrees of freedom carrying fractional baryonic charge start to appear. When we reexamine those same lattice QCD data we show that, in addition to the contributions from quarklike excitations, the partial pressure of charm degrees of freedom may still contain significant contributions from open-charm-meson- and baryonlike excitations associated with integral baryonic charges for temperatures up to 1.2Tc. Finally, charm-quark quasiparticles become the dominant degrees of freedom for temperatures T>1.2Tc.

  8. Brief 66 Nuclear Engineering Enrollments and Degrees Survey, 2009 Data

    SciTech Connect (OSTI)

    Dr. Larry M. Blair, Analysis and Evaluation, Science Education Programs

    2010-03-01

    The survey includes degrees granted between September 1, 2008 and August 31, 2009, and fall 2009 enrollments. Thirty-two academic programs reported having nuclear engineering programs during 2009, and data was obtained from all thirty-two.

  9. Microsoft Word - VI_12_Degrees Awarded 2015.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear systems A. Bonasera Post Doc. at INFN - Laboratori Nazionali del Sud, Catania, Italy STUDENTS WHO RECEIVED GRADUATE DEGREES FROM NON-THESIS April 1, 2014 - March 31, 2015 ...

  10. Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon

    SciTech Connect (OSTI)

    Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.; Hall, Kathleen D.; Weiland, Mark A.; Deng, Zhiqun; Carlson, Thomas J.; Eppard, Matthew B.

    2013-04-30

    Animal telemetry, which requires the implantation of passive transponders or active transmitters, is used to monitor and assess fish stock and conservation to gain an understanding of fish movement and behavior. As new telemetry technologies become available, studies of their effects on species of interest are imperative as is development of implantation techniques. In this study, we investigated the effects of bevel rotation (0-, 90-, 180-degree axis rotation) on wound extent, tag loss, and wound healing rates in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the novel injectable Juvenile Salmon Acoustic Telemetry Systems (JSATS) acoustic transmitter or large passive integrated transponder (PIT) tags. Although the injection sites were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, and/or redness around the wound. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced smaller wound extent than the 180-degree bevel rotation. No axis rotation (0-degrees) resulted in the PIT tag frequently misleading or falling out upon injection. The results of this study indicated the 90-degree bevel rotation was the more efficient technique, produced less wound extent. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation in telemetry studies. Highlights •Three degrees of needle rotation were examined for effects in Chinook salmon. •Mortality, tag loss, wound extent, healing, and infection indicators were measured. •There were no mortalities, tag loss, or indications of infection. •The 90-degree needle rotation through Day 7 produced the smallest wound extent.

  11. Brief 75 Health Physics Enrollments and Degrees Survey, 2014 Data

    SciTech Connect (OSTI)

    None, None

    2015-03-05

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014. Enrollment information refers to the fall term 2014. Twenty-two academic programs were included in the survey universe, with all 22 programs providing data. Since 2009, data for two health physics programs located in engineering departments are also included in the nuclear engineering survey. The enrollments and degrees data includes students majoring in health physics or in an option program equivalent to a major.

  12. Brief 73 Health Physics Enrollments and Degrees Survey, 2013 Data

    SciTech Connect (OSTI)

    None, None

    2014-02-15

    The survey includes degrees granted between September 1, 2012 and August 31, 2013. Enrollment information refers to the fall term 2013. Twenty-two academic programs were included in the survey universe, with all 22 programs providing data. Since 2009, data for two health physics programs located in engineering departments are also included in the nuclear engineering survey. The enrollments and degrees data includes students majoring in health physics or in an option program equivalent to a major.taoi_na

  13. Health Physics Enrollments and Degrees Survey, 2013 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SURVEY UNIVERSE The survey includes degrees granted between September 1, 2012 and August 31, 2013. Enrollment information refers to the fall term 2013. Twenty-two academic programs were included in the survey universe, with all 22 programs providing data. Since 2009, data for two health physics programs located in engineering departments are also included in the nuclear engineering survey. The enrollments and degrees data includes students majoring in health physics or in an option program

  14. Health Physics Enrollments and Degrees Survey, 2014 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SURVEY UNIVERSE The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014. Enrollment information refers to the fall term 2014. Twenty-two academic programs were included in the survey universe, with all 22 programs providing data. Since 2009, data for two health physics programs located in engineering departments are also included in the nuclear engineering survey. The enrollments and degrees data includes students majoring in health physics or in an option program

  15. THE PRODUCT CONSISTENCY TEST HOW AND WHY IT WAS DEVELOPED

    SciTech Connect (OSTI)

    Jantzen, C; Ned Bibler, N

    2008-12-15

    The Product Consistency Test (PCT), American Society for Testing Materials (ASTM) Standard C1285, is currently used world wide for testing glass and glass-ceramic waste forms for high level waste (HLW), low level waste (LLW), and hazardous wastes. Development of the PCT was initiated in 1986 because HLW glass waste forms required extensive characterization before actual production began and required continued characterization during production ({ge}25 years). Non-radioactive startup was in 1994 and radioactive startup was in 1996. The PCT underwent extensive development from 1986-1994 and became an ASTM consensus standard in 1994. During the extensive laboratory testing and inter- and intra-laboratory round robins using non-radioactive and radioactive glasses, the PCT was shown to be very reproducible, to yield reliable results rapidly, to distinguish between glasses of different durability and homogeneity, and to easily be performed in shielded cell facilities with radioactive samples. In 1997, the scope was broadened to include hazardous and mixed (radioactive and hazardous) waste glasses. In 2002, the scope was broadened to include glass-ceramic waste forms which are currently being recommended for second generation nuclear wastes yet to be generated in the nuclear renaissance. Since the PCT has proven useful for glass-ceramics with up to 75% ceramic component and has been used to evaluate Pu ceramic waste forms, the use of this test for other ceramic/mineral waste forms such as geopolymers, hydroceramics, and fluidized bed steam reformer mineralized product is under investigation.

  16. IMPROVING CONSISTENCY OF PERFORMANCE ASSESSMENTS IN THE DOE COMPLEX

    SciTech Connect (OSTI)

    Seitz, R; Elmer Wilhite, E

    2009-01-20

    The low-level waste (LLW) performance assessment (PA) process has been traditionally focused on disposal facilities at a few United States Department of Energy (USDOE) sites and commercial disposal facilities. In recent years, there has been a dramatic increase in the scope of the use of PA-like modeling approaches, involving multiple activities, facilities, contractors and regulators. The scope now includes, for example: (1) National Environmental Policy Act (NEPA) assessments, (2) CERCLA disposal cells, (3) Waste Determinations and High-Level Waste (HLW) Closure activities, (4) Potential on-site disposal of Transuranic (TRU) waste, and (5) In-situ decommissioning (including potential use of existing facilities for disposal). The dramatic increase in the variety of activities requiring more detailed modeling has resulted in a similar increase in the potential for inconsistency in approaches both at a site and complexwide scale. This paper includes a summary of USDOE Environmental Management (EM) sponsored initiatives and activities for improved consistency. New initiatives entitled the Performance Assessment Community of Practice and Performance Assessment Assistance Team are also introduced.

  17. ERUPTION OF A SOLAR FILAMENT CONSISTING OF TWO THREADS

    SciTech Connect (OSTI)

    Bi Yi; Jiang Yunchun; Li Haidong; Hong Junchao; Zheng Ruisheng E-mail: jyc@ynao.ac.cn

    2012-10-10

    The trigger and driving mechanism for the eruption of a filament consisting of two dark threads was studied with unprecedented high cadence and resolution of He II 304 A observations made by the Atmospheric Imagining Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the observations made by the Solar Magnetic Activity Research Telescope and the Extreme Ultraviolet Imager (EUVI) telescope on board the Solar Terrestrial Relations Observatory Ahead (STEREO-A). The filament was located at the periphery of the active region NOAA 11228 and erupted on 2011 June 6. At the onset of the eruption, a turbulent filament thread was found to be heated and to elongate in stride over a second one. After it rose slowly, most interestingly, the elongating thread was driven to contact and interact with the second one, and it then erupted with its southern leg being wrapped by a newly formed thread produced by the magnetic reconnection between fields carried by the two threads. Combining the observations from STEREO-A/EUVI and SDO/AIA 304 A images, the three-dimensional shape of the axis of the filament was obtained and it was found that only the southern leg of the eruptive filament underwent rotation. We suggest that the eruption was triggered by the reconnection of the turbulent filament thread and the surrounding magnetic field, and that it was mainly driven by the kink instability of the southern leg of the eruptive filament that possessed a more twisted field introduced by the reconnection-produced thread.

  18. A consistent approach to falsifying ?CDM with rare galaxy clusters

    SciTech Connect (OSTI)

    Harrison, Ian; Hotchkiss, Shaun E-mail: shaun.hotchkiss@helsinki.fi

    2013-07-01

    We consider methods with which to answer the question ''is any observed galaxy cluster too unusual for ?CDM?'' After emphasising that many previous attempts to answer this question will overestimate the confidence level at which ?CDM can be ruled out, we outline a consistent approach to these rare clusters, which allows the question to be answered. We define three statistical measures, each of which are sensitive to changes in cluster populations arising from different modifications to the cosmological model. We also use these properties to define the ''equivalent mass at redshift zero'' for a cluster the mass of an equally unusual cluster today. This quantity is independent of the observational survey in which the cluster was found, which makes it an ideal proxy for ranking the relative unusualness of clusters detected by different surveys. These methods are then used on a comprehensive sample of observed galaxy clusters and we confirm that all are less than 2? deviations from the ?CDM expectation. Whereas we have only applied our method to galaxy clusters, it is applicable to any isolated, collapsed, halo. As motivation for future surveys, we also calculate where in the mass redshift plane the rarest halo is most likely to be found, giving information as to which objects might be the most fruitful in the search for new physics.

  19. First principles molecular dynamics without self-consistent field optimization

    SciTech Connect (OSTI)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-28

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.

  20. Instantaneous spatially local projective measurements are consistent in a relativistic quantum field

    SciTech Connect (OSTI)

    Lin, Shih-Yuin

    2012-12-15

    Suppose the postulate of measurement in quantum mechanics can be extended to quantum field theory; then a local projective measurement at some moment on an object locally coupled with a relativistic quantum field will result in a projection or collapse of the wavefunctional of the combined system defined on the whole time-slice associated with the very moment of the measurement, if the relevant degrees of freedom have nonzero correlations. This implies that the wavefunctionals in the same Hamiltonian system but defined in different reference frames would collapse on different time-slices passing through the same local event where the measurement was done. Are these post-measurement states consistent with each other? We illustrate that the quantum states of the Raine-Sciama-Grove detector-field system started with the same initial Gaussian state defined on the same initial time-slice, then collapsed by the measurements on the pointlike detectors on different time-slices in different frames, will evolve to the same state of the combined system up to a coordinate transformation when compared on the same final time-slice. Such consistency is guaranteed by the spatial locality of interactions and the general covariance in a relativistic system, together with the spatial locality of measurements and the linearity of quantum dynamics in its quantum theory. - Highlights: Black-Right-Pointing-Pointer Spatially local quantum measurements in detector-field models are studied. Black-Right-Pointing-Pointer Local quantum measurement collapses the wavefunctional on the whole time-slice. Black-Right-Pointing-Pointer In different frames wavefunctionals of a field would collapse on different time-slices. Black-Right-Pointing-Pointer States collapsed by the same measurement will be consistent on the same final slice.

  1. Quark degrees of freedom in the production of soft pion jets

    SciTech Connect (OSTI)

    Okorokov, V. A. E-mail: Okorokov@bnl.gov

    2015-05-15

    Experimental results obtained by studying the properties of soft jets in the 4-velocity space at √s ∼ 2 to 20 GeV are presented. The changes in the mean distance from the jet axis to the jet particles, the mean kinetic energy of these particles, and the cluster dimension in response to the growth of the collision energy are consistent with the assumption that quark degrees of freedom manifest themselves in processes of pion-jet production at intermediate energies. The energy at which quark degrees of freedom begin to manifest themselves experimentally in the production of soft pion jets is estimated for the first time. The estimated value of this energy is 2.8 ± 0.6 GeV.

  2. High degree of molecular orientation by a combination of THz and femtosecond laser pulses

    SciTech Connect (OSTI)

    Kitano, Kenta; Ishii, Nobuhisa; Itatani, Jiro [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan) and CREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2011-11-15

    We propose a method for achieving molecular orientation by two-step excitation with intense femtosecond laser and terahertz (THz) pulses. First, the femtosecond laser pulse induces off-resonant impulsive Raman excitation to create rotational wave packets. Next, a delayed intense THz pulse effectively induces resonant dipole transition between neighboring rotational states. By controlling the intensities of both the pulses and the time delay, we can create rotational wave packets consisting of states with different parities in order to achieve a high degree of molecular orientation under a field-free condition. We numerically demonstrate that the highest degree of orientation of >0.8 in HBr molecules is feasible under experimentally available conditions.

  3. EIA-813, Monthly Crude Oil Report Page 1 U. S. DEPARTMENT OF...

    Gasoline and Diesel Fuel Update (EIA)

    transporting Alaskan crude oil by water in the 50 States and the District of Columbia. ... month, corrected to 60 degrees Fahrenheit (F) less basic sediment and water (BS&W). ...

  4. EIA-803, Weekly Crude Oil Stocks Report Page 1 U. S. DEPARTMENT...

    Gasoline and Diesel Fuel Update (EIA)

    transporting Alaskan crude oil by water in the 50 States and the District of Columbia. ... reported corrected to 60 degrees Fahrenheit ( 0 F) less basic sediment and water (BS&W). ...

  5. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    ... foot at a pressure base of 14.73 pounds standard per square inch absolute and a temperature base of 60 degrees Fahrenheit; Cubic meter is a unit of measure which equals 35.314 ...

  6. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    48 contiguous states averaged 41 degrees Fahrenheit, 7% colder than the same period last winter, according to data from Bentek Energy. Average power burn through March 18 rose by...

  7. Geothermal Technology Breakthrough in Alaska: Harvesting Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal exploration at lower temperatures, thanks to a ... degrees Fahrenheit).This innovation increases the ... Hot Springs to reduce the cost of power from 0.30 per kWh ...

  8. Frequently Asked Questions Form EIA-857

    U.S. Energy Information Administration (EIA) Indexed Site

    ... For the second issue, you must carefully consider the business your customers are in. If ... This adjustment factor is the value of your pressure base at 60-degrees Fahrenheit divided ...

  9. EIA Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    temperatures continuing to be 4 to 9 degrees Fahrenheit below normal in the four cities (Atlanta, Chicago, Houston, and New York) monitored by this report. Prices on the spot...

  10. Glossary - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    British thermal unit: The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest ...

  11. A meeting of the minds when NYC CoolRoofs visits PPPL | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which collected data on three white "cool roofs," including one on the Museum of Modern Art Queens in Long Island City, and found there was a 42 degree Fahrenheit difference...

  12. RAPID/Roadmap/5-CO-a | Open Energy Information

    Open Energy Info (EERE)

    five hundred (2,500) feet or that expects to encounter geothermal fluids having a temperature greater than two hundred and twelve (212) degrees Fahrenheit. (Rule 4.2.28.1)....

  13. Data consistency conditions for truncated fanbeam and parallel projections

    SciTech Connect (OSTI)

    Clackdoyle, Rolf; Desbat, Laurent

    2015-02-15

    Purpose: In image reconstruction from projections, data consistency conditions (DCCs) are mathematical relationships that express the overlap of information between ideal projections. DCCs have been incorporated in image reconstruction procedures for positron emission tomography, single photon emission computed tomography, and x-ray computed tomography (CT). Building on published fanbeam DCCs for nontruncated projections along a line, the authors recently announced new DCCs that can be applied to truncated parallel projections in classical (two-dimensional) image reconstruction. These DCCs take the form of polynomial expressions for a weighted backprojection of the projections. The purpose of this work was to present the new DCCs for truncated parallel projections, to extend these conditions to truncated fanbeam projections on a circular trajectory, to verify the conditions with numerical examples, and to present a model of how DCCs could be applied with a toy problem in patient motion estimation with truncated projections. Methods: A mathematical derivation of the new parallel DCCs was performed by substituting the underlying imaging equation into the mathematical expression for the weighted backprojection and demonstrating the resulting polynomial form. This DCC result was extended to fanbeam projections by a substitution of parallel to fanbeam variables. Ideal fanbeam projections of a simple mathematical phantom were simulated and the DCCs for these projections were evaluated by fitting polynomials to the weighted backprojection. For the motion estimation problem, a parametrized motion was simulated using a dynamic version of the mathematical phantom, and both noiseless and noisy fanbeam projections were simulated for a full circular trajectory. The fanbeam DCCs were applied to extract the motion parameters, which allowed the motion contamination to be removed from the projections. A reconstruction was performed from the corrected projections. Results: The

  14. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Heat Content of Natural Gas Consumed Definitions Key Terms Definition British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees Fahrenheit). Delivered to Consumers (Heat Content) Heat content of residential, commercial, industrial, vehicle fuel and electric power deliveries to consumers. Electric Power (Heat Content) Heat content of

  15. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Heating Oil & Propane Prices Definitions Key Terms Definition No. 2 Fuel Oil (Heating Oil) A distillate fuel oil for use in atomizing type burners for domestic heating or for use medium capacity commercial-industrial burner units, with distillation temperatures between 540-640 degrees Fahrenheit at the 90-percent recovery point; and the kinematic viscosities between 1.9-3.4 centistokes at 100 degrees Fahrenheit as defined in ASTM Specification D396-92. Petroleum Administration for Defense

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Compressed natural gas motor fuel is subject to the state fuel excise tax at the rate of $0.30 per 120 cubic feet, measured at 14.73 pounds per square inch and 60 degrees Fahrenheit. Propane motor fuel is subject to the excise tax $0.30 per 1.3 gallons at 60 degrees Fahrenheit. (Reference Oregon Revised Statutes 319.530

  17. Welding consumable selection for cryogenic (4{degrees}K) application

    SciTech Connect (OSTI)

    Kane, S.F.; Siewert, T.A.

    1994-12-31

    Brookhaven National Laboratory (BNL) has begun construction of a large (3.8 kilometer circumference) heavy ion collider for the Department of Energy. The collider uses superconducting magnets, operating at 4{degrees}K in supercritical helium, which meets the definition of a pressure vessel. The ASME Boiler & Pressure Vessel Code grants an exemption from impact testing to certain metals, but only for operating temperatures down to 20{degrees}K. Research and the latest change to ASTM Standard E23 have invalidated Charpy testing at 4{degrees}K, thus compliance with the Code is not possible. This effort was undertaken to identify the weld process and weld material necessary to comply with the intent of the Code (impact test) requirements, that is, to design a weld joint that will assure adequate fracture toughness. We will report the results of this development and testing, and conclude that nitrogen and maganese enhanced 385L provides a superior weld metal for 4{degrees}K cryogenic applications without the exaggerated purity concerns normally associated with superaustenitic weld materials. This development has been so successful that BNL has procured 15,000 pounds of this material for magnet production. Oxygen content, manifested as inclusion density, has the single most significant effect upon fracture toughness and impact strength. Finally, we report that GMAW is a viable welding process, using off-the-shelf equipment, for 4{degrees}K cryogenic applications.

  18. Higher-degree linear approximations of nonlinear systems

    SciTech Connect (OSTI)

    Karahan, S.

    1989-01-01

    In this dissertation, the author develops a new method for obtaining higher degree linear approximations of nonlinear control systems. The standard approach in the analysis and synthesis of nonlinear systems is a first order approximation by a linear model. This is usually performed by obtaining a series expansion of the system at some nominal operating point and retaining only the first degree terms in the series. The accuracy of this approximation depends on how far the system moves away from the normal point, and on the relative magnitudes of the higher degree terms in the series expansion. The approximation is achieved by finding an appropriate nonlinear coordinate transformation-feedback pair to perform the higher degree linearization. With the proposed method, one can improve the accuracy of the approximation up to arbitrarily higher degrees, provided certain solvability conditions are satisfied. The Hunt-Su linearizability theorem makes these conditions precise. This approach is similar to Poincare's Normal Form Theorem in formulation, but different in its solution method. After some mathematical background the author derives a set of equations (called the Homological Equations). A solution to this system of linear equations is equivalent to the solution to the problem of approximate linearization. However, it is generally not possible to solve the system of equations exactly. He outlines a method for systematically finding approximate solutions to these equations using singular value decomposition, while minimizing an error with respect to some defined norm.

  19. Scattering of particles with internal degrees of freedom

    SciTech Connect (OSTI)

    Slipushenko, S. V.; Tur, A. V.; Yanovsky, V. V.

    2013-08-15

    The scattering of particles with a small number of internal degrees of freedom is considered. Billiard formalism is used to study the scattering of two such structurally complex particles. The main scattering characteristics are found. Various types of scattering modes are revealed. In particular, a mode is detected when the velocity of motion of such particles away from each other is higher than their approach velocity before the collision. The scattering of such particles is shown to occur after a finite number of collisions. A generalized Newton law is proposed for the collision of particles with a small number of degrees of freedom, and the form of the effective coefficient of restitution is found.

  20. Six-degree-of-freedom multi-axes positioning apparatus

    DOE Patents [OSTI]

    Bieg, L.F.X.

    1999-05-11

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD. 9 figs.

  1. Six-degree-of-freedom multi-axes positioning apparatus

    DOE Patents [OSTI]

    Bieg, Lothar F. X.

    1999-01-01

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD.

  2. ORISE: Nuclear engineering degrees at highest ranges since 1980s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE report shows graduation, enrollment rates for nuclear engineering candidates are still at highest ranges reported since 1980s Report also shows shifts in career opportunities beyond graduation in nuclear utilities FOR IMMEDIATE RELEASE Nov. 2, 2011 FY12-04 OAK RIDGE, Tenn.-After a one-year decline, the number of graduate and undergraduate nuclear engineering degrees earned in the United States bounced back in 2010. A recent report from the Oak Ridge Institute for Science and Education

  3. Microsoft Word - VI_13_Degrees Awarded 2016.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE April 1, 2015 - March 31, 2016 Name Year Thesis Title Advisor Present Position Paul Cammarata 2015 Ternary breaking of the reaction systems in heavy- ion collisions below the Fermi energy S.J. Yennello Senior Analyzer Sytem Engineer, Dow Chemical, Houston Texas Michael Simon Mehlman 2015 Development of TAMUTRAP beam line, RFQ, and ion traps for precision β-decay studies D. Melconian Scientist, Exponent

  4. Grain boundary energy in 5 degrees of freedom space

    Energy Science and Technology Software Center (OSTI)

    2012-09-21

    GB5DOF is a program written in MatLab for computing excess energy of an arbitrary grain boundary defined by its 5 geometrical degrees of freedom. The program is written in the form of a single self-contained function callable from within commercially available MatLab software package. The function takes a geometric description of the boundary and material identity as input parameters and returns the predicted boundary energy.

  5. Degree-scale cosmic microwave background polarization measurements from three years of BICEP1 data

    SciTech Connect (OSTI)

    Barkats, D.; Aikin, R.; Bock, J. J.; Filippini, J.; Hristov, V. V.; Bischoff, C.; Buder, I.; Kovac, J. M.; Kaufman, J. P.; Keating, B. G.; Bierman, E. M.; Su, M.; Ade, P. A. R.; Battle, J. O.; Dowell, C. D.; Chiang, H. C.; Duband, L.; Hivon, E. F.; Holzapfel, W. L.; Jones, W. C.; and others

    2014-03-10

    BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the cosmic microwave background at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006-2008). This work extends the two-year result published in Chiang et al., with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band power window functions, improved likelihood estimation methods, and a new technique for deprojecting monopole temperature-to-polarization leakage that reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 ≤ ℓ ≤ 335 and find that the EE spectrum is consistent with Lambda cold dark matter cosmology, with the first acoustic peak of the EE spectrum now detected at 15σ. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to r=0.03{sub −0.23}{sup +0.27}, or r < 0.70 at 95% confidence level.

  6. Elf well turns 90/degree/- and stays there

    SciTech Connect (OSTI)

    Astier, B.; Jourdan, A.; Baron, G.

    1981-01-01

    As part of an intensive research program, the French association IFP (Institut Francais du Petrole) and Elf-Aquitaine have drilled the first European horizontal hole. The well was spudded conventionally and then deviated so that its final path was horizontal, 2,198 ft (670 m) below the surface. More than 330 ft (100 m) were drilled between 89/degree/ and 92/degree/ of inclination. The project started with reservoir engineering studies aimed at demonstrating, on mathematical models, the effectiveness of a horizontal drain hole in areas where hydrocarbon recovery is poor or unsatisfactory, due to gas or water coning, poor flooding patterns, intersection of fractures in tight but fractured producing formations, or other causes. This technique has a number of potential applications both in and out of the oil industry. The well was drilled in 44 days. Horizontal displacement was 2,192 ft (668 m) with a total vertical depth of 2,198 ft (670 m). To accomplish this, it was necessary to drill 3,563 ft (1,086 m) of hole. In the 17/one-half/-in. hole, 73/4-in. drill collars and 5-in. heavy weight drill pipe were run above the bent sub and the monel collar. While reaming the hole, the drill string was rotated conventionally, one near bit and one stabilizer (30 ft above) being included in the string.

  7. Heavy metals in the near-surface aerosol over the Atlantic Ocean from 60 degree south to 54 degree north

    SciTech Connect (OSTI)

    Voelkening, J.; Heumann, K.G. )

    1990-11-20

    The particulate heavy metal concentrations of Cr, Fe, Ni, Cu, Zn, Cd, Tl, and Pb were determined in the atmosphere over the Atlantic Ocean from 60{degree}S to 54{degree}N with the definitive method of isotope dilution mass spectrometry. Fe was used as a reference element for the influence of crustal material calculating the corresponding enrichment factors EF(Fe) for the other metal traces. Tl showed the lowest abundance of all heavy metals with concentrations of less than 20 pg m{sup {minus}3} for all samples except those from the area around the English Channel. The concentration ranges for the other elements were Cr = <0.08-9 ng m{sup {minus}3}, Fe = <2.6-7,500 ng m{sup {minus}3}, Ni = <0.05-10 ng m{sup {minus}3}, Cu = <0.02-20 ng m{sup {minus}3}, Zn = <0.09-450 ng m{sup {minus}3}, Cd = <0.003-3.5 ng m{sup {minus}3}, and Pb = <0.05-200 ng m{sup {minus}3}. The lowest element concentrations were usually measured in the remote areas of the South Atlantic, whereas the highest ones were detected around the English Channel. Due to high Fe concentrations, a substantial influence of crustal material was observed in the atmosphere southeast of the South American continent, in the South Atlantic area of the southeast trades, and over the North Atlantic west of North Africa. EF(Fe) values for the most part less than 10 for Cr and Ni and less than 50 for Cu indicate that the influence of crustal material for these metals is much higher than for Zn, Cd, and Pb where EF(Fe) values between 500 and 5,000 had often been determined. This is due to anthropogenic and biological influences.

  8. The different varieties of the Suyama-Yamaguchi consistency relation and its violation as a signal of statistical inhomogeneity

    SciTech Connect (OSTI)

    Rodrguez, Yeinzon; Almeida, Juan P. Beltrn; Valenzuela-Toledo, Csar A. E-mail: juanpbeltran@uan.edu.co

    2013-04-01

    We present the different consistency relations that can be seen as variations of the well known Suyama-Yamaguchi (SY) consistency relation ?{sub NL}?((6/5)f{sub NL}){sup 2}, the latter involving the levels of non-gaussianity f{sub NL} and ?{sub NL} in the primordial curvature perturbation ?. It has been (implicitly) claimed that the following variation: ?{sub NL}(k{sub 1},k{sub 3})?((6/5)){sup 2}f{sub NL}(k{sub 1})f{sub NL}(k{sub 3}), which we call ''the fourth variety'', in the collapsed (for ?{sub NL}) and squeezed (for f{sub NL}) limits is always satisfied independently of any physics; however, the proof depends sensitively on the assumption of scale-invariance (expressing this way the fourth variety of the SY consistency relation as ?{sub NL}?((6/5)f{sub NL}){sup 2}) which only applies for cosmological models involving Lorentz-invariant scalar fields (at least at tree level), leaving room for a strong violation of this variety of the consistency relation when non-trivial degrees of freedom, for instance vector fields, are in charge of the generation of the primordial curvature perturbation. With this in mind as a motivation, we explicitly state, in the first part of this work, under which conditions the SY consistency relation has been claimed to hold in its different varieties (implicitly) presented in the literature since its inception back in 2008; as a result, we show for the first time that the variety ?{sub NL}(k{sub 1},k{sub 1})?((6/5)f{sub NL}(k{sub 1})){sup 2}, which we call ''the fifth variety'', is always satisfied even when there is strong scale-dependence and high levels of statistical anisotropy as long as statistical homogeneity holds: thus, an observed violation of this specific variety would prevent the comparison between theory and observation, shaking this way the foundations of cosmology as a science. In the second part, we concern about the existence of non-trivial degrees of freedom, concretely vector fields for which the levels of non

  9. All-electron self-consistent G W in the Matsubara-time domain...

    Office of Scientific and Technical Information (OSTI)

    All-electron self-consistent G W in the Matsubara-time domain: Implementation and ... Title: All-electron self-consistent G W in the Matsubara-time domain: Implementation ...

  10. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect (OSTI)

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 15004500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera arrays sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  11. Brief 71 Health Physics Enrollments and Degrees, 2011 Summary (11-12

    SciTech Connect (OSTI)

    Dr. Don Johnson

    2012-11-07

    The survey includes degrees granted between September 1, 2010 and August 31, 2011. Enrollment information refers to the fall term 2011. The enrollment and degree data include students majoring in health physics or in an option program equivalent to a major. Twenty-four academic programs reported having health physics programs during 2011. The data for two health physics options within nuclear engineering programs are also included in the enrollments and degrees that are reported in the nuclear engineering enrollments and degrees data.

  12. ORISE: Number of health physics degrees granted in 2013 has increased for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduates, declined for graduates Number of undergraduate health physics degrees dropped in 2015 to lowest level in more than a decade Despite number of bachelor's degrees decreasing, number of master's and doctorate degrees increased* FOR IMMEDIATE RELEASE Aug. 3, 2016 FY16-33.1 OAK RIDGE, Tenn.-The number of undergraduate students who graduated in 2015 with bachelor's degrees in health physics dropped to the lowest level in more than a decade, while the number of master's and

  13. ORISE: Number of health physics degrees granted in 2013 has increased for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduates, declined for graduates Number of undergraduate health physics degrees dropped in 2015 to lowest level in more than a decade Despite number of bachelor's degrees decreasing, number of master's and doctorate degrees increased* FOR IMMEDIATE RELEASE Aug. 3, 2016 FY16-33.1 OAK RIDGE, Tenn.-The number of undergraduate students who graduated in 2015 with bachelor's degrees in health physics dropped to the lowest level in more than a decade, while the number of master's and

  14. Third minima in thorium and uranium isotopes in a self-consistent...

    Office of Scientific and Technical Information (OSTI)

    Third minima in thorium and uranium isotopes in a self-consistent theory Title: Third ... Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud ...

  15. A self-consistent phase-field approach to implicit solvation...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics This content will become...

  16. Quantification of the degree of reaction of fly ash

    SciTech Connect (OSTI)

    Ben Haha, M.; De Weerdt, K.; Lothenbach, B.

    2010-11-15

    The quantification of the fly ash (FA) in FA blended cements is an important parameter to understand the effect of the fly ash on the hydration of OPC and on the microstructural development. The FA reaction in two different blended OPC-FA systems was studied using a selective dissolution technique based on EDTA/NaOH, diluted NaOH solution, the portlandite content and by backscattered electron image analysis. The amount of FA determined by selective dissolution using EDTA/NaOH is found to be associated with a significant possible error as different assumptions lead to large differences in the estimate of FA reacted. In addition, at longer hydration times, the reaction of the FA is underestimated by this method due to the presence of non-dissolved hydrates and MgO rich particles. The dissolution of FA in diluted NaOH solution agreed during the first days well with the dissolution as observed by image analysis. At 28 days and longer, the formation of hydrates in the diluted solutions leads to an underestimation. Image analysis appears to give consistent results and to be most reliable technique studied.

  17. On-shell consistency of the Rarita-Schwinger field formulation

    SciTech Connect (OSTI)

    Krebs, H.; Epelbaum, E.; Meissner, Ulf-G.

    2009-08-15

    We prove that any bilinear coupling of a massive spin-3/2 field can be brought into a gauge-invariant form suggested by Pascalutsa by means of a nonlinear field redefinition. The corresponding field transformation is given explicitly in a closed form and the implications for chiral effective field theory with explicit {delta}(1232) isobar degrees of freedom are discussed.

  18. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    SciTech Connect (OSTI)

    Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa

    2015-11-07

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.

  19. Self-consistent determination of low-[ital Z][sub [ital a

    SciTech Connect (OSTI)

    Vahala, L.; Gerdin, G.; El Cashlan, A.G. ); Parks, P. )

    1992-10-01

    The ablation dynamics of LiT pellets are solved self-consistently over a modest range of parameters using a surface dissociation model. The self-consistently determined parameters are then used to modify the standard low-[ital Z] pellet penetration codes. Since LiT pellets have certain advantages over carbon [in particular, Li conditioning of the walls and T for refueling a D--T reaction], the penetration of LiT into fusion plasmas is considered.

  20. ORISE: Report by ORISE shows health physics degrees declined on all levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2014 Health physics degrees declined in 2014, enrollment trends reverse Enrollment data suggests slowly declining trends FOR IMMEDIATE RELEASE June 25, 2015 FY15-37 OAK RIDGE, Tenn.-The total number of degrees awarded to students graduating with majors in health physics has declined across undergraduate, graduate and doctoral programs for the first time in four years. The report conducted by the Oak Ridge Institute for Science and Education, titled Health Physics Enrollments and Degrees

  1. Brief 72 Nuclear Engineering Enrollments and Degrees Survey, 2013 Data (2-14)

    SciTech Connect (OSTI)

    None, None

    2014-02-15

    The survey includes degrees granted between September 1, 2012 and August 31, 2013. Enrollment information refers to the fall term 2013. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during 2013, and data was received from all thirty-two programs. The data for two nuclear engineering programs include enrollments and degrees in health physics options that are also reported in the health physics enrollments and degrees data.

  2. ORISE: Number of health physics degrees granted in 2013 has increased...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Number of health physics degrees granted in 2013 has increased for undergraduates, ... OAK RIDGE, Tenn.-The number of college students graduating with majors in health physics ...

  3. The solubility of hydrogen in plutonium in the temperature range 475 to 825 degrees centigrade

    SciTech Connect (OSTI)

    Allen, T.H.

    1991-01-01

    The solubility of hydrogen (H) in plutonium metal (Pu) was measured in the temperature range of 475 to 825{degree}C for unalloyed Pu (UA) and in the temperature range of 475 to 625{degree}C for Pu containing two-weight-percent gallium (TWP). For TWP metal, in the temperature range 475 to 600{degree}C, the saturated solution has a maximum hydrogen to plutonium ration (H/Pu) of 0.00998 and the standard enthalpy of formation ({Delta}H{degree}{sub f(s)}) is (-0.128 {plus minus} 0.0123) kcal/mol. The phase boundary of the solid solution in equilibrium with plutonium dihydride (PuH{sub 2}) is temperature independent. In the temperature range 475 to 625{degree}C, UA metal has a maximum solubility at H/Pu = 0.011. The phase boundary between the solid solution region and the metal+PuH{sub 2} two-phase region is temperature dependent. The solubility of hydrogen in UA metal was also measured in the temperature range 650 to 825{degree}C with {Delta}H{degree}{sub f(s)} = (-0.104 {plus minus} 0.0143) kcal/mol and {Delta}S{degree}{sub f(s)} = 0. The phase boundary is temperature dependent and the maximum hydrogen solubility has H/Pu = 0.0674 at 825{degree}C. 52 refs., 28 figs., 9 tabs.

  4. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    SciTech Connect (OSTI)

    Suo, Tongchuan; Whitmore, Mark D.

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  5. Thermodynamic approach to the interpretation of self-consistent pressure profiles in a tokamak

    SciTech Connect (OSTI)

    Dyabilin, K. S.; Razumova, K. A.

    2015-09-15

    The phenomenon of invariable pressure profiles in tokamaks is interpreted in the framework of the thermodynamic approach suggesting that invariable self-consistent states correspond to the minimum of free energy. Solutions qualitatively consistent with the experiment are obtained under the assumption that the mechanism for the formation of self-consistent profiles is directly related to equilibrium diamagnetic currents. The dynamics of the system and specific transport phenomena, such as energy and particle pinching and a decrease in the local density under auxiliary electron cyclotron resonance heating (density pump-out), are analyzed in the vicinity of an equilibrium state characterized by a stable pressure profile. The scaling for the energy confinement time deduced from the transport model agrees qualitatively with the ITER scaling based on the analysis of experimental data obtained in many tokamaks. The possibility of using generalized Tsallis statistics to analyze pressure profiles is considered.

  6. Statistical dynamics of classical systems: A self-consistent field approach

    SciTech Connect (OSTI)

    Grzetic, Douglas J. Wickham, Robert A.; Shi, An-Chang

    2014-06-28

    We develop a self-consistent field theory for particle dynamics by extremizing the functional integral representation of a microscopic Langevin equation with respect to the collective fields. Although our approach is general, here we formulate it in the context of polymer dynamics to highlight satisfying formal analogies with equilibrium self-consistent field theory. An exact treatment of the dynamics of a single chain in a mean force field emerges naturally via a functional Smoluchowski equation, while the time-dependent monomer density and mean force field are determined self-consistently. As a simple initial demonstration of the theory, leaving an application to polymer dynamics for future work, we examine the dynamics of trapped interacting Brownian particles. For binary particle mixtures, we observe the kinetics of phase separation.

  7. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.

    2015-01-22

    In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  8. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOE Patents [OSTI]

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  9. Method for determination of the degree of compensation for electrically active impurities in multivalley semiconductors

    SciTech Connect (OSTI)

    Baranskii, P. I.; Gaidar, G. P.

    2013-06-15

    A method for determination of the degree of compensation k = N{sub a}/N{sub d} for shallow impurities in n-Si crystals with a nondegenerate electron gas is suggested. Data facilitating practical determination of the degree of compensation are given.

  10. A proposal for a UPC memory consistency model, v1.0

    SciTech Connect (OSTI)

    Yelick, Katherine; Bonachea, Dan; Wallace, Charles

    2004-05-05

    The memory consistency model in a language defines the order in which the results of write operations maybe observed through read operations. The behavior of a UPC program may depend on the timing of accesses to shared variables, so a program defines a set of possible executions, rather than a single execution. The memory consistency model constrains the set of possible executions for a given program; the user may then rely on properties that are true of all of those executions. The memory consistency model is defined in terms of the read and write operations issued by each thread in naive translation of the code, i.e., without any code transformations by the compiler, with each thread issuing operations as defined by the abstract machine defined in ISO C 5.1.2.3. A UPC compiler or run time system may perform various code transformations to improve performance, so long as they are not visible to the programmer - i.e., provided the set of externally-visible behaviors (the input/output dynamics and volatile behavior defined in ISO C 5.1.2.3) from any execution of the transformed program are identical to those of the original program executing on the abstract machine and adhering to the consistency model defined in this document.

  11. A simple way to improve path consistency processing in interval algebra networks

    SciTech Connect (OSTI)

    Bessiere, C.

    1996-12-31

    Reasoning about qualitative temporal information is essential in many artificial intelligence problems. In particular, many tasks can be solved using the interval-based temporal algebra introduced by Allen (A1183). In this framework, one of the main tasks is to compute the transitive closure of a network of relations between intervals (also called path consistency in a CSP-like terminology). Almost all previous path consistency algorithms proposed in the temporal reasoning literature were based on the constraint reasoning algorithms PC-1 and PC-2 (Mac77). In this paper, we first show that the most efficient of these algorithms is the one which stays the closest to PC-2. Afterwards, we propose a new algorithm, using the idea {open_quotes}one support is sufficient{close_quotes} (as AC-3 (Mac77) does for arc consistency in constraint networks). Actually, to apply this idea, we simply changed the way composition-intersection of relations was achieved during the path consistency process in previous algorithms.

  12. Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – Contracting companies supporting EM’s cleanup program at the Idaho site volunteered to be among the first to use a new DOE training reciprocity program designed to bring more consistency to health and safety training across the complex, reduce redundancy and realize savings and other efficiencies.

  13. Self-consistency tests of large-scale dynamics parameterizations for single-column modeling

    SciTech Connect (OSTI)

    Edman, Jacob P.; Romps, David M.

    2015-03-18

    Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, but WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.

  14. Self-consistency tests of large-scale dynamics parameterizations for single-column modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Edman, Jacob P.; Romps, David M.

    2015-03-18

    Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less

  15. Multiple degree-of-freedom mechanical interface to a computer system

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2001-01-01

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  16. Self-consistent field theory based molecular dynamics with linear system-size scaling

    SciTech Connect (OSTI)

    Richters, Dorothee; Khne, Thomas D.

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  17. Integrated fusion simulation with self-consistent core-pedestal coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meneghini, O.; Snyder, P. B.; Smith, S. P.; Candy, J.; Staebler, G. M.; Belli, E. A.; Lao, L. L.; Park, J. M.; Green, D. L.; Elwasif, W.; et al

    2016-04-20

    In this study, accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self- consistent solution to this strongly-coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre- dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in good agreement with the experiments.more » An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Zeff.« less

  18. Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance: Midwest Energy Efficiency Alliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar Series Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance: Midwest Energy Efficiency Alliance Scott Yee March 19 th , 2014 1 Midwest Energy Efficiency Alliance (MEEA) Midwest Energy Efficiency Alliance 2 MEEA is a collaborative network whose purpose is to advance energy efficiency to support sustainable economic development and environmental preservation. Partnership for Advanced Residential Retrofit (PARR) Midwest Energy Efficiency

  19. Introduction to Webinar: Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance? Moderator: Cheryn Metzger - National Renewable Energy Laboratory Panelists: Scott Yee - Midwest Energy Efficiency Alliance Christine Liaukus - NJIT's Center for Building Knowledge Janet McIlvaine - Florida Solar Energy Center March 19, 2014 Some Housekeeping Items Two Options for Audio (select audio mode): 1. Listen through your computer. Please select the "mic and speakers" radio button on the right

  20. Negative running of the spectral index, hemispherical asymmetry and the consistency of Planck with large r

    SciTech Connect (OSTI)

    McDonald, John

    2014-11-01

    Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l?<50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.

  1. Examining the consistency relations describing the three-point functions involving tensors

    SciTech Connect (OSTI)

    Sreenath, V.; Sriramkumar, L. E-mail: sriram@physics.iitm.ac.in

    2014-10-01

    It is well known that the non-Gaussianity parameter f{sub NL} characterizing the scalar bi-spectrum can be expressed in terms of the scalar spectral index in the squeezed limit, a property that is referred to as the consistency relation. In contrast to the scalar bi-spectrum, the three-point cross-correlations involving scalars and tensors and the tensor bi-spectrum have not received adequate attention, which can be largely attributed to the fact that the tensors had remained undetected at the level of the power spectrum until very recently. The detection of the imprints of the primordial tensor perturbations by BICEP2 and its indication of a rather high tensor-to-scalar ratio, if confirmed, can open up a new window for understanding the tensor perturbations, not only at the level of the power spectrum, but also in the realm of non-Gaussianities. In this work, we consider the consistency relations associated with the three-point cross-correlations involving scalars and tensors as well as the tensor bi-spectrum in inflationary models driven by a single, canonical, scalar field. Characterizing the cross-correlations in terms of the dimensionless non-Gaussianity parameters C{sub NL}{sup R} and C{sub NL}{sup γ} that we had introduced earlier, we express the consistency relations governing the cross-correlations as relations between these non-Gaussianity parameters and the scalar or tensor spectral indices, in a fashion similar to that of the purely scalar case. We also discuss the corresponding relation for the non-Gaussianity parameter h{sub NL} used to describe the tensor bi-spectrum. We analytically establish these consistency relations explicitly in the following two situations: a simple example involving a specific case of power law inflation and a non-trivial scenario in the so-called Starobinsky model that is governed by a linear potential with a sharp change in its slope. We also numerically verify the consistency relations in three types of inflationary

  2. Geomechanical testing of Bayou Choctaw 102B core for SPR analysis

    SciTech Connect (OSTI)

    Ingraham, Mathew Duffy; Broome, Scott Thomas; Bauer, Stephen J.; Barrow, Perry Carl; Flint, Gregory Mark

    2014-02-01

    A laboratory testing program was developed to examine the short-term mechanical and time-dependent (creep) behavior of salt from the Bayou Choctaw Salt Dome. This report documents the test methodologies, and constitutive properties inferred from tests performed. These are used to extend our understanding of the mechanical behavior of the Bayou Choctaw domal salt and provide a data set for numerical analyses. The resulting information will be used to support numerical analyses of the current state of the Bayou Choctaw Dome as it relates to its crude oil storage function as part of the US Strategic Petroleum Reserve. Core obtained from Drill Hole BC-102B was tested under creep and quasi-static constant mean stress axisymmetric compression, and constant mean stress axisymmetric extension conditions. Creep tests were performed at 100 degrees Fahrenheit, and the axisymmetric tests were performed at ambient temperatures (72-78 degrees Fahrenheit). The testing performed indicates that the dilation criterion is pressure and stress state dependent. It was found that as the mean stress increases, the shear stress required to cause dilation increases. The results for this salt are reasonably consistent with those observed for other domal salts. Also it was observed that tests performed under extensile conditions required consistently lower shear stress to cause dilation for the same mean stress, which is consistent with other domal salts. Young's moduli ranged from 3.95 x 106 to 8.51 x 106 psi with an average of 6.44 x 106 psi, with Poisson's ratios ranging from 0.10 to 0.43 with an average of 0.30. Creep testing indicates that the BC salt is intermediate in creep resistance when compared with other bedded and domal salt steady-state behavior.

  3. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOE Patents [OSTI]

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  4. Effect of deacetylation degree in chitosan composite membranes on pervaporation performance

    SciTech Connect (OSTI)

    Lee, Y.M.; Park, H.B.; Nam, S.Y.; Won, J.M.; Kim, H.

    1998-06-01

    The effect of the degree of deacetylation in chitosan composite membranes on their pervaporation performance for ethanol dehydration was investigated. The degree of deacetylation of chitosans was measured by using an infrared spectroscopic method and elemental analysis. The chitosan composite membranes were prepared by coating a chitosan solution onto a microporous polyethersulfone membrane with 3--7 nm pore sizes. Then the surface of the top layer (chitosan) of well-dried membranes was crosslinked with sulfuric acid, and pervaporation experiments for binary mixtures (water-ethanol) were carried out at various conditions. In the case of a chitosan membrane with a high degree of deacetylation, the flux increases while the separation factor decreases compared with membranes with a low degree of deacetylation.

  5. ORISE: Number of health physics degrees granted in 2013 has increased for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduates, declined for graduates Number of health physics degrees granted in 2013 has increased for undergraduates, declined for graduates Enrollment data suggests current trend likely to continue in 2014 and 2015 FOR IMMEDIATE RELEASE April 1, 2014 FY14-18 OAK RIDGE, Tenn.-The number of college students graduating with majors in health physics has increased slightly for bachelor's degrees, but decreased for both master's and doctoral candidates. The report, titled Health Physics

  6. Degree of dispersion of latex particles in cement paste, as assessed by electrical resistivity measurement

    SciTech Connect (OSTI)

    Fu, X.; Chung, D.D.L.

    1996-12-31

    The degree of dispersion of latex particles in latex-modified cement paste was assessed by measurement of the volume electrical resistivity and modeling this resistivity in terms of latex and cement phases that are partly in series and partly in parallel. The assessment was best at low values of the latex-cement ratio; it underestimated the degree of latex dispersion when the latex/cement ratio was high, especially > 0.2.

  7. Properties of hadronic systems according to the non-extensive self-consistent thermodynamics

    SciTech Connect (OSTI)

    Deppman, A.

    2014-11-11

    The non-extensive self-consistent theory describing the thermodynamics of hadronic systems at high temperatures is used to derive some thermodynamical quantities, as pressure, entropy, speed of sound and trace-anomaly. The calculations are free of fitting parameters, and the results are compared to lattice QCD calculations, showing a good agreement between theory and data up to temperatures around 175 MeV. Above this temperature the effects of a singularity in the partition function at T{sub o} = 192 MeV results in a divergent behaviour in respect with the lattice calculation.

  8. Synchronization in node of complex networks consist of complex chaotic system

    SciTech Connect (OSTI)

    Wei, Qiang, E-mail: qiangweibeihua@163.com [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China); Xie, Cheng-jun [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Liu, Hong-jun [School of Information Engineering, Weifang Vocational College, Weifang, 261041 (China); Li, Yan-hui [The Library, Weifang Vocational College, Weifang, 261041 (China)

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  9. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    SciTech Connect (OSTI)

    Padhye, N.; Horton, W.

    1998-10-09

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth`s geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons.

  10. Some exploitations of the self-consistent QRPA approach with the Gogny force

    SciTech Connect (OSTI)

    Peru, S.; Martini, M.; Dupuis, M.

    2012-10-20

    Fully consistent axially-symmetric-deformed quasiparticle random phase approximation calculations have been performed with the D1S Gogny force. Giant resonances in exotic nuclei as well as in deformed Mg and Si isotopes have been studied. Dipole responses have been calculated in Ne isotopes and N=16 isotones to study the existence of soft dipole modes in exotic nuclei. The same formalism has been used to describe multipole responses up to octupole in the deformed and heavy nucleus {sup 238}U. Low energy spectroscopy of nickel isotopes has been studied, revealing 0{sup +} states which display a particular structure.

  11. Complete active space self-consistent field calculations of the vibrational band strengths for C3

    SciTech Connect (OSTI)

    Jorgensen, U.G.; Almlof, J.; Siegbahn, P.E.M.; Minnesota Univ., Minneapolis; Stockholm Universitet )

    1989-08-01

    Complete active space self-consistent calculations of the energy and dipole moment functions were carried out for C3 in its electronic ground state. The absorption coefficient between 0.7 and 75 microns is calculated on the basis of the vibrational band strength of transitions between the 800 lowest states with v less than or equal to (4, 39, 3). In cool carbon stars with a high C/O ratio, C3 is found to be the most prevalent of the known opacity sources. 49 refs.

  12. Significantly Shorter Fe-S Bond in Cytochrome P450-I is Consistent with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greater Reactivity Relative to Chloroperoxidase | Stanford Synchrotron Radiation Lightsource Significantly Shorter Fe-S Bond in Cytochrome P450-I is Consistent with Greater Reactivity Relative to Chloroperoxidase Monday, August 31, 2015 C-H bond activation is often considered the "holy grail" of inorganic chemists, as the ability to specifically activate C-H bonds would be one of the most used transformations in all of chemistry. Cytochrome P450s (P450s) are thiolate ligated heme

  13. Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers

    SciTech Connect (OSTI)

    Le, Khai Q.; Alù, Andrea; Bai, Jing

    2015-01-14

    We theoretically explore signatures of plasmonic Fano interferences in a subwavelength plasmonic metamolecule consisting of closely packed asymmetric gold nanodimers, which lead to the possibility of generating multiple Fano resonances in the scattering spectrum. This spectral feature is attributed to the interference between bright and dark plasmonic modes sustained by the constituent nanodimers. The excited Fano dips are highly sensitive in both wavelength and amplitude to geometry and background dielectric medium. The tunability of induced Fano resonances associated with enhanced electric fields from the visible to infrared region provides promising applications, particularly in refractive index sensing, light-trapping, and photon up-converting.

  14. Third Minima in Thorium and Uranium Isotopes in a Self-Consistent Theory

    SciTech Connect (OSTI)

    McDonnell, J. D.

    2013-01-01

    Background: Well-developed third minima, corresponding to strongly elongated and reflection-asymmetric shapes associated with dimolecular configurations, have been predicted in some non-self-consistent models to impact fission pathways of thorium and uranium isotopes. These predictions have guided the interpretation of resonances seen experimentally. On the other hand, self-consistent calculations consistently predict very shallow potential-energy surfaces in the third minimum region.

    Purpose: We investigate the interpretation of third-minimum configurations in terms of dimolecular (cluster) states. We study the isentropic potential-energy surfaces of selected even-even thorium and uranium isotopes at several excitation energies. In order to understand the driving effects behind the presence of third minima, we study the interplay between pairing and shell effects.

    Methods: We use the finite-temperature superfluid nuclear density functional theory. We consider two Skyrme energy density functionals: a traditional functional SkM and a recent functional UNEDF1 optimized for fission studies.

    Results: We predict very shallow or no third minima in the potential-energy surfaces of 232Th and 232U. In the lighter Th and U isotopes with N = 136 and 138, the third minima are better developed. We show that the reflection-asymmetric configurations around the third minimum can be associated with dimolecular states involving the spherical doubly magic 132Sn and a lighter deformed Zr or Mo fragment. The potential-energy surfaces for 228,232Th and 232U at several excitation energies are presented. We also study isotopic chains to demonstrate the evolution of the depth of the third minimum with neutron number.

    Conclusions: We show that the neutron shell effect that governs the existence of the dimolecular states around the third minimum is consistent with the spherical-to-deformed shape transition in the Zr andMo isotopes around N = 58.We demonstrate that the depth of

  15. How important is self-consistency for the dDsC density dependent dispersion correction?

    SciTech Connect (OSTI)

    Brémond, Éric; Corminboeuf, Clémence; Golubev, Nikolay; Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991 ; Steinmann, Stephan N.

    2014-05-14

    The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical point of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.

  16. Self-consistent theory of nanodomain formation on non-polar surfaces of ferroelectrics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morozovska, Anna N.; Obukhovskii, Vyacheslav; Fomichov, Evhen; Varenyk, O. V.; Shur, Vladimir Ya.; Kalinin, Sergei V.; Eliseev, E. A.

    2016-04-28

    We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy alongmore » the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNbO3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields.« less

  17. Fractional charge and spin errors in self-consistent Greens function theory

    SciTech Connect (OSTI)

    Phillips, Jordan J. Kananenka, Alexei A.; Zgid, Dominika

    2015-05-21

    We examine fractional charge and spin errors in self-consistent Greens function theory within a second-order approximation (GF2). For GF2, it is known that the summation of diagrams resulting from the self-consistent solution of the Dyson equation removes the divergences pathological to second-order Mller-Plesset (MP2) theory for strong correlations. In the language often used in density functional theory contexts, this means GF2 has a greatly reduced fractional spin error relative to MP2. The natural question then is what effect, if any, does the Dyson summation have on the fractional charge error in GF2? To this end, we generalize our previous implementation of GF2 to open-shell systems and analyze its fractional spin and charge errors. We find that like MP2, GF2 possesses only a very small fractional charge error, and consequently minimal many electron self-interaction error. This shows that GF2 improves on the critical failings of MP2, but without altering the positive features that make it desirable. Furthermore, we find that GF2 has both less fractional charge and fractional spin errors than typical hybrid density functionals as well as random phase approximation with exchange.

  18. Radio-frequency sheaths physics: Experimental characterization on Tore Supra and related self-consistent modeling

    SciTech Connect (OSTI)

    Jacquot, Jonathan; Colas, Laurent Corre, Yann; Goniche, Marc; Gunn, Jamie; Kubič, Martin; Milanesio, Daniele; Heuraux, Stéphane

    2014-06-15

    During the 2011 experimental campaign, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra tokamak was equipped with a new type of Faraday screen (FS). The new design aimed at minimizing the integrated parallel electric field over long field lines as well as increasing the heat exhaust capability of the actively cooled screen. It proved to be inefficient for attenuating the radio-frequency (RF)-sheaths on the screen itself on the contrary to the heat exhaust concept that allowed operation despite higher heat fluxes on the antenna. In parallel, a new approach has been proposed to model self-consistently RF sheaths: the SSWICH (Self-consistent Sheaths and Waves for IC Heating) code. Simulations results from SSWICH coupled with the TOPICA antenna code were able to reproduce the difference between the two FS designs and part of the spatial pattern of heat loads and Langmuir probe floating potential. The poloidal pattern is a reliable result that mainly depends on the electrical design of the antenna while the radial pattern is on the contrary highly sensitive to loosely constrained parameters such as perpendicular conductivity that generates a DC current circulation from the private region inside the antenna limiters to the free scrape off layer outside these limiters. Moreover, the cantilevered bars seem to be the element in the screen design that enhanced the plasma potential.

  19. Road Map for Studies to Produce Consistent and High Performance SRF Accelerator Structures

    SciTech Connect (OSTI)

    Ganapati Rao Myneni; John F. OHanlon

    2007-06-20

    Superconducting Radio Frequency (SRF) accelerator structures made from high purity niobium are becoming the technological choice for a large number of future accelerators and energy recovery LINACs (ERL). Most of the presently planned accelerators and ERL requirements will be met with some effort by the current SRF technology where accelerating gradients of about 20 MV/m can be produced on a routine basis with an acceptable yield. However, the XFEL at DESY and the planned ILC require acceleration gradients more than 28 MV/m and 35 MV/m respectively. At the recent ILC meeting at Snowmass (2005) concern was expressed regarding the wide spread in the achieved accelerator gradients and the relatively low yields. For obtaining accelerating gradients of 35 MV/m in SRF accelerator structures consistently, a deeper understanding of the causes for the spread has to be gained and advances have to be made in many scientific and high technology fields, including materials, surface and vacuum sciences, application of reliable processes and procedures, which provide contamination free surfaces and avoid recontamination and cryogenics related technologies. In this contribution a road map for studies needed to produce consistent and high performance SRF accelerator structures from the needed materials development to clean and non-recontaminating processes and procedures will be presented.

  20. Status and Opportunities for Improving the Consistency of Technical Reference Manuals

    SciTech Connect (OSTI)

    Jayaweera, Tina; Velonis, Aquila; Haeri, Hossein; Goldman, Charles A.; Schiller, Steven R.

    2012-05-01

    Across the United States, energy-efficiency program administrators rely on Technical Reference Manuals (TRMs) as sources for calculations and deemed savings values for specific, well-defined efficiency measures. TRMs play an important part in energy efficiency program planning by providing a common and consistent source for calculation of ex ante and often ex post savings. They thus help reduce energy-efficiency resource acquisition costs by obviating the need for extensive measurement and verification and lower performance risk for program administrators and implementation contractors. This paper considers the benefits of establishing region-wide or national TRMs and considers the challenges of such undertaking due to the difficulties in comparing energy savings across jurisdictions. We argue that greater consistency across TRMs in the approaches used to determine deemed savings values, with more transparency about assumptions, would allow better comparisons in savings estimates across jurisdictions as well as improve confidence in reported efficiency measure savings. To support this thesis, we review approaches for the calculation of savings for select measures in TRMs currently in use in 17 jurisdictions. The review reveals differences in the saving methodologies, technical assumptions, and input variables used for estimating deemed savings values. These differences are described and their implications are summarized, using four, common energy-efficiency measures as examples. Recommendations are then offered for establishing a uniform approach for determining deemed savings values.

  1. Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints

    SciTech Connect (OSTI)

    Zhang, Jing-Fei; Geng, Jia-Jia; Zhang, Xin E-mail: gengjiajia163@163.com

    2014-10-01

    The detection of the B-mode polarization of the cosmic microwave background (CMB) by the BICEP2 experiment implies that the tensor-to-scalar ratio r should be involved in the base standard cosmology. In this paper, we extend the ΛCDM r+neutrino/dark radiation models by replacing the cosmological constant with the dynamical dark energy with constant w. Four neutrino plus dark energy models are considered, i.e., the wCDM r ∑ m{sub ν}, wCDM r N{sub eff}, wCDM r ∑ m{sub ν} N{sub eff}, and wCDM r N{sub eff} m{sub ν,sterile}{sup eff} models. The current observational data considered in this paper include the Planck temperature data, the WMAP 9-year polarization data, the baryon acoustic oscillation data, the Hubble constant direct measurement data, the Planck Sunyaev-Zeldovich cluster counts data, the Planck CMB lensing data, the cosmic shear data, and the BICEP2 polarization data. We test the data consistency in the four cosmological models, and then combine the consistent data sets to perform joint constraints on the models. We focus on the constraints on the parameters w, ∑ m{sub ν}, N{sub eff}, and m{sub ν,sterile}{sup eff}.

  2. A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid

    SciTech Connect (OSTI)

    Donev, A; Alder, B J; Garcia, A L

    2009-08-03

    A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating collision-dominated dense fluid flows. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm and is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to introduce a non-ideal structure factor that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902 (2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown to be thermodynamically identical to a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well-described by the hypernetted chain (HNC) approximation. We develop a kinetic theory for the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.

  3. Self-consistent inclusion of classical large-angle Coulomb collisions in plasma Monte Carlo simulations

    SciTech Connect (OSTI)

    Turrell, A.E. Sherlock, M.; Rose, S.J.

    2015-10-15

    Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.

  4. Self-consistent simulation of CdTe solar cells with active defects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brinkman, Daniel; Guo, Da; Akis, Richard; Ringhofer, Christian; Sankin, Igor; Fang, Tian; Vasileska, Dragica

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations tomore » demonstrate the accuracy of the solver and then show results unique to the 2D case.« less

  5. Method for using global optimization to the estimation of surface-consistent residual statics

    DOE Patents [OSTI]

    Reister, David B.; Barhen, Jacob; Oblow, Edward M.

    2001-01-01

    An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.

  6. Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-{alpha} method

    SciTech Connect (OSTI)

    Dana, Saswati, E-mail: saswatid@rishi.serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India); Raha, Soumyendu, E-mail: raha@serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-01

    Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic {alpha} (FIS {alpha}) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway.

  7. Non-perturbative and self-consistent models of neutron stars in R-squared gravity

    SciTech Connect (OSTI)

    Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D.; Staykov, Kalin V. E-mail: daniela.doneva@uni-tuebingen.de E-mail: kalin.v.staikov@gmail.com

    2014-06-01

    In the present paper we investigate non-perturbatively and self-consistently the structure of neutron stars in R-squared gravity by simultaneously solving the interior and exterior problem. The mass-radius relations are obtained for several equations of state and for wide range of the R-squared gravity parameter a. Even though the deviation from general relativity for nonzero values of a can be large, they are still comparable with the variations due to different modern realistic equations of state. That is why the current observations of the neutron star masses and radii alone can not put constraints on the value of the parameter a. We also compare our results with those obtained within the perturbative method and we discuss the differences between them.

  8. SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS

    SciTech Connect (OSTI)

    J. QIANG; R. RYNE; S. HABIB

    2000-05-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the friction and diffusion coefficients are computed from first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators.

  9. Self-Consistent Multiscale Theory of Internal Wave, Mean-Flow Interactions

    SciTech Connect (OSTI)

    Holm, D.D.; Aceves, A.; Allen, J.S.; Alber, M.; Camassa, R.; Cendra, H.; Chen, S.; Duan, J.; Fabijonas, B.; Foias, C.; Fringer, O.; Gent, P.R.; Jordan, R.; Kouranbaeva, S.; Kovacic, G.; Levermore, C.D.; Lythe, G.; Lifschitz, A.; Marsden, J.E.; Margolin, L.; Newberger, P.; Olson, E.; Ratiu, T.; Shkoller, S.; Timofeyev, I.; Titi, E.S.; Wynn, S.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The research reported here produced new effective ways to solve multiscale problems in nonlinear fluid dynamics, such as turbulent flow and global ocean circulation. This was accomplished by first developing new methods for averaging over random or rapidly varying phases in nonlinear systems at multiple scales. We then used these methods to derive new equations for analyzing the mean behavior of fluctuation processes coupled self consistently to nonlinear fluid dynamics. This project extends a technology base relevant to a variety of multiscale problems in fluid dynamics of interest to the Laboratory and applies this technology to those problems. The project's theoretical and mathematical developments also help advance our understanding of the scientific principles underlying the control of complex behavior in fluid dynamical systems with strong spatial and temporal internal variability.

  10. Improved master equation approach to quantum transport: From Born to self-consistent Born approximation

    SciTech Connect (OSTI)

    Jin, Jinshuang; Li, Jun; Liu, Yu; Li, Xin-Qi; Yan, YiJing

    2014-06-28

    Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.

  11. Self-consistent simulation of CdTe solar cells with active defects

    SciTech Connect (OSTI)

    Brinkman, Daniel; Guo, Da; Akis, Richard; Ringhofer, Christian; Sankin, Igor; Fang, Tian; Vasileska, Dragica

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations to demonstrate the accuracy of the solver and then show results unique to the 2D case.

  12. Self-consistent simulation of CdTe solar cells with active defects

    SciTech Connect (OSTI)

    Brinkman, Daniel; Ringhofer, Christian; Guo, Da; Akis, Richard; Vasileska, Dragica; Sankin, Igor; Fang, Tian

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Finally, we will give numerical results comparing our results to known 1D simulations to demonstrate the accuracy of the solver and then show results unique to the 2D case.

  13. A consistency relation for the CMB B-mode polarization in the squeezed limit

    SciTech Connect (OSTI)

    Kehagias, A.; Dizgah, A. Moradinezhad; Norea, J.; Perrier, H.; Riotto, A. E-mail: Azadeh.Moradinezhad@unige.ch E-mail: Hideki.Perrier@unige.ch

    2014-10-01

    A large-scale temperature perturbation has a non-zero correlation with the power spectrum of B-modes of cosmological origin on short scales while the corresponding correlation is expected to be zero for B-modes sourced by galactic foregrounds. We thus compute the squeezed limit of a three-point function in which one correlates the temperature fluctuations at large scales with two polarization modes at small scales. In the particular case of the B-mode polarization we obtain a relation that connects the squeezed limit of the TBB three-point function with the cosmological B-mode power spectrum, which can be used as a consistency relation. This could in principle help to distinguish a primordial signal from that induced by inter-stellar dust.

  14. Quantum Chemistry, and Eclectic Mix: From Silicon Carbide to Size Consistency

    SciTech Connect (OSTI)

    Jamie Marie Rintelman

    2004-12-19

    Chemistry is a field of great breadth and variety. It is this diversity that makes for both an interesting and challenging field. My interests have spanned three major areas of theoretical chemistry: applications, method development, and method evaluation. The topics presented in this thesis are as follows: (1) a multi-reference study of the geometries and relative energies of four atom silicon carbide clusters in the gas phase; (2) the reaction of acetylene on the Si(100)-(2x1) surface; (3) an improvement to the Effective Fragment Potential (EFP) solvent model to enable the study of reactions in both aqueous and nonaqueous solution; and (4) an evaluation of the size consistency of Multireference Perturbation Theory (MRPT). In the following section, the author briefly discusses two topics central to, and present throughout, this thesis: Multi-reference methods and Quantum Mechanics/Molecular Mechanics (QM/MM) methods.

  15. Methods for consistent forewarning of critical events across multiple data channels

    DOE Patents [OSTI]

    Hively, Lee M.

    2006-11-21

    This invention teaches further method improvements to forewarn of critical events via phase-space dissimilarity analysis of data from biomedical equipment, mechanical devices, and other physical processes. One improvement involves conversion of time-serial data into equiprobable symbols. A second improvement is a method to maximize the channel-consistent total-true rate of forewarning from a plurality of data channels over multiple data sets from the same patient or process. This total-true rate requires resolution of the forewarning indications into true positives, true negatives, false positives and false negatives. A third improvement is the use of various objective functions, as derived from the phase-space dissimilarity measures, to give the best forewarning indication. A fourth improvement uses various search strategies over the phase-space analysis parameters to maximize said objective functions. A fifth improvement shows the usefulness of the method for various biomedical and machine applications.

  16. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    SciTech Connect (OSTI)

    Horowitz, Jordan M.

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  17. Consistent generation and functionalization of one-dimensional cross sections for TRAC-BF1

    SciTech Connect (OSTI)

    Munoz-Cobo, J.L.; Verdu, G.; Pereira, C.; Escriva, A.; Rodenas, J. . Dept. of Chemical and Nuclear Engineering); Castrillo, F.; Serra, J. )

    1994-08-01

    A method of calculation of correct functionalized cross sections and diffusion coefficients for TRAC-BF1, based on the one-dimensional kinetic files of the tridimensional simulator SIMULATE-3, is developed. The method allows the user to obtain first the consistent one-dimensional cross sections, diffusion coefficients, and bucklings, which upon being inserted into TRAC-BF1 conserve the three-dimensional eigenvalues, the planar reaction rates, and the fast and thermal radially averaged fluxes at each axial node. This method also compensates for the differences between the thermal-hydraulic models of the three-dimensional simulator and the transient analysis code. The errors obtained with this method are very small.

  18. Self-consistent electrodynamics of large-area high-frequency capacitive plasma discharge

    SciTech Connect (OSTI)

    Chen Zhigang; Rauf, Shahid; Collins, Ken

    2010-10-15

    Capacitively coupled plasmas (CCPs) generated using high frequency (3-30 MHz) and very high frequency (30-300 MHz) radio-frequency (rf) sources are used for many plasma processing applications including thin film etching and deposition. When chamber dimensions become commensurate with the effective rf wavelength in the plasma, electromagnetic wave effects impose a significant influence on plasma behavior. Because the effective rf wavelength in plasma depends upon both rf and plasma process conditions (e.g., rf power and gas pressure), a self-consistent model including both the rf power delivery system and the plasma discharge is highly desirable to capture a more complete physical picture of the plasma behavior. A three-dimensional model for self-consistently studying both electrodynamic and plasma dynamic behavior of large-area (Gen 10, >8 m{sup 2}) CCP is described in this paper. This model includes Maxwell's equations and transport equations for charged and neutral species, which are coupled and solved in the time domain. The complete rf plasma discharge chamber including the rf power delivery subsystem, rf feed, electrodes, and the plasma domain is modeled as an integrated system. Based on this full-wave solution model, important limitations for processing uniformity imposed by electromagnetic wave propagation effects in a large-area CCP (3.05x2.85 m{sup 2} electrode size) are studied. The behavior of H{sub 2} plasmas in such a reactor is examined from 13.56 to 200 MHz. It is shown that various rectangular harmonics of electromagnetic fields can be excited in a large-area rectangular reactor as the rf or power is increased. The rectangular harmonics can create not only center-high plasma distribution but also high plasma density at the corners and along the edges of the reactor.

  19. A self-consistent two-fluid model of a magnetized plasma-wall transition

    SciTech Connect (OSTI)

    Gyergyek, T.; Kovačič, J.

    2015-09-15

    A self-consistent one-dimensional two-fluid model of the magnetized plasma-wall transition is presented. The model includes magnetic field, elastic collisions between ions and electrons, and creation/annihilation of charged particles. Two systems of differential equations are derived. The first system describes the whole magnetized plasma-wall transition region, which consists of the pre-sheath, the magnetized pre-sheath (Chodura layer), and the sheath, which is not neutral, but contains a positive space charge. The second system of equations describes only the neutral part of the plasma-wall transition region—this means only the pre-sheath and the Chodura layer, but not also the sheath. Both systems are solved numerically. The first system of equations has two singularities. The first occurs when ion velocity in the direction perpendicularly to the wall drops below the ion thermal velocity. The second occurs when the electron velocity in the direction perpendicularly to the wall exceeds the electron thermal velocity. The second system of differential equations only has one singularity, which has also been derived analytically. For finite electron to ion mass ratio, the integration of the second system always breaks down before the Bohm criterion is fulfilled. Some properties of the first system of equations are examined. It is shown that the increased collision frequency demagnetizes the plasma. On the other hand, if the magnetic field is so strong that the ion Larmor radius and the Debye length are comparable, the electron velocity in the direction perpendicularly to the wall reaches the electron thermal velocity before the ion velocity in the direction perpendicularly to the wall reaches the ion sound velocity. In this case, the integration of the model equations breaks down before the Bohm criterion is fulfilled and the sheath is formed.

  20. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    SciTech Connect (OSTI)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus; DeAngelo, B. J.; McFarland, Jim; Jantarasami, Lesley; Shouse, Kate C.; Crimmins, Allison; Ohrel, Sara; Li, Jia

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets of 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.

  1. Surface density of spacetime degrees of freedom from equipartition law in theories of gravity

    SciTech Connect (OSTI)

    Padmanabhan, T.

    2010-06-15

    I show that the principle of equipartition, applied to area elements of a surface {partial_derivative}V which are in equilibrium at the local Davies-Unruh temperature, allows one to determine the surface number density of the microscopic spacetime degrees of freedom in any diffeomorphism invariant theory of gravity. The entropy associated with these degrees of freedom matches with the Wald entropy for the theory. This result also allows one to attribute an entropy density to the spacetime in a natural manner. The field equations of the theory can then be obtained by extremizing this entropy. Moreover, when the microscopic degrees of freedom are in local thermal equilibrium, the spacetime entropy of a bulk region resides on its boundary.

  2. Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heymann, J.; Reuter, M.; Hilker, M.; Buchwitz, M.; Schneising, O.; Bovensmann, H.; Burrows, J. P.; Kuze, A.; Suto, H.; Deutscher, N. M.; et al

    2015-02-13

    Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002–April 2012) and TANSO-FTS on-board GOSAT (launched in Januarymore » 2009), to retrieve XCO2, the column-averaged dry-air mole fraction of CO2. BESD has been initially developed for SCIAMACHY XCO2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO2 product. GOSAT BESD XCO2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO2 from GOSAT and present detailed comparisons with ground-based observations of XCO2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), −0.34 ± 1.37 ppm (r = 0.86) for GOSAT-TCCON and 0.10 ± 1.79 ppm (r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (±2 h, 10° × 10° around TCCON sites), i.e., the observed air masses are not exactly identical, but likely also

  3. Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis ? Electrolytic cell)

    SciTech Connect (OSTI)

    Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang; Li, Xiaodong; Yang, Hui; Xian, Liang

    2013-07-01

    The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2 stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)

  4. Consistent Multigroup Theory Enabling Accurate Course-Group Simulation of Gen IV Reactors

    SciTech Connect (OSTI)

    Rahnema, Farzad; Haghighat, Alireza; Ougouag, Abderrafi

    2013-11-29

    The objective of this proposal is the development of a consistent multi-group theory that accurately accounts for the energy-angle coupling associated with collapsed-group cross sections. This will allow for coarse-group transport and diffusion theory calculations that exhibit continuous energy accuracy and implicitly treat cross- section resonances. This is of particular importance when considering the highly heterogeneous and optically thin reactor designs within the Next Generation Nuclear Plant (NGNP) framework. In such reactors, ignoring the influence of anisotropy in the angular flux on the collapsed cross section, especially at the interface between core and reflector near which control rods are located, results in inaccurate estimates of the rod worth, a serious safety concern. The scope of this project will include the development and verification of a new multi-group theory enabling high-fidelity transport and diffusion calculations in coarse groups, as well as a methodology for the implementation of this method in existing codes. This will allow for a higher accuracy solution of reactor problems while using fewer groups and will reduce the computational expense. The proposed research represents a fundamental advancement in the understanding and improvement of multi- group theory for reactor analysis.

  5. Consistent multi-internal-temperature models for vibrational and electronic nonequilibrium in hypersonic nitrogen plasma flows

    SciTech Connect (OSTI)

    Guy, Aurlien Bourdon, Anne Perrin, Marie-Yvonne

    2015-04-15

    In this work, a state-to-state vibrational and electronic collisional model is developed to investigate nonequilibrium phenomena behind a shock wave in an ionized nitrogen flow. In the ionization dynamics behind the shock wave, the electron energy budget is of key importance and it is found that the main depletion term corresponds to the electronic excitation of N atoms, and conversely the major creation terms are the electron-vibration term at the beginning, then replaced by the electron ions elastic exchange term. Based on these results, a macroscopic multi-internal-temperature model for the vibration of N{sub 2} and the electronic levels of N atoms is derived with several groups of vibrational levels of N{sub 2} and electronic levels of N with their own internal temperatures to model the shape of the vibrational distribution of N{sub 2} and of the electronic excitation of N, respectively. In this model, energy and chemistry source terms are calculated self-consistently from the rate coefficients of the state-to-state database. For the shock wave condition studied, a good agreement is observed on the ionization dynamics as well as on the atomic bound-bound radiation between the state-to-state model and the macroscopic multi-internal temperature model with only one group of vibrational levels of N{sub 2} and two groups of electronic levels of N.

  6. SELF-CONSISTENT ION CYCLOTRON ANISOTROPY-BETA RELATION FOR SOLAR WIND PROTONS

    SciTech Connect (OSTI)

    Isenberg, Philip A.; Maruca, Bennett A.; Kasper, Justin C. E-mail: bmaruca@ssl.berkeley.edu

    2013-08-20

    We derive a set of self-consistent marginally stable states for a system of ion-cyclotron waves propagating parallel to the large-scale magnetic field through a homogeneous proton-electron plasma. The proton distributions and the wave dispersions are related through the condition that no further ion-cyclotron resonant particle scattering or wave growth/damping may take place. The thermal anisotropy of the protons in these states therefore defines the threshold value for triggering the proton-cyclotron anisotropy instability. A number of recent papers have noted that the anisotropy of solar wind protons at 1 AU does not seem to be limited by the proton-cyclotron anisotropy threshold, even at low plasma beta. However, this puzzle seems to be due solely to the estimation of this anisotropy threshold under the assumption that the protons have a bi-Maxwellian distribution. We note that bi-Maxwellian distributions are never marginally stable to the resonant cyclotron interaction, so these estimates do not represent physically valid thresholds. The threshold anisotropies obtained from our marginally stable states are much larger, as a function of proton parallel beta, than the bi-Maxwellian estimates, and we show that the measured data remains below these more rigorous thresholds. Thus, the results of this paper resolve the apparent contradiction presented by the solar wind anisotropy observations at 1 AU: the bi-Maxwellian anisotropies are not rigorous thresholds, and so do not limit the proton distributions in the solar wind.

  7. Consistent use of type Ia supernovae highly magnified by galaxy clusters to constrain the cosmological parameters

    SciTech Connect (OSTI)

    Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Redlich, Matthias [Universitt Heidelberg, Zentrum fr Astronomie, Institut fr Theoretische Astrophysik, Philosophenweg 12, D-69120 Heidelberg (Germany); Broadhurst, Tom, E-mail: adizitrin@gmail.com [Department of Theoretical Physics, University of Basque Country UPV/EHU, Bilbao (Spain)

    2014-07-01

    We discuss how Type Ia supernovae (SNe) strongly magnified by foreground galaxy clusters should be self-consistently treated when used in samples fitted for the cosmological parameters. While the cluster lens magnification of a SN can be well constrained from sets of multiple images of various background galaxies with measured redshifts, its value is typically dependent on the fiducial set of cosmological parameters used to construct the mass model. In such cases, one should not naively demagnify the observed SN luminosity by the model magnification into the expected Hubble diagram, which would create a bias, but instead take into account the cosmological parameters a priori chosen to construct the mass model. We quantify the effect and find that a systematic error of typically a few percent, up to a few dozen percent per magnified SN may be propagated onto a cosmological parameter fit unless the cosmology assumed for the mass model is taken into account (the bias can be even larger if the SN is lying very near the critical curves). We also simulate how such a bias propagates onto the cosmological parameter fit using the Union2.1 sample supplemented with strongly magnified SNe. The resulting bias on the deduced cosmological parameters is generally at the few percent level, if only few biased SNe are included, and increases with the number of lensed SNe and their redshift. Samples containing magnified Type Ia SNe, e.g., from ongoing cluster surveys, should readily account for this possible bias.

  8. A self-consistent model of the lateral behavior of a twin-stripe injection laser

    SciTech Connect (OSTI)

    Kumar, T.; Ormondroyd, R.F.; Rozzi, T.E.

    1986-10-01

    A fully self-consistent computer model of the steady-state behavior of the zero-order lateral optical field of a GaAs twin-stripe injection laser is presented which takes into account current spreading in the p-type confining layer, the effect of lateral diffusion of carriers in the active layer, and bimolecular and stimulated radiative recombination. The results predict the lateral movement of the near field of the optical signal under asymmetric drive conditions, as observed in practice. Also calculated are the corresponding carrier and current density distributions. It is shown that the near-field zero order lateral optical field can be beam steered across the facet by only 2 ..mu..m, typically. However, the initial position of the beam can be controlled by the two-stripe currents and also the geometry of the device. For the case where I/sub s1/ approx. = I/sub s2/ the beam movement is seen to be proportional to either I/sub s1/ or I/sub s2/. The results show that beam steering is not accompanied by a negative slope to the I-L characteristics. The effect of geometry and diffusion coefficient on the value of maximum current allowed before modal instability occurs is also given.

  9. The physical squeezed limit: consistency relations at order q{sup 2}

    SciTech Connect (OSTI)

    Creminelli, Paolo; Perko, Ashley; Senatore, Leonardo; Simonovi?, Marko; Trevisan, Gabriele E-mail: perko@stanford.edu E-mail: msimonov@sissa.it

    2013-11-01

    In single-field models of inflation the effect of a long mode with momentum q reduces to a diffeomorphism at zeroth and first order in q. This gives the well-known consistency relations for the n-point functions. At order q{sup 2} the long mode has a physical effect on the short ones, since it induces curvature, and we expect that this effect is the same as being in a curved FRW universe. In this paper we verify this intuition in various examples of the three-point function, whose behaviour at order q{sup 2} can be written in terms of the power spectrum in a curved universe. This gives a simple alternative understanding of the level of non-Gaussianity in single-field models. Non-Gaussianity is always parametrically enhanced when modes freeze at a physical scale k{sub ph,f} shorter than H: f{sub NL} ? (k{sub ph,f}/H){sup 2}.

  10. Impact of Lack of Consistent Free Release Standards on Decommissioning Projects and Costs

    SciTech Connect (OSTI)

    Devgun, J. S.

    2002-02-26

    While the Nuclear Regulatory Commission has had specific and dose-based standards for the release of liquids and gases for a long time, there are no regulatory mechanisms in place for the release of solid bulk materials from a nuclear power plant. Even though free releases of small quantities of solid materials continue under existing guidelines from the operating plants, the regulatory void creates major difficulties for the bulk materials that result from the decommissioning of a nuclear site. Decommissioning of a commercial nuclear power plant generates large quantities of solid bulk materials such as concrete, metal, and demolition debris. Disposition of such materials has a large impact on the overall decommissioning cost. Yet, there are no clear and cost-effective alternatives for the disposal of these materials from a regulatory perspective. This paper discusses the methodologies for clearance of solid materials1, their applicability to the disposition of bulk materials, and the impact of lack of consistent free release standards on the decommissioning projects and costs.

  11. Average intragranular misorientation trends in polycrystalline materials predicted by a viscoplastic self-consistent approach

    SciTech Connect (OSTI)

    Lebensohn, Ricardo A.; Zecevic, Miroslav; Knezevic, Marko; McCabe, Rodney J.

    2015-12-15

    Here, this work presents estimations of average intragranular fluctuations of lattice rotation rates in polycrystalline materials, obtained by means of the viscoplastic self-consistent (VPSC) model. These fluctuations give a tensorial measure of the trend of misorientation developing inside each single crystal grain representing a polycrystalline aggregate. We first report details of the algorithm implemented in the VPSC code to estimate these fluctuations, which are then validated by comparison with corresponding full-field calculations. Next, we present predictions of average intragranular fluctuations of lattice rotation rates for cubic aggregates, which are rationalized by comparison with experimental evidence on annealing textures of fcc and bcc polycrystals deformed in tension and compression, respectively, as well as with measured intragranular misorientation distributions in a Cu polycrystal deformed in tension. The orientation-dependent and micromechanically-based estimations of intragranular misorientations that can be derived from the present implementation are necessary to formulate sound sub-models for the prediction of quantitatively accurate deformation textures, grain fragmentation, and recrystallization textures using the VPSC approach.

  12. Average intragranular misorientation trends in polycrystalline materials predicted by a viscoplastic self-consistent approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lebensohn, Ricardo A.; Zecevic, Miroslav; Knezevic, Marko; McCabe, Rodney J.

    2015-12-15

    Here, this work presents estimations of average intragranular fluctuations of lattice rotation rates in polycrystalline materials, obtained by means of the viscoplastic self-consistent (VPSC) model. These fluctuations give a tensorial measure of the trend of misorientation developing inside each single crystal grain representing a polycrystalline aggregate. We first report details of the algorithm implemented in the VPSC code to estimate these fluctuations, which are then validated by comparison with corresponding full-field calculations. Next, we present predictions of average intragranular fluctuations of lattice rotation rates for cubic aggregates, which are rationalized by comparison with experimental evidence on annealing textures of fccmore » and bcc polycrystals deformed in tension and compression, respectively, as well as with measured intragranular misorientation distributions in a Cu polycrystal deformed in tension. The orientation-dependent and micromechanically-based estimations of intragranular misorientations that can be derived from the present implementation are necessary to formulate sound sub-models for the prediction of quantitatively accurate deformation textures, grain fragmentation, and recrystallization textures using the VPSC approach.« less

  13. On the consistency of QCBED structure factor measurements for TiO2 (Rutile)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Bin; Zuo, Jian -Min; Friis, Jesper; Spence, John C. H.

    2003-09-16

    The same Bragg reflection in TiO2 from twelve different CBED patterns (from different crystals, orientations and thicknesses) are analysed quantitatively in order to evaluate the consistency of the QCBED method for bond-charge mapping. The standard deviation in the resulting distribution of derived X-ray structure factors is found to be an order of magnitude smaller than that in conventional X-ray work, and the standard error (0.026% for FX(110)) is slightly better than obtained by the X-ray Pendellosung method applied to silicon. This is sufficiently accuracy to distinguish between atomic, covalent and ionic models of bonding. We describe the importance of extractingmore » experimental parameters from CCD camera characterization, and of surface oxidation and crystal shape. Thus, the current experiments show that the QCBED method is now a robust and powerful tool for low order structure factor measurement, which does not suffer from the large extinction (multiple scattering) errors which occur in inorganic X-ray crystallography, and may be applied to nanocrystals. Our results will be used to understand the role of d electrons in the chemical bonding of TiO2.« less

  14. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT B COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Marra, J

    2006-01-19

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Therefore, the objectives of this present task were to fabricate plutonium loaded LaBS Frit B glass and perform additional testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL) and for additional performance testing at Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL). The glass was characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL with varying exposed surface area and test durations. The leachates from these tests were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the

  15. Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm

    SciTech Connect (OSTI)

    Heymann, J.; Reuter, M.; Hilker, M.; Buchwitz, M.; Schneising, O.; Bovensmann, H.; Burrows, J. P.; Kuze, A.; Suto, H.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; Hase, F.; Kawakami, S.; Kivi, R.; Morino, I.; Petri, C.; Roehl, C.; Schneider, M.; Sherlock, V.; Sussmann, R.; Velazco, V. A.; Warneke, T.; Wunch, D.

    2015-02-13

    Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002April 2012) and TANSO-FTS on-board GOSAT (launched in January 2009), to retrieve XCO2, the column-averaged dry-air mole fraction of CO2. BESD has been initially developed for SCIAMACHY XCO2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO2 product. GOSAT BESD XCO2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO2 from GOSAT and present detailed comparisons with ground-based observations of XCO2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO2. For example, we found a mean difference for daily averages of ?0.60 1.56 ppm (mean difference standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), ?0.34 1.37 ppm (r = 0.86) for GOSAT-TCCON and 0.10 1.79 ppm (r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non

  16. Investigation of electron-atom/molecule scattering resonances: Two complex multiconfigurational self-consistent field approaches

    SciTech Connect (OSTI)

    Samanta, Kousik; Yeager, Danny L.

    2015-01-22

    Resonances are temporarily bound states which lie in the continuum part of the Hamiltonian. If the electronic coordinates of the Hamiltonian are scaled (“dilated”) by a complex parameter, η = αe{sup iθ} (α, θ real), then its complex eigenvalues represent the scattering states (resonant and non-resonant) while the eigenvalues corresponding to the bound states and the ionization and the excitation thresholds remain real and unmodified. These make the study of these transient species amenable to the bound state methods. We developed a quadratically convergent multiconfigurational self-consistent field method (MCSCF), a well-established bound-state technique, combined with a dilated Hamiltonian to investigate resonances. This is made possible by the adoption of a second quantization algebra suitable for a set of “complex conjugate biorthonormal” spin orbitals and a modified step-length constraining algorithm to control the walk on the complex energy hypersurface while searching for the stationary point using a multidimensional Newton-Raphson scheme. We present our computational results for the {sup 2}PBe{sup −} shape resonances using two different computationally efficient methods that utilize complex scaled MCSCF (i.e., CMCSCF). These two methods are to straightforwardly use CMCSCF energy differences and to obtain energy differences using an approximation to the complex multiconfigurational electron propagator. It is found that, differing from previous computational studies by others, there are actually two {sup 2}PBe{sup −} shape resonances very close in energy. In addition, N{sub 2} resonances are examined using one of these methods.

  17. Plasma Biomarker Profiles Differ Depending on Breast Cancer Subtype but RANTES is Consistently Increased

    SciTech Connect (OSTI)

    Gonzales, Rachel M.; Daly, Don S.; Tan, Ruimin; Marks, Jeffrey R.; Zangar, Richard C.

    2011-07-01

    Background: Current biomarkers for breast cancer have little potential for detection. We determined if breast cancer subtypes influence circulating protein biomarkers. Methods: A sandwich-ELISA microarray platform was used to evaluate 23 candidate biomarkers in plasma samples that were obtained from subjects with either benign breast disease or invasive breast cancer. All plasma samples were collected at the time of biopsy, after a referral due to a suspicious screen (e.g., mammography). Cancer samples were evaluated based on breast cancer subtypes, as defined by the HER2 and estrogen receptor statuses. Results: Ten proteins were statistically altered in at least one breast cancer subtype, including four epidermal growth factor receptor ligands, two matrix metalloproteases, two cytokines, and two angiogenic factors. Only one cytokine, RANTES, was significantly increased (P<0.01 for each analysis) in all four subtypes, with areas under receiver operating characteristic curves (AUC) that ranged from 0.76 to 0.82, depending on cancer subtype. The best AUC values were observed for analyses that combined data from multiple biomarkers, with values ranging from 0.70 to 0.99, depending on the cancer subtype. Although the results for RANTES are consistent with previous publications, the multi-assay results need to be validated in independent sample sets. Conclusions: Different breast cancer subtypes produce distinct biomarker profiles, and circulating protein biomarkers have potential to differentiate between true and false positive screens for breast cancer. Impact: Subtype-specific biomarker panels may be useful for detecting breast cancer or as an adjunct assay to improve the accuracy of current screening methods.

  18. Self-consistent modeling of electrochemical strain microscopy of solid electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tselev, Alexander; Morozovska, Anna N.; Udod, Alexei; Eliseev, Eugene A.; Kalinin, Sergei V.

    2014-10-10

    Electrochemical strain microscopy (ESM) employs a strong electromechanical coupling in solid ionic conductors to map ionic transport and electrochemical processes with nanometer-scale spatial resolution. To elucidate the mechanisms of the ESM image formation, we performed self-consistent numerical modeling of the electromechanical response in solid electrolytes under the probe tip in a linear, small-signal regime using the Boltzmann–Planck–Nernst–Einstein theory and Vegard's law while taking account of the electromigration and diffusion. We identified the characteristic time scales involved in the formation of the ESM response and found that the dynamics of the charge carriers in the tip-electrolyte system with blocking interfaces canmore » be described as charging of the diffuse layer at the tip-electrolyte interface through the tip contact spreading resistance. At the high frequencies used in the detection regime, the distribution of the charge carriers under the tip is governed by evanescent concentration waves generated at the tip-electrolyte interface. The ion drift length in the electric field produced by the tip determines the ESM response at high frequencies, which follows a 1/f asymptotic law. The electronic conductivity, as well as the electron transport through the electrode-electrolyte interface, do not have a significant effect on the ESM signal in the detection regime. The results indicate, however, that for typical solid electrolytes at room temperature, the ESM response originates at and contains information about the very surface layer of a sample, and the properties of the one-unit-cell-thick surface layer may significantly contribute to the ESM response, implying a high surface sensitivity and a high lateral resolution of the technique. On the other hand, it follows that a rigorous analysis of the ESM signals requires techniques that account for the discrete nature of a solid.« less

  19. Self-consistent modeling of radio-frequency plasma generation in stellarators

    SciTech Connect (OSTI)

    Moiseenko, V. E. Stadnik, Yu. S.; Lysoivan, A. I.; Korovin, V. B.

    2013-11-15

    A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwells equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwells equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwells equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwells equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.

  20. Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy

    SciTech Connect (OSTI)

    Wang, Quan; Zhang, Yanmin; Hu, Ran; Ren, Naifei; Ge, Daohan

    2013-11-14

    Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

  1. DEGREE-SCALE GeV 'JETS' FROM ACTIVE AND DEAD TeV BLAZARS

    SciTech Connect (OSTI)

    Neronov, A.; Semikoz, D.; Kachelriess, M.; Ostapchenko, S.; Elyiv, A.

    2010-08-20

    We show that images of TeV blazars in the GeV energy band should contain, along with point-like sources, degree-scale jet-like extensions. These GeV extensions are the result of electromagnetic cascades initiated by TeV {gamma}-rays interacting with extragalactic background light and the deflection of the cascade electrons/positrons in extragalactic magnetic fields (EGMFs). Using Monte Carlo simulations, we study the spectral and timing properties of the degree-scale extensions in simulated GeV band images of TeV blazars. We show that the brightness profile of such degree-scale extensions can be used to infer the light curve of the primary TeV {gamma}-ray source over the past 10{sup 7} yr, i.e., over a time scale comparable to the lifetime of the parent active galactic nucleus. This implies that the degree-scale jet-like GeV emission could be detected not only near known active TeV blazars, but also from 'TeV blazar remnants', whose central engines were switched off up to 10 million years ago. Since the brightness profile of the GeV 'jets' depends on the strength and the structure of the EGMF, their observation provides additional information about the EGMF.

  2. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    SciTech Connect (OSTI)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ..delta..G/sub f, 298//sup 0/ of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs.

  3. Correlation consistent basis sets for actinides. I. The Th and U atoms

    SciTech Connect (OSTI)

    Peterson, Kirk A.

    2015-02-21

    New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc − pV nZ − PP and cc − pV nZ − DK3, as well as outer-core correlation (valence + 5s5p5d), cc − pwCV nZ − PP and cc − pwCV nZ − DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThF{sub n} (n = 2 − 4), ThO{sub 2}, and UF{sub n} (n = 4 − 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF{sub 4}, ThF{sub 3}, ThF{sub 2}, and ThO{sub 2} are all within their experimental uncertainties. Bond dissociation energies of ThF{sub 4} and ThF{sub 3}, as well as UF{sub 6} and UF{sub 5}, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF{sub 4} and ThO{sub 2}. The DKH3 atomization energy of ThO{sub 2} was calculated to be smaller than the DKH2

  4. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  5. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    81299 81499 81699 81899 82099 82299 82499 82699 82899 83099 9199 9399 Degrees Fahrenheit 6 -C ity D a ily A v e ra g e H ig h D A L L A S F T W O R T H H...

  6. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  7. THE DEVELOPMENT OF A 1990 GLOBAL INVENTORY FOR SO(X) AND NO(X) ON A 1(DEGREE) X 1(DEGREE) LATITUDE-LONGITUDE GRID.

    SciTech Connect (OSTI)

    VAN HEYST,B.J.

    1999-10-01

    Sulfur and nitrogen oxides emitted to the atmosphere have been linked to the acidification of water bodies and soils and perturbations in the earth's radiation balance. In order to model the global transport and transformation of SO{sub x} and NO{sub x}, detailed spatial and temporal emission inventories are required. Benkovitz et al. (1996) published the development of an inventory of 1985 global emissions of SO{sub x} and NO{sub x} from anthropogenic sources. The inventory was gridded to a 1{degree} x 1{degree} latitude-longitude grid and has served as input to several global modeling studies. There is now a need to provide modelers with an update of this inventory to a more recent year, with a split of the emissions into elevated and low level sources. This paper describes the development of a 1990 update of the SO{sub x} and NO{sub x} global inventories that also includes a breakdown of sources into 17 sector groups. The inventory development starts with a gridded global default EDGAR inventory (Olivier et al, 1996). In countries where more detailed national inventories are available, these are used to replace the emissions for those countries in the global default. The gridded emissions are distributed into two height levels (0-100m and >100m) based on the final plume heights that are estimated to be typical for the various sectors considered. The sources of data as well as some of the methodologies employed to compile and develop the 1990 global inventory for SO{sub x} and NO{sub x} are discussed. The results reported should be considered to be interim since the work is still in progress and additional data sets are expected to become available.

  8. DISPERSION ELEMENT CONSISTING OF CHROMIUM COATED UO$sup 2$ PARTICLES UNIFORMLY DISTRIBUTED IN A ZIRCALOY MATRIX

    DOE Patents [OSTI]

    Cain, F.M. Jr.; Eck, J.E.

    1963-05-01

    A nuclear fuel element consisting of metal coated UO/sub 2/ particles dispersed in a matrix of Zircalloy and having a cladding of Zircalloy is presented. (AEC)

  9. Consistent evaluation of GOSAT, SCIAMACHY, carbontracker, and MACC through comparisons to TCCON

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulawik, S. S.; Wunch, D.; O'Dell, C.; Frankenberg, C.; Reuter, M.; Oda, T.; Chevallier, F.; Sherlock, V.; Buchwitz, M.; Osterman, G.; et al

    2015-06-22

    Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry air mole fraction (XCO2) for GOSAT (ACOS b3.5) and SCIAMACHY (BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2more » mole fraction fields and the MACC CO2 inversion system (v13.1) and compare these to TCCON observations (GGG2014). We find standard deviations of 0.9 ppm, 0.9, 1.7, and 2.1 ppm versus TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single target errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. When satellite data are averaged and interpreted according to error2 = a2+ b2 /n (where n are the number of observations averaged, a are the systematic (correlated) errors, and b are the random (uncorrelated) errors), we find that the correlated error term a = 0.6 ppm and the uncorrelated error term b = 1.7 ppm for GOSAT and a = 1.0 ppm, b = 1.4 ppm for SCIAMACHY regional averages. Biases at individual stations have year-to-year variability of ~ 0.3 ppm, with biases larger than the TCCON predicted bias uncertainty of 0.4 ppm at many stations. Using fitting software, we find that GOSAT underpredicts the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46–53° N. In the Southern Hemisphere (SH), CT2013b underestimates the seasonal cycle amplitude. Biases are calculated for 3-month intervals and indicate the months that contribute to the observed amplitude differences. The seasonal cycle phase

  10. Consistent evaluation of GOSAT, SCIAMACHY, carbontracker, and MACC through comparisons to TCCON

    SciTech Connect (OSTI)

    Kulawik, S. S.; Wunch, D.; O'Dell, C.; Frankenberg, C.; Reuter, M.; Oda, T.; Chevallier, F.; Sherlock, V.; Buchwitz, M.; Osterman, G.; Miller, C.; Wennberg, P.; Griffith, D. W. T.; Morino, I.; Dubey, M.; Deutscher, N. M.; Notholt, J.; Hase, F.; Warneke, T.; Sussmann, R.; Robinson, J.; Strong, K.; Schneider, M.; Wolf, J.

    2015-06-22

    Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry air mole fraction (XCO2) for GOSAT (ACOS b3.5) and SCIAMACHY (BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2 mole fraction fields and the MACC CO2 inversion system (v13.1) and compare these to TCCON observations (GGG2014). We find standard deviations of 0.9 ppm, 0.9, 1.7, and 2.1 ppm versus TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single target errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. When satellite data are averaged and interpreted according to error2 = a2+ b2 /n (where n are the number of observations averaged, a are the systematic (correlated) errors, and b are the random (uncorrelated) errors), we find that the correlated error term a = 0.6 ppm and the uncorrelated error term b = 1.7 ppm for GOSAT and a = 1.0 ppm, b = 1.4 ppm for SCIAMACHY regional averages. Biases at individual stations have year-to-year variability of ~ 0.3 ppm, with biases larger than the TCCON predicted bias uncertainty of 0.4 ppm at many stations. Using fitting software, we find that GOSAT underpredicts the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46–53° N. In the Southern Hemisphere (SH), CT2013b underestimates the

  11. DISCOVERY OF A COMPACT COMPANION TO THE HOT SUBDWARF STAR BD +37 Degree-Sign 442

    SciTech Connect (OSTI)

    La Palombara, Nicola; Mereghetti, Sandro; Tiengo, Andrea; Esposito, Paolo E-mail: sandro@iasf-milano.inaf.it E-mail: paoloesp@oa-cagliari.inaf.it

    2012-05-10

    We report the results of the first X-ray observation of the luminous and helium-rich O-type subdwarf BD +37 Degree-Sign 442 carried out with the XMM-Newton satellite in 2011 August. X-ray emission is detected with a flux of about 3 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} (0.2-1 keV) and a very soft spectrum, well fit by the sum of a blackbody with temperature kT{sub BB} = 45{sup +11}{sub -9} eV, and a power law with a poorly constrained photon index. Significant pulsations with a period of 19.2 s are detected, indicating that the X-ray emission originates in a white dwarf or neutron star companion, most likely powered by accretion from the wind of BD +37 Degree-Sign 442.

  12. Structural stability of 1100{degree}C heated Pd/k during absorption cycling in protium

    SciTech Connect (OSTI)

    Fisher, I.A.

    1993-03-12

    Pd/k is a hydride forming packing material which is used in the Thermal Cycling Absorption Process (TCAP). Palladium is supported on kieselguhr to create a packing material which will provide adequate void space to prevent excessive pressure drops and flow restrictions. The use of unsupported palladium would result in blockage of columns and clogging of filters due to the small particle size of unsupported palladium hydride powder. During pilot scale demonstrations, it was noted that the Pd/k packing material had degraded causing severe flow restrictions within the TCAP column. A solution to the problem involved the heating of Pd/k at 1,110{degree}C to strengthen the packing material, and render it more resistant to breakdown. The 1, 100{degree}C heated Pd/k has been shown to be more resistant to mechanical breakdown than the Pd/k prior to heat treatment. Two primary modes of Pd/k particle degradation have been identified: mechanical breakdown caused by particle fluidization and degradation caused by absorption/desorption cycling. Absorption/desorption cycling causes the palladium particles within the packing to expanded and contract upon formation and decomposition of the hydride, respectively. This expansion and contraction causes large localized stresses within the packing material, which if these stresses can not be accommodated within the packing will cause the material to crack and degrade. The purpose of this report is to document the results of the absorption/desorption cycling of 1,100{degree}C heated Pd/k and compare these results to the results obtained from the absorption/desorption cycling of Pd/k which had not been heated at 1, 100{degree}C.

  13. Biography U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology. Chair: chair for waste disposal technologies and geomechanics. 1982- 1988 field of study: mining engineer 1989- 1993 PhD work - geomechanical investigations on the stability of salt caverns for waste disposal. 2009 Habilitation - proof of stability and integrity of underground excavations in saliniferous formations with special regard to lab tests. 1989 - 2012 chief engineer at Clausthal University of

  14. New p( rvec. gamma. ,. pi. degrees ) results from LEGS and the quadrupole excitation of the. Delta

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Results from three independent measurements of the p({yields}{gamma}{pi}{sup {degrees}}) reaction are presented for incident photon energies between 243 and 314 MeV. The ratio of cross sections measured with orthogonal states of linear polarization is sensitive to the E2 excitation of the {Delta} resonance. Comparisons are made to the predictions of various models, all of which fail to reproduce these data.

  15. Statistical behavior in deterministic quantum systems with few degrees of freedom

    SciTech Connect (OSTI)

    Jensen, R.V.; Shankar, R.

    1985-04-29

    Numerical studies of the dynamics of finite quantum spin chains are presented which show that quantum systems with few degrees of freedom (N = 7) can be described by equilibrium statistical mechanics. The success of the statistical description is seen to depend on the interplay between the initial state, the observable, and the Hamiltonian. This work clarifies the impact of integrability and conservation laws on statistical behavior. The relation to quantum chaos is also discussed.

  16. Thermal degradation of concrete in the temperature range from ambient to 315{degree} C (600{degree} F). Revision 10/96

    SciTech Connect (OSTI)

    Kassir, M.K.; Bandyopadhyay, K.K.; Reich, M.

    1996-10-01

    This report is concerned with determining the effect of elevated temperatures on the behavior of concrete. Emphasis is placed on quantifying the degree of potential degradation of the physical properties of concrete in high-level waste storage tanks. The temperature elevation range of interest is from ambient to 315 C (600 F). The literature has been reviewed to examine the applicable experimental data and quantify the degradation in the concrete and reinforcing steel. Since many variables and test conditions control the results in the data base, upper and lower bounds of the degraded properties at temperatures applicable to the environments of the storage tanks are summarized and presented in explicit forms. For properties with large data bases, a normal logarithmic distribution of the data is assumed and a statistical analysis is carried out to find the mean and 84% values of the degraded property in the temperature range of interest. Such results are useful in assessing the effect of elevated temperatures on the structural behavior of the tanks. In addition, the results provide the technical basis for a parametric study that may be necessary to investigate the thermal aspects of the structural integrity of the tanks. 50 refs., 23 figs.

  17. A magnetohydrodynamic model of the M87 jet. II. Self-consistent quad-shock jet model for optical relativistic motions and particle acceleration

    SciTech Connect (OSTI)

    Nakamura, Masanori

    2014-04-20

    We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the Hubble Space Telescope during 1994-1998. The model concept consists of ejection of a single relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the optical observations of HST-1 with the same model we used previously to describe similar features in radio very long baseline interferometry observations in 2005-2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge of the HST-1 complex as observed from radio to optical wavelengths, with forward/reverse fast-mode MHD shocks then responsible for observed moving features. Moreover, we identify such intrinsic properties as the shock compression ratio, degree of magnetization, and magnetic obliquity and show that they are suitable to mediate diffusive shock acceleration of relativistic particles via the first-order Fermi process. We suggest that relativistic MHD shocks in Poynting-flux-dominated helical jets may play a role in explaining observed emission and proper motions in many active galactic nuclei.

  18. THIRD COMPONENT SEARCH AND ABUNDANCES OF THE VERY DUSTY SHORT-PERIOD BINARY BD +20 Degree-Sign 307

    SciTech Connect (OSTI)

    Fekel, Francis C.; Cordero, Maria J.; Galicher, Raphael; Zuckerman, B.; Melis, Carl; Weinberger, Alycia J. E-mail: majocord@indiana.edu E-mail: ben@astro.ucla.edu E-mail: weinberger@dtm.ciw.edu

    2012-04-10

    We have obtained near-infrared adaptive optics imaging and collected additional radial velocity observations to search for a third component in the extremely dusty short-period binary system BD +20 Degree-Sign 307. Our image shows no evidence for a third component at separations greater than 19 AU. Our four seasons of radial velocities have a constant center-of-mass velocity and are consistent with the systemic velocities determined at two earlier epochs. Thus, the radial velocities also provide no support for a third component. Unfortunately, the separation domains covered by our imaging and radial velocity results do not overlap. Thus, we examined the parameters for possible orbits of a third component that could have been missed by our current observations. With our velocities we determined improved circular orbital elements for the 3.4 day double-lined binary. We also performed a spectroscopic abundance analysis of the short-period binary components and conclude that the stars are a mid- and a late-F dwarf. We find that the iron abundances of both components, [Fe/H] = 0.15, are somewhat greater than the solar value and comparable to that of stars in the Hyades. Despite the similarity of the binary components, the lithium abundances of the two stars are very unequal. The primary has log {epsilon} (Li) = 2.72, while in the secondary log {epsilon} (Li) {<=}1.46, which corresponds to a difference of at least a factor of 18. The very disparate lithium abundances in very similar stars make it impossible to ascribe a single age to them. While the system is likely at least 1 Gyr old, it may well be as old as the Sun.

  19. Design of a Thermal Imaging Diagnostic Using 90-Degree, Off-Axis, Parabolic Mirrors

    SciTech Connect (OSTI)

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-09-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 30005000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 9001700 nm, and at 17003000 nm for timeresolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  20. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization

    SciTech Connect (OSTI)

    Canale, Eduardo A.; Monzn, Pablo

    2015-02-15

    This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 115 (2012)], a sufficient condition for almost global synchronization was found in terms of the minimum degreeorder ratio of the graph. In this work, a new lower bound for this ratio is given. The improvement is achieved by a concrete infinite sequence of regular graphs. Besides, non standard unstable equilibria of the graphs studied in Wiley et al. [Chaos 16, 015103 (2006)] are shown to exist as conjectured in that work.

  1. Flux control and one-hundred and eighty degree core systems

    DOE Patents [OSTI]

    Hsu, John S

    2012-11-27

    A two-phase or four-phase electric machine includes a first stator part and a second stator part disposed about ninety electrical degrees apart. Stator pole parts are positioned near the first stator part and the second stator part. An injector injects a third-harmonic frequency current that is separate from and not produced by the fundamental current driving the first stator part and the second stator part. The electric angular speed of the third-harmonic rotating field comprises .theta. ##EQU00001## where p comprises the number of pole pairs, .theta. comprises a mechanical angle and t comprise time in seconds.

  2. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  3. On linear groups of degree 2 over a finite commutative ring

    SciTech Connect (OSTI)

    Bashkirov, Evgenii L.; Eser, Hasan

    2014-08-20

    Let p > 3 be a prime number and F{sub p} be a field of p elements. Let K be a commutative and associative ring obtained by adjoining to F{sub p} an element α such that α satisfies a polynomial over F{sub p} and a polynomial of the least degree whose root is α can be written as a product of distinct polynomials irreducible over F{sub p}. We prove that the special linear group SL{sub 2}(K) is generated by two elementary transvections ( (table) ), ( (table) )

  4. Developments in the Nuclear Safeguards and Security Engineering Degree Program at Tomsk Polytechnic University

    SciTech Connect (OSTI)

    Boiko, Vladimir I.; Demyanyuk, Dmitry G.; Silaev, Maxim E.; Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.

    2009-10-06

    Over the last six years, Tomsk Polytechnic University (TPU) has developed a 5 year engineering degree program in the field of Material Protection Control and Accounting (MPC&A). In 2009 the first students graduated with this new degree. There were 25 job offers from nuclear fuel cycle enterprises of Russia and Kazakhstan for 17 graduates of the program. Due to the rather wide selection of workplaces, all graduates have obtained positions at nuclear enterprises. The program was developed within the Applied Physics and Engineering Department (APED). The laboratory and methodological base has been created taking into consideration the experience of the similar program at the Moscow Engineering Physics Institute (MEPhI). However, the TPU program has some distinguishing features such as the inclusion of special courses pertaining to fuel enrichment and reprocessing. During the last two years, three MPC&A laboratories have been established at APED. This was made possible due to several factors such as establishment of the State innovative educational program at TPU, assistance of the U.S. Department of Energy through Pacific Northwest National Laboratory and Los Alamos National Laboratory, and the financial support of the Swedish Radiation Safety Authority and some Russian private companies. All three of the MPC&A laboratories are part of the Innovative Educational Center Nuclear Technologies and Non-Proliferation, which deals with many topics including research activities, development of new curricula for experts training and retraining, and training of masters students. In 2008, TPU developed a relationship with the International Atomic Energy Agency (IAEA), which was familiarized with APEDs current resources and activities. The IAEA has shown interest in creation of a masters degree educational program in the field of nuclear security at TPU. A future objective is to acquaint nuclear fuel cycle enterprises with new APED capabilities and involve the enterprises

  5. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  6. Energetically consistent collisional gyrokinetics

    SciTech Connect (OSTI)

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-01

    We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.

  7. Self-consistent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dams | Department of Energy Self-charging Tracking Device Monitors Fish Migration through Hydroelectric Dams Self-charging Tracking Device Monitors Fish Migration through Hydroelectric Dams August 18, 2016 - 9:45am Addthis A rainbow trout, one of several species of fish being tracked using PNNL's new injectable, self-charging acoustic fish tags. These devices allow scientists to research how fish migrate through waterways when encountering hydrokinetic dams. | Photo courtesy of PNNL A

  8. Image system for three dimensional, 360{degree}, time sequence surface mapping of moving objects

    DOE Patents [OSTI]

    Lu, S.Y.

    1998-12-22

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest. Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360{degree} all around coverage of the object-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120{degree} apart from one another. 20 figs.

  9. EXOPLANETS FROM THE ARCTIC: THE FIRST WIDE-FIELD SURVEY AT 80 Degree-Sign N

    SciTech Connect (OSTI)

    Law, Nicholas M.; Sivanandam, Suresh; Carlberg, Raymond; Salbi, Pegah; Ngan, Wai-Hin Wayne; Kerzendorf, Wolfgang; Ahmadi, Aida; Steinbring, Eric; Murowinski, Richard

    2013-03-15

    Located within 10 Degree-Sign of the North Pole, northern Ellesmere Island offers continuous darkness in the winter months. This capability can greatly enhance the detection efficiency of planetary transit surveys and other time domain astronomy programs. We deployed two wide-field cameras at 80 Degree-Sign N, near Eureka, Nunavut, for a 152 hr observing campaign in 2012 February. The 16 megapixel camera systems were based on commercial f/1.2 lenses with 70 mm and 42 mm apertures, and they continuously imaged 504 and 1295 deg{sup 2}, respectively. In total, the cameras took over 44,000 images and produced better than 1% precision light curves for approximately 10,000 stars. We describe a new high-speed astrometric and photometric data reduction pipeline designed for the systems, test several methods for the precision flat fielding of images from very-wide-angle cameras, and evaluate the cameras' image qualities. We achieved a scintillation-limited photometric precision of 1%-2% in each 10 s exposure. Binning the short exposures into 10 minute chunks provided a photometric stability of 2-3 mmag, sufficient for the detection of transiting exoplanets around the bright stars targeted by our survey. We estimate that the cameras, when operated over the full Arctic winter, will be capable of discovering several transiting exoplanets around bright (m{sub V} < 9.5) stars.

  10. Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects

    DOE Patents [OSTI]

    Lu, Shin-Yee

    1998-01-01

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360.degree. all around coverage of theobject-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120.degree. apart from one another.

  11. Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint

    SciTech Connect (OSTI)

    Neises, T. W.; Wagner, M. J.; Gray, A. K.

    2014-04-01

    Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditional boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.

  12. Self-Consistent Full-Wave/Fokker-Planck Calculations for Ion Cyclotron Heating in Non-Maxwellian Plasmas

    SciTech Connect (OSTI)

    Jaeger, E.F.; Berry, L.A.; Batchelor, D.B.; Carter, M.D.; D'Azevedo, E.; Harvey, R.W.; Myra, J.R.; D'Ippolito, D.A.; Dumont, R.J.; Smithe, D.N.; Bonoli, P.T.; Wright, J.C.

    2005-09-26

    Self-consistent solutions for the wave electric field and particle distribution function are calculated for ion cyclotron heating in non-Maxwellian plasmas. The all-orders wave solver AORSA is generalized to treat non-thermal velocity distributions arising from fusion reactions, neutral beam injection, and wave driven diffusion in velocity space. Quasi-linear diffusion coefficients are derived directly from the wave electric fields and used to calculate velocity distribution functions with the CQL3D Fokker-Planck code. Self-consistent results are obtained by iterating the full-wave and Fokker-Planck solutions.

  13. Sublimation rate of molecular crystals - role of internal degrees of freedom

    SciTech Connect (OSTI)

    Maiti, A; Zepeda-Ruiz, L A; Gee, R H; Burnham, A

    2007-01-19

    It is a common practice to estimate site desorption rate from crystal surfaces with an Arrhenius expression of the form v{sub eff} exp(-{Delta}E/k{sub B}T), where {Delta}E is an activation barrier to desorb and v{sub eff} is an effective vibrational frequency {approx} 10{sup 12} sec{sup -1}. However, such a formula can lead to several to many orders of magnitude underestimation of sublimation rates in molecular crystals due to internal degrees of freedom. We carry out a quantitative comparison of two energetic molecular crystals with crystals of smaller entities like ice and Argon (solid) and uncover the errors involved as a function of molecule size. In the process, we also develop a formal definition of v{sub eff} and an accurate working expression for equilibrium vapor pressure.

  14. Spectroscopic studies of the 110{degree}C thermal aging of PETN

    SciTech Connect (OSTI)

    Dosser, L.R.; Seliskar, C.J.

    1992-07-30

    The 110{degrees}C thermal aging parameters, including initial rates of decomposition, of four types of pentaerythritol tetranitrate (PETN) over a period of ten months are presented. Both decomposition products nitric oxide, NO, and nitrogen dioxide, N0{sub 2} were monitored from multiple, hermetically-sealed, in vacuo samples. Nitric oxide appears to be the first nitrogen oxide product evolved. Nitrogen dioxide produced by abrupt thermal aging is more slowly converted to nitric oxide by a 1:1 process. The behavior of samples of RR5K PETN was significantly different from that of other powders studied. Further work is in progress to better define the thermal aging of RR5K PETN.

  15. NEUTRON-INDUCED SWELLING OF Fe-Cr BINARY ALLOYS IN FFTF AT ~400 DEGREES C

    SciTech Connect (OSTI)

    Garner, Francis A.; Greenwood, Lawrence R.; Okita, Taira; Sekimura, Naoto; Wolfer, W. G.

    2002-12-31

    The purpose of this effort is to determine the influence of dpa rate, He/dpa ratio and composition on the void swelling of simple binary Fe-Cr alloys. Contrary to the behavior of swelling of model fcc Fe-Cr-Ni alloys irradiated in the same FFTF-MOTA experiment, model bcc Fe-Cr alloys do not exhibit a dependence of swelling on dpa rate at approximately 400 degrees C. This is surprising in that an apparent flux-sensitivity was observed in an earlier comparative irradiation of Fe-Cr binaries conducted in EBR-II and FFTF. The difference in behavior is ascribed to the higher helium generation rates of Fe-Cr alloys in EBR-II compared to that of FFTF, and also the fact that lower dpa rates in FFTF are accompanied by progressively lower helium generation rates.

  16. Strongly coupled electronic, magnetic, and lattice degrees of freedom in LaCo5 under pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stillwell, Ryan L.; Jeffries, Jason R.; McCall, Scott K.; Lee, Jonathan R. I.; Weir, Samuel T.; Vohra, Yogesh K.

    2015-11-25

    In this study, we have performed high-pressure magnetotransport and x-ray diffraction measurements on ferromagnetic LaCo5, confirming the theoretically predicted electronic topological transition driving the magnetoelastic collapse seen in the related compound YCo5. Our x-ray diffraction results show an anisotropic lattice collapse of the c axis near 10 GPa that is also commensurate with a change in the majority charge carriers evident from high-pressure Hall effect measurements. The coupling of the electronic, magnetic, and lattice degrees of freedom is further substantiated by the evolution of the anomalous Hall effect, which couples to the magnetization of the ordered state of LaCo5.

  17. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes

    SciTech Connect (OSTI)

    Yio, M.H.N. Phelan, J.C.; Wong, H.S.; Buenfeld, N.R.

    2014-02-15

    A method for determining the original mix composition of hardened slag-blended cement-based materials based on analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3 days to 1 year) show that the method is very promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m{sup 3}), w/b and s/b ratios were 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. -- Highlights: •A new method for estimating w/b ratio and slag content in cement pastes is proposed. •The method is also able to calculate the degrees of reaction of slag and cement. •Reference standards or prior knowledge of the binder composition are not required. •The method was tested on samples with varying w/b ratios and slag content.

  18. Description of the yrast states in {sup 24}Mg by the self-consistent 3D-cranking model

    SciTech Connect (OSTI)

    Oi, Makito

    2005-11-01

    With the self-consistent 3D-cranking model, the ground-state rotational band in {sup 24}Mg is analyzed. The role of triaxial deformation is discussed, in particular in a description of the observed two I{sup {pi}}=8{sup +} states.

  19. Neutrinoless double {beta}-decay nuclear matrix elements within the SRQRPA with self-consistent short range correlations

    SciTech Connect (OSTI)

    Benes, Petr [IEAP, Czech Technical University (Czech Republic); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina, SK-84248 Bratislava (Slovakia); Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna (Russian Federation)

    2009-11-09

    The nuclear matrix elements M{sup 0v} of the neutrinoless double beta decay (0v{beta}{beta}-decay) are systematically evaluated using the self-consistent renormalized quasiparticle random phase approximation (SRQRPA). The residual interaction and the two-nucleon short-range correlations are derived from the charge-dependent Bonn (CD-Bonn) potential. The importance of further progress in the calculation of the 0v{beta}{beta}-decay nuclear matrix elements is stressed.

  20. Sierra Geothermal's Key Find in Southern Nevada

    Broader source: Energy.gov [DOE]

    In May 2010, Sierra Geothermal determined temperature at the bottom of a well drilled at the company's Alum project near Silver Peak, Nev., was hot enough for commercial-sized geothermal energy production - measured as 147 degrees Celsius (297 degrees Fahrenheit). A promising discovery by a geothermal energy company that could boost use of the renewable source in southwest Nevada, power thousands of homes and create jobs.

  1. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Wohlgemuth, J.; Gu, X.; Haldeman, S.; Hidalgo, M.; Malguth, E.; Reid, C.; Shioda, T.; Schulze, S.; Wang, Z.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  2. Test beam results on the Proton Zero Degree Calorimeter for the ALICE experiment

    SciTech Connect (OSTI)

    Arnaldi, R.; Chiavassa, E.; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Gemme, R.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Stocco, D.; Vercellin, E.; Yermia, F.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.

    2006-10-27

    The proton Zero Degree Calorimeter (ZP) for the ALICE experiment will measure the energy of the spectator protons in heavy ion collisions at the CERN LHC. Since all the spectator protons have the same energy, the calorimeter's response is proportional to their number, providing a direct information on the centrality of the collision. The ZP is a spaghetti calorimeter, which collects and measures the Cherenkov light produced by the shower particles in silica optical fibers embedded in a brass absorber. The details of its construction will be shown. The calorimeter was tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. The response of the calorimeter and its energy resolution have been studied as a function of the beam energy. Also, the signal uniformity and a comparison between the transverse profile of the hadronic and electromagnetic shower are presented. Moreover, the differences between the calorimeter's responses to protons and pions of the same energy have been investigated, exploiting the proton contamination in the positive pion beams.

  3. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Gu, X.; Haldenman, S.; Hidalgo, M.; Malguth, E.; Reid, C. G.; Shioda, T.; Schulze, S. H.; Wang, Z. Y.; Wohlgemuth, J. H.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  4. Self-Consistant Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS

    SciTech Connect (OSTI)

    Vay, J-L.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H,

    2010-09-01

    The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the growth rate and frequency patterns in space-time of the electron cloud driven transverse instability for a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Comparisons to selected experimental data are also given. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons. Comparisons to experimental data are also given.

  5. SU-E-J-227: Breathing Pattern Consistency and Reproducibility: Comparative Analysis for Supine and Prone Body Positioning

    SciTech Connect (OSTI)

    Laugeman, E; Weiss, E; Chen, S; Hugo, G; Rosu, M

    2014-06-01

    Purpose: Evaluate and compare the cycle-to-cycle consistency of breathing patterns and their reproducibility over the course of treatment, for supine and prone positioning. Methods: Respiratory traces from 25 patients were recorded for sequential supine/prone 4DCT scans acquired prior to treatment, and during the course of the treatment (weekly or bi-weekly). For each breathing cycle, the average(AVE), end-of-exhale(EoE) and end-of-inhale( EoI) locations were identified using in-house developed software. In addition, the mean values and variations for the above quantities were computed for each breathing trace. F-tests were used to compare the cycle-to-cycle consistency of all pairs of sequential supine and prone scans. Analysis of variances was also performed using population means for AVE, EoE and EoI to quantify differences between the reproducibility of prone and supine respiration traces over the treatment course. Results: Consistency: Cycle-to-cycle variations are less in prone than supine in the pre-treatment and during-treatment scans for AVE, EoE and EoI points, for the majority of patients (differences significant at p<0.05). The few cases where the respiratory pattern had more variability in prone appeared to be random events. Reproducibility: The reproducibility of breathing patterns (supine and prone) improved as treatment progressed, perhaps due to patients becoming more comfortable with the procedure. However, variability in supine position continued to remain significantly larger than in prone (p<0.05), as indicated by the variance analysis of population means for the pretreatment and subsequent during-treatment scans. Conclusions: Prone positioning stabilizes breathing patterns in most subjects investigated in this study. Importantly, a parallel analysis of the same group of patients revealed a tendency towards increasing motion amplitude of tumor targets in prone position regardless of their size or location; thus, the choice for body positioning

  6. Study of Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides Kozlovskiy V.I., Filatov V. V., Shchepunov (UNIRIB, O.R.A.U. Oak Ridge, TN, USA) V. A., Brusov V. S., Pikhtelev A. R., Zelenov V. V. Introduction The primary objective of this work concerns linear quadrupole ion traps, which are commonly used to interface a continuous ion beam from an external source with a mass analyzer, requiring bunched or pulsed beams. We assume that the ions prepared for mass

  7. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    SciTech Connect (OSTI)

    Pierson, Bob; Laughlin, Darren

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence

  8. Development and Implementation of Degree Programs in Electric Drive Vehicle Technology

    SciTech Connect (OSTI)

    Ng, Simon

    2013-09-30

    The Electric-drive Vehicle Engineering (EVE) MS degree and graduate certificate programs have been continuing to make good progress, thanks to the funding and the guidance from DOE grant management group, the support from our University and College administrations, and to valuable inputs and feedback from our Industrial Advisory Board as well as our project partners Macomb Community College and NextEnergy. Table 1 below lists originally proposed Statement of Project Objectives (SOPO), which have all been completed successfully. Our program and course enrollments continue to be good and increasing, as shown in later sections. Our graduating students continue to get good job offers from local EV-related companies. Following the top recommendation from our Industrial Advisory Board, we were fortunate enough to be accepted into the prestigious EcoCAR2 (http://www.ecocar2.org/) North America university design competition, and have been having some modest success with the competition. But most importantly, EcoCAR2 offers the most holistic educational environment for integrating real-world engineering and design with our EVE graduate curriculum. Such integrations include true real-world hands-on course projects based on EcoCAR2 related tasks for the students, and faculty curricular and course improvements based on lessons and best practices learned from EcoCAR2. We are in the third and last year of EcoCAR2, and we have already formed a core group of students in pursuit of EcoCAR”3”, for which the proposal is due in early December.

  9. Facile fabrication of rutile monolayer films consisting of well crystalline nanorods by following an IL-assisted hydrothermal route

    SciTech Connect (OSTI)

    Peng Peng; Liu Xiaodi; Sun, Chuansheng; Ma Jianmin; Zheng Wenjun

    2009-05-15

    In this study, rutile films consisting of rectangular nanorods were facilely deposited on glass substrates from strongly acid solution of TiCl{sub 4}. The highly ordered array of nanorods was realized in presence of ionic liquid (IL) of [Bmim]Br by following a hydrothermal process. In this process, Degussa P25 nanoparticles served as seeds that were pre-deposited on the substrates to facilitate the array of rutile nanorods. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectrum were used to characterize the obtained nanorod films. The measurements showed that the nanorods were rectangular with width of 100-200 nm and length of more than 1 {mu}m, and grew up typically along c-axis to form the arrays against the substrate. The presence of IL was found vital for the formation of rutile nanorods, and the suitable molar ratio of [Bmim]Br to TiCl{sub 4} ranged from 500:1 to 1500:1. The excessive [Bmim]Br may hinder the precipitation of rutile particles. - Graphical abstract: The rutile film consisting of rectangular nanorods is successfully deposited on glass substrate in presence of ionic liquid (IL) of [Bmim]Br. The nanorods were rectangular with width of 100-200 nm and length of more than 1 {mu}m, which grew up typically along c-axis to form the arrays against the substrate.

  10. Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST

    SciTech Connect (OSTI)

    LLNL; Furman, M.A.; Furman, M.A.; Celata, C.M.; Sonnad, K.; Venturini, M.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Vay, J.-L.

    2012-04-09

    To predict the evolution of electron clouds and their effect on the beam, the high energy physics community has relied so far on the complementary use of 'buildup' and 'single/multi-bunch instability' reduced descriptions. The former describes the evolution of electron clouds at a given location in the ring, or 'station', under the influence of prescribed beams and external fields [1], while the latter (sometimes also referred as the 'quasi-static' approximation [2]) follows the interaction between the beams and the electron clouds around the accelerator with prescribed initial distributions of electrons, assumed to be concentrated at a number of discrete 'stations' around the ring. Examples of single bunch instability codes include HEADTAIL [3], QuickPIC [4, 5], and PEHTS [6]. By contrast, a fully self-consistent approach, in which both the electron cloud and beam distributions evolve simultaneously under their mutual influence without any restriction on their relative motion, is required for modeling the interaction of high-intensity beams with electron clouds for heavy-ion beam-driven fusion and warm-dense matter science. This community has relied on the use of Particle-In-Cell (PIC) methods through the development and use of the WARP-POSINST code suite [1, 7, 8]. The development of novel numerical techniques (including adaptive mesh refinement, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps) has enabled the first application of WARP-POSINST to the fully self-consistent modeling of beams and electron clouds in high energy accelerators [9], albeit for only a few betatron oscillations. It was recently observed [10] that there exists a preferred frame of reference which minimizes the number of computer operations needed to simulate the interaction of relativistic objects. This opens the possibility of reducing the cost of fully self-consistent simulations for the interaction of ultrarelativistic

  11. Six Degrees-of-Freedom Prostate and Lung Tumor Motion Measurements Using Kilovoltage Intrafraction Monitoring

    SciTech Connect (OSTI)

    Huang, Chen-Yu; Tehrani, Joubin Nasehi; Ng, Jin Aun; Booth, Jeremy; Keall, Paul

    2015-02-01

    Purpose: Tumor positional uncertainty has been identified as a major issue that deteriorates the efficacy of radiation therapy. Tumor rotational movement, which is not well understood, can result in significant geometric and dosimetric inaccuracies. The objective of this study was to measure 6 degrees-of-freedom (6 DoF) prostate and lung tumor motion, focusing on the more novel rotation, using kilovoltage intrafraction monitoring (KIM). Methods and Materials: Continuous kilovoltage (kV) projections of tumors with gold fiducial markers were acquired during radiation therapy for 267 fractions from 10 prostate cancer patients and immediately before or after radiation therapy for 50 fractions from 3 lung cancer patients. The 6 DoF motion measurements were determined from the individual 3-dimensional (3D) marker positions, after using methods to reject spurious and smooth noisy data, using an iterative closest point algorithm. Results: There were large variations in the magnitude of the tumor rotation among different fractions and patients. Various rotational patterns were observed. The average prostate rotation angles around the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) axes were 1.0 ± 5.0°, 0.6 ± 3.3°, and 0.3 ± 2.0°, respectively. For 35% of the time, the prostate rotated more than 5° about the LR axis, indicating the need for intrafractional adaptation during radiation delivery. For lung patients, the average LR, SI, and AP rotation angles were 0.8 ± 4.2°, −0.8 ± 4.5°, and 1.7 ± 3.1°, respectively. For about 30% of the time, the lung tumors rotated more than 5° around the SI axis. Respiration-induced rotation was detected in 2 of the 3 lung patients. Conclusions: The prostate and lung tumors were found to undergo rotations of more than 5° for about a third of the time. The lung tumor data represent the first 6 DoF tumor motion measured by kV images. The 6 DoF KIM method can enable rotational and translational

  12. Analytical gradients of the state-average complete active space self-consistent field method with density fitting

    SciTech Connect (OSTI)

    Delcey, Mickaël G.; Pedersen, Thomas Bondo; Aquilante, Francesco; Lindh, Roland

    2015-07-28

    An efficient implementation of the state-averaged complete active space self-consistent field (SA-CASSCF) gradients employing density fitting (DF) is presented. The DF allows a reduction both in scaling and prefactors of the different steps involved. The performance of the algorithm is demonstrated on a set of molecules ranging up to an iron-Heme b complex which with its 79 atoms and 811 basis functions is to our knowledge the largest SA-CASSCF gradient computed. For smaller systems where the conventional code could still be used as a reference, both the linear response calculation and the gradient formation showed a clear timing reduction and the overall cost of a geometry optimization is typically reduced by more than one order of magnitude while the accuracy loss is negligible.

  13. Consistent Comparison of the Codes RELAP5/PARCS and TRAC-M/PARCS for the OECD MSLB Coupled Code Benchmark

    SciTech Connect (OSTI)

    Kozlowski, Tomasz; Miller, R. Matthew; Downar, Thomas J.; Barber, Douglas A.; Joo, Han Gyu

    2004-04-15

    A generalized interface module was developed for coupling any thermal-hydraulic code to any spatial kinetic code. In the design used here the thermal-hydraulic and spatial kinetic codes function as independent processes and communicate using the Parallel Virtual Machine software. This approach helps maximize flexibility while minimizing modifications to the respective codes. Using this interface, the U.S. Nuclear Regulatory Commission (NRC) three-dimensional neutron kinetic code, Purdue Advanced Reactor Core Simulator (PARCS), has been coupled to the NRC system analysis codes RELAP5 and Modernized Transient Reactor Analysis Code (TRAC-M). Consistent comparison of code results for the Organization for Economic Cooperation and Development/Nuclear Energy Agency main steam line break benchmark problem using RELAP5/PARCS and TRAC-M/PARCS was made to assess code performance.

  14. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-08-06

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less

  15. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, andmore » scenarios for light and heavy sterile neutrinos.« less

  16. On the full exploitation of symmetry in periodic (as well as molecular) self-consistent-field ab initio calculations

    SciTech Connect (OSTI)

    Orlando, Roberto Erba, Alessandro; Dovesi, Roberto; De La Pierre, Marco; Zicovich-Wilson, Claudio M.

    2014-09-14

    Use of symmetry can dramatically reduce the computational cost (running time and memory allocation) of self-consistent-field ab initio calculations for molecular and crystalline systems. Crucial for running time is symmetry exploitation in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix at selected points in reciprocal space, reconstruction of the density matrix. As regards memory allocation, full square matrices (overlap, Fock, and density) in the Atomic Orbital (AO) basis are avoided and a direct transformation from the packed AO to the symmetry adapted crystalline orbital basis is performed, so that the largest matrix to be handled has the size of the largest sub-block in the latter basis. Quantitative examples, referring to the implementation in the CRYSTAL code, are given for high symmetry families of compounds such as carbon fullerenes and nanotubes.

  17. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    DOE Patents [OSTI]

    Banker, J.G.; Anderson, R.C.

    1975-10-21

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure.

  18. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    SciTech Connect (OSTI)

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.

  19. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    SciTech Connect (OSTI)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-08-06

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline.

  20. Three-Nucleon Low-Energy Constants From The Consistency Of Interactions And Currents In Chiral Effective Field Theory

    SciTech Connect (OSTI)

    Gazit, D; Quaglioni, S; Navratil, P

    2008-12-18

    The chiral low-energy constants cD and cE are constrained by means of accurate ab initio calculations of the A = 3 binding energies and, for the first time, of the triton {beta} decay. We demonstrate that these low-energy observables allow a robust determination of the two undetermined constants. The consistency of the interactions and currents in chiral effective field theory is key to this remarkable result. The two- plus three-nucleon interactions from chiral effective field theory defined by properties of the A = 2 system and the present determination of c{sub D} and c{sub E} are successful in predicting properties of the A = 3, and 4 systems.

  1. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field

    SciTech Connect (OSTI)

    Glover, W. J.

    2014-11-07

    State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weighted schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.

  2. Using electronic templates and a centralized document production network to reduce cost and improve consistence between technical reports

    SciTech Connect (OSTI)

    Byrnes, M.E.

    1996-12-31

    In an effort to reduce the cost and improve the accuracy and consistency between technical reports being written by large companies or large Federal installations, SAIC has recently developed the Centralized Document Production Network (CDPN) Software. The CDPN Software is loaded with standardized electronic document templates along with standardized site-specific background text, tables, and figures. While users across the network are able to retrieve electronic templates and site-specific background text to support their report writing activities, modifications to the network text can only be made by designated experts which are assigned individual passwords. At this time, the CDPN software is being Beta Tested by Kaiser-Hill and Rocky Mountain Remediation Services at the US Department of Energy`s Rocky Flats Plant, in addition to multiple private sector corporations.

  3. SU-E-E-05: Improving Contouring Precision and Consistency for Physicians-In-Training with Simple Lab Experiments

    SciTech Connect (OSTI)

    Ma, L; Larson, D A

    2015-06-15

    Purpose: Target contouring for high-dose treatments such as radiosurgery of brain metastases is highly critical in eliminating marginal failure and reducing complications as shown by recent clinical studies. In order to improve contouring accuracy and practice consistency for the procedure, we introduced a self-assessed physics lab practice for the physicians-in-training. Methods: A set of commercially acquired high-precision PMMA plastic spheres were randomly embedded in a Styrofoam block and then scanned with the CT/MR via the clinical procedural imaging protocol. A group of first-year physicians-in-training (n=6) from either neurosurgery or radiation oncology department were asked to contour the scanned objects (diameter ranged from 0.4 cm to 3.8 cm). These user-defined contours were then compared with the ideal contour sets of object shape for self assessments to determine the maximum areas of the observed discrepancies and method of improvements. Results: The largest discrepancies from initial practice were consistently found to be located near the extreme longitudinal portions of the target for all the residents. Discrepancy was especially prominent when contouring small objects < 1.0 cm in diameters. For example, the mean volumes rendered from the initial contour data set differed from the ideal data set by 7.7%±6.6% for the participants (p> 0.23 suggesting agreement cannot be established). However, when incorporating a secondary imaging scan such as reconstructed coronal or sagittal images in a repeat practice, the agreement was dramatically improved yielding p<0.02 in agreement with the reference data set for all the participants. Conclusion: A simple physics lab revealed a common pitfall in contouring small metastatic brain tumors for radiosurgical procedures and provided a systematic tool for physicians-in-training in improving their clinical contouring skills. Dr Ma is current a board member of international stereotactic radiosurgical society.

  4. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    SciTech Connect (OSTI)

    Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target

  5. Degree of polarization and source counts of faint radio sources from Stacking Polarized intensity

    SciTech Connect (OSTI)

    Stil, J. M.; George, S. J.; Keller, B. W.; Taylor, A. R.

    2014-06-01

    We present stacking polarized intensity as a means to study the polarization of sources that are too faint to be detected individually in surveys of polarized radio sources. Stacking offers not only high sensitivity to the median signal of a class of radio sources, but also avoids a detection threshold in polarized intensity, and therefore an arbitrary exclusion of sources with a low percentage of polarization. Correction for polarization bias is done through a Monte Carlo analysis and tested on a simulated survey. We show that the nonlinear relation between the real polarized signal and the detected signal requires knowledge of the shape of the distribution of fractional polarization, which we constrain using the ratio of the upper quartile to the lower quartile of the distribution of stacked polarized intensities. Stacking polarized intensity for NRAO VLA Sky Survey (NVSS) sources down to the detection limit in Stokes I, we find a gradual increase in median fractional polarization that is consistent with a trend that was noticed before for bright NVSS sources, but is much more gradual than found by previous deep surveys of radio polarization. Consequently, the polarized radio source counts derived from our stacking experiment predict fewer polarized radio sources for future surveys with the Square Kilometre Array and its pathfinders.

  6. Predicting primary crystalline phase and liquidus temperature above or below 1050{degrees}C as functions of glass composition

    SciTech Connect (OSTI)

    Redgate, P.E.; Piepel, G.F.

    1996-02-01

    This report presents the results of applying statistical empirical modeling techniques to primary crystalline phase at the liquidus temperature (T{sub L}) and (ii) whether liquidus temperature is above or below 1050{degree}C (1OO{degree}C below a melting temperature of 1150{degree}C). Data used in modeling primary crystalline phase and liquidus temperate are from the Composition Variability Study (CVS) of Hanford waste glass compositions and properties. The majority of the 123 CVS glasses are categorized into one of 13 primary crystalline phases (at the liquidus temperature). They are also classified as to having T{sub L} Above or Below 1050{degree}C. Two common statistical methods used to model such categorical data are the multinomial logit and classification tree models. The classification tree models provided an overall better modeling approach than did the multinomial logit models. The performance of models in this report should be compared to the performance of the revised ``Development of Models and Software for Liquidus Temperature of Glasses of HWVP Products`` models from Ecole Polytechnique. If the Ecole Polytechnique models perform better than the models discussed in this report, no additional effort on these models would be needed. However, if the converse is true, it may be worthwhile to invest additional effort on statistical empirical modeling methods.

  7. Analytical theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality

    SciTech Connect (OSTI)

    Kong Qian; Wang, Q.; Bang, O.; Krolikowski, W.

    2010-07-15

    We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise repulsive soliton interaction.

  8. Ion beam nanopatterning of III-V semiconductors: Consistency of experimental and simulation trends within a chemistry-driven theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    El-Atwani, O.; Norris, S. A.; Ludwig, K.; Gonderman, S.; Allain, J. P.

    2015-12-16

    In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends onmore » several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.« less

  9. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect (OSTI)

    Chen, Zhaoquan; Yin, Zhixiang Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui; Xia, Guangqing; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  10. Study of self-consistent particle flows in a plasma blob with particle-in-cell simulations

    SciTech Connect (OSTI)

    Hasegawa, Hiroki Ishiguro, Seiji

    2015-10-15

    The self-consistent particle flows in a filamentary coherent structure along the magnetic field line in scrape-off layer (SOL) plasma (plasma blob) have been investigated by means of a three-dimensional electrostatic particle-in-cell simulation code. The presence of the spiral current system composed of the diamagnetic and parallel currents in a blob is confirmed by the particle simulation without any assumed sheath boundary models. Furthermore, the observation of the electron and ion parallel velocity distributions in a blob shows that those distributions are far from Maxwellian due to modification with the sheath formation and that the electron temperature on the higher potential side in a blob is higher than that on the lower potential side. Also, it is found that the ions on the higher potential side are accelerated more intensively along the magnetic field line than those on the lower potential side near the edge. This study indicates that particle simulations are able to provide an exact current closure to analysis of blob dynamics and will bring more accurate prediction of plasma transport in the SOL without any empirical assumptions.

  11. Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface

    SciTech Connect (OSTI)

    Feng, Ranran; Guo, Yuan; Lu, Rong; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2011-06-16

    Tremendous progresses have been made in quantitative understanding and interpretation of the hydrogen bonding and ordering structure at the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement on the neat air/water interface by Q. Du et al. in 1993 (PRL, 70, 2312-2316, 1993.). However, there are still disagreements and controversies on the consistency between the different experiment measurements and the theoretical computational results. One critical problem lies in the inconsistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts trying to understand them. In this report, the reliability of the SFG-VS intensity spectra of the neat air/water interface is to be quantitatively examined, and the sources of possible inaccuracies in the SFG-VS phase spectral measurement is to be discussed based on the non-resonant SHG phase measurement results. The conclusion is that the SFG-VS intensity spectra data from different laboratories are now quantitatively converging and in agreement with each other, and the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against the properly corrected phase standard.

  12. Ion beam nanopatterning of III-V semiconductors: Consistency of experimental and simulation trends within a chemistry-driven theory

    SciTech Connect (OSTI)

    El-Atwani, O.; Norris, S. A.; Ludwig, K.; Gonderman, S.; Allain, J. P.

    2015-12-16

    In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends on several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.

  13. A consistent positive association between landscape simplification and insecticide use across the Midwestern US from 1997 through 2012

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meehan, Timothy D.; Gratton, Claudio

    2015-10-27

    During 2007, counties across the Midwestern US with relatively high levels of landscape simplification (i.e., widespread replacement of seminatural habitats with cultivated crops) had relatively high crop-pest abundances which, in turn, were associated with relatively high insecticide application. These results suggested a positive relationship between landscape simplification and insecticide use, mediated by landscape effects on crop pests or their natural enemies. A follow-up study, in the same region but using different statistical methods, explored the relationship between landscape simplification and insecticide use between 1987 and 2007, and concluded that the relationship varied substantially in sign and strength across years. Here,more » we explore this relationship from 1997 through 2012, using a single dataset and two different analytical approaches. We demonstrate that, when using ordinary least squares (OLS) regression, the relationship between landscape simplification and insecticide use is, indeed, quite variable over time. However, the residuals from OLS models show strong spatial autocorrelation, indicating spatial structure in the data not accounted for by explanatory variables, and violating a standard assumption of OLS. When modeled using spatial regression techniques, relationships between landscape simplification and insecticide use were consistently positive between 1997 and 2012, and model fits were dramatically improved. We argue that spatial regression methods are more appropriate for these data, and conclude that there remains compelling correlative support for a link between landscape simplification and insecticide use in the Midwestern US. We discuss the limitations of inference from this and related studies, and suggest improved data collection campaigns for better understanding links between landscape structure, crop-pest pressure, and pest-management practices.« less

  14. A consistent positive association between landscape simplification and insecticide use across the Midwestern US from 1997 through 2012

    SciTech Connect (OSTI)

    Meehan, Timothy D.; Gratton, Claudio

    2015-10-27

    During 2007, counties across the Midwestern US with relatively high levels of landscape simplification (i.e., widespread replacement of seminatural habitats with cultivated crops) had relatively high crop-pest abundances which, in turn, were associated with relatively high insecticide application. These results suggested a positive relationship between landscape simplification and insecticide use, mediated by landscape effects on crop pests or their natural enemies. A follow-up study, in the same region but using different statistical methods, explored the relationship between landscape simplification and insecticide use between 1987 and 2007, and concluded that the relationship varied substantially in sign and strength across years. Here, we explore this relationship from 1997 through 2012, using a single dataset and two different analytical approaches. We demonstrate that, when using ordinary least squares (OLS) regression, the relationship between landscape simplification and insecticide use is, indeed, quite variable over time. However, the residuals from OLS models show strong spatial autocorrelation, indicating spatial structure in the data not accounted for by explanatory variables, and violating a standard assumption of OLS. When modeled using spatial regression techniques, relationships between landscape simplification and insecticide use were consistently positive between 1997 and 2012, and model fits were dramatically improved. We argue that spatial regression methods are more appropriate for these data, and conclude that there remains compelling correlative support for a link between landscape simplification and insecticide use in the Midwestern US. We discuss the limitations of inference from this and related studies, and suggest improved data collection campaigns for better understanding links between landscape structure, crop-pest pressure, and pest-management practices.

  15. TU-A-12A-01: Consistency of Lung Expansion and Contraction During Respiration: Implications for Quantitative Imaging

    SciTech Connect (OSTI)

    Patton, T; Du, K; Bayouth, J; Christensen, G; Reinhardt, J

    2014-06-15

    Purpose: Four-dimensional computed tomography (4DCT) can be used to evaluate longitudinal changes in pulmonary function. The sensitivity of such measurements to identify function change may be improved with reproducible breathing patterns. The purpose of this study was to determine if inhale was more consistent than exhale, i.e., lung expansion during inhalation compared to lung contraction during exhalation. Methods: Repeat 4DCT image data acquired within a short time interval from 8 patients. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. Equivalent lung volumes (ELV) were used for 5 subjects and equivalent title volumes (ETV) for the 3 subjects who experienced a baseline shift between scans. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2mm distance-to-agreement and 5% ventilation difference. The gamma pass rates were then compared using paired t-test to determine if there was a significant difference. Results: Inhalation was more reproducible than exhalation. In the 5 ELV subjects 78.5% of the lung voxels met the gamma criteria for expansion during inhalation when comparing the two scans, while significantly fewer (70.9% of the lung voxels) met the gamma criteria for contraction during exhalation (p = .027). In the 8 total subjects analyzed the average gamma pass rate for expansion during inhalation was 75.2% while for contraction during exhalation it was 70.3%; which trended towards significant (p = .064). Conclusion: This work implies inhalation is more reproducible than exhalation, when equivalent respiratory volumes are considered. The reason for this difference is unknown. Longitudinal investigation of pulmonary function change based on inhalation images appears appropriate for Jacobian-based measure of

  16. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  17. Rare-earth elements in hot brines (165 to 190 degree C) from the Salton Sea geothermal field

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.; Smith, M.R.

    1988-01-01

    Rare-earth element (REE) concentrations are important indicators for revealing various chemical fractionation processes (water/rock interactions) and source region geochemistry. Since the REE patterns are characteristic of geologic materials (basalt, granite, shale, sediments, etc.) and minerals (K-feldspar, calcite, illite, epidote, etc.), their study in geothermal fluids may serve as a geothermometer. The REE study may also enable us to address the issue of groundwater mixing. In addition, the behavior of the REE can serve as analogs of the actinides in radioactive waste (e.g., neodymium is an analog of americium and curium). In this paper, the authors port the REE data for a Salton Sea Geothermal Field (SSGF) brine (two aliquots: port 4 at 165{degree}C and port 5 at 190{degree}C) and six associated core samples.

  18. SELF-CONSISTENT MODEL OF THE INTERSTELLAR PICKUP PROTONS, ALFVENIC TURBULENCE, AND CORE SOLAR WIND IN THE OUTER HELIOSPHERE

    SciTech Connect (OSTI)

    Gamayunov, Konstantin V.; Zhang Ming; Rassoul, Hamid K.; Pogorelov, Nikolai V.; Heerikhuisen, Jacob

    2012-09-20

    A self-consistent model of the interstellar pickup protons, the slab component of the Alfvenic turbulence, and core solar wind (SW) protons is presented for r {>=} 1 along with the initial results of and comparison with the Voyager 2 (V2) observations. Two kinetic equations are used for the pickup proton distribution and Alfvenic power spectral density, and a third equation governs SW temperature including source due to the Alfven wave energy dissipation. A fraction of the pickup proton free energy, f{sub D} , which is actually released in the waveform during isotropization, is taken from the quasi-linear consideration without preexisting turbulence, whereas we use observations to specify the strength of the large-scale driving, C{sub sh}, for turbulence. The main conclusions of our study can be summarized as follows. (1) For C{sub sh} Almost-Equal-To 1-1.5 and f{sub D} Almost-Equal-To 0.7-1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from {approx}8 AU. This indicates that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8-10 AU. (2) The model core SW temperature agrees well with the V2 observations for r {approx}> 20 AU if f{sub D} Almost-Equal-To 0.7-1. (3) A combined effect of the Wentzel-Kramers-Brillouin attenuation, large-scale driving, and pickup proton generated waves results in the energy sink in the region r {approx}< 10 AU, while wave energy is pumped in the turbulence beyond 10 AU. Without energy pumping, the nonlinear energy cascade is suppressed for r {approx}< 10 AU, supplying only a small energy fraction into the k-region of dissipation by the core SW protons. A similar situation takes place for the two-dimensional turbulence. (4) The energy source due to the resonant Alfven wave damping by the core SW protons is small at heliocentric distances r {approx}< 10 AU for both the slab and the two-dimensional turbulent components

  19. Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems

    SciTech Connect (OSTI)

    Guest, Geoffrey Bright, Ryan M. Cherubini, Francesco Strmman, Anders H.

    2013-11-15

    resource and carbon storage options considered indicates that more accurate accounting will require case-specific factors derived following the methodological guidelines provided in this and recent manuscripts. -- Highlights: Climate impacts of stored biogenic carbon (bio-C) are consistently quantified. Temporary storage of bio-C does not always equate to a climate cooling impact. 1 unit of bio-C stored over a time horizon does not always equate to ? 1 unit CO{sub 2}eq. Discrepancies of climate change impact quantification in literature are clarified.

  20. Structural stability of 1100[degree]C heated Pd/k during absorption cycling in protium. [Palladium supported on kieselguhr

    SciTech Connect (OSTI)

    Fisher, I.A.

    1993-03-12

    Pd/k is a hydride forming packing material which is used in the Thermal Cycling Absorption Process (TCAP). Palladium is supported on kieselguhr to create a packing material which will provide adequate void space to prevent excessive pressure drops and flow restrictions. The use of unsupported palladium would result in blockage of columns and clogging of filters due to the small particle size of unsupported palladium hydride powder. During pilot scale demonstrations, it was noted that the Pd/k packing material had degraded causing severe flow restrictions within the TCAP column. A solution to the problem involved the heating of Pd/k at 1,110[degree]C to strengthen the packing material, and render it more resistant to breakdown. The 1, 100[degree]C heated Pd/k has been shown to be more resistant to mechanical breakdown than the Pd/k prior to heat treatment. Two primary modes of Pd/k particle degradation have been identified: mechanical breakdown caused by particle fluidization and degradation caused by absorption/desorption cycling. Absorption/desorption cycling causes the palladium particles within the packing to expanded and contract upon formation and decomposition of the hydride, respectively. This expansion and contraction causes large localized stresses within the packing material, which if these stresses can not be accommodated within the packing will cause the material to crack and degrade. The purpose of this report is to document the results of the absorption/desorption cycling of 1,100[degree]C heated Pd/k and compare these results to the results obtained from the absorption/desorption cycling of Pd/k which had not been heated at 1, 100[degree]C.

  1. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE„4/1/00-3/31/01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - March 31, 2006 Name Year Thesis Title Advisor First Position Present Position Elizabeth Bell 2005 N /Z Equilibration S.J. Yennello Graduate Research Assistant Chemistry Instructor st Blinn College, Texas Fakhriddin Pirlepesov 2005 Asymptotic scattering wave function for three charged particles and astrophysical capture processes R.E. Tribble/ A.M. Mukhamedzhanov Graduate Teaching Assistant Pursuing degree at Department of Statistics, Texas A&M University Jim Musser 2005 Measurement of

  2. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE„4/1/00-3/31/01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE CYCLOTRON INSTITUTE April 1, 2010 - March 31, 2011 Name Year Thesis Title Advisor Present Position Zach Kohley 2010 Transverse Collective Flow and Emission Order of Mid- Rapidity Fragments in Fermi Energy Heavy Ion Collisions S. J. Yennello Post Doc., HRIBF, ORNL, Oak Ridge, Tennessee Xingbo Zhao 2010 Charmonium in Hot Medium Ralf Rapp Post Doc., Department of Physics, Iowa State University, Ames, Iowa Sarah Nicole

  3. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    DOE Patents [OSTI]

    Goyal, Amit

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  4. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    SciTech Connect (OSTI)

    Raposo, Maria Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.; Ferreira, Quirina; Botelho do Rego, Ana Maria

    2015-09-21

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.

  5. NREL Seeks to Optimize Individual Comfort in Buildings - News Feature |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Seeks to Optimize Individual Comfort in Buildings October 7, 2015 Photo shows two people sitting in a white room, holding smartphones in front of laptops. Scott Jensen and Grace Brown were the first volunteers to take part in testing in NREL's Comfort Suite (C-Suite). Photo by Dennis Schroeder On a typical early fall morning in Golden, Colorado, the temperature outside was about 70 degrees Fahrenheit. Tucked inside a unique structure at the Energy Department's National Renewable Energy

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction Requirement A diesel- or gasoline-powered motor vehicle may not idle for more than three consecutive minutes, except under the following conditions: 1) to operate power takeoff equipment including, but not limited to, cement mixers, refrigeration systems, and delivery vehicles; 2) to operate private passenger vehicles; or 3) to operate heating equipment for five minutes when the ambient temperature is 32 degrees Fahrenheit or below. (Reference District of Columbia Municipal

  7. Research questions reality of 'supersolid' in helium-4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research questions reality of 'supersolid' in helium-4 Research questions reality of 'supersolid' in helium-4 When cooled to temperatures below minus 452 degrees below zero Fahrenheit, helium-4 becomes a liquid-and an extraordinary liquid at that. May 17, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  8. Microsoft Word - winter.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    1 0 1 6 9 8 1 0 1 7 9 8 Degrees in Fahrenheit A c tu a l N o rm a l ( C h i c a g o , K a n s a s C i ty , N e w Y o r k , a n d P i tts b u r g h ) E x p e c te d R a n g e T...

  9. Development of an Energy Efficient High temperature Natural Gas Fired Furnace

    SciTech Connect (OSTI)

    Dr. Mark G. Stevens; Dr. H. Kenneth Staffin; DOE Project Officer - Keith Bennett

    2005-02-28

    The design concept is designated the ''Porous Wall Radiation Barrier'' heating mantle. In this design, combustion gas flows through a porous wall surrounding the retort, transferring its heat to the porous wall, which then radiates heat energy to the retort. Experiments demonstrate that heat transfer rates of 1.8-2.4 times conventional gas fired mantles are achievable in the temperature range of 1600-2350 degrees fahrenheit.

  10. Microsoft Word - winter.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2 1 8 9 8 1 2 2 5 9 8 1 1 9 9 1 8 9 9 1 1 5 9 9 1 2 2 Degrees in Fahrenheit A c t u a l N o r m a l ( C h i c a g o , K a n s a s C i t y , N e w Y o r k ,...

  11. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Country Definitions Key Terms Definition Imports Natural Gas received in the Continental United States (including Alaska) from a foreign country. Liquefied Natural Gas (LNG) Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Pipeline A continuous pipe conduit, complete with such equipment as valves, compressor stations, communications systems, and meters, for transporting natural and/or supplemental gas from one

  12. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Point of Entry Definitions Key Terms Definition Imports Natural Gas received in the Continental United States (including Alaska) from a foreign country. Liquefied Natural Gas (LNG) Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Pipeline A continuous pipe conduit, complete with such equipment as valves, compressor stations, communications systems, and meters, for transporting natural and/or supplemental gas

  13. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Point of Exit Definitions Key Terms Definition Exports Natural Gas deliveries out of the Continental United States and Alaska to foreign countries. Liquefied Natural Gas (LNG) Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Pipeline A continuous pipe conduit, complete with such equipment as valves, compressor stations, communications systems, and meters, for transporting natural and/or supplemental gas from

  14. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Imports & Exports by State Definitions Key Terms Definition Exports Natural Gas deliveries out of the Continental United States and Alaska to foreign countries. Imports Natural Gas received in the Continental United States (including Alaska) from a foreign country. Liquefied Natural Gas (LNG) Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Pipeline A continuous pipe conduit, complete with such equipment

  15. Lab Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lab astrophysics Lab Astrophysics NIF experiments support studies relevant to the entire lifecycle of a star, from its formation from cold gas in molecular clouds, through its subsequent slow evolution, and on to what might be a rapid, explosive death. To determine a star's structure throughout the various stages of its life, astrophysicists need NIF's ability to mimic the temperatures (10 to 30 million kelvins or 18 to 54 million degrees Fahrenheit) found in stars' cores. One astrophysics

  16. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    LNG Storage Additions & Withdrawals Definitions Key Terms Definition Liquefied Natural Gas Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Net Withdrawals The amount by which storage withdrawals exceed storage injections. Storage Additions Volumes of gas injected or otherwise added to underground natural gas reservoirs or liquefied natural gas storage. Storage Withdrawals Total volume of gas withdrawn

  17. Draft Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor

    National Nuclear Security Administration (NNSA)

    FRONT COVER Draft Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor U.S. Department of Energy National Nuclear Security Administration DOE/EIS-0288-S1 August 2014 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CLWR commercial light water reactor CO2e carbon dioxide equivalent DOE U.S. Department of Energy EIS environmental impact statement EPA U.S. Environmental Protection Agency °F degrees Fahrenheit FR Federal Register

  18. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-09-14

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  19. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Joseph Hardin; Dan Nelson; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    1990-01-01

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  20. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Joseph Hardin; Dan Nelson; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    2011-05-24

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  1. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  2. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  3. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  4. Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shields, Christine A.; Kiehl, Jeffrey T.; Meehl, Gerald A.

    2016-06-02

    The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to highermore » resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clear drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less

  5. A molecular symmetry analysis of the electronic states and transition dipole moments for molecules with two torsional degrees of freedom

    SciTech Connect (OSTI)

    Obaid, R.; Leibscher, M.

    2015-02-14

    We present a molecular symmetry analysis of electronic states and transition dipole moments for molecules which undergo large amplitude intramolecular torsions. The method is based on the correlation between the point group of the molecule at highly symmetric configurations and the molecular symmetry group. As an example, we determine the global irreducible representations of the electronic states and transition dipole moments for the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1, 3-dioxole for which two torsional degrees of freedom can be activated upon photo-excitation and construct the resulting symmetry adapted transition dipole functions.

  6. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    SciTech Connect (OSTI)

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  7. p-Hydroxyphenyl (H) Units Lower the Degree of Polymerization in Lignin: Chemical Control in Lignin Biosynthesis

    SciTech Connect (OSTI)

    Sangha, A. K.; Parks, J. M.; Davis, M. F.; Smith, J. C.

    2013-01-01

    Lignin, composed predominantly of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) subunits, is a major component of plant cell walls that imparts resistance toward chemical and microbial deconstruction of plant biomass, rendering its conversion inefficient and costly. Previous studies have shown that alterating lignin composition, i.e., the relative abundance of H, G and S subunits, promises more efficient extraction of sugars from plant biomass. Smaller and less branched lignin chains are more easily extracted during pretreatment, making cellulose more readily degradable. Here, using density functional theory calculations, we show that the incorporation of H subunits into lignin via b-b and b-5 interunit linkages reduces the degree of polymerization in lignin. Frontier molecular orbital analyses of lignin dimers and trimers show that H as a terminal subunit on a growing lignin polymer linked via b-b and b-5 linkage cannot undergo radical formation, preventing further chain growth by endwise polymerization resulting in lignin polymers with lower degree of polymerization. These results indicate that, for endwise polymerization in lignin synthesis, there exists a chemical control that may lay a significant role in determining the structure of lignin.

  8. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    SciTech Connect (OSTI)

    Strnsk, Pavel; Macek, Michal; Cejnar, Pavel

    2014-06-15

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the systems size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. ESQPTs related to non-analytical evolutions of classical phasespace properties. ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. ESQPT signatures identified in smoothened density and flow of energy spectrum. ESQPTs shown to induce a new type of thermodynamic anomalies.

  9. EOS Interpolation and Thermodynamic Consistency

    SciTech Connect (OSTI)

    Gammel, J. Tinka

    2015-11-16

    As discussed in LA-UR-08-05451, the current interpolator used by Grizzly, OpenSesame, EOSPAC, and similar routines is the rational function interpolator from Kerley. While the rational function interpolator is well-suited for interpolation on sparse grids with logarithmic spacing and it preserves monotonicity in 1-d, it has some known problems.

  10. Strongly coupled electronic, magnetic, and lattice degrees of freedom in LaCo5 under pressure

    SciTech Connect (OSTI)

    Stillwell, Ryan L.; Jeffries, Jason R.; McCall, Scott K.; Lee, Jonathan R. I.; Weir, Samuel T.; Vohra, Yogesh K.

    2015-11-25

    In this study, we have performed high-pressure magnetotransport and x-ray diffraction measurements on ferromagnetic LaCo5, confirming the theoretically predicted electronic topological transition driving the magnetoelastic collapse seen in the related compound YCo5. Our x-ray diffraction results show an anisotropic lattice collapse of the c axis near 10 GPa that is also commensurate with a change in the majority charge carriers evident from high-pressure Hall effect measurements. The coupling of the electronic, magnetic, and lattice degrees of freedom is further substantiated by the evolution of the anomalous Hall effect, which couples to the magnetization of the ordered state of LaCo5.

  11. Results of U-xMo (x=7, 10, 12 wt.%) Alloy versus Al-6061 Cladding Diffusion Couple Experiments Performed at 500, 550 and 600 Degrees C

    SciTech Connect (OSTI)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Yongho Sohn

    2013-04-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been developing low enrichment fuel systems encased in Al 6061 for use in research and test reactors. U–Mo alloys in contact with Al and Al alloys can undergo diffusional interactions that can result in the development of interdiffusion zones with complex fine-grained microstructures composed of multiple phases. A monolithic fuel currently being developed by the RERTR program has local regions where the U–Mo fuel plate is in contact with the Al 6061 cladding and, as a result, the program finds information about interdiffusion zone development at high temperatures of interest. In this study, the microstructural development of diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo, and U-12wt.%Mo vs. Al 6061 (or 6061 aluminum) cladding, annealed at 500, 550, 600 degrees C for 1, 5, 20, 24, or 132 hours, was analyzed by backscatter electron microscopy and x-ray energy dispersive spectroscopy on a scanning electron microscope. Concentration profiles were determined by standardized wavelength dispersive spectroscopy and standardless x-ray energy dispersive spectroscopy. The results of this work shows that the presence of surface layers at the U–Mo/Al 6061 interface can dramatically impact the overall interdiffusion behavior in terms of rate of interaction and uniformity of the developed interdiffusion zones. It further reveals that relatively uniform interaction layers with higher Si concentrations can develop in U–Mo/Al 6061 couples annealed at shorter times and that longer times at temperature result in the development of more non-uniform interaction layers with more areas that are enriched in Al. At longer annealing times and relatively high temperatures, U–Mo/Al 6061 couples can exhibit more interaction compared to U–Mo/pure Al couples. The minor alloying constituents in Al 6061 cladding can result in the development of many complex phases in the interaction layer of U

  12. Systematic study of electric dipole excitations with fully self-consistent Skyrme HF plus RPA calculation from light to medium-mass deformed nuclei

    SciTech Connect (OSTI)

    Inakura, Tsunenori; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2009-05-04

    We undertake a systematic calculation on electric dipole responses of even-even nuclei for a wide mass region employing a fully self-consistent Hartree-Fock plus RPA approach. For an easy implementation of the fully self-consistent calculation, the finite amplitude method which we have proposed recently is employed. We calculated dipole responses in Cartesian mesh representation, which can deal with deformed nuclei but does not include pairing correlation. The calculated results show reasonable agreement for heavy nuclei while the average excitation energy are underestimated for light nuclei. The systematic calculation have reached Nickel isotopes. We show a compilation of calculated peak energies of giant dipole resonances.

  13. The Building America Indoor Temperature and Humidity Measurement Protocol

    SciTech Connect (OSTI)

    Metzger, C.; Norton, Paul

    2014-02-01

    When modeling homes using simulation tools, the heating and cooling set points can have a significant impact on home energy use. Every four years, the Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS) asks homeowners about their heating and cooling set points. Unfortunately, no temperature data is measured, and most of the time, the homeowner may be guessing at this number. Even one degree Fahrenheit difference in heating set point can make a 5% difference in heating energy use! So, the survey-based RECS data cannot be used as the definitive reference for the set point for the "average occupant" in simulations. The purpose of this document is to develop a protocol for collecting consistent data for heating/cooling set points and relative humidity so that an average set point can be determined for asset energy models in residential buildings. This document covers the decision making process for researchers to determine how many sensors should be placed in each home, where to put those sensors, and what kind of asset data should be taken while they are in the home. The authors attempted to design the protocols to maximize the value of this study and minimize the resources required to achieve that value.

  14. Building America Indoor Temperature and Humidity Measurement Protocol

    SciTech Connect (OSTI)

    Engebrecht-Metzger, C.; Norton, P.

    2014-02-01

    When modeling homes using simulation tools, the heating and cooling set points can have a significant impact on home energy use. Every 4 years the Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS) asks homeowners about their heating and cooling set points. Unfortunately, no temperature data is measured, and most of the time, the homeowner may be guessing at this number. Even one degree Fahrenheit difference in heating set point can make a 5% difference in heating energy use! So, the survey-based RECS data cannot be used as the definitive reference for the set point for the 'average occupant' in simulations. The purpose of this document is to develop a protocol for collecting consistent data for heating/cooling set points and relative humidity so that an average set point can be determined for asset energy models in residential buildings. This document covers the decision making process for researchers to determine how many sensors should be placed in each home, where to put those sensors, and what kind of asset data should be taken while they are in the home. The authors attempted to design the protocols to maximize the value of this study and minimize the resources required to achieve that value.

  15. THE MAGNETIZATION DEGREE OF THE OUTFLOW POWERING THE HIGHLY POLARIZED REVERSE-SHOCK EMISSION OF GRB 120308A

    SciTech Connect (OSTI)

    Zhang, Shuai; Jin, Zhi-Ping; Wei, Da-Ming, E-mail: jin@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China)

    2015-01-01

    GRB 120308A, a long duration ?-ray burst (GRB) detected by Swift, was distinguished by a highly polarized early optical afterglow emission that strongly suggests an ordered magnetic field component in the emitting region. In this work, we model the optical and X-ray emission in the reverse and forward shock scenario and show that the strength of the magnetic field in the reverse-shock region is ?10 times stronger than that in the forward shock region. Consequently, the outflow powering the highly polarized reverse-shock optical emission was mildly magnetized at a degree of ? ? a few percent. Considering the plausible magnetic energy dissipation in both the acceleration and prompt emission phases of the GRB outflow, the afterglow data of GRB 120308A provides us with compelling evidence that, at least for some GRBs, a nonignorable fraction of the energy was released in the form of Poynting flux, confirming the finding first made in the reverse-forward shock emission modeling of the optical afterglow of GRB 990123 by Fan etal. in 2002 and Zhang etal. in 2003.

  16. POWER ASYMMETRY IN COSMIC MICROWAVE BACKGROUND FLUCTUATIONS FROM FULL SKY TO SUB-DEGREE SCALES: IS THE UNIVERSE ISOTROPIC?

    SciTech Connect (OSTI)

    Hansen, F. K.; Eriksen, H. K.; Lilje, P. B.; Banday, A. J.; Gorski, K. M. E-mail: h.k.k.eriksen@astro.uio.n E-mail: banday@MPA-Garching.MPG.D

    2009-10-20

    We repeat and extend the analysis of Eriksen et al. and Hansen et al., testing the isotropy of the cosmic microwave background fluctuations. We find that the hemispherical power asymmetry previously reported for the largest scales l = 2-40 extends to much smaller scales. In fact, for the full multipole range l = 2-600, significantly more power is found in the hemisphere centered at (theta = 107{sup 0} +- 10{sup 0}, phi = 226{sup 0} +- 10{sup 0}) in galactic co-latitude and longitude than in the opposite hemisphere, consistent with the previously detected direction of asymmetry for l = 2-40. We adopt a model selection test where the direction and amplitude of asymmetry, as well as the multipole range, are free parameters. A model with an asymmetric distribution of power for l = 2-600 is found to be preferred over the isotropic model at the 0.4% significance level, taking into account the additional parameters required to describe it. A similar direction of asymmetry is found independently in all six subranges of 100 multipoles between l = 2-600. None of our 9800 isotropic simulated maps show a similarly consistent direction of asymmetry over such a large multipole range. No known systematic effects or foregrounds are found to be able to explain the asymmetry.

  17. A MAGNETAR-LIKE EVENT FROM LS I +61 Degree-Sign 303 AND ITS NATURE AS A GAMMA-RAY BINARY

    SciTech Connect (OSTI)

    Torres, Diego F.; Rea, Nanda; Esposito, Paolo; Li Jian; Chen Yupeng; Zhang Shu

    2012-01-10

    We report on the Swift Burst Alert Telescope detection of a short burst from the direction of the TeV binary LS I +61 Degree-Sign 303, resembling those generally labeled as magnetar-like. We show that it is likely that the short burst was indeed originating from LS I +61 Degree-Sign 303 (although we cannot totally exclude the improbable presence of a far-away, line-of-sight magnetar) and that it is a different phenomenon with respect to the previously observed ks-long flares from this system. Accepting the hypothesis that LS I +61 Degree-Sign 303 is the first magnetar detected in a binary system, we study those implications. We find that a magnetar-composed LS I +61 Degree-Sign 303 system would most likely be (i.e., for the usual magnetar parameters and mass-loss rate) subject to a flip-flop behavior, from a rotationally powered regime (in the apastron) to a propeller regime (in the periastron) along each of the LS I +61 Degree-Sign 303 eccentric orbital motion. We prove that, unlike near an apastron, where an interwind shock can lead to the normally observed LS I +61 Degree-Sign 303 behavior, during TeV emission the periastron propeller is expected to efficiently accelerate particles only to sub-TeV energies. This flip-flop scenario would explain the system's behavior when a recurrent TeV emission only appears near the apastron, the anti-correlation of the GeV and TeV emission, and the long-term TeV variability (which seems correlated to LS I +61 Degree-Sign 303's super-orbital period), including the appearance of a low TeV state. Finally, we qualitatively put the multi-wavelength phenomenology into the context of our proposed model and make some predictions for further testing.

  18. Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)

    SciTech Connect (OSTI)

    Raich, J.W.

    2003-09-15

    We used a climate-driven regression model to develop spatially resolved estimates of soil-CO{sub 2} emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO{sub 2} fluxes. The mean annual global soil-CO{sub 2} flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO{sub 2} emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO{sub 2} emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-derived CO{sub 2} to the atmosphere than did any other vegetation type ({approx}30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO{sub 2} emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO{sub 2} production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO{sub 2} concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO{sub 2} emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO{sub 2} fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY{sup -1} per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO{sub 2} emissions, global warming is likely to stimulate CO{sub 2} emissions from soils.

  19. Gradient Theory simulations of pure fluid interfaces using a generalized expression for influence parameters and a Helmholtz energy equation of state for fundamentally consistent two-phase calculations

    SciTech Connect (OSTI)

    Dahms, Rainer N.

    2014-12-31

    The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phase components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous

  20. Gradient Theory simulations of pure fluid interfaces using a generalized expression for influence parameters and a Helmholtz energy equation of state for fundamentally consistent two-phase calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dahms, Rainer N.

    2014-12-31

    The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of

  1. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models: Results for the January, March, and April 2015 LAW glasses

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. B.; Riley, W. T.; Best, D. R.

    2015-09-03

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the January, March, and April 2015 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  2. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. B.; Best, D. R.

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  3. BRANCH?BASED MODEL FOR THE DIAMETERS OF THE PULMONARY AIRWAYS: ACCOUNTING FOR DEPARTURES FROM SELF?CONSISTENCY AND REGISTRATION ERRORS

    SciTech Connect (OSTI)

    Neradilek, Moni Blazej; Polissar, Nayak; Einstein, Daniel R.; Glenny, Robb W.; Minard, Kevin R.; Carson, James P.; Jiao, Xiangmin; Jacob, Rick E.; Cox, Timothy C.; Postlewait, Ed; Corley, Richard A.

    2012-06-01

    We examine a previously published branch-based approach to modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that account for it. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys and one ozone-exposed monkey. Our results showed substantial departures from self-consistency in all five subjects. When departures from selfconsistency exist we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. Measurement error has an important impact on the estimated morphometry models and needs to be accounted for in the analysis.

  4. The breaks and the hidden components in the power-law spectra of synchrotron radiation of the self-consistent current structures

    SciTech Connect (OSTI)

    Kocharovsky, V. V.; Kocharovsky, VI. V.; Tarasov, S. V.; Martyanov, V. Ju.

    2015-08-15

    Widespread use of a broken-power-law description of the spectra of synchrotron emission of various plasma objects requires an analysis of origin and a proper interpretation of spectral components. We show that, for a self-consistent magnetic configuration in a collisionless plasma, these components may be angle-dependent according to an anisotropic particle momentum distribution and may have no counterparts in a particle energy distribution. That has never been studied analytically and is in contrast to a usual model of synchrotron radiation, assuming an external magnetic field and a particle ensemble with isotropic momentum distribution. We demonstrate that for the wide intervals of observation angle the power-law spectra and, in particular, the positions and number of spectral breaks may be essentially different for the cases of the self-consistent and not-self-consistent magnetic fields in current structures responsible for the synchrotron radiation of the ensembles of relativistic particles with the multi-power-law energy distributions.

  5. Catalytic steam gasification reactivity of HyperCoals produced from different rank of coals at 600-775{degree}C

    SciTech Connect (OSTI)

    Atul Sharma; Ikuo Saito; Toshimasa Takanohashi

    2008-11-15

    HyperCoal is a clean coal with ash content <0.05 wt %. HyperCoals were prepared from a brown coal, a sub-bituminous coal, and a bituminous raw coal by solvent extraction method. Catalytic steam gasification of these HyperCoals was carried out with K{sub 2}CO{sub 3} at 775, 700, 650, and 600 {degree}C, and their rates were compared. HyperCoals produced from low-rank coals were more reactive than those produced from the high-rank coals. XRD measurements were carried out to understand the difference in gasification reactivity of HyperCoals. Arrhenius plot of ln (k) vs 1/T in the temperature range 600-825{degree}C was a curve rather than a straight line. The point of change was observed at 700{degree}C for HyperCoals from low-rank coals and at 775{degree}C for HyperCoals from high-rank coals. Using HyperCoal produced from low-rank coals as feedstock, steam gasification of coal may be possible at temperatures less than 650{degree}C. 22 refs., 6 figs., 2 tabs.

  6. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    SciTech Connect (OSTI)

    Li, H.X.; Kurtz, R.J.; Jones, R.H.

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack plane rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.

  7. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The desert temperature hovered at 90 degrees Fahrenheit the morning of July 17, 1962 at the Nevada Test Site (NTS), now known at the Nevada National Security Site (NNSS). Eventually the beating sun would increase the heat to over 105 degrees later that day, but at 10:00 a.m., a crowd of 396 spectators braved the scorching temperature and relentless sun to witness the last atmospheric test ever conducted by the United States. The crowd gathered in Area 18 of the NTS, approximately two miles from

  8. A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR

    SciTech Connect (OSTI)

    Ade, P. A. R.; Akiba, Y.; Hasegawa, M.; Anthony, A. E.; Halverson, N. W.; Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Elleflot, T.; Feng, C.; Borrill, J.; Errard, J.; Chapman, S.; Chinone, Y.; Flanigan, D.; Dobbs, M.; Gilbert, A.; Fabbian, G.; Collaboration: Polarbear Collaboration; and others

    2014-10-20

    We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early universe. Our measurement covers the angular multipole range 500 < ? < 2100 and is based on observations of an effective sky area of 25 deg{sup 2} with 3.'5 resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.2% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A{sub BB} to the measured band powers, A{sub BB}=1.120.61(stat){sub ?0.12}{sup +0.04}(sys)0.07(multi), where A{sub BB} = 1 is the fiducial WMAP-9 ?CDM value. In this expression, 'stat' refers to the statistical uncertainty, 'sys' to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and 'multi' to the calibration uncertainties that have a multiplicative effect on the measured amplitude A{sub BB}.

  9. Product consistency test and toxicity characteristic leaching procedure results of the ceramic waste form from the electrometallurgical treatment process for spent fuel

    SciTech Connect (OSTI)

    Johnson, S. G.; Adamic, M. L.: DiSanto, T.; Warren, A. R.; Cummings, D. G.; Foulkrod, L.; Goff, K. M.

    1999-11-11

    The ceramic waste form produced from the electrometallurgical treatment of sodium bonded spent fuel from the Experimental Breeder Reactor-II was tested using two immersion tests with separate and distinct purposes. The product consistency test is used to assess the consistency of the waste forms produced and thus is an indicator of a well-controlled process. The toxicity characteristic leaching procedure is used to determine whether a substance is to be considered hazardous by the Environmental Protection Agency. The proposed high level waste repository will not be licensed to receive hazardous waste, thus any waste forms destined to be placed there cannot be of a hazardous nature as defined by the Resource Conservation and Recovery Act. Results are presented from the first four fully radioactive ceramic waste forms produced and from seven ceramic waste forms produced from cold surrogate materials. The fully radioactive waste forms are approximately 2 kg in weight and were produced wit h salt used to treat 100 driver subassemblies of spent fuel.

  10. STOCHASTIC ACCELERATION AND THE EVOLUTION OF SPECTRAL DISTRIBUTIONS IN SYNCHRO-SELF-COMPTON SOURCES: A SELF-CONSISTENT MODELING OF BLAZARS' FLARES

    SciTech Connect (OSTI)

    Tramacere, A.; Taylor, A. M.; Massaro, E.

    2011-10-01

    The broadband spectral distributions of non-thermal sources, such as those of several known blazars, are well described by a log-parabolic fit. The second-degree term in these fits measures the curvature in the spectrum. In this paper, we investigate whether the curvature parameter observed in the spectra of the synchrotron emission can be used as a fingerprint of stochastic acceleration. As a first approach, we use the multiplicative central limit theorem to show how fluctuations in the energy gain result in the broadening of the spectral shape, introducing a curvature into the energy distribution. Then, by means of a Monte Carlo description, we investigate how the curvature produced in the electron distribution is linked to the diffusion in momentum space. To get a more generic description of the problem we turn to the diffusion equation in momentum space. We first study some 'standard' scenarios, in order to understand the conditions that make the curvature in the spectra significant, and the relevance of cooling during the acceleration process. We try to quantify the correlation between the curvature and the diffusive process in the pre-equilibrium stage, and investigate how the transition between the Klein-Nishina and the Thomson regimes, in inverse Compton cooling, determine the curvature in the distribution at equilibrium. We apply these results to some observed trends, such as the anticorrelation between the peak energy and the curvature term observed in the spectra of Mrk 421, and a sample of BL Lac objects whose synchrotron emission peaks at X-ray energies.

  11. A stochastically forced time delay solar dynamo model: Self-consistent recovery from a maunder-like grand minimum necessitates a mean-field alpha effect

    SciTech Connect (OSTI)

    Hazra, Soumitra; Nandy, Dibyendu; Passos, Dário E-mail: dariopassos@ist.utl.pt

    2014-07-01

    Fluctuations in the Sun's magnetic activity, including episodes of grand minima such as the Maunder minimum have important consequences for space and planetary environments. However, the underlying dynamics of such extreme fluctuations remain ill-understood. Here, we use a novel mathematical model based on stochastically forced, non-linear delay differential equations to study solar cycle fluctuations in which time delays capture the physics of magnetic flux transport between spatially segregated dynamo source regions in the solar interior. Using this model, we explicitly demonstrate that the Babcock-Leighton poloidal field source based on dispersal of tilted bipolar sunspot flux, alone, cannot recover the sunspot cycle from a grand minimum. We find that an additional poloidal field source effective on weak fields—e.g., the mean-field α effect driven by helical turbulence—is necessary for self-consistent recovery of the sunspot cycle from grand minima episodes.

  12. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-03-24

    Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less

  13. Vapor-liquid Equilibria and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-spring versus Dipole Self-consistent Field approaches to induced polarization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chialvo, Ariel A; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-01-01

    We implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. For that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantitiesmore » from the actual GCP water model.« less

  14. Electromagnetic properties of the {delta}(1232) and decuplet baryons in the self-consistent SU(3) chiral quark-soliton model

    SciTech Connect (OSTI)

    Ledwig, Tim; Silva, Antonio; Vanderhaeghen, Marc

    2009-05-01

    We examine the electromagnetic properties of the {delta}(1232) resonance within the self-consistent chiral quark-soliton model. In particular, we present the {delta} form factors of the vector-current G{sub E0}(Q{sup 2}), G{sub E2}(Q{sup 2}), and G{sub M1}(Q{sup 2}) for a momentum-transfer range of 0{<=}Q{sup 2}{<=}1 GeV{sup 2}. We apply the symmetry-conserving quantization of the soliton and take 1/N{sub c} rotational corrections into account. Values for the magnetic moments of all decuplet baryons as well as for the N-{delta} transition are given. Special attention is also given to the electric quadrupole moment of the {delta}.

  15. The degree of 5f electron localization in URu2Si2: electron energy-loss spectroscopy and spin-orbit sum rule analysis

    SciTech Connect (OSTI)

    Jeffries, J R; Moore, K T; Butch, N P; Maple, M B

    2010-05-19

    We examine the degree of 5f electron localization in URu{sub 2}Si{sub 2} using spin-orbit sum rule analysis of the U N{sub 4,5} (4d {yields} 5f) edge. When compared to {alpha}-U metal, US, USe, and UTe, which have increasing localization of the 5f states, we find that the 5f states of URu{sub 2}Si{sub 2} are more localized, although not entirely. Spin-orbit analysis shows that intermediate coupling is the correct angular momentum coupling mechanism for URu{sub 2}Si{sub 2} when the 5f electron count is between 2.6 and 2.8. These results have direct ramifications for theoretical assessment of the hidden order state of URu{sub 2}Si{sub 2}, where the degree of localization of the 5f electrons and their contribution to the Fermi surface are critical.

  16. Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering from liquid para-hydrogen

    SciTech Connect (OSTI)

    Miller, William; Liu, Jian; Miller, William H.

    2008-03-15

    The linearized approximation to the semiclassical initial value representation (LSC-IVR) is used to calculate time correlation functions relevant to the incoherent dynamic structure factor for inelastic neutron scattering from liquid para-hydrogen at 14 K. Various time correlations functions were used which, if evaluated exactly, would give identical results, but they do not because the LSC-IVR is approximate. Some of the correlation functions involve only linear operators, and others involve non-linear operators. The consistency of the results obtained with the various time correlation functions thus provides a useful test of the accuracy of the LSC-IVR approximation and its ability to treat correlation functions involving both linear and nonlinear operators in realistic anharmonic systems. The good agreement of the results obtained from different correlation functions, their excellent behavior in the spectral moment tests based on the exact moment constraints, and their semi-quantitative agreement with the inelastic neutron scattering experimental data all suggest that the LSC-IVR is indeed a good short-time approximation for quantum mechanical correlation functions.

  17. CONNECTING THE SUN AND THE SOLAR WIND: THE FIRST 2.5-DIMENSIONAL SELF-CONSISTENT MHD SIMULATION UNDER THE ALFVEN WAVE SCENARIO

    SciTech Connect (OSTI)

    Matsumoto, Takuma; Suzuki, Takeru Ken

    2012-04-10

    The solar wind emanates from the hot and tenuous solar corona. Earlier studies using 1.5-dimensional simulations show that Alfven waves generated in the photosphere play an important role in coronal heating through the process of nonlinear mode conversion. In order to understand the physics of coronal heating and solar wind acceleration together, it is important to consider the regions from photosphere to interplanetary space as a single system. We performed 2.5-dimensional, self-consistent magnetohydrodynamic simulations, covering from the photosphere to the interplanetary space for the first time. We carefully set up the grid points with spherical coordinates to treat the Alfven waves in the atmosphere with huge density contrast and successfully simulate the solar wind streaming out from the hot solar corona as a result of the surface convective motion. The footpoint motion excites Alfven waves along an open magnetic flux tube, and these waves traveling upward in the non-uniform medium undergo wave reflection, nonlinear mode conversion from Alfven mode to slow mode, and turbulent cascade. These processes lead to the dissipation of Alfven waves and acceleration of the solar wind. It is found that the shock heating by the dissipation of the slow-mode wave plays a fundamental role in the coronal heating process, whereas the turbulent cascade and shock heating drive the solar wind.

  18. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    SciTech Connect (OSTI)

    Firestone, Richard B; Revay, Zsolt

    2009-12-01

    Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

  19. Toward a self-consistent model of the interaction between an ultra-intense, normally incident laser pulse with an overdense plasma

    SciTech Connect (OSTI)

    Debayle, A.; ETSI Aeronáuticos. Universidad Politécnica de Madrid, Madrid 28040 ; Sanz, J.; Gremillet, L.; Mima, K.

    2013-05-15

    Following a recent work by Sanz et al. [Phys. Rev. E 85, 046411 (2012)], we elaborate upon a one-dimensional model describing the interaction between an ultra-intense, normally incident laser pulse and an overdense plasma. The analytical solutions of the reflected laser field, the electrostatic field, and the plasma surface oscillation are obtained within the cold-fluid approximation. The high-order harmonic spectrum is calculated from the exact solution of the plasma surface oscillations. In agreement with particle-in-cell simulations, two regimes of harmonic generation are predicted: for moderately relativistic laser intensities, or high plasma densities, the harmonic spectrum is determined by the discontinuity in the derivative of the reflected field when the electron plasma boundary oscillates across the fixed ion boundary. For higher intensities, the electron plasma boundary is confined inside the ion region and oscillates at relativistic velocities, giving rise to a train of reflected attosecond pulses. In both cases, the harmonic spectrum obeys an asymptotic ω{sup −4} scaling. The acceleration of electrons and the related laser absorption efficiency are computed by a test particle method. The model self-consistently reproduces the transition between the “anomalous skin effect” and the “J × B” heating predicted by particle-in-cell simulations. Analytical estimates of the different scalings are presented.

  20. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models. Results for the third set of high alumina outer layer matrix glasses

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. B.

    2015-12-01

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for 14 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. All of the measured sums of oxides for the study glasses fell within the interval of 96.9 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Several of the glasses exhibited increases in normalized concentrations (NCi) after the canister centerline cooled (CCC) heat treatment. Five of the glasses, after the CCC heat treatment, had NCB values that exceeded that of the Environmental Assessment (EA) benchmark glass. These results can be combined with additional characterization, including X-ray diffraction, to determine the cause of the higher release rates.

  1. Axial-vector transitions and strong decays of the baryon antidecuplet in the self-consistent SU(3) chiral quark-soliton model

    SciTech Connect (OSTI)

    Ledwig, Tim; Kim, Hyun-Chul; Goeke, Klaus

    2008-09-01

    We investigate the axial-vector transition constants of the baryon antidecuplet to the octet and decuplet within the framework of the self-consistent SU(3) chiral quark-soliton model. Taking into account rotational 1/N{sub c} and linear m{sub s} corrections and using the symmetry-conserving quantization, we calculate the axial-vector transition constants. It is found that the leading-order contributions are generally almost canceled by the rotational 1/N{sub c} corrections. Thus, the m{sub s} corrections turn out to be essential contributions to the axial-vector constants. The decay width of the {theta}{sup +}{yields}NK transition is determined to be {gamma}({theta}{yields}NK)=0.71 MeV, based on the result of the axial-vector transition constant g{sub A}*({theta}{yields}NK)=0.05. In addition, other strong decays of the baryon antidecuplet are investigated. The forbidden decays from the baryon antidecuplet to the decuplet are also studied.

  2. A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves

    SciTech Connect (OSTI)

    Pelanti, Marica; Shyue, Keh-Ming

    2014-02-15

    We model liquidgas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of SaurelPetitpasBerry (Saurel et al., 2009) [9]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxation terms to model heat and mass transfer and hence liquidvapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquidvapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.

  3. Galaxy Formation with Self-Consistently Modeled Stars and Massive Black Holes. I: Feedback-Regulated Star Formation and Black Hole Growth

    SciTech Connect (OSTI)

    Kim, Ji-hoon; Wise, John H.; Alvarez, Marcelo A.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-11-04

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M {circle_dot} galactic halo and its 10{sup 5} {circle_dot} M embedded MBH at redshift 3 in a cosmological CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  4. On the ground state calculation of a many-body system using a self-consistent basis and quasi-Monte Carlo: An application to water hexamer

    SciTech Connect (OSTI)

    Georgescu, Ionu? Mandelshtam, Vladimir A.; Jitomirskaya, Svetlana

    2013-11-28

    Given a quantum many-body system, the Self-Consistent Phonons (SCP) method provides an optimal harmonic approximation by minimizing the free energy. In particular, the SCP estimate for the vibrational ground state (zero temperature) appears to be surprisingly accurate. We explore the possibility of going beyond the SCP approximation by considering the system Hamiltonian evaluated in the harmonic eigenbasis of the SCP Hamiltonian. It appears that the SCP ground state is already uncoupled to all singly- and doubly-excited basis functions. So, in order to improve the SCP result at least triply-excited states must be included, which then reduces the error in the ground state estimate substantially. For a multidimensional system two numerical challenges arise, namely, evaluation of the potential energy matrix elements in the harmonic basis, and handling and diagonalizing the resulting Hamiltonian matrix, whose size grows rapidly with the dimensionality of the system. Using the example of water hexamer we demonstrate that such calculation is feasible, i.e., constructing and diagonalizing the Hamiltonian matrix in a triply-excited SCP basis, without any additional assumptions or approximations. Our results indicate particularly that the ground state energy differences between different isomers (e.g., cage and prism) of water hexamer are already quite accurate within the SCP approximation.

  5. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel ?-barrel consisting of two Greek-key motifs

    SciTech Connect (OSTI)

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-06-18

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel ?-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel ?-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded ?-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.

  6. Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex

    SciTech Connect (OSTI)

    Delcey, Mickaël G.; Freitag, Leon; González, Leticia; Pedersen, Thomas Bondo; Aquilante, Francesco; Dipartimento di Chimica “G. Ciamician,” Università di Bologna, V. F. Selmi 2, 40126 Bologna ; Lindh, Roland; Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, 751 20 Uppsala

    2014-05-07

    We present a formulation of analytical energy gradients at the complete active space self-consistent field (CASSCF) level of theory employing density fitting (DF) techniques to enable efficient geometry optimizations of large systems. As an example, the ground and lowest triplet state geometries of a ruthenium nitrosyl complex are computed at the DF-CASSCF level of theory and compared with structures obtained from density functional theory (DFT) using the B3LYP, BP86, and M06L functionals. The average deviation of all bond lengths compared to the crystal structure is 0.042 Å at the DF-CASSCF level of theory, which is slightly larger but still comparable with the deviations obtained by the tested DFT functionals, e.g., 0.032 Å with M06L. Specifically, the root-mean-square deviation between the DF-CASSCF and best DFT coordinates, delivered by BP86, is only 0.08 Å for S{sub 0} and 0.11 Å for T{sub 1}, indicating that the geometries are very similar. While keeping the mean energy gradient errors below 0.25%, the DF technique results in a 13-fold speedup compared to the conventional CASSCF geometry optimization algorithm. Additionally, we assess the singlet-triplet energy vertical and adiabatic differences with multiconfigurational second-order perturbation theory (CASPT2) using the DF-CASSCF and DFT optimized geometries. It is found that the vertical CASPT2 energies are relatively similar regardless of the geometry employed whereas the adiabatic singlet-triplet gaps are more sensitive to the chosen triplet geometry.

  7. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    SciTech Connect (OSTI)

    Ouyang, Bing Xue, Jia-Dan Zheng, Xuming E-mail: zxm@zstu.edu.cn; Fang, Wei-Hai E-mail: fangwh@dnu.edu.cn

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A′) state: the radiative S{sub 2,min} → S{sub 0} transition and the nonradiative S{sub 2} → S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.

  8. What asteroseismology can do for exoplanets: Kepler-410A b is a small Neptune around a bright star, in an eccentric orbit consistent with low obliquity

    SciTech Connect (OSTI)

    Van Eylen, V.; Lund, M. N.; Aguirre, V. Silva; Arentoft, T.; Kjeldsen, H.; Pedersen, M. G.; Jessen-Hansen, J.; Tingley, B.; Christensen-Dalsgaard, J.; Albrecht, S.; Chaplin, W. J.; Campante, T. L.; Isaacson, H.; Aerts, C.; Bryson, S. T.

    2014-02-10

    We confirm the Kepler planet candidate Kepler-410A b (KOI-42b) as a Neptune-sized exoplanet on a 17.8 day, eccentric orbit around the bright (K {sub p} = 9.4) star Kepler-410A (KOI-42A). This is the third brightest confirmed planet host star in the Kepler field and one of the brightest hosts of all currently known transiting exoplanets. Kepler-410 consists of a blend between the fast rotating planet host star (Kepler-410A) and a fainter star (Kepler-410B), which has complicated the confirmation of the planetary candidate. Employing asteroseismology, using constraints from the transit light curve, adaptive optics and speckle images, and Spitzer transit observations, we demonstrate that the candidate can only be an exoplanet orbiting Kepler-410A. We determine via asteroseismology the following stellar and planetary parameters with high precision; M {sub *} = 1.214 ± 0.033 M {sub ☉}, R {sub *} = 1.352 ± 0.010 R {sub ☉}, age =2.76 ± 0.54 Gyr, planetary radius (2.838 ± 0.054 R {sub ⊕}), and orbital eccentricity (0.17{sub −0.06}{sup +0.07}). In addition, rotational splitting of the pulsation modes allows for a measurement of Kepler-410A's inclination and rotation rate. Our measurement of an inclination of 82.5{sub −2.5}{sup +7.5} [°] indicates a low obliquity in this system. Transit timing variations indicate the presence of at least one additional (non-transiting) planet (Kepler-410A c) in the system.

  9. SU-E-T-96: Demonstration of a Consistent Method for Correcting Surface Dose Measurements Using Both Solid State and Ionization Chamber Detectors

    SciTech Connect (OSTI)

    Reynolds, T; Gerbi, B; Higgins, P

    2014-06-01

    Purpose: To compare the surface dose (SD) measured using a PTW 30-360 extrapolation chamber with different commonly used dosimeters (Ds): parallel plate ion chambers (ICs): RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial; TLD chips (cTLD), TLD powder (pTLD), optically stimulated (OSLs), radiochromic (EXR2) and radiographic (EDR2) films, and to provide an intercomparison correction to Ds for each of them. Methods: Investigations were performed for a 6 MV x-ray beam (Varian Clinac 2300, 10x10 cm{sup 2} open field, SSD = 100 cm). The Ds were placed at the surface of the solid water phantom and at the reference depth dref=1.7cm. The measurements for cTLD, OSLs, EDR2 and EXR2 were corrected to SD using an extrapolation method (EM) indexed to the baseline PTW 30-360 measurements. A consistent use of the EM involved: 1) irradiation of three Ds stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. An additional measurement was performed with externally exposed OSLs (eOSLs), that were rotated out of their protective housing. Results: All single Ds measurements overestimated the SD compared with the extrapolation chamber, except for Attix IC. The closest match to the true SD was measured with the Attix IC (− 0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EXR2 (14%), EDR2 (14.8%) and OSL (26%). The EM method of correction for SD worked well for all Ds, except the unexposed OSLs. Conclusion: This EM cross calibration of solid state detectors with an extrapolation or Attix chamber can provide thickness corrections for cTLD, eOSLs, EXR2, and EDR2. Standard packaged OSLs were not found to be simply corrected.

  10. Repeated compressive stress increase with 400 [degree]C thermal cycling in tantalum thin films due to increases in the oxygen content

    SciTech Connect (OSTI)

    Cabral, C. Jr.; Clevenger, L.A.; Schad, R.G. )

    1994-07-01

    Stresses which build up in thin films such as tantalum, during thermal processing, can cause major reliability problems in electronic and x-ray optics applications. We demonstrate that 50--200 nm thick sputtered [beta]-Ta thin films undergo repeated compressive stress increases when thermally cycled to 400 [degree]C (at a rate of 10 [degree]C/min) and back in a purified He ambient because of small amounts of oxygen gettered by the tantalum. The oxygen contamination results from the poor quality of the atmospheric seal on the quartz annealing chamber. As-deposited Ta thin films have a compressive stress ranging from [minus]1 to [minus]4 GPa. The compressive stress buildup was monitored [ital in] [ital situ] and was shown to increase [minus]0.5 GPa on average after each thermal cycle for a final value from [minus]6 to [minus]7 GPa after seven cycles. After being cycled thermally seven times any perturbation of the film such as a four-point probe resistivity measurement can cause the film to instantaneously crack in a serpentine pattern, relieving the large compressive stress. Auger electron spectroscopy depth profiling analysis was used to determine that the as-deposited film contained 1 at. % oxygen which increased to 8%--12% after seven thermal cycles with an approximate doubling in resistivity. The [minus]0.5 GPa average compressive stress increase in Ta thin films when cycled to 400 [degree]C is attributed to a 1.3% increase in oxygen concentration leading to a Ta unit cell expansion of 0.6%.

  11. INFLUENCE OF CARBON AND DPA RATE ON NEUTRON-INDUCED SWELLING OF Fe-15Cr-16Ni-0.25Ti IN FFTF AT ~400 DEGREES C

    SciTech Connect (OSTI)

    Okita, Taira; Sekimura, Naoto; Garner, Francis A.; Wolfer, W. G.

    2002-12-31

    The purpose of this effort is to determine the influence of dpa rate and composition on the void swelling of simple austenitic Fe-Cr-Ni alloys. Contrary to the swelling behavior of fcc Fe-15Cr-16Ni and Fe-15Cr-16Ni-0.25Ti alloys irradiated in the same FFTF-MOTA experiment, Fe-15Cr-16Ni-0.25Ti-0.04C does not exhibit a dependence of swelling on dpa rate at approximately 400 degrees C. The transient regime of swelling is prolonged by carbon addition, however.

  12. Fifty Degrees North, Four Degrees West - Microbial Bebop

    SciTech Connect (OSTI)

    Peter Larsen

    2012-10-01

    This musical composition was created from data of microbes (bacteria, algae and other microorganisms) sampled in the English Channel. Argonne National Laboratory biologist Peter Larsen created the songs as a unique way to present and comprehend large datasets. More details: All of the data in this composition derives from twelve observed time points collected at monthly intervals at the L4 Station during 2007. The composition is composed of seven choruses. Each chorus has the same chord progression of 12 measures each in which chords are derived from monthly measures of temperature and chlorophyll A concentrations. The first and last chorus melodies are environmental parameter data as in 'Blues for Elle'. The melody in each of the second through sixth chorus is generated from the relative abundances of one of the five most common microbial taxa: Rickettsiales, Rhodobacteriales, Flavobacteriales, Cyanobactera, and Pseudomondales. A different 'instrument' is used to represent each microbial taxon. Melodies for microbial taxa were generated as in 'Far and Wide'. More information at http://www.anl.gov/articles/songs-key... Image: Cyanobacteria, probably genus Gloeotrichia, taken in darkfield. Credit Specious Reasons via Flickr Creative Commons (http://www.flickr.com/photos/28594931...)

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Solar Thermal Collector Shipments by Type, Price, and Trade Total Shipments, 1974-2009 Trade, 1978-2009 Price of Total Shipments, 1986-2009 Number of U.S. Manufacturers by Type of Collector, 1974-2009 Average Annual Shipments per Manufacturer, 1974-2009 292 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. 2 Collectors that generally operate in the temperature range of 140 degrees Fahrenheit

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Liquefied Natural Gas (LNG) Tax LNG is taxed at a rate of $0.14 per gallon when used as a motor fuel. For taxation purposes, LNG is converted to its gasoline gallon equivalent (GGE) at the rate of 1.5536 gallons of LNG to equal one volumetric gross gallon of gasoline. LNG is defined as natural gas for use as a motor fuel, which has been cooled to approximately -260 degrees Fahrenheit and is in a liquid state. (Reference South Dakota Statutes 10-47B-3 and 10-47B-4

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Compressed natural gas used as a special motor fuel is subject to the state fuel excise tax of $0.31 per gasoline gallon equivalent, measured at 5.66 pounds (lbs.) or 126.67 cubic feet at a base temperature of 60 degrees Fahrenheit and a pressure of 14.73 lbs. per square inch. Liquefied natural gas is subject to the excise tax of $0.325 per diesel gallon equivalent, measured at 6.06 lbs. Liquefied petroleum gas (propane) is subject to the excise tax of $0.30 per gallon. E85 is subject to the

  16. Methodology to predict the number of forced outages due to creep failure

    SciTech Connect (OSTI)

    Palermo, J.V. Jr.

    1996-12-31

    All alloy metals at a temperature above 950 degrees Fahrenheit experience creep damage. Creep failures in boiler tubes usually begin after 25 to 40 years of operation. Since creep damage is irreversible, the only remedy is to replace the tube sections. By predicting the number of failures per year, the utility can make the best economic decision concerning tube replacement. This paper describes a methodology to calculate the number of forced outages per yea due to creep failures. This methodology is particularly useful to utilities that have boilers that have at least 25 years of operation.

  17. How Does Fusion Energy Work? | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Does Fusion Energy Work? How Does Fusion Energy Work? July 29, 2016 - 1:27pm Addthis How Does Fusion Energy Work? Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Carly Wilkins Carly Wilkins Multimedia Designer A plain building in Plainsboro, New Jersey houses a machine that can produce plasma -- superheated, charged gas -- hotter than the center of the sun. We're talking 100 million degrees Fahrenheit...in a building...in New Jersey. It's the NSTX-U, the National

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Compressed natural gas used as a special motor fuel is subject to the state fuel excise tax rate of $0.32 per gasoline gallon equivalent, measured at 5.66 lbs. or 126.67 cubic feet at a base temperature of 60 degrees Fahrenheit and a pressure of 14.7 lbs. per square inch. Liquefied natural gas is also subject to the excise tax rate of $0.349 per diesel gallon equivalent, measured at 6.06 lbs. (Reference House Bill 343, 2016, and Idaho Statutes 63-2402 and 63-2424

  19. How Does Fusion Energy Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Does Fusion Energy Work? How Does Fusion Energy Work? July 29, 2016 - 1:27pm Addthis How Does Fusion Energy Work? Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Carly Wilkins Carly Wilkins Multimedia Designer A plain building in Plainsboro, New Jersey houses a machine that can produce plasma -- superheated, charged gas -- hotter than the center of the sun. We're talking 100 million degrees Fahrenheit...in a building...in New Jersey. It's the NSTX-U, the National

  20. Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do no exceed 750 degree C.

    DOE Patents [OSTI]

    Hammond, Joseph P.; David, Stan A.; Woodhouse, John J.

    1986-01-01

    This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750.degree. C., and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750.degree. C. to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal compatible with the coefficient of thermal expansion of the ceramic, such as titanium.

  1. A spin-optoelectronic detector for the simultaneous measurement of the degree of circular polarization and intensity of a laser beam

    SciTech Connect (OSTI)

    Khamari, Shailesh K. Porwal, S.; Oak, S. M.; Sharma, T. K.

    2015-08-17

    Simultaneous measurement of the degree of circular polarization and intensity of a laser beam is essential in advanced photonic applications. However, it is not feasible with conventional helicity dependent detectors where an additional detector is needed to measure the intensity. Here, we report the development of a spin-optoelectronic detector that can measure the degree of circular polarization and the intensity of a laser beam simultaneously. The principle of operation of device is based on the two independent fundamental phenomena occurring in Au/InP hybrid structures, namely, Inverse Spin Hall Effect (ISHE) and the Photo-Voltaic (PV) Effect. The magnitude of ISHE and PV signals is simultaneously measured across the two pairs of contacts that are made on the top of device. No cross talk is observed between the two detectors made on the same chip. The all-electronic compact device is fast, operates at room temperature, and opens up the possibility of many applications in an integrated optoelectronic platform.

  2. 3Degrees | Open Energy Information

    Open Energy Info (EERE)

    helps organizations buy, sell and market environmental commodities, such as Renewable Energy Certificates(RECs) and verified carbon offsets. Its mission, as stated on its website,...

  3. 2degrees | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: OX2 7HT Product: Oxford-based collaborative network provider for sustainability professionals. Coordinates: 43.781517, -89.571699 Show Map Loading map......

  4. Neutron structural characterization, inversion degree and transport properties of NiMn{sub 2}O{sub 4} spinel prepared by the hydroxide route

    SciTech Connect (OSTI)

    Sagua, A.; Lescano, Gabriela M.; Alonso, J.A.; Martínez-Coronado, R.; Fernández-Díaz, M.T.; Morán, E.

    2012-06-15

    Graphical abstract: A pure specimen has been synthesized by the hydroxide route. This spinel, studied by NPD, shows an important inversion degree, λ = 0.80. A bond-valence study shows that the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected 3+ and 2+ values, respectively. The mixed valence Mn{sup 3+}/Mn{sup 4+} accounts for a hopping mechanism between adjacent octahedral sites, leading to a significant conductivity. Highlights: ► A low-temperature hydroxide route allowed preparing almost pure specimens of NiMn{sub 2}O{sub 4}. ► NPD essential to determine inversion degree; contrasting Ni and Mn for neutrons. ► Bond valence establishes valence state of octahedral and tetrahedral Ni and Mn ions. ► Thermal analysis, transport measurements complement characterization of this oxide. ► A structure–properties relationship is established. -- Abstract: The title compound has been synthesized by the hydroxide route. The crystal structure has been investigated at room temperature from high-resolution neutron powder diffraction (NPD) data. It crystallizes in a cubic spinel structure, space group Fd3{sup ¯}m, Z = 8, with a = 8.3940(2) Å at 295 K. The crystallographic formula is (Ni{sub 0.202(1)}Mn{sub 0.798(1)}){sub 8a}(Ni{sub 0.790(1)}Mn{sub 1.210(1)}){sub 16d}O{sub 4} where 8a and 16d stand for the tetrahedral and octahedral sites of the spinel structure, respectively. There is a significant inversion degree of the spinel structure, λ = 0.80. In fact, the variable parameter for the oxygen position, u = 0.2636(4), is far from that expected (u = 0.25) for normal spinels. From a bond-valence study, it seems that the valence distribution in NiMn{sub 2}O{sub 4} spinel is not as trivial as expected (Ni{sup 2+} and Mn{sup 3+}), but clearly the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected +3 and +2 values, respectively. The mixed valence observed at

  5. Preliminary analysis of tank 241-C-106 dryout due to large postulated leak and vaporization

    SciTech Connect (OSTI)

    Piepho, M.G.

    1994-12-01

    This analysis assumes that there is a hypothetical large leak at the bottom of Tank 241-C-106 which initiates the dryout of the tank. The time required for a tank to dryout after a leak is of interest for safety reasons. As a tank dries out, its temperature is expected to increase which could affect the structural integrity of the concrete tank dome. Hence, it is of interest to know how fast and how high the temperature in a leaky tank increases, so that mitigation procedures can be planned and implemented in a timely manner. This analysis is focused on tank 241-C-106, which is known to be high thermal tank. The objective of the study was to determine how long it would take for tank 241-C-106 to reach 350 degrees Fahrenheit (about 177 degrees Centigrade) after a postulated large leak develops at the bottom center of the tank. The temperature of 350 degrees Fahrenheit is the minimum temperature that can cause structural damage to concrete (ACI 1992). The postulated leak at the bottom of the tank and the resulting dryout of the sludge in the tank make this analysis different from previous thermal analyses of the C-106 tank and other tanks, especially the double-shell tanks which are mostly liquid.

  6. Training Reciprocity Achieves Greater Consistency, Saves Time...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The reciprocity program allowed the engineers to bypass a three-day Radiological Worker Program at SNL nearly identical to training they recently completed at ICP. In addition, ...

  7. Local, smooth, and consistent Jacobi set simplification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhatia, Harsh; Wang, Bei; Norgard, Gregory; Pascucci, Valerio; Bremer, Peer -Timo

    2014-10-31

    The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lackmore » fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).« less

  8. Local, smooth, and consistent Jacobi set simplification

    SciTech Connect (OSTI)

    Bhatia, Harsh; Wang, Bei; Norgard, Gregory; Pascucci, Valerio; Bremer, Peer -Timo

    2014-10-31

    The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lack fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).

  9. BILIWG: Consistent "Figures of Merit" (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  10. Interaction of low-expansion NZP ceramics with Na{sub 2}SO{sub 4} at 1000{degrees}C

    SciTech Connect (OSTI)

    Lee, W.Y.; Stinton, D.P.; Joslin, D.L.

    1996-06-01

    The interaction between several low-expansion NZP materials and Na{sub 2}SO{sub 4} at 1000{degrees}C in pure O{sub 2} was studied. Ba{sub 1.25}Zr{sub 4}P{sub 5.5}Si{sub 0.5}O{sub 24} experienced extensive cracking and delamination upon reaction with Na{sub 2}SO{sub 4}. On the other hand, Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}P{sub 6}O{sub 24} remained intact in terms of visual appearance, and had no significant weight loss or gain. However, the ion exchange between Na{sup +} ions and Ca{sup +2} ions was observed to be sufficiently rapid to allow the penetration of the Na{sup +} ions into the test specimens in 100 h. The segregation of Ca to the specimen surface was observed due to the ion exchange. Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}P{sub 6}O{sub 24} was also tested, but its stability could not properly be assessed because the as-received specimens contained a significant amount of MgZr{sub 4}P{sub 6}O{sub 24} as an impurity phase.

  11. Effectiveness of 700{degrees}C thermal treatment on primary water stress corrosion sensitivity of Alloy 600 steam generator tubes: Laboratory tests and in field experience

    SciTech Connect (OSTI)

    Cattant, F.; Keroulas, F. de; Garriga-Majo, D.; Todeschini, P.; Van Duysen, J.C.

    1992-12-31

    In France, the steam generators of some 900 MWe reactors, and of all the 1 300 MWe reactors in service are equipped with heat treated Alloy 600 tubes. The purpose of the heat treatment, performed at 700{degrees}C, is to relieve the residual stresses. Generally, it also increases the SCC resistance of the alloy. A laboratory study has been carried out in order to gain a better understanding of the metallurgical factors influencing the PWSCC resistance of Alloy 600 after heat treatment. It has been shown that there are two kinds of tubes for which the heat treatment does not produce a microstructure having a potentially high resistance to SCC: tubes with a high carbon content (over 0.032%) or tubes mill-annealed at high temperatures and heavily cold-worked by the straightening. The analysis of the behaviour of french steam generators reveals that the heat treatment generally had the expected beneficial effect. However, the early cracking in service of some treated tubes led EDF (national power company) to proceed with removals. The majority of the cracked pulled-out tubes exhibit microstructures having a potentially high PWSCC sensibility in laboratory tests. It has been shown that these microstructures can be correlated to a high carbon content.

  12. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOE Patents [OSTI]

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  13. BICEP2 / Keck Array V: Measurements of B-mode polarization at degree angular scales and 150 GHz by the Keck Array

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Brevik, J. A.; Buder, I.; et al

    2015-09-29

    Here, the Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectralmore » difference tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg2 for an equivalent survey weight of 250,000 μK–2. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.« less

  14. A new tectonic model for the development of the Eastern Cordillera, Altiplano, and Subandean zones, Bolivian Central Andes, 20[degrees]S latitude

    SciTech Connect (OSTI)

    Gubbels, T.L.; Isacks, B.L. ); Koch, R.W. )

    1993-02-01

    Construction of a regional transect across the central Andes at 20[degrees]S sheds new light on the relationship between the Altiplano, Eastern Cordillera (EC), and Subandean zones and allows us to refine the two-stage model of Isacks (1988) for the growth of the Central Andes. This new model is based on examination of the regional geology and geophysics, coupled with field investigations, satellite image analysis, and new Ar-Ar geochronology. In this model, widespread Oligocene to mid-Miocene compressional deformation in the Altiplano and EC was followed in the late-Miocene and Pliocene by thrusting localized east of the EC within the Subandean fold-thrust belt. During the first stage of deformation, the Altiplano basin underwent important subsidence and internal deformation. The EC was both deformed internally and thrust westwards over the Altiplano basin, while the present Subandean zone was the site of an early, broad foreland basin which received material eroded from the EC. During the second stage, beginning at [approximately]10 ma, deformation terminated within the EC and became concentrated within the fold-thrust belt in response to large scale overthrusting of the EC above the Brazilian shield; this resulted in major thrusting along the Cabalgamiento Frontal Principal (CFP), which soles into the master Subandean decollement, and [approximately]100 km of telescoping within the early, broad foreland basin. In the EC, this second stage is marked by the elaboration of a regionally extensive erosion surface, ponding of gravels in shallow basins, and the emplacement of giant ignimbrite sheets. The Eastern Cordillera can thus be thought of as a crustal-scale wedge which has been extruded upward and outward on alternate sides during successive stages of late Cenozoic deformation. This motion has served to drive subsidence in both the Altiplano and Subandean foreland basins, as well as shortening in the fold-thrust belt.

  15. Role of Si on the Diffusional Interactions between U-Mo and Al-Si Alloys at 823 K (550 degrees C)

    SciTech Connect (OSTI)

    E. Perez; Y.H. Sohn; D.D. Keiser, Jr.

    2013-01-01

    U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloys fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interactions products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and lead to premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo in contact with pure Al, Al-2wt.%Si, and Al-5wt.%Si, annealed at 823K for 1, 5 and 20 hours. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed for the analysis. Diffusion couples consisting of U-Mo vs. pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. The addition of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al and Si enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In the couples, the (U,Mo)(Al,Si)3 phase was observed throughout interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.

  16. Heavy crude upgrading using remote natural gas

    SciTech Connect (OSTI)

    Grosboll, M.P.

    1991-12-03

    This paper describes a method of forming an upgraded crude. It comprises: forming hydrogen from methane gas for hydroconverting heavy crude to form a better crude and reduce its viscosity; hydrogenating under hydroconverting conditions of 650 degrees Fahrenheit ({degrees}F)-1000{degrees}F; and 500-3000 pounds per square inch gauge (psig) only a first portion of a crude oil stream less than the total crude oil stream to produce a light oil that has a lowered viscosity; admixing the light oil with the remainder of the crude oil stream not hydrogenated to produce a flowable crude; and transporting the flowable crude to a refinery including a substep of flowing the crude through a pipeline.

  17. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    SciTech Connect (OSTI)

    Olsen, Seth

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space

  18. An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units

    SciTech Connect (OSTI)

    Snyder, James W.; Hohenstein, Edward G.; Luehr, Nathan; Martínez, Todd J.

    2015-10-21

    We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorithms to calculate the analytic gradient and nonadiabatic coupling vectors for SA-CASSCF. Combining the low computational scaling with acceleration from graphical processing units allows us to perform SA-CASSCF geometry optimizations for molecules with more than 1000 atoms. The new approach will make minimal energy conical intersection searches and nonadiabatic dynamics routine for molecular systems with O(10{sup 2}) atoms.

  19. Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential

    SciTech Connect (OSTI)

    Kim, Inkoo; Lee, Yoon Sup

    2014-10-28

    We report the formulation and implementation of KRCASPT2, a two-component multi-configurational second-order perturbation theory based on Kramers restricted complete active space self-consistent field (KRCASSCF) reference function, in the framework of the spin-orbit relativistic effective core potential. The zeroth-order Hamiltonian is defined as the sum of nondiagonal one-electron operators with generalized two-component Fock matrix elements as scalar factors. The Kramers symmetry within the zeroth-order Hamiltonian is maintained via the use of a state-averaged density, allowing a consistent treatment of degenerate states. The explicit expressions are derived for the matrix elements of the zeroth-order Hamiltonian as well as for the perturbation vector. The use of a fully variational reference function and nondiagonal operators in relativistic multi-configurational perturbation theory is reported for the first time. A series of initial calculations are performed on the ionization potential and excitation energies of the atoms of the 6p-block; the results display a significant improvement over those from KRCASSCF, showing a closer agreement with experimental results. Accurate atomic properties of the superheavy elements of the 7p-block are also presented, and the electronic structures of the low-lying excited states are compared with those of their lighter homologues.

  20. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect (OSTI)

    Pankiw, Roman I; Muralidharan, G.; Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  1. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    SciTech Connect (OSTI)

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  2. Introducing constricted variational density functional theory in its relaxed self-consistent formulation (RSCF-CV-DFT) as an alternative to adiabatic time dependent density functional theory for studies of charge transfer transitions

    SciTech Connect (OSTI)

    Krykunov, Mykhaylo; Seth, Mike; Ziegler, Tom

    2014-05-14

    We have applied the relaxed and self-consistent extension of constricted variational density functional theory (RSCF-CV-DFT) for the calculation of the lowest charge transfer transitions in the molecular complex X-TCNE between X = benzene and TCNE = tetracyanoethylene. Use was made of functionals with a fixed fraction (α) of Hartree-Fock exchange ranging from α = 0 to α = 0.5 as well as functionals with a long range correction (LC) that introduces Hartree-Fock exchange for longer inter-electronic distances. A detailed comparison and analysis is given for each functional between the performance of RSCF-CV-DFT and adiabatic time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation. It is shown that in this particular case, all functionals afford the same reasonable agreement with experiment for RSCF-CV-DFT whereas only the LC-functionals afford a fair agreement with experiment using TDDFT. We have in addition calculated the CT transition energy for X-TCNE with X = toluene, o-xylene, and naphthalene employing the same functionals as for X = benzene. It is shown that the calculated charge transfer excitation energies are in as good agreement with experiment as those obtained from highly optimized LC-functionals using adiabatic TDDFT. We finally discuss the relation between the optimization of length separation parameters and orbital relaxation in the RSCF-CV-DFT scheme.

  3. Critical interpretation of CH and OH stretching regions for infrared spectra of methanol clusters (CH{sub 3}OH){sub n} (n = 25) using self-consistent-charge density functional tight-binding molecular dynamics simulations

    SciTech Connect (OSTI)

    Nishimura, Yoshifumi; Lee, Yuan-Pern; Irle, Stephan; Witek, Henryk A.

    2014-09-07

    Vibrational infrared (IR) spectra of gas-phase OH???O methanol clusters up to pentamer are simulated using self-consistent-charge density functional tight-binding method using two distinct methodologies: standard normal mode analysis and Fourier transform of the dipole time-correlation function. The twofold simulations aim at the direct critical assignment of the CH stretching region of the recently recorded experimental spectra [H.-L. Han, C. Camacho, H. A. Witek, and Y.-P. Lee, J. Chem. Phys. 134, 144309 (2011)]. Both approaches confirm the previous assignment (ibid.) of the CH stretching bands based on the B3LYP/ANO1 harmonic frequencies, showing that ?{sub 3}, ?{sub 9}, and ?{sub 2} CH stretching modes of the proton-accepting (PA) and proton-donating (PD) methanol monomers experience only small splittings upon the cluster formation. This finding is in sharp discord with the assignment based on anharmonic B3LYP/VPT2/ANO1 vibrational frequencies (ibid.), suggesting that some procedural faults, likely related to the breakdown of the perturbational vibrational treatment, led the anharmonic calculations astray. The IR spectra based on the Fourier transform of the dipole time-correlation function include new, previously unaccounted for physical factors such as non-zero temperature of the system and large amplitude motions of the clusters. The elevation of temperature results in a considerable non-homogeneous broadening of the observed IR signals, while the presence of large-amplitude motions (methyl group rotations and PA-PD flipping), somewhat surprisingly, does not introduce any new features in the spectrum.

  4. Mineralogical textural and compositional data on the alteration of basaltic glass from Kilauea, Hawaii to 300 degrees C: Insights to the corrosion of a borosilicate glass waste-form. [Yucca Mountain Project

    SciTech Connect (OSTI)

    Smith, D.K.

    1990-01-01

    Mineralogical, textural and compositional data accompanying greenschist facies metamorphism (to 300{degrees}C) of basalts of the East Rift Zone (ERZ), Kilauea, Hawaii may be evaluated relative to published and experimental results for the surface corrosion of borosilicate glass. The ERZ alteration sequence is dominated by intermittent palagonite, interlayered smectite-chlorite, chlorite, and actinolite-epidote-anhydrite. Alteration is best developed in fractures and vesicles where surface reaction layers root on the glass matrix forming rinds in excess of 100 microns thick. Fractures control fluid circulation and the alteration sequence. Proximal to the glass surface, palagonite, Fe-Ti oxides and clays replace fresh glass as the surface reaction layer migrates inwards; away from the surface, amphibole, anhydrite, quartz and calcite crystallize from hydrothermal fluids in contact with the glass. The texture and composition of basaltic glass surfaces are similar to those of a SRL-165 glass leached statically for sixty days at 150 {degrees}C. While the ERZ reservoir is a complex open system, conservative comparisons between the alteration of ERZ and synthetic borosilicate glass are warranted. 31 refs., 2 figs.

  5. Nuclear Engineering Enrollments and Degrees, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during 2011, and data was received from ...

  6. TUNL Ph.D. Degrees Theses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Jonathan M. Mueller, Prompt Neutron Polarization Asymmetries in Photofission of Isotopes of Thorium, Uranium, Neptunium, and Plutonium. Duke University, November 2013, Supervisors: ...

  7. edward_teller_awards_degrees.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  8. Draft Supplemental Environmental Impact Statement for the Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Valley Authority U.S.C. United States Code UNDERSTANDING ... Fahrenheit Velocity or Rate cubic meterssecond ... cancer fatality is a death from a cancer that ...

  9. Corrosion of Fe-Ni-Cr, Fe-Cr-Al, and Fe-Ni-Cr-Al alloys in H/sub 2//H/sub 2/o/H/sub 2/s mixtures at 1200/degree/C

    SciTech Connect (OSTI)

    Loudjani, M.; Pivin, J.C.; Roques-Carmes, C.; Lacombe, P.; Davidson, J.H.

    1982-07-01

    A series of alloys has been exposed at 1200/degree/C in atmospheres of controlled oxygen and sulfur potentials, after preoxidation in air or in impure argon. The corrosion behavior is interpreted on the basis of phase-stability diagrams. The presence of iron and nickel-rich spinel particles in the outer layers of the initial oxide scale plays an essential role in resistance to sulfur attack. When the oxygen potential is sufficiently low, these spinels are reduced to a mixture of chromium oxide and an Fe-Ni alloy. The latter can then form sulfides which are liquid at high temperatures and accelerate penetration of sulfur into the underlying metal. 30 refs.

  10. MAGNETIC FIELD STRENGTH FLUCTUATIONS AND THE q-TRIPLET IN THE HELIOSHEATH: VOYAGER 2 OBSERVATIONS FROM 91.0 TO 94.2 AU AT LATITUDE 30 Degree-Sign S

    SciTech Connect (OSTI)

    Burlaga, L. F.; Ness, N. F. E-mail: nfnudel@yahoo.com

    2013-03-01

    Voyager 2 (V2) was in the heliosheath during 2010, at (91.0-94.2) AU from the Sun and at the latitudes (28. Degree-Sign 8-29. Degree-Sign 3 S) AU, observing solar wind that left the Sun during 2009, when solar activity was very low. There was no feature in B(t) associated with the changes in the plasma parameters observed near 2010.4. The CR-B relation was satisfied. The fluctuations of daily averages of B showed (1) a Gaussian distribution of B, (2) a q-Gaussian of the daily increments of B with q = 1.6, (3) a power-law correlation of B on scales from 1 to 16 days, (4) multifractal structure of B on scales from 1 to 8 days, and (5) a 1/f spectrum of B on scales from 1 to 100 days. The amplitude of the compressive microscale fluctuations of B during several hours on each day is described by the standard deviation (SD) of the 48 s averages of B during the day. Items 2, 3, and 4 determine a 'q-triplet' in the heliosheath. Large-scale fluctuations of SD show (1) a lognormal distribution of SD; (2) an average value of SD = 0.19, 20% of the average B; (3) a q-Gaussian distribution of the increments of SD with q = 1.4; (4) a power-law correlation on scales from 1 to 16 days; and (5) a 1/f spectrum on scales from 1 to 100 days. The heliosheath was in a quasi-stationary, metastable equilibrium state with well-defined structure over a wide range of scales near V2 during 2010.

  11. Decision-Makers' Forum on a Unified Strategy for Nuclear Energy

    SciTech Connect (OSTI)

    2004-11-01

    An abundant and secure energy supply is critical to our country’s prosperity, and energy supply is now a central issue in global stability and security. Unfortunately, the Unites States continues to steadily increase the fraction of energy it imports from foreign sources. In May 2001, the National Energy Policy noted that this imbalance, "if allowed to continue, will inevitably undermine our economy, our standard of living, and our national security." In addition to these serious impacts, growing concern about air pollution and atmospheric carbon levels hold the potential for global climate change. According to the National Academy of Sciences, the Earth’s surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. The current energy supply situation clearly demands coordinated action. Nuclear energy is preeminent in its ability to deliver affordable energy today and meet the growing imperatives for clean air and energy supplies in the future.

  12. Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilledmaking the fuel-production process more efficient. The microorganisms dont require light, so they can be grown anywhereinside a dark reactor or even in an underground facility.

  13. Comfort in High-Performance Homes in a Hot-Humid Climate

    SciTech Connect (OSTI)

    Poerschke, A.; Beach, R.

    2016-01-01

    IBACOS monitored 37 homes during the late summer and early fall of 2014 in a hot and humid climate to better understand indoor comfort conditions. These homes were constructed in the last several years by four home builders that offered a comfort and performance guarantee for the homes. The homes were located in one of four cities: Tampa, Florida; Orlando, Florida; Houston, Texas; and San Antonio, Texas. Temperature and humidity data were collected from the thermostat and each room of the house using small, battery-powered data loggers. To understand system runtime and its impact on comfort, supply air temperature also was measured on a 1-minute interval. Overall, the group of homes only exceeded a room-to-room temperature difference of 6 degrees Fahrenheit for 5% of the time.

  14. Unconfined compression experiments on Topopah Spring Member tuff at 22{degrees}C and a strain rate of 10{sup {minus}9} s{sup {minus}1}: Data report; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Martin, R.J. III; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1993-08-01

    Experiment results are presented for unconfined compressive strength and elastic moduli of tuffaceous rocks from Busted Butte near Yucca Mountain, Nevada. The data have been compiled for the Yucca Mountain Site Characterization Project Site and Engineering Properties Data Base. Experiments were conducted on water-saturated specimens of the potential nuclear waste repository horizon Topopah Spring Member tuff (thermal/mechanical unit TSw2). The influence of strain rate on mechanical properties of the tuff was examined by loading six specimens in uniaxial compression at a strain rate of 10{sup {minus}9} s{sup {minus}1}. The experiments performed under ambient pressure and temperature conditions and conformed to Technical Procedure 91, titled ``Unconfined Compression Experiments at 22{degrees}C and a Strain Rate of 10{sup {minus}9} s{sup {minus}1}.`` The mean and standard deviation values of ultimate strength, Young`s modulus and Poisson`s ratio determined from these experiments are 85.4{plus_minus}21.7 MPa, 33.9{plus_minus}4.6 GPa, and 0.09{plus_minus}0.07, respectively.

  15. Nanohybrid Solar Cells Consisting of Self-Assembled Semiconducting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Wall Carbon Nanotube and Covalent Organic Polyhedrom (COP)-Fullerene Core-Shell University of Colorado Contact CU About This Technology Technology Marketing SummaryA...

  16. Non-trivial checks of novel consistency relations (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    These can be understood as Ward identities for an infinite set of residual global symmetries, or equivalently as Slavnov-Taylor identities for spatial diffeomorphisms. In this ...

  17. On the initial state and consistency relations (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    As a result, we show that initial wavefunctionaldensity matrix has to satisfy a Slavnov-Taylor identity similar to that of the action. We then investigate the precise ways in ...

  18. Towards consistent nuclear models and comprehensive nuclear data...

    Office of Scientific and Technical Information (OSTI)

    A paper copy of this document is also available for sale to the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. The essence of this paper ...

  19. A Probabilistic Approach to Site-Specific, Hazard-Consistent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of High Coulombic Efficiency Si Electrodes Suggested Approaches for Probabilistic Flooding Hazard Assessment State of Practice Approaches in Geomorphology, Geochronology and ...

  20. Consistent scenario for B{yields}PS decays

    SciTech Connect (OSTI)

    Delepine, D.; Lucio M, J. L.; Mendoza S, J. A.; Ramirez, Carlos A.

    2008-12-01

    We consider B{yields}PS decays where P stands for pseudoscalar and S for a heavy (1500 MeV) scalar meson. We achieve agreement with available experimental data, which includes two orders of magnitude hierarchy, assuming the scalars mesons are two quark states. The contribution of the dipolar penguin operator O{sub 11} is quantified.

  1. Certification of Consistency with Washington's Coastal Zone Management...

    Open Energy Info (EERE)

    Zone Management Program for Federally Licensed or Permitted ActivitiesLegal Published NA Year Signed or Took Effect The date "NA" was not understood.The date "NA" was not...

  2. Certification of Consistency with Washington's Coastal Zone Management...

    Open Energy Info (EERE)

    Coastal Zone Management Program for Federally Funded ActivitiesLegal Published NA Year Signed or Took Effect The date "NA" was not understood.The date "NA" was not...

  3. Self-consistent Models of Strong Interaction with Chiral Symmetry

    DOE R&D Accomplishments [OSTI]

    Nambu, Y.; Pascual, P.

    1963-04-01

    Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)

  4. Consistent analysis of one-nucleon spectroscopic factors involving...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 757; Journal Issue: C; Related Information: CHORUS Timestamp: 2016-06-01 05:34:59; Journal ID: ISSN 0370-2693 Publisher: Elsevier ...

  5. A Self-Consistent Approach for Calculating the Effective Hydraulic...

    Office of Scientific and Technical Information (OSTI)

    Pek's (1995) results for a 2D case. less Authors: Pozdniakov, Sergey ; Tsang, Chin-Fu Publication Date: 2004-01-02 OSTI Identifier: 835818 Report Number(s): LBNL--55620 R&D ...

  6. A Self-Consistent Approach for Calculating the Effective Hydraulic...

    Office of Scientific and Technical Information (OSTI)

    conductivity of a 3D medium with a binary distribution of local hydraulic conductivities. ... The method was applied to estimating the effective hydraulic conductivity of a 2D and 3D ...

  7. Self-consistent theory of nanodomain formation on nonpolar surfaces...

    Office of Scientific and Technical Information (OSTI)

    Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal ... Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email ...

  8. An event consists of a set of charge, tim

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Hanford Site and Cleanup Progress An Update on the Hanford Site and Cleanup Progress September 24, 2013 - 6:45pm Addthis An Update on the Hanford Site and Cleanup Progress Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy What are the key facts? For 40 years, the Hanford Site in Washington state was involved in the production of plutonium as part of our national defense efforts. Legacy cleanup progress at the Hanford site has been significant, including 100 percent of the site's spent

  9. Self-Consistent Modeling of Electrochemical Strain Microscopy...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  10. A consistent orbital stability analysis for the GJ 581 system

    SciTech Connect (OSTI)

    Joiner, David A.; Sul, Cesar; Kress, Monika E.; Dragomir, Diana; Kane, Stephen R.

    2014-06-20

    We apply a combination of N-body modeling techniques and automated data fitting with Monte Carlo Markov Chain uncertainty analysis of Keplerian orbital models to RV data to determine long-term stability of the planetary system GJ 581. We find that while there are stability concerns with the four-planet model as published by Forveille et al., when uncertainties in the system are accounted for, particularly stellar jitter, the hypothesis that the four-planet model is gravitationally unstable is not statistically significant. Additionally, the system including proposed planet g by Vogt et al. also shows some stability concerns when eccentricities are allowed to float in the orbital fit, yet when uncertainties are included in the analysis, the system including planet g also cannot be proven to be unstable. We present revised reduced ?{sup 2} values for Keplerian astrocentric orbital fits assuming four-planet and five-planet models for GJ 581 under the condition that best fits must be stable, and we find no distinguishable difference by including planet g in the model. Additionally, we present revised orbital element estimates for each, assuming uncertainties due to stellar jitter under the constraint of the system being gravitationally stable.

  11. APPENDIX A: ENSURING CONSISTENCY WITH THE STANDARDS OF THE NATIONAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for 245 basin communities studied under the NFIP ... units of government (counties, cities, etc.) in developing ... the Unified National Program for Floodplain ...

  12. A thermodynamically consistent discontinuous Galerkin formulation for interface separation

    SciTech Connect (OSTI)

    Versino, Daniele; Mourad, Hashem M.; Dávila, Carlos G.; Addessio, Francis L.

    2015-07-31

    Our paper describes the formulation of an interface damage model, based on the discontinuous Galerkin (DG) method, for the simulation of failure and crack propagation in laminated structures. The DG formulation avoids common difficulties associated with cohesive elements. Specifically, it does not introduce any artificial interfacial compliance and, in explicit dynamic analysis, it leads to a stable time increment size which is unaffected by the presence of stiff massless interfaces. This proposed method is implemented in a finite element setting. Convergence and accuracy are demonstrated in Mode I and mixed-mode delamination in both static and dynamic analyses. Significantly, numerical results obtained using the proposed interface model are found to be independent of the value of the penalty factor that characterizes the DG formulation. By contrast, numerical results obtained using a classical cohesive method are found to be dependent on the cohesive penalty stiffnesses. The proposed approach is shown to yield more accurate predictions pertaining to crack propagation under mixed-mode fracture because of the advantage. Furthermore, in explicit dynamic analysis, the stable time increment size calculated with the proposed method is found to be an order of magnitude larger than the maximum allowable value for classical cohesive elements.

  13. A thermodynamically consistent discontinuous Galerkin formulation for interface separation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Versino, Daniele; Mourad, Hashem M.; Dávila, Carlos G.; Addessio, Francis L.

    2015-07-31

    Our paper describes the formulation of an interface damage model, based on the discontinuous Galerkin (DG) method, for the simulation of failure and crack propagation in laminated structures. The DG formulation avoids common difficulties associated with cohesive elements. Specifically, it does not introduce any artificial interfacial compliance and, in explicit dynamic analysis, it leads to a stable time increment size which is unaffected by the presence of stiff massless interfaces. This proposed method is implemented in a finite element setting. Convergence and accuracy are demonstrated in Mode I and mixed-mode delamination in both static and dynamic analyses. Significantly, numerical resultsmore » obtained using the proposed interface model are found to be independent of the value of the penalty factor that characterizes the DG formulation. By contrast, numerical results obtained using a classical cohesive method are found to be dependent on the cohesive penalty stiffnesses. The proposed approach is shown to yield more accurate predictions pertaining to crack propagation under mixed-mode fracture because of the advantage. Furthermore, in explicit dynamic analysis, the stable time increment size calculated with the proposed method is found to be an order of magnitude larger than the maximum allowable value for classical cohesive elements.« less

  14. Self-Consistent Criteria for Evaluation of Neutron Interaction

    SciTech Connect (OSTI)

    Henry H.F,Newlon C.E.,Knight J.R.

    2007-08-02

    New safe interaction criteria for containers of fissionable materials handled at the Oak Ridge Gaseous Diffusion Plant have been developed on the basis of an interaction theory using the basic concepts of a safe solid angle subtended by interacting containers, and the multiplication factor as determined by two-group theory for an individually safe containers The calculated results agree satisfactorily with experimental data obtained with identical interacting units involving both cylinders and slabs containing highly enriched uranium, the core compositions of which were varied between H/U-235 atomic ratios of 44.3 and 337. The application of the derived interaction criteria to items containing material with low moderation or low U-235 assay, and to containers for which nuclear safety is dependent upon control of the U-235 mass or U-235 concentration is discussed.

  15. Towards consistent nuclear models and comprehensive nuclear data...

    Office of Scientific and Technical Information (OSTI)

    in terms of compound nucleus reaction theory from neutron separation energy to continuum. ... Subject: 73; CROSS SECTIONS; ENERGY RANGE; FISSION; NEUTRON SEPARATION ENERGY; NUCLEAR ...

  16. Ward identities and consistency relations for the large scale...

    Office of Scientific and Technical Information (OSTI)

    distribution of dark matter halos relative to that of the underlying dark matter field. ... Country of input: International Atomic Energy Agency (IAEA) Country of Publication: ...

  17. GWI plan ensures focused, consistent approach to improvements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GWI Program Manager Jim Reilly said, "GWI investments provide basic human needs and help ... in facility common areas by performing walk downs together and updating the 2012 ratings. ...

  18. SU-E-J-13: Six Degree of Freedom Image Fusion Accuracy for Cranial Target Localization On the Varian Edge Stereotactic Radiosurgery System: Comparison Between 2D/3D and KV CBCT Image Registration

    SciTech Connect (OSTI)

    Xu, H; Song, K; Chetty, I; Kim, J; Wen, N

    2015-06-15

    Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was also evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF

  19. Thermal springs list for the United States; National Oceanic and Atmospheric Administration Key to Geophysical Records Documentation No. 12

    SciTech Connect (OSTI)

    Berry, G.W.; Grim, P.J.; Ikelman, J.A.

    1980-06-01

    The compilation has 1702 thermal spring locations in 23 of the 50 States, arranged alphabetically by State (Postal Service abbreviation) and degrees of latitude and longitude within the State. It shows spring name, surface temperature in degrees Fahrenheit and degrees Celsius; USGS Professional Paper 492 number, USGS Circular 790 number, NOAA number, north to south on each degree of latitude and longitude of the listed. USGS 1:250,000-scale (AMS) map; and the USGS topographic map coverage, 1:63360- or 1:62500-scale (15-minute) or 1:24000-scale (7.5-minute) quadrangle also included is an alphabetized list showing only the spring name and the State in which it is located. Unnamed springs are omitted. The list includes natural surface hydrothermal features: springs, pools, mud pots, mud volcanoes, geysers, fumaroles, and steam vents at temperature of 20{sup 0}C (68[sup 0}F) or greater. It does not include wells or mines, except at sites where they supplement or replace natural vents presently or recently active, or, in some places, where orifices are not distinguishable as natural or artificial. The listed springs are located on the USGS 1:250,000 (AMS) topographic maps. (MHR)

  20. Customer Impact Evaluation for the 2009 Southern California Edison Participating Load Pilot

    SciTech Connect (OSTI)

    Gifford, William; Bodmann, Shawn; Young, Paul; Eto, Joseph H.; Laundergan, Jeremy

    2010-05-28

    The 2009 Participating Load Pilot Customer Impact Evaluation provides evidence that short duration demand response events which cycle off air conditioners for less than thirty minutes in a hot, dry environment do not lead to a significant degradation in the comfort level of residents participating in the program. This was investigated using: (1) Analysis of interval temperature data collected from inside residences of select program participants; and (2) Direct and indirect customer feedback from surveys designed and implemented by Southern California Edison at the conclusion of the program season. There were 100 indoor temperature monitors that were acquired by LBNL for this study that transmitted temperature readings at least once per hour with corresponding timestamps during the program season, June-October, 2009. Recorded temperatures were transferred from the onsite telemetry devices to a mesh network, stored, and then delivered to KEMA for analysis. Following an extensive data quality review, temperature increases during each of the thirty demand response test events were calculated for each device. The results are as follows: (1) Even for tests taking place during outside temperatures in excess of 100 degrees Fahrenheit, over 85 percent of the devices measured less than a 0.5 degree Fahrenheit temperature increase indoors during the duration of the event. (2) For the increases that were observed, none was more than 5 degrees and it was extremely rare for increases to be more than 2 degrees. At the end of the testing season SCE and KEMA designed and conducted a survey of the a facilities and public works managers and approximately 100 customers feedback survey to assess the extent the PLP events were noticed or disrupted the comfort level of participants. While only a small sampling of 3 managers and 16 customer surveys were completed, their responses indicate: (1) No customer reported even a moderate level of discomfort from the cycling-off of their air

  1. Zr{sub 9}Co{sub 2}P{sub 4} and Zr{sub 9}Ni{sub 2}P{sub 4}: A new 3D structure type, consisting of edge- and vertex-condensed Zr{sub 6} octahedra

    SciTech Connect (OSTI)

    Kleinke, H.; Franzen, H.F.

    1996-08-28

    The isostructural title compounds were synthesized by arc-melting of stoichiometric ratios of ZrP, Zr, and Co and Ni, respectively, and subsequent annealing at 1450 {degrees}C. Their crystal structure (space group P4/mbm; Zr{sub 9-}Co{sub 2}P{sub 4}, a = 532.23(5) {angstrom}{sup 3}, Z = 2) is derived from a three-dimensional network of Zr{sub 6} octahedra. These octahedra are connected via common vertices to form chains parallel to the c axis and via common edges and vertices in the ab plane, resulting in one double chain and one single chain. Both kinds of the interstitial atoms, the iron-group-metal atom and the phosphorus, are situated in trigonal prismatic holes between these chains, forming short M-P and M-M{prime} bonds. These octahedra can be described as being of the M{sub 6}X{sub 8} cluster type as is also observed in the chalcogenide Chevrel phases. Due to the electronically nonsaturated character of the Zr octahedra and their three-dimensional connectivity, three-dimensional metallic properties are expected for both phosphides, and metallic behavior is confirmed by the observation of Pauli paramagnetism for both compounds.

  2. Energy, Carbon-emission and Financial Savings from Thermostat Control

    SciTech Connect (OSTI)

    Blasing, T J; Schroeder, Dana

    2013-08-01

    Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

  3. Water spray ejector system for steam injected engine

    SciTech Connect (OSTI)

    Hines, W.R.

    1991-10-08

    This paper describes a method of increasing the power output of a steam injected gas turbine engine. It comprises: a compressor, a combustor having a dome which receives fuel and steam from a dual flow nozzle, and a turbine in series combination with a gas flow path passing therethrough, and a system for injection of superheated steam into the gas flow path, the method comprising spraying water into the steam injection system where the water is evaporated by the superheated steam, mixing the evaporated water with the existing steam in the steam injection system so that the resultant steam is at a temperature of at least 28 degrees celsius (50 degrees fahrenheit) superheat and additional steam is added to the dome from the fuel nozzle to obtain a resultant increased mass flow of superheated steam mixture for injection into the gas flow path, and controlling the amount of water sprayed into the steam injection system to maximize the mass flow of superheated steam without quenching the flame.

  4. Aging of Alloy 617 at 650 and 750 Degrees C

    SciTech Connect (OSTI)

    Julian Benz; Thomas Lillo; Richard Wright

    2013-01-01

    Alloy 617 has been selected as the primary candidate for heat exchanger applications in advanced reactors. For the VHTR this application could require extended service up to a reactor outlet temperature of 950°C. A key hurdle to using this alloy in the VHTR heat exchanger application is qualifying the alloy for Section III of the ASME Boiler and Pressure Vessel Code. In order to Code qualify the material it is necessary to characterize the influence of long term aging on the mechanical behavior. Alloy 617 has been aged at 650 and 750°C for times up to 5300 hours. The microstructure after aging has been characterized using optical and transmission electron microscopies. It has been determined that in addition to carbides, a significant volume fraction of ?’ phase (Ni3Al) is formed at these temperatures. The ?’ does not contribute significantly to changing the tensile or impact properties of the aged material. It does, however, appear to increase creep resistance and impede creep crack growth.

  5. System and technique for ultrasonic determination of degree of cooking

    DOE Patents [OSTI]

    Bond, Leonard J.; Diaz, Aaron A.; Judd, Kayte M.; Pappas, Richard A.; Cliff, William C.; Pfund, David M.; Morgen, Gerald P.

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  6. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air-bearing supported rotating heat-sink impeller. The project included baseline performance testing of a residential refrigerator, analysis, and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was

  7. Electromagnetic variable degrees of freedom actuator systems and methods

    DOE Patents [OSTI]

    Montesanti, Richard C.; Trumper, David L.; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  8. Health Physics Enrollments and Degrees Survey, 2015 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Benefits The great jobs we have at NNSA also come with comprehensive benefits packages. They are among the best and most comprehensive available and play a vital role in demonstrating the Federal government and NNSA's commitment to its employees. The great jobs we have at NNSA also come with comprehensive benefits packages. They are among the best and most comprehensive available and play a vital role in demonstrating the Federal government and NNSA's commitment to its employees. Health

  9. Betatron-Function Measurement in Lattices with 90-Degrees Sections

    SciTech Connect (OSTI)

    Wienands, U.; Biagini, M.E.; /Frascati

    2012-04-24

    Lattice functions derived from betatron phase-advance measurements have been used successfully at many e{sup +}-e{sup -} facilities in the world, including at the PEP-II High Energy Ring. For the Low energy Ring of PEP-II, however, extraction of meaningful beta functions is hampered by the 90{sup o} phase advance/cell in the arcs, which causes a singularity in the expressions for beta. An algorithm has been developed calculating beta functions based on {beta} and {alpha} at the beginning of an arc and tracking the Twiss parameters through the arc while matching the observed phase advance/cell. Stability of the algorithm is improved by doing the same calculation 'backward' as well as forward and averaging the result. The algorithm allows estimating beta functions at bad BPMs in many cases. The paper presents the algorithm used as well as examples of use in PEP.

  10. ORISE: Report shows number of health physics degrees for 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seen what impact the March 11 Fukushima Daiichi accident may have on the nuclear industry. ... Conversely, the Fukushima incident has also led to a reassessment of the safety ...

  11. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assistant Research Associate, University of Washington, Mallinckrodt Institute of Radiology Xiaodong Tang 2002 Determination of the S Factor for 11 C (p,) 12 N Tribble...

  12. Using 360 degree photography as a decommissioning tool

    SciTech Connect (OSTI)

    LEBARON, G.J.

    2003-05-06

    Digital cameras, in conjunction with computer software, make possible 360{sup o} photos allowing a person to look all around, up and down, and zoom in or out. Multiple 360{sup o} photos can be linked creating a virtual tour. Other information, such as sound files, flat photos and text can also be attached to the photos. A virtual tour of a building or room can be used for facility documentation, informing management and others, work planning and orientation, training and historical documentation, thus minimizing the need to re-enter hazardous areas. Reducing entries decreases exposure, increases safety and efficiency, and minimizes waste.

  13. 90-Degree Bragg Reflection from a Thin Crystalline Film (Conference...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: Advances in X-Ray Optics;; Publisher: Advances in X-Ray Optics;SPIE;129-139 Research Org: Advanced Photon Source (APS), ...

  14. VI-12 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GeV Au+Au Collision with STAR S. Mioduszewski N.A. James Lucus Drachenberg 2012 Forward Di-Hadron Asymmetries from p + p at sqrt(s)200GeV at STAR C. A. Gagliardi N.A. Matthew C....

  15. ORISE: Nuclear engineering degrees at highest ranges since 1980s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rates for nuclear engineering candidates are still at highest ranges reported since 1980s Report also shows shifts in career opportunities beyond graduation in nuclear utilities ...

  16. Nuclear Engineering Enrollments and Degrees Survey, 2013 Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during ...

  17. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Temperature and Scaling Studies from Projectile Fragmentation of 86,78 Kr + 64,58 Ni at 35MeVA S. J. Yennello Post Doc., Department of Radiation Oncology, School of...

  18. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. A. Gagliardi Graduate Research Assistant Faculty Position at Hashemite University, Jordan Au Kim Vuong 2007 New Skyrme Nucleon- Nucleon Interaction for the Mean-field ...

  19. EM Contractors' Donations Support 4-Year Engineering Degree at...

    Office of Environmental Management (EM)

    USC Aiken Chancellor Sandra Jordan, and SRR President and Project Manager Ken Rueter. ... USC Aiken Chancellor Sandra Jordan, and SRR President and Project Manager Ken Rueter. ...

  20. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - March 31, 2003 Name Year Thesis Title Advisor First Position Present Position Tiegang Di 2002 Charm Meson Interactions with Hadrons Che-Ming Ko Graduate Research Assistant...

  1. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONDUCTED AT THE CYCLOTRON INSTITUTE April 1, 2001 - March 31, 2001 Name Year Thesis Title Advisor First Position Present Position Douglas Rowland 2000 A Study of the Projectile...

  2. STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - March 31, 2005 Name Year Thesis Title Advisor First Position Present Position Wei Liu 2004 Charmonium absorption and charmed hadron production in hadronic reaction Che-Ming Ko...

  3. 360 Degree Photography to Decrease Exposure, Increase Safety & Minimize Waste

    SciTech Connect (OSTI)

    LEBARON, G.J.

    2002-01-31

    High-resolution digital cameras, in conjunction with software techniques. make possible 360{sup o} photos that allow a person to look all around, up and dawn, and zoom in or out. The software provides the opportunity to attach other information to a 360{sup o} photo such as sound tiles, flat photos (providing additional detail about what is behind a panel or around a corner) and text (Information which can be used to show radiological conditions or identify other hazards not readily visible). The software also allows other 360{sup o} photos to be attached creating a virtual tour where the user can move from area to area, and stop, study and zoom in on areas of interest. A virtual tour of a building or room can be used for facility documentation, informing management and others, work planning and orientation, and training, thus minimizing the need to re-enter hazardous radioactive areas. Reducing entries decreases exposure, increases safety and minimizes waste.

  4. Fundemental Academic Training Instructor's Guide Phase 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... decaying at the rate of one spontaneous nuclear ... basis in the United States are based on the Fahrenheit scale. ... of H 2 O 2 (hydrogen peroxide) can lead to cell death. ...

  5. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    SciTech Connect (OSTI)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  6. Susceptibility of Granite Rock to scCO2/Water at 200 degrees C and 250 degrees C

    SciTech Connect (OSTI)

    Sugama, T.; Gill, S., Ecker, L., Butcher, T., Warren, J.

    2011-01-01

    Granite rock comprising anorthoclase-type albite and quartz as its major phases and biotite mica as the minor one was exposed to supercritical carbon dioxide (scCO{sub 2})/water at 250 C and 13.78 MPa pressure for 104 hours. For comparison purpose, four other rocks, albite, hornblende, diorite, and quartz, also were exposed. During the exposure of granite, ionic carbonic acid, known as the wet carbonation reactant, preferentially reacted with anorthoclase-type albite and biotite, rather than with quartz. The susceptibility of biotite to wet carbonation was higher than that of anorthoclase-type albite. All the carbonation by-products of anorthoclase-type albite were amorphous phases including Na- and K-carbonates, a kaolinite clay-like compound, and silicon dioxide, while wet carbonation converted biotite into potassium aluminum silicate, siderite, and magnesite in crystalline phases and hydrogen fluoride (HF). Three of these reaction by-products, Na- and K-carbonates and HF, were highly soluble in water. Correspondingly, the carbonated top surface layer, about 1.27 mm thick as carbonation depth, developed porous microstructure with numerous large voids, some of which have a size of {>=} 10 {mu}m, reflecting the erosion of granite by the leaching of these water-soluble reaction by-products. Comparing with this carbonation depth, its depth of other minerals was considerable lower, particularly, for hornblende and diorite with 0.07 and 0.02 mm, while no carbonate compound was detected in quartz. The major factor governing these low carbonation depths in these rocks was the formation of water-insensitive scale-like carbonate by-products such as calcite (CaCO{sub 3}), siderite (FeCO{sub 3}), and magnesite (MgCO{sub 3}). Their formation within the superficial layer of these minerals served as protective barrier layer that inhibits and retards further carbonation of fresh underlying minerals, even if the exposure time was extended. Thus, the coverage by this barrier layer of the non-carbonated surfaces of the underlying rock was reason why the hornblende and diorite exhibited a minimum depth of carbonation. Under exposure to the scCO{sub 2}/water at 200 C and 10.34 MPa pressure for up to 42 days, the ranking of the magnitude of erosion caused by wet carbonation was in the following order; granite > albite > hornblende > diorite > quartz. The eroding-caused weight loss of granite (0.88 %) was {approx}2.4, {approx}5.2, {approx}9.8, and {approx}17.6 times greater than that of albite, hornblends, diorite, and quartz, respectively.

  7. ARM - Temperature Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsTemperature Converter Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 °F for the freezing point of water and 212 °F for the boiling point of water. The

  8. Cooling the greenhouse effect: Options and costs for reducing CO{sub 2} emissions from the American Electric Power Company

    SciTech Connect (OSTI)

    Helme, N.; Popovich, M.G.; Gille, J.

    1993-05-01

    A recent report from the National Academy of Sciences concludes that the earth is likely to face a doubling of preindustrial greenhouse gases in the next half century. This doubling could be expected to push average global temperatures. up from between 1.8 to 9 degrees Fahrenheit. Much of the potential for human impacts on the global climate is linked to fossil fuel consumption. Carbon dioxide emissions from energy consumption in the US totals about one-quarter of the world`s total emissions from energy consumption. Global warming is different from other environmental problems because CO{sub 2} emissions can be captured naturally by trees, grasses, soil, and other plants. In contrast, acid rain emissions reductions can only be accomplished through switching to lower-polluting fuels, conserving energy, or installing costly retrofit technologies. Terrestrial biota, such as trees, plants, grasses and soils, directly affect the CO{sub 2} concentrations in the atmosphere. A number of reports have concluded that forestry and land-use practices can increase CO{sub 2} sequestration and can help reduce or delay the threat of global warming.

  9. Natural gas monthly, July 1995

    SciTech Connect (OSTI)

    1995-07-21

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. Explanatory Notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided in the Data Sources section. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication. All natural gas volumes are reported at a pressure base of 14.73 pounds per square inch absolute (psia) and at 60 degrees Fahrenheit. Cubic feet are converted to cubic meters by applying a factor of 0.02831685.

  10. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    SciTech Connect (OSTI)

    Ohmacht, Martin

    2014-09-09

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  11. Microstructural Contol of the Porous Si3N4 Ceramics Consisted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CX-011282: Categorical Exclusion Determination ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) Mechanical Characterization ...

  12. A scalable consistent second-order SPH solver for unsteady low...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 289; Journal Issue: C; Journal ID: ISSN 0045-7825 Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: Netherlands ...

  13. Fully self-consistent solution of the Dyson equation using a...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 91; Journal Issue: 12; Journal ID: ISSN 1098-0121 Publisher: American Physical Society Sponsoring Org: USDOE Office of Science (SC), ...

  14. A family of rare earth molybdenum bronzes: Oxides consisting of periodic arrays of interacting magnetic units

    SciTech Connect (OSTI)

    Schneemeyer, L.F.; Siegrist, T.; Besara, T.; Lundberg, M.; Sun, J.; Singh, D.J.

    2015-07-15

    The family of rare earth molybdenum bronzes, reduced ternary molybdates of composition LnMo{sub 16}O{sub 44,} was synthesized and a detailed structural study carried out. Bond valence sum (BVS) calculations clearly show that the molybdenum ions in tetrahedral coordination are hexavalent while the electron count in the primitive unit cell is odd. Yet, measurements show that the phases are semiconductors. The temperature dependence of the magnetic susceptibility of samples containing several different rare earth elements was measured. These measurements verified the presence of a 6.5 K magnetic phase transition not arising from the rare earth constituent, but likely associated with the unique isolated ReO{sub 3}-type Mo{sub 8}O{sub 36} structural subunits in this phase. To better understand the behavior of these materials, electronic structure calculations were performed within density functional theory. Results suggest a magnetic state in which these structural moieties have an internal ferromagnetic arrangement, with small ~1/8 μ{sub B} moments on each Mo. We suggest that the Mo{sub 8}O{sub 36} units behave like pseudoatoms with spin 1/2 derived from a single hole distributed over the eight Mo atoms that are strongly hybridized with the O atoms of the subunit. Interestingly, while the compound is antiferromagnetic, our calculations suggest that a field-stabilized ferromagnetic state, if achievable, will be a narrow band half-metal. - Graphical abstract: LnMo{sub 16}O{sub 44} phases comprise corner sharing tetrahedral and octahedral molybdenum ions. The MoO{sub 6} octahedra form Mo{sub 8}O{sub 36} units that are well separated and act like pseudo-atoms, accommodating 11 electrons each. - Highlights: • Single crystal X-ray diffraction refinements of LnMo{sub 16}O{sub 44} single crystals for Ln=Ce, Pr, Nd, Tb, Dy and Ho. • DFT calculations based on LaMo{sub 16}O{sub 44}. • [Mo{sub 8}O{sub 36}] units behaving as superatoms with a net magnetic moment of 1 µ{sub B}. • Bronze structure containing equal number of molybdenum tetrahedra and octahedral.

  15. Method for computing self-consistent solution in a gun code

    DOE Patents [OSTI]

    Nelson, Eric M

    2014-09-23

    Complex gun code computations can be made to converge more quickly based on a selection of one or more relaxation parameters. An eigenvalue analysis is applied to error residuals to identify two error eigenvalues that are associated with respective error residuals. Relaxation values can be selected based on these eigenvalues so that error residuals associated with each can be alternately reduced in successive iterations. In some examples, relaxation values that would be unstable if used alone can be used.

  16. Retrofit Audits and Cost Estimates. A Look at Quality and Consistency

    SciTech Connect (OSTI)

    Eisenberg, L.; Shapiro, C.; Fleischer, W.

    2012-10-01

    Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community-based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low-and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC: Block by Block program.

  17. Retrofit Audits and Cost Estimates: A Look at Quality and Consistency

    SciTech Connect (OSTI)

    Eisenberg, L.; Shapiro, C.; Fleischer, W.

    2012-10-01

    Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low- and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC: Block by Block program.

  18. Engineering Evaluation of X/Q Values Consistent with Regulatory Guide 1.145

    SciTech Connect (OSTI)

    Ross, Steven B.; Rishel, Jeremy P.; Lowry, Peter P.

    2010-02-01

    A goal for the Next Generation Nuclear Power (NGNP) is to demonstrate compliance with regulatory dose limits bases on an exclusion area boundary and emergency planning zones boundaries set nominally to 400 meters. This paper presents the development of the atmospheric dispersion (X/Q) estimates for use in calculating doses at this distance and evaluating the resultant X/Q for an 800 meter receptor against X/Q values submitted to the NRC for review as part of Design Control Documentation (DCD) in support of future combined licensing (COL) Applications.

  19. Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of TiO 2 Nanotube Anode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ren, Kai; Gan, Yong X.; Nikolaidis, Efstratios; Sofyani, Sharaf Al; Zhang, Lihua

    2013-01-01

    The photoelectrochemical responses of a TiO 2 nanotube anode in ethylene glycol (EG), glycerol, ammonia, ethanol, urea, and Na 2 S electrolytes with different concentrations were investigated. The TiO 2 nanotube anode was highly efficient in photoelectrocatalysis in these solutions under UV light illumination. The photocurrent density is obviously affected by the concentration change. Na 2 S generated the highest photocurrent density at 0, 1, and 2 V bias voltages, but its concentration does not significantly affect the photocurrent density. Urea shows high open circuit voltage at proper concentration and low photocurrent at different concentrations. Externally applied bias voltage ismore » also an important factor that changes the photoelectrochemical reaction process. In view of the open circuit voltage, EG, ammonia, and ethanol fuel cells show the trend that the open circuit voltage (OCV) increases with the increase of the concentration of the solutions. Glycerol has the highest OCV compared with others, and it deceases with the increase in the concentration because of the high viscosity. The OCV of the urea and Na 2 S solutions did not show obvious concentration effect.« less

  20. Significantly Shorter Fe-S Bond in Cytochrome P450-I is Consistent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analyzed at Beam Line 7-3 at SSRL. Extended x-ray absorption fine structure (EXAFS) studies on multiple sets of samples revealed that the Fe-S bond in P450-I was in fact 0.09 ...

  1. July 4, 2012: Discovery of a particle "consistent" with Higgs Boson

    Broader source: Energy.gov [DOE]

    Researchers announce in a seminar at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland, that experiments by a global team of scientists using the Large Hadron Collider's...

  2. Incident angle insensitive tunable multichannel perfect absorber consisting of nonlinear plasma and matching metamaterials

    SciTech Connect (OSTI)

    Kong, Xiang-kun; Liu, Shao-Bin Bian, Bo-rui; Chen, Chen; Zhang, Hai-feng

    2014-12-15

    A novel, compact, and multichannel nonreciprocal absorber through a wave tunneling mechanism in epsilon-negative and matching metamaterials is theoretically proposed. Nonreciprocal absorption properties are acquired via the coupling together of evanescent and propagating waves in an asymmetric configuration, constituted of nonlinear plasma alternated with matching metamaterial. The absorption channel number can be adjusted by changing the periodic number. Due to the positive feedback between nonlinear permittivity of plasma and the inner electric field, bistable absorption and reflection are achieved. Moreover, compared with some truncated photonic crystal or multilayered designs proposed before, our design is more compact and independent of incident angle or polarization. This kind of multilayer structure offers additional opportunities to design novel omnidirectional electromagnetic wave absorbers.

  3. Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties

    SciTech Connect (OSTI)

    Pe?ina, Jan Jr.; Haderka, Ond?ej; Michlek, Vclav

    2014-12-04

    A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.

  4. A thermodynamically consistent, damage-dependent, interface debonding model for composites

    SciTech Connect (OSTI)

    Johnson, J.N.; Clements, B.E.; Addessio, F.L.; Williams, T.O.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ability to design composite materials and analyze processing procedures relies on the availability of constitutive models that describe their dynamic response accurately. The strength, damage evolution, and failure of interfaces within composites often dominate their macroscopic performance but are not well characterized. The design of such composites for particular applications requires adequate knowledge of interfacial characteristics. Given the large number of potential loading scenarios that an engineering composite can be subjected to, it is obviously beneficial to have reliable and accurate theoretical methods for their quantitative treatment in numerical calculation. This project addresses the fundamental aspects of interfacial debonding in composites, and examines the basic behavior in practical situations.

  5. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    SciTech Connect (OSTI)

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.; Hadas, Y.; Schamiloglu, E.

    2015-07-15

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  6. NEW BV(RI){sub C} PHOTOMETRY FOR PRAESEPE: FURTHER TESTS OF BROADBAND PHOTOMETRIC CONSISTENCY

    SciTech Connect (OSTI)

    Joner, Michael D.; Taylor, Benjamin J.; Laney, C. David; Van Wyk, Francois

    2011-11-15

    New BV(RI){sub C} measurements of Praesepe made at the South African Astronomical Observatory (SAAO) are presented. When those measurements are combined with those reported in previous papers in this series, it is found that they support previously determined V zero points for Praesepe, M67, and the Hyades. Support is also found for joint (V - R){sub C} and (R - I){sub C} zero points established previously for Praesepe and NGC 752. For the SAAO system of standard stars, a B - V correction to the Johnson system of about -9 mmag appears to be reasonably well established. The preferred (though not definitive) V correction is about +7 mmag. For the Landolt V system, zero-point identity with the Johnson system at a 2{sigma} level of 4.8 mmag is found, and no color term as large as 4 mmag (mag){sup -1} is detected. Updated CDS data files for Praesepe are briefly described.

  7. Self-consistent field calculations on diatomic hydrogen in a potential well

    SciTech Connect (OSTI)

    Bunch, K.J.; Grow, R.W. )

    1991-07-01

    The equilibrium behavior of diatomic hydrogen in a potential well is explored. The amount of squeezing experienced by hydrogen in the well is compared to that expected for hydrogen within palladium. Results show insufficient squeezing to account for the cold fusion phenomenon.

  8. Final Scientific/Technical Report "Arc Tube Coating System for Color Consistency"

    SciTech Connect (OSTI)

    Buelow, Roger; Jenson, Chris; Kazenski, Keith

    2013-03-21

    DOE has enabled the use of coating materials using low cost application methods on light sources to positively affect the output of those sources. The coatings and light source combinations have shown increased lumen output of LED fixtures (1.5%-2.0%), LED arrays (1.4%) and LED powered remote phosphor systems – Philips L-Prize lamp (0.9%). We have also demonstrated lifetime enhancements (3000 hrs vs 8000 hrs) and shifting to higher CRI (51 to 65) in metal halide high intensity discharge lamps with metal oxide coatings. The coatings on LEDs and LED products are significant as the market is moving increasingly more towards LED technology. Enhancements in LED performance are demonstrated in this work through the use of available materials and low cost application processes. EFOI used low refractive index fluoropolymers and low cost dipping processes for application of the material to surfaces related to light transmission of LEDs and LED products. Materials included Teflon AF, an amorphous fluorinated polymer and fluorinated acrylic monomers. The DOE SSL Roadmap sets goals for LED performance moving into the future. EFOI’s coating technology is a means to shift the performance curve for LEDs. This is not limited to one type of LED, but is relevant across LED technologies. The metal halide work included the use of sol-gel solutions resulting in silicon dioxide and titanium dioxide coatings on the quartz substrates of the metal halide arc tubes. The coatings were applied using low cost dipping processes.

  9. Development and exploitation stategies in a high-pressure-temperature reservoir with a complex hydrocarbon fluid column

    SciTech Connect (OSTI)

    Maan, N.; Rosales, E.; Medina, H.

    1995-12-31

    This paper summarizes an interdisciplinary study performed to plan final Reservoir Development and Secondary Recovery Strategies for The Carito Field discovered in late 1987. Carito is a very large oil Field located in Northeastern Venezuela, with an estimated Volumetric Oil in Place of 1.8 Billion Stb. Production is mainly from Naricual Formation with a thickness of about 1300 feet in a faulted anticline. At the time of this Study, 25 wells had been drilled below 12200 ft ss. These wells were producing about 90000 Stb/D through 39 completions. Original reservoir pressure was abnormally high (11300 psig at 14040 ft SS) and the Temperature averages 300 degrees Fahrenheit. The field shows a graded fluid system that varies from a gas condensate to a medium oil. Gas cap to oil zone ratio is about 1.2 and crude oil gravity varies with depth from 36 to 21 API degrees. The simulation study, conducted to establish the optimum exploitation strategy, incorporated a detailed geologic model based on seismic, sedimentary environment. and production geologic concepts. The data from the geologic model, routine and special test data from conventional cores, and the data from 58 fluid analysis were consolidated in a numerical reservoir simulator model, which predicted the potential reservoir performance under various Development, Production and Secondary Recovery Planning. The results of this study led us to design a Gas Injection Secondary Recovery Process encompassing a rate injection of 600 MMScf/D through 10 injector wells and the perforation of an additional 16 producer wells. We expect to double the natural depletion oil Recovery as a consequence of the Pressure Maintenance Program.

  10. Chlorite Dissolution Rates From 25 to 275 degrees and pH 3 to 10

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated in this data submission. More information on the calculation of the rate data can be found in our FY13 Annual support (Carroll LLNL, 2013) which has been submitted to the GDR. The rate equation fills a data gap in geothemal kinetic data base and can be used directly to estimate the impact of chemical alteration on all geothermal processes. It is especially important for understanding the role of chemical alteration in the weakening for shear zones in EGS systems.

  11. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    SciTech Connect (OSTI)

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  12. Betatron motion with coupling of horizontal and vertical degrees of freedom

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lebedev, V. A.; Bogacz, S. A.

    2010-10-21

    Presently, there are two most frequently used parameterezations of linear x-y coupled motion used in the accelerator physics. They are the Edwards-Teng and Mais-Ripken parameterizations. The article is devoted to an analysis of close relationship between the two representations, thus adding a clarity to their physical meaning. It also discusses the relationship between the eigen-vectors, the beta-functions, second order moments and the bilinear form representing the particle ellipsoid in the 4D phase space. Then, it consideres a further development of Mais-Ripken parameteresation where the particle motion is descrabed by 10 parameters: four beta-functions, four alpha-functions and two betatron phase advances.more » In comparison with Edwards-Teng parameterization the chosen parametrization has an advantage that it works equally well for analysis of coupled betatron motion in circular accelerators and in transfer lines. In addition, considered relationship between second order moments, eigen-vectors and beta-functions can be useful in interpreting tracking results and experimental data. As an example, the developed formalizm is applied to the FNAL electron cooler and Derbenev’s vertex-to-plane adapter.« less

  13. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom

    DOE Patents [OSTI]

    Pin, F.G.; Killough, S.M.

    1994-12-20

    A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity. 6 figures.

  14. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom

    DOE Patents [OSTI]

    Pin, Francois G.; Killough, Stephen M.

    1994-01-01

    A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity.

  15. VII-13 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 - March 31, 2012 Name Year Thesis Title Advisor Present Position Hyo-In Park 2011 High-Precision Measurements of the Superallowed 0 + → 0 + Beta Decays of 38 Ca and 46 V J. C. Hardy Post Doc., Cyclotron Institute, Texas A&M University, College Station, Texas Mathew McCleskey 2011 14C(n,g)15C as a Test Case in the Evaluation of a New Method to Determine Spectroscopic Factors Using Asymptotic Normalization Coefficients R. E. Tribble Post Doc., Lawerence Livermore National Laboratory,

  16. VII-9 STUDENTS WHO RECEIVED GRADUATE DEGREES FROM THESIS WORK CONDUCTED AT THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONDUCTED AT THE CYCLOTRON INSTITUTE-4/1/99-3/31/00 Name Year Thesis Title Advisor First Position Present Position John M. Blackadar 1999 Systematics of K and L-X-ray Production by 6 to 15 MeV/u Heavy Ion Bombardment Ph.D. Watson Lecturer, Blinn Junior College, Bryan, TX Los Alamos National Lab, Los Alamos, NM Tye Botting 1999 Probing Fission Time Scales and Dynamics via GDR Gamma Rays and Neutron Angular Distributions Ph.D. Schm itt Research Assistant, TAMU Nuclear Engineering SAME Bruce C.

  17. Electrophoretic Study of the SnO2/Aqueous Solution Interface up to 260 degrees C.

    SciTech Connect (OSTI)

    Rodriguez-Santiago, V; Fedkin, Mark V.; Wesolowski, David J

    2009-07-01

    An electrophoresis cell developed in our laboratory was utilized to determine the zeta potential at the SnO{sub 2} (cassiterite)/aqueous solution (10{sup -3} mol kg{sup -1} NaCl) interface over the temperature range from 25 to 260 C. Experimental techniques and methods for the calculation of zeta potential at elevated temperature are described. From the obtained zeta potential data as a function of pH, the isoelectric points (IEPs) of SnO{sub 2} were obtained for the first time. From these IEP values, the standard thermodynamic functions were calculated for the protonation-deprotonation equilibrium at the SnO{sub 2} surface, using the 1-pK surface complexation model. It was found that the IEP values for SnO{sub 2} decrease with increasing temperature, and this behavior is compared to the predicted values by the multisite complexation (MUSIC) model and other semitheoretical treatments, and were found to be in excellent agreement.

  18. EXAMINATION OF 80 DEGREES C DESORPTION ISOTHERMS OFTRITIUM AGED PD/K AND LANA.75

    SciTech Connect (OSTI)

    Staack, G; Kirk Shanahan, K; Tom Walters, T; Roger Pilgrim, R

    2007-08-28

    Metal hydrides, specifically Pd deposited on kieselguhr (Pd/k) and LaNi{sub 4.25}Al{sub 0.75} (LANA.75), have been used at the Savannah River Site for almost twenty years for hydrogen isotope separation and storage. Radiolytic decay of tritium to helium-3 in the metal matrix causes three classic changes in the performance of the hydride: the plateau pressure decreases, the plateau slope increases, and a heel forms, reducing the reversible capacity of the hydride. Deuterium and tritium isotherms were collected on the virgin materials, only tritium isotherms were collected at approximately 2 years, and both deuterium and tritium isotherms were collected at approximately 3.5 years of quiescent aging. Points of interest include those mentioned above as well as the effects of cycling the materials. The methods and results are presented.

  19. Gas souring by thermochemical sulfate reduction at 140{degree}C: Reply

    SciTech Connect (OSTI)

    Worden, R.H.; Smalley, P.C.; Oxtoby, N.H.

    1997-05-01

    We would like to thank Baric and Jungwirth (1997) for giving us the opportunity to further the discussion on the temperature and mechanism of gas souring by thermochemical sulfate reduction (TSR). In replying to their criticisms, we believe that Baric and Jungwirth ignored the explicit intent of our paper. We did not set out to detail the entire complexity of the province or TSR reactions in that one paper, but concentrated on one factor that all the data pointed to as being important: temperature. Other disagreements with the interpretations of Baric and Jungwirth are described.

  20. Viscosity of multi-component molten nitrate salts : liquidus to 200 degrees C.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.

    2010-03-01

    The viscosity of molten salts comprising ternary and quaternary mixtures of the nitrates of sodium, potassium, lithium and calcium was determined experimentally. Viscosity was measured over the temperature range from near the relatively low liquidus temperatures of he individual mixtures to 200C. Molten salt mixtures that do not contain calcium nitrate exhibited relatively low viscosity and an Arrhenius temperature dependence. Molten salt mixtures that contained calcium nitrate were relatively more viscous and viscosity increased as the roportion of calcium nitrate increased. The temperature dependence of viscosity of molten salts containing calcium nitrate displayed curvature, rather than linearity, when plotted in Arrhenius format. Viscosity data for these mixtures were correlated by the Vogel-Fulcher- ammann-Hesse equation.

  1. Y-12ers earn degrees through Friday Academy | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1:21pm Print version Debra Avery, Mark Burdettte, Michael Fierley, Jessica Griffin, Gary Lewis, Christine Stalnaker, and Ben Stephens. Not pictured Jeffrey Smith. Photo by Kathy...

  2. Development and Implementation of Degree Programs in Electric Drive Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Development and Implementation of Degree Programs in Electric Drive Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  4. Chlorite Dissolution Rates From 25 to 275 degrees and pH 3 to 10

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-09-27

    We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated in this data submission. More information on the calculation of the rate data can be found in our FY13 Annual support (Carroll LLNL, 2013) which has been submitted to the GDR. The rate equation fills a data gap in geothemal kinetic data base and can be used directly to estimate the impact of chemical alteration on all geothermal processes. It is especially important for understanding the role of chemical alteration in the weakening for shear zones in EGS systems.

  5. Anti-backlash drive systems for multi-degree freedom devices

    DOE Patents [OSTI]

    Lungwen Tsai; Sunlai Chang.

    1993-09-14

    A new and innovative concept is described for the control of backlash in gear-coupled transmission mechanisms. The concept utilizes redundant unidirectional drives to assure positive coupling of gear meshes at all times. Based on this concept, a methodology for the enumeration of admissible redundant-drive backlash-free robotic mechanisms has been established. Some typical two- and three-DOF mechanisms are disclosed. Furthermore, actuator torques have been derived as functions of either joint torques or end-effector dynamic performance requirements. A redundantly driven gear coupled transmission mechanism manipulator has a fail-safe advantage in that, except of the loss of backlash control, it can continue to function when one of its actuators fails. A two-DOF backlash-free arm has been reduced to practice to demonstrate the principle. 20 figures.

  6. Anti-backlash drive systems for multi-degree freedom devices

    DOE Patents [OSTI]

    Tsai, Lung-Wen; Chang, Sun-Lai

    1993-01-01

    A new and innovative concept for the control of backlash in gear-coupled transmission mechanisms. The concept utilizes redundant unidirectional drives to assure positive coupling of gear meshes at all times. Based on this concept, a methodology for the enumeration of admissible redundant-drive backlash-free robotic mechanisms has been established. Some typical two- and three-DOF mechanisms are disclosed. Furthermore, actuator torques have been derived as functions of either joint torques or end-effector dynamic performance requirements. A redundantly driven gear coupled transmission mechanism manipulator has a fail-safe advantage in that, except of the loss of backlash control, it can continue to function when one of its actuators fails. A two-DOF backlash-free arm has been reduced to practice to demonstrate the principle.

  7. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    SciTech Connect (OSTI)

    McCluskey, F. P.

    2007-04-30

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further study.

  8. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profilesmore » by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.« less

  9. Outrunning major weight gain: a prospective study of 8,340consistent runners during 7 years of follow-up

    SciTech Connect (OSTI)

    Williams, Paul T.

    2006-01-06

    Background: Body weight increases with aging. Short-term,longitudinal exercise training studies suggest that increasing exerciseproduces acute weight loss, but it is not clear if the maintenance oflong-term, vigorous exercise attenuates age-related weight gain inproportion to the exercise dose. Methods: Prospective study of 6,119 maleand 2,221 female runners whose running distance changed less than 5 km/wkbetween their baseline and follow-up survey 7 years later. Results: Onaverage, men who ran modest (0-24 km/wk), intermediate (24-48 km/wk) orprolonged distances (>_48 km/wk) all gained weight throughage 64,however, those who ran ?48 km/wk had one-half the average annual weightgain of those who ran<24 km/wk. Age-related weight gain, and itsreduction by running, were both greater in younger than older men. Incontrast, men s gain in waist circumference with age, and its reductionby running, were the same in older and younger men. Women increased theirbody weight and waist and hip circumferences over time, regardless ofage, which was also reduced in proportion to running distance. In bothsexes, running did not attenuate weight gain uniformly, but ratherdisproportionately prevented more extreme increases. Conclusion: Men andwomen who remain vigorously active gain less weight as they age and thereduction is in proportion to the exercise dose.

  10. Search For a Consistent Mean-Field Treatment of Magnetic Properties of Yittrium-Cobalt-5 Under Moderate Hydrostatic Stress

    SciTech Connect (OSTI)

    Benedict, Lorin X.; Aberg, Daniel; Soderlind, Per; Sadigh, Babak; Daene, Markus

    2015-10-26

    We explore the use of particular variants of DFT + U and DFT + orbital polarization (OP) to calculate the electronic structure and magnetic properties of YCo5 under hydrostatic pressures up to 600 kbar. While the speci c DFT + U (with U= 0.75 eV) and DFT + OP schemes we employ produce magneto-crystalline anisotropy energies for YCo5 in good agreement with experiments performed in ambient conditions, our DFT + U results are shown to greatly overestimate the pressure at which a high-spin to low-spin (HS-LS) transition is known to occur. In contrast, our DFT + OP results predict the HS-LS transition to occur at the same stress as DFT, and in better agreement with experiment. This sensitivity suggests that care should be taken when attempting to model magnetic properties with self-interaction and/or correlation corrections to DFT for this and related materials, and highlights the usefulness of moderate pressure as an additional parameter to vary when discriminating between candidate theoretical schemes.

  11. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?

    SciTech Connect (OSTI)

    Stavrakou, T.; Muller, J. F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; De Maziere, M.; Vigouroux, C.; Hendrick, F.; George, M.; Clerbaux, C.; Coheur, P-F; Guenther, Alex B.

    2015-10-26

    The vertical columns of formaldehyde (HCHO) retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2) on Metop-A and the Ozone Monitoring Instrument (OMI) on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the ad-joint model technique in the IMAGESv2 global CTM (chem-ical transport model) on a monthly basis and at the model res-olution. Given the different local overpass times of GOME- 2 (09:30 LT) and OMI (13:30 LT), the simulated diurnal cy-cle of HCHO columns is investigated and evaluated against ground-based optical measurements at seven sites in Europe, China and Africa. The modeled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon max-ima at remote locations (oceans) and in regions dominated by anthropogenic emissions, late afternoon or evening max-ima over fire scenes, and midday minima in isoprene-rich re-gions. The agreement between simulated and ground-based columns is generally better in summer (with a clear after-noon maximum at mid-latitude sites) than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126) than in the ground-based measurements (1.043).The anthropogenic VOC (volatile organic compound) sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly pol-luted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inven-tory (24.6 vs. 25.5 TgVOC yr-1 in the a priori) with, how-ever, pronounced increases in the northeast of China and re-ductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC yr-1), in particular over the northeast, likely reflecting mismatches between the observed and the modeled diurnal cycle in this region.

  12. High performance organic integrated device with ultraviolet photodetective and electroluminescent properties consisting of a charge-transfer-featured naphthalimide derivative

    SciTech Connect (OSTI)

    Wang, Hanyu; Wang, Xu; Yu, Junsheng E-mail: jsyu@uestc.edu.cn; Zhou, Jie; Lu, Zhiyun E-mail: jsyu@uestc.edu.cn

    2014-08-11

    A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-(3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy)-2- (4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 10{sup 11} Jones at −3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm{sup 2}, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m{sup 2}. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.

  13. Catalysts for the selective hydrogenation of unsaturated compounds consisting of alumina particles with a regular palladium distribution

    SciTech Connect (OSTI)

    Beren Glyum, A.S.; Goranskaya, T.P.; Karel'skii, V.V.; Lakhman, L.I.; Mund, S.L.; Zolotukhin, V.E.

    1986-08-01

    A study was carried out on the possibility of preparation of heterogeneous palladium catalysts for the selective hydrogenation of unsaturated compounds with different distributions of the active component on ..gamma..-Al/sub 2/O/sub 3/ granules. A regression equation was obtained relating the parameters of the preparation of these catalysts (palladium concentration in solution, temperature, impregnation time and pH) with the extent of the penetration of palladium into the support granule (l). A relationship was established between the parameters (l), palladium concentration in the catalyst, activity and selectivity in the hydrogenation of dienes in liquid pyrolysis products. The extremal curves for activity and selectivity are explained with the framework of a model taking account of the effect on the concentration of the active component, its dispersion, and the reaction conditions on the hydrogenation parameters.

  14. A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support

    SciTech Connect (OSTI)

    Sato, Yuichi; Naya, Shin-ichi; Tada, Hiroaki

    2015-10-01

    Ultrathin Cu layers (∼2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO{sub 2} (Au@Cu/TiO{sub 2}) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO{sub 2} for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO{sub 2}.

  15. The O VII X-Ray Forest Toward Markarian 421: Consistency between XMM-Newton and Chandra

    SciTech Connect (OSTI)

    Kaastra, J.S.; Werner, N.; Herder, J.W.A.den; Paerels, F.B.S.; de Plaa, J.; Rasmussen, A.P.; de Vries, C.P.; /SRON, Utrecht

    2006-04-28

    Recently the first detections of highly ionized gas associated with two Warm-Hot Intergalactic Medium (WHIM) filaments have been reported. The evidence is based on X-ray absorption lines due to O VII and other ions observed by Chandra towards the bright blazar Mrk 421. We investigate the robustness of this detection by a re-analysis of the original Chandra LETGS spectra, the analysis of a large set of XMM-Newton RGS spectra of Mrk 421, and additional Chandra observations. We address the reliability of individual spectral features belonging to the absorption components, and assess the significance of the detection of these components. We also use Monte Carlo simulations of spectra. We confirm the apparent strength of several features in the Chandra spectra, but demonstrate that they are statistically not significant. This decreased significance is due to the number of redshift trials that are made and that are not taken into account in the original discovery paper. Therefore these features must be attributed to statistical fluctuations. This is confirmed by the RGS spectra, which have a higher signal to noise ratio than the Chandra spectra, but do not show features at the same wavelengths. Finally, we show that the possible association with a Ly{alpha} absorption system also lacks sufficient statistical evidence. We conclude that there is insufficient observational proof for the existence of the two proposed WHIM filaments towards Mrk 421, the brightest X-ray blazar on the sky. Therefore, the highly ionized component of the WHIM still remains to be discovered.

  16. Anomalous tensor magnetic moments and form factors of the proton in the self-consistent chiral quark-soliton model

    SciTech Connect (OSTI)

    Ledwig, Tim; Silva, Antonio

    2010-09-01

    We investigate the form factors of the chiral-odd nucleon matrix element of the tensor current. In particular, we aim at the anomalous tensor magnetic form factors of the nucleon within the framework of the SU(3) and SU(2) chiral quark-soliton model. We consider 1/N{sub c} rotational corrections and linear effects of SU(3) symmetry breaking with the symmetry-conserving quantization employed. We first obtain the results of the anomalous tensor magnetic moments for the up and down quarks: {kappa}{sub T}{sup u}=3.56 and {kappa}{sub T}{sup d}=1.83, respectively. The strange anomalous tensor magnetic moment is yielded to be {kappa}{sub T}{sup s}=0.2{approx}-0.2, that is compatible with zero. We also calculate the corresponding form factors {kappa}{sub T}{sup q}(Q{sup 2}) up to a momentum transfer Q{sup 2{<=}}1 GeV{sup 2} at a renormalization scale of 0.36 GeV{sup 2}.

  17. Justice Department review of federal coal and oil leasing: serving the consistent goals of competition and energy independence

    SciTech Connect (OSTI)

    Kaplan, D.A.

    1981-01-01

    As the nation moves into the 1980s, development of our domestic energy resources must surely be the number one priority of energy policy. Important natural resources are owned by the Federal government and must be dedicated to development in the public interest. This includes a government leasing program which fosters competitive and efficient development of these resources by private companies. Through its antitrust review of individual leases and its general advocacy of competition in the leasing program, the Department of Justice seeks to bring the prospect of a sound national energy policy closer to reality. Examples of how this review functions are drawn from the Outer Continental Shelf Land Acts Amendments of 1978 and the Federal Coal Leasing Amendments Act of 1975. 32 references.

  18. Microstructural Contol of the Porous Si3N4 Ceramics Consisted of 3-Dimensionally Intermingled Rod-like Grains

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Microsoft Word - Determination of Class to Update Ventilation Language for Consistency 05-20-2011 FINAL.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ca rlsbad , New Mexico 88221 May 20,2011 Mr. John Kieling, Acting Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Request for Permit Modification Determination for Hazardous Waste Facility Permit, Permit Number: NM4890139088-TSDF Dear Mr. Kieling: In accordance with 20.4.1.900 NMAC (incorporating 40 CFR §270.42(d)) , the Permittees are requesting a determination that the enclosed permit

  20. Combined heat and power systems that consist of biomass fired fluidised bed combustors and modern steam engines

    SciTech Connect (OSTI)

    Joseph, S.D.; Errey, S.; Thomas, M.; Kruger, P.

    1996-12-31

    Biomass energy is widely used in many processing industries in the ASEAN region. The residue produced by agricultural and wood processing plant is either inefficiently combusted in simple furnaces or in the open, or disposed of in land fill sites or in rivers. Many of these industries are paying high prices for electricity in rural areas and/or supply is unreliable. An ASEAN/Australian cooperation program has been under way for the last ten years to introduce clean burning biomass fired heat and/or combined heat and power equipment. It aims to transfer Australian know how in the design and manufacture of fluidised bed CHP technology to the ASEAN region. The main participants involved in the program include SIRIM and UKM in Malaysia, PCIERD, FPRI and Asia Ratan in the Philippines, King Monkutt Institute of Technology (KMITT) in Thailand, LIPI and ITB in Indonesia, and the University of Singapore. In this paper an outline of the program will be given including results of market research and development undertaken into fluidised bed combustion, the proposed plant design and costings, and research and development undertaken into modem steam engine technology. It will be shown that all of the projects to be undertaken are financially viable. In particular the use of simple low cost high efficient steam engines ensures that the smaller CHP plant (50-100 kWe) can be viable.