Powered by Deep Web Technologies
Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High efficiency incandescent lighting  

DOE Patents [OSTI]

Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

2014-09-02T23:59:59.000Z

2

How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...  

Broader source: Energy.gov (indexed) [DOE]

could save you about 50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home. Energy-efficient light bulbs are available today and could save...

3

Underwater Lighting by Submerged Lasers and Incandescent Sources  

E-Print Network [OSTI]

and collimated underwater incandescent projector. The laser-collimated underwater incandescent projector used for beamBY SUBMERGED LASERS and Incandescent Sources DESCRIPTIVE

Duntley, Seibert Q

1971-01-01T23:59:59.000Z

4

Incandescent Lighting Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of| Department ofTheseIncandescent

5

Metallic photonic-band-gap filament architectures for optimized incandescent lighting Sajeev John and Rongzhou Wang  

E-Print Network [OSTI]

Metallic photonic-band-gap filament architectures for optimized incandescent lighting Sajeev John occur 3,4 . Tra- ditionally incandescent lighting filaments, despite being driven from equilibrium the blackbody spectrum. This suggests the pos- sibility of higher efficiency incandescent lighting, through

John, Sajeev

6

Operating temperatures for a convectively cooled recessed incandescent light fixture  

SciTech Connect (OSTI)

Test results are given for the operation of a recessed incandescent light fixture intended for residential use. The fixture is labeled for use in direct contact with attic thermal insulation. Temperature control of the powered fixture is provided by convective heat transfer from the ceiling side of the fixture. The fixture was operated at power levels up to two times the rated power of 75 watts and under thermal insulations up to R-40. In all operating configurations tested the fixture surface in contact with attic insulation was found to be less than 175/sup 0/C. The observed surface temperatures are judged to be safe for operation in contact with loose-fill or batt-type insulations. It was observed that the power leads inside one fixture configuration are exposed to temperatures as high as 168/sup 0/C. The electrical insulation could, therefore, have a limited life. The properties of the internal fixture wiring were not, however, studied in detail.

Yarbrough, D.W.; Toor, I.

1980-12-01T23:59:59.000Z

7

How to upgrade your incandescent light bulbs Many people are choosing replacements for their standard incandescent light bulbs to save money or energy, because they've heard of new LED  

E-Print Network [OSTI]

How to upgrade your incandescent light bulbs Many people are choosing replacements for their standard incandescent light bulbs to save money or energy, because they've heard of new LED options, or in anticipation of the phase-out of standard incandescent bulbs in the U.S. starting in 2012. If you've shopped

Bystroff, Chris

8

ECE 466: LED Lighting Systems -Incandescent lightings rise and  

E-Print Network [OSTI]

versus cost - Power Electronic Drives for CFL and LED light sources to achieve dimmable operation - Basic electric AC and DC circuits at Sophomore level or equivalents Absolutes Lighting System Requirements index as a metric of a light source - Power Electronic Energy sources driving light sources in a compact

Schumacher, Russ

9

Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED)  

E-Print Network [OSTI]

the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state in lighting products without compromising their performance and useful lifespan. INTRODUCTION The U.S. Energy to increase energy efficiency for general lighting. Therefore, consumers are replacing incandescent light

Short, Daniel

10

A Bright Idea: New Efficiency Standards for Incandescent and...  

Broader source: Energy.gov (indexed) [DOE]

A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights July 21, 2009 -...

11

Power Quality Improvements in Lighting Systems Mr. Ashish Shrivastava  

E-Print Network [OSTI]

from early incandescent lamps to present generation light emitting diodes (LEDs). Incandescent light

Kumar, M. Jagadesh

12

Dual LED/incandescent security fixture  

DOE Patents [OSTI]

A dual LED and incandescent security lighting system uses a hybrid approach to LED illumination. It combines an ambient LED illuminator with a standard incandescent lamp on a motion control sensor. The LED illuminator will activate with the onset of darkness (daylight control) and typically remain on during the course of the night ("always on"). The LED illumination, typically amber, is sufficient to provide low to moderate level lighting coverage to the wall and ground area adjacent to and under the fixture. The incandescent lamp is integrated with a motion control circuit and sensor. When movement in the field of view is detected (after darkness), the incandescent lamp is switched on, providing an increased level of illumination to the area. Instead of an "always on" LED illuminator, the LEDs may also be switched off when the incandescent lamp is switched on.

Gauna, Kevin Wayne

2005-06-21T23:59:59.000Z

13

Photonically Engineered Incandescent Emitter  

DOE Patents [OSTI]

A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2005-03-22T23:59:59.000Z

14

Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications  

E-Print Network [OSTI]

performance variations. Incandescent and fluorescent lightbetter than the common incandescent lamp. Off-grid lighting

Mills, Evan

2007-01-01T23:59:59.000Z

15

Comparison of 60-Hz electric fields and incandescent light as aversive stimuli controlling the behavior of rats  

SciTech Connect (OSTI)

Rats were exposed to two procedures which enabled them to press a lever to turn off a 90 or 100 kV/m 60-Hz electric field or, later in the study, illumination from an incandescent lamp. Under one procedure, a response turned off the stimulus for a fixed duration, after which the stimulus was turned on again. A response during the off-period restarted the fixed duration. None of the rats turned the field off reliably. Next, under an alternative procedure, pressing one lever turned the field off; pressing the other lever turned it back on; responding under those conditions differed little from that seen at 0 kV/m. Under both procedures, when illumination from an incandescent lamp served as the stimulus, each rat did turn the stimulus off, and performances varied with stimulus intensity. The results show that a 100 kV/m 60-Hz electric field is not sufficient to function as an aversive stimulus under two procedures where illumination from a lamp does function as an aversive stimulus.

Stern, S.; Laties, V.G.

1989-01-01T23:59:59.000Z

16

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network [OSTI]

only be able to find incandescent lightbulbs and fluorescent10: Output spectra of incandescent light bulb, fluorescentemission spectra. The incandescent light bulb for example

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

17

Controls for Solid-State Lighting  

E-Print Network [OSTI]

very high would replace incandescent and halogen A modernmotion sensor, the incandescent lamp switches on providing awork with fluorescent and incandescent lighting as well as

Rubinstein, Francis

2007-01-01T23:59:59.000Z

18

Energy-efficient incandescent lamp: Final report  

E-Print Network [OSTI]

of Energy Conserving Incandescent Lamps", J . Brett, R.July 1981. "Filaments for Incandescent Lamps with Radiation20-22 "Energy Saving Incandescent Lamps with Infrared

Verderber, R.

2010-01-01T23:59:59.000Z

19

Synthesis and luminescence properties of rare earth activated phosphors for near UV-emitting LEDs for efficacious generation of white light  

E-Print Network [OSTI]

lighting using incandescent lights and fluorescent lamps, asenergy used for the incandescent lamp is wasted as infraredsource to replace incandescent and fluorescent lighting [2].

Han, Jinkyu

2013-01-01T23:59:59.000Z

20

Market Trial: Selling Off-Grid Lighting Products in Rural Kenya  

E-Print Network [OSTI]

people reported using an incandescent dry cell flashlightpurchasers. Type†of†LightIncandescent† LED†dry†cell† LED†LED rechargeable, and incandescent dry cell flashlights were

Tracy, Jennifer

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile  

E-Print Network [OSTI]

phasing out the use of incandescent lamps. Following majorproposed phase out of incandescent bulbs in Chile. 2 Lifeless energy: here incandescent lights (IL) are evaluated

Letschert, Virginie E.

2012-01-01T23:59:59.000Z

22

The incandescent disposal system  

SciTech Connect (OSTI)

The electrotechnology device being introduced to the low-level waste market is an Incandescent Disposal System (IDS) for volume reduction and vitrification. The process changes the composition of the waste material, usually long molecular chains, into simple molecules and elements. It renders the volume of low-level wastes to a manageable solid vitrified residue, carbon black, and a water discharge. The solid material, which has been vitrified if silica is introduced into the waste stream, is an ideal inert filler. The carbon black is non-leaching and is readily available for vitrification as it comes out of the IDS.

Smith, R.G.

1996-03-01T23:59:59.000Z

23

Stalled on the Road to the Market: Analysis of Field Experience with a Project to Promote Lighting Efficiency in India  

E-Print Network [OSTI]

several rea- sons: (1) incandescent lamps, the products thatin replacing an incandescent with a CFL is unmatched in anysame quantity of light as an incandescent lamp. The BELLE

Gadgil, A.J.

2008-01-01T23:59:59.000Z

24

Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market  

E-Print Network [OSTI]

have largely displaced incandescent flashlights in retailinvolving the use of incandescent lighting, unless there areFluorescent Flashlight C Incandescent SPX 50 Fluorescent y x

Tracy, Jennifer

2010-01-01T23:59:59.000Z

25

Defrost Temperature Termination in Supermarket Refrigeration Systems  

SciTech Connect (OSTI)

The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

2011-11-01T23:59:59.000Z

26

Incandescent Lighting | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment ofDepartment ofDepartmentInauguration

27

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network [OSTI]

of incandescent light bulb, fluorescent lamp, and blue lightof incandescent light bulb, fluorescent lamp, and blue lightincandescent bulb and is on the same order as fluorescent

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

28

Cost effectiveness of long life incandescent lamps and energy buttons  

SciTech Connect (OSTI)

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen hours are determined for each lamp system. It is found that the most important component lighting cost is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial unit cost of $20.00, is the most cost-effective source of illumination compared to the incandescent lamp and lamp systems examined.

Verderber, R.; Morse, O.

1980-04-07T23:59:59.000Z

29

THELUMINAPROJECT http://light.lbl.gov  

E-Print Network [OSTI]

source of portable lighting in Kenya, outpacing incandescent flashlights (Johnstone et al., 2009). LED technology has the potential to provide efficiency and performance benefits relative to incandescent bulbs

Jacobson, Arne

30

Sleep, mood, and circadian responses to bright green light during sleep  

E-Print Network [OSTI]

white light from fluorescent bulbs, as point sources mightthan incandescent bulbs. Also, fluorescent light is easier

Grandner, Michael Andrew

2007-01-01T23:59:59.000Z

31

COST EFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGY BUTTONS  

E-Print Network [OSTI]

as any 1ong-li incandescent lamp or system evaluated in thisEFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGYEFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGY

Verderber, Rudy

2013-01-01T23:59:59.000Z

32

General service incandescent lamp with improved efficiency  

SciTech Connect (OSTI)

A high efficiency general service incandescent lamp is disclosed. The disclosed improved general service incandescent lamp has an outer and an inner envelope. The inner envelope has a relatively small housing containing a halogen gas and a relatively high pressure efficient fill-gas and in which a low voltage filament is spatially disposed therein.

Berlec, I.

1985-06-18T23:59:59.000Z

33

Apparatus and method for evaporator defrosting  

DOE Patents [OSTI]

An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN); Domitrovic, Ronald E. (Knoxville, TN)

2001-01-01T23:59:59.000Z

34

Visible Spectrum Incandescent Selective Emitter  

SciTech Connect (OSTI)

The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination was initially projected. The work performed provided answers to a number of important questions. The first is that, with the investigated approaches, the maximum sustained emitter efficiencies are about 1.5 times that of a standard incandescent bulb. This was seen to be the case for both thick and thin emitters, and for both mono-layer and bi-layer designs. While observed VIS/NIR ratios represent improvements over standard incandescent bulbs, it does not appear sufficient to overcome higher cost (i.e. up to five times that of the standard bulb) and ensure commercial success. Another result is that high temperatures (i.e. 2650 K) are routinely attainable without platinum electrodes. This is significant for reducing material costs. A novel dual heating arrangement and insulated electrodes were used to attain these temperatures. Another observed characteristic of the emitter was significant grain growth soon after attaining operating temperatures. This is an undesirable characteristic that results in substantially less optical scattering and spectral selectivity, and which significantly limits emitter efficiencies to the values reported. Further work is required to address this problem.

Sonsight Inc.

2004-04-30T23:59:59.000Z

35

Tungsten wire for incandescent lamps  

SciTech Connect (OSTI)

Tungsten wire for incandescent lamp filaments must operate at high temperatures and for long times. To meet these requirements, the grain morphology of the wire must be controlled to reduce the propensity for grain boundary sliding. The morphology is a function of the distribution of very small pockets of potassium in the wire and the mechanical processing from ingot to wire. The behavior of the filament is directly related to the grain morphology. This paper describes the mechanism by which the potassium is incorporated into and distributed in the ingot. The elongation and spheroidization of the bubbles during hot rolling and swaging is also examined and related to the grain morphology of wire. Some indications of the relationship between grain morphology and filament behavior are also given.

Walter, J.L.; Briant, C.L. (General Electric Corporate Research and Development, Schenectady, NY (USA))

1990-09-01T23:59:59.000Z

36

Comprehensive Pyrometry of Incandescent Multiwalled Carbon Nanotubes and Graphene in the Visible and Near Infrared  

E-Print Network [OSTI]

4.17 Image of incandescent tungsten ?to collect data from incandescent MWCNTs. An illustration ofand of Carbon at Incandescent Temper- atures,Ē Physical

Singer, Scott

2012-01-01T23:59:59.000Z

37

Ceramic Mugs & Dishes Incandescent Light Bulbs  

E-Print Network [OSTI]

, MU East Rock Hall/19-B CELL PHONES - EYEGLASSES 654 Minnesota Street Room 208, copy room CVRI Helen. Zion Cancer Research Building N423 Parnassus Campus: eyeglasses "I" level, Optometry Store, MU West

Yamamoto, Keith

38

Heat pump having improved defrost system  

DOE Patents [OSTI]

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

1998-01-01T23:59:59.000Z

39

Heat pump having improved defrost system  

DOE Patents [OSTI]

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

Chen, F.C.; Mei, V.C.; Murphy, R.W.

1998-12-08T23:59:59.000Z

40

EK101 Engineering Light Project: Evaluate Residential Lighting  

E-Print Network [OSTI]

for residential lighting (LED, Compact Fluorescent, Incandescent). Develop a plan of experiments to be conducted, CF, and Incandescent bulbs for the past ten years. (try the wayback time machine if other sources fail). Discuss the key challenges associated with a transition from incandescent lighting

Bifano, Thomas

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps June 24, 2010 - 2:40pm...

42

Induction Lighting: An Old Lighting Technology Made New Again...  

Broader source: Energy.gov (indexed) [DOE]

around the same time that his rival, Thomas Edison, was working to improve the incandescent light bulb. In the early 1990s, several major lighting manufacturers introduced...

43

Development of a demand defrost controller. Final report  

SciTech Connect (OSTI)

The purpose of this project was to develop and commercialize a demand defrost controller that initiates defrosts of refrigeration systems only when required. The standard method of control is a time clock that usually defrosts too often, which wastes energy. The controller developed by this project uses an algorithm based on the temperature difference between the discharge and return of the display case air curtain along with several time settings to defrost only when needed. This controller was field tested in a supermarket where it controlled defrost of the low-temperature display cases. According to test results the controller could reduce annual energy consumption by 20,000 and 62,000 kWh for hot gas and electric defrost, respectively. The controller saves electric demand as well as energy, is adaptable to ambient air conditions, and provides valuable savings throughout the year. The savings are greatest for low-temperature systems that use the most energy. A less tangible benefit of the demand controller is the improvement in food quality that results from fewer defrosts.

Borton, D.N. [Power Kinetics, Troy, NY (United States); Walker, D.H. [Foster-Miller, Inc., Waltham, MA (United States)

1993-10-01T23:59:59.000Z

44

Many exterior entry and walkway lights in residential and commercial  

E-Print Network [OSTI]

Many exterior entry and walkway lights in residential and commercial applications use incandescent combines cutting-edge LED technology with an occupancy sensor and incandescent lighting to reduce operating costs below those of incandescent lamps and CFL fixtures. The low wattage LED light turns on at dusk

45

Creating markets for new products to replace incandescent lamps: The international experience  

SciTech Connect (OSTI)

Since the summer of 1995, several organizations have been in pursuit of what many consider the Holy Grail of lighting technology--a low-cost, drop-in, energy-efficient replacement for the incandescent lamp. This paper summarizes the international experience in attempting to catalyze the commercialization of a mass-market, replacement product that could have major impact on residential lighting energy consumption in US and EU homes. The technology procurement effort was originally spearheaded by US Federal Government through a loose collaboration between the Department of Defense (DoD), the Environmental Protection Agency (EPA) and the Department of Energy (DOE). The DoD agreed to serve as the anchor buyer for a low-cost, drop-in replacement product for standard-sized light bulbs that provide at least 30 percent energy savings compared to traditional incandescent lamps. In parallel to the US effort, the International Energy Agency launched a co-operative technology procurement effort by assembling large buyers' groups in Finland, the Netherlands, Sweden, and the United Kingdom to pull a similar efficient lighting product into the European market. The lukewarm response from lamp manufacturers to these two technology procurement efforts illustrates the challenges of transforming residential lighting from incandescent to efficient lighting.

Rubinstein, F.; Borg, N.; Horowitz, N.; Narel, T.; Morehouse, E.T. Jr.

1998-07-01T23:59:59.000Z

46

Apparatus to facilitate lengthening the life of incandescent lamps  

SciTech Connect (OSTI)

An energizing circuit is described for an incandescent bulb comprising a transformer having a primary winding connectable to an AC mains source and first and second secondary windings for producing first and second voltages. The first secondary winding is connected to an input of a first full-wave rectifier means and the second secondary winding is connected to an input of a second full-wave rectifier means, the full-wave rectifier means having outputs connected in parallel across the bulb. The first voltage is sufficient to fully illuminate the bulb and the second voltage is sufficient to maintain the bulb warm but with little or no light output, a first switch being connected between the first secondary winding and the first rectifier means whereby, when the first switch is open, the bulb is energized solely by the second voltage.

Spissinger, F.H.

1987-03-17T23:59:59.000Z

47

AN ANALYTICAL AND QUANTITATIVE ANALYSIS OF THE LASER-INDUCED INCANDESCENCE OF SOOT  

E-Print Network [OSTI]

AN ANALYTICAL AND QUANTITATIVE ANALYSIS OF THE LASER-INDUCED INCANDESCENCE OF SOOT A Thesis-INDUCED INCANDESCENCE OF SOOT Approved: _________________________ Jerry M. Seitzman, Chairman

Seitzman, Jerry M.

48

March 10, 2011 Let There Be More Efficient Light  

E-Print Network [OSTI]

standards for light bulbs, which include a phasing out of incandescent bulbs in favor of more energy lyrically with two colleagues about "the incandescent bulb that has been turning back the night ever since

Colorado at Boulder, University of

49

Recommendations to Reduce Light Pollution and Energy Costs on the  

E-Print Network [OSTI]

(PAT18, PAT19, PAT27, PAT28, PAT29 - CL14): #12;· Change class #15, and class #20, incandescent bulbs with exterior fluorescent bulbs: · Change class #18 incandescent flood-light bulbs with fluorescent flood

50

The light-emitting diode (LED) is an fairly new kind of light source found currently in  

E-Print Network [OSTI]

this technology an ideal replacement for less efficient incandescent light sources, particularly in applications elevator lighting has the potential to achieve 25 percent greater efficiency than current incandescent ILLUMINATION LEVELS SIMILAR TO THOSE OF INCANDESCENT FIXTURES WHILE CUTTING ENERGY USE 45 PERCENT. ELEVATOR

51

Phys. Med. Biol. 43 (1998) 24072412. Printed in the UK PII: S0031-9155(98)90934-4 Effects of read-out light sources and ambient light on  

E-Print Network [OSTI]

laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose, fluorescent light and incandescent ambient light produce an equivalent dose coloration of 30 cGy h-1, 18 cGy h the optical density of Gafchromic films include, helium neon lasers, ultrabright diodes, incandescent

Yu, K.N.

52

E-Print Network 3.0 - active defrost scheme Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . . . . . . . . . . . . . . . . . . . . 62 6 An Active Defrost Scheme for Balancing Energy Consumption and Food Quality Loss in Supermarket... , ... Source: Skogestad, Sigurd...

53

DEVELOPMENT OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER  

E-Print Network [OSTI]

#12;DEVELOPMENT OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER Richard F. Topping-efficient refrigerator- freezer prototype involving the Department of Energy's Oak Ridge National Laboratory, Arthur D refrigerator-freezers. The resulting 16 cubic foot prototype uses significantly less energy than the most

Oak Ridge National Laboratory

54

JY Tsao Evolution of Solid-State Lighting: Market Pull and Technology Push Xiamen 2005 Apr 13 Evolution of Solid-State Lighting  

E-Print Network [OSTI]

and Technology Push · Xiamen · 2005 Apr 13 0 20 40 60 80 100 0.1 1.0 10.0 100.0 Incandescent (12%) Fluorescent Fluorescent Standard Incandescent · So let's start with traditional lighting. · Here, I've plotted the 26 and Eugene Hong of Navigant Consulting. The lamps fall into three overall families: incandescent, in green

55

Industrial Lighting Techniques and New Developments  

E-Print Network [OSTI]

families customarily categorized in three major groupings Incandescent, Fluorescent, and High Intensity Discharge sources. In the incandescent family, halogen capsule 'technology has led to many new general lighting sources the 90-Watt and 45-Watt... Par 38 lamps deliver the same light output in the beam as conventional 150- and 75-Watt incandescent Par sources while using 40\\ less wattage and maintaining lamp life. By reducing voltage to the filament in halogen ~apsule sources, lamps can...

Colotti, M. A.

56

Assessment of soot particle vaporization effects during laser-induced incandescence with  

E-Print Network [OSTI]

Assessment of soot particle vaporization effects during laser-induced incandescence with time-induced incandescence (LII) has been successfully used for soot volume fraction and particle size measurements

Hahn, David W.

57

Article #11, May 23, 2006 AJ's Technical Tips: Technologies for Lighting in Rural Africa  

E-Print Network [OSTI]

/a 30 lumens 0.1 Incandescent Bulb 15 W 225 lumens 15 Fluorescent Tube Lamp 10 W 500 lumens 50 White LED Lamp 1 W 30 lumens 30 The data in Table 1 show that incandescent bulbs and fluorescent tubes generate incandescent bulbs are about 150 times more efficient. In other words, electric lights are not only brighter

Jacobson, Arne

58

Molecular Dynamics Simulations of Laser Induced Incandescence Dr. Adri van Duin  

E-Print Network [OSTI]

Molecular Dynamics Simulations of Laser Induced Incandescence (LII) Dr. Adri van Duin Associate of Engineering. Laser Induced Incandescence (LII) is a popular method to estimate the properties of soot. Molecular Dynamics Simulations of Laser-Induced Incandescence of Soot Using an Extended ReaxFF Reactive

Bj√łrnstad, Ottar Nordal

59

L'EMISSION ELECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPHRE D'IODE  

E-Print Network [OSTI]

L'EMISSION ELECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPH√?RE D'IODE par M. S. KALANDYK influence devient nulle aux temp√©ratures de chauffage √©lev√©es. 3. Pour une faible incandescence du platine approximativement lin√©aire; aux fortes incandescences, cette variation offre un caract√®re beaucoup plus compliqu√©. 1

Paris-Sud XI, Université de

60

Introduction The Sun is a mass of incandescent gas  

E-Print Network [OSTI]

Chapter 1 Introduction The Sun is a mass of incandescent gas A gigantic nuclear furnace Building that our bodies contain atoms that, like most elements and their isotopes in the Solar System, were part of the molecular cloud from which the Solar System condensed, and were trapped in primitive

Nittler, Larry R.

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Frost sensor for use in defrost controls for refrigeration  

DOE Patents [OSTI]

An apparatus and method for measuring the total thermal resistance to heat flow from the air to the evaporative cooler fins of a refrigeration system. The apparatus is a frost sensor that measures the reduction in heat flow due to the added thermal resistance of ice (reduced conduction) as well as the reduction in heat flow due to the blockage of airflow (reduced convection) from excessive ice formation. The sensor triggers a defrost cycle when needed, instead of on a timed interval. The invention is also a method for control of frost in a system that transfers heat from air to a refrigerant along a thermal path. The method involves measuring the thermal conductivity of the thermal path from the air to the refrigerant, recognizing a reduction in thermal conductivity due to the thermal insulation effect of the frost and due to the loss of airflow from excessive ice formation; and controlling the defrosting of the system.

French, Patrick D. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); Butz, James R. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); Veatch, Bradley D. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); O'Connor, Michael W. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107)

2002-01-01T23:59:59.000Z

62

J.-A. FLEMING. 2014 On the characteristic curves and surfaces of incandescence lamps (Courbes caractristiques des lampes incandescence) ; Phil. Mag.,  

E-Print Network [OSTI]

80 J.-A. FLEMING. 2014 On the characteristic curves and surfaces of incandescence lamps (Courbes caractéristiques des lampes à incandescence) ; Phil. Mag., 5e série, t. XIX, p. 368; I885. L'auteur étudie les résistance correspondant à la force électromotrice vo à laquelle l'incandescence commence à se produire, et r

Paris-Sud XI, Université de

63

Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001)  

Broader source: Energy.gov [DOE]

DOE issued a Notice of Noncompliance Determination to Westinghouse Lighting Corporation finding that various models of incandescent reflector lamps do not comport with the energy conservation standards.

64

The effect of alternate defrost strategies on the reverse-cycle defrost of an air-source heat pump  

E-Print Network [OSTI]

with and understanding of my questions and ideas. Thanks also to my family and friends for their support and help svhile I svorked on this project. Finally, I would like to acknowledge the American Society oi' Heating, Refrigerating, and Air-Conditioning Engineers... . . 21 Psychrometric Room Temperature Control Characteristics during a Frosting, 'Defrosting Test 3. 3 4. 3 4. 10 4. 11 Refrigerant Circuit Arrangement of the Outdoor Coil Heat Pump System Schematic Refrigerant Line Temperature Probe . Indoor...

Schliesing, John Steven

1988-01-01T23:59:59.000Z

65

Underwater Lighting by Submerged Lasers and Incandescent Sources  

E-Print Network [OSTI]

books. For eX3.I11ple, equation (5.49.1) on page 107 of Glastone and Edlund's, "Elements of Nuclear Reactor

Duntley, Seibert Q

1971-01-01T23:59:59.000Z

66

How Energy-Efficient Light Bulbs Compare with Traditional Incandescents |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeterans | UpdatesHowGetDoes a

67

Begining of fish defrosting by using non-destructive ultrasonic technique  

E-Print Network [OSTI]

Begining of fish defrosting by using non-destructive ultrasonic technique M. Malaininea , B. Faiza on the monitoring and the study of fish defrosting by an ultrasonic technique, we have difficulties in detecting the begining of the thawing which is an important criterion of fish quality control. To address this problem

Paris-Sud XI, Université de

68

L'MISSION LECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPHRE D'IODE  

E-Print Network [OSTI]

L'√?MISSION √?LECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPH√?RE D'IODE par M. PIERRE JEZ],du platine incandescent ~dans une atmosph√®re d'iode en fonction : 1, de la temp√©rature ; 2, du temps; 3, de √©lectrodes, d'un grillage m√©tallique pour √©viter les influences ext√©rieures. L'incandescence des √©lectrodes s

Paris-Sud XI, Université de

69

LE RAYONNEMENT DES MANCHONS A INCANDESCENCE ; Par M. H. RUBENS1).  

E-Print Network [OSTI]

306 LE RAYONNEMENT DES MANCHONS A INCANDESCENCE ; Par M. H. RUBENS1). 1. - INTRODUCTION. Les remarquables propriétés du manchon à incandescence Auer ont dès l'origine excité au plus haut point l été entreprises par Langley pour la lampe à incandescence au pétrole avec l'aide de ses bolomètres

Paris-Sud XI, Université de

70

PROCD RAPIDE POUR LA PHOTOMTRIE DES BECS A INCANDESCENCE PAR LE GAZ (1) ;  

E-Print Network [OSTI]

469 PROC√?D√? RAPIDE POUR LA PHOTOM√?TRIE DES BECS A INCANDESCENCE PAR LE GAZ (1) ; Par P. LAURIOL. Les essais des becs √† incandescence par le gaz destin√©s √† l'√©clai- rage public comportent un tr√®s pendant une s√©rie de mesures. On emploie une lampe √† incandescence √©lectrique dont on #12;471 maintint la

Paris-Sud XI, Université de

71

MISSION CATHODIQUE A L'INTRIEUR DES LAMPES A INCANDESCENCE ; par M. L. HOULLEVIGUE (1).  

E-Print Network [OSTI]

523 √?MISSION CATHODIQUE A L'INT√?RIEUR DES LAMPES A INCANDESCENCE ; par M. L. HOULLEVIGUE (1). I. Lorsqu'on survolte fortement une lampe √† incandescence √† filament de charbon, par exemple en mettant sous incandescent. ' , Fic.. 1. Tous ces effets peuvent √™tre attribu√©s, en premi√®re analyse, aux √©lectrons √©man√©s du

Boyer, Edmond

72

EA-1911: Energy Conservation Standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of a proposal to amend energy conservation standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps.

73

Fabrication of color tunable organic light-emitting diodes by an alignment free mask patterning method  

E-Print Network [OSTI]

that of the incandescent bulb and comparable with that of the fluorescent tube. OLEDs are a true sur- face/area lighting

74

DOE Requires Westinghouse to Cease Sales of Two Light Bulb Models...  

Broader source: Energy.gov (indexed) [DOE]

and Fuzhou Sunlight Lighting Electrical Appliance Company to allow the companies to resume sales of an incandescent reflector lamp basic model 50PAR30F (Westinghouse product...

75

Energy 101: Lighting Choices | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in your home to energy-saving incandescent, compact fluorescent lamp (CFL), or light emitting diode (LED) bulbs could save you about 50 per year. For more information on lighting...

76

Energy Savings and NOx Emissions Reduction Potential from the 2012 Federal Legislation to Phase Out Incandescent Lamps in Texas  

E-Print Network [OSTI]

Lamps in Texas Description Value Reference Total Housing Units in Texas in 2013: 10,204,056 Real Estate Center, Texas A&M University3, U.S. Census Bureau4 5 Average Lighting Electricity Usage per House: 1,946 kWh/yr NREL Building America Program6... Savings in Texas: 10,424,973 MWh/yr OSD CFL Savings in Texas: 28,562 MWh/day By 2013, it is estimated that total savings of 10,424,973 MWh/yr would be achieved from replacing incandescent lamps with compact fluorescent lamps (CFL) in residential...

Liu, Zi; Baltazar, Juan Carlos; Haberl, Jeff; Soman, Rohit

77

System Architecture Directions for a Software-Defined Lighting Infrastructure  

E-Print Network [OSTI]

spectrum of an outdoor environment and a typical fluorescent tube-lit office space. Indoor spectrum to incandescent and fluorescent lights. Unfortunately, the remarkable march of semiconductor technology a renaissance. The staple of illumi- nation for one and a half centuries, the incandescent bulb, is being phased

Dutta, Prabal

78

L'MISSION LECTRIQUE DU TUNGSTNE INCANDESCENT DANS UNE ATMOSPHRE D'IODE.  

E-Print Network [OSTI]

L'√?MISSION √?LECTRIQUE DU TUNGST√?NE INCANDESCENT DANS UNE ATMOSPH√?RE D'IODE. par S. KALANDYK'√©mission n√©gative du tungst√®ne; l'influence de l'iode est pr√©pond√©rante aux basses temp√©ratures d'incandescence 3. L vapeur d'iode augmente l'√©mis sion √©lectrique n√©gative du platine incandescent. L'influence de l'iode se

Paris-Sud XI, Université de

79

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump  

E-Print Network [OSTI]

, the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little...

Wang, Z.; Gu, J.; Lu, Z.

2006-01-01T23:59:59.000Z

80

Westinghouse Lighting: Order (2010-CE-09/1001)  

Broader source: Energy.gov [DOE]

DOE ordered Westinghouse Lighting Corporation to pay a $50,000 civil penalty after finding Westinghouse Lighting had failed to certify that certain models of general service flourescent and incandescent reflector lamps comply with the applicable energy conservation standards.

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

How Do You Save on Lighting Costs? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

LED lights are six to seven times more energy efficient than conventional incandescent lights, cut energy use by more than 80 percent and can last more than 25 times...

82

Have You Used LED Light Strings? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

read about LED holiday light strings, which can use 90% less energy than regular incandescent light strings. You may even be able to save on the initial costs with rebates from...

83

Lighting the Way to Serious Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

lighting, you can take a big bite out of that cost. Upgrading 15 of the inefficient incandescent light bulbs in your home could save you about 50 per year. Plus, most of the...

84

Creating computer generated scene lighting in the style of Edward Hopper  

E-Print Network [OSTI]

interior illumination to be the sole, dramatic source of light.Ē[12] The bright yellow incandescent light is the main source of light in the scene. Inside the right window, there is a shaded lamp that locally emits red light. Comparing the color... of the two window shades, the incandescent light is positioned a bit left of the center of the room. Most of the shading in the room and the buildingís interior made by the incandescent light is clear. There seems to be no light source coming from...

Jo, Hee Yeon

2008-10-10T23:59:59.000Z

85

FIELD TEST OF A HIGH-EFFICIENCY, AUTOMATIC-DEFROST REFRIGERATOR-FREEZER  

E-Print Network [OSTI]

#12;FIELD TEST OF A HIGH-EFFICIENCY, AUTOMATIC- DEFROST REFRIGERATOR-FREEZER By Richard F. Topping and manufacture pre-production units for home usage tests. The purpose of the field test and the associated market been promising. The first five months of field test data have shown an average 57% decrease in energy

Oak Ridge National Laboratory

86

What Light Bulbs Do You Use in Your Home? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blackout? LED lights are six to seven times more energy efficient than conventional incandescent lights, cut energy use by more than 80 percent and can last more than 25 times...

87

Commercialization of gallium nitride nanorod arrays on silicon for solid-state lighting  

E-Print Network [OSTI]

One important component in energy usage is lighting, which is currently dominated by incandescent and fluorescent lamps. However, due to potentially higher efficiencies and thus higher energy savings, solid-state lighting ...

Wee, Qixun

2008-01-01T23:59:59.000Z

88

Westinghouse Lighting: Proposed Penalty (2010-CE-09/1001)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Westinghouse Lighting Corporation failed to certify various flourescent and incandescent reflector lamps as compliant with the applicable energy conservation standards.

89

Today LED Holiday Lights, Tomorrow the World?  

SciTech Connect (OSTI)

This article for The APEM Advantage, the quarterly newsletter of the Association of Professional Energy Managers (APEM) describes the recent increase in the popularity of light emitting diode (LED) lighting and compares LED light output with that of incandescent and compact fluorescent lighting.

Gordon, Kelly L.

2004-12-20T23:59:59.000Z

90

Cost effective lighting  

SciTech Connect (OSTI)

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen-hours are determined for each lamp system. We find the most important lighting cost component is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial cost of $15.00, is the most cost effective source of illumination compared to the incandescent lamp and lamp systems examined. 3 refs., 6 tabs.

Morse, O.; Verderber, R.

1987-07-01T23:59:59.000Z

91

Lighting Options for Homes.  

SciTech Connect (OSTI)

This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

Baker, W.S.

1991-04-01T23:59:59.000Z

92

The Problem Conventional office lighting typically consists of bright fluo-  

E-Print Network [OSTI]

and undercabinet lights combined with incandescent or fluorescent task lights. This approach is not very energy-friendly, high-quality light- ing with a number of benefits. Reduced waste from fluorescent lights. Fluorescent, an already-efficient lighting system can save even more energy. If an employee leaves the office and forgets

93

Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products  

Broader source: Energy.gov [DOE]

This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL...

94

Numerical Modelling of Light Emission and Propagation in (Organic) LEDs with the Green's Tensor  

E-Print Network [OSTI]

light emitting diodes, light emission, light extraction, dipole radiation, stratified media, layered surpasses incandescent sources by a factor of 2 and with further improvements light emitting diodes could on light extraction techniques from inorganic light emitting diodes we recommend chapter 5 in 1 . Organic

Floreano, Dario

95

Bright prospects for lighting retrofits  

SciTech Connect (OSTI)

Great potential for energy savings can be found in the alleys, hallways and stairwells of multifamily buildings, but this potential is not always easy to realize. This article discusses the solution to common problems, retrofitting mistakes, retrofitting for savings, replacements for incandescent bulbs, better exit lights. 1 fig., 1 tab.

Hasterok, L. [Wisconsin Energy Conservation Corp., Madison, WI (United States)

1995-09-01T23:59:59.000Z

96

Field test of a high efficiency, automatic defrost refrigerator-freezer  

SciTech Connect (OSTI)

This paper describes the market evaluation and field test portion of a program to design, develop, and demonstrate a high efficiency, automatic defrosting refrigerator-freezer for the residential market. After the successful completion of Phase I of the program, which concentrated on the design, construction, and laboratory testing of a 453 1 (16 ft/sup 3/) high-efficiency refrigerator-freezer prototype, Phase II was initiated in February 1979 to evaluate the sales potential and performance of the high-efficiency refrigerator concept under field conditions, as a necessary step in creating a product that was both manufacturable and marketable. In Phase I, a survey of food consumption and storage trends, family size, and consumer buying habits led to a sales-weighted average-capacity forecast for 1985 of approximately 453 1 (16 ft/sup 3/) and identification of the top-mount, automatic defrosting refrigerator as the projected sales leader. To meet this market demand, a 453 1 (16 ft/sup 3/) top-mount was selected as the baseline for the Phase I design and development. In Phase II, a 509 1 (18 ft/sup 3/) unit using Phase I technology was chosen for the field test, since the slightly larger model better fit the participating manufacturer's new product development efforts and market.

Topping, R.F.; Vineyard, E.A.

1982-01-01T23:59:59.000Z

97

A theoretical study of the incandescent filament lamp performance under voltage flicker  

SciTech Connect (OSTI)

Incandescent filament lamp flicker, produced by voltage fluctuation, is a power quality problem that caused engineering concern since the onset of electrical illumination technology. The flicker phenomenon was analyzed and explained in early studies. Standards dealing with acceptable flicker levels are well known, nevertheless, today the discussion about flicker continues to be a top priority topic due to the fact that steady-state and transient voltage waveform distortion is a growing problem in low and medium voltage systems. In many situations voltage flicker is caused by subharmonics and interharmonics of voltage. Cycloconverters, welders and arc furnaces, eccentrically operating tools and integral cycle controlled power equipment are notorious for producing voltage flicker. The goal of this paper is to provide solid mathematical basis for the analytical modeling of incandescent filament lamp flicker when the voltage is nonsinusoidal. A mathematical model that enables the evaluation of the luminous flux modulation caused by noninteger harmonics (subharmonics and interharmonics) is presented. Three situations are detailed: square-wave voltage modulation, sinusoidal modulation and the case of noninteger harmonics with nearly contiguous frequencies.

Peretto, L. [Univ. of Bologna (Italy)] [Univ. of Bologna (Italy); Emanuel, A.E. [Worcester Polytechnic Inst., MA (United States)] [Worcester Polytechnic Inst., MA (United States)

1997-01-01T23:59:59.000Z

98

White light velocity interferometer  

DOE Patents [OSTI]

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1997-01-01T23:59:59.000Z

99

White light velocity interferometer  

DOE Patents [OSTI]

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1997-06-24T23:59:59.000Z

100

White light velocity interferometer  

DOE Patents [OSTI]

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

White light velocity interferometer  

DOE Patents [OSTI]

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1999-06-08T23:59:59.000Z

102

Linings with optimum heat-emission surfaces for cars receiving and transporting incandescent coke  

SciTech Connect (OSTI)

The least reliable components of the cars which receive and transport incandescent coke are the lining plates. This applies to both the quenching cars used for wet quenching and the hot-coke cars used in the dry cooling process. Technical advances have been described whereby the life of car linings is prolonged by increasing heat emission from the lining plate surfaces. As the heat emission level is enhanced the mean plate temperature is lowered and the lining life thereby prolonged; moreover, the between-servicings period is prolonged. This involves providing fins on the non-working (outer) plate surfaces. The problem of optimizing the size and shape of the fins with reference to heat emission remains unsolved: the requirement is maximum heat emission from plates of a given weight, or conversely minimum plate weight for a given heat emission level. 6 refs., 3 figs.

Kotlyar, B.D.; Pleshkov, P.I.; Gadyatskii, V.G. [and others

1992-12-31T23:59:59.000Z

103

Assessing the residential lighting efficiency opportunities in Guadalajara and Monterrey, Mexico  

SciTech Connect (OSTI)

Lighting, primarily with incandescent bulbs, is the major end use of electricity in Mexican homes. The introduction of compact fluorescent lamps (CFLs) could significantly reduce electricity use in lighting. We describe a survey of lighting use in homes of Guadalajara and Monterrey, Mexico, that was conducted to provide information to determine the potential for CDLs. The results show that 1/6 of the incandescent bulbs can be replaced with CFLs if only those bulbs used more than 4 hours per day are targeted. We also provide insights on conducting similar surveys in other developing countries.

Friedmann,R.; DeBuen,O; Sathaye,J.; Gadgil,A.; Saucedo,R.; Rodriguez,G.

1995-02-02T23:59:59.000Z

104

ENERGY EFFICIENT LIGHTING PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

socket for a standard incandescent lamp. Once the diffuserwhether the lamp is fluorescent or incandescent, Comparedto the incandescent lamp, the circline fluorescent improves

Berman, S.

2013-01-01T23:59:59.000Z

105

Economic Analysis of Ilumex, A Project to Promote Energy-Efficient Residential Lighting in Mexico  

E-Print Network [OSTI]

Results for Replaceable Incandescent Lamps GUADALAJARA:new pesoslkWh respectively. Incandescent bulb purchase iscompared to conventional incandescent lamps, but its much

Sathaye, Jayant A.

2008-01-01T23:59:59.000Z

106

Lighting energy management in industrial plants  

SciTech Connect (OSTI)

This paper provides some guidance to assist plant managers and engineers in managing their light energy problems. Incandescent, flourescent, and high-intensity discharge lamps are compared. Flourescent is still predominant, incandescent is not recommended-and HID is rapidly gaining favor. Lamp life and lumen depreciation must be determined. Light loss factors which are not recoverable are: luminaire ambient temperature, voltage to the luminaire, ballast factor, and luminaire surface dirt depreciation. Light loss factors which can be recovered by plant maintainence are: room surface dirt depreciation, lamp failures, lamp lumen depreciation, and luminaire dirt depreciation. A method to determine the savings that may result from group relamping versus spot replacement is given. Finally, energy management steps, to maximize performance, are listed.

Bachler, J.M.

1982-06-01T23:59:59.000Z

107

The Spectrum of Clean Energy Innovationinnovati nGreen Light-Emitting Diode Makes  

E-Print Network [OSTI]

- ing as an efficient solid-state light source, able to replace incandescent and compact fluorescent light bulbs in many applications. A new green LED from NREL may yield more efficient solid to accelerating market deployment, NREL works in partnership with private industry to drive the transformation

108

Environmental and health aspects of lighting: Mercury  

SciTech Connect (OSTI)

Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

Clear, R.; Berman, S.

1993-07-01T23:59:59.000Z

109

Advances in Lighting  

E-Print Network [OSTI]

colour rendition. The quartz-halogen incandescent lam s operate at higher temperatures, and have a somewhat higher efficacy, but they are rarely used except for special applicati ns. 3-2 High Intensity Discharge Lamps. Mercury is the grandfather... of the H.I.D. lamps. Its blue-green light, has been used almost exclusively for streetlighti and, often with colour-improving phospho it is still being used in industrial and commercial applications. Reactor-type ballasted mercury lamps can now...

Tumber, A. J.

1981-01-01T23:59:59.000Z

110

The effect of a synthetic cytokinin, 6-benzylaminopurine, and light quality on Ficus benjamina under low light intensities  

E-Print Network [OSTI]

of artificial light sources, the effects of the different wavelengths have become more important, as artificial light sources do not emi t as wide a spectrum as does natural sunlight. Cool white fluorescent tubes have a high blue licht component, while i... higher dry weight gain than fluorescent plus tungsten plus mercury or fluorescent plus mercury, or fluor scent alone (23). Incandescent bulbs are high in infrared irradiation compared to fluorescent light sources, and it has been found that infrared 1r...

Meadows, Sylvia Elise

1979-01-01T23:59:59.000Z

111

ENERGY EFFICIENT LIGHTING PRODUCTS NOTICE (2011-04-25) i ENERGY EFFICIENT LIGHTING PRODUCTS  

E-Print Network [OSTI]

Measurements ______ 22/E12* IES LM-45:1991 Incandescent Lamps - Electrical Measurements ______ 22/E13* IES LM-45:2000 Incandescent Lamps - Electrical Measurements ______ 22/E13a* IES LM-45:2009 Incandescent

112

Impending U.S. lighting standards will boost market for halogen-infrared lamps: New product line expanding  

SciTech Connect (OSTI)

Many of the incandescent floodlights and spotlights manufactured today will not meet lighting efficiency standards taking effect in the US in 1995. As these models cease production, demand will grow for higher efficiency units to fill this huge market, which now totals about 100 million lamps per year. One prime contender is a new class of halogen lamps that use a spectrally selective coating to reflect heat back onto the filament, reducing the amount of electricity needed to generate light. GE Lighting`s Halogen-IR line is the only series of such lamps currently available to replace the conventional floodlights and spotlights that will be banned by the new standards. Other manufacturers may adopt the technology, however, and the Japanese producer Ushio already sells in the US a line of smaller halogen lamps with a similar heat-reflective coating. In terms of efficacy and lifetime, Halogen-IR lamps out perform standard incandescents and standard halogens, but fall far short of fluorescent, metal halide, and high-pressure sodium sources. These other lighting systems are more appropriate and cost-effective than incandescents for many ambient lighting applications. For accent lighting and other tasks that are best suited to incandescent lighting, however, the Halogen-IR lamp is often a superior choice.

Sardinsky, R.; Shepard, M.

1993-12-31T23:59:59.000Z

113

The effects of expansion devices on the transient response characteristics of the air-source heat pump during the reverse cycle defrost  

E-Print Network [OSTI]

using fast and slow response TXVs and different diameter orifices. The overall performance of each test was analyzed as well as a detailed investigation . of the refrigerant dynamics. The results of the investigation for TXVs indicated bulb.../suction line contact was more critical to the response of the TXV than the internal bulb charge. The orifice investigation showed a general trend of faster defrost times with larger orifices, although the largest orifices allowed liquid refrigerant...

Peterson, Kurt T.

1988-01-01T23:59:59.000Z

114

Confocal microphotoluminescence of InGaN-based light-emitting diodes Koichi Okamoto,a  

E-Print Network [OSTI]

for conventional incandescent and fluorescent light bulbs.5 However, luminous efficacies of commercial white LEDs spectrum region, the external quantum efficiency ext of the LED has achieved 20% at room temperature 25 lm/W have been still lower than that of fluorescent tubes 75 lm/W . Thus, the most important re

Okamoto, Koichi

115

Development of a high-efficiency, automatic-defrosting refrigerator-freezer. Phase II. Field test. Volume III. Executive summary and task reports  

SciTech Connect (OSTI)

The second phase of the development of a high-efficiency, automatic-defrosting, refrigerator-freezer is described. Following the successful completion of Phase I (design, construction, and laboratory testing of a 16 ft/sup 3/ high efficiency refrigerator-freezer prototype), Phase II was initiated to evaluate sales potential and in-home performance as a necessary step in creating a product that was both manufacturable and marketable. Twenty-five pilot production 18 ft/sup 3/ units using prototype tooling were produced on the assembly line to confirm the feasibility of full-scale production. These units were then used in a market and field test program in which consumer appeal and in-home performance were assessed. The market evaluation confirmed that refrigerators incorporating high-efficiency features at added cost are saleable and that large capacity, automatic-defrosting, refrigerator-freezers will continue to capture a large portion of the market in the years ahead, The field test confirmed the in-home energy saving potential of a high efficiency, automatic-defrosting refrigerator-frezer utilizing advanced design features such as optimized, thick-wall, foam an average energy savings of 60% compared to a baseline unit of conventional design.

Topping, R.F.

1982-12-01T23:59:59.000Z

116

2014-04-11 Issuance: Energy Conservation Standards for General Service Fluorescent Lamps and Incandescent Reflector Lamps; Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking regarding energy conservation standards for general service fluorescent lamps and incandescent reflectors lamps, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on April 11, 2014.

117

Recessed light fixtures: Infiltration energy loss  

SciTech Connect (OSTI)

This article reports that a recent study revealed that fluorescent bulbs can reduce convective energy losses by 15--65% as compared to incandescent bulbs. Recessed light fixtures are commonly installed in offices and homes. However, a problem arises in homes when the fixtures are set in the ceiling such that the top of the light fixture is exposed to the unconditioned air in the attic. Because some air flow is necessary around the light to avoid overheating, the manufacturers do not make all the fixtures leak tight, only those that are rated for lower wattage bulbs. The need for cooling the fixture may conflict with some building efficiency codes.

Bennett, S.M.; Perez-Blanco, H. (Pennsylvania State Univ., University Park, PA (United States))

1994-06-01T23:59:59.000Z

118

Theoretical and experimental investigations into the particular features of the process of converting coal gas hydrocarbons on incandescent coke  

SciTech Connect (OSTI)

The prospects of the use of reducing gases in ferrous metallurgy and the possibilities for using them as a basis for coke production have been presented by the authors of the present article in the past. In the present report, the authors present certain results of theoretical and experimental investigations into the process of converting coal gas hydrocarbons on incandescent coke. The modification of the present-day method of thermodynamically calculating stable compositions of coking products, which was developed by the authors, has made it possible to apply it to specific chemical systems and process conditions not met with before, such as the conversion of hydrocarbons in mixtures of actual industrial gases (coal gas and blast furnace gas) in the presence of carbon and considerable amounts of hydrogen.

Zubilin, I.G.; Umanskii, V.E.

1984-01-01T23:59:59.000Z

119

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network [OSTI]

and general lighting incandescent services (GLIS) areLighting Phase out of incandescent lighting has been passedout of general service incandescent lamps (GSIL) which donít

Letschert, Virginie

2010-01-01T23:59:59.000Z

120

Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films  

E-Print Network [OSTI]

residential lighting using incandescent lights [2], as shownenergy used for the incandescent lamp is wasted as infraredlight source to replace incandescent lighting [1]. Figure

Tao, Jonathan Huai-Tse

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ENERGY EFFICIENT LIGHTING PRODUCTS TEST METHOD SELECTION LIST  

E-Print Network [OSTI]

:1991 Incandescent Lamps - Electrical Measurements ______ 22/E13* IES LM-45:2000 Incandescent Lamps - Electrical Measurements ______ 22/E13a* IES LM-45:2009 Incandescent Lamps - Electrical Measurements ______ 22/E14 IES LM

122

Radioluminescent (RL) airfield lighting system program  

SciTech Connect (OSTI)

In 1980, the US Air Force Engineering and Services Center (AFESC) at Tyndall Air Force Base, Florida, requested that the Radioisotope Technology Group of Oak Ridge National Laboratory (ORNL) develop large-scale, tritium-powered, radioluminescent (RL) airfield lighting systems. The RL lighting systems possess the advantages of being portable, requiring no electrical power source, having a long shelf life, and being unaffected by environmental extremes. These characteristics make the RL system well-suited for harsh environments where the cost of electrical power production is high and traditional incandescent airfield lighting systems are difficult to maintain. RL lighting is typically a large-surface-area, low-intensity light source that operates 100% of the time. The RL light sources gradually decrease in brightness over time, so periodic replacement (every 6 to 8 years) is necessary. RL lighting functions best in low ambient light, which provides the high contrast ratios necessary for successful use of these devices. 12 figs., 8 tabs.

Tompkins, J.A. (Westinghouse Electric Corp., Las Vegas, NV (USA)); Haff, K.W.; Schultz, F.J. (Oak Ridge National Lab., TN (USA))

1990-09-01T23:59:59.000Z

123

Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards  

E-Print Network [OSTI]

and lighting dominantly incandescent. LED) replace Althoughare similar, LED incandescent efficacies are expected toUse (TWh) a Lighting (incandescent, including reflector

Garbesi, Karina

2011-01-01T23:59:59.000Z

124

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

out of inefficient incandescent light bulbs‚ÄĚ, informationof a complete phasing out of incandescent lamps by 2009. Theof an import restriction on incandescent general lighting

McNeil, MIchael

2011-01-01T23:59:59.000Z

125

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network [OSTI]

52LPW assuming 80% incandescent @14LPW goes to CFL @52LPWthan the traditional incandescent lighting it is replacingbest technology Lighting Incandescent, fluorescent, LED

Garbesi, Karina

2012-01-01T23:59:59.000Z

126

Solid-state lighting technology perspective.  

SciTech Connect (OSTI)

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

2006-08-01T23:59:59.000Z

127

Laboratory Ventilation SafetyLaboratory Ventilation Safety J. Scott WardJ. Scott Ward  

E-Print Network [OSTI]

the incandescent light bulb in 1879.incandescent light bulb in 1879. #12;First Labconco Hood 1936First Labconco

Farritor, Shane

128

Compact light source performance in recessed type luminaires  

SciTech Connect (OSTI)

Photometric comparisons were made with an indoor, recessed, type luminaire using incandescent, high intensity discharge and compact fluorescent lamps. The test results show substantial performance advantages, as expected, for the discharge light sources where the efficacy gains can be in the order for 400% even when including the ballast losses associated with the discharge lamps. The candlepower distribution patterns emerging from these luminaries are also different from those associated with the baseline incandescent lamps, and which are in some ways, even more desirable from a uniformity of illuminance perspective. A section on fluorescent lamp starting is also included which describes a system having excellent starting characteristics in terms of electrode starting temperature (RH/RC technique), proper operating frequency to minimize unwanted IR interactions, and satisfactory current crest factor values to help insure life performance.

Hammer, E.E.

1998-11-01T23:59:59.000Z

129

Building Technologies Program - 1995 Annual Report  

E-Print Network [OSTI]

more efficient than typical incandescent lamps (17 lpw),near term with the ubiquitous incandescent light bulb in theyet fit in virtually any incandescent socket. Emboldened by

Selkowitz, S.E.

2010-01-01T23:59:59.000Z

130

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

lighting (replacement of incandescent lamps with CFLs) withof each type of lamp: incandescent; fluorescent tubes; andless consumptive than incandescent bulbs. Second, it impacts

McNeil, Michael A

2008-01-01T23:59:59.000Z

131

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

2000: Lighting Type Incandescent Fluorescent CFL Percentagescenario, we assume that incandescent bulbs are graduallyW 60W 15W Fluorescent Lamps Incandescent Lamps CFL We then

Letschert, Virginie

2010-01-01T23:59:59.000Z

132

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

energy consumed by an incandescent bulb is emitted in thefluorescent (CFL), and incandescent lights typically arelamps in place of incandescent bulbs in most cases; and

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

133

Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts  

E-Print Network [OSTI]

lighting, we assume that incandescent bulbs have a one-yeargigaton Indonesia India incandescent Lamp Japan Koreaprice data for 60-watt incandescent bulbs, excluding non-

Letschert, Virginie E.

2013-01-01T23:59:59.000Z

134

Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants  

E-Print Network [OSTI]

fluorescent (CFL), and incandescent lights are typicallyhours) Applications Incandescent Task Halogen Task CFL TaskCenter of Wisconsin. Replace incandescent lamps with compact

Worrell, Ernst

2010-01-01T23:59:59.000Z

135

Making the Market Right for Environmentally Sound Energy-Efficient Technologies: U.S. Buildings Sector Successes that Might Work in Developing Countries and Eastern Europe  

E-Print Network [OSTI]

than their 100-year old incandescent ancestors. However,Hz core-coil ballasts. Incandescent lighting consumes aboutthe developing world, incandescent lamps drive peak demand,

Gadgil, A.J.

2008-01-01T23:59:59.000Z

136

New Lighting Fixtures: Combining Creativity and Style with Energy Efficiency  

SciTech Connect (OSTI)

This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescent lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.

Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

2004-10-01T23:59:59.000Z

137

The Specter of Fuel-Based Light  

SciTech Connect (OSTI)

Contemporary questions about sustainable energy and development converge in unexpected ways around a technology that is at once an echo of the past and yet very much a part of the present: fuel-based lighting in the developing world. An emerging opportunity for reducing the global costs and greenhouse-gas emissions associated with this highly inefficient form of lighting energy use is to replace fuel-based lamps with white solid-state (''LED'') lighting, described in this Policy Forum, which can be affordably solar-powered. Doing so would allow those without access to electricity in developing world to affordably leapfrog over the prevailing incandescent and fluorescent lighting technologies in use today through the electrified world.

Mills, Evan

2005-05-16T23:59:59.000Z

138

City of Phildelphia: Light emitting diodes for traffic signal displays  

SciTech Connect (OSTI)

This project investigated the feasibility of using light emitting diodes (LEDs) for red traffic signals in a demonstration program at 27 signalized intersections in the City of Philadelphia. LED traffic signals have the potential to achieve significant savings over standard incandescent signals in terms of energy usage and costs, signal relamping costs, signal system maintenance costs, tort liability, and environmental impact. Based on successful experience with the demonstration program, the City of Philadelphia is currently developing funding for the conversion of all existing red incandescent traffic signals at approximately 2,700 intersections to LED signals. This program is expected to cost approximately $4.0 million and save about $850,000 annually in energy costs. During late 1993 and early 1994, 212 red LED traffic signals (134 8-inch signals and 78 12-inch signals) were installed at 27 intersections in Philadelphia. The first group of 93 signals were installed at 13 prototypical intersections throughout the City. The remaining group of signals were installed on a contiguous route in West Philadelphia consisting of standard incandescent signals and LED signals interspersed in a random pattern.

NONE

1995-12-01T23:59:59.000Z

139

Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design  

E-Print Network [OSTI]

LED) replace conventional incandescent lighting Heat pumpreplacing Only the residential sector remains incandescentdominantly incandescent. Although bulbs, primarily in LED

Desroches, Louis-Benoit

2012-01-01T23:59:59.000Z

140

Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon  

SciTech Connect (OSTI)

In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOEís Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kineticsí eWģ Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixtureís light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

2008-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

LED traffic lights: New technology signals major energy savings  

SciTech Connect (OSTI)

Using light-emitting diode technology to replace incandescent lamps in traffic signals promises energy savings upwards of 60 percent for each of the estimated quarter of a million controlled intersections in the United States. LED units use only 9 to 25 watts instead of the 67 to 150 watts used by each incandescent lamp. Though their first cost is relatively high, energy savings result in paybacks of 1 to 5 years. LED retrofit kits are available for red signal disks and arrows, and installations in several states have proven successful, although minor improvements are addressing concerns about varying light output and controller circuitry. Retrofitting green lamps is not yet feasible, because color standards of the Institute of Traffic Engineers cannot be met with existing LED technology. Yellow lamps have such low duty factors (they`re on only 3 percent of the time) that retrofitting with LED signals is not cost-effective. LEDs last much longer than incandescents, allowing municipalities to not only reduce their electricity bills, but to save on maintenance costs as well. As further incentive, some utilities are beginning to implement rebate programs for LED traffic signal retrofits. Full approval of LED units is still awaited from the Institute of Traffic Engineers (ITE), the standard-setting body for traffic safety devices. Local and state governments ultimately decide what specifications to require for traffic lights, and the growing body of successful field experience with LEDs appears to be raising their comfort level with the technology. The California Department of Transportation is developing an LED traffic light specification, and two California utilities, Southern California Edison and Pacific Gas and Electric, have provided rebates for some pilot installations.

Houghton, D.

1994-12-31T23:59:59.000Z

142

Semiconductor Nanocrystals-Based White Light Emitting Diodes  

SciTech Connect (OSTI)

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

Dai, Quanqin [ORNL; Hu, Michael Z. [ORNL; Duty, Chad E [ORNL

2010-01-01T23:59:59.000Z

143

High Hats, Swiss Cheese, and Fluorescent Lighting?  

SciTech Connect (OSTI)

For DOE, PNNL is conducting a competitive procurement to promote market introduction of new residential recessed downlights (also known as ''recessed cans'' or ''high hats'') that are airtight, rated for insulated ceilings, and hard-wired for CFLs. This paper discusses the potential energy savings of new high-efficiency downlights, and the results of product testing to date. Recessed downlights are the most popular residential lighting fixtures in the United States, with 21.7 million fixtures sold in 2000. An estimated 350 million are currently installed in American homes. Recessed cans are relatively inexpensive, and provide an unobtrusive, directed source of light for kitchens, hallways, and living rooms. Recessed cans are energy-intensive in three ways. First, virtually all recessed cans currently installed in the residential sector use incandescent light sources, typically reflector-type lamps drawing 65-150 watts. Second, heat from incandescent lamps adds to air-conditioning loads. Third, most installed recessed cans are not airtight, so they allow conditioned air to escape from the living area into unconditioned spaces such as attics. Addressing both lighting energy use and air leakage in recessed cans has proven challenging. Lighting energy efficiency is greatly improved by using CFLs. Air leakage can be addressed by making fixtures airtight. But when CFLs are used in an airtight recessed can, heat generated by the lamp and ballast is trapped within the fixture. Excessive heat causes reduced light output and shorter lifespan of the CFL. The procurement was designed to overcome these technical challenges and make new products available in the marketplace.

McCullough, Jeffrey J.; Gordon, Kelly L.

2002-08-30T23:59:59.000Z

144

Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes  

E-Print Network [OSTI]

incandescent bulbs and fluorescent bulbs). Solid-stateindex (CRI) than fluorescent bulbs. Common examples where

Fina, Michael Dane

2012-01-01T23:59:59.000Z

145

Semiconductor-Nanocrystals-Based White Light-Emitting Diodes  

SciTech Connect (OSTI)

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

Dai, Quanqin [ORNL; Duty, Chad E [ORNL; Hu, Michael Z. [ORNL

2010-01-01T23:59:59.000Z

146

ZIRCONIUM AND HAFNIUM--2000 87.1 ZIRCONIUM AND HAFNIUM  

E-Print Network [OSTI]

glow of incandescent lighting. The incandescent lamp mantle industry was established in 1884 with a brilliant white incandescence. With the advent of the electric incandescent lamp around 1912, zirconia's use

147

Metacapacitors for LED Lighting: Metacapacitors  

SciTech Connect (OSTI)

ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

None

2010-09-02T23:59:59.000Z

148

Peak Power Reduction Strategies for the Lighting Systems in Government Buildings  

E-Print Network [OSTI]

PEAK POWER REDUCTION STRATEGIES FOT THE LIGHTING SYSTEMS IN GOVERNMENT BUILDINGS Dina AlNakib CLEP, Dr. Ahmad Al-Mulla CEM, Gopal Maheshwari Department of Building and Energy Technologies Environment and Urban Development Division Kuwait... begins at 7:30 h and ends between 14:00 and 15:30 h. Lighting systems in MC building comprise mostly of T12 fluorescent tubes with magnetic ballasts, compact fluorescent lamps (CFLs) and incandescent lamps with a total connected load of 2,900 k...

Al-Nakib, D.; Al-Mulla, A. A.; Maheshwari, G. P.

2010-01-01T23:59:59.000Z

149

THE HISTORY AND TECHNICAL EVOLUTION OF HIGH FREQUENCY FLUORESCENT LIGHTING  

E-Print Network [OSTI]

B L U E , G R E E N , INCANDESCENT FORM OF LAMPS OF VARIOUSTHE E F F I C I E N C Y INCANDESCENT A P P L I C A T I O N SI M E S , DEPENDING THE THE INCANDESCENT GENERAL LAMPS. THE

Campbell, John H.

2011-01-01T23:59:59.000Z

150

Recessed Lighting in the Limelight  

SciTech Connect (OSTI)

Recessed downlights are among the most popular installed lighting fixtures for new and remodeled homes. DOE estimates there are at least 350 million currently installed in US homes, and around 20 million are sold each year. A recent California study showed only 0.4 percent of recessed cans used compact fluorescent lamps. Annual reported sales of fluorescent residential recessed downlights nationwide make up no more than three percent of total residential recessed downlight sales. Standard recessed downlights waste energy by leaking conditioned air to unconditioned attic space, and using less efficient, high-heat incandescent bulbs. 33 states have adopted building codes that require recessed cans installed in the building shell to be airtight. To encourage lighting fixture manufacturers to bring to market high-efficiency air-tight recessed cans, DOE is sponsoring the recessed downlights project. PNNL solicited bids for energy efficient recessed downlights meeting the following specifications: They must use pin-based CFLs, have an airtight housing, be IC-rated, use electronic ballasts, and have a light output minimum of 900 initial lumens. PNNL did short- and long-term testing of the submitted lamps and negotiated lower prices for consumer purchase of qualifying models.

Gordon, Kelly L.; McCullough, Jeffrey J.

2003-02-01T23:59:59.000Z

151

Estimate of federal relighting potential and demand for efficient lighting products  

SciTech Connect (OSTI)

The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

1993-11-01T23:59:59.000Z

152

Replacement Costs and Cleaning & Service Charges for ResidenceHalls  

E-Print Network [OSTI]

Incandescent Light Fixture $130.00 each Incandescent Light Fixture Globe $82.00 each Exit Sign $440.00 each

Shyy, Wei

153

Conservation Potential of Compact Fluorescent Lamps in India and Brazil  

E-Print Network [OSTI]

38 TWh, 10% of which was for incandescent lighting (Fig. 3).The electricity consumed in incandescent lighting can be300 and 400 million incandescent lamps in the country. Let

Gadgil, A.J.

2008-01-01T23:59:59.000Z

154

Solid-state lighting : lamp targets and implications for the semiconductor chip.  

SciTech Connect (OSTI)

A quiet revolution is underway. Over the next 5-10 years inorganic-semiconductor-based solid-state lighting technology is expected to outperform first incandescent, and then fluorescent and high-intensity-discharge, lighting. Along the way, many decision points and technical challenges will be faced. To help understand these challenges, the U.S. Department of Energy, the Optoelectronics Industry Development Association and the National Electrical Manufacturers Association recently updated the U.S. Solid-State Lighting Roadmap. In the first half of this paper, we present an overview of the high-level targets of the inorganic-semiconductor part of that update. In the second half of this paper, we discuss some implications of those high-level targets on the GaN-based semiconductor chips that will be the 'engine' for solid-state lighting.

Tsao, Jeffrey Yeenien

2003-08-01T23:59:59.000Z

155

Energy Efficiency Through Lighting Upgrades  

SciTech Connect (OSTI)

Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year√?¬Ę√?¬?√?¬?s average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

Kara Berst; Maria Howeth

2010-06-01T23:59:59.000Z

156

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

157

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

158

OLEDS FOR GENERAL LIGHTING  

SciTech Connect (OSTI)

The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

2004-02-29T23:59:59.000Z

159

Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE...  

Office of Science (SC) Website

Impact Understanding "droop" may result in cheaper, more efficient LEDs; LEDs are more energy efficient, smaller, and longer-lived than incandescent lamps or fluorescent...

160

EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

less than three years. * Replace conventional incandescent exit signs with LED (light-emitting diode) exit signs. LEDs use at least 75 percent less energy than incandescent bulbs....

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network [OSTI]

Appliance type Standard technology DC-internal best technology Lighting Incandescent, fluorescent, LED Incandescent Electronic Heating Heater Electric resistance Cooling Motor (& compressor,

Garbesi, Karina

2012-01-01T23:59:59.000Z

162

E-Print Network 3.0 - ave lamp margareete Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . . . . . . . . . . . . . . . . . . .1 1.1 A-lamps... Problems Are you using incandescent A-lamps? Incandescent lamps are one of the most inefficient lighting... sources...

163

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

type of lighting bulb (incandescent, fluorescent), number ofof incandescent bulbs and fluorescent tubes per household,incandescent bulbs of 60W and 2.1 fluorescent tubes of 40W

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

164

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

type of lighting bulb (incandescent, fluorescent), number ofhouseholds possessed 3.2 incandescent bulbs of 60W and 2.1areas versus only 2.1 incandescent bulbs of 60W and 1.5

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

165

PROJECTS IMPLEMENTED The City focused on improving the efficiency of  

E-Print Network [OSTI]

· Replacing incandescent exit signs with new light emitting diode signs · Replacing the existing chiller

166

RARE EARTHS By James B. Hedrick  

E-Print Network [OSTI]

and incandescent lighting remained stable. Yttrium was used primarily in lamp and cathode ray tube phosphors

167

Solid-State lighting ReSeaRch & development at Sandia national laboRatoRieS  

E-Print Network [OSTI]

illumination via interface with microelectronics. MASSIVE ENERGY SAVINGS Incandescent and fluorescent lamps% efficient. Today's commercially available white LEDs are already five times as efficient as incandescent--or 10-15 times that of incandescent bulbs and 2-3 times that of fluorescents. BIG BOTTOM-LINE PAYOFF

168

Imaging Overview For understanding work in computational  

E-Print Network [OSTI]

absorbs some light 5 #12;6 #12;Other typical light sources · Incandescent light source ­ Produced absorb UV light and produce visible light. 7 #12;Incandescent sources Power spectrum of common light

California at Santa Barbara, University of

169

Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade  

DOE Patents [OSTI]

A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

Siminovitch, Michael J. (Pinole, CA); Page, Erik R. (Berkeley, CA)

2002-01-01T23:59:59.000Z

170

Sustainable LED Fluorescent Light Replacement Technology  

SciTech Connect (OSTI)

Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle Ė i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: ē Bill-of-Materials (BOM) Builder Ė Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. ē Environmental Impact Review Ė Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. ē Drill-down Review Ė These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

None

2011-06-30T23:59:59.000Z

171

Commercial Lighting  

Broader source: Energy.gov [DOE]

Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

172

4024 Inorg. Chem. 1987, 26, 4024-4029 Contribution from the Departments of Chemistry, Colgate University, Hamilton, New York 13346,  

E-Print Network [OSTI]

and laboratory fluorescent light and during nights to light from a 150-W incandescent bulb 20 cm from the pair

Herbert, Bruce

173

Supplementary Material for: Application of Synchrotron Radiation for Measurement of Iron Red-ox  

E-Print Network [OSTI]

@engr.wisc.edu #12;Incandescent Light Bulb Spectrum Figure 1 Visible Light Fluorescent Light Bulb Spectrum #12;Figure 2 Visible Light Incandescent Light Bulb Spectrum #12;Figure 3 Unmodified XANES Spectrum February 14 of the incandescent lights used for aging the atmospheric aerosols. The units are in m / S / m2 / nm. Figure 3

Meskhidze, Nicholas

174

Smart Lighting Controller!! Smart lighting!  

E-Print Network [OSTI]

1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

Anderson, Betty Lise

175

Resource Use Efficiency Dr. Ernst von Weizscker  

E-Print Network [OSTI]

LEED building #12;Energy efficiency From incandescent light bulbs to solid state lighting #12;Modern make it happen? CAFE standards Building codes Banning incandescent light bulbs Banning water wasting

Keller, Arturo A.

176

Funding Sustainable Initiatives: Should Williams Implement a Revolving Loan Fund?  

E-Print Network [OSTI]

to replace its incandescent light bulbs with more efficient compact fluorescent (CFL) light bulbs. These light bulbs use 2/3 less energy than #12;Terra 4 standard incandescent bulbs, but they are more

Aalberts, Daniel P.

177

Geaux Green: GREEN GUIDE  

E-Print Network [OSTI]

account. Make a switch Replace incandescent light bulbs with energy-efficient compact fluorescent lights. Remember: You should always turn your lights off regardless if they are incandescent bulbs or CFLs. Take

Harms, Kyle E.

178

Table Set-up with Materials near Lamp Stand (below) Target Audience: Parents of elementary school students (grades 3-6) and Middle and High School Students  

E-Print Network [OSTI]

spectrum with different light sources; compact fluorescent, LED, incandescent. 5. Discuss light bulb. Observe difference of color spectrum with different light sources; compact fluorescent, LED, incandescent type of bulb at different horizontal level. Electromagnetic Spectrum handouts that includes spectrum

Linhardt, Robert J.

179

Commercial Lighting and LED Lighting Incentives  

Broader source: Energy.gov [DOE]

Incentives for energy efficient commercial lighting equipment as well as commercial LED lighting equipment are available to businesses under the Efficiency Vermont Lighting and LED Lighting...

180

Lighting Market Sourcebook for the U.S.  

E-Print Network [OSTI]

2.1.4. Residential Lamp Types 2.1.5. Wattage, Hours of Use,all lamp types (mostly incandescent) in all other wattageWattage Category Energy Use (hours per day) lamp types)

Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lighting Renovations  

Broader source: Energy.gov [DOE]

When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

182

Cerenkov Light  

ScienceCinema (OSTI)

The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

Slifer, Karl

2014-05-22T23:59:59.000Z

183

Cerenkov Light  

SciTech Connect (OSTI)

The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

Slifer, Karl

2013-06-13T23:59:59.000Z

184

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect (OSTI)

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

185

Energy-Saving Incandescents | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District |Department

186

Energy-Saving Incandescents | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting JobsClean EnergyAcross U.S. Industry

187

geoffrey iwata phy h190phy h190  

E-Print Network [OSTI]

through 2014 Effectively bans the manufacturing and importing of most current incandescent light bulbsmost current incandescent light bulbs Rationale: 22% of US electricity consumption due to lighting Wikipedia.org #12;What are the Light Bulb Wars Should incandescent bulbs be banned from production? ? #12

Budker, Dmitry

188

DUAL USE OF LEDS: SIGNALING AND COMMUNICATIONS IN ITS Grantham Pang, Chi-ho Chan, Hugh Liu, Thomas Kwan  

E-Print Network [OSTI]

of light-emitting diodes (LEDs) over incandescent lights is well-supported. This is due to their high shown that the high brightness LEDs are significantly brighter than the incandescent lights lights with LEDs is a reduction in power consumption [7]. In addition, incandescent traffic signals burn

Pang, Grantham

189

Self-metallization of photocatalytic porphyrin nanotubes Zhongchun Wang,,  

E-Print Network [OSTI]

, placed in a glass water bath to control the temperature, and then irradiated with incandescent light (800 bath to control the temperature, and then irradiated with incandescent light (800 nmol cm-2 s-1 ). When

Shelnutt, John A.

190

Development of an Open-Source Smart Energy House for K-12 Education  

E-Print Network [OSTI]

around the world, incandescent lighting are becoming banned, because of the low efficiency. For example, through European commission regulation 244/2009 [4], re- cently all sales of incandescent light became

191

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

high temperature, so high that the material will emit light, that is, glow like an incandescent light bulb. That is exactly what an incandescent bulb is: current passing through a...

192

CX-004962: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

halide light fixtures in the City Hall and Community Center parking lots with light-emitting diode (LED) light fixtures; and 3) replace incandescent light bulbs on traffic...

193

HiRho CCD INTERNAL NOTE 31 October 1996  

E-Print Network [OSTI]

by incandescent light) exposure with the Keck low­resolution spectrograph, divided by the same frame averaged over

194

Power Factor Reactive Power  

E-Print Network [OSTI]

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

195

NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT  

SciTech Connect (OSTI)

This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color rendering index (CRI) greater than 90; the CRI of current commercial CFLs are in the low 80s. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

Alok Srivastava; Anant Setlur

2003-04-01T23:59:59.000Z

196

Light Computing  

E-Print Network [OSTI]

A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

Gordon Chalmers

2006-10-13T23:59:59.000Z

197

Energy Effective Courtroom Lighting: An Analysis of Existing Conditions and Recommended Improvements  

SciTech Connect (OSTI)

Providing high quality and energy efficient lighting in courtrooms is a complex task, and it represents a greater challenge than most other Federal space types. Energy efficient lighting in courtrooms must be accomplished with no sacrifice in quality; efficiency must be effectively invisible to the occupants. The Whole Building Design Guide puts forth the goals well: ďAs the preeminent symbol of Federal authority in local communities, a Federal courthouse must express solemnity, stability, integrity, rigor and fairness.Ē The courtrooms themselves must have a sense of majesty and be aesthetically inspiring. When paired with the visual needs in a courtroomógiven the wide variety of tasks and the critical nature of the courtroom proceedingsóone has a challenge indeed. In consideration of these issue, this report reviews existing conditions in courtrooms and provides specific guidance about solutions that will accomplish the dual objectives of high quality and energy efficiency. The material covers all aspects of courtroom lighting, including design criteria, design and application strategies, energy efficient technologies, procurement and team selection, design process and implementation, and education. A detailed energy analysis was performed to develop a baseline for energy consumption in courtroom lighting, and the primary root cause was found to be a high use of incandescent technology. Point-by-point calculations were completed to provide an energy efficient alternative that met the high level of criteria for performance in courtrooms. Additional detailed guidance has been provided in the spirit of a holistic solution. It is hoped and anticipated that the recommended solutions will transform courtroom lighting towards both energy efficiency and high quality lighting. This is more important than ever before given the passage of the Energy Policy Act of 2005, which significantly changes the energy usage requirements in Federal Buildings. Ultimately it is possible to support the critical and high stakes proceedings in courtrooms while still meeting the civic duty of designing for energy efficiency and sustainability.

Jones, Carol C.; Richman, Eric E.

2006-03-31T23:59:59.000Z

198

Lighting Inventory Lighting Theatre and Drama  

E-Print Network [OSTI]

Lighting Inventory Lighting Theatre and Drama Description Totals R.Halls Wells- Metz Light ERS ETC SourceFour 25 25 50 degree ERS Strand Lighting 64 14 24 12 14 36 degree ERS ETC Source Four 15 15 36 degree ERS Strand Lighting 124 60 58 2 4 26 degree ERS ETC SourceFour 2 2 26 degree ERS Strand

Indiana University

199

Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocks and the climateLife a Light

200

Light' Darkness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocks and the climateLifeLight to

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Residential Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. EnergyEnergy EfficiencyLighting

202

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Light Water Reactor Sustainability Program ACCOMPLISHMENTS REPORT 2013 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

203

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

204

Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile  

SciTech Connect (OSTI)

Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrence Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The Life-Cycle Cost (LCC) calculation examines costs and benefits from the perspective of the individual household; and (2) The National Perspective projects the total national costs and benefits including both financial benefits, and energy savings and environmental benefits. The national perspective calculations are called the National Energy Savings (NES) and the Net Present Value (NPV) calculations. PAMS also calculate total emission mitigation and avoided generation capacity. This paper describes the data and methodology used in PAMS and presents the results of the proposed phase out of incandescent bulbs in Chile.

Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto; Ruiz, Ana Maria; Pavon, Mariana; Hall, Stephen

2011-06-01T23:59:59.000Z

205

DOE/LX/07-0087&D1 Secondary Document DMSA C-333-41 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

included welding rods, solder, a Nissen metal marker, fluorescent light starters, incandescent light bulbs and ends, fluorescent light bulb ends, miscellaneous lead pieces, and...

206

Microsoft Word - SWMU 542  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical wire, metal light fixtures & ballasts, mercury vapor lights and incandescent lights. WASTE QUANTITY: 542a - Approximately 35 ft 3 . 542b - Approximately 75 ft 3...

207

DOE/LX/07-0323&D1 Secondary Document DMSA C-333-15 and DMSA C...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

waste formerly stored consisted of a fuse, circuit boards, light bulbs, broken incandescent light bulbs, a light starter, and a container of hand table sludge. The Toxic...

208

CX-000135: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

involve changing the Tribe's street lights from incandescent bulbs to LED (light-emitting diode) lighting fixtures. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000135.pdf More...

209

Lesson Summary In this lesson, students will build an open spectrograph to  

E-Print Network [OSTI]

lines/mm or 25,400 groves/in) · Incandescent flashlight with focusing beam · Ruler · Meter stick · Exact students look through a diffraction grating toward an incandescent light bu

Mojzsis, Stephen J.

210

Slutrapport for PSO 337-068 Udvikling af LED lyskilder og lamper  

E-Print Network [OSTI]

and RGB Lamps. The objective of this project was to pave the way for replacement of incandescent LED light source with an efficacy of 51 lm/W and a CRI index of 92 that can replace an incandescent

211

September 2007 21 commonplace," predicted Shinichiro  

E-Print Network [OSTI]

enough and their lifetime is longer than those of conventional incandescent lamps and fluorescent lights." Also, he noted, LEDs' power efficiency is greater than that of incandescent lamps and about same

Lu, Chenyang

212

ELIZABETH H. AMARAL and H. ARNOLD CARR Experimental Fishing for Squid  

E-Print Network [OSTI]

south- ern California became dependent upon lamps, principally the incandescent type, combined under I,OOO-watt incandescent lights!. However, the squid never Introduction July-A ugusl 1980 51 #12

213

New Years Revolutions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CFLs, energy-saving incandescents, and LEDs - and upgrading 15 of the inefficient incandescent light bulbs in your home could save you about 50 per year. And if you haven't...

214

PipelineJuly 2012 Volume 4, Issue 4 (From President Kaler's June 14 e-mail)  

E-Print Network [OSTI]

the LightEnergy Management seeks incandescent and T12 lamps Energy Management Senior Engineer Alicia inefficient light sources. Although the vast majority of the campus's number one offenders -- incandescent fluorescent lamps and classic incandescent A-lamps. T12's can be identified by their "fat" appearance (1

Webb, Peter

215

The answer to this question may be found in the following Confucian proverb  

E-Print Network [OSTI]

principle: when you get something hot, it glows. The hot wire filament inside an incandescent light bulb clear incandescent Christmas tree lights · Infrared goggles (optional) Please don't use this activity with incandescent bulbs takes much more power input, and so they'll need to work quite a bit harder. Doing

Hardy, Darel

216

Basic Circuit Measurements and Ohm's Law ECE 2100 Circuit Analysis Laboratory  

E-Print Network [OSTI]

, _______ W low-wattage incandescent light bulb. Also, measure and record the "cold" resistance of such a bulb. 6. Construct the circuit below using the low-wattage incandescent bulb of step 5. Use the Variac frequency. 7. Repeat steps 5 and 6 using a high-wattage incandescent light bulb rated at 120 VAC, ______ W

Miller, Damon A.

217

Sustainable Office Lighting Options  

E-Print Network [OSTI]

Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

Massachusetts at Amherst, University of

218

Mobile lighting apparatus  

DOE Patents [OSTI]

A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

2013-05-14T23:59:59.000Z

219

Evaluation of White Light Sources For an Absolute Fiber Optic Sensor Readout System  

SciTech Connect (OSTI)

This report summarizes work done in pursuit of an absolute readout system for Fabry-Perot optics sensors such as those built both by FISO and LLNL. The use of white light results in a short coherence length reducing the ambiguity of the Fabry-Perot gap measurement which is required to readout the sensor. The light source coherence length is the critical parameter in determining the ability to build a relative or an absolute system. Optical sources such as lasers and LEDs are rather narrow in optical spectral bandwidth and have long coherence length. Thus, when used in interferometric sensor measurements, one fringe looks much like another and it is difficult to make an absolute measurement. In contrast, white light sources are much broader in spectral bandwidth and have very short coherence lengths making interferometry possible only over the coherence length, which can be 1 or 2 microns. The small number of fringes in the interferogram make it easier to calculate the centroid and to unambiguously determine the sensor gap. However, unlike LEDs and Lasers, white light sources have very low optical power when coupled into optical fibers. Although, the overall light output of a white light source can be hundreds of milliwatts to watts, it is difficult to couple more than microwatts into a 50-micron core optical fiber. In addition, white light sources have a large amount of optical power in spectrum that is not necessarily useful in terms of sensor measurements. The reflectivity of a quarter wave of Titanium Oxide is depicted in Figure 2. This coating of Titanium Oxide is used in the fabrication of the sensor. This figure shows that any light emitted at wavelengths shorter than 600 nm is not too useful for the readout system. A white light LED spectrum is depicted in Figure 3 and shows much of the spectrum below 600 nm. In addition Silicon photodiodes are usually used in the readout system limiting the longest wavelength to about 1100 nm. Tungsten filament sources may have much of their optical power at wavelengths longer than 1100 nm, which is outside the wavelength range of interest. An incandescent spectrum from a tungsten filament is depicted in Figure 4. None of this is to say that other types of readout systems couldn't be built with IR detectors and broadband coatings for the sensors. However, without reengineering the sensors, the wavelength restrictions must be tolerated.

McConaghy, C F

2003-10-10T23:59:59.000Z

220

EK101 Engineering Light Smart Lighting  

E-Print Network [OSTI]

EK101 Engineering Light Smart Lighting Homework for 9/10 1. Make an estimate (using if the patent is granted.) 3. What is a lumen? A lux? How are the two related? How would you use a lux meter, (Lux, Lumens/m2) Luminous Flux: Perceivable light power from a source, (Lumens) Use the lux meter

Bifano, Thomas

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Specific light in sculpture  

E-Print Network [OSTI]

Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

Powell, John William

1989-01-01T23:59:59.000Z

222

Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps  

E-Print Network [OSTI]

greater than incandescent lamps [1,2]. In fact, recent technological breakthroughs [3-7] in the high of LED lighting: An incandescent source produces 10 ­ 20 lumens/watt, while several manufacturers have? Incandescent bulbs primarily utilize phase modulating dimming through triac switches to control the power sent

Lehman, Brad

223

Inside this issue: Green Dorm,  

E-Print Network [OSTI]

. The crew, which we call the Green Scene team, will be changing out incandescent light bulbs for compact (see page 1). The incandescent bulbs collected will be donated to a local organization. Prizes will be given to the person who returns the most incandescent bulbs. CFL's use one-third of the energy than

Kidd, William S. F.

224

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

replacement of incandescent bulbs with more efficient compact fluorescent lighting and light-emitting diode (LED) lamps. Among electric end-use services in the residential...

225

E-Print Network 3.0 - ambient dose equivalent Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

175 h. Ambient incandescent lights, however, produced a negligible... laser, light emitting diode ... Source: Yu, Peter K.N. - Department of Physics and Materials Science, City...

226

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

roads The proposed action would involve changing the tribe's street lights from incandescent bulbs to LED lighting fixtures. The City of Fairbanks would provide research it...

227

Energy Efficiency and Conservation Block Grant Program  

Broader source: Energy.gov (indexed) [DOE]

retrofits throughout the Village. These lighting retrofits would involve upgrading incandescent light fixtures to those that will accommodate compact fluorescent bulbs. In...

228

DOE/LX/07-0242&D1 Secondary Document DMSA C-400-05 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuses, three capacitors, three circuit boards, sixteen vacuum tubes, thirty-two incandescent light bulbs or fluorescent light bulbs, gallon of nitric acid, five aerosol...

229

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

until funds are expended. Retrofits will consist of changing fixtures from incandescent to fluorescent lighting. Recent experience with lighting retrofits in the region...

230

CX-000139: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

until funds are expended. Retrofits will consist of changing fixtures from incandescent to fluorescent lighting. Recent experience with lighting retrofits in the region...

231

DOE/LX/07-0315&D1 Secondary Document DMSA C-333-14 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Newly discovered RCRA regulated hazardousmixed waste formerly stored consisted of incandescent light bulbs and light bulb ends, respirator canisters, aerosol cans, and lead...

232

CX-003246: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

retrofits throughout the Village. These lighting retrofits would involve upgrading incandescent light fixtures to those that will accommodate compact fluorescent bulbs. In...

233

CX-006328: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

conditioning upgrades, building envelope upgrades, and technology upgrades; 3) light emitting diode traffic signal conversion to replace incandescent bulbs to light-emitting...

234

CX-003657: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

light bulb retrofits, and 5) incandescent traffic signal replacement with light-emitting diode technology. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-003657.pdf More Documents &...

235

Lighting and Daylight Harvesting  

E-Print Network [OSTI]

exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

Bos, J.

2011-01-01T23:59:59.000Z

236

LED ProspectsLED Prospects photometric units  

E-Print Network [OSTI]

/5/8 #12;16 Light bulb comparisonLight bulb comparison W lumens khours CRI $US Incandescent (long life) 75-life incandescent with LED. · 10 light fixtures/home, lights on for 6h/day, 333 days/yr. · Electricity 0.12 $/kWh. W khours $US Incandescent (long life) 100 10 2 LED (PAR38, warm, dimmable) 11 40 90 · What is the lifetime

Pulfrey, David L.

237

Kyler Nelson Light Timer  

E-Print Network [OSTI]

designated by the user, the Arduino board will dim the light to save energy. The user designates the time instance, the light is dimmed using pulse width modulation (PWM) in the Arduino's pin number 11

Kachroo, Pushkin

238

AIRPORT LIGHTING Session Highlights  

E-Print Network [OSTI]

AIRPORT LIGHTING Session Highlights In May 2002, the Airport Technical Assistance Program, also known as AirTAP, sponsored three airport-lighting training sessions at different locations in Minnesota information on airport lighting and navigational aid equipment selection, funding, maintenance, and operation

Minnesota, University of

239

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

240

Light emitting device comprising phosphorescent materials for white light generation  

DOE Patents [OSTI]

The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

Thompson, Mark E.; Dapkus, P. Daniel

2014-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and Vehicle...

242

Photonic crystal light source  

DOE Patents [OSTI]

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

243

Light extraction from organic light-emitting diodes for lighting applications by sand-blasting  

E-Print Network [OSTI]

Light extraction from organic light-emitting diodes for lighting applications by sand@ust.hk Abstract: Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost

244

SMART LIGHTING SYSTEMS ULTIMATE LIGHTING The Smart Lighting  

E-Print Network [OSTI]

Integration (Holistic Integrated Design) · Sensors as important as LEDs · Interconnected systems (human, building, grid) · Artistic Design Freedom · Lighting is Health, Entertainment, Information and Illumination Cost at any brightness · Chip level integrated electronics THE ERC RESEARCH COVERS THE ENTIRE SUPPLY

Linhardt, Robert J.

245

Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM  

E-Print Network [OSTI]

Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

246

Design and Predictive Control of a Net Zero Energy Home  

E-Print Network [OSTI]

the same amount of light as traditional incandescent bulbs with less energy. Incandescent bulbs are inherently inefficient as most of the energy they consume goes towards heat generation. Compact fluorescent (CFL) and light emitting diode (LED) bulbs... as heat [1]. Compact fluorescent lamps (CFLs) and Light Emitting Diodes (LEDs) were analyzed in comparison with incandescent lamps. To determine the most energy efficient bulb, energy consumption for each type of bulb is needed. To do this, the amount...

Morelli, F.; Abbarno, N.; Boese, E.; Bullock, J.; Carter, B.; Edwards, R.; Lapite, O.; Mann, D.; Mulvihill, C.; Purcell, E.; Stein, M. IV; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

247

New Light Sources for Tomorrow's Lighting Designs  

E-Print Network [OSTI]

, pioneered for headlam~for the automotive industry, has led to the development of halo en capsule lamps for general lighting. The original90-watt family PAR 38 lamps using tungsten halogen capsules produces the sa amount of useful light in the beam as a I... quartz PAR lamps with similar benefi . Each of these tungsten halogen capsule PAR wattages are av ilable in narrow spot, spot, and flood beam patterns. The most recent developments in the PAR halogen psule family include two entirely new lamp designs...

Krailo, D. A.

248

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

BNL

2009-09-01T23:59:59.000Z

249

LED Lighting Retrofit  

E-Print Network [OSTI]

? Municipal Street Lighting Consortium ? American Public Power Association (APPA) ? Demonstration in Energy Efficiency Development (DEED) ? Source of funding and database of completed LED roadway projects 6 Rules of the Road ESL-KT-11-11-57 CATEE 2011..., 2011 ? 9 Solar-Assisted LED Case Study LaQuinta Hotel, Cedar Park, Texas ? Utilizes 18 - ActiveLED Solar-Assisted Parking Lot Lights ? Utilizes ?power management? to extend battery life while handling light output ? Reduces load which reduces PV...

Shaw-Meadow, N.

2011-01-01T23:59:59.000Z

250

Total Light Management  

Broader source: Energy.gov [DOE]

Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

251

Lighting Technology Panel  

Broader source: Energy.gov [DOE]

Presentation covers the†Lighting Technology Panel for the Federal Utility Partnership Working Group (FUPWG) meeting, held on†November 18-19, 2009.†

252

Comparing Light Bulbs  

Broader source: Energy.gov [DOE]

In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

253

Solid-State Lighting  

Broader source: Energy.gov (indexed) [DOE]

research and design. Quality LED luminaires require program designed to successfully move solid-state lighting precise design of several components -LED arrays, electronic into the...

254

Journal of Chemical Ecology, Vol.23, No. 4, 1997 CUTICULAR HYDROCARBONS OF TERMITES OF THE  

E-Print Network [OSTI]

--Cuticularhydrocarbons, chemotaxonomy, Isoptera, tropical ter- mites, gas chromatography, mass spectrometry, Virgin Islands, Caribbean scintillation vials over a single 75-W, reflecting incandescent light.

Yorke, James

255

Driver Circuit for White LED Lamps with TRIAC Dimming Control.  

E-Print Network [OSTI]

??An efficient Light Emitting Diode (LED) lamp driver circuit is proposed for retrofitting the conventionally used incandescent lamps with existing TRIAC dimmer. The dimming featureÖ (more)

Weng, Szu-Jung

2012-01-01T23:59:59.000Z

256

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

150 million compact fluorescent light bulbs in 2010. (ChinaCleaners Incandescent Bulbs Fluorescent Lamps Ballasts forincandescent bulbs with compact fluorescent lamps. Consumers

McNeil, MIchael

2011-01-01T23:59:59.000Z

257

Educators: Are You Ready to Teach Energy Literacy? Join our August...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pedal for power and experience the difference in physical effort necessary to power incandescent, compact fluorescent, and LED lighting. This lesson highlighted Energy Principle 4,...

258

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

light bulbs, which use 75 percent less energy and last ten times longer than incandescent bulbs, (2) window installation kits, which would improve heat instillation in the...

259

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2010 Longview, TX has established a program that enables residents to swap out four incandescent light bulbs for four CFLs. | Department of Energy Photo | Government Work | Getting...

260

DOE/LX/07-0324&D1 Secondary Document DMSA C-333-35 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RCRA regulated hazardousmixed waste formerly stored consisted of a crushed incandescent light bulb base. The Toxic Substances Control Act (TSCA) regulated...

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CX-003584: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

community facilities and based on the results of the audits, change fixtures from incandescent to fluorescent lighting. In addition, the IRHA proposes to conduct mechanical...

262

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

potentially provide many advantages over standard lighting technologies, such as incandescent bulbs, especially in the areas of efficiency, - 2 - operating lifetime and the...

263

CX-000136: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

retrofits for bathrooms of 42 residences. These retrofits would involve upgrading incandescent light fixtures to those that will accommodate compact fluorescent bulbs. It is...

264

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

retrofits for bathrooms of 42 residences. These retrofits would involve upgrading incandescent light fixtures to those that will accommodate compact fluorescent bulbs. It is...

265

DOE/LX/07-0289&D1 Secondary Document DMSA C-335-05 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

discovered RCRA regulated hazardous waste formerly stored included two 1-inch incandescent light bulbs and an aerosol can of starter fluid (ether). Newly generated RCRA...

266

Energy Efficiency and Conservation Block Grant Program  

Broader source: Energy.gov (indexed) [DOE]

community facilities and based on the results of the audits, change fixtures from incandescent to fluorescent lighting. In addition, the IRHA proposes to conduct mechanical...

267

Energy Efficiency and Conservation Block Grant Program  

Broader source: Energy.gov (indexed) [DOE]

upgrades, and technology upgrades; 3) LED traffic signal conversion to replace incandescent bulbs to light-emitting diodes. Conditions: Historic preservation clause applies to...

268

STATEMENT OF CONSIDERATIONS PETITION FOR ADVANCE WAIVER OF PATENT...  

Broader source: Energy.gov (indexed) [DOE]

is to develop a solid state LED lamp that is a viable replacement for inefficient incandescent general lighting sources. This work is funded under DOE's Office of Energy...

269

Top 8 Things You Didn't Know About Thomas Alva Edison | Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and engineers -- pioneered improvements to a variety of inventions, including the incandescent light bulb. 6. Edison left a profound impact on the nation's energy sector. Beyond...

270

C-340 ST-90 Boxes Solid Waste Management Unit (SWMU) Assessment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASTE DESCRIPTION: Along with non-RCRA regulated wastes, one ST-90 contained two incandescent light bulbs. The low-level waste (LLW) previously stored included paper, plastic,...

271

DOE/LX/07-0286&D1 Secondary Document DMSA C-337-41 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hazardousmixed waste formerly stored included ceramic insulators with lead, incandescent light bulbs, a vacuum tube, and a mercury switch. The Toxic Substances Control Act...

272

Statement by Energy Secretary Steven Chu on New Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

applications such as cell phones and PDA screens. OLED and LED technologies are up to ten times more efficient than conventional incandescent lights. When widely adopted, LEDs...

273

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

18 months at current operating cycles. Incandescent bulbs can be replaced with Light Emitting Diode lamps that use approximately 10 watts of electricity, have a five year...

274

CX-002177: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

incandescent traffic signal heads and pedestrian displays to energy efficient light-emitting diode displays; and 3) improve traffic signal system operations and efficiency by...

275

U.S. Department of Energy Office of Energy Efficiency and Renewable...  

Broader source: Energy.gov (indexed) [DOE]

incandescent traffic signal heads and pedestrian displays to energy efficient light-emitting diode displays; and 3) improve traffic signal system operations and efficiency by...

276

FIND A BIN, IT ALL GOES IN all types of paper  

E-Print Network [OSTI]

containers · ceramics, mirrors, windows, pyrex · incandescent light bulbs HAZARDOUS WASTE & CONFIDENTIAL: flatten next to containers, or place in marked dumpsters SPECIAL RECYCLING ITEMS: containers located

Thaxton, Christopher S.

277

OpenGL Lighting 13. OpenGL Lighting  

E-Print Network [OSTI]

OpenGL Lighting 13. OpenGL Lighting · Overview of Lighting in OpenGL In order for lighting to have an effect in OpenGL, two things are required: A light An object to be lit Lights can be set to any color determine how they reflect the light which hits them. The color(s) of an object is determined

McDowell, Perry

278

Replacing Incandescent Lightbulbs and Ballasts | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories ¬Ľ Removing nuclear waste,

279

DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOEDOEAVAILABLEDepartment ofHeld

280

Replacing Incandescent Lightbulbs and Ballasts | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5Post-Holiday HolidayProcessRateofofRenewable EnergyRenewable

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Light intensity compressor  

DOE Patents [OSTI]

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

282

Splayed mirror light pipes  

SciTech Connect (OSTI)

An expression is given for the transmission of the rectangular-section mirror light pipe. The expression is used to model throughputs for simulated solar conditions over a calender year. It is found that the splaying of a mirror light pipe results in a significant increase in throughputs particularly in winter months. (author)

Swift, P.D. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

2010-02-15T23:59:59.000Z

283

Explosively pumped laser light  

DOE Patents [OSTI]

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

284

Reducing home lighting expenses  

SciTech Connect (OSTI)

Ways to reduce lighting expenses are summarized. These include: turning off lights when not in use; keeping fixtures and lamps clean; replacing lamps with more efficient types; using three-way bulbs; use of daylighting; buying fewer lamps and reducing lamp wattage; consider repainting rooms; replacing recessed fixtures with tracklighting; and using efficient lamps for outdoor use. (MCW)

Aimone, M.A.

1981-02-01T23:59:59.000Z

285

VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS  

E-Print Network [OSTI]

VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS Andrea Basso method to improve the lighting conditions of a real scene or video sequence. In particular we concentrate on modifying real light sources intensities and inserting virtual lights into a real scene viewed from a fixed

Fisher, Kathleen

286

Lighting affects appearance LightSource emits photons  

E-Print Network [OSTI]

1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

Jacobs, David

287

Green Light Pulse Oximeter  

DOE Patents [OSTI]

A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

Scharf, John Edward (Oldsmar, FL)

1998-11-03T23:59:59.000Z

288

Lakeview Light and Power- Commercial Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

289

Self-defrosting recuperative air-to-air heat exchanger  

DOE Patents [OSTI]

A heat exchanger is described which includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.

Drake, R.L.

1993-12-28T23:59:59.000Z

290

Refrigerator-Freezers (multiple defrost waiver) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | DepartmentEvaluations |Freezers

291

Electrical modulation of emissivity S. Vassant,1  

E-Print Network [OSTI]

, it is difficult to develop an efficient light emitting diode because the spontaneous emission rate is proportional emitting diodes. Yet, incandescent sources are often the only option in the infrared (IR). Indeed tens of Hz. Hence, for many applications, incandescent light sources can- not compete with light

Paris-Sud XI, Université de

292

Light Vector Mesons  

E-Print Network [OSTI]

This article reviews the current status of experimental results obtained in the measurement of light vector mesons produced in proton-proton and heavy ion collisions at different energies. The review is focused on two phenomena related to the light vector mesons; the modification of the spectral shape in search of Chiral symmetry restoration and suppression of the meson production in heavy ion collisions. The experimental results show that the spectral shape of light vector mesons are modified compared to the parameters measured in vacuum. The nature and the magnitude of the modification depends on the energy density of the media in which they are produced. The suppression patterns of light vector mesons are different from the measurements of other mesons and baryons. The mechanisms responsible for the suppression of the mesons are not yet understood. Systematic comparison of existing experimental results points to the missing data which may help to resolve the problem.

Alexander Milov

2008-12-21T23:59:59.000Z

293

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

None

2010-01-08T23:59:59.000Z

294

Efficient Light Sources Today  

E-Print Network [OSTI]

This paper reviews new lamp and lighting technology in terms of application and economic impact. Included are the latest advances in High Intensity Discharge systems, energy saving fluorescent lamps and ballasts, and the new state of the art high...

Hart, A. L.

1982-01-01T23:59:59.000Z

295

Natural lighting and skylights  

E-Print Network [OSTI]

outlined herein, the feasibility of using scale models for studying skylights is also an established fact. The method of analysis by models can be a valuable tool to any designer who is concerned about day-lighting....

Evans, Benjamin Hampton

1961-01-01T23:59:59.000Z

296

Reading Municipal Light Department- Business Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Reading Municipal Light Department (RMLD) offers incentives for non-residential customers to install energy efficient lights and sensors in existing facilities. In addition to rebates for the...

297

Types of Lighting in Commercial Buildings - Lighting Characteristics  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are...

298

Columbia Water and Light- HVAC and Lighting Efficiency Rebates  

Broader source: Energy.gov [DOE]

Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

299

Peninsula Light Company- Commercial Efficient Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service....

300

Solid state lighting component  

DOE Patents [OSTI]

An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

2010-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solid state lighting component  

DOE Patents [OSTI]

An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

2012-07-10T23:59:59.000Z

302

Light and Energy -Daylight measurements  

E-Print Network [OSTI]

Light and Energy - Daylight measurements #12;Light and Energy - Daylight measurements Authors: Jens;3 Title Light and Energy Subtitle Daylight measurements Authors Jens Christoffersen, √Āsta Logad√≥ttir ........................................................................................................ 5 Daylight quantity

303

Energy Conservation in Industrial Lighting  

E-Print Network [OSTI]

In order to reduce energy use in lighting Union Carbide recently issued drastically reduced new lighting level standards. A computerized lighting cost program was also developed. Using this program a number of additional energy saving techniques...

Meharg, E.

1979-01-01T23:59:59.000Z

304

Lighting and the Bottom Line  

E-Print Network [OSTI]

A discussion of the cost of light and how it relates to the cost of people. The new Illuminating Engineering Society recommended method of determining lighting levels will be explained. Also several ways of providing good lighting to increase...

Christensen, M.

1981-01-01T23:59:59.000Z

305

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the country. December 1, 2009 Save Money with LED Holiday Light Strings LED (or light emitting diode) light strings can use 90% less energy than regular incandescent light strings....

306

Light diffusing fiber optic chamber  

DOE Patents [OSTI]

A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

Maitland, Duncan J. (Lafayette, CA)

2002-01-01T23:59:59.000Z

307

July 18, 2012 Using QECBs for Street Lighting Upgrades  

E-Print Network [OSTI]

lighting technologies (e.g. light-emitting diodes, induction lighting) can reduce street light energy

308

Efficiency Maine Residential Lighting Program  

Broader source: Energy.gov [DOE]

Efficiency Maine's Residential Lighting Program works directly with retailers and manufacturers to encourage residential customers to purchase energy-efficient lighting. Rebate amounts average $1...

309

Lighting affects appearance LightSource emits photons  

E-Print Network [OSTI]

1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

Jacobs, David

310

Lighting and Surfaces 11.1 Introduction to Lighting  

E-Print Network [OSTI]

-object-at-a-time. "Intrinsic" light is the light emitted by the object itself, such as the glow from a TV screen, a light-emitting diode, or a star. "Ambient" light is an illumination that seems to come from all sides. In the real

Boyd, John P.

311

Sandia National Laboratories: White Light Creation Architectures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TechnologiesWhite Light Creation Architectures White Light Creation Architectures Overview of SSL White Light Creation Architectures The entire spectral range of visible light can...

312

Scaling Up: Kilolumen Solid-State Lighting Exceeding 100 LPW via Remote Phosphor  

SciTech Connect (OSTI)

This thirty-month project was successful in attaining its ambitious objectives of demonstrating a radically novel 'remote-phosphor' LED light source that can out-perform conventional conformal coated phosphor LED sources. Numerous technical challenges were met with innovative techniques and optical configurations. This product development program for a new generation of solid-state light sources has attained unprecedented luminosity (over 1 kilo-lumen) and efficacy (based on the criterion lumens per 100mw radiant blue). LPI has successfully demonstrated its proprietary technology for optical synthesis of large uniform sources out of the light output of an array of separated LEDs. Numerous multiple blue LEDs illuminate single a phosphor patch. By separating the LEDs from the phosphor, the phosphor and LEDs operate cooler and with higher efficiency over a wide range of operating conditions (from startup to steady state). Other benefits of the system include: better source uniformity, more types of phosphor can be used (chemical interaction and high temperatures are no longer an issue), and the phosphor can be made up from a pre-manufactured sheet (thereby lowering cost and complexity of phosphor deposition). Several laboratory prototypes were built and operated at the expected high performance level. The project fully explored two types of remote phosphor system: transmissive and reflective. The first was found to be well suited for a replacement for A19 type incandescent bulbs, as it was able to replicate the beam pattern of a traditional filament bulb. The second type has the advantages that it is pre-collimate source that has an adjustable color temperature. The project was divided in two phases: Phase I explored a transmissive design and Phase II of the project developed reflective architectures. Additionally, in Phase II the design of a spherical emitting transmissive remote phosphor bulb was developed that is suitable for replacement of A19 and similar light bulbs. In Phase II several new reflective remote phosphor systems were developed and patents applied for. This research included the development of reflective systems in which the short-pass filter operated at a nominal incidence angle of 15{sup o}, a major advancement of this technology. Another goal of the project was to show that it is possible to align multiple optics to multiple LEDs (spaced apart for better thermal management) to within an accuracy in the z-direction of 10 microns or less. This goal was achieved. A further goal was to show it is possible to combine and homogenize the output from multiple LEDs without any flux loss or significant increase in etendue. This goal also was achieved. The following color-coded computer drawing of the Phase 2 reflective remote phosphor prototype gives an idea of the accuracy challenges encountered in such an assembly. The actual setup has less functional clarity due to the numerous items of auxiliary equipment involved. Not only did 10 degrees of freedoms alignment have to be supplied to the LEDs and component prisms as well, but there were also micro-titrating glue dispensers and vacuum hoses. The project also utilized a recently introduced high-index glass, available in small customized prisms. This prototype also embodies a significant advance in thin-film design, by which an unprecedented 98% single-pass efficiency was attained over a 30 degree range of incidence angle (Patents Pending). Such high efficiency is especially important since it applies to the blue light going to the phosphor and then again to the phosphor's light, so that the 'system' efficiency associated with short-pass filter was 95.5%. Other losses have to be kept equally small, towards which a new type of ultra-clear injection-moldable acrylic was discovered and used to make ultra-transparent CPC optics. Several transmissive remote phosphor prototypes were manufactured that could replace screw-in type incandescent bulbs. The CRI of the white light from these prototypes varied from 55 to 93. The system efficiency achieved was between 27 to 29.5

Waqidi Falicoff

2008-09-15T23:59:59.000Z

313

Pupillary efficient lighting system  

DOE Patents [OSTI]

A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

Berman, Samuel M. (San Francisco, CA); Jewett, Don L. (Mill Valley, CA)

1991-01-01T23:59:59.000Z

314

Light harvesting arrays  

DOE Patents [OSTI]

A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC)

2002-01-01T23:59:59.000Z

315

Light emitting ceramic device  

DOE Patents [OSTI]

A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

2010-05-18T23:59:59.000Z

316

Radioluminescent lighting technology  

SciTech Connect (OSTI)

The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

Not Available

1990-01-01T23:59:59.000Z

317

MANDATORY MEASURES INDOOR LIGHTING CONTROLS  

E-Print Network [OSTI]

MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 4 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: Allow occupants to choose the appropriate light level for each

California at Davis, University of

318

MANDATORY MEASURES INDOOR LIGHTING CONTROLS  

E-Print Network [OSTI]

MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 3 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: "Dimmability." Allow occupants to choose the appropriate light

California at Davis, University of

319

LIGHTING 101 1. Common terminology  

E-Print Network [OSTI]

SECTION 3 LIGHTING 101 1. Common terminology 2. Sources & luminaires 3. Controls #12;SECTION 3SECTION 3 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use

California at Davis, University of

320

MANDATORY MEASURES INDOOR LIGHTING CONTROLS  

E-Print Network [OSTI]

MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 5 MANDATORY LIGHTING CONTROLS 1. Area Controls: Manual controls that control lighting in each area separately 2. Multi-level Controls: Allow occupants to choose the appropriate light level for each area 3. Shut

California at Davis, University of

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LIGHTING 101 1. Common terminology  

E-Print Network [OSTI]

LIGHTING 101 1. Common terminology 2. Sources and luminaires 3. Controls #12;SECTION 2 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use on the job? SLIDE 14

California at Davis, University of

322

Extreme Ultraviolet Light Chris Cosio  

E-Print Network [OSTI]

Prospectus Extreme Ultraviolet Light Chris Cosio #12;The field of extreme ultraviolet light (XUV to the way XUV interacts with object, XUV properties are difficult to observe. Extreme ultraviolet light is absorbed by all objects it comes in contact with. Furthermore, extreme ultraviolet light also has low

Hart, Gus

323

Windows and lighting program  

SciTech Connect (OSTI)

More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

Not Available

1990-06-01T23:59:59.000Z

324

Radioluminescent polymer lights  

SciTech Connect (OSTI)

The preparation of radioluminescent light sources where the tritium is located on the aryl-ring in a polymer has been demonstrated with deuterium/tritium substitution. This report discusses tests, results, and future applications of radioluminescent polymers. 10 refs. (FI)

Jensen, G.A.; Nelson, D.A.; Molton, P.M.

1990-09-01T23:59:59.000Z

325

Sweetness and light  

E-Print Network [OSTI]

1. Sweetness and Light. A novel. Judi lives in a nice, clean house with her seventeen year old stepson, who wonít talk to her in anything but monosyllables. His father, Nelson, and she are struggling to relate to each ...

Craig, Katie

2014-07-03T23:59:59.000Z

326

LED Lighting on the National Mall | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - ProjectUnlike incandescent and fluorescent1

327

Practical Diagnostics for Evaluating Residential Commissioning Metrics  

E-Print Network [OSTI]

include heat pump outdoor thermostat and defrost timermay include heat pump outdoor thermostat and defrost timer

Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

2002-01-01T23:59:59.000Z

328

Nonequilibrium lighting plasmas  

SciTech Connect (OSTI)

In this paper the science of a variety of devices employing nonequilibrium lighting plasmas is reviewed. The devices include the fluorescent lamp, the low-pressure sodium lamp, the neon sign, ultraviolet lamps, glow indicators, and a variety of devices used by spectroscopists, such as the hollow cathode light source. The plasma conditions in representative commercial devices are described. Recent research on the electron gas, the role of heavy particles, spatial and temporal inhomogeneities, and new electrodeless excitation schemes is reviewed. Areas of future activity are expected to be in new applications of high-frequency electronics to commercial devices, new laser-based diagnostics of plasma conditions, and more sophisticated models requiring more reliable and extensive rate coefficient data.

Dakin, J.T. (GE Lighting, Nela Park, Cleveland, OH (US))

1991-12-01T23:59:59.000Z

329

Light cone matrix product  

SciTech Connect (OSTI)

We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

Hastings, Matthew B [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

330

Fusion pumped light source  

DOE Patents [OSTI]

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

331

Newsletter 5  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

interest in science. Depicted is an experiment where a kitchen battery powers a light emitting diode (LED). The Parkers found that an incandescent light bulb would not light, but...

332

Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs  

E-Print Network [OSTI]

top_runner//tr_fluorescent_light_bulb_jul.2009.pdf NiskinSubcommittee Final Report (bulb type fluorescent lamp). ĒFluorescent Lamps (CFLs) are an efficient lighting alternative to traditional incandescent light bulbs

Fridley, David

2010-01-01T23:59:59.000Z

333

2011 Rutgers Faraday Children's Lecture Crew ReichertJon  

E-Print Network [OSTI]

;Continuous "black body spectrum" from incandescent light bulb hydrogen fluorescent light What they saw. ROY G. Disk jumps out of changing magnetic field region. Induced current lights bulb. #12;Prof. Chuck Keeton

Glashausser, Charles

334

Lesson Summary In this lesson, students will find and calculate the angle  

E-Print Network [OSTI]

white light source (incandescent light bulb, not fluorescent) · Copies of Astronomy Today or Sky of electromagnetic spectrum · Understanding of light and prisms · Experience with angle measurements · Experience

Mojzsis, Stephen J.

335

Turbo-Charged Lighting Design  

E-Print Network [OSTI]

TURBO-CHARGED LIGHTING DESIGN William H. Clark II Design Engineer O'Connell Robertson & Assoc Austin/ Texas ABSTRACT The task of the lighting designer has become very complex, involving thousands of choices for fixture types and hundreds...

Clark, W. H. II

336

Faster than Light Quantum Communication  

E-Print Network [OSTI]

Faster than light communication might be possible using the collapse of the quantum wave-function without any accompanying paradoxes.

A. Y. Shiekh

2008-04-05T23:59:59.000Z

337

Webinar: Fuel Cell Mobile Lighting  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

338

Photodetector with enhanced light absorption  

DOE Patents [OSTI]

A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

Kane, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

339

MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS  

E-Print Network [OSTI]

MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.2) #12;SECTION level of each multi-tier garage. · General lighting must have occupant sensing controls with at least one control step between 20% and 50% of design lighting power · No more than 500 watts of rated

California at Davis, University of

340

MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS  

E-Print Network [OSTI]

MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.2) #12;SECTION 5 Additions and Alterations Any alteration that increases the connected lighting load must meet all No measures required OUTDOOR LIGHTING11/20/2014 #12;SECTION 5 BACKLIGHT, UPLIGHT, AND GLARE (BUG) RATINGS

California at Davis, University of

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS  

E-Print Network [OSTI]

MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.2) #12;SECTION performance in relation to lighting trespass, sky glow, and high angle brightness. This is necessary in order to reduce light pollution, which has a negative effect on wildlife and the surrounding environments

California at Davis, University of

342

Arnold Schwarzenegger, LIGHTING RESEARCH PROGRAM  

E-Print Network [OSTI]

;#12;Prepared By: Lighting Research Center Andrew Bierman, Project Lead Troy, New York 12180 Managed ByArnold Schwarzenegger, Governor LIGHTING RESEARCH PROGRAM PROJECT 3.2 ENERGY EFFICIENT LOAD- SHEDDING LIGHTING TECHNOLOGY Prepared For: California Energy Commission Public Interest Energy Research

343

STATE OF CALIFORNIA RESIDENTIAL LIGHTING  

E-Print Network [OSTI]

STATE OF CALIFORNIA RESIDENTIAL LIGHTING CEC-CF-6R-LTG-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-LTG-01 Residential Lighting (Page 1 of 6) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 1. Kitchen Lighting Does project

344

High-Efficiency White Organic Light-Emitting Devices Based on a Highly Amorphous Iridium(III) Orange Phosphor  

E-Print Network [OSTI]

- didates as future illumination sources over the conventional incandescent bulbs and fluorescent lamps of the electroluminescence spectrum is observed, with the blue color intensity increasing relative to the orange component been prepared using this stacked concept with both fluorescent12,13 and phosphorescent emitters.14

345

Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report  

SciTech Connect (OSTI)

The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to measure the indium distribution with near atomic resolution were developed and applied to test samples and devices that were provided by Lumilids. Further, the optical performance of the device materials was probed by photoluminescence, electroluminescence and time resolved optical measurements. Overall, the programs objective is to provide a physical basis for the development of a simulation program that helps making predictions to improve the growth processes such that the device efficiency can be increased to about 20%. Our study addresses all proposed aspects successfully. Carrier localization, lifetime and recombination as well as the strain-induced generation of electric fields were characterized and modeled. Band gap parameters and their relation to the indium distribution were characterized and modeled. Electron microscopy was developed as a unique tool to measure the formation of indium clusters on a nanometer length scale and it was demonstrated that strain induced atom column displacements can reliably be determined in any materials system with a precision that approaches 2 pm. The relation between the local indium composition x and the strain induced lattice constant c(x) in fully strained In{sub x}Ga{sub 1-x}N quantum wells was found to be: c(x) = 0.5185 + {alpha}x with {alpha} = 0.111 nm. It was concluded that the local indium concentration in the final product can be modulated by growth procedures in a predictable manner to favorably affect external quantum efficiencies that approached target values and that internal quantum efficiencies exceeded them.

Kisielowski, Christian; Weber, Eicke

2010-05-13T23:59:59.000Z

346

Pedestrian Friendly Outdoor Lighting  

SciTech Connect (OSTI)

This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

Miller, Naomi J.; Koltai, Rita; McGowan, Terry

2013-12-31T23:59:59.000Z

347

Lights, Conformational Change... Action!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocksHomesLighting the

348

Lighting | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October,Lighthouse Solar Jump to:Lighting Jump

349

Ecological Consequences of Artificial Night Lighting  

E-Print Network [OSTI]

of Artificial Night Lighting Catherine Rich and Travisof artificial night lighting. This book provides editedage of modern urban lighting was ushered in. Coincidentally,

Piselli, Kathy

2006-01-01T23:59:59.000Z

350

LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL  

E-Print Network [OSTI]

REFERENCES Task Report to Lighting Systems Research,Berkeley Laboratory, "Lighting Control System Market1980). Task Report to Lighting Systems Research, Lawrence

Verderber, R.R.

2010-01-01T23:59:59.000Z

351

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

352

Municipal Consortium LED Street Lighting Workshop Presentations...  

Broader source: Energy.gov (indexed) [DOE]

A Rational View of LM-79 Reports, IES Files, and Product Variation Gary Steinberg, GE Lighting Solutions Solid-State Street Lighting: Calculating Light Loss Factors Dana Beckwith,...

353

Municipal Consortium LED Street Lighting Workshop Presentations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Association of Energy Services Companies Calculating Light Loss Factors for Solid-State Lighting Systems Chad Stalker, Philips Lumileds Lighting Intro to MSSLC's...

354

Sandia National Laboratories: Light Creation Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TechnologiesLight Creation Materials Light Creation Materials Overview of SSL Light Creation Materials Different families of inorganic semiconductor materials can...

355

Photon echo studies of photosynthetic light harvesting  

E-Print Network [OSTI]

of the B800-B820 light-harvesting complex. Proc Natl Acadphotosynthetic light harvesting Elizabeth L. Read ∆ Hohjaitransfer events in light harvesting. Here, we outline the

Read, Elizabeth L.; Lee, Hohjai; Fleming, Graham R.

2009-01-01T23:59:59.000Z

356

Sandia National Laboratories: Light Creation Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRCOverviewLight Creation Materials Light Creation Materials Overview of SSL Light Creation Materials Different families of inorganic semiconductor materials can contribute to...

357

Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...  

Office of Environmental Management (EM)

in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant...

358

Light modulating device  

DOE Patents [OSTI]

In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

Rauh, R. David (Newton, MA); Goldner, Ronald B. (Lexington, MA)

1989-01-01T23:59:59.000Z

359

Light modulating device  

DOE Patents [OSTI]

In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

Rauh, R.D.; Goldner, R.B.

1989-12-26T23:59:59.000Z

360

Energy and lighting  

SciTech Connect (OSTI)

Advances in research for new types of lighting with increased efficacies (lumens/watt) are discussed in the following areas: (1) high-frequency, solid-state ballasts, (2) isotopic enhancement of mercury isotopes, (3) magnetic augmentation, (4) electrodeless, ultra-high frequency, (5) tuned phosphors, (6) two-photon phosphors, (7) heat mirrors, and (3) advanced control circuits to take advantage of daylight and occupancy. As of 1985, improvements in efficacy have been accomplished on an economic basis to save energy for (1) high-frequency ballasts (25%), (2) isotopic enhancement (5%), and (8) advanced control circuits (up to 50%). Most of these advances depend on a deeper understanding of the weakly ionized plasma as a radiating and diffusing medium. 3 figures, 4 tables.

Berman, S.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Posters | Posters --721 Exploring lighting cultures  

E-Print Network [OSTI]

Posters | Posters -- 721 Exploring lighting cultures Beyond light and emotions Vincent LAGANIER 1 , Jasmine van der POL 2 1. Lighting Applications Services (LiAS), Philips Lighting, France vincent.laganier@philips.com 2

Boyer, Edmond

362

Creative and Constructive Play with Light  

E-Print Network [OSTI]

children identify objects with these properties. Predict what materials light will pass through. Use paint and mixing light. Mixing paint creates a muddy brown or black. Mixing light creates white light

363

Embodied Energy and Off-Grid Lighting  

E-Print Network [OSTI]

as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

Alstone, Peter

2012-01-01T23:59:59.000Z

364

Overcoming Common Pitfalls: Energy Efficient Lighting Projects...  

Broader source: Energy.gov (indexed) [DOE]

Overcoming Common Pitfalls: Energy Efficient Lighting Projects Overcoming Common Pitfalls: Energy Efficient Lighting Projects Transcript Presentation More Documents & Publications...

365

Automatic Mechetronic Wheel Light Device  

DOE Patents [OSTI]

A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

Khan, Mohammed John Fitzgerald (Silver Spring, MD)

2004-09-14T23:59:59.000Z

366

Utility lighting summit proves illuminating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility-lighting-summit-proves-illuminating Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects...

367

Photonic crystal light emitting diode.  

E-Print Network [OSTI]

?? This master's thesis describe electromagnetic simulations of a gallium antimonide (GaSb) light emitting diode, LED. A problem for such devices is that most ofÖ (more)

Leirset, Erlend

2010-01-01T23:59:59.000Z

368

Linac Coherent Light Source Overview  

ScienceCinema (OSTI)

Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

None

2013-05-29T23:59:59.000Z

369

Light Water Reactor Sustainability Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and nuclear waste disposal. Dr. Corradini has extensive research experience in the phenomenology of beyond design basis Meet the New LWRS Program Pathway Lead accidents in light...

370

LED Lighting Off the Grid  

Energy Savers [EERE]

D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

371

Pedestrian-Friendly Nighttime Lighting  

Broader source: Energy.gov [DOE]

This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety, and adaptation. When it comes to outdoor...

372

Light Water Reactor Sustainability Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydraulics software RELAP-7 (which is under development in the Light Water Reactor Sustainability LWRS Program). A novel interaction between the probabilistic part (i.e., RAVEN)...

373

Light Water Reactor Sustainability Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30-35, August 2012. Clayton, D. A. and M. S. Hileman, 2012, Light Water Reactor Sustainability Non-Destructive Evaluation for Concrete Research and Development Roadmap, ORNLTM-...

374

Linac Coherent Light Source Overview  

Broader source: Energy.gov [DOE]

Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

375

Lighting with Paint FABIO PELLACINI  

E-Print Network [OSTI]

Lighting with Paint FABIO PELLACINI Dartmouth College and FRANK BATTAGLIA, R. KEITH MORLEY, animation, rendering, optimization, painting ACM Reference Format: Pellacini, F., Battaglia, F., Morley, R

Pellacini, Fabio

376

Book review Light Scattering Reviews 4: Single Light Scattering and  

E-Print Network [OSTI]

-monograph on the use of space-time Green functions in the description of the diffusive radiation transport in active equation of the radiative transfer theory in the classical style of the ``Soviet'' school of radiativeBook review Light Scattering Reviews 4: Single Light Scattering and Radiative Transfer, A

377

Nittany Lights Landscape Lighting Sept. 28-30, 2012  

E-Print Network [OSTI]

Nittany Lights ­ Landscape Lighting Workshop Sept. 28-30, 2012 Penn State Campus - University Park with a lecture at the Palmer Art Museum to be provided by internationally known architectural/landscape artist get a chance to think beyond budgets, maintenance, codes, etc and get back to the fun creative side

378

Light-by-Light Scattering Effect in Light-Cone Supergraphs  

E-Print Network [OSTI]

We give a relatively simple explanation of the light-cone supergraph prediction for the UV properties of the maximally supersymmetric theories. It is based on the existence of a dynamical supersymmetry which is not manifest in the light-cone supergraphs. It suggests that N=4 supersymmetric Yang-Mills theory is UV finite and N=8 supergravity is UV finite at least until 7 loops whereas the $n$-point amplitudes have no UV divergences at least until $L=n+3$. Here we show that this prediction can be deduced from the properties of light-cone supergraphs analogous to the light-by-light scattering effect in QED. A technical aspect of the argument relies on the observation that the dynamical supersymmetry action is, in fact, a compensating field-dependent gauge transformation required for the retaining the light-cone gauge condition $A_+=0$.

Renata Kallosh; Pierre Ramond

2010-06-24T23:59:59.000Z

379

Veeco  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(LEDs), has the potential to be 10 times more energy-efficient than traditional incandescent light bulbs. Currently, 20% of energy usage in the U.S. goes to lighting. SSL...

380

Sailing into the Mainstream of Energy and Water Efficiency, Affordably...  

Broader source: Energy.gov (indexed) [DOE]

I entered the room, I checked all of the light fixtures (yes, I'm odd in that way). Incandescent light bulbs were in all the sockets. However, when I flushed the toilet, I heard...

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Efficiency and Conservation Block Grant Program  

Broader source: Energy.gov (indexed) [DOE]

light bulb retrofits, and 5) incandescent traffic signal replacement with light-emitting diode technology Conditions: None Categorical Exclusion(s) Applied: A9, A11, B1.32,...

382

Lighting and Dark Sky Regulations  

E-Print Network [OSTI]

.........................................................................................................2 C. Cherokee County, Georgia's Outdoor Lighting and Road Glare Ordinance visited Apr. 0, 2008) (providing links to ordinances throughout the United States). 2 See, e.g. Cherokee Protection Ordinance (Dec. , 200). 5 See, e.g. Model Lighting Section for Zoning Ordinances and Cherokee

Rosemond, Amy Daum

383

Quantum Coherence in Photosynthetic Light  

E-Print Network [OSTI]

the following: How do light-harvesting systems deliver such high efficiency in the presence of disordered:333­61 First published online as a Review in Advance on December 13, 2011 The Annual Review of Condensed Matter quantum efficiency of photosynthetic light harvesting. Further, this speculation has led to much effort

Fleming, Graham R.

384

Light beam frequency comb generator  

DOE Patents [OSTI]

A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

Priatko, Gordon J. (Cupertino, CA); Kaskey, Jeffrey A. (Livermore, CA)

1992-01-01T23:59:59.000Z

385

OLED lighting devices having multi element light extraction and luminescence conversion layer  

DOE Patents [OSTI]

An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

Krummacher, Benjamin Claus (Regensburg, DE); Antoniadis, Homer (Mountain View, CA)

2010-11-16T23:59:59.000Z

386

Using QECBs for Street Lighting Upgrades: Lighting the Way to...  

Broader source: Energy.gov (indexed) [DOE]

Summarizes how the City of San Diego leveraged 13.1 million in qualified energy conservation bonds to increase the size of a street lighting upgrade project. Author: Lawrence...

387

Inorganic volumetric light source excited by ultraviolet light  

DOE Patents [OSTI]

The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

1994-04-26T23:59:59.000Z

388

Inorganic volumetric light source excited by ultraviolet light  

DOE Patents [OSTI]

The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

Reed, Scott (Albuquerue, NM); Walko, Robert J. (Albuquerue, NM); Ashley, Carol S. (Albuquerue, NM); Brinker, C. Jeffrey (Albuquerue, NM)

1994-01-01T23:59:59.000Z

389

Saturable absorption and 'slow light'  

E-Print Network [OSTI]

Quantitative evaluation of some recent 'slow light' experiments based on coherent population oscillations (CPO) shows that they can be more simply interpreted as saturable absorption phenomena. Therefore they do not provide an unambiguous demonstration of 'slow light'. Indeed a limiting condition on the spectral bandwidth is not generally satisfied, such that the requirements for burning a narrow spectral hole in the homogeneously broadened absorption line are not met. Some definitive tests of 'slow light' phenomena are suggested, derived from analysis of phase shift and pulse delay for a saturable absorber

Adrian C Selden

2006-03-25T23:59:59.000Z

390

46th Street Pilot Street Lighting Project  

E-Print Network [OSTI]

Street to 48th Street) as standard high-pressure sodium (HPS) lighting comparison corridor #12;The over time #12;Initial Lighting Comparison #12;Lighting Project Location #12;Street Light Layout 3046th Street Pilot Street Lighting Project A Joint Venture: Hennepin County & City of Minneapolis

Minnesota, University of

391

Projection screen having reduced ambient light scattering  

DOE Patents [OSTI]

An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

Sweatt, William C. (Albuquerque, NM)

2010-05-11T23:59:59.000Z

392

Residential Lighting: Title 24 and Technology Update  

E-Print Network [OSTI]

Residential Lighting: Title 24 and Technology Update Best practices in lighting design to comply;INTRODUCTION Course Topics Part 1: Technology Overview · Common lighting terminology · Residential lighting residential lighting regulation · Design examples to reach or exceed code Part 5: Compliance Process · Step

California at Davis, University of

393

Next Generation Light Source Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

394

Flexible liquid core light guide with focusing and light shaping attachments  

DOE Patents [OSTI]

A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. 12 figs.

Kross, B.J.; Majewski, S.; Zorn, C.J.; Majewski, L.A.

1997-11-04T23:59:59.000Z

395

EECBG Success Story: Lighting Retrofit Improving Visibility,...  

Broader source: Energy.gov (indexed) [DOE]

New LED lighting fixtures (right) emit a whiter light than existing high-pressure sodium cobra head streetlights (left) and don't spill light onto nearby houses. | Photos courtesy...

396

Office Lighting: Title 24 & Technology Update  

E-Print Network [OSTI]

Office Lighting: Title 24 & Technology Update Kelly Cunningham Outreach Director kcunning@ucdavis.edu California Lighting Technology Center, UC Davis RESEARCH . INNOVATION . PARTNERSHIP Supporting compliance apply the Title 24 Building Energy Efficiency Standards code requirements specific to lighting

California at Davis, University of

397

Embodied Energy and Off-Grid Lighting  

E-Print Network [OSTI]

Self-reported Impacts of LED Lighting Technology Comparedto Fuel-based Lighting on Night Market Business Prosperity28, no. 4, pp. 533-546. Lighting Africa (prepared by Dalberg

Alstone, Peter

2012-01-01T23:59:59.000Z

398

Beyond the Replacement Paradigm: Smart Lighting  

E-Print Network [OSTI]

Switches ∑ Smart Building & Grid Interfaces ∑ Efficient full spectrum LEDs without droop ∑ Versatile, low - Visible Light Communications Integration of smart fixtures, networked sensors and control systemsBeyond the Replacement Paradigm: Smart Lighting Robert F. Karlicek, Jr. Director, Smart Lighting

Salama, Khaled

399

Lumental : web-based tunable lighting control  

E-Print Network [OSTI]

Dynamically adjusting the light spectrum of spectrum-tunable light fixtures promises significant energy savings over binary or incremental dimming control. To enable this level of controllability, lighting must evolve from ...

Hall, Harrison King

2012-01-01T23:59:59.000Z

400

Novel phosphors for solid state lighting  

E-Print Network [OSTI]

Solid state white light emitting diode lighting devices outperform conventional light sources in terms of lifetime, durability, and lumens per watt. However, the capital contribution is still to high to encourage widespread adoption. Furthermore...

Furman, Joshua D

2010-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lighting and GeometryLighting and Geometry Prof. Michael Misha Kazhdan  

E-Print Network [OSTI]

Lighting and GeometryLighting and Geometry Prof. Michael Misha Kazhdan misha· The viewer · The lights N Viewer · The lights · The geometry · The surface properties N L2 V Viewer L1Outline · Surface Properties (Review) · Lighting· Lighting · Geometry· Geometry #12;Surface Properties (Review

Fröhlich, Peter

402

Oscillating light wall above a sunspot light bridge  

E-Print Network [OSTI]

With the high tempo-spatial \\emph{Interface Region Imaging Spectrograph} 1330 {\\AA} images, we find that many bright structures are rooted in the light bridge of NOAA 12192, forming a \\emph{light wall}. The light wall is brighter than the surrounding areas, and the wall top is much brighter than the wall body. The New Vacuum Solar Telescope H$\\alpha$ and the \\emph{Solar Dynamics Observatory} 171 {\\AA} and 131 {\\AA} images are also used to study the light wall properties. In 1330 {\\AA}, 171 {\\AA}, and 131 {\\AA}, the top of the wall has a higher emission, while in the H$\\alpha$ line, the wall top emission is very low. The wall body corresponds to bright areas in 1330 {\\AA} and dark areas in the other lines. The top of the light wall moves upward and downward successively, performing oscillations in height. The deprojected mean height, amplitude, oscillation velocity, and the dominant period are determined to be 3.6 Mm, 0.9 Mm, 15.4 km s$^{-1}$, and 3.9 min, respectively. We interpret the oscillations of the lig...

Yang, Shuhong; Jiang, Fayu; Xiang, Yongyuan

2015-01-01T23:59:59.000Z

403

Science, Optics and You: Light and Colors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

opticstutorialsindex.html INTRODUCTION LIGHT AND COLORS MODULE m4 SCIENCE, OPTICS & YOU GUIDEBOOK - 62 - SCIENCE, OPTICS & YOU GUIDEBOOK - 63 - m4: Light &...

404

Municipal Consortium LED Street Lighting Workshop Presentations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Controls Norma Isahakian, City of Los Angeles Bureau of Street Lighting San Jose's "Smart" LED Streetlights: Controlled Amy Olay, City of San Jose Adaptive Lighting Controls...

405

Scientists produce transparent, light-harvesting material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

406

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1...

407

OTEC- Commercial Lighting Retrofit Rebate Program  

Broader source: Energy.gov [DOE]

The Oregon Trail Electric Consumers Cooperative (OTEC) offers a commercial lighting retrofit program that provides rebates for commercial businesses that change existing lighting to more energy...

408

THE LUMINA PROJECT http://light.lbl.gov  

E-Print Network [OSTI]

components for the LED lights. #12;2 Introduction Solid-state lighting based on light emitting diode (LED

Jacobson, Arne

409

Types of Lighting in Commercial Buildings - Lighting Types  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 QPDF LightingLighting

410

LED Provides Effective and Efficient Parking Area Lighting at...  

Broader source: Energy.gov (indexed) [DOE]

White Light Options for Parking Area Lighting Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Guide to FEMP-Designated Parking Lot...

411

Demonstration Assessment of Light-Emitting Diode (LED) Freezer...  

Broader source: Energy.gov (indexed) [DOE]

Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting This document is a report...

412

Demonstration Assessment of Light Emitting Diode (LED) Street...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report This...

413

Electromagnetic reactions on light nuclei  

E-Print Network [OSTI]

Electromagnetic reactions on light nuclei are fundamental to advance our understanding of nuclear structure and dynamics. The perturbative nature of the electromagnetic probes allows to clearly connect measured cross sections with the calculated structure properties of nuclear targets. We present an overview on recent theoretical ab-initio calculations of electron-scattering and photonuclear reactions involving light nuclei. We encompass both the conventional approach and the novel theoretical framework provided by chiral effective field theories. Because both strong and electromagnetic interactions are involved in the processes under study, comparison with available experimental data provides stringent constraints on both many-body nuclear Hamiltonians and electromagnetic currents. We discuss what we have learned from studies on electromagnetic observables of light nuclei, starting from the deuteron and reaching up to nuclear systems with mass number A=16.

Sonia Bacca; Saori Pastore

2014-07-13T23:59:59.000Z

414

Enrichment of light hydrocarbon mixture  

SciTech Connect (OSTI)

Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

Yang; Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

2010-08-10T23:59:59.000Z

415

Enrichment of light hydrocarbon mixture  

DOE Patents [OSTI]

Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

Yang, Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

2011-11-29T23:59:59.000Z

416

Monitored lighting energy savings from dimmable lighting controls in  

E-Print Network [OSTI]

, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark 94720, USA Abstract Digital addressable, dimmable lighting controls were introduced to the US market

417

National Synchrotron Light Source Activity Report 1998  

SciTech Connect (OSTI)

National Synchrotron Light Source Activity Report for period October 1, 1997 through September 30, 1998

Rothman, Eva

1999-05-01T23:59:59.000Z

418

National Synchrotron Light Source annual report 1991  

SciTech Connect (OSTI)

This report contains abstracts from research conducted at the national synchrotron light source. (LSP)

Hulbert, S.L.; Lazarz, N.N. (eds.)

1992-04-01T23:59:59.000Z

419

Organic electroluminescent devices having improved light extraction  

DOE Patents [OSTI]

Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

Shiang, Joseph John (Niskayuna, NY)

2007-07-17T23:59:59.000Z

420

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

9: Lighting Energy Usage for Commercial Building Lighting incommercial buildings. 4.2. Energy The California Energy Commission has analyzed lighting energy usageCommercial Sector on 2003 Peak Day [Source: CEC 2003 Data] Figure 9: Lighting Energy Usage for Commercial Building

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nonimaging light concentrator with uniform irradiance  

DOE Patents [OSTI]

A nonimaging light concentrator system including a primary collector of light, an optical mixer disposed near the focal zone for collecting light from the primary collector, the optical mixer having a transparent entrance aperture, an internally reflective housing for substantially total internal reflection of light, a transparent exit aperture and an array of photovoltaic cells disposed near the transparent exit aperture.

Winston, Roland (Chicago, IL); Gee, Randy C. (Arvada, CO)

2003-04-01T23:59:59.000Z

422

Light modulated switches and radio frequency emitters  

DOE Patents [OSTI]

The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

Wilson, Mahlon T. (Los Alamos, NM); Tallerico, Paul J. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

423

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

424

Damage tolerant light absorbing material  

DOE Patents [OSTI]

A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

1993-09-07T23:59:59.000Z

425

Solid state electrochromic light modulator  

DOE Patents [OSTI]

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (111 Downey St., Norwood, MA 02062); Rauh, R. David (111 Downey St., Norwood, MA 02062)

1990-01-01T23:59:59.000Z

426

Solid state electrochromic light modulator  

DOE Patents [OSTI]

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (Sudbury, MA); Rauh, R. David (Newton, MA)

1993-01-01T23:59:59.000Z

427

Solid state electrochromic light modulator  

DOE Patents [OSTI]

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

Cogan, S.F.; Rauh, R.D.

1990-07-03T23:59:59.000Z

428

Damage tolerant light absorbing material  

DOE Patents [OSTI]

A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

Lauf, Robert J. (Oak Ridge, TN); Hamby, Jr., Clyde (Harriman, TN); Akerman, M. Alfred (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

429

Fluorescent Lighting | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescent Lighting Fluorescent Lighting

430

Illuminating system and method for specialized and decorative lighting using liquid light guides  

DOE Patents [OSTI]

The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools.

Zorn, Carl J. (Yorktown, VA); Kross, Brian J. (Yorktown, VA); Majewski, Stanislaw (Grafton, VA); Wojcik, Randolph F. (Yorktown, VA)

1998-01-01T23:59:59.000Z

431

Strategy Guideline: High Performance Residential Lighting  

SciTech Connect (OSTI)

The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

Holton, J.

2012-02-01T23:59:59.000Z

432

The light meson spectroscopy program  

SciTech Connect (OSTI)

Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.

Smith, Elton S. [JLAB

2014-06-01T23:59:59.000Z

433

National Synchrotron Light Source II  

ScienceCinema (OSTI)

The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

Steve Dierker

2010-01-08T23:59:59.000Z

434

High Performance Outdoor Lighting Accelerator  

Broader source: Energy.gov [DOE]

Hosted by the U.S. Department of Energy (DOE)ís Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

435

CSC418 / CSCD18 / CSC2504 Basic Lighting and Reflection 8 Basic Lighting and Reflection  

E-Print Network [OSTI]

CSC418 / CSCD18 / CSC2504 Basic Lighting and Reflection 8 Basic Lighting and Reflection Up things, on the lighting that illuminates the scene, and on the interaction of light with the objects in the scene. Some of the basic qualitative properties of lighting and object reflectance that we need

Toronto, University of

436

Light Collages: Lighting Design for Effective Visualization Chang Ha Lee Xuejun Hao Amitabh Varshney  

E-Print Network [OSTI]

Light Collages: Lighting Design for Effective Visualization Chang Ha Lee Xuejun Hao Amitabh 20742 {chlee, hao, varshney}@cs.umd.edu ABSTRACT We introduce Light Collages ­ a lighting design system perception of features with lighting that is locally consistent and globally inconsistent. Inspired

Varshney, Amitabh

437

Enhanced coupling of light from organic light emitting diodes using nanoporous films  

E-Print Network [OSTI]

Enhanced coupling of light from organic light emitting diodes using nanoporous films H. J. Peng, Y the light extraction efficiency for organic light emitting diode OLED . Nanoporous alumina film was used by Bragg scattering. The corrugated light- emitting diode had two-times the efficiency as compared

438

Legislative Directive: EISA 2007, Subtitle B: Lighting Energy Efficiency  

Broader source: Energy.gov [DOE]

Legislative Directive: EISA 2007, Subtitle B: Lighting Energy Efficiency, Sec. 321: Lighting Energy Efficiency

439

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles ¬ĽExchange Visitorsfor Shade Landscaping for ShadeLessonsLight

440

Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocks

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Design and implementation of a solar power system in rural Haiti  

E-Print Network [OSTI]

This paper describes the design and implementation of a solar power system for a school and health center in Petit-Anse, Haiti. The end-use applications are lighting via a set of fluorescent and incandescent bulbs, and a ...

Hussam, Shaheer M. (Shaheer Muqtasid), 1981-

2004-01-01T23:59:59.000Z

442

Color Scanner Performance Tradeoffs G. Sharma and H.J. Trussell  

E-Print Network [OSTI]

from the viewing illuminant (often incandescent light/ daylight), it is difficult to design realizable error. However, such a formulation 9 does not yield a closed form solution and is therefore not very

Sharma, Gaurav

443

Plant Physiol. (1983) 73, 4504510 0032-0889/83/73/0450/02/$00.50/0  

E-Print Network [OSTI]

wrapped around 20-w cool white fluorescent tubes. For far-red light (730 nm peak, 15 nm half band width-w incandescent bulb was filtered through No. 2025 Plexiglas (Rohm and Hass, Inc.). Irradiance levels

Decoteau, Dennis R.

444

Microsoft Word - SWMU 39 Revised SAR CY 2004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 2005 the newly discovered waste removed from this area consists of one broken incandescent light bulb. This item was labeled as hazardous waste and placed into a Satellite...

445

Microsoft Word - SAR 206 3-10-06  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the storage of non-conforming RCRA items (respirator canisters, a lead fuse, broken incandescent light bulbs, a can of dried Pistol Pete Solvent Cement, and a can of dried Rector...

446

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

on its head, and perhaps in the not-too-distant future make the century-old incandescent light bulb go the way of the dinosaur. June 11, 2009 What Small Improvements Have...

447

How Much Energy does Your TV Set Use? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- 5:49am Addthis This week, Andrea compared the energy use of TVs with traditional incandescent light bulbs and talked about the heat coming off her TV set. We've talked about TV...

448

CX-006337: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

the Police Station with a more energy efficient boiler, and 6) implementation of an incandescent light-bulb trade-in program for low-income households. DOCUMENT(S) AVAILABLE FOR...

449

2 Masers and Lasers January 31, 2008  

E-Print Network [OSTI]

, a candle, an incandescent bulb, or a fluorescent source, is the result of incoherent emission of light from of Radiation) that extended the existence of coherent sources right into the ultraviolet spectrum

Thouless, David

450

Monitored lighting energy savings from dimmable lighting controls in The New York Times Headquarters Building  

E-Print Network [OSTI]

A. , DíHerdt, P. , 2008, Lighting energy savings in officesLux Europa, 11 th European Lighting Conference, Istanbul,evaluation of the dimmable lighting, automated shading, and

Fernandes, Luis L.

2014-01-01T23:59:59.000Z

451

LIGHTING RESEARCH PROGRAM Project 5.4 DALI Lighting Control Device Standard  

E-Print Network [OSTI]

LIGHTING RESEARCH PROGRAM Project 5.4 DALI Lighting Control Device Standard Development FINAL CONTROL DEVICE STANDARD PROPOSED BY NEMA ......10 TECHNICAL ASSESSMENT REPORT Electronics Co.; Al Lombardi, Leviton Manufacturing Co., Inc.; Mike Stein, Universal Lighting Technologies

452

Table of Contents Page i 2013 Residential Compliance Manual January 2014  

E-Print Network [OSTI]

............................................................................24 6.4.2 Incandescent Luminaires

453

Lighting system with thermal management system  

DOE Patents [OSTI]

Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

2013-05-07T23:59:59.000Z

454

Variable area light reflecting assembly  

DOE Patents [OSTI]

Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

Howard, Thomas C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

455

Variable area light reflecting assembly  

DOE Patents [OSTI]

Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

Howard, T.C.

1986-12-23T23:59:59.000Z

456

Light-driven phase shifter  

DOE Patents [OSTI]

A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

Early, James W. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

457

Light shield for solar concentrators  

DOE Patents [OSTI]

A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

Plesniak, Adam P.; Martins, Guy L.

2014-08-26T23:59:59.000Z

458

LED Lighting | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles ¬ĽExchange Visitors HistoryHybridInspectorInvestingJobsLED Lighting

459

Materials for solid state lighting  

SciTech Connect (OSTI)

Dramatic improvement in the efficiency of inorganic and organic light emitting diodes (LEDs and OLEDs) within the last decade has made these devices viable future energy efficient replacements for current light sources. However, both technologies must overcome major technical barriers, requiring significant advances in material science, before this goal can be achieved. Attention will be given to each technology associated with the following major areas of material research: (1) material synthesis, (2) process development, (3) device and defect physics, and (4) packaging. The discussion on material synthesis will emphasize the need for further development of component materials, including substrates and electrodes, necessary for improving device performance. The process technology associated with the LEDs and OLEDs is very different, but in both cases it is one factor limiting device performance. Improvements in process control and methodology are expected to lead to additional benefits of higher yield, greater reliability and lower costs. Since reliability and performance are critical to these devices, an understanding of the basic physics of the devices and device failure mechanisms is necessary to effectively improve the product. The discussion will highlight some of the more basic material science problems remaining to be solved. In addition, consideration will be given to packaging technology and the need for the development of novel materials and geometries to increase the efficiencies and reliability of the devices. The discussion will emphasize the performance criteria necessary to meet lighting applications, in order to illustrate the gap between current status and market expectations for future product.

Johnson, S.G.; Simmons, J.A.

2002-03-26T23:59:59.000Z

460

Broadband light-emitting diode  

DOE Patents [OSTI]

A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

Fritz, Ian J. (Albuquerque, NM); Klem, John F. (Sandia Park, NM); Hafich, Michael J. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Broadband light-emitting diode  

DOE Patents [OSTI]

A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

Fritz, I.J.; Klem, J.F.; Hafich, M.J.

1998-07-14T23:59:59.000Z

462

Shelf life of five meat products displayed under light emitting diode or fluorescent lighting.  

E-Print Network [OSTI]

??Light emitting diode (LED) and fluorescent (FLS) lighting effects on enhanced pork loin chops, beef longissimus dorsi and semimembranosus steaks, ground beef, and ground turkeyÖ (more)

Steele, Kyle Stover

2011-01-01T23:59:59.000Z

463

PROJECT REPORT COUPLING OF LIGHT THROUGH FIBER  

E-Print Network [OSTI]

1 PROJECT REPORT COUPLING OF LIGHT THROUGH FIBER PHY 564 SUBMITTED BY: GAGANDEEP KAUR (952549116 size simplifies connections and also allows the use of lower-cost electronics such as light

La Rosa, Andres H.

464

Exciting White Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exciting White Lighting Exciting White Lighting April 23, 2010 - 10:27am Addthis Joshua DeLung In the future, your office building's windows might be replaced with windows that...

465

Portable lamp with dynamically controlled lighting distribution  

DOE Patents [OSTI]

A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

Siminovitch, Michael J. (Pinole, CA); Page, Erik R. (Berkeley, CA)

2001-01-01T23:59:59.000Z

466

Overcoming Common Pitfalls: Energy Efficient Lighting Projects...  

Broader source: Energy.gov (indexed) [DOE]

I could talk for days about solid stat lighting, so I'll try not to drive you two nuts. Solid state lightening has three subsets, OLEDs, organic light emitting diodes and quantum...

467

A light emitting object and its environment  

E-Print Network [OSTI]

The object that is intentionally produced with the inherent spirit of "Fine Art," will always be placed with a reverence for its setting. "LIGHT GRID" is a light sculpture with flexibility to utilize the environment where ...

Jeibmann, Jon Karl

1983-01-01T23:59:59.000Z

468

Low-light-level nonlinear optics with slow light  

E-Print Network [OSTI]

Electromagnetically induced transparency in an optically thick, cold medium creates a unique system where pulse-propagation velocities may be orders of magnitude less than $c$ and optical nonlinearities become exceedingly large. As a result, nonlinear processes may be efficient at low-light levels. Using an atomic system with three, independent channels, we demonstrate a quantum interference switch where a laser pulse with an energy density of $\\sim23$ photons per $\\lambda^2/(2\\pi)$ causes a 1/e absorption of a second pulse.

Danielle A. Braje; Vlatko Balic; G. Y. Yin; S. E. Harris

2003-09-10T23:59:59.000Z

469

Types of Lighting in Commercial Buildings - Lighting Characteristics  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 QPDF Lighting

470

Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova39. It isEnergy Information LED Lighting

471

Solid-State Lighting-Lighting Facts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite ManagementSolid-State LightingWebcasts Solid-State

472

Lighting system with heat distribution face plate  

DOE Patents [OSTI]

Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

2013-09-10T23:59:59.000Z

473

Considering LEDs for Street and Area Lighting  

Broader source: Energy.gov [DOE]

View Jim Brodrick's keynote video from the September 2009 IES Street and Area Lighting Conference in Philadelphia.

474

Light Water Reactor Sustainability (LWRS) Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Water Reactor Sustainability (LWRS) Program Login Instructions go here. User ID: Password: Log In Forgot your password?...

475

Energy Conservation Utilizing Wireless Dimmable Lighting Control  

E-Print Network [OSTI]

results & discussion Future research #12;2 Background & Motivation Energy Usage & Potential Savings Lighting accounts for 25-30% of energy usage in building electrical systems Energy savings can be generated Energy Efficiency with Personal Lighting Preferences Light level tuning · Generates energy savings

Agogino, Alice M.

476

STATE OF CALIFORNIA OUTDOOR LIGHTING WORKSHEET  

E-Print Network [OSTI]

STATE OF CALIFORNIA OUTDOOR LIGHTING WORKSHEET CEC-OLTG-2C (Revised 03/10) CALIFORNIA ENERGY COMMISSION 2008 Nonresidential Compliance Forms March 2010 OUTDOOR LIGHTING WORKSHEET (Page 1 of 3) OLTG-2C Project Name: Date: A. LIGHTING POWER ALLOWANCE FOR GENERAL HARDSCAPE AREA WATTAGE ALLOWANCE (AWA) LINEAR

477

Retail Lighting: Title 24 & Technology Update  

E-Print Network [OSTI]

Retail Lighting: Title 24 & Technology Update Kelly Cunningham Outreach Director kcunning@ucdavis.edu California Lighting Technology Center, UC Davis RESEARCH . INNOVATION . PARTNERSHIP Supporting compliance Lighting: Title 24 and Technology Update C00005 Kelly Cunningham April 24,2014 #12;Credit(s) earned

California at Davis, University of

478

Tabletop Computed Lighting for Practical Digital Photography  

E-Print Network [OSTI]

Tabletop Computed Lighting for Practical Digital Photography Ankit Mohan, Reynold Bailey, Jonathan Abstract--We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects

479

Lighting market sourcebook for the US  

SciTech Connect (OSTI)

Throughout the United States, in every sector and building type, lighting is a significant electrical end-use. Based on the many and varied studies of lighting technologies, and experience with programs that promote lighting energy-efficiency, there is a significant amount of cost-effective energy savings to be achieved in the lighting end use. Because of such potential savings, and because consumers most often do not adopt cost-effective lighting technologies on their own, programs and policies are needed to promote their adoption. Characteristics of lighting energy use, as well as the attributes of the lighting marketplace, can significantly affect the national pattern of lighting equipment choice and ownership. Consequently, policy makers who wish to promote energy-efficient lighting technologies and practices must understand the lighting technologies that people use, the ways in which they use them, and marketplace characteristics such as key actors, product mix and availability, price spectrum, and product distribution channels. The purpose of this report is to provide policy-makers with a sourcebook that addresses patterns of lighting energy use as well as data characterizing the marketplace in which lighting technologies are distributed, promoted, and sold.

Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

1997-12-01T23:59:59.000Z

480

Solid State Lighting ECE 198 Lab Manual  

E-Print Network [OSTI]

will take the role of a consultant to either a large company, a government institution, or an academic A significant fraction of the electricity used in this country is used for lighting applications, whether countries require sources of light, there has been a significant increase in light consumption globally

Wasserman, Daniel M.

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solid State Lighting Semiconductor Spectroscopy & Devices  

E-Print Network [OSTI]

and fluorescent lamps, are very inefficient in transforming energy into light. Due to upcoming problems in energy % of Earth's total power consumption is used for lighting! Figure 3: Earth at night from space. Evolution inside a semiconductor for light emission. Over 150 years ago... How to achieve white LEDs? Figure 5

Strathclyde, University of

482

Smart Lighting ERC Industrial Speaker Series  

E-Print Network [OSTI]

. Stough Director of Solid State Lighting Research Osram Sylvania Abstract: For the past five years or so fixture, etc.), and present problems for the Lighting Company trying to implement LED-based lighting them as the next `filament." Bio: Dr. Matthew Stough is the director of research in Solid-State

L√ľ, James Jian-Qiang

483

Bayesian surface estimation for white light interferometry  

E-Print Network [OSTI]

.hamprecht@iwr.uni-heidelberg.de). 1 #12;The development of white light interferometers for industry was first guidedBayesian surface estimation for white light interferometry Michael Hissmann Fred A. Hamprecht 2004/07/05 Abstract In conventional white light interferometry (WLI) surface estimation, data acquisition is followed

Hamprecht, Fred A.

484

Energy-efficient lighting system for television  

DOE Patents [OSTI]

A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

Cawthorne, Duane C. (Amarillo, TX)

1987-07-21T23:59:59.000Z

485

Physics 4: Introductory Physics Electromagnetism and Light  

E-Print Network [OSTI]

Physics 4: Introductory Physics Electromagnetism and Light Professor Jeffrey D. Richman Department: Electromagnetism and Light Welcome to Physics 4! What is your goal in life? If it is to become an engineer or to pursue a career in science, this is a key class for you. Understanding electromagnetism and light

Fygenson, Deborah Kuchnir

486

Waste Toolkit A-Z Light bulbs  

E-Print Network [OSTI]

Waste Toolkit A-Z Light bulbs Can I recycle light bulbs? It depends what type of bulbs you have of in the normal University waste bins (landfill waste). Energy saving bulbs and fluorescent tubes are classified light bulbs? Standard filament bulbs Put in the waste bin (landfill waste) as these are not classified

Melham, Tom

487

Energy Conversion: Solid-State Lighting  

E-Print Network [OSTI]

8 Energy Conversion: Solid-State Lighting E. Kioupakis1,2 , P. Rinke1,3 , A. Janotti1 , Q. Yan1 fraction of the world's energy resources [1]. Lighting has been one of the earliest applications. The inefficiency of existing light sources that waste most of the power they consume is the reason for this large

488

Simulating a Nationally Representative Housing Sample Using EnergyPlus  

E-Print Network [OSTI]

meet. (During the defrost cycle, the heat pump usually runsheat pumps to run the supplemental heating coils during the defrost

Hopkins, Asa S.

2011-01-01T23:59:59.000Z

489

Light Duty Efficient, Clean Combustion  

SciTech Connect (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

490

Light Duty Efficient, Clean Combustion  

SciTech Connect (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energyís Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over todayís state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle Ė Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include Ė sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

491

Slow light microfluidics: a proposal  

E-Print Network [OSTI]

The resonant slow light structures created along a thin-walled optical capillary by nanoscale deformation of its surface can perform comprehensive simultaneous detection and manipulation of microfluidic components. This concept is illustrated with a model of a 0.5 millimeter long 5 nm high triangular bottle resonator created at a 50 micron radius silica capillary containing floating microparticles. The developed theory shows that the microparticle positions can be determined from the bottle resonator spectrum. In addition, the microparticles can be driven and simultaneously positioned at predetermined locations by the localized electromagnetic field created by the optimized superposition of eigenstates of this resonator, thus, exhibiting a multicomponent near field optical tweezers.

Sumetsky, M

2014-01-01T23:59:59.000Z

492

Lighting Design | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of Energy 1procedures,Light Water

493

Entangled topological features of light  

E-Print Network [OSTI]

We report the entanglement of topological features, namely, isolated, linked optical vortex loops in the light from spontaneous parametric down-conversion (SPDC). In three dimensions, optical vortices are lines of phase singularity and vortices of energy flow which percolate through all optical fields. This example of entanglement is between features that extend over macroscopic and finite volumes, furthermore, topological features are robust to perturbation . The entanglement of photons in complex three-dimensional(3D) topological states suggests the possibility of entanglement of similar structures in other quantum systems describable by complex scalar functions, such as superconductors, superfluids and Bose-Einstein condensates.

J. Romero; J. Leach; B. Jack; M. R. Dennis; S. Franke-Arnold; S. M. Barnett; M. J. Padgett

2010-08-26T23:59:59.000Z

494

Lighting Controls | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI VehicleComposites

495

Light Duty Vehicle CNG Tanks  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 |KSRS25RV*)Boyd About UsMr. Brian MillsLEVERAGINGfromLight

496

Sandia National Laboratories: Stray Light  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards Solar ThermochemicalStorage Protected:Stray Light

497

Shedding Light on Nanocrystal Defects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart Grid Experiences throughandShedding Light on

498

Shedding Light on Nanocrystal Defects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart Grid Experiences throughandShedding Light

499

Department of Mechanical Engineering Spring 2013 Lumax Lighting 2: LED Industrial High Bay Light Fixture  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Spring 2013 Lumax Lighting 2: LED Industrial High Bay Light Fixture Overview The problem that our sponsor, Rich Taylor, presented to the team was to design a light fixture for an industrial setting using high power LED lights. The challenge

Demirel, Melik C.

500

LIGHTING RESEARCH PROGRAM Project 4.4 Portable Office Lighting Systems  

E-Print Network [OSTI]

LIGHTING RESEARCH PROGRAM Project 4.4 Portable Office Lighting Systems FINAL REPORT Prepared For, Governor October 2005 CEC-500-2005-141-A13 #12;Portable Office Lighting Systems ­ Final Report Architectural Energy Corporation/CLTC PIER Lighting Research Program ii 500-01-041 CALIFORNIA ENERGY COMMISSION