Powered by Deep Web Technologies
Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High efficiency incandescent lighting  

DOE Patents (OSTI)

Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

2014-09-02T23:59:59.000Z

2

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

3

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

4

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

5

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

6

How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...  

NLE Websites -- All DOE Office Websites (Extended Search)

How Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents July 28, 2014 - 11:39pm Addthis...

7

How Energy-Efficient Light Bulbs Compare with Traditional Incandescents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Light Bulbs Compare with Traditional Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents July 29, 2012 - 6:25pm Addthis Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home. Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home. Compared to traditional incandescents, energy-efficient lightbulbs such as energy-saving incandescents, compact fluorescent lamps (CFLs), and light emitting diodes (LEDs) have the following advantages: Typically use about 25%-80% less energy, saving you money

8

Underwater Lighting by Submerged Lasers and Incandescent Sources  

E-Print Network (OSTI)

and collimated underwater incandescent projector. The laser-collimated underwater incandescent projector used for beamBY SUBMERGED LASERS and Incandescent Sources DESCRIPTIVE

Duntley, Seibert Q

1971-01-01T23:59:59.000Z

9

Metallic photonic-band-gap filament architectures for optimized incandescent lighting Sajeev John and Rongzhou Wang  

E-Print Network (OSTI)

Metallic photonic-band-gap filament architectures for optimized incandescent lighting Sajeev John occur 3,4 . Tra- ditionally incandescent lighting filaments, despite being driven from equilibrium the blackbody spectrum. This suggests the pos- sibility of higher efficiency incandescent lighting, through

John, Sajeev

10

ECE 466: LED Lighting Systems -Incandescent lightings rise and  

E-Print Network (OSTI)

versus cost - Power Electronic Drives for CFL and LED light sources to achieve dimmable operation - Basic electric AC and DC circuits at Sophomore level or equivalents Absolutes Lighting System Requirements index as a metric of a light source - Power Electronic Energy sources driving light sources in a compact

Schumacher, Russ

11

How to upgrade your incandescent light bulbs Many people are choosing replacements for their standard incandescent light bulbs to save money or energy, because they've heard of new LED  

E-Print Network (OSTI)

for their standard incandescent light bulbs to save money or energy, because they've heard of new LED options to choose replacement light bulbs. You can save energy and money by replacing any standard incandescent from The Lighting Pattern Book for Homes, LRC 1993. Lighting Energy Use by Room BR · Note the type

Bystroff, Chris

12

Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED) Bulbs  

Science Journals Connector (OSTI)

Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. ... The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. ... mercury pollution; redn. in electricity demand from the substitution of incandescent bulbs with fluorescents leads to reduced mercury emissions during the use of the bulb. ...

Seong-Rin Lim; Daniel Kang; Oladele A. Ogunseitan; Julie M. Schoenung

2012-12-13T23:59:59.000Z

13

Energy-Saving Incandescents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

halogenshires.jpg Description Energy-saving incandescent lighbulbs - high-resolution JPG More Documents & Publications Energy-Saving Incandescents CFL Lightbulbs Lighting Tip Card...

14

Power Quality Improvements in Lighting Systems Mr. Ashish Shrivastava  

E-Print Network (OSTI)

from early incandescent lamps to present generation light emitting diodes (LEDs). Incandescent light

Kumar, M. Jagadesh

15

Photonically Engineered Incandescent Emitter  

DOE Patents (OSTI)

A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2005-03-22T23:59:59.000Z

16

A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Bright Idea: New Efficiency Standards for Incandescent and A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights July 21, 2009 - 5:18pm Addthis John Lippert Pretty soon, lighting is going to get a lot more efficient. New standards for incandescent reflector bulbs, general purpose fluorescent bulbs, and regular incandescent bulbs are going into effect beginning in approximately three years. You may be curious about how these standards will affect the most popular types of incandescent bulbs we've all used for so long: the common non-reflector 40-watt, 60-watt, 75-watt, and 100-watt bulbs. The Energy Independence and Security Act of 2007 (also known as EISA) requires that these incandescent bulbs use 30% less energy than today's

17

Comparison of 60-Hz electric fields and incandescent light as aversive stimuli controlling the behavior of rats  

SciTech Connect

Rats were exposed to two procedures which enabled them to press a lever to turn off a 90 or 100 kV/m 60-Hz electric field or, later in the study, illumination from an incandescent lamp. Under one procedure, a response turned off the stimulus for a fixed duration, after which the stimulus was turned on again. A response during the off-period restarted the fixed duration. None of the rats turned the field off reliably. Next, under an alternative procedure, pressing one lever turned the field off; pressing the other lever turned it back on; responding under those conditions differed little from that seen at 0 kV/m. Under both procedures, when illumination from an incandescent lamp served as the stimulus, each rat did turn the stimulus off, and performances varied with stimulus intensity. The results show that a 100 kV/m 60-Hz electric field is not sufficient to function as an aversive stimulus under two procedures where illumination from a lamp does function as an aversive stimulus.

Stern, S.; Laties, V.G.

1989-01-01T23:59:59.000Z

18

Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications  

E-Print Network (OSTI)

performance variations. Incandescent and fluorescent lightbetter than the common incandescent lamp. Off-grid lighting

Mills, Evan

2007-01-01T23:59:59.000Z

19

Energy-efficient incandescent lamp: Final report  

E-Print Network (OSTI)

of Energy Conserving Incandescent Lamps", J . Brett, R.July 1981. "Filaments for Incandescent Lamps with Radiation20-22 "Energy Saving Incandescent Lamps with Infrared

Verderber, R.

2010-01-01T23:59:59.000Z

20

Incandescent | OpenEI  

Open Energy Info (EERE)

Incandescent Incandescent Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network (OSTI)

only be able to find incandescent lightbulbs and fluorescent10: Output spectra of incandescent light bulb, fluorescentemission spectra. The incandescent light bulb for example

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

22

Controls for Solid-State Lighting  

E-Print Network (OSTI)

very high would replace incandescent and halogen A modernmotion sensor, the incandescent lamp switches on providing awork with fluorescent and incandescent lighting as well as

Rubinstein, Francis

2007-01-01T23:59:59.000Z

23

Synthesis and luminescence properties of rare earth activated phosphors for near UV-emitting LEDs for efficacious generation of white light  

E-Print Network (OSTI)

lighting using incandescent lights and fluorescent lamps, asenergy used for the incandescent lamp is wasted as infraredsource to replace incandescent and fluorescent lighting [2].

Han, Jinkyu

2013-01-01T23:59:59.000Z

24

The incandescent disposal system  

SciTech Connect

The electrotechnology device being introduced to the low-level waste market is an Incandescent Disposal System (IDS) for volume reduction and vitrification. The process changes the composition of the waste material, usually long molecular chains, into simple molecules and elements. It renders the volume of low-level wastes to a manageable solid vitrified residue, carbon black, and a water discharge. The solid material, which has been vitrified if silica is introduced into the waste stream, is an ideal inert filler. The carbon black is non-leaching and is readily available for vitrification as it comes out of the IDS.

Smith, R.G.

1996-03-01T23:59:59.000Z

25

Energy-Saving Incandescents | Department of Energy  

Energy Savers (EERE)

halogenhiresweb.eps Description Energy-saving incandescent lightbulbs - high-resolution EPS More Documents & Publications Energy-Saving Incandescents CFL Lightbulbs CFL...

26

Market Trial: Selling Off-Grid Lighting Products in Rural Kenya  

E-Print Network (OSTI)

people reported using an incandescent dry cell flashlightpurchasers. TypeofLight Incandescent LEDdrycell LEDLED rechargeable, and incandescent dry cell flashlights were

Tracy, Jennifer

2012-01-01T23:59:59.000Z

27

Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile  

E-Print Network (OSTI)

phasing out the use of incandescent lamps. Following majorproposed phase out of incandescent bulbs in Chile. 2 Lifeless energy: here incandescent lights (IL) are evaluated

Letschert, Virginie E.

2012-01-01T23:59:59.000Z

28

Stalled on the Road to the Market: Analysis of Field Experience with a Project to Promote Lighting Efficiency in India  

E-Print Network (OSTI)

several rea- sons: (1) incandescent lamps, the products thatin replacing an incandescent with a CFL is unmatched in anysame quantity of light as an incandescent lamp. The BELLE

Gadgil, A.J.

2008-01-01T23:59:59.000Z

29

Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market  

E-Print Network (OSTI)

have largely displaced incandescent flashlights in retailinvolving the use of incandescent lighting, unless there areFluorescent Flashlight C Incandescent SPX 50 Fluorescent y x

Tracy, Jennifer

2010-01-01T23:59:59.000Z

30

Cost effectiveness of long life incandescent lamps and energy buttons  

SciTech Connect

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen hours are determined for each lamp system. It is found that the most important component lighting cost is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial unit cost of $20.00, is the most cost-effective source of illumination compared to the incandescent lamp and lamp systems examined.

Verderber, R.; Morse, O.

1980-04-07T23:59:59.000Z

31

Apparatus and method for evaporator defrosting  

DOE Patents (OSTI)

An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN); Domitrovic, Ronald E. (Knoxville, TN)

2001-01-01T23:59:59.000Z

32

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network (OSTI)

of incandescent light bulb, fluorescent lamp, and blue lightof incandescent light bulb, fluorescent lamp, and blue lightincandescent bulb and is on the same order as fluorescent

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

33

THELUMINAPROJECT http://light.lbl.gov  

E-Print Network (OSTI)

source of portable lighting in Kenya, outpacing incandescent flashlights (Johnstone et al., 2009). LED technology has the potential to provide efficiency and performance benefits relative to incandescent bulbs

Jacobson, Arne

34

Defrosting in an emergent Galileon cosmology  

Science Journals Connector (OSTI)

We study the transition from an emergent Galileon condensate phase of the early universe to a later expanding radiation phase. This defrosting or preheating transition is a consequence of the excitation of matter fluctuations by the coherent Galileon condensate, in analogy to how preheating in inflationary cosmology occurs via the excitation of matter fluctuations through coupling of matter with the coherent inflaton condensate. We show that the minimal coupling of matter (modeled as a massless scalar field) to the Galileon field introduced by Creminelli, Nicolis, and Trincherini in order to generate a scale-invariant spectrum of matter fluctuations is sufficient to lead to efficient defrosting, provided that the effects of the nonvanishing expansion rate of the universe are taken into account. If we neglect the effects of expansion, an additional coupling of matter to the Galileon condensate is required. We study the efficiency of the defrosting mechanism in both cases.

Laurence Perreault Levasseur; Robert Brandenberger; Anne-Christine Davis

2011-11-09T23:59:59.000Z

35

Sleep, mood, and circadian responses to bright green light during sleep  

E-Print Network (OSTI)

white light from fluorescent bulbs, as point sources mightthan incandescent bulbs. Also, fluorescent light is easier

Grandner, Michael Andrew

2007-01-01T23:59:59.000Z

36

General service incandescent lamp with improved efficiency  

SciTech Connect

A high efficiency general service incandescent lamp is disclosed. The disclosed improved general service incandescent lamp has an outer and an inner envelope. The inner envelope has a relatively small housing containing a halogen gas and a relatively high pressure efficient fill-gas and in which a low voltage filament is spatially disposed therein.

Berlec, I.

1985-06-18T23:59:59.000Z

37

COST EFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGY BUTTONS  

E-Print Network (OSTI)

as any 1ong-li incandescent lamp or system evaluated in thisEFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGYEFFECTIVENESS OF LONG LIFE INCANDESCENT LAMPS AND ENERGY

Verderber, Rudy

2013-01-01T23:59:59.000Z

38

Visible Spectrum Incandescent Selective Emitter  

SciTech Connect

The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination was initially projected. The work performed provided answers to a number of important questions. The first is that, with the investigated approaches, the maximum sustained emitter efficiencies are about 1.5 times that of a standard incandescent bulb. This was seen to be the case for both thick and thin emitters, and for both mono-layer and bi-layer designs. While observed VIS/NIR ratios represent improvements over standard incandescent bulbs, it does not appear sufficient to overcome higher cost (i.e. up to five times that of the standard bulb) and ensure commercial success. Another result is that high temperatures (i.e. 2650 K) are routinely attainable without platinum electrodes. This is significant for reducing material costs. A novel dual heating arrangement and insulated electrodes were used to attain these temperatures. Another observed characteristic of the emitter was significant grain growth soon after attaining operating temperatures. This is an undesirable characteristic that results in substantially less optical scattering and spectral selectivity, and which significantly limits emitter efficiencies to the values reported. Further work is required to address this problem.

Sonsight Inc.

2004-04-30T23:59:59.000Z

39

Tungsten wire for incandescent lamps  

SciTech Connect

Tungsten wire for incandescent lamp filaments must operate at high temperatures and for long times. To meet these requirements, the grain morphology of the wire must be controlled to reduce the propensity for grain boundary sliding. The morphology is a function of the distribution of very small pockets of potassium in the wire and the mechanical processing from ingot to wire. The behavior of the filament is directly related to the grain morphology. This paper describes the mechanism by which the potassium is incorporated into and distributed in the ingot. The elongation and spheroidization of the bubbles during hot rolling and swaging is also examined and related to the grain morphology of wire. Some indications of the relationship between grain morphology and filament behavior are also given.

Walter, J.L.; Briant, C.L. (General Electric Corporate Research and Development, Schenectady, NY (USA))

1990-09-01T23:59:59.000Z

40

Heat pump having improved defrost system  

DOE Patents (OSTI)

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

Chen, F.C.; Mei, V.C.; Murphy, R.W.

1998-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Technologies Office: Fluorescent and Incandescent Lamps Public  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescent and Fluorescent and Incandescent Lamps Public Meeting to someone by E-mail Share Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Facebook Tweet about Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Twitter Bookmark Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Google Bookmark Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Delicious Rank Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Digg Find More places to share Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

42

Ceramic Mugs & Dishes Incandescent Light Bulbs  

E-Print Network (OSTI)

502-6808 · Campus Recycling Service 476-2021 · sustainability.ucsf.edu/stay_informed/recycling_resources Binders Plastic Bags & Wrap Pretzel & Chip Bags Rubber bands Styrofoam Tyvek RECYCLE Aluminum foil & cans Reuse Recycle Compost receptacles can be found at campus cafes; Individual office composting is starting

Yamamoto, Keith

43

Comprehensive Pyrometry of Incandescent Multiwalled Carbon Nanotubes and Graphene in the Visible and Near Infrared  

E-Print Network (OSTI)

4.17 Image of incandescent tungsten ?to collect data from incandescent MWCNTs. An illustration ofand of Carbon at Incandescent Temper- atures, Physical

Singer, Scott

2012-01-01T23:59:59.000Z

44

DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps June 24, 2010 - 2:40pm...

45

Development of a demand defrost controller. Final report  

SciTech Connect

The purpose of this project was to develop and commercialize a demand defrost controller that initiates defrosts of refrigeration systems only when required. The standard method of control is a time clock that usually defrosts too often, which wastes energy. The controller developed by this project uses an algorithm based on the temperature difference between the discharge and return of the display case air curtain along with several time settings to defrost only when needed. This controller was field tested in a supermarket where it controlled defrost of the low-temperature display cases. According to test results the controller could reduce annual energy consumption by 20,000 and 62,000 kWh for hot gas and electric defrost, respectively. The controller saves electric demand as well as energy, is adaptable to ambient air conditions, and provides valuable savings throughout the year. The savings are greatest for low-temperature systems that use the most energy. A less tangible benefit of the demand controller is the improvement in food quality that results from fewer defrosts.

Borton, D.N. [Power Kinetics, Troy, NY (United States); Walker, D.H. [Foster-Miller, Inc., Waltham, MA (United States)

1993-10-01T23:59:59.000Z

46

EK101 Engineering Light Project: Evaluate Residential Lighting  

E-Print Network (OSTI)

for residential lighting (LED, Compact Fluorescent, Incandescent). Develop a plan of experiments to be conducted, CF, and Incandescent bulbs for the past ten years. (try the wayback time machine if other sources fail). Discuss the key challenges associated with a transition from incandescent lighting

Bifano, Thomas

47

Energy Conversion: Solid-State Lighting  

E-Print Network (OSTI)

and global climate change. Historically, electric light bulbs have been of the incandescent type. Although this technology was developed more than 100 years ago, it is still in use today. Incandescent light bulbs operate, which allows the bulb to operate at a higher temperature. However, the efficiency of incandescent light

48

Replacing Incandescent Lightbulbs and Ballasts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lightbulbs and Ballasts Incandescent Lightbulbs and Ballasts Replacing Incandescent Lightbulbs and Ballasts July 29, 2012 - 5:16pm Addthis Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. What does this mean for me? For the greatest energy efficiency, use new fixtures with new lightbulbs. Replace A-type lightbulbs with more energy-efficient options such as CFLs, LEDs, and energy-saving (halogen) incandescents. Matching replacement lightbulbs to existing fixtures and ballasts can be tricky, especially with older fixtures. Using new fixtures made for new lightbulbs gives you the greatest energy savings, reliability, and

49

Replacing Incandescent Lightbulbs and Ballasts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replacing Incandescent Lightbulbs and Ballasts Replacing Incandescent Lightbulbs and Ballasts Replacing Incandescent Lightbulbs and Ballasts July 29, 2012 - 5:16pm Addthis Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. What does this mean for me? For the greatest energy efficiency, use new fixtures with new lightbulbs. Replace A-type lightbulbs with more energy-efficient options such as CFLs, LEDs, and energy-saving (halogen) incandescents. Matching replacement lightbulbs to existing fixtures and ballasts can be tricky, especially with older fixtures. Using new fixtures made for new

50

Apparatus to facilitate lengthening the life of incandescent lamps  

SciTech Connect

An energizing circuit is described for an incandescent bulb comprising a transformer having a primary winding connectable to an AC mains source and first and second secondary windings for producing first and second voltages. The first secondary winding is connected to an input of a first full-wave rectifier means and the second secondary winding is connected to an input of a second full-wave rectifier means, the full-wave rectifier means having outputs connected in parallel across the bulb. The first voltage is sufficient to fully illuminate the bulb and the second voltage is sufficient to maintain the bulb warm but with little or no light output, a first switch being connected between the first secondary winding and the first rectifier means whereby, when the first switch is open, the bulb is energized solely by the second voltage.

Spissinger, F.H.

1987-03-17T23:59:59.000Z

51

Creating markets for new products to replace incandescent lamps: The international experience  

SciTech Connect

Since the summer of 1995, several organizations have been in pursuit of what many consider the Holy Grail of lighting technology--a low-cost, drop-in, energy-efficient replacement for the incandescent lamp. This paper summarizes the international experience in attempting to catalyze the commercialization of a mass-market, replacement product that could have major impact on residential lighting energy consumption in US and EU homes. The technology procurement effort was originally spearheaded by US Federal Government through a loose collaboration between the Department of Defense (DoD), the Environmental Protection Agency (EPA) and the Department of Energy (DOE). The DoD agreed to serve as the anchor buyer for a low-cost, drop-in replacement product for standard-sized light bulbs that provide at least 30 percent energy savings compared to traditional incandescent lamps. In parallel to the US effort, the International Energy Agency launched a co-operative technology procurement effort by assembling large buyers' groups in Finland, the Netherlands, Sweden, and the United Kingdom to pull a similar efficient lighting product into the European market. The lukewarm response from lamp manufacturers to these two technology procurement efforts illustrates the challenges of transforming residential lighting from incandescent to efficient lighting.

Rubinstein, F.; Borg, N.; Horowitz, N.; Narel, T.; Morehouse, E.T. Jr.

1998-07-01T23:59:59.000Z

52

The Problem Conventional office lighting typically consists of bright fluo-  

E-Print Network (OSTI)

and undercabinet lights combined with incandescent or fluorescent task lights. This approach is not very energy ) of space; traditional system with incandescent task lamp. Table 1: Traditional versus integrated office

53

Hot gas defrosting method for air-source transcritical CO2 heat pump systems  

Science Journals Connector (OSTI)

Abstract When the air-source heat pump systems operate at low ambient temperatures in winter, frost forms on the coil surface of the outdoor evaporators. The frost substantially affects the operating performance and energy efficiency of heat pump systems, and hence periodic defrosting is essential. In this study, several defrost methods are presented to look for a candidate for air-source transcritical CO2 heat pump systems. The hot gas method proves to be more suitable among other defrosting methods for transcritical CO2 heat pump systems. To validate its reliability and rationality, an air-source transcritical CO2 heat pump water heater was built in a climatic laboratory. Through the experiments, the dynamic process of temperature and pressure were obtained to demonstrate the hot gas defrosting characteristics and system cycle. The hot gas defrosting cycle in the ph diagram was also validated by experiment results. Meanwhile, instant defrosting images were captured to record the dynamic defrosting process. The defrosting process lasted 10min and defrosting efficiency was 34.8% for hot gas defrosting method. The effectiveness and applicability of hot gas defrosting method for CO2 heat pump water heater is validated by experiments.

Bin Hu; Dongfang Yang; Feng Cao; Ziwen Xing; Jiyou Fei

2015-01-01T23:59:59.000Z

54

AN ANALYTICAL AND QUANTITATIVE ANALYSIS OF THE LASER-INDUCED INCANDESCENCE OF SOOT  

E-Print Network (OSTI)

AN ANALYTICAL AND QUANTITATIVE ANALYSIS OF THE LASER-INDUCED INCANDESCENCE OF SOOT A Thesis-INDUCED INCANDESCENCE OF SOOT Approved: _________________________ Jerry M. Seitzman, Chairman

Seitzman, Jerry M.

55

Energy Department Provides $7 Million for Solid-State Lighting...  

Energy Savers (EERE)

incandescent and fluorescent lamps, solid-state lighting creates light without producing heat. A semi-conducting material converts electricity directly into light, which maximizes...

56

Energy Implications of Solid-State Lighting Technology  

Science Journals Connector (OSTI)

The efficient yet highly controllable generation of light can be accomplished by light-emitting diodes that can have a 20 times greater efficiency than incandescent light sources....

Schubert, E Fred; Kim, Jong Kyu

57

March 10, 2011 Let There Be More Efficient Light  

E-Print Network (OSTI)

standards for light bulbs, which include a phasing out of incandescent bulbs in favor of more energy lyrically with two colleagues about "the incandescent bulb that has been turning back the night ever since

Colorado at Boulder, University of

58

The light-emitting diode (LED) is an fairly new kind of light source found currently in  

E-Print Network (OSTI)

this technology an ideal replacement for less efficient incandescent light sources, particularly in applications elevator lighting has the potential to achieve 25 percent greater efficiency than current incandescent ILLUMINATION LEVELS SIMILAR TO THOSE OF INCANDESCENT FIXTURES WHILE CUTTING ENERGY USE 45 PERCENT. ELEVATOR

59

The effect of alternate defrost strategies on the reverse-cycle defrost of an air-source heat pump  

E-Print Network (OSTI)

with and understanding of my questions and ideas. Thanks also to my family and friends for their support and help svhile I svorked on this project. Finally, I would like to acknowledge the American Society oi' Heating, Refrigerating, and Air-Conditioning Engineers... . . 21 Psychrometric Room Temperature Control Characteristics during a Frosting, 'Defrosting Test 3. 3 4. 3 4. 10 4. 11 Refrigerant Circuit Arrangement of the Outdoor Coil Heat Pump System Schematic Refrigerant Line Temperature Probe . Indoor...

Schliesing, John Steven

2012-06-07T23:59:59.000Z

60

Begining of fish defrosting by using non-destructive ultrasonic technique  

E-Print Network (OSTI)

Begining of fish defrosting by using non-destructive ultrasonic technique M. Malaininea , B. Faiza on the monitoring and the study of fish defrosting by an ultrasonic technique, we have difficulties in detecting the begining of the thawing which is an important criterion of fish quality control. To address this problem

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency  

Science Journals Connector (OSTI)

Solid state lighting seeks to replace both, incandescent and fluorescent lighting by energy efficient light-emitting diodes (LEDs). Just like compact fluorescent tubes, current white...

Wetzel, Christian; Detchprohm, Theeradetch

2011-01-01T23:59:59.000Z

62

Assessment of soot particle vaporization effects during laser-induced incandescence with  

E-Print Network (OSTI)

Assessment of soot particle vaporization effects during laser-induced incandescence with time-induced incandescence (LII) has been successfully used for soot volume fraction and particle size measurements

Hahn, David W.

63

Introduction The Sun is a mass of incandescent gas  

E-Print Network (OSTI)

Chapter 1 Introduction The Sun is a mass of incandescent gas A gigantic nuclear furnace Building that our bodies contain atoms that, like most elements and their isotopes in the Solar System, were part of the molecular cloud from which the Solar System condensed, and were trapped in primitive

Nittler, Larry R.

64

Molecular Dynamics Simulations of Laser Induced Incandescence Dr. Adri van Duin  

E-Print Network (OSTI)

Molecular Dynamics Simulations of Laser Induced Incandescence (LII) Dr. Adri van Duin Associate of Engineering. Laser Induced Incandescence (LII) is a popular method to estimate the properties of soot. Molecular Dynamics Simulations of Laser-Induced Incandescence of Soot Using an Extended ReaxFF Reactive

Bjørnstad, Ottar Nordal

65

A calibration-independent laser-induced incandescence technique for soot measurement  

E-Print Network (OSTI)

A calibration-independent laser-induced incandescence technique for soot measurement by detecting D. Bachalo Laser-induced incandescence (LII) has proved to be a useful diagnostic tool for spatially incandescence inten- sity, avoiding the need for ex situ calibration that typically uses a source of particles

Gülder, ?mer L.

66

L'EMISSION ELECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPHRE D'IODE  

E-Print Network (OSTI)

L'EMISSION ELECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPH?RE D'IODE par M. S. KALANDYK influence devient nulle aux températures de chauffage élevées. 3. Pour une faible incandescence du platine approximativement linéaire; aux fortes incandescences, cette variation offre un caractère beaucoup plus compliqué. 1

Paris-Sud XI, Université de

67

J.-A. FLEMING. 2014 On the characteristic curves and surfaces of incandescence lamps (Courbes caractristiques des lampes incandescence) ; Phil. Mag.,  

E-Print Network (OSTI)

80 J.-A. FLEMING. 2014 On the characteristic curves and surfaces of incandescence lamps (Courbes caractéristiques des lampes à incandescence) ; Phil. Mag., 5e série, t. XIX, p. 368; I885. L'auteur étudie les résistance correspondant à la force électromotrice vo à laquelle l'incandescence commence à se produire, et r

Paris-Sud XI, Université de

68

JY Tsao Evolution of Solid-State Lighting: Market Pull and Technology Push Xiamen 2005 Apr 13 Evolution of Solid-State Lighting  

E-Print Network (OSTI)

and Technology Push · Xiamen · 2005 Apr 13 0 20 40 60 80 100 0.1 1.0 10.0 100.0 Incandescent (12%) Fluorescent Fluorescent Standard Incandescent · So let's start with traditional lighting. · Here, I've plotted the 26 and Eugene Hong of Navigant Consulting. The lamps fall into three overall families: incandescent, in green

69

Variable interval time/temperature (VITT) defrost-control-system evaluation  

SciTech Connect

Two variable-interval-time/temperature (VITT) heat pump defrost control systems are analyzed to determine if systems manufactured by Honeywell and Ranco qualify for credit for heat pumps with demand defrost control. The operation of the systems is described. VITT controls are not demand defrost control systems but utilize demand defrost control as backup systems in most Ranco models and all Honeywell models. The evaluations and results, intended to provide DOE information in making its determinations regarding credits for the control systems are discussed. The evaluation methodology utilizes a modified version of the Heat Pump Seasonal Performance Model (HPSPM) and the important modifications are discussed in Appendix A. Appendix B contains a detailed listing and discussion of the HPSPM output. (MCW)

None

1980-08-12T23:59:59.000Z

70

Article #11, May 23, 2006 AJ's Technical Tips: Technologies for Lighting in Rural Africa  

E-Print Network (OSTI)

/a 30 lumens 0.1 Incandescent Bulb 15 W 225 lumens 15 Fluorescent Tube Lamp 10 W 500 lumens 50 White LED Lamp 1 W 30 lumens 30 The data in Table 1 show that incandescent bulbs and fluorescent tubes generate incandescent bulbs are about 150 times more efficient. In other words, electric lights are not only brighter

Jacobson, Arne

71

L'MISSION LECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPHRE D'IODE  

E-Print Network (OSTI)

L'?MISSION ?LECTRIQUE DU PLATINE INCANDESCENT DANS UNE ATMOSPH?RE D'IODE par M. PIERRE JEZ],du platine incandescent ~dans une atmosphère d'iode en fonction : 1, de la température ; 2, du temps; 3, de électrodes, d'un grillage métallique pour éviter les influences extérieures. L'incandescence des électrodes s

Paris-Sud XI, Université de

72

LE RAYONNEMENT DES MANCHONS A INCANDESCENCE ; Par M. H. RUBENS1).  

E-Print Network (OSTI)

306 LE RAYONNEMENT DES MANCHONS A INCANDESCENCE ; Par M. H. RUBENS1). 1. - INTRODUCTION. Les remarquables propriétés du manchon à incandescence Auer ont dès l'origine excité au plus haut point l été entreprises par Langley pour la lampe à incandescence au pétrole avec l'aide de ses bolomètres

Paris-Sud XI, Université de

73

PROCD RAPIDE POUR LA PHOTOMTRIE DES BECS A INCANDESCENCE PAR LE GAZ (1) ;  

E-Print Network (OSTI)

469 PROC?D? RAPIDE POUR LA PHOTOM?TRIE DES BECS A INCANDESCENCE PAR LE GAZ (1) ; Par P. LAURIOL. Les essais des becs à incandescence par le gaz destinés à l'éclai- rage public comportent un très pendant une série de mesures. On emploie une lampe à incandescence électrique dont on #12;471 maintint la

Paris-Sud XI, Université de

74

MISSION CATHODIQUE A L'INTRIEUR DES LAMPES A INCANDESCENCE ; par M. L. HOULLEVIGUE (1).  

E-Print Network (OSTI)

523 ?MISSION CATHODIQUE A L'INT?RIEUR DES LAMPES A INCANDESCENCE ; par M. L. HOULLEVIGUE (1). I. Lorsqu'on survolte fortement une lampe à incandescence à filament de charbon, par exemple en mettant sous incandescent. ' , Fic.. 1. Tous ces effets peuvent être attribués, en première analyse, aux électrons émanés du

Boyer, Edmond

75

#AskEnergySaver: LED Lights | Department of Energy  

Energy Savers (EERE)

LED Lights AskEnergySaver: LED Lights April 24, 2014 - 6:00pm Addthis LED lights are six to seven times more energy efficient than conventional incandescent lights, cut energy use...

76

EA-1911: Energy Conservation Standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps  

Energy.gov (U.S. Department of Energy (DOE))

This EA will evaluate the environmental impacts of a proposal to amend energy conservation standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps.

77

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump  

E-Print Network (OSTI)

, the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little...

Wang, Z.; Gu, J.; Lu, Z.

2006-01-01T23:59:59.000Z

78

Energy Savings and NOx Emissions Reduction Potential from the 2012 Federal Legislation to Phase Out Incandescent Lamps in Texas  

E-Print Network (OSTI)

Lamps in Texas Description Value Reference Total Housing Units in Texas in 2013: 10,204,056 Real Estate Center, Texas A&M University3, U.S. Census Bureau4 5 Average Lighting Electricity Usage per House: 1,946 kWh/yr NREL Building America Program6... Savings in Texas: 10,424,973 MWh/yr OSD CFL Savings in Texas: 28,562 MWh/day By 2013, it is estimated that total savings of 10,424,973 MWh/yr would be achieved from replacing incandescent lamps with compact fluorescent lamps (CFL) in residential...

Liu, Zi; Baltazar, Juan Carlos; Haberl, Jeff; Soman, Rohit

79

Sandia National Laboratories: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

(LEDs), has the potential to be 10 times more energy efficient than traditional incandescent light bulbs. Currently, 20% of U.S. energy use powers lighting. SSL technology can...

80

Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Lighting When you're shopping for lightbulbs, compare lumens and use the Lighting Facts label to be sure you're getting the amount of light, or level of brightness, you want. You can save money and energy while lighting your home and still maintaining good light quantity and quality. Consider energy-efficient lighting options to use the same amount of light for less money. Learn strategies for comparing and buying lighting products and using them efficiently. Featured Lighting Choices to Save You Money Light your home for less money while using the same amount of light. How Energy-Efficient Light Bulbs Compare with Traditional Incandescents Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home.

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

L'MISSION LECTRIQUE DU TUNGSTNE INCANDESCENT DANS UNE ATMOSPHRE D'IODE.  

E-Print Network (OSTI)

L'?MISSION ?LECTRIQUE DU TUNGST?NE INCANDESCENT DANS UNE ATMOSPH?RE D'IODE. par S. KALANDYK'émission négative du tungstène; l'influence de l'iode est prépondérante aux basses températures d'incandescence 3. L vapeur d'iode augmente l'émis sion électrique négative du platine incandescent. L'influence de l'iode se

Paris-Sud XI, Université de

82

System Architecture Directions for a Software-Defined Lighting Infrastructure  

E-Print Network (OSTI)

spectrum of an outdoor environment and a typical fluorescent tube-lit office space. Indoor spectrum to incandescent and fluorescent lights. Unfortunately, the remarkable march of semiconductor technology a renaissance. The staple of illumi- nation for one and a half centuries, the incandescent bulb, is being phased

Dutta, Prabal

83

Solid-State LightingL Prize Competition  

Energy.gov (U.S. Department of Energy (DOE))

The L Prize competition spurs the development of new, ultra-efficient lighting products to replace common light sources, including the 60-watt (W) incandescent bulb and the PAR38 reflector bulb.

84

Creating computer generated scene lighting in the style of Edward Hopper  

E-Print Network (OSTI)

interior illumination to be the sole, dramatic source of light.[12] The bright yellow incandescent light is the main source of light in the scene. Inside the right window, there is a shaded lamp that locally emits red light. Comparing the color... of the two window shades, the incandescent light is positioned a bit left of the center of the room. Most of the shading in the room and the buildings interior made by the incandescent light is clear. There seems to be no light source coming from...

Jo, Hee Yeon

2008-10-10T23:59:59.000Z

85

Solid State Lighting ECE 198 Lab Manual  

E-Print Network (OSTI)

commonly available light bulbs: halogen, incandescent, compact fluorescent, and light-emitting diode (LED will look at the spectrum of the light emitted from the each light bulb, using the spectrometers you). Over the course of the lab, you will perform variety of tests on each of the light bulbs in order

Wasserman, Daniel M.

86

New Lighting Facts Label: Takes the Guess Work Out of Shopping for Light  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Facts Label: Takes the Guess Work Out of Shopping for Lighting Facts Label: Takes the Guess Work Out of Shopping for Light Bulbs New Lighting Facts Label: Takes the Guess Work Out of Shopping for Light Bulbs January 25, 2012 - 5:52am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory If you're like me, it sometimes feels overwhelming standing at the store and staring at a big wall of light bulbs, trying to understand all the lighting choices. With new lighting standards taking effect this year, now's a great time switch to energy-saving incandescent, CFL, and LED light bulbs, which are available in most hardware and home improvement retailers. They all are more energy-efficient than traditional incandescent bulbs, and upgrading 15 of the inefficient incandescent light bulbs in your home could

87

Lighting in Residential and Commercial Buildings (1993 and 1995 Data)  

U.S. Energy Information Administration (EIA) Indexed Site

Types > 1995 CBECS Lighting Equipment Types > 1995 CBECS Lighting Equipment 1995 CBECS Lighting Equipment Profile Lighting Equipment - Type and Characteristics of Equipment Emits Found In Incandescent Incandescent Light Bulb Produces light by electrically heating a tungsten filament Includes energy-efficient incandescent bulbs, such as Reflector or R-Lamps (accent and task lighting), Parabolic Aluminized Reflector (PAR) lamps (flood and spot lighting), and Ellipsoidal Reflector (ER) lamps (recessed lighting) Highly inefficient because much of the energy is lost as heat 14-18 Lumens Per Watt (LPW) 14% of Lit Commercial Floorspace Standard Fluorescent Lighting with Magnetic Ballast Standard Fluorescent with Magnetic Ballast Produces light by passing electricity through mercury vapor, causing the fluorescent coating to glow or fluoresce

88

Lumens and the Lighting Facts Label | Department of Energy  

Office of Environmental Management (EM)

of the lights in your home may vary widely, so here's a rule of thumb: To replace a 100 watt (W) incandescent bulb, look for a bulb that gives you about 1600 lumens. If you want...

89

Cost effective lighting  

SciTech Connect

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen-hours are determined for each lamp system. We find the most important lighting cost component is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial cost of $15.00, is the most cost effective source of illumination compared to the incandescent lamp and lamp systems examined. 3 refs., 6 tabs.

Morse, O.; Verderber, R.

1987-07-01T23:59:59.000Z

90

Organic Light Emitting Diode for White Light Emission  

E-Print Network (OSTI)

During the last few years, research based on energy saving technologies is being given high priority all over the world. General lighting is one area in which large quantity of electrical energy is being spend and substantial energy saving is possible by using energy saving technologies. Conventional light sources like incandescent filament lamps in which a major

M. N. Kamalasanan; Ritu Srivastava; Gayatri Chauhan; An Kumar; Amit Kumar; M. N. Kamalasanan; Ritu Srivastava; Gayatri Chauhan; An Kumar; Priyanka Tayagi; Amit Kumar

91

FAQ of Overview of Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

FREQUENTLY ASKED QUESTIONS 3 Leds FREQUENTLY ASKED QUESTIONS 3 Leds 1. What is solid-state lighting? 2. What is a semiconductor? 3. What is a semiconductor LED (light emitting diode)? 4. What is an organic LED (OLED)? 5. Where can I see LED lighting today? 6. How do you produce white light using LEDs? 7. How does solid-state lighting differ from conventional lighting? 8. What is the energy efficiency of solid-state lighting today? How does the energy efficiency compare with incandescent and fluorescent lamps? 9. What is the cost of solid-state lighting today? How does the cost compare with incandescent and fluorescent lamps? 10. What is the quality of the white light using solid-state lighting today? How does it compare with incandescent and fluorescent lamps?

92

Field test of a high efficiency, automatic defrost refrigerator-freezer  

SciTech Connect

This paper describes the market evaluation and field test portion of a program to design, develop, and demonstrate a high efficiency, automatic defrosting refrigerator-freezer for the residential market. After the successful completion of Phase I of the program, which concentrated on the design, construction, and laboratory testing of a 453 1 (16 ft/sup 3/) high-efficiency refrigerator-freezer prototype, Phase II was initiated in February 1979 to evaluate the sales potential and performance of the high-efficiency refrigerator concept under field conditions, as a necessary step in creating a product that was both manufacturable and marketable. In Phase I, a survey of food consumption and storage trends, family size, and consumer buying habits led to a sales-weighted average-capacity forecast for 1985 of approximately 453 1 (16 ft/sup 3/) and identification of the top-mount, automatic defrosting refrigerator as the projected sales leader. To meet this market demand, a 453 1 (16 ft/sup 3/) top-mount was selected as the baseline for the Phase I design and development. In Phase II, a 509 1 (18 ft/sup 3/) unit using Phase I technology was chosen for the field test, since the slightly larger model better fit the participating manufacturer's new product development efforts and market.

Topping, R.F.; Vineyard, E.A.

1982-01-01T23:59:59.000Z

93

Tips: Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Tips: Lighting May 4, 2012 - 3:16pm Addthis Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. What does this mean for me? Replacing 15 inefficient incandescent bulbs in your home with energy-saving bulbs could save you about $50 per year. For the greatest savings, replace your old incandescent bulbs with ENERGY STAR-qualified bulbs. An average household dedicates about 10% of its energy budget to lighting. Switching to energy-efficient lighting is one of the fastest ways to cut your energy bills. Timers and motion sensors save you even more money by reducing the amount of time lights are on but not being used.

94

,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"  

U.S. Energy Information Administration (EIA) Indexed Site

B39. Lighting Equipment, Floorspace, 1999" B39. Lighting Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",67338,64321,38156,60344,20666,19223,17926 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5859,2946,5154,738,245,600 "5,001 to 10,000 ..............",8238,7464,4047,6722,1108,663,991 "10,001 to 25,000 .............",11153,10393,6055,9815,1759,1701,1996 "25,001 to 50,000 .............",9311,9053,5004,8344,2296,2224,1611

95

Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Fluorescent Lighting Fluorescent Lighting October 17, 2013 - 5:44pm Addthis Fluorescent Lighting Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent products to provide a similar amount of light. They also last about 10 times longer (7,000-24,000 hours). The two general types of fluorescent lamps are: Compact fluorescent lamps (CFLs) -- commonly found with integral ballasts and screw bases, these are popular lamps often used in household fixtures Fluorescent tube and circline lamps -- typically used for task lighting such as garages and under cabinet fixtures, and for lighting large areas in commercial buildings. CFLs CFLs combine the energy efficiency of fluorescent lighting with the convenience and popularity of incandescent fixtures. CFLs fit most fixtures

96

L-Prize Competition Winner 60W Incandescent Replacement Lamp Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interagency Technology Deployment Working Group L Prize ® Competition Winner 60W Incandescent Replacement Lamp Update James E. Rannels, Senior Advisor L Prize Competition D&R International March 15, 2012 Cost of electricity 1 cent per kilowatt-hour The Washington Post, March 8, 2012 Page One 2 Cost of electricity 11 cents per kilowatt-hour The Washington Post, March 9, 2012 Page Two 3 What Is the L Prize? * Technology competition to spur innovation and exceptional performance * Created by Energy Independence and Security Act (EISA 2007) Sec. 655 * Two key lamp replacements: 60W Incandescent and PAR 38 Halogen * Future focus: 21 st Century Lamp * Cash prizes, federal purchasing, utility programs 4 Philips Wins First L Prize * August 3, 2011: Philips

97

L-Prize Competition Winner 60W Incandescent Replacement Lamp Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Interagency Technology Deployment Working Group L Prize ® Competition Winner 60W Incandescent Replacement Lamp Update James E. Rannels, Senior Advisor L Prize Competition D&R International March 15, 2012 Cost of electricity 1 cent per kilowatt-hour The Washington Post, March 8, 2012 Page One 2 Cost of electricity 11 cents per kilowatt-hour The Washington Post, March 9, 2012 Page Two 3 What Is the L Prize? * Technology competition to spur innovation and exceptional performance * Created by Energy Independence and Security Act (EISA 2007) Sec. 655 * Two key lamp replacements: 60W Incandescent and PAR 38 Halogen * Future focus: 21 st Century Lamp * Cash prizes, federal purchasing, utility programs 4 Philips Wins First L Prize * August 3, 2011: Philips

98

Energy 101: Lighting Choices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

101: Lighting Choices 101: Lighting Choices Energy 101: Lighting Choices August 13, 2013 - 2:38pm Addthis Learn about energy-efficient light bulbs that can light your home for less money. For many years, researchers have been working on new lighting options that produce the same light with less energy. Many of those designs are now on the market. This edition of Energy 101 features newer energy-saving light bulbs that provide the choices in colors and light levels you've come to expect, but with higher efficiencies-so they save you money. Upgrading 15 of the inefficient incandescent light bulbs in your home to energy-saving incandescent, compact fluorescent lamp (CFL), or light emitting diode (LED) bulbs could save you about $50 per year. For more information on lighting choices from the Office of Energy

99

Energy 101: Lighting Choices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Lighting Choices Energy 101: Lighting Choices Energy 101: Lighting Choices August 13, 2013 - 2:38pm Addthis Learn about energy-efficient light bulbs that can light your home for less money. For many years, researchers have been working on new lighting options that produce the same light with less energy. Many of those designs are now on the market. This edition of Energy 101 features newer energy-saving light bulbs that provide the choices in colors and light levels you've come to expect, but with higher efficiencies-so they save you money. Upgrading 15 of the inefficient incandescent light bulbs in your home to energy-saving incandescent, compact fluorescent lamp (CFL), or light emitting diode (LED) bulbs could save you about $50 per year. For more information on lighting choices from the Office of Energy

100

Smart Lighting: A Second Wave in Solid State Lighting?  

E-Print Network (OSTI)

is Smart Lighting? · A Second Wave? #12;Bulbs transition to..... Bulbs! 3 · Sockets exist, so why not use them? (faster revenue, energy savings) · LED sources are mostly lower brightness · LED idiosyncrasies make broad incandescent and fluorescent replacement difficult ­ new fixtures coming First Wave #12

Salama, Khaled

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products  

Energy.gov (U.S. Department of Energy (DOE))

This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL...

102

Bright prospects for lighting retrofits  

SciTech Connect

Great potential for energy savings can be found in the alleys, hallways and stairwells of multifamily buildings, but this potential is not always easy to realize. This article discusses the solution to common problems, retrofitting mistakes, retrofitting for savings, replacements for incandescent bulbs, better exit lights. 1 fig., 1 tab.

Hasterok, L. [Wisconsin Energy Conservation Corp., Madison, WI (United States)

1995-09-01T23:59:59.000Z

103

DOE Publishes Final Rule for the Request for Exclusion of 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conservation Standards  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy has published a final rule regarding the request for exclusion of 100 Watt R20 short incandescent reflector lamps from energy conservation standards.

104

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Picture of a light bulb At Home and At Work: What Types of Lights Are We Using? Two national EIA surveys report that . . . Of residential households, 98 percent use incandescent, 42 percent use fluorescent. Of commercial buildings, 59 percent use incandescent, 92 percent use fluorescent. At a glance, we might conclude that substantial energy savings could occur in both the residential and commercial sectors if they replaced their incandescent lights with fluorescent lights, given that fluorescent lights consume approximately 75-85 percent less electricity than incandescent lights. In the residential sector, this is true. However, in the commercial sector, where approximately 92 percent of the buildings already use fluorescent lights, increasing energy savings will require upgrading existing lights and lighting systems. To maximize energy savings, analysis must also consider the hours the lights are used and the amount of floorspace lit by that lighting type. Figures 1 and 2 show the types of lights used by the percent of households and by the percent of floorspace lit for the residential and the commercial sectors, respectively.

105

A theoretical study of the incandescent filament lamp performance under voltage flicker  

SciTech Connect

Incandescent filament lamp flicker, produced by voltage fluctuation, is a power quality problem that caused engineering concern since the onset of electrical illumination technology. The flicker phenomenon was analyzed and explained in early studies. Standards dealing with acceptable flicker levels are well known, nevertheless, today the discussion about flicker continues to be a top priority topic due to the fact that steady-state and transient voltage waveform distortion is a growing problem in low and medium voltage systems. In many situations voltage flicker is caused by subharmonics and interharmonics of voltage. Cycloconverters, welders and arc furnaces, eccentrically operating tools and integral cycle controlled power equipment are notorious for producing voltage flicker. The goal of this paper is to provide solid mathematical basis for the analytical modeling of incandescent filament lamp flicker when the voltage is nonsinusoidal. A mathematical model that enables the evaluation of the luminous flux modulation caused by noninteger harmonics (subharmonics and interharmonics) is presented. Three situations are detailed: square-wave voltage modulation, sinusoidal modulation and the case of noninteger harmonics with nearly contiguous frequencies.

Peretto, L. [Univ. of Bologna (Italy)] [Univ. of Bologna (Italy); Emanuel, A.E. [Worcester Polytechnic Inst., MA (United States)] [Worcester Polytechnic Inst., MA (United States)

1997-01-01T23:59:59.000Z

106

Comparison of the Electromagnetic Spectra of Common Light Sources: A General Chemistry Laboratory Exercise  

Science Journals Connector (OSTI)

Compact fluorescent light (CFL); light emitting diode (LED). ... White LED light can be produced by mixing light from red, green, and blue LEDs. ... Students observe that the white light from a six LED flashlight array (Figure 5) arises from two major peaks and that the spectrum is less continuous than those of incandescent bulbs, but more continuous than those of CFLs. ...

Edward Maslowsky, Jr.

2013-10-03T23:59:59.000Z

107

Types of Lighting in Commercial Buildings - Changes  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Lighting Changes in Lighting The percentage of commercial buildings with lighting was unchanged between 1995 and 2003; however, three lighting types did show change in usage. Compact fluorescent lamps and halogen lamps showed a significant increase between 1995 and 2003 while the use of incandescent lights declined. The lighting questions in the 1995, 1999, and 2003 CBECS questionnaires were virtually identical which facilitates comparison across survey years. The use of compact fluorescent lamps more than doubled, from just under 10 percent of lit buildings to more than 20 percent (Figure 17 and Table 5). The use of halogen lamps nearly doubled, from 7 percent to 13 percent of lit buildings. Use of incandescent lights was the only lighting type to decline; their use dropped from 59 percent to just over one-half of lit buildings.

108

A Rising Star: Solid-State Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting June 16, 2009 - 5:00am Addthis John Lippert Just when consumers started getting familiar with the spiral ice-cream cone-shaped and prong-shaped compact fluorescents (CFLs), along comes LED lighting, a solid-state lighting (SSL) solution. Some experts are predicting that solid-state lighting is set to turn the current lighting industry on its head, and perhaps in the not-too-distant future make the century-old incandescent light bulb go the way of the dinosaur. Many consumers have been saving money and helping the environment for years by using LED lights during the holidays. These light strings use 75% less energy than conventional (i.e., incandescent) light strings. ENERGY STAR decorative light strings are independently tested to meet strict lifetime

109

A Rising Star: Solid-State Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting June 16, 2009 - 5:00am Addthis John Lippert Just when consumers started getting familiar with the spiral ice-cream cone-shaped and prong-shaped compact fluorescents (CFLs), along comes LED lighting, a solid-state lighting (SSL) solution. Some experts are predicting that solid-state lighting is set to turn the current lighting industry on its head, and perhaps in the not-too-distant future make the century-old incandescent light bulb go the way of the dinosaur. Many consumers have been saving money and helping the environment for years by using LED lights during the holidays. These light strings use 75% less energy than conventional (i.e., incandescent) light strings. ENERGY STAR decorative light strings are independently tested to meet strict lifetime

110

Determination of the Transient Response Characteristics of the Air-Source Heat Pump During the Reverse Cycle Defrost  

E-Print Network (OSTI)

Laboratory Department of Mechanical Engineering Texas A&M University ESL-TR-88/06-04 GLOSSARY OF TERMS AMCA Air Movement and Control Association ARI Air Conditioning and Refrigeration Institute ASHRAE American Society of Heating, Refrigerating and Air... expansion valve wg Water gauge 11 TABLE OF CONTENTS CHAPTER PAGE GLOSSARY OF TERMS ii 1 INTRODUCTION 1.1 2 LITERATURE REVIEW 2.1 Performance Measurement 2.1 Transient Performance 2.2 Cycling Losses 2.5 Frosting Losses 2.6 Defrosting Losses 2.8 Summary 2.15 3...

O'Neal, D. L.; Anand, N. K.; Peterson, K. T.; Schleising, S.

1988-01-01T23:59:59.000Z

111

Linings with optimum heat-emission surfaces for cars receiving and transporting incandescent coke  

SciTech Connect

The least reliable components of the cars which receive and transport incandescent coke are the lining plates. This applies to both the quenching cars used for wet quenching and the hot-coke cars used in the dry cooling process. Technical advances have been described whereby the life of car linings is prolonged by increasing heat emission from the lining plate surfaces. As the heat emission level is enhanced the mean plate temperature is lowered and the lining life thereby prolonged; moreover, the between-servicings period is prolonged. This involves providing fins on the non-working (outer) plate surfaces. The problem of optimizing the size and shape of the fins with reference to heat emission remains unsolved: the requirement is maximum heat emission from plates of a given weight, or conversely minimum plate weight for a given heat emission level. 6 refs., 3 figs.

Kotlyar, B.D.; Pleshkov, P.I.; Gadyatskii, V.G. [and others

1992-12-31T23:59:59.000Z

112

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1997-01-01T23:59:59.000Z

113

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1997-06-24T23:59:59.000Z

114

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1999-01-01T23:59:59.000Z

115

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1999-06-08T23:59:59.000Z

116

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

117

Buildings Energy Data Book: 7.6 Efficiency Standards for Lighting  

Buildings Energy Data Book (EERE)

4 4 Lighting Standards for General Service Incandescent Lamps Prescribed by EISA 2007 General Service Incandescent Effective Date Maximum Wattage Rated Lumen Range Minimum Life Modified Spectrum General Service Incandescent Effective Date Maximum Wattage Rated Lumen Range Minimum Life By 2020, the minimum efficacy for general service incandescent will be 45 lm/W unless the Secretary of Energy has implemented another standard which saves as much or more energy than a 45 lm/W standard. Source(s): U. S. Government, Energy Independence and Security Act of 2007, January 2007, Section 321. 2014 43 563-787 1000 hrs. 2015 29 232-563 1000 hrs. 2012 72 1,118-1,950 1000 hrs. 2013 53 788-1,117 1000 hrs. 2014 43 750-1,049 1000 hrs. 2015 29 310-749 1000 hrs. 2012 72 1,490-2,600 1000 hrs. 2013 53 1,050-1,498

118

LED Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting LED Lighting LED Lighting July 29, 2012 - 4:43pm Addthis LED Lighting What are the key facts? Quality LED products can last 25 times longer than an incandescent bulb and use 75% less energy. LEDs are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally change the future of lighting in the United States. Residential LEDs -- especially ENERGY STAR rated products -- use at least

119

Guide to Energy Efficient Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Today's CFLs Today's CFLs Although CFLs have been available for residential use since the 1980s, they have made significant strides in quality and popularity in recent years. Today, CFLs are the most cost-effective, energy-efficient choice readily available on the market. A CFL produces the same amount of light as a comparable incan- descent, but uses 75% less energy, produces 75% less heat, and lasts up to 10 times longer than an incandescent bulb.

120

South River EMC - Business Energy Efficient Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River EMC - Business Energy Efficient Lighting Rebate Program River EMC - Business Energy Efficient Lighting Rebate Program South River EMC - Business Energy Efficient Lighting Rebate Program < Back Eligibility Agricultural Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Complete Lighting Retrofit: $0.30/watt saved Incandescent to CFL or LED: $1/bulb Provider South River EMC South River EMC (SREMC) offers a rebate to eligible business customers who wish to upgrade the energy efficiency of lighting systems. The business must upgrade from an older, less efficient system to a high-efficiency system. An incentive of $0.30 per watt saved is available to eligible lighting projects. For commercial customers switching fron incandescent

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Another Side of Light - D  

NLE Websites -- All DOE Office Websites (Extended Search)

D. Three quantum phenomena D. Three quantum phenomena In fluorescence, matter absorbs light waves of a high frequency and then emits light of the same or lower frequency. This process was studied and named by George Gabriel Stokes in the mid-19th century. Today, fluorescence is familiar to us from fluorescent light bulbs. A fluorescent bulb's filament produces ultraviolet light, which is absorbed by the bulb's inner coating, which then emits lower-frequency visible light-more visible light than an incandescent bulb produces with the same wattage. According to the hypothesis of light quanta, during fluorescence an atom absorbs a quantum of light whose energy is proportional to the light wave's frequency. If the atom doesn't supply any extra energy of its own, the light quantum emitted should either have the same energy or less energy

122

Assessing the residential lighting efficiency opportunities in Guadalajara and Monterrey, Mexico  

SciTech Connect

Lighting, primarily with incandescent bulbs, is the major end use of electricity in Mexican homes. The introduction of compact fluorescent lamps (CFLs) could significantly reduce electricity use in lighting. We describe a survey of lighting use in homes of Guadalajara and Monterrey, Mexico, that was conducted to provide information to determine the potential for CDLs. The results show that 1/6 of the incandescent bulbs can be replaced with CFLs if only those bulbs used more than 4 hours per day are targeted. We also provide insights on conducting similar surveys in other developing countries.

Friedmann,R.; DeBuen,O; Sathaye,J.; Gadgil,A.; Saucedo,R.; Rodriguez,G.

1995-02-02T23:59:59.000Z

123

Lighting  

SciTech Connect

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

124

Development of a high-efficiency, automatic-defrosting refrigerator-freezer. Phase II. Field test. Volume III. Executive summary and task reports  

SciTech Connect

The second phase of the development of a high-efficiency, automatic-defrosting, refrigerator-freezer is described. Following the successful completion of Phase I (design, construction, and laboratory testing of a 16 ft/sup 3/ high efficiency refrigerator-freezer prototype), Phase II was initiated to evaluate sales potential and in-home performance as a necessary step in creating a product that was both manufacturable and marketable. Twenty-five pilot production 18 ft/sup 3/ units using prototype tooling were produced on the assembly line to confirm the feasibility of full-scale production. These units were then used in a market and field test program in which consumer appeal and in-home performance were assessed. The market evaluation confirmed that refrigerators incorporating high-efficiency features at added cost are saleable and that large capacity, automatic-defrosting, refrigerator-freezers will continue to capture a large portion of the market in the years ahead, The field test confirmed the in-home energy saving potential of a high efficiency, automatic-defrosting refrigerator-frezer utilizing advanced design features such as optimized, thick-wall, foam an average energy savings of 60% compared to a baseline unit of conventional design.

Topping, R.F.

1982-12-01T23:59:59.000Z

125

The European Commission's light bulb decree: Another costly regulation?  

Science Journals Connector (OSTI)

Since September 2009, Regulation 244/2009 of the European Commission enforces the gradual phase-out of incandescent light bulbs. As of September 2012, only energy-efficient lighting sources will be allowed for sale. Among these are halogen light bulbs, light-emitting diodes (LED), or compact fluorescent light bulbsoften referred to as energy-saving light bulbs. The Commission's justification for the phase-out of conventional light bulbs maintains that a reduction in the electricity consumed will not only lead to lower energy cost for private households and industrial consumers, but at the same time lead to a decrease in greenhouse gas emissions. This article discusses possible reasons for the slow market diffusion of energy-saving light bulbs and shows that the investment in energy-efficient light bulbs does not necessarily lead to significant cost reductions. Drawing on some illustrative examples, we demonstrate that the use of cheaper incandescent bulbs instead of energy-saving light bulbs can be economically rational in cases of rather low usage times, in which the higher initial purchasing price might only pay off after very long time spans. Furthermore, due to the coexistence with the European Emissions Trading Scheme (ETS), this regulation attains no additional emission reductions beyond those achieved by the ETS alone. We thus conclude that the general ban of incandescent light bulbs is inappropriate and should be abolished by the Commission.

Manuel Frondel; Steffen Lohmann

2011-01-01T23:59:59.000Z

126

GE Appliances and Lighting Home Energy Solutions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GE Appliances and Lighting GE Appliances and Lighting Home Energy Solutions Introduction to Devices with Brillion(tm) Technology Portfolio of Products 3 GE Appliances and Lighting All Rights Reserved Brillion(tm) Suite of Home Energy Solutions Nucleus(tm) Smart Meter Other Devices Internet IHD Other Devices PCT Non-Meter Solution GE DRMS GEA Server 4 GE Appliances and Lighting All Rights Reserved Nucleus(tm) energy manager with Brillion(tm) technology Consumers can reduce electric usage by an average of 5% per year. 5 GE Appliances and Lighting All Rights Reserved GE Profile Appliances enabled with Brillion(tm) technology Delayed defrost during peak Delayed starts and temperature adjustments during peak Delayed start until off- peak Reduced energy usage 60%, DR- enabled Reduced wattage during peak When coupled with the Nucleus and a TOU

127

2014-12-30 Issuance: Energy Conservation Standard for General Service Fluorescent Lamps and Incandescent Reflector Lamps; Final Rule  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register final rule regarding energy conservation standards for general service fluorescent lamps and incandescent reflector lamps, as issued by the Deputy Assistant Secretary for Energy Efficiency on December 30, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

128

ENERGY EFFICIENT LIGHTING PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

socket for a standard incandescent lamp. Once the diffuserwhether the lamp is fluorescent or incandescent, Comparedto the incandescent lamp, the circline fluorescent improves

Berman, S.

2013-01-01T23:59:59.000Z

129

Economic Analysis of Ilumex, A Project to Promote Energy-Efficient Residential Lighting in Mexico  

E-Print Network (OSTI)

Results for Replaceable Incandescent Lamps GUADALAJARA:new pesoslkWh respectively. Incandescent bulb purchase iscompared to conventional incandescent lamps, but its much

Sathaye, Jayant A.

2008-01-01T23:59:59.000Z

130

Environmental and health aspects of lighting: Mercury  

SciTech Connect

Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

Clear, R.; Berman, S.

1993-07-01T23:59:59.000Z

131

Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Westinghouse Lighting: Noncompliance Determination Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001) Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001) June 14, 2010 DOE issued a Notice of Noncompliance Determination to Westinghouse Lighting Corporation finding that various models of incandescent reflector lamps do not comport with the energy conservation standards. DOE determined the products were noncompliant based on the company's own testing. Westinghouse Lighting must immediately notify each person (or company) to whom Westinghouse Lighting distributed the noncompliant products that the products do not meet Federal standards. In addition, Westinghouse Lighting must provide to DOE documents and records showing the number of units Westinghouse Lighting distributed and to whom. The manufacturer

132

DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Light-emitting Diode (LED) Lighting Research Science Showcase - Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past decade, LED technology research and development supported by the U.S. Department of Energy (DOE) has yielded impressive improvements in the cost, color performance, light output, efficacy, reliability, lifetime, and manufacturability of LED products and this upward trend is expected to continue. Read about the latest DOE research, the technology behind LEDs,

133

New and Underutilized Technology: Airfield LED Lighting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology: Airfield LED Lighting Technology: Airfield LED Lighting New and Underutilized Technology: Airfield LED Lighting October 7, 2013 - 8:57am Addthis The following information outlines key deployment considerations for airfield LED lighting within the Federal sector. Benefits Airfield LED lighting is a good application for colored LED lights since the LED is monochromatic. Reduced maintenance costs dramatically improve economics over existing incandescent. Application Airfield LED lighting is applicable at airports as wells military and domestic air stations and bases. Key Factors for Deployment Federal agencies must determine Federal Aviation Administration (FAA) approval requirements before deployment. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are

134

Energy 101: Lighting Choices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Choices Lighting Choices Energy 101: Lighting Choices Addthis Below is the text version for the Energy 101: Lighting Choices video: The video opens with "Energy 101: Lighting Choices." This is followed by shots of a variety of lamps being turned on. We're all used to lighting up dark spaces with the flip of a switch. In fact, people have been doing so since Thomas Edison invented the incandescent light bulb about 130 years ago...and we've used that same old bulb ever since. The video shows a store aisle with a diverse light bulb selection, then moves to close-ups of the packaging labels on various bulbs. Today you'll see more light bulb options in stores. These bulbs will give you the light you want while saving you energy...and money. A hand screws in a light bulb and flips the switch. The bulb is shown in

135

Secretary Chu Announces More than $37 Million for Next Generation Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than $37 Million for Next Generation than $37 Million for Next Generation Lighting Secretary Chu Announces More than $37 Million for Next Generation Lighting January 15, 2010 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced more than $37 million in funding from the American Recovery and Reinvestment Act to support high-efficiency solid-state lighting projects. Solid-state lighting, which uses light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) instead of incandescent bulbs, has the potential to be ten times more energy-efficient than traditional incandescent lighting. Lighting accounts for approximately 24 percent of the total electricity generated in the United States today - by 2030, the development and widespread deployment of cost-effective solid-state

136

Light  

Science Journals Connector (OSTI)

Sunlight contains energy which can be directly converted into electricity in solar cells of various types. This is an example of what is called 'direct conversion', involving no moving parts or heat conversion processes. This chapter looks at photovoltaic and photoelectric devices and also at other ideas for using light energy, some of which operate in the infrared part of the spectrum. Solar electric power is a rapidly developing field, opening up many opportunities for novel applications, as well as requirements, including for storage, with one idea being solar-powered hydrogen production and then direct conversion to electricity in fuel cells. Direct conversion is not always efficient, and this chapter introduces the concept of 'energy return on energy invested'. In speculative mood this chapter also looks at the idea of a global grid, allowing daytime solar generation to be used on the night side of the planet.

David Elliott ? Pages 4-1 to 4-20

137

ENERGY EFFICIENT LIGHTING PRODUCTS NOTICE (2011-04-25) i ENERGY EFFICIENT LIGHTING PRODUCTS  

E-Print Network (OSTI)

Measurements ______ 22/E12* IES LM-45:1991 Incandescent Lamps - Electrical Measurements ______ 22/E13* IES LM-45:2000 Incandescent Lamps - Electrical Measurements ______ 22/E13a* IES LM-45:2009 Incandescent

138

Impending U.S. lighting standards will boost market for halogen-infrared lamps: New product line expanding  

SciTech Connect

Many of the incandescent floodlights and spotlights manufactured today will not meet lighting efficiency standards taking effect in the US in 1995. As these models cease production, demand will grow for higher efficiency units to fill this huge market, which now totals about 100 million lamps per year. One prime contender is a new class of halogen lamps that use a spectrally selective coating to reflect heat back onto the filament, reducing the amount of electricity needed to generate light. GE Lighting`s Halogen-IR line is the only series of such lamps currently available to replace the conventional floodlights and spotlights that will be banned by the new standards. Other manufacturers may adopt the technology, however, and the Japanese producer Ushio already sells in the US a line of smaller halogen lamps with a similar heat-reflective coating. In terms of efficacy and lifetime, Halogen-IR lamps out perform standard incandescents and standard halogens, but fall far short of fluorescent, metal halide, and high-pressure sodium sources. These other lighting systems are more appropriate and cost-effective than incandescents for many ambient lighting applications. For accent lighting and other tasks that are best suited to incandescent lighting, however, the Halogen-IR lamp is often a superior choice.

Sardinsky, R.; Shepard, M.

1993-12-31T23:59:59.000Z

139

Lighting Group: Sources and Ballasts: LED Reflector Lamp  

NLE Websites -- All DOE Office Websites (Extended Search)

LED Reflector Lamp LED Reflector Lamp LED Reflector Lamp Objective LED reflector lamp The goal of this project is to develop a revolutionary new reflector lamp which offers many advantages over current incandescent reflector lamps, including: three times greater efficiency ten times the rated life greater optical and performance properties use of light emitting diodes (LEDs) to generate the light. Although LEDs have been commercially available since the late 1960’s, recent dramatic improvements in LED technology have led to white light devices with efficiencies that meet or exceed those of a standard incandescent lamp. This project will build upon these improvements to develop a new type of source for focusing light. Contact Information For more information on this project, please contact:

140

Theoretical and experimental investigations into the particular features of the process of converting coal gas hydrocarbons on incandescent coke  

SciTech Connect

The prospects of the use of reducing gases in ferrous metallurgy and the possibilities for using them as a basis for coke production have been presented by the authors of the present article in the past. In the present report, the authors present certain results of theoretical and experimental investigations into the process of converting coal gas hydrocarbons on incandescent coke. The modification of the present-day method of thermodynamically calculating stable compositions of coking products, which was developed by the authors, has made it possible to apply it to specific chemical systems and process conditions not met with before, such as the conversion of hydrocarbons in mixtures of actual industrial gases (coal gas and blast furnace gas) in the presence of carbon and considerable amounts of hydrogen.

Zubilin, I.G.; Umanskii, V.E.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The effects of expansion devices on the transient response characteristics of the air-source heat pump during the reverse cycle defrost  

E-Print Network (OSTI)

Superheat/Subcooling for T-24, T-26 Refrigerant Flow for TXV ()57 (Base Case) 99 6. 2 6. 3 Superheat/Subcooling for T-24, T-26 & Refrigerant Flow for ORF 090. TXV ()57 Inlet Pressure and Subcooling (Base Case) 99 101 6. 4 6. 5 ORF 090 Inlet... Pressure and Subcooling Graph of Defrost Times in Relation to Orifice Size. 101 104 6. 6 6. 8 6. 9 Superheat/Subcooling for T-24, T-26 & Refrigerant Flow for ORF OPEN Superheat/Subcooling for T-24, T-26 & Refrigerant Flow for ORF 059. Refrigerant...

Peterson, Kurt T.

2012-06-07T23:59:59.000Z

142

Recessed light fixtures: Infiltration energy loss  

SciTech Connect

This article reports that a recent study revealed that fluorescent bulbs can reduce convective energy losses by 15--65% as compared to incandescent bulbs. Recessed light fixtures are commonly installed in offices and homes. However, a problem arises in homes when the fixtures are set in the ceiling such that the top of the light fixture is exposed to the unconditioned air in the attic. Because some air flow is necessary around the light to avoid overheating, the manufacturers do not make all the fixtures leak tight, only those that are rated for lower wattage bulbs. The need for cooling the fixture may conflict with some building efficiency codes.

Bennett, S.M.; Perez-Blanco, H. (Pennsylvania State Univ., University Park, PA (United States))

1994-06-01T23:59:59.000Z

143

White organic light-emitting diodes with an ultra-thin premixed emitting layer  

E-Print Network (OSTI)

and even competitors of well-established fluorescent tubes and inorganic LEDs thanks to their unique to outperform incandescent light bulbs and even fluorescent tubes in terms of luminous efficiencies[4]. A good triphenylamine molecule. ABSTRACT: We described an approach to achieve fine color control of fluorescent White

Paris-Sud XI, Université de

144

Fabrication of color tunable organic light-emitting diodes by an alignment free mask patterning method  

E-Print Network (OSTI)

that of the incandescent bulb and comparable with that of the fluorescent tube. OLEDs are a true sur- face/area lighting as that of a point source like LEDs. OLEDs are mercury free thus environmentally friendly. More impor- tantly, OLEDs electrochemical doping to make the two color polymer LEDs, in which two colors can be obtained by changing

145

Confocal microphotoluminescence of InGaN-based light-emitting diodes Koichi Okamoto,a  

E-Print Network (OSTI)

for conventional incandescent and fluorescent light bulbs.5 However, luminous efficacies of commercial white LEDs spectrum region, the external quantum efficiency ext of the LED has achieved 20% at room temperature 25 lm/W have been still lower than that of fluorescent tubes 75 lm/W . Thus, the most important re

Okamoto, Koichi

146

Radioluminescent (RL) airfield lighting system program  

SciTech Connect

In 1980, the US Air Force Engineering and Services Center (AFESC) at Tyndall Air Force Base, Florida, requested that the Radioisotope Technology Group of Oak Ridge National Laboratory (ORNL) develop large-scale, tritium-powered, radioluminescent (RL) airfield lighting systems. The RL lighting systems possess the advantages of being portable, requiring no electrical power source, having a long shelf life, and being unaffected by environmental extremes. These characteristics make the RL system well-suited for harsh environments where the cost of electrical power production is high and traditional incandescent airfield lighting systems are difficult to maintain. RL lighting is typically a large-surface-area, low-intensity light source that operates 100% of the time. The RL light sources gradually decrease in brightness over time, so periodic replacement (every 6 to 8 years) is necessary. RL lighting functions best in low ambient light, which provides the high contrast ratios necessary for successful use of these devices. 12 figs., 8 tabs.

Tompkins, J.A. (Westinghouse Electric Corp., Las Vegas, NV (USA)); Haff, K.W.; Schultz, F.J. (Oak Ridge National Lab., TN (USA))

1990-09-01T23:59:59.000Z

147

ENERGY EFFICIENT LIGHTING PRODUCTS TEST METHOD SELECTION LIST  

E-Print Network (OSTI)

:1991 Incandescent Lamps - Electrical Measurements ______ 22/E13* IES LM-45:2000 Incandescent Lamps - Electrical Measurements ______ 22/E13a* IES LM-45:2009 Incandescent Lamps - Electrical Measurements ______ 22/E14 IES LM

148

DOE/EA-1664: Environmental Assessment for 10 CFR 430 Energy Conservation Standards: Energy Conservation Standards for Fluorescent and Incandescent Lamps (June 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment for 10 CFR Part 430 Energy Conservation Standards: Energy Conservation Standards for Fluorescent and Incandescent Lamps June 2009 16-i CHAPTER 16. ENVIRONMENTAL ASSESSMENT TABLE OF CONTENTS 16.1 INTRODUCTION ......................................................................................................... 16-1 16.2 AIR EMISSIONS ANALYSIS...................................................................................... 16-1 16.2.1 Air Emissions Descriptions............................................................................................ 16-1 16.2.2 Air Quality Regulation................................................................................................... 16-3 16.2.3 Global Climate Change..................................................................................................

149

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network (OSTI)

and general lighting incandescent services (GLIS) areLighting Phase out of incandescent lighting has been passedout of general service incandescent lamps (GSIL) which dont

Letschert, Virginie

2010-01-01T23:59:59.000Z

150

Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films  

E-Print Network (OSTI)

residential lighting using incandescent lights [2], as shownenergy used for the incandescent lamp is wasted as infraredlight source to replace incandescent lighting [1]. Figure

Tao, Jonathan Huai-Tse

2010-01-01T23:59:59.000Z

151

EXC-12-0007 - In the Matter of Tailored Lighting, Inc. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXC-12-0007 - In the Matter of Tailored Lighting, Inc. EXC-12-0007 - In the Matter of Tailored Lighting, Inc. EXC-12-0007 - In the Matter of Tailored Lighting, Inc. On October 23, 2012, OHA issued a decision considering an Application for Exception filed by Tailored Lighting, Inc. (TLI) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, TLI requests exception relief for its principal product, a PAR-shaped daylight incandescent reflector lamp known as the SoLux PAR. The company maintains that it has been unable to develop a more efficient alternative that offers the same utility as the SoLux PAR and, as

152

EXC-12-0007 - In the Matter of Tailored Lighting, Inc. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07 - In the Matter of Tailored Lighting, Inc. 07 - In the Matter of Tailored Lighting, Inc. EXC-12-0007 - In the Matter of Tailored Lighting, Inc. On October 23, 2012, OHA issued a decision considering an Application for Exception filed by Tailored Lighting, Inc. (TLI) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, TLI requests exception relief for its principal product, a PAR-shaped daylight incandescent reflector lamp known as the SoLux PAR. The company maintains that it has been unable to develop a more efficient alternative that offers the same utility as the SoLux PAR and, as a result, will suffer serious hardship, gross inequity, and an unfair

153

New and Underutilized Technology: Interior LED/Solid State Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interior LED/Solid State Lighting Interior LED/Solid State Lighting New and Underutilized Technology: Interior LED/Solid State Lighting October 4, 2013 - 4:53pm Addthis The following information outlines key deployment considerations for interior LED/solid state lighting within the Federal sector. Benefits Interior LED retrofits are currently viable for down lights, track lighting, sconces, and both line and low voltage task lighting. Replacements for incandescent A-lamps have also been improving rapidly. Replacements for fluorescent tube lighting may be viable for high-cost maintenance areas. Application Interior LED/solid state lighting is a rapidly improving technology currently most applicable for down lights, track lights, task lighting, accenting, high ceiling, and high cost maintenance areas.

154

Transforming the Lighting Sector with Semiconductor Lighting Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

17-TED-000924-9/27 SR#2000-2333C 17-TED-000924-9/27 SR#2000-2333C Transforming the Lighting Sector With Semiconductor Lighting Technologies Thomas Drennen Sandia National Laboratories Roland Haitz Agilent Technologies Jeffrey Tsao E20 Communications Sandia National Laboratories USAEE/IAEE Annual Meetings Philadelphia, PA September 24-27, 2000 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000 2 6217-TED-000924-9/27 SR#2000-2333C Overview * Introduction * U.S. Lighting Demand * Evolution of LEDs * The LED Simulation Model (LEDSim) * Results 3 6217-TED-000924-9/27 SR#2000-2333C Introduction 0 50 100 150 200 1970 1980 1990 2000 2010 2020 Efficiency (lm/W) Year Incandescent Halogen Fluorescent Semi- conductor

155

Soot particle sizing during high-pressure Diesel spray combustion via time-resolved laser-induced incandescence  

SciTech Connect

Single-pulse time-resolved laser-induced incandescence (TiRe-LII) signal transients from soot particulates were acquired during unsteady high pressure Diesel combustion in a constant volume cell for typical top dead center conditions during a Diesel engine cycle. Measurements were performed for initial gas pressures between 1 and 3 MPa, injection pressures between 50 and 130 MPa and laser probe timings between 5 and 16 ms after start of fuel injection. In separate experiments and for the same cell operating conditions gas temperatures were deduced from spectrally resolved soot pyrometry measurements. Implementing the LII model of Kock et al. [Combust. Flame 147 (2006) 79-92] ensemble mean soot particle diameters were evaluated from least-squares fitting of theoretical cooling curves to experimental TiRe-LII signal transients. Since in the experiments the environmental gas temperature and the width of an assumed particle size distribution were not known, the effects of the initial choice of these parameters on retrieved particle diameters were investigated. It is shown that evaluated mean particle diameters are only slightly biased by the choice of typical size distribution widths and gas temperatures. For a fixed combustion phase mean particle diameters are not much affected by gas pressure, however they become smaller at high fuel injection pressure. At a mean chamber pressure of 1.39 MPa evaluated mean particle diameters increased by a factor of two for probe delays between 5 and 16 ms after start of injection irrespective of the choices of first-guess fitting variables, indicating a certain robustness of data analysis procedure. (author)

Ryser, R.; Gerber, T.; Dreier, T. [Reaction Analysis Group, Department of General Energy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

2008-11-15T23:59:59.000Z

156

Soot particle sizing during high-pressure Diesel spray combustion via time-resolved laser-induced incandescence  

SciTech Connect

Single-pulse time-resolved laser-induced incandescence (TiRe-LII) signal transients from soot particulates were acquired during unsteady high pressure Diesel combustion in a constant volume cell for typical top dead center conditions during a Diesel engine cycle. Measurements were performed for initial gas pressures between 1 and 3 MPa, injection pressures between 50 and 130 MPa and laser probe timings between 5 and 16 ms after start of fuel injection. In separate experiments and for the same cell operating conditions gas temperatures were deduced from spectrally resolved soot pyrometry measurements. Implementing the LII model of Kock et al. [Combust. Flame 147 (20006) 79-92] ensemble mean soot particle diameters were evaluated from least-squares fitting of theoretical cooling curves to experimental TiRe-LII signal transients. Since in the experiments the environmental gas temperature and the width of an assumed particle size distribution were not known, the effects of the initial choice of these parameters on retrieved particle diameters were investigated. It is shown that evaluated mean particle diameters are only slightly biased by the choice of typical size distribution widths and gas temperatures. For a fixed combustion phase mean particle diameters are not much affected by gas pressure, however they become smaller at high fuel injection pressure. At a mean chamber pressure of 1.39 MPa evaluated mean particle diameters increased by a factor of two for probe delays between 5 and 16 ms after start of injection irrespective of the choices of first-guess fitting variables, indicating a certain robustness of data analysis procedure. (author)

Ryser, R.; Gerber, T.; Dreier, T. [Reaction Analysis Group, Department of General Energy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

2009-01-15T23:59:59.000Z

157

Solid-state lighting technology perspective.  

SciTech Connect

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

2006-08-01T23:59:59.000Z

158

Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards  

E-Print Network (OSTI)

and lighting dominantly incandescent. LED) replace Althoughare similar, LED incandescent efficacies are expected toUse (TWh) a Lighting (incandescent, including reflector

Garbesi, Karina

2011-01-01T23:59:59.000Z

159

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

out of inefficient incandescent light bulbs”, informationof a complete phasing out of incandescent lamps by 2009. Theof an import restriction on incandescent general lighting

McNeil, MIchael

2011-01-01T23:59:59.000Z

160

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

52LPW assuming 80% incandescent @14LPW goes to CFL @52LPWthan the traditional incandescent lighting it is replacingbest technology Lighting Incandescent, fluorescent, LED

Garbesi, Karina

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The History of the Light Bulb | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The History of the Light Bulb The History of the Light Bulb The History of the Light Bulb November 22, 2013 - 1:00pm Addthis History of the Light Bulb Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Daniel Wood Daniel Wood Data Integration Specialist What are the key facts? Like all great inventions, the light bulb can't be credited to one inventor. It was a series of small improvements on the ideas of previous inventors that have led to the light bulbs we use in our homes today. Learn more about the history of the incandescent light bulb. Explore the history of fluorescent lights, from the Geissler tube to CFLs. Read about the advancements in LED lights. More than 150 years ago, inventors began working on a bright idea that would have a dramatic impact on how we use energy in our homes and offices.

162

The History of the Light Bulb | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The History of the Light Bulb The History of the Light Bulb The History of the Light Bulb November 22, 2013 - 1:00pm Addthis History of the Light Bulb Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Daniel Wood Daniel Wood Data Integration Specialist What are the key facts? Like all great inventions, the light bulb can't be credited to one inventor. It was a series of small improvements on the ideas of previous inventors that have led to the light bulbs we use in our homes today. Learn more about the history of the incandescent light bulb. Explore the history of fluorescent lights, from the Geissler tube to CFLs. Read about the advancements in LED lights. More than 150 years ago, inventors began working on a bright idea that would have a dramatic impact on how we use energy in our homes and offices.

163

Comparative study of energy saving light sources  

Science Journals Connector (OSTI)

Techno-economic performance comparison of compact fluorescent lamps (CFL) with light emitting diodes (LED), electrode less fluorescent lamps (EEFL), fluorescent tubes, incandescent bulbs, photovoltaic (PV) and fiber optic lighting systems was carried out in view of worsening power and energy crisis in Pakistan. Literature survey showed 23W CFL, 21W EEFL, 18W fluorescent tube or 15W LED lamps emit almost same quantity of luminous flux (lumens) as a standard 100W incandescent lamp. All inclusive, operational costs of LED lamps were found 1.21, 1.62. 1.69, 6.46, 19.90 and 21.04 times lesser than fluorescent tubes, CFL, EEFL, incandescent bulbs, fiber optic solar lighting and PV systems, respectively. However, tubes, LED, CFL and EEFL lamps worsen electric power quality of low voltage networks due to high current harmonic distortions (THD) and poor power factors (PF). Fluorescent lamps emit UV and pollute environment by mercury and phosphors when broken or at end of their life cycle. Energy consumption, bio-effects, and environmental concerns prefer LED lamps over phosphor based lamps but power quality considerations prefer EEFL. CFL and EEFL manufacturers claim operating temperatures in range of ?20CLED lamps may be five to ten times higher that high THD and low PF lamps. Choice of a lamp depends upon its current THD, PF, life span, energy consumption, efficiency, efficacy, color rendering index (CRI) and associated physical effects. This work proposes manufacturing and user level innovations to get rid of low PF problems. Keeping in view downside of phosphor based lamps our research concludes widespread adoption of LED lamps. Government and commercial buildings may consider full spectrum hybrid thermal photovoltaic and solar fiber optic illumination systems.

N. Khan; N. Abas

2011-01-01T23:59:59.000Z

164

Compact light source performance in recessed type luminaires  

SciTech Connect

Photometric comparisons were made with an indoor, recessed, type luminaire using incandescent, high intensity discharge and compact fluorescent lamps. The test results show substantial performance advantages, as expected, for the discharge light sources where the efficacy gains can be in the order for 400% even when including the ballast losses associated with the discharge lamps. The candlepower distribution patterns emerging from these luminaries are also different from those associated with the baseline incandescent lamps, and which are in some ways, even more desirable from a uniformity of illuminance perspective. A section on fluorescent lamp starting is also included which describes a system having excellent starting characteristics in terms of electrode starting temperature (RH/RC technique), proper operating frequency to minimize unwanted IR interactions, and satisfactory current crest factor values to help insure life performance.

Hammer, E.E.

1998-11-01T23:59:59.000Z

165

STATEMENT OF CONSIDERATIONS REQUEST BY CREE LIGHTING COMPANY, FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20 2001 09:52 FR IPL DOE CH 630 252 2779 TO FGCP-HQ P.02/04 20 2001 09:52 FR IPL DOE CH 630 252 2779 TO FGCP-HQ P.02/04 * * STATEMENT OF CONSIDERATIONS REQUEST BY CREE LIGHTING COMPANY, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26- 00NT40985 W(A)-01-002, CH-1055 The Petitioner, Cree Lighting Company, (Cree), was awarded this cooperative agreement for the performance of work entitled, "Energy Efficient Solid State Lamp". The purpose of the cooperative agreement is to develop high efficiency, high radiance light emitting diode (LED) chip and packaging technology that is expected to lead to novel solid state lamps capable of replacing less energy efficient incandescent and halogen reflector lamps. When compared with current incandescent reflector lamps, this revolutionary new lamp is expected to be three times more

166

Effects of Light Treatment on Isoflavone Content of Germinated Soybean Seeds  

Science Journals Connector (OSTI)

Our research objective was to increase isoflavone content in the germinated soybean seeds of four different varieties (Pungsannamulkong, Cheongjakong, Aga4, and Aga3) by optimizing light treatments (dark, greenhouse, fluorescent, incandescent, and ultraviolet lamps). ... All soybean varieties, after 4 h of soaking, were treated with light from different sources such as dark (control), fluorescent lamp (40 W, FL20SD, China) 10 1.00 ?Mol/m2/s, greenhouse lamp (40 W, FL20 PG, Wooree Lighting co., Korea) 8 1.53 ?Mol/m2/s, incandescent lamp (60 W, IK04) 4 1.73 ?Mol/m2/s, and ultraviolet-C (Sankyo Denki, GL20, Japan) 1 1.53 ?Mol/m2/s (Figure 2). ...

Siviengkhek Phommalth; Yeon-Shin Jeong; Yong-Hoon Kim; Krishna Hari Dhakal; Young-Hyun Hwang

2008-10-09T23:59:59.000Z

167

Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Estimates of Light Emitting Diodes Savings Estimates of Light Emitting Diodes in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant Consulting Inc. 1801 K Street, NW Suite 500 Washington DC, 20006 September 2008 * Department of Energy Washington, DC 20585 Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications Released: September 2008 Revised: October 2008 This DOE report presents research findings for twelve different niche markets where LEDs are competing or poised to compete with traditional light sources (e.g., incandescent and fluorescent). Estimates of the energy saved due to current levels of LED market penetration as well as estimates of potential energy savings if these markets switched completely to LEDs

168

Laboratory Ventilation SafetyLaboratory Ventilation Safety J. Scott WardJ. Scott Ward  

E-Print Network (OSTI)

the incandescent light bulb in 1879.incandescent light bulb in 1879. #12;First Labconco Hood 1936First Labconco

Farritor, Shane

169

Discovery of New Nitridosilicate Phosphors for Solid State Lighting by the Single-Particle-Diagnosis Approach  

Science Journals Connector (OSTI)

(1-9) As a revolutionary lighting technology, solid state lighting promises to consume significantly less electricity and, thus, would address urgent challenges of greenhouse gas emissions, energy security, and economic revitalization. ... (10-14) In this technology, luminescent materials play key roles by spectrally converting the ultraviolet or blue-light emitted from LED chips into useful blue-to-red emissions, thus determining the efficiency, color rendition, color temperature, reliability, and lifetime of the lighting devices. ... Whereas the efficiency of conventional incandescent and fluorescent lights is limited by fundamental factors that cannot be overcome, the efficiency of solid-state sources is limited only by human creativity and imagination. ...

Naoto Hirosaki; Takashi Takeda; Shiro Funahashi; Rong-Jun Xie

2014-06-17T23:59:59.000Z

170

High-Intensity Discharge Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

171

Have You Used LED Light Strings? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Light Strings? LED Light Strings? Have You Used LED Light Strings? December 3, 2009 - 7:30am Addthis This week, you read about LED holiday light strings, which can use 90% less energy than regular incandescent light strings. You may even be able to save on the initial costs with rebates from stores or your utility; check to find out what's being offered in your area. Have you used LED light strings? Tell us what you think of them. Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Save Money with LED Holiday Light Strings Tips to Save Energy During the Holidays Choosing Energy-Saving Lighting Products Saves You Money

172

Tillamook County PUD - Dairy Lighting Retrofit Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tillamook County PUD - Dairy Lighting Retrofit Rebate Program Tillamook County PUD - Dairy Lighting Retrofit Rebate Program Tillamook County PUD - Dairy Lighting Retrofit Rebate Program < Back Eligibility Agricultural Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Oregon Program Type Utility Rebate Program Provider Tillamook County PUD Tillamook PUD offers the Dairy Lighting Retrofit Program for its agricultural members to save energy on lighting in eligible barns/facilities. Tillamook PUD completes a lighting audit of the facility to calculate the energy savings and rebate amount. Incentives are provided for the replacement of existing mercury vapor, incandescent, and T12 fluorescent fixtures with new ORION AG9000 3-lamp T8 fluorescent fixtures. This rebate is available for retrofits only, new construction is not

173

The Specter of Fuel-Based Light  

SciTech Connect

Contemporary questions about sustainable energy and development converge in unexpected ways around a technology that is at once an echo of the past and yet very much a part of the present: fuel-based lighting in the developing world. An emerging opportunity for reducing the global costs and greenhouse-gas emissions associated with this highly inefficient form of lighting energy use is to replace fuel-based lamps with white solid-state (''LED'') lighting, described in this Policy Forum, which can be affordably solar-powered. Doing so would allow those without access to electricity in developing world to affordably leapfrog over the prevailing incandescent and fluorescent lighting technologies in use today through the electrified world.

Mills, Evan

2005-05-16T23:59:59.000Z

174

New Lighting Fixtures: Combining Creativity and Style with Energy Efficiency  

SciTech Connect

This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescent lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.

Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

2004-10-01T23:59:59.000Z

175

City of Phildelphia: Light emitting diodes for traffic signal displays  

SciTech Connect

This project investigated the feasibility of using light emitting diodes (LEDs) for red traffic signals in a demonstration program at 27 signalized intersections in the City of Philadelphia. LED traffic signals have the potential to achieve significant savings over standard incandescent signals in terms of energy usage and costs, signal relamping costs, signal system maintenance costs, tort liability, and environmental impact. Based on successful experience with the demonstration program, the City of Philadelphia is currently developing funding for the conversion of all existing red incandescent traffic signals at approximately 2,700 intersections to LED signals. This program is expected to cost approximately $4.0 million and save about $850,000 annually in energy costs. During late 1993 and early 1994, 212 red LED traffic signals (134 8-inch signals and 78 12-inch signals) were installed at 27 intersections in Philadelphia. The first group of 93 signals were installed at 13 prototypical intersections throughout the City. The remaining group of signals were installed on a contiguous route in West Philadelphia consisting of standard incandescent signals and LED signals interspersed in a random pattern.

NONE

1995-12-01T23:59:59.000Z

176

Building Technologies Program - 1995 Annual Report  

E-Print Network (OSTI)

more efficient than typical incandescent lamps (17 lpw),near term with the ubiquitous incandescent light bulb in theyet fit in virtually any incandescent socket. Emboldened by

Selkowitz, S.E.

2010-01-01T23:59:59.000Z

177

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network (OSTI)

lighting (replacement of incandescent lamps with CFLs) withof each type of lamp: incandescent; fluorescent tubes; andless consumptive than incandescent bulbs. Second, it impacts

McNeil, Michael A

2008-01-01T23:59:59.000Z

178

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network (OSTI)

2000: Lighting Type Incandescent Fluorescent CFL Percentagescenario, we assume that incandescent bulbs are graduallyW 60W 15W Fluorescent Lamps Incandescent Lamps CFL We then

Letschert, Virginie

2010-01-01T23:59:59.000Z

179

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

energy consumed by an incandescent bulb is emitted in thefluorescent (CFL), and incandescent lights typically arelamps in place of incandescent bulbs in most cases; and

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

180

Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts  

E-Print Network (OSTI)

lighting, we assume that incandescent bulbs have a one-yeargigaton Indonesia India incandescent Lamp Japan Koreaprice data for 60-watt incandescent bulbs, excluding non-

Letschert, Virginie E.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants  

E-Print Network (OSTI)

fluorescent (CFL), and incandescent lights are typicallyhours) Applications Incandescent Task Halogen Task CFL TaskCenter of Wisconsin. Replace incandescent lamps with compact

Worrell, Ernst

2010-01-01T23:59:59.000Z

182

Making the Market Right for Environmentally Sound Energy-Efficient Technologies: U.S. Buildings Sector Successes that Might Work in Developing Countries and Eastern Europe  

E-Print Network (OSTI)

than their 100-year old incandescent ancestors. However,Hz core-coil ballasts. Incandescent lighting consumes aboutthe developing world, incandescent lamps drive peak demand,

Gadgil, A.J.

2008-01-01T23:59:59.000Z

183

Westinghouse and Fuzhou Permitted to Restart Distribution of Light Bulb  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Westinghouse and Fuzhou Permitted to Restart Distribution of Light Westinghouse and Fuzhou Permitted to Restart Distribution of Light Bulb Products Westinghouse and Fuzhou Permitted to Restart Distribution of Light Bulb Products August 6, 2010 - 4:26pm Addthis The Department has issued Notices of Allowance to Westinghouse Lighting Corporation and Fuzhou Sunlight Lighting Electrical Appliance Company determining, based on corrected test data provided by Westinghouse, that the incandescent reflector lamps listed below are compliant with the federal energy conservation standard and may be sold in the United States. These 11 Westinghouse brand lamps, usually used in recessed light fixtures, correspond to 7 basic models, which are manufactured in China by Fuzhou. DOE had previously issued Notices requiring Fuzhou and Westinghouse to

184

Semiconductor Nanocrystals-Based White Light Emitting Diodes  

SciTech Connect

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

Dai, Quanqin [ORNL; Hu, Michael Z. [ORNL; Duty, Chad E [ORNL

2010-01-01T23:59:59.000Z

185

Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon  

SciTech Connect

In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOEs Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics eW Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixtures light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

2008-11-10T23:59:59.000Z

186

High Hats, Swiss Cheese, and Fluorescent Lighting?  

SciTech Connect

For DOE, PNNL is conducting a competitive procurement to promote market introduction of new residential recessed downlights (also known as ''recessed cans'' or ''high hats'') that are airtight, rated for insulated ceilings, and hard-wired for CFLs. This paper discusses the potential energy savings of new high-efficiency downlights, and the results of product testing to date. Recessed downlights are the most popular residential lighting fixtures in the United States, with 21.7 million fixtures sold in 2000. An estimated 350 million are currently installed in American homes. Recessed cans are relatively inexpensive, and provide an unobtrusive, directed source of light for kitchens, hallways, and living rooms. Recessed cans are energy-intensive in three ways. First, virtually all recessed cans currently installed in the residential sector use incandescent light sources, typically reflector-type lamps drawing 65-150 watts. Second, heat from incandescent lamps adds to air-conditioning loads. Third, most installed recessed cans are not airtight, so they allow conditioned air to escape from the living area into unconditioned spaces such as attics. Addressing both lighting energy use and air leakage in recessed cans has proven challenging. Lighting energy efficiency is greatly improved by using CFLs. Air leakage can be addressed by making fixtures airtight. But when CFLs are used in an airtight recessed can, heat generated by the lamp and ballast is trapped within the fixture. Excessive heat causes reduced light output and shorter lifespan of the CFL. The procurement was designed to overcome these technical challenges and make new products available in the marketplace.

McCullough, Jeffrey J.; Gordon, Kelly L.

2002-08-30T23:59:59.000Z

187

LED traffic lights: New technology signals major energy savings  

SciTech Connect

Using light-emitting diode technology to replace incandescent lamps in traffic signals promises energy savings upwards of 60 percent for each of the estimated quarter of a million controlled intersections in the United States. LED units use only 9 to 25 watts instead of the 67 to 150 watts used by each incandescent lamp. Though their first cost is relatively high, energy savings result in paybacks of 1 to 5 years. LED retrofit kits are available for red signal disks and arrows, and installations in several states have proven successful, although minor improvements are addressing concerns about varying light output and controller circuitry. Retrofitting green lamps is not yet feasible, because color standards of the Institute of Traffic Engineers cannot be met with existing LED technology. Yellow lamps have such low duty factors (they`re on only 3 percent of the time) that retrofitting with LED signals is not cost-effective. LEDs last much longer than incandescents, allowing municipalities to not only reduce their electricity bills, but to save on maintenance costs as well. As further incentive, some utilities are beginning to implement rebate programs for LED traffic signal retrofits. Full approval of LED units is still awaited from the Institute of Traffic Engineers (ITE), the standard-setting body for traffic safety devices. Local and state governments ultimately decide what specifications to require for traffic lights, and the growing body of successful field experience with LEDs appears to be raising their comfort level with the technology. The California Department of Transportation is developing an LED traffic light specification, and two California utilities, Southern California Edison and Pacific Gas and Electric, have provided rebates for some pilot installations.

Houghton, D.

1994-12-31T23:59:59.000Z

188

The effects of airflow modulation and multi-stage defrost on the performance of an air source heat pump  

E-Print Network (OSTI)

with total refrigerant charge of 950 grams (2. 1 lbs) (Tanaka et. al. 1982). Table 2. 1 shows the distribution of refrigerant during steady state heating and cooling operation. Table 2. 1: Refri erant Distribution at Stead State Location Hestin made... light, (2) keep the charge as low as possible, (3) stop refrigerant flow into the outdoor coil during off periods, and (4) protect the compressor from slugging liquid. The work of the previously mentioned investigators has shown that the degradation...

Payne, William Vance

2012-06-07T23:59:59.000Z

189

Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design  

E-Print Network (OSTI)

LED) replace conventional incandescent lighting Heat pumpreplacing Only the residential sector remains incandescentdominantly incandescent. Although bulbs, primarily in LED

Desroches, Louis-Benoit

2012-01-01T23:59:59.000Z

190

Choosing Energy-Saving Lighting Products Saves You Money | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money May 30, 2012 - 11:58am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy If you've been to a home improvement store lately, you've probably noticed more and more energy-saving light bulbs available on the shelves. Traditional incandescent light bulbs give off about 90% of the energy they use in the form of heat, and only 10% as light, making them a major money-waster compared to better lighting options that are currently available. Lighting homes and businesses with more efficient products is one of the easiest ways to reduce America's reliance on fossil fuels and save money. Those savings can really add up: You may be paying $6 each year to light a

191

South Carolina Community Lights Up the Season with Energy-Efficient Holiday  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Carolina Community Lights Up the Season with Energy-Efficient South Carolina Community Lights Up the Season with Energy-Efficient Holiday Lights South Carolina Community Lights Up the Season with Energy-Efficient Holiday Lights December 20, 2011 - 1:12pm Addthis Carolers sing in front of Forest Acres, South Carolina's new LED holiday light display. | Photo courtesy of Richland County, S.C. Carolers sing in front of Forest Acres, South Carolina's new LED holiday light display. | Photo courtesy of Richland County, S.C. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this mean for me? LED holiday lights reduce energy usage by 90 percent when compared to traditional incandescent lights. A South Carolina community is proving that energy efficiency can improve the holidays by reducing energy and maintenance costs, thanks to its new

192

South Carolina Community Lights Up the Season with Energy-Efficient Holiday  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Carolina Community Lights Up the Season with Energy-Efficient South Carolina Community Lights Up the Season with Energy-Efficient Holiday Lights South Carolina Community Lights Up the Season with Energy-Efficient Holiday Lights December 20, 2011 - 1:12pm Addthis Carolers sing in front of Forest Acres, South Carolina's new LED holiday light display. | Photo courtesy of Richland County, S.C. Carolers sing in front of Forest Acres, South Carolina's new LED holiday light display. | Photo courtesy of Richland County, S.C. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this mean for me? LED holiday lights reduce energy usage by 90 percent when compared to traditional incandescent lights. A South Carolina community is proving that energy efficiency can improve the holidays by reducing energy and maintenance costs, thanks to its new

193

Choosing Energy-Saving Lighting Products Saves You Money | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money May 30, 2012 - 11:58am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy If you've been to a home improvement store lately, you've probably noticed more and more energy-saving light bulbs available on the shelves. Traditional incandescent light bulbs give off about 90% of the energy they use in the form of heat, and only 10% as light, making them a major money-waster compared to better lighting options that are currently available. Lighting homes and businesses with more efficient products is one of the easiest ways to reduce America's reliance on fossil fuels and save money. Those savings can really add up: You may be paying $6 each year to light a

194

New Lighting Standards Begin in 2012 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Lighting Standards Begin in 2012 New Lighting Standards Begin in 2012 New Lighting Standards Begin in 2012 July 29, 2012 - 7:58pm Addthis New Lighting Standards Begin in 2012 What does this mean for me? Starting in 2012, lightbulbs are required to use 25% less energy. You have several energy-efficient options to choose from, which are already available in stores. The new lighting standards could save U.S. households nearly $6 billion dollars in 2015 alone. Beginning in 2012, common lightbulbs sold in the United States will typically use about 25%-80% less energy. Many bulbs meet these new standards, including energy-saving incandescents, CFLs, and LEDs, and are already available for purchase. The newer bulbs provide a wide range of choices in color and brightness, and many of them last much longer than

195

New Lighting Standards Begin in 2012 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Lighting Standards Begin in 2012 New Lighting Standards Begin in 2012 New Lighting Standards Begin in 2012 July 29, 2012 - 7:58pm Addthis New Lighting Standards Begin in 2012 What does this mean for me? Starting in 2012, lightbulbs are required to use 25% less energy. You have several energy-efficient options to choose from, which are already available in stores. The new lighting standards could save U.S. households nearly $6 billion dollars in 2015 alone. Beginning in 2012, common lightbulbs sold in the United States will typically use about 25%-80% less energy. Many bulbs meet these new standards, including energy-saving incandescents, CFLs, and LEDs, and are already available for purchase. The newer bulbs provide a wide range of choices in color and brightness, and many of them last much longer than

196

Semiconductor-Nanocrystals-Based White Light-Emitting Diodes  

SciTech Connect

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

Dai, Quanqin [ORNL; Duty, Chad E [ORNL; Hu, Michael Z. [ORNL

2010-01-01T23:59:59.000Z

197

Metacapacitors for LED Lighting: Metacapacitors  

SciTech Connect

ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

None

2010-09-02T23:59:59.000Z

198

Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes  

E-Print Network (OSTI)

incandescent bulbs and fluorescent bulbs). Solid-stateindex (CRI) than fluorescent bulbs. Common examples where

Fina, Michael Dane

2012-01-01T23:59:59.000Z

199

An Engineering-Economic Analysis of White Light-Emitting Diodes for General  

NLE Websites -- All DOE Office Websites (Extended Search)

An Engineering-Economic Analysis of White Light-Emitting Diodes for General An Engineering-Economic Analysis of White Light-Emitting Diodes for General Illumination for the U.S. Residential and Commercial Sectors Speaker(s): Inês Magarida Lima de Azevedo Date: February 15, 2008 - 12:00pm Location: 90-3122 Because lighting constitutes more than 20% of total US electricity consumption, and many current lighting technologies are highly inefficient, improved technologies for lighting hold great potential for energy savings and for reducing associated greenhouse gas emissions. Solid-state lighting is a technology that shows great promise as a source of efficient, affordable, color-balanced white light in the near future. Indeed, under a pure engineering-economic analysis, solid-state lighting already performs better than incandescent bulbs and is expected to surpass the most

200

Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Briefing for Media and Retailers - Lighting eere.energy.gov Briefing for Media and Retailers - Lighting eere.energy.gov 1 Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers Briefing for Media and Retailers - Lighting eere.energy.gov 2 * Briefing: - To schedule interviews, please contact DOE Public Affairs at 202-586-4940 * Terms: - Lumens: Commonly a measure of brightness (technically "luminous flux") - CFL: Compact Fluorescent Lamp: The curly fluorescent bulbs - LED: Light Emitting Diode: more recently emerging technology, also called "solid state lighting" as it is light produced by a solid-state (chip) device - General Service Incandescent Lamp: The most common residential light bulb in use, with a medium screw base, and a lumen range of 310 to 2,600 lumens

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MOntage Builders NORTHERN FOREST NORTHERN FOREST MOntage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of light: incandescent (as a control), compact florescent lighting (CFL), and light emitting diode (LED). LIGHTING AND APPLIANCES Comparison P oint LED CFL Incandescent Watt B...

202

Recessed Lighting in the Limelight  

SciTech Connect

Recessed downlights are among the most popular installed lighting fixtures for new and remodeled homes. DOE estimates there are at least 350 million currently installed in US homes, and around 20 million are sold each year. A recent California study showed only 0.4 percent of recessed cans used compact fluorescent lamps. Annual reported sales of fluorescent residential recessed downlights nationwide make up no more than three percent of total residential recessed downlight sales. Standard recessed downlights waste energy by leaking conditioned air to unconditioned attic space, and using less efficient, high-heat incandescent bulbs. 33 states have adopted building codes that require recessed cans installed in the building shell to be airtight. To encourage lighting fixture manufacturers to bring to market high-efficiency air-tight recessed cans, DOE is sponsoring the recessed downlights project. PNNL solicited bids for energy efficient recessed downlights meeting the following specifications: They must use pin-based CFLs, have an airtight housing, be IC-rated, use electronic ballasts, and have a light output minimum of 900 initial lumens. PNNL did short- and long-term testing of the submitted lamps and negotiated lower prices for consumer purchase of qualifying models.

Gordon, Kelly L.; McCullough, Jeffrey J.

2003-02-01T23:59:59.000Z

203

THE HISTORY AND TECHNICAL EVOLUTION OF HIGH FREQUENCY FLUORESCENT LIGHTING  

E-Print Network (OSTI)

B L U E , G R E E N , INCANDESCENT FORM OF LAMPS OF VARIOUSTHE E F F I C I E N C Y INCANDESCENT A P P L I C A T I O N SI M E S , DEPENDING THE THE INCANDESCENT GENERAL LAMPS. THE

Campbell, John H.

2011-01-01T23:59:59.000Z

204

New Mexico Brightens Lights to Save Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mexico Brightens Lights to Save Money Mexico Brightens Lights to Save Money New Mexico Brightens Lights to Save Money March 4, 2010 - 12:28pm Addthis Joshua DeLung What are the key facts? In Hobbs, New Mexico, the savings on the city's electric bill could add up to about $20,000 in one year thanks to the retrofitting of 42 intersections as part of a Recovery Act-funded project. By summer, all traffic, warning and pedestrian signals in New Mexico will be replaced with LED lamps, which use significantly less electricity than incandescent lamps. The project is funded by $5 million in Recovery Act money allocated to the State Energy Program, and about 75 percent of the changeovers are already complete. In Hobbs, the savings on the city's electric bill could add up to about $20,000 in one year thanks to the retrofitting of 42

205

EXC-12-0014 - In the Matter of Topaz Lighting Corporation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - In the Matter of Topaz Lighting Corporation 4 - In the Matter of Topaz Lighting Corporation EXC-12-0014 - In the Matter of Topaz Lighting Corporation On November 16, 2012, OHA issued a decision granting an Application for Exception filed by Topaz Lighting Corporation (Topaz) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, Topaz asserted that it will suffer a serious hardship, gross inequity and an unfair distribution of burdens if required to adhere to the new Lighting Efficiency Standards, effective July 14, 2012 (2009 Final Rule), with respect to its 700 series T8 General Service Fluorescent Lamps (GSFL). Specifically, Topaz cited a previous OHA

206

EXC-12-0011 - In the Matter of Westinghouse Lighting Corporation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - In the Matter of Westinghouse Lighting Corporation 1 - In the Matter of Westinghouse Lighting Corporation EXC-12-0011 - In the Matter of Westinghouse Lighting Corporation On September 17, 2012, OHA issued a decision granting an Application for Exception filed by Westinghouse Lighting Corporation (Westinghouse) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, Westinghouse asserted that it will suffer a serious hardship, gross inequity and an unfair distribution of burdens if required to adhere to the Lighting Efficiency Standards, which became effective July 14, 2012 (2009 Final Rule), with respect to its 700 series T8 General Service Fluorescent Lamps (GSFL).

207

EXC-12-0006 - In the Matter of Premium Quality Lighting, Inc. | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 - In the Matter of Premium Quality Lighting, Inc. 6 - In the Matter of Premium Quality Lighting, Inc. EXC-12-0006 - In the Matter of Premium Quality Lighting, Inc. On July 27, 2012, OHA issued a decision granting an Application for Exception filed by Premium Quality Lighting, Inc. (PQL) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, PQL asserted that it will suffer a serious hardship, gross inequity and an unfair distribution of burdens if required to adhere to the new Lighting Efficiency Standards, effective July 14, 2012 (2009 Final Rule), with respect to its 700 series T8 General Service

208

EXC-12-0005 - In the Matter of Halco Lighting Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 - In the Matter of Halco Lighting Technologies 5 - In the Matter of Halco Lighting Technologies EXC-12-0005 - In the Matter of Halco Lighting Technologies On July 10, 2012, OHA issued a decision granting an Application for Exception filed by Halco Lighting Technologies (Halco) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, Halco asserted that it will suffer a serious hardship, gross inequity and an unfair distribution of burdens if required to adhere to the new Lighting Efficiency Standards, effective July 14, 2012 (2009 Final Rule), with respect to its 700 series T8 General Service Fluorescent Lamps (GSFL). Specifically, Halco cited previous requests for

209

Westinghouse Lighting: Order (2010-CE-09/1001) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order (2010-CE-09/1001) Order (2010-CE-09/1001) Westinghouse Lighting: Order (2010-CE-09/1001) December 9, 2010 DOE ordered Westinghouse Lighting Corporation to pay a $50,000 civil penalty after finding Westinghouse Lighting had failed to certify that certain models of general service flourescent and incandescent reflector lamps comply with the applicable energy conservation standards. DOE also found that Westinghouse Lighting had manufactured and distributed noncompliant products in commerce in the U.S. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Westinghouse Lighting. Westinghouse Lighting: Order (2010-CE-09/1001) More Documents & Publications DuraLamp USA: Order (2010-CE-0912) Lumiram Electric: Order (2010-CE-1014) Philips: Order (2012-SE-2605

210

Estimate of federal relighting potential and demand for efficient lighting products  

SciTech Connect

The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

1993-11-01T23:59:59.000Z

211

EXC-12-0001, EXC-12-0002, EXC-12-0003 - In the Matter of Philips Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, EXC-12-0002, EXC-12-0003 - In the Matter of Philips 1, EXC-12-0002, EXC-12-0003 - In the Matter of Philips Lighting Company, GE Lighting, and OSRAM SYLVANIA, Inc. EXC-12-0001, EXC-12-0002, EXC-12-0003 - In the Matter of Philips Lighting Company, GE Lighting, and OSRAM SYLVANIA, Inc. On April 16, 2012, OHA issued a decision granting Applications for Exception filed respectively by Philips Lighting Company (Philips), GE Lighting (GE) and OSRAM SYLVANIA, Inc. (OSI) (collectively, "the Applicants"), for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In their exception requests, the Applicants asserted that they will suffer a serious hardship, gross

212

EXC-12-0001, EXC-12-0002, EXC-12-0003 - In the Matter of Philips Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXC-12-0001, EXC-12-0002, EXC-12-0003 - In the Matter of Philips EXC-12-0001, EXC-12-0002, EXC-12-0003 - In the Matter of Philips Lighting Company, GE Lighting, and OSRAM SYLVANIA, Inc. EXC-12-0001, EXC-12-0002, EXC-12-0003 - In the Matter of Philips Lighting Company, GE Lighting, and OSRAM SYLVANIA, Inc. On April 16, 2012, OHA issued a decision granting Applications for Exception filed respectively by Philips Lighting Company (Philips), GE Lighting (GE) and OSRAM SYLVANIA, Inc. (OSI) (collectively, "the Applicants"), for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In their exception requests, the Applicants asserted that they will suffer a serious hardship, gross

213

Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE Office of  

Office of Science (SC) Website

Understanding Drooping Light Emitting Understanding Drooping Light Emitting Diodes CEEM Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 Understanding Drooping Light Emitting Diodes CEEM Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement New calculations demonstrate that LED "droop" is dominated by multi-particle interactions. Droop occurs when increasing energy input does not produce proportionally more light. Significance and Impact Understanding "droop" may result in cheaper, more efficient LEDs; LEDs are more energy efficient, smaller, and longer-lived than incandescent lamps or fluorescent lighting. Research Details Atomistic first-principles calculations indicated that increasing amounts

214

Seeing the Light: LED Under-Cabinet and Recessed Downlights | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeing the Light: LED Under-Cabinet and Recessed Downlights Seeing the Light: LED Under-Cabinet and Recessed Downlights Seeing the Light: LED Under-Cabinet and Recessed Downlights August 2, 2010 - 10:42am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory I moved into my apartment about four years ago. Little by little, I've continued to make improvements that help me save money on my energy bills. I've: Applied weatherstripping to seal air leaks around windows Insulated my crawl space Installed storm windows to reduce air movement into and out of existing windows (I live in a historic district and can't replace my windows) Installed window shades to help with insulation Replaced my incandescent lighting fixtures with compact fluorescent lamps (CFLs) (I even purchased outdoor solar lights for my dad for Fathers Day.)

215

Westinghouse Lighting: Proposed Penalty (2010-CE-09/1001) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Westinghouse Lighting: Proposed Penalty (2010-CE-09/1001) Westinghouse Lighting: Proposed Penalty (2010-CE-09/1001) Westinghouse Lighting: Proposed Penalty (2010-CE-09/1001) April 19, 2010 DOE alleged in a Notice of Proposed Civil Penalty that Westinghouse Lighting Corporation failed to certify various flourescent and incandescent reflector lamps as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Westinghouse Lighting: Proposed Penalty (2010-CE-09/1001) More Documents & Publications

216

A Winning Light Bulb With the Potential to Save the Nation Billions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Winning Light Bulb With the Potential to Save the Nation Billions A Winning Light Bulb With the Potential to Save the Nation Billions A Winning Light Bulb With the Potential to Save the Nation Billions August 4, 2011 - 3:09pm Addthis This 10-watt alternative LED bulb (which glows white when turned on) could save the nation about 35 terawatt-hours of electricity or $3.9 billion in one year and avoid 20 million metric tons of carbon emissions if every 60-watt incandescent bulb in the U.S. was replaced with the L Prize winner. | Photo Courtesy of Philips Lighting North America This 10-watt alternative LED bulb (which glows white when turned on) could save the nation about 35 terawatt-hours of electricity or $3.9 billion in one year and avoid 20 million metric tons of carbon emissions if every 60-watt incandescent bulb in the U.S. was replaced with the L Prize winner.

217

Household transitions to energy efficient lighting  

Science Journals Connector (OSTI)

Abstract New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The rebound effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on \\{ILs\\} accelerated the pace of transition to \\{CFLs\\} and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with \\{CFLs\\} or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions.

Bradford Mills; Joachim Schleich

2014-01-01T23:59:59.000Z

218

OLEDS FOR GENERAL LIGHTING  

SciTech Connect

The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

2004-02-29T23:59:59.000Z

219

Journal of Chemical Ecology, Vol.23, No. 4, 1997 CUTICULAR HYDROCARBONS OF TERMITES OF THE  

E-Print Network (OSTI)

a single incandescent light. Initially samples were dried in whatevervessel wasavailable over whatever lamp scintillation vials over a single 75-W, reflecting incandescent light.

Yorke, James

220

Replacement Costs and Cleaning & Service Charges for ResidenceHalls  

E-Print Network (OSTI)

Incandescent Light Fixture $130.00 each Incandescent Light Fixture Globe $82.00 each Exit Sign $440.00 each

Shyy, Wei

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Information Resources: L Prize(tm): The Race for Super Efficient Light Bulbs  

NLE Websites -- All DOE Office Websites (Extended Search)

L Prize(tm): The Race for Super Efficient Light Bulbs L Prize(tm): The Race for Super Efficient Light Bulbs This September 23, 2008 webcast provided an overview of the Bright Tomorrow Lighting Prize (L Prize) technology competition. The L Prize calls for super-efficient SSL products to replace two of the most common light bulbs used today: the 60-watt incandescent and the PAR-38 halogen reflector. Kelly Gordon, Pacific Northwest National Laboratory, kicked off the webcast with an overview of the competition requirements, evaluation process, and opportunities for promotion of the winning products. Mary Matteson Bryan, Pacific Gas & Electric, and Liesel Whitney-Schulte, Wisconsin Focus on Energy, followed with a look at the role of L Prize partners and plans for their organizations to support the winning products through demonstrations, education, promotions, and other collaborative efforts.

222

Solid-state lighting : lamp targets and implications for the semiconductor chip.  

SciTech Connect

A quiet revolution is underway. Over the next 5-10 years inorganic-semiconductor-based solid-state lighting technology is expected to outperform first incandescent, and then fluorescent and high-intensity-discharge, lighting. Along the way, many decision points and technical challenges will be faced. To help understand these challenges, the U.S. Department of Energy, the Optoelectronics Industry Development Association and the National Electrical Manufacturers Association recently updated the U.S. Solid-State Lighting Roadmap. In the first half of this paper, we present an overview of the high-level targets of the inorganic-semiconductor part of that update. In the second half of this paper, we discuss some implications of those high-level targets on the GaN-based semiconductor chips that will be the 'engine' for solid-state lighting.

Tsao, Jeffrey Yeenien

2003-08-01T23:59:59.000Z

223

Conservation Potential of Compact Fluorescent Lamps in India and Brazil  

E-Print Network (OSTI)

38 TWh, 10% of which was for incandescent lighting (Fig. 3).The electricity consumed in incandescent lighting can be300 and 400 million incandescent lamps in the country. Let

Gadgil, A.J.

2008-01-01T23:59:59.000Z

224

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

9 9 Typical Efficacies and Lifetimes of Lamps (1) Current Technology CRI (2) Incandescent 10 - 19 97 Halogen 14 - 20 99 Fluorescent - T5 25 - 55 52 - 75 Fluorescent - T8 35 - 87 7,500 - 20,000 52 - 90 Fluorescent - T12 35 - 92 7,500 - 20,000 50 - 92 Compact Fluorescent 40 - 70 82 Mercury Vapor 25 - 50 15 - 50 Metal Halide 65 - 70 High-Pressure Sodium 22 Low-Pressure Sodium 0 Solid State Lighting 33-97 Note(s): Source(s): 18 - 180 18,000 20 - 100 15,000 - 50,000 1) Theoretical maximum luminous efficacy of white light is 220 lumens/Watt. 2) CRI = Color Rendering Index, which indicates a lamp's ability to show natural colors. 3) The DOE Solid State Lighting program has set an efficacy goal twice that of fluorescent lights (160 lumen per Watt). DOE, EERE, Building Technology Program/Navigant Consulting, U.S. Lighting Market Characterization, Volume I: National Lighting Inventory and Energy

225

Sandia National Laboratories: Brief History of Artificial Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

lifetime; as demonstrated by the evolution from lamps that utilize the electric arc then to carbon-filament and finally to metal-filament lamps. Incandescence culmination...

226

Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE...  

Office of Science (SC) Website

Impact Understanding "droop" may result in cheaper, more efficient LEDs; LEDs are more energy efficient, smaller, and longer-lived than incandescent lamps or fluorescent...

227

Ligand-Passivated Eu:Y2O3 Nanocrystals as a Phosphor for White Light Emitting Diodes  

Science Journals Connector (OSTI)

As a comparison, incandescent bulbs have a CCT of 2800 K, cool white fluorescent bulbs have a CCT of 6000 K, and daylight is 4500 K. ... We review the history of lighting, discuss the benefits and challenges of the solid-state lighting technologies, and compare two approaches for generating white light from solid-state sources based on phosphor LEDs (which could be considered as solid-state replacement of fluorescent tubes) and multichip LED lamps, which offer many advantages, such as chromaticity control, better light quality, and higher efficiency. ... In addn., several water channels (putative proton pathways) leading from the QB pocket to the surface of the RC were delineated, one of which leads directly to the membrane surface. ...

Qilin Dai; Megan E. Foley; Christopher J. Breshike; Adrian Lita; Geoffrey F. Strouse

2011-08-24T23:59:59.000Z

228

The Green Lab: Power Consumption by Commercial Light Bulbs  

Science Journals Connector (OSTI)

Going green is a slogan that is very contemporary both with industry and in the political arena. Choosing more energy-efficient devices is one way homeowners can go green. A simple method is to change home lighting from hot incandescent bulbs to compact fluorescent lights (CFLs). But do they really save energy? How do their illuminations compare? Even if the CFLs are more energy efficient they still add to our pollution problem because of the mercury inside them. Light-emitting diodes(LEDs) could be the answer but they are not available at our local stores. Can LEDs be made to screw right into a standard socket? How expensive are they? What are the power consumptions of so-called 60-W and 100-W CFL and LED light bulbs? These are the questions that are answered during this lab activity. Students measure the voltage and current for each of the three types of bulbs and then calculate the electrical power required by each. An optional experiment is to set the light outputs of each bulb so they are equal in intensity and then determine the power consumed. While not practical in the home this experiment gives students an understanding of value for their buck.

James A. Einsporn; Andrew F. Zhou

2011-01-01T23:59:59.000Z

229

Lighting Choices - White Background | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lightingallbulbs.jpg Description All of these lightbulbs-CFLs, LEDs, and energy-saving incandescents-meet the new energy standards that take effect from 2012-2014....

230

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

Appliance type Standard technology DC-internal best technology Lighting Incandescent, fluorescent, LED Incandescent Electronic Heating Heater Electric resistance Cooling Motor (& compressor,

Garbesi, Karina

2012-01-01T23:59:59.000Z

231

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

type of lighting bulb (incandescent, fluorescent), number ofof incandescent bulbs and fluorescent tubes per household,incandescent bulbs of 60W and 2.1 fluorescent tubes of 40W

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

232

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

type of lighting bulb (incandescent, fluorescent), number ofhouseholds possessed 3.2 incandescent bulbs of 60W and 2.1areas versus only 2.1 incandescent bulbs of 60W and 1.5

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

233

Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade  

DOE Patents (OSTI)

A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

Siminovitch, Michael J. (Pinole, CA); Page, Erik R. (Berkeley, CA)

2002-01-01T23:59:59.000Z

234

Imaging Overview For understanding work in computational  

E-Print Network (OSTI)

absorbs some light 5 #12;6 #12;Other typical light sources · Incandescent light source ­ Produced absorb UV light and produce visible light. 7 #12;Incandescent sources Power spectrum of common light

California at Santa Barbara, University of

235

Sustainable LED Fluorescent Light Replacement Technology  

SciTech Connect

Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. Environmental Impact Review Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. Drill-down Review These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

None

2011-06-30T23:59:59.000Z

236

Light Portal  

Science Journals Connector (OSTI)

The Light Portal was designed to organize and mark the pedestrian paths that circumnavigate the rectangle of the...

2006-01-01T23:59:59.000Z

237

Light's twist  

Science Journals Connector (OSTI)

...equal to the optical power divided by the speed of light, and hence go unnoticed in our everyday lives...approaching object equal to the power in the light beam (P) divided by the speed of light. The movement of the approaching object does...

2014-01-01T23:59:59.000Z

238

Light Properties Light travels at the speed of light `c'  

E-Print Network (OSTI)

LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190.nasa.gov #12;The speed of light The speed of light `c' is equal to the frequency ` times the wavelength,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light

Mojzsis, Stephen J.

239

Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Purple LED lamp Purple LED lamp Lighting Systems Lighting research is aimed at improving the energy efficiency of lighting systems in buildings and homes across the nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research falls into four main areas: Sources and Ballasts, Light Distribution Systems, Controls and Communications, and Human Factors. Contacts Francis Rubinstein FMRubinstein@lbl.gov (510) 486-4096 Links Lighting Research Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

240

Refrigerator-Freezers (multiple defrost waiver) | Department...  

Energy Savers (EERE)

templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE...

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lighting Renovations  

Energy.gov (U.S. Department of Energy (DOE))

When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

242

Cerenkov Light  

ScienceCinema (OSTI)

The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

Slifer, Karl

2014-05-22T23:59:59.000Z

243

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

5 5 2010 Total Lighting Technology Light Output, by Sector (Trillion Lumen-Hour per Year)(1) Residential Commercial Industrial Other (2) Total Incandescent 1640 49% 180 1% 0 0% 50 1% 1870 5% General (A-type, Decorative) 1390 42% 120 0% 0 0% - - 1510 4% Reflector 190 6% 60 0% 0 0% - - 250 1% Miscellaneous 60 2% 0 0% - - 50 1% 110 0% Halogen 170 5% 240 1% 0 0% 20 0% 430 1% General 20 1% 0 0% 0 0% - - 20 0% Reflector 110 3% 100 0% 0 0% - - 210 1% Low Voltage Display 10 0% 130 1% - - - - 140 0% Miscellaneous 30 1% 10 0% 0 0% 20 0% 70 0% Compact Fluorescent 780 23% 880 4% 0 0% 50 1% 1710 4% General (Screw, Pin) 670 20% 760 3% 0 0% - - 1430 4% Reflector 60 2% 130 1% 0 0% - - 180 0% Miscellaneous 50 2% - - - - 50 1% 100 0% Linear Fluorescent 670 20% 19180 79% 1800 40% 750 9% 22400 55% T5 0 0% 1480 6% 210 5% - - 1700 4% T8 80 2% 9690 40% 960 21% - - 10740 26% T12 470 14% 7880 32% 640 14% - - 8980 22% Miscellaneous 100 3% 120 0% 10 0% 750 9% 980 2% High Intensity Discharge

244

Pacific Northwest Laboratory`s Lighting Technology Screening Matrix  

SciTech Connect

Pacific Northwest Laboratory has developed the Lighting Technology Screening Matrix (LTSM), a software tool to evaluate alternative lighting retrofit technologies according to life-cycle cost. The LTSM can be used to evaluate retrofits for most configurations of fluorescent, incandescent, high- and low-pressure sodium, metal halide, mercury vapor, and exit lighting systems for any level of operation, electricity price, discount rate, and utility rebate. This tool was developed, in support of the Federal Relighting Initiative as part of the Department of Energy`s Office of Federal Energy Management Program (DOE/FEMP) to assist federal government facilities in their efforts to comply with the 10 CFR 436 mandated life-cycle costing for energy equipment investments. The LTSM has been used in the course of seven site modernization projects. These projects consisted of determining the cost-effective, energy-efficiency potential at military installations. Each project treated the entire military installation as an integrated system, proposed a large number of potential efficiency projects affecting all end-uses and fuel types, and analyzed the cost-effectiveness of each project. The LTSM was used for the lighting portion of these projects. Lighting was, overall, one of the major areas of potential efficiency improvements, accounting for over 30% of the cost-effective resource. Altogether over $43 million worth of cost-effective efficiency investments were identified, worth an estimated $6 million annually in energy, demand, and operations and maintenance (O&M) savings. This paper describes the LTSM and demonstrates its application in a case study at one of the federal installations analyzed.

Harris, L.R. [USDOE, Washington, DC (United States); Stucky, D.J.; Dirks, J.A.; Schultz, R.W.; Shankle, S.A.; Richman, E.E.; Purcell, C.W. [Pacific Northwest Lab., Richland, WA (United States)

1994-04-01T23:59:59.000Z

245

,,,"Incandescent","Standard Fluorescent","Compact Fluorescent...  

U.S. Energy Information Administration (EIA) Indexed Site

.",174,173,53,172,"Q","Q","Q" "Food Service ...",349,349,277,308,78,"Q",84 "Health Care ...",127,127,83,126,20,8,34 " Inpatient ...",11,...

246

4024 Inorg. Chem. 1987, 26, 4024-4029 Contribution from the Departments of Chemistry, Colgate University, Hamilton, New York 13346,  

E-Print Network (OSTI)

and laboratory fluorescent light and during nights to light from a 150-W incandescent bulb 20 cm from the pair

Herbert, Bruce

247

Northern Lights  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights Northern Lights Nature Bulletin No. 178-A February 6, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation NORTHERN LIGHTS To a person seeing the Aurora Borealis or "northern lights" for the first time, it is an uncanny awe-inspiring spectacle. Sometimes it begins as a glow of red on the northern horizon, ominously suggesting a great fire, gradually changing to a curtain of violet-white, or greenish-yellow light extending from east to west. Some times this may be transformed to appear as fold upon fold of luminous draperies that march majestically across the sky; sometimes as a vast multitude of gigantic flaming swords furiously slashing at the heavens; sometimes as a flowing crown with long undulating colored streamers fanning downward and outward.

248

Supplementary Material for: Application of Synchrotron Radiation for Measurement of Iron Red-ox  

E-Print Network (OSTI)

@engr.wisc.edu #12;Incandescent Light Bulb Spectrum Figure 1 Visible Light Fluorescent Light Bulb Spectrum #12;Figure 2 Visible Light Incandescent Light Bulb Spectrum #12;Figure 3 Unmodified XANES Spectrum February 14 of the incandescent lights used for aging the atmospheric aerosols. The units are in m / S / m2 / nm. Figure 3

Meskhidze, Nicholas

249

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

(2) Standard Fluorescent 59.7 96% Incandescent 38.5 62% Compact Fluorescent 27.6 44% High-Intensity Discharge 20.6 33% Halogen 17.7 29% Note(s): Source(s): EIA, 2003 Commercial...

250

Solid-State Lighting: LED Lighting Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

251

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

252

Daylighting Application and Effectiveness in Industrial Facilities  

E-Print Network (OSTI)

Before the advent of practical mercury vapor and fluorescent lighting, the only available artificial lighting for industrial buildings was incandescent. The illumination of active industrial workspaces with incandescent lighting is difficult, so...

McCowan, B.; Birleanu, D.

2005-01-01T23:59:59.000Z

253

Funding Sustainable Initiatives: Should Williams Implement a Revolving Loan Fund?  

E-Print Network (OSTI)

to replace its incandescent light bulbs with more efficient compact fluorescent (CFL) light bulbs. These light bulbs use 2/3 less energy than #12;Terra 4 standard incandescent bulbs, but they are more

Aalberts, Daniel P.

254

Table Set-up with Materials near Lamp Stand (below) Target Audience: Parents of elementary school students (grades 3-6) and Middle and High School Students  

E-Print Network (OSTI)

spectrum with different light sources; compact fluorescent, LED, incandescent. 5. Discuss light bulb. Observe difference of color spectrum with different light sources; compact fluorescent, LED, incandescent type of bulb at different horizontal level. Electromagnetic Spectrum handouts that includes spectrum

Linhardt, Robert J.

255

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

4 4 2010 Total Lighting Technology Electricity Consumption, by Sector (TWh per Year) (1) Incandescent 136 78% 15 4% 0 0% 4 4% 156 22% General (A-type, Decorative) 112 64% 9 3% 0 0% - - 122 17% Reflector 19 11% 5 2% 0 0% - - 24 3% Miscellaneous 5 3% 0 0% 0 0% 4 4% 9 1% Halogen 12 7% 15 4% 0 0% 1 1% 28 4% General 1 1% 0 0% 0 0% - - 1 0% Reflector 8 5% 7 2% 0 0% - - 15 2% Low Voltage Display 1 0% 7 2% - - - - 8 1% Miscellaneous 2 1% 1 0% 0 0% 1 1% 4 1% Compact Fluorescent 15 9% 16 5% 0 0% 1 1% 32 5% General (Screw, Pin) 13 7% 13 4% 0 0% - - 26 4% Reflector 1 1% 3 1% 0 0% - - 4 1% Miscellaneous 1 1% - - 0 0% 1 1% 2 0% Linear Fluorescent 10 6% 250 72% 23 40% 10 9% 294 42% T5 0 0% 16 5% 2 4% - - 19 3% T8 1 1% 124 35% 12 21% - - 137 20% T12 7 4% 109 31% 9 15% - - 124 18% Miscellaneous 2 1% 2 0% 0 0% 10 9% 14 2% High Intensity Discharge 0 0% 49 14% 35 60% 98 83% 183 26% Mercury Vapor 0 0% 1 0% 4 7% 4 3% 9 1% Metal Halide 0 0% 43 12% 25 42% 29 25% 97 14% High Pressure Sodium 0 0% 5 1%

256

Light's twist  

Science Journals Connector (OSTI)

...Glasgow G12 8QQ, UK An invited Perspective to mark the election of Miles Padgett to the fellowship of the Royal Society in 2014. That...energy and momentum flow within light beams can twist to form vortices such as eddies in a stream. These...

2014-01-01T23:59:59.000Z

257

Texas Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

electric lighting electric lighting The SNAP House's lighting design aims for elegant simplicity in concept, use, and maintenance. Throughout the house, soft, ambient light is juxtaposed with bright, direct task lighting. All ambient and most task lighting is integrated directly into the architectural design of the house. An accent light wall between the bedroom and bathroom provides a glowing light for nighttime navigation.

258

NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT  

SciTech Connect

This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color rendering index (CRI) greater than 90; the CRI of current commercial CFLs are in the low 80s. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

Alok Srivastava; Anant Setlur

2003-04-01T23:59:59.000Z

259

geoffrey iwata phy h190phy h190  

E-Print Network (OSTI)

through 2014 Effectively bans the manufacturing and importing of most current incandescent light bulbsmost current incandescent light bulbs Rationale: 22% of US electricity consumption due to lighting Wikipedia.org #12;What are the Light Bulb Wars Should incandescent bulbs be banned from production? ? #12

Budker, Dmitry

260

DUAL USE OF LEDS: SIGNALING AND COMMUNICATIONS IN ITS Grantham Pang, Chi-ho Chan, Hugh Liu, Thomas Kwan  

E-Print Network (OSTI)

of light-emitting diodes (LEDs) over incandescent lights is well-supported. This is due to their high shown that the high brightness LEDs are significantly brighter than the incandescent lights lights with LEDs is a reduction in power consumption [7]. In addition, incandescent traffic signals burn

Pang, Grantham

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Self-metallization of photocatalytic porphyrin nanotubes Zhongchun Wang,,  

E-Print Network (OSTI)

, placed in a glass water bath to control the temperature, and then irradiated with incandescent light (800 bath to control the temperature, and then irradiated with incandescent light (800 nmol cm-2 s-1 ). When

Shelnutt, John A.

262

Development of an Open-Source Smart Energy House for K-12 Education  

E-Print Network (OSTI)

around the world, incandescent lighting are becoming banned, because of the low efficiency. For example, through European commission regulation 244/2009 [4], re- cently all sales of incandescent light became

263

Fermilab | Science | Inquiring Minds | Questions About Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

high temperature, so high that the material will emit light, that is, glow like an incandescent light bulb. That is exactly what an incandescent bulb is: current passing through a...

264

Lighting Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Custom Projects Lighting Test Facilities SSL Guidelines Industrial Federal Agriculture LED Street and Area Lighting Field Test of Exterior LED Down Lights Abstract Outdoor...

265

Light Water Reactor Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

266

HiRho CCD INTERNAL NOTE 31 October 1996  

E-Print Network (OSTI)

by incandescent light) exposure with the Keck low­resolution spectrograph, divided by the same frame averaged over

267

Power Factor Reactive Power  

E-Print Network (OSTI)

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

268

Energy Effective Courtroom Lighting: An Analysis of Existing Conditions and Recommended Improvements  

SciTech Connect

Providing high quality and energy efficient lighting in courtrooms is a complex task, and it represents a greater challenge than most other Federal space types. Energy efficient lighting in courtrooms must be accomplished with no sacrifice in quality; efficiency must be effectively invisible to the occupants. The Whole Building Design Guide puts forth the goals well: As the preeminent symbol of Federal authority in local communities, a Federal courthouse must express solemnity, stability, integrity, rigor and fairness. The courtrooms themselves must have a sense of majesty and be aesthetically inspiring. When paired with the visual needs in a courtroomgiven the wide variety of tasks and the critical nature of the courtroom proceedingsone has a challenge indeed. In consideration of these issue, this report reviews existing conditions in courtrooms and provides specific guidance about solutions that will accomplish the dual objectives of high quality and energy efficiency. The material covers all aspects of courtroom lighting, including design criteria, design and application strategies, energy efficient technologies, procurement and team selection, design process and implementation, and education. A detailed energy analysis was performed to develop a baseline for energy consumption in courtroom lighting, and the primary root cause was found to be a high use of incandescent technology. Point-by-point calculations were completed to provide an energy efficient alternative that met the high level of criteria for performance in courtrooms. Additional detailed guidance has been provided in the spirit of a holistic solution. It is hoped and anticipated that the recommended solutions will transform courtroom lighting towards both energy efficiency and high quality lighting. This is more important than ever before given the passage of the Energy Policy Act of 2005, which significantly changes the energy usage requirements in Federal Buildings. Ultimately it is possible to support the critical and high stakes proceedings in courtrooms while still meeting the civic duty of designing for energy efficiency and sustainability.

Jones, Carol C.; Richman, Eric E.

2006-03-31T23:59:59.000Z

269

Light Bodies: Exploring Interactions with Responsive Lights  

E-Print Network (OSTI)

reinterpretation of street lighting. Before fixed infrastructure illuminated cities at night, people carried Urban street lighting today is a networked, fixed infrastructure that relies on the electrical grid. WeLight Bodies: Exploring Interactions with Responsive Lights Susanne Seitinger MIT Media Laboratory

Hunt, Galen

270

Architectural Lighting Analysis in Virtual Lighting Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Architectural Lighting Analysis in Virtual Lighting Laboratory Architectural Lighting Analysis in Virtual Lighting Laboratory Speaker(s): Mehlika Inanici Date: July 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Virtual Lighting Laboratory is a Radiance-based lighting analysis tool and methodology that proposes transformations in the utilization of computer visualization in lighting analysis and design decision-making. It is a computer environment, where the user has been provided with matrices of illuminance and luminance values extracted from high dynamic range images. The principal idea is to provide the laboratory to the designer and researcher to explore various lighting analysis techniques instead of imposing limited number of predetermined metrics. In addition, it introduces an analysis approach for temporal and spatial lighting

271

Near?fieldfar?field transition of a finite line source using incoherent light: A student laboratory experiment  

Science Journals Connector (OSTI)

A simple experiment employing low cost apparatus is presented which demonstrates the falloff of intensity with distance and the transition from the near field to the far field of a line source filament incandescent light bulb. A derivation of the Poynting vector as a function of the distance away from the filament is presented which shows an exact correspondence to the derivation for the electric field from a finite line charge source in electrostatics. The experimental data of power vs distance from the filament show an inverse first power of the distance falloff in the near field with a smooth transition to an inverse square law behavior in the far field in good agreement with the theoretical expression when corrections for the measured angular response of the detector are included. The experiment provides an illustration of the inverse square law falloff of intensity at large distances from the source experience with simple concepts and techniques of optical radiometry and incoherent light sources and the analogy between incoherent light sources and electrostatics in an undergraduate laboratory. An additional short experiment provides an illustration of electrical?to?optical power conversion efficiency and temperature dependent resistance associated with electronphonon scattering in metals. A derivation of isotropic unpolarized elementary radiators from anisotropic dipole radiation is presented in the Appendix.

Xincheng Yan; Yixin Yu; Louis Shen; Keith H. Wanser

1995-01-01T23:59:59.000Z

272

Mobile lighting apparatus  

DOE Patents (OSTI)

A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

2013-05-14T23:59:59.000Z

273

Light Old and New  

Science Journals Connector (OSTI)

The Sun, Moon and stars have been our lights since the earliest times. We have learned ... have much more recently filled our homes and streets with artificial lighting. We are, however, in danger of...natural lights

Bob Mizon

2002-01-01T23:59:59.000Z

274

Specific light in sculpture  

E-Print Network (OSTI)

Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

Powell, John William

1989-01-01T23:59:59.000Z

275

Lighting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to installing LEDs in existing fixtures. Tips and Advice Tips: Lighting Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes...

276

Natural lighting and skylights  

E-Print Network (OSTI)

There are many physiological and psychological factors which enter into the proper design of space for human occupancy. One of these elements is light. Both natural light and manufactured light are basic tools with which any designer must work...

Evans, Benjamin Hampton

1961-01-01T23:59:59.000Z

277

Parametric light generation  

Science Journals Connector (OSTI)

...potential to deliver coherent light with high spectral purity...universal constants such as the speed of light. Single- frequency CW...assessment of optical switching speeds in telecommunication technology...A (2003) Parametric light generation 2749 ment of...

2003-01-01T23:59:59.000Z

278

Lesson Summary In this lesson, students will build an open spectrograph to  

E-Print Network (OSTI)

lines/mm or 25,400 groves/in) · Incandescent flashlight with focusing beam · Ruler · Meter stick · Exact students look through a diffraction grating toward an incandescent light bu

Mojzsis, Stephen J.

279

Slutrapport for PSO 337-068 Udvikling af LED lyskilder og lamper  

E-Print Network (OSTI)

and RGB Lamps. The objective of this project was to pave the way for replacement of incandescent LED light source with an efficacy of 51 lm/W and a CRI index of 92 that can replace an incandescent

280

ELIZABETH H. AMARAL and H. ARNOLD CARR Experimental Fishing for Squid  

E-Print Network (OSTI)

south- ern California became dependent upon lamps, principally the incandescent type, combined under I,OOO-watt incandescent lights!. However, the squid never Introduction July-A ugusl 1980 51 #12

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

D E V E L O P I N G E N E R G Y E F F I C I E N T R E S I D E N T I A L L I G H T F I X T U R E S  

E-Print Network (OSTI)

Table Lamp by Fire & Water Lighting For a typical high use fixture, replacing a 120-watt incandescent/managers in the target markets. · Find buildings with high quantities of portable incandescent fixtures that would

282

PipelineJuly 2012 Volume 4, Issue 4 (From President Kaler's June 14 e-mail)  

E-Print Network (OSTI)

the LightEnergy Management seeks incandescent and T12 lamps Energy Management Senior Engineer Alicia inefficient light sources. Although the vast majority of the campus's number one offenders -- incandescent fluorescent lamps and classic incandescent A-lamps. T12's can be identified by their "fat" appearance (1

Webb, Peter

283

The answer to this question may be found in the following Confucian proverb  

E-Print Network (OSTI)

principle: when you get something hot, it glows. The hot wire filament inside an incandescent light bulb clear incandescent Christmas tree lights · Infrared goggles (optional) Please don't use this activity with incandescent bulbs takes much more power input, and so they'll need to work quite a bit harder. Doing

Hardy, Darel

284

Lighting Group: Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Links Organizations Illuminating Engineering Society of North America (IESNA) International Commission on Illumination (CIE) International Association of Lighting Designers (IALD) International Association of Energy-Efficient Lighting Lightfair International Energy Agency - Task 21: Daylight in Buildings: Design Tools and Performance Analysis International Energy Agency - Task 31: Daylighting Buildings in 21st Century National Association on Qualifications for the Lighting Professions (NCQLP) National Association of Independent Lighting Distributors (NAILD) International Association of Lighting Management Companies (NALMCO) Research Centers California Lighting Technology Center Lighting Research Center Lighting Research at Canada Institute for Research in Construction

285

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

286

Modeling LED street lighting  

Science Journals Connector (OSTI)

LED luminaires may deliver precise illumination patterns to control light pollution, comfort, visibility, and light utilization efficiency. Here, we provide simple equations to...

Moreno, Ivan; Avendao-Alejo, Maximino; Saucedo-A, Tonatiuh; Bugarin, Alejandra

2014-01-01T23:59:59.000Z

287

Lighting | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Lighting Incentives Retrieved from "http:en.openei.orgwindex.php?titleLighting&oldid267174" Category: Articles with outstanding TODO tasks...

288

Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF...  

Open Energy Info (EERE)

LED Lighting Solutions Formerly LED Lighting Fixtures LLF Jump to: navigation, search Name: Cree LED Lighting Solutions (Formerly LED Lighting Fixtures (LLF)) Place: Morrisville,...

289

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

290

Evaluation of White Light Sources For an Absolute Fiber Optic Sensor Readout System  

SciTech Connect

This report summarizes work done in pursuit of an absolute readout system for Fabry-Perot optics sensors such as those built both by FISO and LLNL. The use of white light results in a short coherence length reducing the ambiguity of the Fabry-Perot gap measurement which is required to readout the sensor. The light source coherence length is the critical parameter in determining the ability to build a relative or an absolute system. Optical sources such as lasers and LEDs are rather narrow in optical spectral bandwidth and have long coherence length. Thus, when used in interferometric sensor measurements, one fringe looks much like another and it is difficult to make an absolute measurement. In contrast, white light sources are much broader in spectral bandwidth and have very short coherence lengths making interferometry possible only over the coherence length, which can be 1 or 2 microns. The small number of fringes in the interferogram make it easier to calculate the centroid and to unambiguously determine the sensor gap. However, unlike LEDs and Lasers, white light sources have very low optical power when coupled into optical fibers. Although, the overall light output of a white light source can be hundreds of milliwatts to watts, it is difficult to couple more than microwatts into a 50-micron core optical fiber. In addition, white light sources have a large amount of optical power in spectrum that is not necessarily useful in terms of sensor measurements. The reflectivity of a quarter wave of Titanium Oxide is depicted in Figure 2. This coating of Titanium Oxide is used in the fabrication of the sensor. This figure shows that any light emitted at wavelengths shorter than 600 nm is not too useful for the readout system. A white light LED spectrum is depicted in Figure 3 and shows much of the spectrum below 600 nm. In addition Silicon photodiodes are usually used in the readout system limiting the longest wavelength to about 1100 nm. Tungsten filament sources may have much of their optical power at wavelengths longer than 1100 nm, which is outside the wavelength range of interest. An incandescent spectrum from a tungsten filament is depicted in Figure 4. None of this is to say that other types of readout systems couldn't be built with IR detectors and broadband coatings for the sensors. However, without reengineering the sensors, the wavelength restrictions must be tolerated.

McConaghy, C F

2003-10-10T23:59:59.000Z

291

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

1 1 Selected Fluorescent and Incandescent Lamp Sales (thousands) Commercial Trends 2001 2002 2003 2004 2005 T12 Rapid-Start Fluorescent (Mainly 4') 213 206 182 176 163 T8 Medium Bi-Pin Fluorescent (Mainly 4') 164 164 172 196 216 Total (mainly) 4' 377 370 354 372 378 2' U-Shaped T12 10 9 9 7 9 2' U-Shaped T8 8 7 7 9 9 Total 2' U lamp 18 16 16 16 17 8' Slimline T12 (Mainly 8') 43 41 37 36 34 8' Slimline T8 (Mainly 8') 4 5 5 6 5 Total Slimline (Mainly 8') 48 47 42 42 39 8' HO T12 (Mainly 8') 24 24 24 25 25 8' HO T8 (Mainly 8') 1 1 0 1 0 Total HO (Mainly 8') 25 25 25 25 26 Residential Trends Incandescent A-line 1,568 1,526 1,542 1,470 1,410 Screw-Based Compact Fluorescent- Census 69 52 66 93 102 Total Medium Screw-Based Market 1,637 1,577 1,608 1,563 1,512 Commerical and Residential Trends PAR Incandescent 9 7 5 5 15 R Incandescent 89 96 103 112 125 PAR 38 Halogen

292

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2007 November 2007 AfterImage + s p a c e 1 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Brian Liebel, PE, LC Brian Liebel, PE, LC November 29, 2007 November 29, 2007 Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 29, 2007 November 29, 2007 29 November 2007 AfterImage + s p a c e 2 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting This is not a technology; just a This is not a technology; just a different way to quantify light based on different way to quantify light based on well established scientific findings well established scientific findings Can be used in conjunction with ANY Can be used in conjunction with ANY type of lighting design to gain

293

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

294

Lighting Group: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Overview of the Lighting Research Group The Lighting Research Group at Lawrence Berkeley National Laboratory performs research aimed at improving the energy efficiency of lighting systems in buildings and homes, throughout the State of California and across the Nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research in the Lighting Group falls into three main areas: Sources and Ballasts, Light Distribution Systems and Controls and Communications. Click on a link below for more information about each of these research areas. Sources and Ballasts investigates next generation light sources, such as

295

Smart street lighting management  

Science Journals Connector (OSTI)

In this work, we propose a new street lighting energy management system in order to reduce ... demand meaning that energy, in this case light, is provided only when needed. In ... demand model, which in the case...

S. Pizzuti; M. Annunziato; F. Moretti

2013-08-01T23:59:59.000Z

296

Adaptive Street Lighting Controls  

Energy.gov (U.S. Department of Energy (DOE))

This two-partDOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of...

297

Kyler Nelson Light Timer  

E-Print Network (OSTI)

designated by the user, the Arduino board will dim the light to save energy. The user designates the time instance, the light is dimmed using pulse width modulation (PWM) in the Arduino's pin number 11

Kachroo, Pushkin

298

Street light holography  

Science Journals Connector (OSTI)

The production of a hologram is demonstrated using only a camera aluminum foil and a mercury vapor street light.

R. R. Turtle

1977-01-01T23:59:59.000Z

299

Outdoor Lighting Resources  

Energy.gov (U.S. Department of Energy (DOE))

DOE offers a variety of resources to guide municipalities, utilities, and others in their evaluation of LED street lighting products.

300

LED Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Basics LED Basics Unlike incandescent and fluorescent lamps, LEDs are not inherently white light sources. Instead, LEDs emit nearly monochromatic light, making them highly...

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U. S. Department of Energy to Invest up to $20.6 Million for...  

Energy Savers (EERE)

million. SSL lighting is an advanced technology that creates light with considerably less heat than incandescent and fluorescent lamps, allowing for increased energy efficiency....

302

Data:9896ce95-eb09-4363-b003-2286bc397634 | Open Energy Information  

Open Energy Info (EERE)

date: 20120401 End date if known: Rate name: Outdoor Street Light: 670 Watt Incandescent (Type 0600) Sector: Lighting Description: Source or reference: ISU Document Source...

303

CX-000139: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

until funds are expended. Retrofits will consist of changing fixtures from incandescent to fluorescent lighting. Recent experience with lighting retrofits in the region...

304

Data:950167f8-54e9-4cb6-abd7-5c9ac4078c09 | Open Energy Information  

Open Energy Info (EERE)

date: 20120401 End date if known: Rate name: Outdoor Street Light: 295 Watt Incandescent (Type 0500) Sector: Lighting Description: Source or reference: ISU Document Source...

305

Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals...  

NLE Websites -- All DOE Office Websites (Extended Search)

crystals that can be used as highly efficient light sources.DescriptionOrdinary incandescent lamps waste most of the supplied electric power to emit invisible light such as...

306

Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps  

E-Print Network (OSTI)

greater than incandescent lamps [1,2]. In fact, recent technological breakthroughs [3-7] in the high of LED lighting: An incandescent source produces 10 ­ 20 lumens/watt, while several manufacturers have? Incandescent bulbs primarily utilize phase modulating dimming through triac switches to control the power sent

Lehman, Brad

307

Light emitting device comprising phosphorescent materials for white light generation  

DOE Patents (OSTI)

The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

Thompson, Mark E.; Dapkus, P. Daniel

2014-07-22T23:59:59.000Z

308

Resonant energy transfer in light harvesting and light emitting applications.  

E-Print Network (OSTI)

??The performance of light emitting and light harvesting devices is improved by utilising resonant energy transfer. In lighting applications, the emission energy of a semiconductor (more)

Chanyawadee, Soontorn

2009-01-01T23:59:59.000Z

309

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

310

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

311

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

312

Solid-State Lighting: Adaptive Street Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptive Street Lighting Adaptive Street Lighting Controls to someone by E-mail Share Solid-State Lighting: Adaptive Street Lighting Controls on Facebook Tweet about Solid-State Lighting: Adaptive Street Lighting Controls on Twitter Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Google Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Delicious Rank Solid-State Lighting: Adaptive Street Lighting Controls on Digg Find More places to share Solid-State Lighting: Adaptive Street Lighting Controls on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Adaptive Street Lighting Controls This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components.

313

Control of light speed: From slow light to superluminal light  

E-Print Network (OSTI)

A scheme for controlling light speed from slower-than-c to faster-than-c in an atomic system is presented in this paper. The scheme is based on far detuning Raman effect. Two far detuning coupling fields with small frequency difference will produce two absorptive peaks for the probe field in a $\\Lambda$ structure, and an optical pump between the two ground states can change the absorptive peaks into enhanced peaks, which makes the normal dispersion between the two peaks change into anomalous dispersion, so the probe field can change from slow light to superluminal propagation.

Qun-Feng Chen; Yong-Sheng Zhang; Bao-Sen Shi; Guang-Can Guo

2008-07-01T23:59:59.000Z

314

Emerging Lighting Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Lighting Technology Emerging Lighting Technology Bruce Kinzey Pacific Northwest National Laboratory FUPWG - Portland, OR April 20, 2011 www.ssl.energy.gov 2 | Solid-State Lighting Program GATEWAY Demonstration Program * Purpose: demonstrate new SSL products in real-world applications that save energy, match or improve illumination, and are cost- effective * Demos generate critical field experience providing: - Feedback to manufacturers - Data for utility incentives - Market readiness of specific applications to users - Advancement in lighting knowledge Central Park, NY Photo: Ryan Pyle Smithsonian American Art Museum, Washington, D.C. Photo: Scott Rosenfeld www.ssl.energy.gov 3 | Solid-State Lighting Program LED Product Explosion www.ssl.energy.gov 4 | Solid-State Lighting Program LEDs are Not a Universal Lighting

315

SMART LIGHTING SYSTEMS ULTIMATE LIGHTING The Smart Lighting  

E-Print Network (OSTI)

Integration (Holistic Integrated Design) · Sensors as important as LEDs · Interconnected systems (human, building, grid) · Artistic Design Freedom · Lighting is Health, Entertainment, Information and Illumination Cost at any brightness · Chip level integrated electronics THE ERC RESEARCH COVERS THE ENTIRE SUPPLY

Linhardt, Robert J.

316

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

317

Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place  

E-Print Network (OSTI)

May 1912), 783. 8. "New Street Lights Increase Trade 3 5 Perlight, including street light, became part of America'sBeautiful-inspired street lights graced wealthy residen

Holden, Alfred

1992-01-01T23:59:59.000Z

318

Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Pedestrian-Friendly Nighttime Pedestrian-Friendly Nighttime Lighting to someone by E-mail Share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Facebook Tweet about Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Twitter Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Google Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Delicious Rank Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Digg Find More places to share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Pedestrian-Friendly Nighttime Lighting This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety,

319

Lighting Research Group: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Lighting Research Facilities at LBNL gonio-photometer Gonio-photometer We use this device to measure the intensity and direction of the light from a lamp or fixture. integrating sphere Integrating sphere This instrument allows us to get a fast and accurate measurement of the total light output of a lamp. We are not able to determine the direction of the light, only the intensity. power analyzer Power analyzer We use our power analyzer with the lamps in the gonio-photometer to measure input power, harmonic distortion, power factor, and many other signals that tell us how well a lamp is performing. spectro-radiometer Spectro-radiometer This device measures not only the intensity of a light source but also the intensity of the light at each wavelength.

320

Lighting Group: Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software Software Lighting Software The Lighting Group has developed several computer programs in the course of conducting research on energy efficient lighting. Several of these programs have proven useful outside the research environment. One of the most popular programs for advanced lighting applications is Radiance. For more information on this program and its availability, click on the link below. RADIANCE Radiance is a suite of programs for the analysis and visualization of lighting in design. The primary advantage of Radiance over simpler lighting calculation and rendering tools is that there are no limitations on the geometry or the materials that may be simulated. Radiance is used by architects and engineers to predict illumination, visual quality and appearance of innovative design spaces, and by researchers to evaluate new

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

BNL

2009-09-01T23:59:59.000Z

322

Total Light Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Management Light Management Why is saving Energy Important World Electricity Consumption (2007) Top 20 Countries 0 500 1000 1500 2000 2500 3000 3500 4000 4500 U n i t e d S t a t e s C h i n a J a p a n R u s s i a I n d i a G e r m a n y C a n a d a A f r i c a F r a n c e B r a z i l K o r e a , S o u t h U n i t e d K i n g d o m I t a l y S p a i n A u s t r a l i a T a i w a n S o u t h A f r i c a M e x i c o S a u d i A r a b i a I r a n Billion kWh Source: US DOE Energy Information Administration Lighting Control Strategies 4 5 6 Occupancy/Vacancy Sensing * The greatest energy savings achieved with any lighting fixture is when the lights are shut off * Minimize wasted light by providing occupancy sensing or vacancy sensing 7 8 Daylight Harvesting * Most commercial space has enough natural light flowing into it, and the amount of artificial light being generated can be unnecessary * Cut back on the production of artificial lighting by

323

Domestic Lighting and Heating  

Science Journals Connector (OSTI)

... a 14 22 feet room with a nice spacious window at each end admitting surreptitious draughts in proportion to the amount of light they let in. ...

M. GHEURY DE BRAY

1926-02-06T23:59:59.000Z

324

Comparing Light Bulbs  

Energy.gov (U.S. Department of Energy (DOE))

In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

325

Lakeview Light and Power - Commercial Lighting Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Funded by Bonneville Power Administration Expiration Date 9/1/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Commercial Lighting Installation: Up to 70% of cost Provider Lakeview Light and Power Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is funded by BPA and ends in September of 2010 or earlier if the funding is exhausted. Lakeview Light

326

LED ProspectsLED Prospects photometric units  

E-Print Network (OSTI)

/5/8 #12;16 Light bulb comparisonLight bulb comparison W lumens khours CRI $US Incandescent (long life) 75-life incandescent with LED. · 10 light fixtures/home, lights on for 6h/day, 333 days/yr. · Electricity 0.12 $/kWh. W khours $US Incandescent (long life) 100 10 2 LED (PAR38, warm, dimmable) 11 40 90 · What is the lifetime

Pulfrey, David L.

327

AIRPORT LIGHTING Session Highlights  

E-Print Network (OSTI)

. These sessions were designed to offer practical-yet-specialized training and information outreach for personnel information on airport lighting and navigational aid equipment selection, funding, maintenance, and operation known as AirTAP, sponsored three airport-lighting training sessions at different locations in Minnesota

Minnesota, University of

328

LED Lighting Facts  

Energy.gov (U.S. Department of Energy (DOE))

DOE's LED Lighting Facts program showcases LED products for general illumination from manufacturers who commit to testing products and reporting performance results according to industry standards. For lighting buyers, designers, and energy efficiency programs, the program provides information essential to evaluating SSL products.

329

Light intensity compressor  

DOE Patents (OSTI)

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

330

Explosively pumped laser light  

DOE Patents (OSTI)

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

331

Columbia Water and Light - HVAC and Lighting Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Lighting: 50% of invoiced cost up to $22,500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount HVAC Replacements: $570 - $3,770 Lighting: $300/kW reduction or half of project cost Provider Columbia Water and Light Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain measures are based upon the

332

Induction Lighting: An Old Lighting Technology Made New Again | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up to 100,000 hours. To put this in perspective, an induction lighting system lasting 100,000 hours will last more than 11 years in continuous 24/7 operation, and 25 years if operated 10 hours a day. The technology, however, is far from new. Nikola Tesla demonstrated induction lighting in the late 1890s around the same time that his rival,

333

Reading Municipal Light Department - Business Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reading Municipal Light Department - Business Lighting Rebate Reading Municipal Light Department - Business Lighting Rebate Program Reading Municipal Light Department - Business Lighting Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Customers: $10,000 per calendar year Municipal Customers: $15,000 per calendar year Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount T-8/T-5 Lamp with Electronic Ballasts: $11 - $35/fixture Interior High Output Lamp with Electronic Ballasts: $100/fixture De-lamping: $4 - $9/lamp Lighting Sensors: $20/sensor LED Exit Signs: $20/fixture Provider Incentive Programs

334

Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel  

SciTech Connect

Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

Eley, C.; Tolen, T. (Eley (Charles) Associates, San Francisco, CA (United States)); Benya, J.R. (Luminae Souter Lighting Design, San Francisco, CA (United States))

1992-12-01T23:59:59.000Z

335

Light and Bread Mold  

NLE Websites -- All DOE Office Websites (Extended Search)

Light and Bread Mold Light and Bread Mold Name: CHASE Location: N/A Country: N/A Date: N/A Question: HOW CAN I EFICTIVELY TEST THE EFFECTS OF LIGHT ON BREAD MOLD? Replies: Hello Chase, In order to test the effects of light on bread mould you need to set up an experiment. There are two things you need to have in your experiment to make it a good experiment: 1. A 'control'. 2. Replicates 1. The 'control' Obviously in order to test the effects of light on bread mold you will need to actually shine some light on some bread mold and see what happens. This is your 'treatment'. However, it is vitally important that you know what would have happened without the treatment (in this case added light). Let's pretend that you do a test a you find that the bread mold under the light actually dies. How do you know if your bread mold died because light was added or because at that time of year all bread mold would die naturally or because by adding light you caused the temperature to rise and that killed the bread mold? The answer is that you do not know unless you have taken the trouble to find out with anouther test called the 'control'. The 'control' is a piece of bread mold, identical to the 'treatment' bread mold, which is placed in identical conditions to the 'treatment' piece of bread mold except that light is removed. Your 'control' piece of bread mold will need to be (to the best of your abillity) at the same temperature, in the same area, at similar humidity, etc. Part of the skill of designing a scientific experiment is being able think of all the possible things which might be affecting the bread mold and keeping them the same in both the 'treatment' and the 'control' (except, of course, for the presence of light) so that when you find a difference between the 'treatment' and the 'control' you are sure that it is the result of the light rather than something else.

336

Lighting Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Renovations Lighting Renovations Lighting Renovations October 16, 2013 - 4:54pm Addthis When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide focuses on the renewable energy opportunities, energy efficiency may also present amble opportunity for energy and cost savings. Renewable Energy Options for Lighting Renovations Daylighting Photovoltaics Daylighting Daylighting maximizes the use of natural light in a space to reduce the need for artificial lighting. Incorporating daylighting into a lighting strategy should occur during the planning stage of design since it affects all aspects. Ambient light dimming controls are critical in daylighting, since the

337

Lighting Group: Controls: IBECS  

NLE Websites -- All DOE Office Websites (Extended Search)

IBECS IBECS Integrated Building Environmental Communications System Objective The overall technical goal of the IBECS project is to develop an integrated building equipment communications network that will allow appropriate automation of lighting and envelope systems to increase energy efficiency, improve building performance, and enhance occupant experience in the space. This network will provide a low-cost means for occupants to control local lighting and window systems, thereby improving occupant comfort, satisfaction and performance. A related goal is to improve existing lighting control components and accelerate development of new daylighting technologies that will allow daylighting to be more extensively applied to a larger proportion of building floor space.

338

Green Light Pulse Oximeter  

DOE Patents (OSTI)

A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

Scharf, John Edward (Oldsmar, FL)

1998-11-03T23:59:59.000Z

339

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Spectrally enhanced lighting (SEL) is a cost-effective, low-risk design method for achieving significant energy savings. It entails shifting the color of lamps from the warmer to the cooler (whiter) end of the color spectrum, more closely matching daylight. Studies show that, with this color shift, occupants perceive lighting to be brighter and they are able to see more clearly. Since SEL provides the same levels of visual acuity with fewer lumens of output, SEL installations can be designed using fewer lamps or lower wattage lamps than traditional lighting.

340

Peninsula Light Company - Commercial Efficient Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peninsula Light Company - Commercial Efficient Lighting Rebate Peninsula Light Company - Commercial Efficient Lighting Rebate Program Peninsula Light Company - Commercial Efficient Lighting Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount General: 30% - 70% of cost Provider Peninsula Light Company Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service. Customers who upgrade to highly efficient fixtures and systems are eligible to receive a rebate generally covering 30% - 70% of the project cost. These retrofits improve light quality and reduce energy costs in participating facilities. PLC

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lots of Light Literature  

NLE Websites -- All DOE Office Websites (Extended Search)

Lots of Light Literature Lots of Light Literature The Teacher Resource Center contains a great variety of resources for all areas of science K-12. For the concepts of light here is a sampling of some of these resources. Science is Elementary - Spring 1995, vol. 6, no. 4. Science is Elementary is produced by the Museum Institute for Teaching Science, 79 Milk Street, Suite 210, Boston, MA 02109-3903. Science is Elementary is a newsletter we have admired for years. The topic of this issue deals with Color and Light. It contains content information to the teacher, trade secrets or teaching tips, "Book Looking" section and the section call "Sciencing" which includes a variety of activities. Science is Elementary is published quarterly. Subscription cost is: $22.00/year.

342

Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-U.S. Senator Jeff Bingaman, Chair, Senate Committee on Energy and Natural Resources 2013-2025 * The Future of LED General Lighting 2013-2025 * The Promise of OLED General...

343

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

None

2010-01-08T23:59:59.000Z

344

Comparing Light Bulbs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Light Bulbs Grades: K-4, 5-8 Topic: Energy Efficiency and Conservation Owner: U.S. Environmental Protection Agency This educational material is brought to you by the U.S....

345

Sandia National Laboratories: (Lighting and) Solid-State Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

346

Lighting Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Lighting Design July 29, 2012 - 6:28pm Addthis Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. How does it work? Buy ENERGY STAR-rated lighting for the highest quality, energy-efficient lighting. Use timers and other controls to turn lights on and off. Use outdoor solar lighting. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. If you're constructing a new house, consider lighting as part of your whole-house design -- an

347

Light and Energy -Daylight measurements  

E-Print Network (OSTI)

Light and Energy - Daylight measurements #12;Light and Energy - Daylight measurements Authors: Jens;3 Title Light and Energy Subtitle Daylight measurements Authors Jens Christoffersen, Ásta Logadóttir ............................................................................... 7 Measurement results: Kyosemi.................................................................. 9

348

Energy Conservation in Industrial Lighting  

E-Print Network (OSTI)

In order to reduce energy use in lighting Union Carbide recently issued drastically reduced new lighting level standards. A computerized lighting cost program was also developed. Using this program a number of additional energy saving techniques...

Meharg, E.

1979-01-01T23:59:59.000Z

349

Design and Predictive Control of a Net Zero Energy Home  

E-Print Network (OSTI)

the same amount of light as traditional incandescent bulbs with less energy. Incandescent bulbs are inherently inefficient as most of the energy they consume goes towards heat generation. Compact fluorescent (CFL) and light emitting diode (LED) bulbs... as heat [1]. Compact fluorescent lamps (CFLs) and Light Emitting Diodes (LEDs) were analyzed in comparison with incandescent lamps. To determine the most energy efficient bulb, energy consumption for each type of bulb is needed. To do this, the amount...

Morelli, F.; Abbarno, N.; Boese, E.; Bullock, J.; Carter, B.; Edwards, R.; Lapite, O.; Mann, D.; Mulvihill, C.; Purcell, E.; Stein, M. IV; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

350

Light diffusing fiber optic chamber  

DOE Patents (OSTI)

A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

Maitland, Duncan J. (Lafayette, CA)

2002-01-01T23:59:59.000Z

351

Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Angeles, CA to someone Los Angeles, CA to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Facebook Tweet about Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Twitter Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Google Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Delicious Rank Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Digg Find More places to share Solid-State Lighting: Municipal Consortium

352

Better Medicine Through Proper Lighting  

Science Journals Connector (OSTI)

Adverse lighting conditions can seriously hinder medical diagnoses. Through the use of properly filtered light, medical professionals may dramatically improve viewing conditions for...

Czajkowski, Amber

353

Top 8 Things You Didn't Know About Thomas Alva Edison | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

served as the catalyst for cost-competitive incandescent lighting. 4. Back when the automobile was first introduced, electric cars outsold their internal combustion counterparts....

354

Edison vs. Tesla: Toasting a Rivalry That Drove Innovation |...  

Energy Savers (EERE)

inventions -- the incandescent light bulb -- in our new interactive timeline. And test your knowledge of these two important energy inventors with our gallery of "Who Said...

355

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

150 million compact fluorescent light bulbs in 2010. (ChinaCleaners Incandescent Bulbs Fluorescent Lamps Ballasts forincandescent bulbs with compact fluorescent lamps. Consumers

McNeil, MIchael

2011-01-01T23:59:59.000Z

356

Tesla vs. Edison | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Edison was an American inventor who developed the first commercially practical incandescent light bulb. Learn More Nikola Tesla Inventor 435 likes Nikola Tesla was born in the...

357

Educators: Are You Ready to Teach Energy Literacy? Join our August...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pedal for power and experience the difference in physical effort necessary to power incandescent, compact fluorescent, and LED lighting. This lesson highlighted Energy Principle 4,...

358

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

light bulbs, which use 75 percent less energy and last ten times longer than incandescent bulbs, (2) window installation kits, which would improve heat instillation in the...

359

1  

NLE Websites -- All DOE Office Websites (Extended Search)

potentially provide many advantages over standard lighting technologies, such as incandescent bulbs, especially in the areas of efficiency, - 2 - operating lifetime and the...

360

CX-000136: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

retrofits for bathrooms of 42 residences. These retrofits would involve upgrading incandescent light fixtures to those that will accommodate compact fluorescent bulbs. It is...

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

retrofits for bathrooms of 42 residences. These retrofits would involve upgrading incandescent light fixtures to those that will accommodate compact fluorescent bulbs. It is...

362

General Service LED Lamps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE SSL technology fact sheet that compares general service LED light bulbs with incandescent and CFL bulbs. ledgeneral-service-lamps.pdf More Documents & Publications LED...

363

Top 8 Things You Didn't Know About Thomas Alva Edison | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

and engineers -- pioneered improvements to a variety of inventions, including the incandescent light bulb. 6. Edison left a profound impact on the nation's energy sector. Beyond...

364

Covered Product Category: Compact Fluorescent Lamps | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

per watt performance. Buyer Tips CFLs installed in enclosed fixtures designed for incandescent bulbs may overheat. This can significantly reduce both light output and lifetime....

365

FIND A BIN, IT ALL GOES IN all types of paper  

E-Print Network (OSTI)

containers · ceramics, mirrors, windows, pyrex · incandescent light bulbs HAZARDOUS WASTE & CONFIDENTIAL: flatten next to containers, or place in marked dumpsters SPECIAL RECYCLING ITEMS: containers located

Thaxton, Christopher S.

366

Solar lighting | Open Energy Information  

Open Energy Info (EERE)

lighting lighting Jump to: navigation, search Introductory Facts About Solar Lights It is not just a normal light bulb.The solar light consists of a LED or Light Emitting Diode, which draw little power. Coupled with constantly recharging batteries, you will never run out of light! They will save the customer money. By Replacing all outdoor lighting with solar lights there is no need to plug in to the electrical system. The lights will automatically turn on at dusk and will be charged during the day. They help out the environment.Not only does not plugging in to the power system save money but also energy, therefore protecting the Earth. Easy to Install No wires necessary, just pop in the battery. They come in all designs Just because they are solar lights doesn't

367

Sandia National Laboratories: White Light Creation Architectures  

NLE Websites -- All DOE Office Websites (Extended Search)

TechnologiesWhite Light Creation Architectures White Light Creation Architectures Overview of SSL White Light Creation Architectures The entire spectral range of visible light can...

368

Wisconsin Business Sheds Light on Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Business Sheds Light on Lighting Wisconsin Business Sheds Light on Lighting Wisconsin Business Sheds Light on Lighting April 29, 2010 - 4:59pm Addthis When this photograph was taken, the upper floors of Wisconsin’s Department of Transportation were using a new lighting plan from EPS, while the lower ones were still using the pre-audit lighting scheme. | Photo Courtesy of Energy Performance Specialists, LLC When this photograph was taken, the upper floors of Wisconsin's Department of Transportation were using a new lighting plan from EPS, while the lower ones were still using the pre-audit lighting scheme. | Photo Courtesy of Energy Performance Specialists, LLC Joshua DeLung Wisconsin-based Energy Performance Specialists LLC is helping clients reduce energy consumption in a very simple way-by just using less.

369

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

370

Lighting Technology Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Panel Technology Panel Federal Utility Partnership Working Group N b 2009 November 1 1 8, 2009 Doug Avery Southern California Edison Southern California Edison National Energy Conservation M d t Mandates * There are Federal and State Mandates to reduce energy consumption - California Investor Owned Electric Utilities are ordered to save around 3 Billion kWh's each y year from 2007-2113 - Federal buildings ordered to reduce electrical Federal buildings ordered to reduce electrical energy consumption 35% by 2012 Energy Consump ption gy Lighting accounts for 42 7% of energy consumption Lighting accounts for 42.7% of energy consumption Data Courtesy of SDG&E Data Courtesy of SDG&E Energy Consump ption gy More than ¾ of the lighting load is non-residential. Data Courtesy of SDG&E

371

Light harvesting arrays  

DOE Patents (OSTI)

A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC)

2002-01-01T23:59:59.000Z

372

Locations Everyone: Lights, Camera, Action!  

Science Journals Connector (OSTI)

Locations Everyone: Lights, Camera, Action! ... Harvard Institute of Proteomics Harvard Medical School ...

Robert F. Murphy; Joshua LaBaer

2008-12-05T23:59:59.000Z

373

Extreme Ultraviolet Light Chris Cosio  

E-Print Network (OSTI)

Prospectus Extreme Ultraviolet Light Chris Cosio #12;The field of extreme ultraviolet light (XUV to the way XUV interacts with object, XUV properties are difficult to observe. Extreme ultraviolet light is absorbed by all objects it comes in contact with. Furthermore, extreme ultraviolet light also has low

Hart, Gus

374

Nonlinear theory of slow light  

Science Journals Connector (OSTI)

...describes a signal moving with the speed of light on a constant background (fast...profile, propagates with the speed of light, reaches the slow-light soliton...field and propagating with the speed of light has reached the soliton. In figure-6...

2011-01-01T23:59:59.000Z

375

Tokyo Street Lights  

E-Print Network (OSTI)

that you have only 17, no 16, no 15 seconds left to get to the other side before the light changes and the impatient American drivers put the pedal to the metal and it's road kill time. Talk about stress! In Tokyo, crossing the street is a leisurely...

Hacker, Randi; Tsutsui, William

2008-03-12T23:59:59.000Z

376

Radioluminescent polymer lights  

SciTech Connect

The preparation of radioluminescent light sources where the tritium is located on the aryl-ring in a polymer has been demonstrated with deuterium/tritium substitution. This report discusses tests, results, and future applications of radioluminescent polymers. 10 refs. (FI)

Jensen, G.A.; Nelson, D.A.; Molton, P.M.

1990-09-01T23:59:59.000Z

377

Environmental Preferences LIGHT: Sunny.  

E-Print Network (OSTI)

Environmental Preferences LIGHT: Sunny. SOIL: Well-drained, deep sandy loam. FERTILITY: Medium beans BeansDiane Relf, Extension Specialist, Horticulture, Virginia Tech Alan McDaniel, Extension Specialist, Horticulture, Virginia Tech are yellow and waxy in appearance, their flavor is only subtly

Liskiewicz, Maciej

378

Studies in Light Production  

Science Journals Connector (OSTI)

... interested in that subject. The collection consists of ten chapters which have appeared in The Electrician, together with two others. It may at once be said that the contents are ... contents are not only extremely interesting, but will also serve as a useful and important handbook for lighting engineers. ...

1912-12-26T23:59:59.000Z

379

Embodied Energy and Off-Grid Lighting  

E-Print Network (OSTI)

solar and wind energy systems. 7 If anticipated improvements in LED lighting system performance (Lighting Africa,

Alstone, Peter

2012-01-01T23:59:59.000Z

380

Scaling Up: Kilolumen Solid-State Lighting Exceeding 100 LPW via Remote Phosphor  

SciTech Connect

This thirty-month project was successful in attaining its ambitious objectives of demonstrating a radically novel 'remote-phosphor' LED light source that can out-perform conventional conformal coated phosphor LED sources. Numerous technical challenges were met with innovative techniques and optical configurations. This product development program for a new generation of solid-state light sources has attained unprecedented luminosity (over 1 kilo-lumen) and efficacy (based on the criterion lumens per 100mw radiant blue). LPI has successfully demonstrated its proprietary technology for optical synthesis of large uniform sources out of the light output of an array of separated LEDs. Numerous multiple blue LEDs illuminate single a phosphor patch. By separating the LEDs from the phosphor, the phosphor and LEDs operate cooler and with higher efficiency over a wide range of operating conditions (from startup to steady state). Other benefits of the system include: better source uniformity, more types of phosphor can be used (chemical interaction and high temperatures are no longer an issue), and the phosphor can be made up from a pre-manufactured sheet (thereby lowering cost and complexity of phosphor deposition). Several laboratory prototypes were built and operated at the expected high performance level. The project fully explored two types of remote phosphor system: transmissive and reflective. The first was found to be well suited for a replacement for A19 type incandescent bulbs, as it was able to replicate the beam pattern of a traditional filament bulb. The second type has the advantages that it is pre-collimate source that has an adjustable color temperature. The project was divided in two phases: Phase I explored a transmissive design and Phase II of the project developed reflective architectures. Additionally, in Phase II the design of a spherical emitting transmissive remote phosphor bulb was developed that is suitable for replacement of A19 and similar light bulbs. In Phase II several new reflective remote phosphor systems were developed and patents applied for. This research included the development of reflective systems in which the short-pass filter operated at a nominal incidence angle of 15{sup o}, a major advancement of this technology. Another goal of the project was to show that it is possible to align multiple optics to multiple LEDs (spaced apart for better thermal management) to within an accuracy in the z-direction of 10 microns or less. This goal was achieved. A further goal was to show it is possible to combine and homogenize the output from multiple LEDs without any flux loss or significant increase in etendue. This goal also was achieved. The following color-coded computer drawing of the Phase 2 reflective remote phosphor prototype gives an idea of the accuracy challenges encountered in such an assembly. The actual setup has less functional clarity due to the numerous items of auxiliary equipment involved. Not only did 10 degrees of freedoms alignment have to be supplied to the LEDs and component prisms as well, but there were also micro-titrating glue dispensers and vacuum hoses. The project also utilized a recently introduced high-index glass, available in small customized prisms. This prototype also embodies a significant advance in thin-film design, by which an unprecedented 98% single-pass efficiency was attained over a 30 degree range of incidence angle (Patents Pending). Such high efficiency is especially important since it applies to the blue light going to the phosphor and then again to the phosphor's light, so that the 'system' efficiency associated with short-pass filter was 95.5%. Other losses have to be kept equally small, towards which a new type of ultra-clear injection-moldable acrylic was discovered and used to make ultra-transparent CPC optics. Several transmissive remote phosphor prototypes were manufactured that could replace screw-in type incandescent bulbs. The CRI of the white light from these prototypes varied from 55 to 93. The system efficiency achieved was between 27 to 29.5

Waqidi Falicoff

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Light with nonzero chemical potential  

Science Journals Connector (OSTI)

Thermodynamic states and processes involving light are discussed in which the chemical potential of light is nonzero. Light with nonzero chemical potential is produced in photochemical reactions for example in a light emitting diode. The chemical potential of black-body radiation becomes negative upon a Joule expansion. The isothermal diffusion of light which is a common phenomenon is driven by the gradient in the chemical potential. These and other examples support the idea that light can be interpreted as a gas of photons with properties similar to a material gas.

F. Herrmann; P. Wrfel

2005-01-01T23:59:59.000Z

382

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

383

Types of Lighting in Commercial Buildings - Lighting Characteristics  

Annual Energy Outlook 2012 (EIA)

of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lmW). Lamps with a higher efficacy value are...

384

Lighting Designer Roundtable on Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Roundtable meeting in Chicago of a group of lighting designers focused on examining solid-state lighting (SSL) market and technology issues and encouraging a discussion of designers experiences, ideas, and recommendations regarding SSL & SSL industry.

385

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

386

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Report 2001 Report 2001 National Synchrotron Light Source For the period October 1, 2000 through September 30, 2001 Introduction Science Highlights Year in Review Operations Publications Abstracts Nancye Wright & Lydia Rogers The National Synchrotron Light Source Department is supported by the Office of Basic Energy Sciences United States Department of Energy Washington, D.C. Brookhaven National Laboratory Brookhaven Science Associates, Inc. Upton, New York 11973 Under Contract No. DE-AC02-98CH10886 Mary Anne Corwin Steven N. Ehrlich & Lisa M. Miller Managing Editor Science Editors Production Assistants Cover images (clockwise from top left) 1. from Science Highlight by K.R. Rajashankar, M.R. Chance, S.K. Burley, J. Jiang, S.C. Almo, A. Bresnick, T. Dodatko, R. Huang, G. He,

387

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

388

First Light SOFIA Instruments  

E-Print Network (OSTI)

The Stratospheric Observatory For Infrared Astronomy SOFIA will become operational with the next two years. It will be the biggest astronomical airborne observatory ever build, comprising a 3m-class telescope onboard a Boeing 747SP. A suite of first-light instruments is under development striving for cutting edge technology to make SOFIA a milestone in infrared astronomy. Here we present an overview over the instrumentation and an update on the current status.

Alfred Krabbe; Sean C. Casey

2002-07-19T23:59:59.000Z

389

Solid-State Lighting: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

390

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

391

Plastics That Play on Light  

Science Journals Connector (OSTI)

...instrument. In most materials, the "strings" respond with the same note, only...reduced when light sets the electrons oscillating. The loss ofaromatic stability sets...double bonds, light sets electrons oscillating between electron-attract-ing (right...

David Bradley

1993-09-03T23:59:59.000Z

392

Webinar: Fuel Cell Mobile Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

393

Photodetector with enhanced light absorption  

DOE Patents (OSTI)

A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

Kane, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

394

Arnold Schwarzenegger, LIGHTING RESEARCH PROGRAM  

E-Print Network (OSTI)

;#12;Prepared By: Lighting Research Center Andrew Bierman, Project Lead Troy, New York 12180 Managed ByArnold Schwarzenegger, Governor LIGHTING RESEARCH PROGRAM PROJECT 3.2 ENERGY EFFICIENT LOAD- SHEDDING LIGHTING TECHNOLOGY Prepared For: California Energy Commission Public Interest Energy Research

395

Red light, green light | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Red light, green light Red light, green light Red light, green light Posted: December 4, 2013 - 6:28pm After the National Nuclear Security Administration signaled Y-12 to begin resuming full operations after a potential furlough, Production Vice President Bill Tindal said Production had two objectives: refocus production employees on safety, security and quality, and ensure preparedness for normal operations. "It's tempting to jump right back in when you get the green light," Tindal said. "We were in an abnormal state that really shook people. Focusing on people came first." Production began with return-to-work briefings. "During the briefings, we asked employees what they were concerned about, what was causing them stress," Tindal said. "Another concept from the briefing was the theme

396

Contribution of light-by-light scattering to energy levels of light muonic atoms  

Science Journals Connector (OSTI)

The complete contribution of diagrams with the light-by-light scattering to the Lamb shift is found for muonic hydrogen, deuterium and helium ion. The results are obtained in the static-muon approximation and ...

S. G. Karshenboim; E. Yu. Korzinin; V. G. Ivanov; V. A. Shelyuto

2010-07-01T23:59:59.000Z

397

Pedestrian Friendly Outdoor Lighting  

SciTech Connect

This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

Miller, Naomi J.; Koltai, Rita; McGowan, Terry

2013-12-31T23:59:59.000Z

398

Radiation, Matter and Energy What is light?  

E-Print Network (OSTI)

Radiation, Matter and Energy #12;What is light? #12;Light is an electromagnetic wave #12;Light the visible spectrum, blue light has higher energy than red light Within the electromagnetic spectrum, X-rays have the highest energy, followed by UV, visible light, IR, and radio Remember: Light is just one form

Shirley, Yancy

399

Lighting Group: Controls and Communications  

NLE Websites -- All DOE Office Websites (Extended Search)

Communications Communications Controls and Communications The Controls and Communications research activity investigates how digital technologies, such as Bluetooth, can be applied to building lighting control systems to increase building efficiency and improve occupant comfort and productivity. Projects range from embedded device networks applied to building lighting systems, to WiFi and environmental sensing and monitoring. light switch Current Projects IBECS (Integrated Building Environmental Communications System) Wireless Lighting Controls (with DUST Networks) HPCBS Advanced Digital Controls Building Control Systems Integration Completed Projects CEC Public Interest Energy Research (PIER) Projects 450 Golden Gate Project New Publications Standardizing Communication Between Lighting Devices: A Role for

400

Commercial Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Commercial Lighting At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and algorithms, researchers at the National Renewable Energy Lab developed an occupancy sensor can recognize the presence of human occupants more than 90 percent of the time -- an advancement that could lead to enormous energy savings in commercial buildings. At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cornell University Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Lighting Quality Electric Lighting Quality The CUSD lighting design team utilized energy efficient products that meshed well with our daylighting scheme. We chose to use fluorescent tubes or compact fluorescent bulbs with an energy consumption of between 15 and 30 Watts throughout the house. The ballasts for all lamps dim to a 1% light output, so the interior and exterior lights can be adjusted as the level of available daylight fluctuates. Light sensors have been placed in front of our two largest apertures, allowing us to control how much artificial light is supplied to each space. The control of our ballasts is intricate, but refined and tested to avoid dysfunctional dimming or switching. While automatic controls are included, manual user overrides are provided in case the occupant prefers

402

Solid-State Lighting: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to someone by Presentations to someone by E-mail Share Solid-State Lighting: Presentations on Facebook Tweet about Solid-State Lighting: Presentations on Twitter Bookmark Solid-State Lighting: Presentations on Google Bookmark Solid-State Lighting: Presentations on Delicious Rank Solid-State Lighting: Presentations on Digg Find More places to share Solid-State Lighting: Presentations on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Presentations This page provides links to the presentations given at the DOE Solid-State Lighting Workshops, as well as links to reference materials. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Workshop Presentations, Materials and Reports November 2013: Presentations from DOE SSL Market Introduction Workshop

403

Applications of Slow Light in Telecommunications  

Science Journals Connector (OSTI)

Exotic effects such as slow light, fast light and even stored light have been observed in the laboratory. Now, optical scientists are turning their attention toward developing...

Boyd, Robert W; Gauthier, Daniel J; Gaeta, Alexander L

2006-01-01T23:59:59.000Z

404

Advanced Lighting Systems | Open Energy Information  

Open Energy Info (EERE)

Minnesota Zip: 56378 Product: Advanced Lighting Systems (ALS) provides a number of LED and fiber optic lighting solutions. It was acquired by Nexxus Lighting in September...

405

Considerations When Comparing LED and Conventional Lighting  

Energy.gov (U.S. Department of Energy (DOE))

When comparing LED lighting performance to conventional lighting, buyers will want to consider energy efficiency, operating life and lumen depreciation, light output/distribution, color quality,...

406

Untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Lighting Profile Residential Lighting Profile This section contains a basic profile of lighting use in residential households. It includes brief discussions about the characteristics and location of lights used in residential households, as well as descriptions of the amount of electricity used for lighting and variations in households' consumption of electricity for lighting. Types of Lights Dominance of Incandescent Lights The majority of light bulbs in residential households are incandescent. According to the RECS Survey, 453 million lights out of a total of 523 million used one or more hours per day are incandescent (87 percent).[8] The Lighting Supplement also estimates that 87 percent of residential lights used 15 minutes or more per day are incandescent. Fluorescent Lights of All Types

407

Lighting Group: Sources and Ballasts: HID Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Ballasts and Controls for HID Lighting Ballasts and Controls for HID Lighting Systems Evaluation of Electronic Ballasts and Related Controls for HID Lighting Systems Objective HID ballast The goal of this project is to evaluate the potential of electronic ballasts and related controls for HID lighting systems to improve the efficiency of current technology. The specific objectives of this project are to: Test, analyze and determine the potential of electronic ballasts for HID lighting systems in cooperation with manufacturers as an emerging energy efficient technology to reduce lighting loads in commercial, industrial and municipal applications. Identify control strategies to further improve the energy efficiency of these systems with a municipal partner. Provide appropriate recommendations for incorporating these technologies into current state codes and regulations.

408

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

All Documents listed below are part of the Photon Sciences Directorate and All Documents listed below are part of the Photon Sciences Directorate and will be updated as needed. Photon Sciences ESH Standard Operating Procedures (SOPs) SOP No. Standard Operating Procedure for: LS-ES-0002 Procedure for Acid Etching of Silicon and Germanium Crystals LS-ESH-0004 NSLS Operations Group Chemical Spill and Gas Release Response LS-ESH-0010 VUV Injection Shutter LOTO LS-ESH-0012 LINAC LOTO LS-ESH-0013 Controlled Access to the VUV Ring LS-ESH-0014 Radiation Safety Interlocks at the National Synchrotron Light Source LS-ESH-0019 Beam Line Configuration Control Checklist Requirements LS-ESH-0020 Biosafety Requirements at the NSLS LS-ESH-0021 Biosafety Level 2 work at the NSLS/ A Technical Basis LS-ESH-0022 Beam Line Configuration Control Checklist Requirements

409

Light modulating device  

DOE Patents (OSTI)

In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

Rauh, R. David (Newton, MA); Goldner, Ronald B. (Lexington, MA)

1989-01-01T23:59:59.000Z

410

Light modulating device  

DOE Patents (OSTI)

In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

Rauh, R.D.; Goldner, R.B.

1989-12-26T23:59:59.000Z

411

Realistic Lighting in Autodesk Maya with Mental Ray Area Light.  

E-Print Network (OSTI)

?? The knowledge on how to create realistic lighting in computer graphics is one part that sets a realistic scene apart from one that can (more)

Larsson, Nichlas

2012-01-01T23:59:59.000Z

412

Enhanced Light Extraction from Organic Light Emitting Diodes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Enhanced Light...

413

Smart Street Lights | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

LightGrid Provides Real-Time Feedback From Street Lights LightGrid Provides Real-Time Feedback From Street Lights You use a GPS to provide real-time data from your car. Now,...

414

How do high tides and low tides occur? Is it possible to have an Earth-like planet orbiting a multiple-star system?  

E-Print Network (OSTI)

LED lights that make them more efficient and longer lasting than incandescent bulbs? Why is it that some people see rays of light emanate outward from certain light sources, such as streetlights

Redner, Sidney

415

Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs  

E-Print Network (OSTI)

top_runner//tr_fluorescent_light_bulb_jul.2009.pdf NiskinSubcommittee Final Report (bulb type fluorescent lamp). Fluorescent Lamps (CFLs) are an efficient lighting alternative to traditional incandescent light bulbs

Fridley, David

2010-01-01T23:59:59.000Z

416

2011 Rutgers Faraday Children's Lecture Crew ReichertJon  

E-Print Network (OSTI)

;Continuous "black body spectrum" from incandescent light bulb hydrogen fluorescent light What they saw. ROY G. Disk jumps out of changing magnetic field region. Induced current lights bulb. #12;Prof. Chuck Keeton

Glashausser, Charles

417

Lesson Summary In this lesson, students will find and calculate the angle  

E-Print Network (OSTI)

white light source (incandescent light bulb, not fluorescent) · Copies of Astronomy Today or Sky of electromagnetic spectrum · Understanding of light and prisms · Experience with angle measurements · Experience

Mojzsis, Stephen J.

418

Light Sources Directorate Strategic Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Sources Directorate Light Sources Directorate Strategic Plan December 2009 Light Sources Directorate Strategic Plan December 2009 ii | Vision and Mission Light Sources Directorate Strategic Plan The VISION of the Light Sources Directorate is: to be a provider of choice for world-class photon science and facilities that deliver outstanding scientific productivity and impact, and to be recognized as a leader in developing innovative techniques and ap- plications of photon science Our MISSION is defined by the set of activities that are required to realize this vision: to advance scientific knowledge and to solve critical problems through the design, construction, operation, and use of premier photon science facilities | Table of Contents Light Sources Directorate Strategic Plan

419

Lighting Controls/Sensors | Open Energy Information  

Open Energy Info (EERE)

Lighting ControlsSensors Incentives Retrieved from "http:en.openei.orgwindex.php?titleLightingControlsSensors&oldid267...

420

Turbo-Charged Lighting Design  

E-Print Network (OSTI)

TURBO-CHARGED LIGHTING DESIGN William H. Clark II Design Engineer O'Connell Robertson & Assoc Austin/ Texas ABSTRACT The task of the lighting designer has become very complex, involving thousands of choices for fixture types and hundreds... at this point. will read the data into the lighting file and clear the screen for the next calculation. The designer has access to over one hundred fixture types (expandable indefinitely). The most useful ones are displayed on the screen. The balance...

Clark, W. H. II

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Presentation: Synchrotron Radiation Light Sources  

Energy.gov (U.S. Department of Energy (DOE))

A briefing to the Secretary's Energy Advisory Board on Synchrotron Radiation Light Sources delivered by Patricia Dehmer, U.S. Department of Energy

422

Pedestrian-Friendly Nighttime Lighting  

Energy.gov (U.S. Department of Energy (DOE))

This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety, and adaptation. When it comes to outdoor...

423

Photonic crystal light emitting diode.  

E-Print Network (OSTI)

?? This master's thesis describe electromagnetic simulations of a gallium antimonide (GaSb) light emitting diode, LED. A problem for such devices is that most of (more)

Leirset, Erlend

2010-01-01T23:59:59.000Z

424

Linac Coherent Light Source Overview  

ScienceCinema (OSTI)

Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

None

2013-05-29T23:59:59.000Z

425

Energy Savings Activities-Lighting  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students use the scientific method to examine school lighting technologies and determine if there are opportunities to save energy and money.

426

Light Water Reactor Sustainability Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

hydraulics software RELAP-7 (which is under development in the Light Water Reactor Sustainability LWRS Program). A novel interaction between the probabilistic part (i.e., RAVEN)...

427

Light Water Reactor Sustainability Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

and nuclear waste disposal. Dr. Corradini has extensive research experience in the phenomenology of beyond design basis Meet the New LWRS Program Pathway Lead accidents in light...

428

High-Efficiency White Organic Light-Emitting Devices Based on a Highly Amorphous Iridium(III) Orange Phosphor  

E-Print Network (OSTI)

- didates as future illumination sources over the conventional incandescent bulbs and fluorescent lamps of the electroluminescence spectrum is observed, with the blue color intensity increasing relative to the orange component been prepared using this stacked concept with both fluorescent12,13 and phosphorescent emitters.14

429

Nittany Lights Landscape Lighting Sept. 28-30, 2012  

E-Print Network (OSTI)

Nittany Lights ­ Landscape Lighting Workshop Sept. 28-30, 2012 Penn State Campus - University Park with a lecture at the Palmer Art Museum to be provided by internationally known architectural/landscape artist get a chance to think beyond budgets, maintenance, codes, etc and get back to the fun creative side

430

Book review Light Scattering Reviews 4: Single Light Scattering and  

E-Print Network (OSTI)

-monograph on the use of space-time Green functions in the description of the diffusive radiation transport in active equation of the radiative transfer theory in the classical style of the ``Soviet'' school of radiativeBook review Light Scattering Reviews 4: Single Light Scattering and Radiative Transfer, A

431

Monitored lighting energy savings from dimmable lighting controls in The  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitored lighting energy savings from dimmable lighting controls in The Monitored lighting energy savings from dimmable lighting controls in The New York Times Headquarters Building Title Monitored lighting energy savings from dimmable lighting controls in The New York Times Headquarters Building Publication Type Journal Article LBNL Report Number LBNL-6171E Year of Publication 2013 Authors Fernandes, Luis L., Eleanor S. Lee, Dennis L. DiBartolomeo, and Andrew McNeil Journal Energy and Buildings Volume 68 Issue A Pagination 498-514 Date Published 01/2014 Keywords Building energy-efficiency, daylighting, lighting control systems Abstract Digital addressable, dimmable lighting controls were introduced to the US market in the early 2000s with the promise of facilitating capture of potential energy savings with greater flexibility over their historic, typically unreliable, analog counterpart. The New York Times Company installed this emerging technology, after having tested the system thoroughly prior to procurement, in their new building in New York, New York. Four years after full occupancy in 2007, the owner agreed to participate in a post-occupancy monitored evaluation of the dimmable lighting system to verify actual performance in the field. Annual lighting energy savings from daylighting, setpoint tuning and occupancy controls were determined for the daylit, open-plan office areas on three typical floors (6, 11, and 20th floors) of the 51-story high-rise tower. Energy savings were calculated from ballast control signal and occupancy data recorded by the manufacturer's lighting control system. The ballast data were calibrated with independent measurements of lighting energy consumption. Savings from dimming controls (daylighting and setpoint tuning) were 12.6 kWh/m2-yr (1.17 kWh/ft2-yr) for the daylit spaces on the three floors overall, or 20%, relative to ASHRAE 90.1-2007. Compared to the prescriptive code in effect at the time of the building's construction (ASHRAE 90.1-2001), savings were 21.0 kWh/m2-yr (1.95 kWh/ft2-yr) or 28%. Annual lighting energy use with all lighting control strategies was 33.9 kWh/m2-yr (3.15 kWh/ft2-yr) in the daylit, open plan zones on average for the three floors. A simple payback analysis was conducted.

432

Types of Lighting in Commercial Buildings - Lighting Types  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting Types Lighting Types The following are the most widely used types of lighting equipment used in commercial buildings. Characteristics such as energy efficiency, light quality, and lifetime vary by lamp type. Standard Fluorescent A fluorescent lamp consists of a sealed gas-filled tube. The gas in the tube consists of a mixture of low pressure mercury vapor and an inert gas such as argon. The inner surface of the tube has a coating of phosphor powder. When an electrical current is applied to electrodes in the tube, the mercury vapor emits ultraviolet radiation which then causes the phosphor coating to emit visible light (the process is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts

433

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Characteristics of Lighting Types Characteristics of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lm/W). Lamps with a higher efficacy value are more energy efficient. Average Rated Life The average rated life of a particular type of lamp is defined by the number of hours when 50 percent of a large sample of that type of lamp has failed. Color Rendering Index (CRI) The CRI is a measurement of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are typically used in office and living environments. Correlated Color Temperature (CCT) The CCT is an indicator of the "warmth" or "coolness" of the color

434

Physical Layer Characteristics and Techniques for Visible Light Communications  

E-Print Network (OSTI)

as tra?c lights, street lights, and automobile headlights orarea where numerous street lights and advertising boardslighting purposes (e.g. , street light, decoration light,

Cui, Kaiyun

2012-01-01T23:59:59.000Z

435

Advanced Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Next >> Next >> Visitors Access to the ALS Gate Access guest-house Guest House lab-shuttles Lab Shuttles maps-and-directions Maps and Directions Parking Safety Safety for Users safety-for-staff Safety for Staff In Case of Emergency Resources Acronyms Multimedia Employment staff-intranet Staff Intranet Site Map Contact Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: ALSBerkeleyLab YouTube: AdvancedLightSource January 2014 Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Recent Science Highlights Minding the Gap Makes for More Efficient Solar Cells Using novel materials to develop thin, flexible, and more efficient photovoltaic cells is one of the hottest topics in current materials research. A class of transition metals undergo a dramatic change that makes them ideal for solar energy applications.

436

Lighting Group: People  

NLE Websites -- All DOE Office Websites (Extended Search)

People People Lighting Group Staff Phone Mailstop Email Group Leader [area code 510] Rubinstein, Francis 486-4096 90R3111 FMRubinstein@lbl.gov Staff Scientists Berman, Sam 5682 90R3111 Clear, Robert 486-4286 90R3111 RDClear@lbl.gov Research Associates Enscoe, Abby (510) 486 6077 90R3111 AIEnscoe@lbl.gov Fritz, Randolph M. (510) 495 2532 90R3111 RFritz@lbl.gov Ghatikar, Girish 486-6768 90R3111 GGhatikar@lbl.gov Granderson, Jessica 486-7692 90R3111 JGranderson@lbl.gov Howells, Jack 4096 46R0125 MRHowells@lbl.gov Kiliccote, Sila 495-2615 90R3111 SKiliccote@lbl.gov Liu, Gao 7207 70R0108B GLiu@lbl.gov Wen, Yao-Jung 4702 90R3111 YJWen@lbl.gov Yazdanian, Mehry 486-4701 90R3111 MYazdanian@lbl.gov Research Technicians Galvin, James 486-4661 47R0112 JEGalvin@lbl.gov Technical Support DiBartolomeo, Dennis 486-4702 90R3111

437

Quantum Coherence in Photosynthetic Light  

E-Print Network (OSTI)

the following: How do light-harvesting systems deliver such high efficiency in the presence of disordered:333­61 First published online as a Review in Advance on December 13, 2011 The Annual Review of Condensed Matter quantum efficiency of photosynthetic light harvesting. Further, this speculation has led to much effort

Fleming, Graham R.

438

Lighting and Dark Sky Regulations  

E-Print Network (OSTI)

.........................................................................................................2 C. Cherokee County, Georgia's Outdoor Lighting and Road Glare Ordinance visited Apr. 0, 2008) (providing links to ordinances throughout the United States). 2 See, e.g. Cherokee Protection Ordinance (Dec. , 200). 5 See, e.g. Model Lighting Section for Zoning Ordinances and Cherokee

Rosemond, Amy Daum

439

Permit Parking Emergency Blue Light  

E-Print Network (OSTI)

P P P P P P P P P P P P P P P P P PP P P P P P Permit Parking Food P P Emergency Blue Light underground Emergency Blue Light outdoors Wheelchair Wheelchair prior arrangements necessary Telephone Visitor 144 Albert Street 21 152 Albert Street 20 154 Albert Street 94 34 Barrie Street 91 68 Barrie Street 90

Abolmaesumi, Purang

440

Physicists change the light bulb  

Science Journals Connector (OSTI)

...came in such colors as red and green. They were used as indicator lights...which has enabled bright and energy-saving white light sources...and waste most of the input energy. With 20% of the world's...people who are not connected to energy grids. The usefulness of this...

Dennis Normile

2014-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Light beam frequency comb generator  

DOE Patents (OSTI)

A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

Priatko, Gordon J. (Cupertino, CA); Kaskey, Jeffrey A. (Livermore, CA)

1992-01-01T23:59:59.000Z

442

Lighting Principles and Terms | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Principles and Terms Principles and Terms Lighting Principles and Terms July 29, 2012 - 5:20pm Addthis Light quantity, energy consumption, and light quality are the basic principles of lighting. | Photo courtesy of Tadson Bussey. Light quantity, energy consumption, and light quality are the basic principles of lighting. | Photo courtesy of Tadson Bussey. Learn More Find out how to shop for lights by lumens, not watts. To choose the best energy-efficient lighting options for your home, you should understand basic lighting principles and terms. Light Quantity Illumination The distribution of light on a horizontal surface. The purpose of all lighting is to produce illumination. Lumen A measurement of light emitted by a lamp. As reference, a 100-watt

443

How plants grow toward light  

NLE Websites -- All DOE Office Websites (Extended Search)

How plants grow toward light How plants grow toward light Name: schwobtj Location: N/A Country: N/A Date: N/A Question: When a seed is planted below the surface of the ground, how does it "know" to grow toward the light? Replies: Plants don't know where the light is, they do respond to gravity. Since light is usually up, a plant seed grows up and finds light enough to keep things going. Psych One way that plants below ground can tell which way is up is with the use of STATOLITHS. Statoliths are dense pieces of material that settle to the bottom of a STATOCYST. In plants, pieces of starch or another material denser than water will settle to the bottom of the cell. Somehow the plant cell determines on what side the statolith has fallen, and then somehow relays a message (probably a chemical) that tells the bottom cells to grow faster than the top cells, therefore causing upward growth. There is still quite a lot of mystery in there to be discovered. I got this explanation from BIOLOGY by Neil Campbell. This is similar to the way in which plants use chemical signals to help them grow towards light.

444

Hadronic light-by-light scattering and the pion polarizability  

Science Journals Connector (OSTI)

We compute the charged pion loop contribution to the light-by-light scattering amplitude for off-shell photons in chiral perturbation theory through next-to-leading order (NLO). We show that for small photon virtualities (k2?m?2) the NLO contributions are relatively more important due to an accidental numerical suppression of the LO terms. This behavior is consistent with previous calculations of the hadronic light-by-light contribution to the muon anomalous magnetic moment, a?HLBL, whose leading order value receives O(1) corrections from models incorporating some of the NLO physics. We also show that models employed thus far for the charged pion loop contribution to a?HLBL are not fully consistent with low-momentum behavior implied by quantum chromodynamics, having omitted potentially significant contributions from the pion polarizability.

Kevin T. Engel; Hiren H. Patel; Michael J. Ramsey-Musolf

2012-08-27T23:59:59.000Z

445

Inorganic volumetric light source excited by ultraviolet light  

DOE Patents (OSTI)

The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

Reed, Scott (Albuquerue, NM); Walko, Robert J. (Albuquerue, NM); Ashley, Carol S. (Albuquerue, NM); Brinker, C. Jeffrey (Albuquerue, NM)

1994-01-01T23:59:59.000Z

446

Saturable absorption and 'slow light'  

E-Print Network (OSTI)

Quantitative evaluation of some recent 'slow light' experiments based on coherent population oscillations (CPO) shows that they can be more simply interpreted as saturable absorption phenomena. Therefore they do not provide an unambiguous demonstration of 'slow light'. Indeed a limiting condition on the spectral bandwidth is not generally satisfied, such that the requirements for burning a narrow spectral hole in the homogeneously broadened absorption line are not met. Some definitive tests of 'slow light' phenomena are suggested, derived from analysis of phase shift and pulse delay for a saturable absorber

Adrian C Selden

2005-12-16T23:59:59.000Z

447

46th Street Pilot Street Lighting Project  

E-Print Network (OSTI)

46th Street Pilot Street Lighting Project A Joint Venture: Hennepin County & City of Minneapolis Street to 48th Street) as standard high-pressure sodium (HPS) lighting comparison corridor #12;The over time #12;Initial Lighting Comparison #12;Lighting Project Location #12;Street Light Layout 30

Minnesota, University of

448

Projection screen having reduced ambient light scattering  

DOE Patents (OSTI)

An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

Sweatt, William C. (Albuquerque, NM)

2010-05-11T23:59:59.000Z

449

Plant Ecology -Chapter 2 Photosynthesis & Light  

E-Print Network (OSTI)

1 Plant Ecology - Chapter 2 Photosynthesis & Light Photosynthesis & Light Functional ecology - how the structural context of their anatomy and morphology Photosynthesis & Light Functional ecology - closely-plant responses to their environment Photosynthesis & Light Photosynthesis is a "package deal" How much light

Cochran-Stafira, D. Liane

450

The Momentum of Light - C  

NLE Websites -- All DOE Office Websites (Extended Search)

C. More direct evidence C. More direct evidence As we've noted, relativity theory implies that a quantum of energy ought to be a quantum of momentum as well. While Einstein's analysis showed that this idea was consistent with known facts about light and matter, modern experiments with individual light quanta and subatomic particles demonstrate the existence of momentum quanta more directly. One early demonstration was an effect studied by Arthur Holly Compton. When x-rays a high-frequency form of light-collide with atoms, the x-rays scatter in all directions accompanied by electrons from the atoms. The wavelength of the scattered x-rays and the momentum of the electrons both vary with their direction of motion. While the classical theory of light and electricity doesn't explain the variation actually observed, the

451

Lighting Research Group: Facilities: Goniometer  

NLE Websites -- All DOE Office Websites (Extended Search)

Goniometer Goniometer gonio-photometer Gonio-Photometer Gonio-photometer | Integrating sphere | Power analyzer | Spectro-radiometer The gonio-photometer (or goniometer for short) is able to measure the illuminance from each portion of a lamp or fixture. There are three main components to the goniometer: (1) the rotating table that the fixture or lamp is placed on, (2) the long arm with a mirror on the end that rotates around the fixture and (3) a light sensor that measures the light reflected by the mirror. The light source (whether it is in a fixture or not) is placed in the middle of the goniometer, sitting on the rotating table. The rotating table can be adjusted up and down to make sure that the light source is in the very center of the goniometer. When the lamp is positioned this way, the

452

DOE Light Duty Vehicle Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs.

453

SLAC Linac Coherent Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

for the U.S. Department of Energy by Stanford University. As the world's most powerful X-ray laser, the LCLS creates unique light that can see details down to the size of atoms...

454

Solid-State Lighting Webcasts  

Energy.gov (U.S. Department of Energy (DOE))

Below you'll find links to information about past webcast presentations related to solid-state lighting, including presentation slides and question-and-answer sessions, where available.

455

Another Side of Light - A  

Office of Scientific and Technical Information (OSTI)

spots and cancel elsewhere to make dimmer spots. Once such bright and dim spots in beams of light were observed in the early 19th century, physicists became more certain that...

456

Another Side of Light - C  

Office of Scientific and Technical Information (OSTI)

much the same if they behave according to Planck's quantum law. As we noted above, the intensity of the lower-frequency light is described pretty accurately by a theory that...

457

Morning Light | Open Energy Information  

Open Energy Info (EERE)

Morning Light Morning Light Jump to: navigation, search Name Morning Light Facility Morning Light Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer Clipper Windpower Development Company Energy Purchaser MidAmerican Energy Location Casey IA Coordinates 41.44819506°, -94.58280087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.44819506,"lon":-94.58280087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Next Generation Light Source Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

459

Information superhighway approaches light speed  

Science Journals Connector (OSTI)

Nothing moves faster than light in a vacuum but a new kind of optical fibre transports large volumes of data at 99.7 per cent of this speed limit

2013-01-01T23:59:59.000Z

460

Video through a light guide  

Science Journals Connector (OSTI)

Demonstrations are discussed to illustrate some basic principles of television transmission and reception. The aim of these demonstrations is to promote student understanding of how a picture is converted into an electrical signal sent to a remote receiver and correctly reproduced there. The demonstration setup includes a video camera a light emitting diode a light guide a photodiode and a video monitor. Electrical production of visual images is also discussed.

Yaakov Kraftmakher

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Transition of light propagation from slow light to superluminal light in a four-level system  

SciTech Connect

We offer a general treatment of electromagnetically-induced transparency (EIT) in a four-level system consisting of a ladder-type system and a V-type system through which a two-coupling light generates two pairs of dressed states that help to improve susceptibility so that a much slower light speed can be achieved than with the standard V-type system. In particular, a method is shown to realize the transition of light propagation from slower-than-c to faster-c by means of the pump between two lower states.

Wu Hao; Zhang Yundong; Liu Shuangqiang; Wang Jinfang; Dang Boshi; Yuan Ping [National Key Laboratory of Tunable Laser Technology, Institute of Optoelectronics, Harbin Institute of Technology, Harbin 150080 (China)

2010-06-15T23:59:59.000Z

462

Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 DOE Solid-State Lighting 2014 DOE Solid-State Lighting R&D Workshop to someone by E-mail Share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Facebook Tweet about Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Twitter Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Google Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Delicious Rank Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Digg Find More places to share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2014 DOE Solid-State Lighting R&D Workshop logo for Next Generation Lighting Industry Alliance

463

Flexible liquid core light guide with focusing and light shaping attachments  

DOE Patents (OSTI)

A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures.

Kross, Brian J. (Yorktown, VA); Majewski, Stanislaw (Grafton, VA); Zorn, Carl J. (Yorktown, VA); Majewski, Lukasz A. (Grafton, VA)

1997-01-01T23:59:59.000Z

464

LIGHTING RESEARCH PROGRAM Project 4.2 The ENERGY STAR Residential Light  

E-Print Network (OSTI)

LIGHTING RESEARCH PROGRAM Project 4.2 The ENERGY STAR® Residential Light Fixture Advancement Report Applied Proactive Technologies/Architectural Energy Corporation PIER Lighting Research Program 2 Applied Proactive Technologies/Architectural Energy Corporation PIER Lighting Research Program 3 500

465

Flexible liquid core light guide with focusing and light shaping attachments  

DOE Patents (OSTI)

A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. 12 figs.

Kross, B.J.; Majewski, S.; Zorn, C.J.; Majewski, L.A.

1997-11-04T23:59:59.000Z

466

Lighting Controls in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Controls in Commercial Buildings Lighting Controls in Commercial Buildings Title Lighting Controls in Commercial Buildings Publication Type Report Year of Publication 2012 Authors Williams, Alison A., Barbara A. Atkinson, Karina Garbesi, Erik Page, and Francis M. Rubinstein Series Title The Journal of the Illuminating Engineering Society of North America Volume 8 Document Number 3 Pagination 161-180 Date Published January ISBN Number 1550-2716 Keywords controls, daylighting, energy, occupancy sensors, tuning. Abstract Researchers have been quantifying energy savings from lighting controls in commercial buildings for more than 30 years. This study provides a meta-analysis of lighting energy savings identified in the literature-240 savings estimates from 88 papers and case studies, categorized into daylighting strategies, occupancy strategies, personal tuning, and institutional tuning. Beginning with an overall average of savings estimates by control strategy, successive analytical filters are added to identify potential biases introduced to the estimates by different analytical approaches. Based on this meta-analysis, the bestestimates of average lighting energy savings potential are 24 percent for occupancy, 28 percent for daylighting, 31 percent for personal tuning, 36 percent for institutional tuning, and 38 percent for multiple approaches. The results also suggest that simulations significantly overestimate (by at least 10 percent) the average savings obtainable from daylighting in actual buildings.

467

Development of a light force accelerometer  

E-Print Network (OSTI)

In this work, the feasibility of a light force accelerometer was experimentally demonstrated. The light force accelerometer is an optical inertial sensor which uses focused laser light to levitate and trap glass microspheres ...

Butts, David LaGrange

2008-01-01T23:59:59.000Z

468

Residential Lighting: Title 24 and Technology Update  

E-Print Network (OSTI)

Residential Lighting: Title 24 and Technology Update Best practices in lighting design to comply the development and deployment of energy-efficient lighting and daylighting technologies in partnership. Effectively apply the residential Title 24 Building Energy Efficiency Standards requirements specific

California at Davis, University of

469

Do Embedded Roadway Lights Protect Sea Turtles?  

Science Journals Connector (OSTI)

Street lighting on coastal roadways is often visible at ... Our objective was to determine whether an alternative lighting system (light-emitting diodes, embedded in the roadway pavement ... the beach oriented no...

Lesley Bertolotti; Michael Salmon

2005-11-01T23:59:59.000Z

470

Procedure for simulating divergent-light halos  

Science Journals Connector (OSTI)

Divergent-light halos are halos produced by light from nearby light sources, like street lamps being scattered by small crystals of ice floating in the air. The use of brute-force...

Gisln, Lars

2003-01-01T23:59:59.000Z

471

Residential energy-efficient lighting adoption survey  

Science Journals Connector (OSTI)

Artificial lighting has transformed how humans relate to the world, by improving productivity and making spaces habitable. The adoption of energy-efficient solid-state lighting, light emitting diodes (LED), ha...

Andrea L. Hicks; Thomas L. Theis

2014-04-01T23:59:59.000Z

472

Embodied Energy and Off-Grid Lighting  

E-Print Network (OSTI)

Solar LED Task Light Embodied Energy We estimated theTable 1: Embodied energy in LED task lights and chargingLED lights that we evaluated, indicating that the energy

Alstone, Peter

2012-01-01T23:59:59.000Z

473

Light Pollution and its Energy Loss  

Science Journals Connector (OSTI)

Data obtained by US DMSP satellites were analyzed to obtain light energyin order to monitor light pollution at different countries. Light detectedby the satellites is one ejected to ... used toilluminate objects ...

S.I. Isobe; S. Hamamura

2000-09-01T23:59:59.000Z

474

Solid-State Lighting: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: Financial Opportunities to someone by E-mail Share Solid-State Lighting: Financial Opportunities on Facebook Tweet about Solid-State Lighting: Financial Opportunities on Twitter Bookmark Solid-State Lighting: Financial Opportunities on Google Bookmark Solid-State Lighting: Financial Opportunities on Delicious Rank Solid-State Lighting: Financial Opportunities on Digg Find More places to share Solid-State Lighting: Financial Opportunities on AddThis.com... Current Opportunities DOE Selections Related Opportunities Financial Opportunities DOE financial opportunities for solid-state lighting (SSL) include competitive solicitations, grants, and other federal funding mechanisms to

475

Federal Energy Management Program: Lighting Control Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Control Lighting Control Types to someone by E-mail Share Federal Energy Management Program: Lighting Control Types on Facebook Tweet about Federal Energy Management Program: Lighting Control Types on Twitter Bookmark Federal Energy Management Program: Lighting Control Types on Google Bookmark Federal Energy Management Program: Lighting Control Types on Delicious Rank Federal Energy Management Program: Lighting Control Types on Digg Find More places to share Federal Energy Management Program: Lighting Control Types on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process Low Standby Power Energy & Cost Savings Calculators Model Acquisitions Language Working Group Resources Technology Deployment Renewable Energy

476

New Laser's "First Light" Shatters Record | Jefferson...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Accelerator Facility have delivered first light from their Free Electron Laser (FEL). Only 2 years after ground was broken for the FEL, infrared light of more than...

477

Universal Lighting Technologies | Open Energy Information  

Open Energy Info (EERE)

Zip: 37214-3683 Product: Universal Lighting Technologies develops, manufactures and markets energy efficient lighting technologies including HID, CFLs and ballasts....

478

Solid-State Lighting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. Manufacturing. Read more Technical Brief Clarifies Misconceptions about Safety of LED Lighting Technical Brief Clarifies Misconceptions about Safety of LED Lighting Examines...

479

Solid-State Lighting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

overviewbrochurefeb2013.pdf More Documents & Publications DOE Lighting Program Update: LED Validation Activities Solid-State Lighting R&D Multi-Year Program Plan Emerging...

480

Emerging Lighting Technology | Department of Energy  

Office of Environmental Management (EM)

fupwgspring11kinzey.pdf More Documents & Publications DOE Lighting Program Update: LED Validation Activities Solid-State Lighting Federal Technology Deployment Pilot:...

Note: This page contains sample records for the topic "defrost lighting incandescent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: efficient LED lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

efficient LED lighting ECIS-Veeco: Research Driving Down the Costs of Efficient LED Lighting On February 14, 2013, in Energy, Energy Efficiency, Materials Science, Partnership,...

482

LightSource Renewables | Open Energy Information  

Open Energy Info (EERE)

LightSource Renewables Jump to: navigation, search Name: LightSource Renewables Place: San Diego, California Zip: 92121 Sector: Wind energy Product: Wind project developer...

483

Sandia National Laboratories: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency, Events, News & Events, Solid-State Lighting The Solid-State Lighting Science (SSLS) Energy Frontier Research Center (EFRC) Director, Dr. Michael E. Coltrin,...

484

Lighting Choices - White Background | Department of Energy  

Energy Savers (EERE)

the new energy standards that take effect from 2012-2014. allbulbshiresweb.eps More Documents & Publications Lighting Choices - White Background Lighting Choices...

485

Science, Optics and You: Light and Colors  

NLE Websites -- All DOE Office Websites (Extended Search)

opticstutorialsindex.html INTRODUCTION LIGHT AND COLORS MODULE m4 SCIENCE, OPTICS & YOU GUIDEBOOK - 62 - SCIENCE, OPTICS & YOU GUIDEBOOK - 63 - m4: Light &...

486

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1...

487

Solar Day-Lighting Using Optical Fibers  

Science Journals Connector (OSTI)

Green lighting alternatives can substantially reduce electricity consumption. Solar day-lighting system, by transporting the concentrated sunlight through optical fibers, has been...

Kumar, Naveen; Patil, Sanket

488

Lighting Control Types | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

occupancy sensors, dimmable ballasts, and other lighting controls equipment through its Energy Efficient Lighting catalog. Back to Top Appropriate Illumination Levels Proper...

489

Scientists produce transparent, light-harvesting material  

NLE Websites -- All DOE Office Websites (Extended Search)

Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

490

Electromagnetic Energy Velocity in Slow Light  

Science Journals Connector (OSTI)

Group and electromagnetic energy velocities in structural and material slow light are compared. They are equal for structural slow light; the enhancement of linear and nonlinear...

Santagiustina, Marco

491

Table Set-up with equipment Target Audience: Parents of elementary school students (grades 3-6), Middle and High School Students  

E-Print Network (OSTI)

on significantly different technology (e.g. incandescent, CFL, LED) as an example of information on light bulbs://sites.google.com/a/mobilestudioproject.com/www/ Approx. $150.00 each LED Bulb 40 Lumen equivalent (Sylvania) Lowe's or Home Depot Approx. $22.00 each Compact Fluorescent Bulb 40 Lumen equivalent (GE) Lowe's or Home Depot Approx. $6.50 each Incandescent

Linhardt, Robert J.

492

Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Solid-State Lighting R&D 11 Solid-State Lighting R&D Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2011 Solid-State Lighting R&D Workshop Materials

493

Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Solid-State Lighting DOE Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools DOE Solid-State Lighting Manufacturing Workshop This page provides links to the presentations given at the 2009 DOE

494

Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting GATEWAY Solid-State Lighting GATEWAY Demonstration Results to someone by E-mail Share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Facebook Tweet about Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Twitter Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Google Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Delicious Rank Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Digg Find More places to share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations FAQs Results

495

Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Solid-State Lighting 2010 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools 2010 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

496

Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Solid-State Lighting 2009 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2009 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

497

Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium to someone by E-mail Share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Facebook Tweet about Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Twitter Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Google Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Delicious Rank Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Digg Find More places to share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on AddThis.com... LED Lighting Facts

498

Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Solid-State Lighting 2007 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2007 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

499

Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 Solid-State Lighting 2006 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2006 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

500

Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

08 Solid-State Lighting 08 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2008 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations