National Library of Energy BETA

Sample records for defrees small wave

  1. DeFrees Small Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees Flume 1Small Wave

  2. California Small Hydropower and Ocean Wave Energy

    E-Print Network [OSTI]

    California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology

  3. DeFrees Large Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees Flume 1

  4. Emergence of exponentially small reflected waves

    E-Print Network [OSTI]

    Volker Betz; Alain Joye; Stefan Teufel

    2008-04-23

    We study the time-dependent scattering of a quantum mechanical wave packet at a barrier for energies larger than the barrier height, in the semi-classical regime. More precisely, we are interested in the leading order of the exponentially small scattered part of the wave packet in the semiclassical parameter when the energy density of the incident wave is sharply peaked around some value. We prove that this reflected part has, to leading order, a Gaussian shape centered on the classical trajectory for all times soon after its birth time. We give explicit formulas and rigorous error bounds for the reflected wave for all of these times.

  5. Electromagnetic wave scattering by small bodies

    E-Print Network [OSTI]

    A. G. Ramm

    2008-04-21

    A reduction of the Maxwell's system to a Fredholm second-kind integral equation with weakly singular kernel is given for electromagnetic (EM) wave scattering by one and many small bodies. This equation is solved asymptotically as the characteristic size of the bodies tends to zero. The technique developed is used for solving the many-body EM wave scattering problem by rigorously reducing it to solving linear algebraic systems, completely bypassing the usage of integral equations. An equation is derived for the effective field in the medium, in which many small particles are embedded. A method for creating a desired refraction coefficient is outlined.

  6. Electromagnetic wave scattering by many small particles

    E-Print Network [OSTI]

    A. G. Ramm

    2006-08-18

    Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a "smart" material by embedding many small particles in a given region is formulated.

  7. Electromagnetic wave scattering by many conducting small particles

    E-Print Network [OSTI]

    A. G. Ramm

    2008-04-21

    A rigorous theory of electromagnetic (EM) wave scattering by small perfectly conducting particles is developed. The limiting case when the number of particles tends to infinity is discussed.

  8. Wave scattering by small particles in a medium

    E-Print Network [OSTI]

    A. G. Ramm

    2007-02-14

    Wave scattering is considered in a medium in which many small particles are embedded. Equations for the effective field in the medium are derived when the number of particles tends to infinity.

  9. Mirror-mode storms: STEREO observations of protracted generation of small amplitude waves

    E-Print Network [OSTI]

    California at Berkeley, University of

    Mirror-mode storms: STEREO observations of protracted generation of small amplitude waves C. T. Luhmann (2009), Mirror-mode storms: STEREO observations of protracted generation of small amplitude waves observes mirror-mode storms, periods in which small amplitude waves suddenly appear and persist for hours

  10. Small-amplitude capillary-gravity water waves: exact solutions and particle motion beneath such waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    Two-dimensional periodic surface waves propagating under the combined influence of gravity and surface tension on water of finite depth are considered. Within the framework of small-amplitude waves, we find the exact solutions of the nonlinear differential equation system which describes the particle motion in the considered case, and we describe the possible particle trajectories. The required computations involve elliptic integrals of the first kind, the Legendre normal form and a solvable Abel differential equation of the second kind. Some graphs of the results are included.

  11. Asymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations with Small Solitary Waves

    E-Print Network [OSTI]

    Stephen Gustafson; Kenji Nakanishi; Tai-Peng Tsai

    2003-08-06

    In this paper we study a class of nonlinear Schr\\"odinger equations which admit families of small solitary wave solutions. We consider solutions which are small in the energy space $H^1$, and decompose them into solitary wave and dispersive wave components. The goal is to establish the asymptotic stability of the solitary wave and the asymptotic completeness of the dispersive wave. That is, we show that as $t \\to \\infty$, the solitary wave component converges to a fixed solitary wave, and the dispersive component converges to a solution of the free Schr\\"odinger equation.

  12. Peakons arising as particle paths beneath small-amplitude water waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We present a new kind of particle path in constant vorticity water of finite depth, within the framework of small-amplitude waves.

  13. Wave scattering by small bodies of arbitrary shapes. Alexander G.Ramm

    E-Print Network [OSTI]

    bodies the fundamental integral equations of the theory can be solved numerically to studyWave scattering by small bodies of arbitrary shapes. Alexander G.Ramm In: Acoustic, Electromagnetic Introduction The theory of wave scattering by small bodies was initiated by Rayleigh (1871). Thomp- son (1893

  14. Small divisor problem in the theory of three-dimensional water gravity waves

    E-Print Network [OSTI]

    Iooss, Gérard

    Small divisor problem in the theory of three-dimensional water gravity waves G´erard Iooss , Pavel of Sciences, Lavryentyev pr. 15, Novosibirsk 630090, Russia gerard.iooss@inln.cnrs.fr, plotnikov@hydro of small divisors, the main difficulty is the inversion of the linearized operator at a non trivial point

  15. Self-consistent theory of capillary-gravity-wave generation by small moving objects A. D. Chepelianskii,1

    E-Print Network [OSTI]

    Raphael, Elie

    Self-consistent theory of capillary-gravity-wave generation by small moving objects A. D for example, wig- gling beetles may take advantage of the generation of capillary-gravity waves for echo/s. An object moving at constant velocity V cmin does not generate steady waves and the wave resis- tance

  16. On the particle paths and the stagnation points in small-amplitude deep-water waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2012-02-22

    In order to obtain quite precise information about the shape of the particle paths below small-amplitude gravity waves travelling on irrotational deep water, analytic solutions of the nonlinear differential equation system describing the particle motion are provided. All these solutions are not closed curves. Some particle trajectories are peakon-like, others can be expressed with the aid of the Jacobi elliptic functions or with the aid of the hyperelliptic functions. Remarks on the stagnation points of the small-amplitude irrotational deep-water waves are also made.

  17. Magnetohydrodynamic kink waves in nonuniform solar flux tubes: phase mixing and energy cascade to small scales

    E-Print Network [OSTI]

    Soler, Roberto

    2015-01-01

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...

  18. Morphodynamics of small-scale superimposed sand waves over migrating dune bed forms

    E-Print Network [OSTI]

    Venditti, Jeremy G.

    Morphodynamics of small-scale superimposed sand waves over migrating dune bed forms Jeremy G migrating dunes are examined using data drawn from laboratory experiments. We refer to the superimposed classified as ripples, dunes, or bars. Within the experiments, the sheets formed downstream

  19. Exact solutions for small-amplitude capillary-gravity water waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We present explicit solutions for the ordinary differential equations system describing the motion of the particles beneath small-amplitude capillary-gravity waves which propagate on the surface of an irrotational water flow with a flat bottom. The required computations involve elliptic integrals of first kind, the Legendre normal form and a solvable Abel differential equation of the second kind.

  20. Particle trajectories beneath small amplitude shallow water waves in constant vorticity flows

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We investigate the particle trajectories in a constant vorticity shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the framework of small amplitude waves, we find the solutions of the nonlinear differential equations system which describes the particle motion in the considered case, and we describe the possible particle trajectories. Depending on the relation between the initial data and the constant vorticity, some particle trajectories are undulating curves to the right, or to the left, others are loops with forward drift, or with backward drift, others can follow some peculiar shapes.

  1. Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales

    E-Print Network [OSTI]

    Quinn E. Minor; Manoj Kaplinghat

    2015-03-08

    We point out three correlated predictions of the axion monodromy inflation model: large amplitude of gravitational waves, suppression of power on horizon scales and on scales relevant for the formation of dwarf galaxies. While these predictions are likely generic to models with oscillations in the inflaton potential, the axion monodromy model naturally accommodates the required running spectral index through Planck-scale corrections to the inflaton potential. Applying this model to a combined data set of Planck, ACT, SPT, and WMAP low-$\\ell$ polarization cosmic microwave background (CMB) data, we find a best-fit tensor-to-scalar ratio $r_{0.05} = 0.07^{+0.05}_{-0.04}$ due to gravitational waves, which may have been observed by the BICEP2 experiment. Despite the contribution of gravitational waves, the total power on large scales (CMB power spectrum at low multipoles) is lower than the standard $\\Lambda$CDM cosmology with a power-law spectrum of initial perturbations and no gravitational waves, thus mitigating some of the tension on large scales. There is also a reduction in the matter power spectrum of 20-30\\% at scales corresponding to $k = 10~{\\rm Mpc}^{-1}$, which are relevant for dwarf galaxy formation. This will alleviate some of the unsolved small-scale structure problems in the standard $\\Lambda$CDM cosmology. The inferred matter power spectrum is also found to be consistent with recent Lyman-$\\alpha$ forest data, which is in tension with the Planck-favored $\\Lambda$CDM model with power-law primordial power spectrum.

  2. Ordering of two small parameters in the shallow water wave problem

    E-Print Network [OSTI]

    Georgy I. Burde; Artur Sergyeyev

    2013-01-28

    The classical problem of irrotational long waves on the surface of a shallow layer of an ideal fluid moving under the influence of gravity as well as surface tension is considered. A systematic procedure for deriving an equation for surface elevation for a prescribed relation between the orders of the two expansion parameters, the amplitude parameter $\\alpha$ and the long wavelength (or shallowness) parameter $\\beta$, is developed. Unlike the heuristic approaches found in the literature, when modifications are made in the equation for surface elevation itself, the procedure starts from the consistently truncated asymptotic expansions for unidirectional waves, a counterpart of the Boussinesq system of equations for the surface elevation and the bottom velocity, from which the leading order and higher order equations for the surface elevation can be obtained by iterations. The relations between the orders of the two small parameters are taken in the form $\\beta=O(\\alpha^n)$ and $\\alpha=O(\\beta^m)$ with $n$ and $m$ specified to some important particular cases. The analysis shows, in particular, that some evolution equations, proposed before as model equations in other physical contexts (like the Gardner equation, the modified KdV equation, and the so-called 5th-order KdV equation), can emerge as the leading order equations in the asymptotic expansion for the unidirectional water waves, on equal footing with the KdV equation. The results related to the higher orders of approximation provide a set of consistent higher order model equations for unidirectional water waves which replace the KdV equation with higher-order corrections in the case of non-standard ordering when the parameters $\\alpha$ and $\\beta$ are not of the same order of magnitude. (See the paper for the complete abstract.)

  3. No steady water waves of small amplitude are supported by a shear flow with still free surface

    E-Print Network [OSTI]

    Vladimir Kozlov; Nikolay Kuznetsov

    2012-09-17

    The two-dimensional free-boundary problem describing steady gravity waves with vorticity on water of finite depth is considered. It is proved that no small-amplitude waves are supported by a horizontal shear flow whose free surface is still in a coordinate frame such that the flow is time-independent in it. The class of vorticity distributions for which such flows exist includes all positive constant distributions, as well as linear and quadric ones with arbitrary positive coefficients.

  4. FAST Spacecraft Reveals Fundamental Plasma Wave Emission NASA's Fast Auroral Snapshot (FAST) Small Explorer has traveled to the source

    E-Print Network [OSTI]

    Strangeway, Robert J.

    FAST Spacecraft Reveals Fundamental Plasma Wave Emission Mechanism NASA's Fast Auroral Snapshot (FAST) Small Explorer has traveled to the source region of the Earth's most powerful radio emission ­ Auroral Kilometric Radiation (AKR). FAST's high resolution particles and fields measurements have revealed

  5. Experimental investigation of small-scale breaking waves : flow visualization across the air-water interface

    E-Print Network [OSTI]

    McDonald, Angus Kai

    2005-01-01

    The dynamics of breaking waves significantly affect air-sea fluxes of heat, momentum, mass and energy across the ocean interface. Breaking waves also contribute considerable loading to offshore and coastal structures, and ...

  6. Assessment of P and S wave energy radiated from very small shear-tensile seismic events in a deep South African mine

    E-Print Network [OSTI]

    Ben-Zion, Yehuda

    Assessment of P and S wave energy radiated from very small shear-tensile seismic events in a deep. Citation: Kwiatek, G., and Y. Ben-Zion (2013), Assessment of P and S wave energy radiated from very small of radiated seismic energy in S and P phases and derive ratios of S-to-P radiated energy (ES/EP) of 539

  7. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-08-24

    We provide analytic solutions of the nonlinear differential equation system describing the particle paths below small-amplitude periodic gravity waves travelling on a constant vorticity current. We show that these paths are not closed curves. Some solutions can be expressed in terms of Jacobi elliptic functions, others in terms of hyperelliptic functions. We obtain new kinds of particle paths. We make some remarks on the stagnation points which could appear in the fluid due to the vorticity.

  8. Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes

    E-Print Network [OSTI]

    E. Khomenko; M. Collados; T. Felipe

    2008-01-25

    We present results of non-linear, 2D, numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after applying horizontal and vertical oscillatory perturbations to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized thanks to a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the vA acoustic) mode propagates vertically along the field lines, forms shocks and remains always within the flux tube. It might deposit effectively the energy of the driver into the chromosphere. When the driver oscillates with a high frequency, above the cut-off, non-linear wave propagation occurs with the same dominant driver period at all heights. At low frequencies, below the cut-off, the dominant period of oscillations changes with height from that of the driver in the photosphere to its first harmonic (half period) in the chromosphere. Depending on the period and on the type of the driver, different shock patterns are observed.

  9. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography

    E-Print Network [OSTI]

    Nikurashin, Maxim (Maxim Anatolevich)

    2009-01-01

    Observations and inverse models suggest that small-scale turbulent mixing is enhanced in the Southern Ocean in regions above rough topography. The enhancement extends 1 km above the topography suggesting that mixing is ...

  10. Scattering of electromagnetic waves by small impedance particles of an arbitrary shape

    E-Print Network [OSTI]

    Ramm, Alexander G

    2015-01-01

    An explicit formula is derived for the electromagnetic (EM) field scattered by one small impedance particle $D$ of an arbitrary shape. If $a$ is the characteristic size of the particle, $\\lambda$ is the wavelength, $a> O(a^3)$ as $a\\to 0$ when $\\lambda$ is fixed and $\\zeta$ does not depend on $a$. Thus, $|E_{sc}|$ is much larger than the classical value $O(a^3)$ for the field scattered by a small particle. It is proved that the effective field in the medium, in which many small particles are embedded, has a limit as $a\\to 0$ and the number $M=M(a)$ of the particles tends to $\\infty$ at a suitable rate. Thislimit solves a linear integral equation. The refraction coefficient of the limiting medium is calculated analytically. This yields a recipe for creating materials with a desired refraction coefficient.

  11. OBSERVATIONS OF THE INTERACTION OF ACOUSTIC WAVES AND SMALL-SCALE MAGNETIC FIELDS IN A QUIET SUN

    SciTech Connect (OSTI)

    Chitta, Lakshmi Pradeep; Kariyappa, R.; Jain, Rekha; Jefferies, Stuart M. E-mail: rkari@iiap.res.in E-mail: stuartj@ifa.hawaii.edu

    2012-01-10

    The effect of the magnetic field on photospheric intensity and velocity oscillations at the sites of small-scale magnetic fields (SMFs) in a quiet Sun near the solar disk center is studied. We use observations made by the G-band filter in the Solar Optical Telescope on board Hinode for intensity oscillations; Doppler velocity, magnetic field, and continuum intensity are derived from an Ni I photospheric absorption line at 6767.8 A using the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Our analysis shows that both the high-resolution intensity observed in the G band and velocity oscillations are influenced by the presence of a magnetic field. While intensity oscillations are suppressed at all frequencies in strong magnetic field regions compared to weak magnetic field regions, velocity oscillations show an enhancement of power in the frequency band 5.5-7 mHz. We find that there is a drop of 20%-30% in the p-mode power of velocity oscillations within the SMFs when compared to the regions surrounding them. Our findings indicate that the nature of the interaction of acoustic waves with the quiet Sun SMFs is similar to that of large-scale magnetic fields in active regions. We also report the first results of the center-to-limb variation of such effects using the observations of the quiet Sun from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). The independent verification of these interactions using SDO/HMI suggests that the velocity power drop of 20%-30% in p-modes is fairly constant across the solar disk.

  12. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory

    E-Print Network [OSTI]

    Ferrari, Raffaele

    -Scale Topography: Theory MAXIM NIKURASHIN Princeton University, Princeton, New Jersey RAFFAELE FERRARI mixing is enhanced in the Southern Ocean in regions above rough topography. The enhancement extends O(1) km above the topography, sug- gesting that mixing is supported by the breaking of gravity waves

  13. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory

    E-Print Network [OSTI]

    Nikurashin, Maxim

    Observations and inverse models suggest that small-scale turbulent mixing is enhanced in the Southern Ocean in regions above rough topography. The enhancement extends O(1) km above the topography, suggesting that mixing ...

  14. Coda wave interferometry 1 Coda wave interferometry

    E-Print Network [OSTI]

    Snieder, Roel

    Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry

  15. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    E-Print Network [OSTI]

    Klein, Spencer

    2010-01-01

    and ?tting a straight line. Radio waves are refracted signi?We note that while radio waves are refracted downward inwaves, similar to radio waves, propagate with small (

  16. PHYS 626 --Fundamentals of Plasma Physics --Section 5.5 1. Dispersion relations for small amplitude waves can be derived from the first

    E-Print Network [OSTI]

    Ng, Chung-Sang

    amplitude waves can be derived from the first moment equation with zero magnetic field and isotropic

  17. arXiv:0910.1775v2[physics.flu-dyn]13Jan2010 Self-consistent theory of capillary-gravity-wave generation by small moving objects

    E-Print Network [OSTI]

    Shepelyansky, Dima

    species (for example wiggling beetles) may take advantage of the generation of capillary-gravity wavesarXiv:0910.1775v2[physics.flu-dyn]13Jan2010 Self-consistent theory of capillary-gravity-wave generation by small moving objects A. D. Chepelianskii(a) , M. Schindler(b) , F. Chevy(c) , E. Rapha¨el(b) (a

  18. JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 11,58911,599, doi:10.1002/2013JD020526, 2013 Seasonal cycle of orographic gravity wave occurrence above small

    E-Print Network [OSTI]

    Alexander, M. Joan

    are not observed in AIRS data they have likely dissipated and induced a drag force on the atmosphere below the 40 to the Southern Hemisphere's lack of orographic waves and orographic wave drag relative to the Northern Hemisphere by mountainous terrain. Mountains are the source of some of the largest amplitude waves in the strato- sphere

  19. DeFrees Flume 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees Flume 1 Jump to:

  20. DeFrees Flume 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees Flume 1 Jump

  1. DeFrees Flume 3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees Flume 1 Jump3

  2. DeFrees Flume 4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGrid Project)AreaDay CountyDbrodt's blog4

  3. Gravitational Waves on Conductors

    E-Print Network [OSTI]

    A. Lewis Licht

    2004-03-12

    We consider a gravitational wave of arbitrary frequency incident on a normal or a super-conductor. The gravitationally induced fields inside the conductor are derived. The outward propagating EM waves are calculated for a low frequency wave on a small sphere and for a high frequency wave incident on a large disk. We estimate for both targets the GW to EM conversion efficiencies and also the magnitude of the superconductor's phase perturbation.

  4. Physica D 135 (2000) 98116 Turbulence of capillary waves --theory and numerical simulation

    E-Print Network [OSTI]

    Zakharov, Vladimir

    2000-01-01

    wavebreaking at arbitrary small wind [1]. Capillary waves are pumped by gravity waves and carry the energy flux

  5. 2011 Waves -1 STANDING WAVES

    E-Print Network [OSTI]

    Gustafsson, Torgny

    2011 Waves - 1 STANDING WAVES ON A STRING The objectives of the experiment are: · To show that standing waves can be set up on a string. · To determine the velocity of a standing wave. · To understand of waves. A #12;2011 Waves - 2 A standing wave is caused by superposing two similar (same frequency

  6. Creating Wave-Focusing Materials

    E-Print Network [OSTI]

    A. G. Ramm

    2008-05-16

    Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.

  7. Trimodal steady water waves

    E-Print Network [OSTI]

    Mats Ehrnström; Erik Wahlén

    2013-10-31

    We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.

  8. Steady water waves with multiple critical layers

    E-Print Network [OSTI]

    Mats Ehrnström; Joachim Escher; Erik Wahlén

    2011-04-01

    We construct small-amplitude periodic water waves with multiple critical layers. In addition to waves with arbitrarily many critical layers and a single crest in each period, two-dimensional sets of waves with several crests and troughs in each period are found. The setting is that of steady two-dimensional finite-depth gravity water waves with vorticity.

  9. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  10. Wave Motion

    E-Print Network [OSTI]

    M. Carcione, F. Cavallini, Simulation of waves in porn-viscoelastic rocks Saturated by immiscible ?uids. Numerical evidence ofa second slow wave,]. Comput.

  11. WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu

    E-Print Network [OSTI]

    WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu NOAA Great Lakes Environmental Research a preliminary examination and analysis of a small suite of 4-D wave data to explore what new insight century. We feel it is timely to encourage further 4-D ocean wave measurement and thereby facilitate fresh

  12. Developing de Broglie Wave

    E-Print Network [OSTI]

    J X Zheng-Johansson; P-I Johansson

    2006-08-27

    The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.

  13. Water Waves and Integrability

    E-Print Network [OSTI]

    Rossen I. Ivanov

    2007-07-12

    The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

  14. NONLINEAR EFFECTS IN WAVE SCATTERING AND GENERATION

    E-Print Network [OSTI]

    NONLINEAR EFFECTS IN WAVE SCATTERING AND GENERATION Flow Interaction with Topography Roger Grimshaw for waves to be generated upstream and/or downstream. In many cases when the topographic feature has a small, the initial condition for the fKdV equation is u(x 0) = 0 so that the waves are generated directly by the ow

  15. Instability of large solitary water waves

    E-Print Network [OSTI]

    Zhiwu Lin

    2008-03-03

    We consider the linearized instability of 2D irrotational solitary water waves. The maxima of energy and the travel speed of solitary waves are not obtained at the highest wave, which has a 120 degree angle at the crest. Under the assumption of non-existence of secondary bifurcation which is confirmed numerically, we prove linear instability of solitary waves which are higher than the wave of maximal energy and lower than the wave of maximal travel speed. It is also shown that there exist unstable solitary waves approaching the highest wave. The unstable waves are of large amplitude and therefore this type of instability can not be captured by the approximate models derived under small amplitude assumptions. For the proof, we introduce a family of nonlocal dispersion operators to relate the linear instability problem with the elliptic nature of solitary waves. A continuity argument with a moving kernel formula is used to study these dispersion operators to yield the instability criterion.

  16. Transport and generation of macroscopically modulated waves in diatomic chains

    E-Print Network [OSTI]

    Johannes Giannoulis

    2011-05-08

    We derive and justify analytically the dynamics of a small macroscopically modulated amplitude of a single plane wave in a nonlinear diatomic chain with stabilizing on-site potentials including the case where a wave generates another wave via self-interaction. More precisely, we show that in typical chains acoustical waves can generate optical but not acoustical waves, while optical waves are always closed with respect to self-interaction.

  17. Wave represents displacement Wave represents pressure Source -Sound Waves

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio. The Sound Waves simulation becomes the source of an analogical mapping to Radio Waves. Concepts Radio Waves 1 - Sound Waves references water waves 2 - Water is analogy for Sound Waves 3 - Radio

  18. Gravity Wave Lensing Ryan Elandt, Mostafa Shakeri & Reza Alam

    E-Print Network [OSTI]

    Alam, Mohammad-Reza

    Gravity Wave Lensing Ryan Elandt, Mostafa Shakeri & Reza Alam Department of Mechanical Engineering waves caused by small seabed features (the so called Bragg resonance) can be utilized to create equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely

  19. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, André

    2014-06-15

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  20. Deep-water gravity waves: nonlinear theory of wave groups

    E-Print Network [OSTI]

    Mindlin, I M

    2014-01-01

    Nonlinear initial-boundary value problem on deep-water gravity waves of finite amplitude is solved approximately (up to small terms of higher order) assuming that the waves are generated by an initial disturbance to the water and the horizontal dimensions of the initially disturbed body of the water are much larger than the magnitude of the free surface displacement. A numerable set of specific free surface waves is obtained in closed form and it is shown that free surface waves produced by an arbitrary initial disturbance to the water is a combination (not superposition: the waves are nonlinear) of the specific waves. A set of dispersive wave packets is found with one-to-one correspondence between the packets and positive integers, say, packet numbers, such that any initial free surface displacement gradually disintegrates into a number (limited or unlimited, depending on initial conditions) of the wave packets. The greater the packet number, the shorter the wavelength of the packet's carrier wave component,...

  1. Vacuum Waves

    E-Print Network [OSTI]

    Paul S. Wesson

    2012-12-11

    As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

  2. Small Amounts Take small steps

    E-Print Network [OSTI]

    New Hampshire, University of

    unions. The Department is also charged with the licensing and supervision of non-bank mortgage lenders companies, small loan, title loan, payday lenders and debt adjusters. UNH Cooperative Extension Offices

  3. Circular polarization of obliquely propagating whistler wave magnetic field

    SciTech Connect (OSTI)

    Bellan, P. M.

    2013-08-15

    The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

  4. FUEL CELL TECHNOLOGIES PROGRAM Small Business

    E-Print Network [OSTI]

    FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Proton Energy Systems Proton Energy Systems is a suc- cessful small business specializing in clean production that can be coupled with HOGEN RE® hydrogen generators are wind, solar, hydro, and wave power. Proton

  5. Adaptive multiconfigurational wave functions

    SciTech Connect (OSTI)

    Evangelista, Francesco A.

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  6. Grading of lumber using stress waves 

    E-Print Network [OSTI]

    Bethi, Rajeshwar

    1994-01-01

    The goal of this research was to develop stress wave grading technology suitable for small lumber mills. Specific goals include: 1) develop an ultrasonic probe configuration to facilitate real-time grain angle and edge knot measurement, 2) determine...

  7. Small Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *Impact NeutronSmall Business- News

  8. Deflagration Wave Profiles

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  9. Traveling water waves with point vortices

    E-Print Network [OSTI]

    Kristoffer Varholm

    2015-03-20

    We construct small-amplitude solitary traveling gravity-capillary water waves with a finite number of point vortices along a vertical line, on finite depth. This is done using a local bifurcation argument. The properties of the resulting waves are also examined: We find that they depend significantly on the position of the point vortices in the water column.

  10. Gravity Capillary Standing Water Waves Pietro Baldi

    E-Print Network [OSTI]

    Thomann, Laurent

    Gravity Capillary Standing Water Waves Pietro Baldi Universit`a di Napoli Federico II Joint work with Thomas Alazard (ENS Paris) Pienza, 29 October 2014 Pietro Baldi Gravity Capillary Standing Water Waves construct small amplitude, standing solutions of Sobolev reg. (standing := periodic in time and space

  11. Wave Propagation in Multiferroic Materials

    E-Print Network [OSTI]

    Keller, Scott Macklin

    2013-01-01

    130 SAW Waves . . . . . . . . . . . . . .QuasiStatic MEE Waves . . . . . . . . . . . . . . . . . . .General MEE Wave Solution . . . . . . . . . . . .

  12. Small Buildings and Small Portfolios

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 »Digitalan IntegratedMicrosoftDepartment ofSmall

  13. Laminated Wave Turbulence: Generic Algorithms I

    E-Print Network [OSTI]

    E. Kartashova; A. Kartashov

    2006-09-07

    The model of laminated wave turbulence presented recently unites both types of turbulent wave systems - statistical wave turbulence (introduced by Kolmogorov and brought to the present form by numerous works of Zakharov and his scientific school since nineteen sixties) and discrete wave turbulence (developed in the works of Kartashova in nineteen nineties). The main new feature described by this model is the following: discrete effects do appear not only in the long-wave part of the spectral domain (corresponding to small wave numbers) but all through the spectra thus putting forth a novel problem - construction of fast algorithms for computations in integers of order $10^{12}$ and more. In this paper we present a generic algorithm for polynomial dispersion functions and illustrate it by application to gravity and planetary waves.

  14. Small Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performed Steven D. PainSmall modular

  15. Internal wave instability: Wave-wave versus wave-induced mean flow interactions

    E-Print Network [OSTI]

    Sutherland, Bruce

    Internal wave instability: Wave-wave versus wave-induced mean flow interactions B. R. Sutherland fluid, vertically propagating internal gravity waves of moderately large amplitude can become unstable, energy from primary waves is transferred, for example, to waves with half frequency. Self

  16. Shallow Water Waves and Solitary Waves

    E-Print Network [OSTI]

    Hereman, Willy

    2013-01-01

    Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.

  17. Traveling water waves with critical layers

    E-Print Network [OSTI]

    Ailo Aasen; Kristoffer Varholm

    2015-08-19

    We establish the existence of small-amplitude uni- and bimodal steady periodic gravity waves with an affine vorticity distribution. The solutions describe waves with critical layers and an arbitrary number of crests and troughs in each minimal period. Our bifurcation argument differs slightly from earlier theory, and under certain conditions we prove that the waves found are different from the ones in previous investigations. An important part of the analysis is a fairly complete description of the small-amplitude solutions. Finally, we investigate the asymptotic behavior of solutions on the local bifurcation set.

  18. Linear water waves with vorticity: rotational features and particle paths

    E-Print Network [OSTI]

    Mats Ehrnstrom; Gabriele Villari

    2007-12-04

    Steady linear gravity waves of small amplitude travelling on a current of constant vorticity are found. For negative vorticity we show the appearance of internal waves and vortices, wherein the particle trajectories are not any more closed ellipses. For positive vorticity the situation resembles that of Stokes waves, but for large vorticity the trajectories are affected.

  19. Numerical Exercises Course Applied Finite Elements 2012 Tsunami Wave Amplification

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    waves seen on our car window as ripples on water sheets during heavy rain are also shallow water waves-Dimensional Linear Shallow Water Equations Linear shallow water equations (LSWE) describe the the motion of waves travelling on the free surface of a liquid, such as sea water. They govern the motion of small

  20. Small Buildings and Small Portfolios

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 »Digitalan IntegratedMicrosoftDepartment ofSmallCody

  1. Wave variability and wave spectra for wind generated gravity waves 

    E-Print Network [OSTI]

    Bretschneider, Charles L.

    1959-01-01

    A series of experiments of forces on a fixed vertical truncated column due to Stokes 5th order like waves were done in a wave tank. An effort was made to generate the waves as close as possible to theoretical Stokes 5th order waves. A systematic...

  2. P-wave seismic attenuation by slow-wave diffusion. Effects of ...

    E-Print Network [OSTI]

    2005-09-20

    saturated with small amounts of gas (around 10 % saturation) and water. Grain- ..... 0.2 m, medium 1 has water and medium 2 has oil, whose properties are Kf2 = 0.7 .... Carcione, J. M., 2001, Wave fields in real media: Wave propagation in ...

  3. Propagating spectroscopy of backward volume spin waves in a metallic FeNi film

    SciTech Connect (OSTI)

    Sato, N.; Ishida, N.; Kawakami, T.; Sekiguchi, K.

    2014-01-20

    We report a propagating spin wave spectroscopy for a magnetostatic backward volume spin wave in a metallic Fe{sub 19}Ni{sub 81} film. We show that the mutual-inductance between two independent antennas detects a small but clear propagation signal of backward volume spin waves. All experimental data are consistent with the time-domain propagating spin-wave spectroscopy. The control of propagating backward spin wave enables to realize the miniaturize spin-wave circuit.

  4. Localization of Classical Waves I: Acoustic Waves.

    E-Print Network [OSTI]

    Localization of Classical Waves I: Acoustic Waves. Alexander Figotin \\Lambda Department, 1997 Abstract We consider classical acoustic waves in a medium described by a position dependent mass the existence of localized waves, i.e., finite energy solutions of the acoustic equations with the property

  5. Onset of Wave Drag due to Generation of Capillary-Gravity Waves by a Moving Object as a Critical Phenomenon

    E-Print Network [OSTI]

    Teodor Burghelea; Victor Steinberg

    2001-04-21

    The onset of the {\\em wave resistance}, via generation of capillary gravity waves, of a small object moving with velocity $V$, is investigated experimentally. Due to the existence of a minimum phase velocity $V_c$ for surface waves, the problem is similar to the generation of rotons in superfluid helium near their minimum. In both cases waves or rotons are produced at $V>V_c$ due to {\\em Cherenkov radiation}. We find that the transition to the wave drag state is continuous: in the vicinity of the bifurcation the wave resistance force is proportional to $\\sqrt{V-V_c}$ for various fluids.

  6. Nash-Moser Theory for Standing Water Waves P. I. Plotnikov J.F. Toland y

    E-Print Network [OSTI]

    Bath, University of

    Nash-Moser Theory for Standing Water Waves P. I. Plotnikov #3; J.F. Toland y Abstract Unlike progressive (or steady) Stokes waves, standing waves are a truly time- dependent phenomenon in the sense small-amplitude standing wa- ter waves on an incompressible irrotational ow of #12;nite depth over

  7. Fast Computation Algorithm for Discrete Resonances among Gravity Waves

    E-Print Network [OSTI]

    Elena Kartashova

    2006-05-25

    Traditionally resonant interactions among short waves, with large real wave-numbers, were described statistically and only a small domain in spectral space with integer wave-numbers, discrete resonances, had to be studied separately in resonators. Numerical simulations of the last few years showed unambiguously the existence of some discrete effects in the short-waves part of the wave spectrum. Newly presented model of laminated turbulence explains theoretically appearance of these effects thus putting a novel problem - construction of fast algorithms for computation of solutions of resonance conditions with integer wave-numbers of order $10^3$ and more. Example of such an algorithm for 4-waves interactions of gravity waves is given. Its generalization on the different types of waves is briefly discussed.

  8. Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents

    E-Print Network [OSTI]

    Vladimir Kozlov; Nikolay Kuznetsov

    2014-06-05

    The two-dimensional free-boundary problem of steady periodic waves with vorticity is considered for water of finite depth. We investigate how flows with small-amplitude Stokes waves on the free surface bifurcate from a horizontal parallel shear flow in which counter-currents may be present. Two bifurcation mechanisms are described: for waves with fixed Bernoulli's constant and fixed wavelength. In both cases the corresponding dispersion equations serve for defining wavelengths from which Stokes waves bifurcate. Sufficient conditions guaranteeing the existence of roots of these equations are obtained. Two particular vorticity distributions are considered in order to illustrate general results.

  9. Experimental studies of the hydrodynamic characteristics of a sloped wave energy device 

    E-Print Network [OSTI]

    Lin, Chia-Po

    2000-07-19

    Many wave energy convertors are designed to use either vertical (heave) or horizontal (surge) movements of waves. But the frequency response of small heaving buoys and oscillating water column devices shows that they are ...

  10. Quantification of the influence of directional sea state parameters over the performances of wave energy converters 

    E-Print Network [OSTI]

    Pascal, Remy Claude Rene

    2012-11-29

    Accurate predictions of the annual energy yield from wave energy converters are essential to the development of the wave industry. The current method based on power matrices uses only a small part of the data available ...

  11. Accurate evaluation of pionium wave functions

    SciTech Connect (OSTI)

    Suebka, P.; Yan, Y.

    2004-09-01

    A suitable numerical approach based on Sturmian functions is employed to solve the pionium problem for both local and nonlocal potentials. The approach accounts for both the short-ranged strong interaction and the long-ranged Coulomb force and provides accurately the wave function and binding energy of pionium. It is found that the ground-state pionium wave function in realistic pion-pion strong interactions might be considerably different from the hydrogen-like one at a small distance.

  12. Wave Energy Basics

    Broader source: Energy.gov [DOE]

    Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity.

  13. Wave Control Introduction

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    focussing: in crossing seas due to coastal or submarine convergences. Moreover, (rogue) wave energy devices maker to create the highest rogue wave? geometry and dynamo in a new rogue wave energy device? maximum

  14. FREAK WAVES AND CONCLUSIVE SIMULATION R. V. Shamin

    E-Print Network [OSTI]

    Fominov, Yakov

    , y, t) F2(x, y, t) Dissipation Calc error Errors of calculations Small external influences (wind error Errors of calculations Small external influences (wind)! Errors of calculations provide stability of our solutions. In particular, by us it is shown that freak waves can arise and at small external

  15. Method and system for small scale pumping

    DOE Patents [OSTI]

    Insepov, Zeke (Darien, IL); Hassanein, Ahmed (Bolingbrook, IL)

    2010-01-26

    The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.

  16. Numerical wave optics and the lensing of gravitational waves by globular clusters

    E-Print Network [OSTI]

    Andrew J. Moylan; David E. McClelland; Susan M. Scott; Antony C. Searle; G. V. Bicknell

    2007-10-16

    We consider the possible effects of gravitational lensing by globular clusters on gravitational waves from asymmetric neutron stars in our galaxy. In the lensing of gravitational waves, the long wavelength, compared with the usual case of optical lensing, can lead to the geometrical optics approximation being invalid, in which case a wave optical solution is necessary. In general, wave optical solutions can only be obtained numerically. We describe a computational method that is particularly well suited to numerical wave optics. This method enables us to compare the properties of several lens models for globular clusters without ever calling upon the geometrical optics approximation, though that approximation would sometimes have been valid. Finally, we estimate the probability that lensing by a globular cluster will significantly affect the detection, by ground-based laser interferometer detectors such as LIGO, of gravitational waves from an asymmetric neutron star in our galaxy, finding that the probability is insignificantly small.

  17. Long wave expansions for water waves over random topography

    E-Print Network [OSTI]

    Anne de Bouard; Walter Craig; Oliver Díaz-Espinosa; Philippe Guyenne; Catherine Sulem

    2007-10-01

    In this paper, we study the motion of the free surface of a body of fluid over a variable bottom, in a long wave asymptotic regime. We assume that the bottom of the fluid region can be described by a stationary random process $\\beta(x, \\omega)$ whose variations take place on short length scales and which are decorrelated on the length scale of the long waves. This is a question of homogenization theory in the scaling regime for the Boussinesq and KdV equations. The analysis is performed from the point of view of perturbation theory for Hamiltonian PDEs with a small parameter, in the context of which we perform a careful analysis of the distributional convergence of stationary mixing random processes. We show in particular that the problem does not fully homogenize, and that the random effects are as important as dispersive and nonlinear phenomena in the scaling regime that is studied. Our principal result is the derivation of effective equations for surface water waves in the long wave small amplitude regime, and a consistency analysis of these equations, which are not necessarily Hamiltonian PDEs. In this analysis we compute the effects of random modulation of solutions, and give an explicit expression for the scattered component of the solution due to waves interacting with the random bottom. We show that the resulting influence of the random topography is expressed in terms of a canonical process, which is equivalent to a white noise through Donsker's invariance principle, with one free parameter being the variance of the random process $\\beta$. This work is a reappraisal of the paper by Rosales & Papanicolaou \\cite{RP83} and its extension to general stationary mixing processes.

  18. Surface waves in deformed Bell materials

    E-Print Network [OSTI]

    Michel Destrade

    2013-04-30

    Small amplitude inhomogeneous plane waves are studied as they propagate on the free surface of a predeformed semi-infinite body made of Bell constrained material. The predeformation corresponds to a finite static pure homogeneous strain. The surface wave propagates in a principal direction of strain and is attenuated in another principal direction, orthogonal to the free surface. For these waves, the secular equation giving the speed of propagation is established by the method of first integrals. This equation is not the same as the secular equation for incompressible half-spaces, even though the Bell constraint and the incompressibility constraint coincide in the isotropic infinitesimal limit.

  19. Surface acoustic waves in rotating orthorhombic crystals

    E-Print Network [OSTI]

    Michel Destrade

    2013-04-24

    The propagation of surface (Rayleigh) waves over a rotating orthorhombic crystal is studied. The crystal possesses three crystallographic axes, normal to the symmetry planes: the half-space is cut along a plane normal to one of these axes, the wave travels in the direction of another, and the rotation occurs at a uniform rate about any of the three axes. The secular equation for the surface wave speed is found explicitly; in contrast to the non-rotating case, it is dispersive (frequency-dependent). Both Coriolis and centrifugal accelerations appear in the equations of motion: none can be neglected in favor of the other, even at small rotation rates.

  20. Protective, Modular Wave Power Generation System

    SciTech Connect (OSTI)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  1. Geometrical vs wave optics under gravitational waves

    E-Print Network [OSTI]

    Raymond Angélil; Prasenjit Saha

    2015-05-20

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics - rather than solving Maxwell's equations directly for the fields, as in most previous approaches - we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.

  2. Small Business Innovation Research and Small Business Technology...

    Office of Environmental Management (EM)

    Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs Small Business...

  3. Big Flippin' Wave Science

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Verdes, Campus Point, Coal Oil Point (Sands) Waves propagate perpendicular to isobaths (lines of constant

  4. Water Waves Roger Grimshaw

    E-Print Network [OSTI]

    Water Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves nonlinear waves. Throughout the theory is based on the traditional assumptions that water is inviscid

  5. Supporting Small Businesses

    Broader source: Energy.gov [DOE]

    Welcome to the office of Small and Disadvantaged Business Utilization. Our primary goal is to increase small business utilization at the Department of Energy by advocating for all small business...

  6. Another Small World

    E-Print Network [OSTI]

    Bots, Eliane Esther

    2011-01-01

    Bots, E. “Another Small World. ” http://escholarship.org/uc/ISSN: 2159-2926 Another Small World Eliane Bots Bots, E. “Another Small World. ” http://escholarship.org/uc/

  7. New Mexico Small Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Assistance Program (NMSBA) helps small businesses in New Mexico access cutting-edge technologies, solve technical issues, and gain knowledge from technical experts...

  8. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    The Small Particle Heat Exchange Receiver (SPHER) for Solarof the small particle heat exchange receiver (or SPHER), asabsorption process, the heat exchange to the gas, the choice

  9. Small Generator Aggregation (Maine)

    Broader source: Energy.gov [DOE]

    This section establishes requirements for electricity providers to purchase electricity from small generators, with the goal of ensuring that small electricity generators (those with a nameplate...

  10. Small Wind Conference 2015

    Broader source: Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  11. Wave-mean flow interactions: from nanometre to megametre scales 

    E-Print Network [OSTI]

    Xie, Jinhan

    2015-07-01

    Waves, which arise when restoring forces act on small perturbations, are ubiquitous in fluids. Their counterpart, mean flows, capture the remainder of the motion and are often characterised by a slower evolution and larger ...

  12. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and ...

  13. Wave turbulent statistics in non-weak wave turbulence

    E-Print Network [OSTI]

    Naoto Yokoyama

    2011-05-08

    In wave turbulence, it has been believed that statistical properties are well described by the weak turbulence theory, in which nonlinear interactions among wavenumbers are assumed to be small. In the weak turbulence theory, separation of linear and nonlinear time scales derived from the weak nonlinearity is also assumed. However, the separation of the time scales is often violated even in weak turbulent systems where the nonlinear interactions are actually weak. To get rid of this inconsistency, closed equations are derived without assuming the separation of the time scales in accordance with Direct-Interaction Approximation (DIA), which has been successfully applied to Navier--Stokes turbulence. The kinetic equation of the weak turbulence theory is recovered from the DIA equations if the weak nonlinearity is assumed as an additional assumption. It suggests that the DIA equations is a natural extension of the conventional kinetic equation to not-necessarily-weak wave turbulence.

  14. Steady water waves with multiple critical layers: interior dynamics

    E-Print Network [OSTI]

    Mats Ehrnström; Joachim Escher; Gabriele Villari

    2011-04-01

    We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.

  15. Fluctuations of energy flux in wave turbulence Eric Falcon,1

    E-Print Network [OSTI]

    Falcon, Eric

    Fluctuations of energy flux in wave turbulence ´Eric Falcon,1 S´ebastien Auma^itre,2 Claudio Falc gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much interactions transfer kinetic energy toward small scales where viscous dissipation takes place

  16. the wave model A traveling wave is an organized disturbance

    E-Print Network [OSTI]

    Winokur, Michael

    1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction

  17. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  18. Spiral density wave generation by vortices in Keplerian flows

    E-Print Network [OSTI]

    G. Bodo; G. Chagelishvili; G. Murante; A. Tevzadze; P. Rossi; A. Ferrari

    2005-03-22

    We perform a detailed analytical and numerical study of the dynamics of perturbations (vortex/aperiodic mode, Rossby and spiral-density waves) in 2D compressible disks with a Keplerian law of rotation. We draw attention to the process of spiral-density wave generation from vortices, discussing, in particular, the initial, most peculiar stages of wave emission. We show that the linear phenomenon of wave generation by vortices in smooth (without inflection points) shear flows found by using the so-called non-modal approach, is directly applicable to the present case. After an analytical non-modal description of the physics and characteristics of the spiral-density wave generation/propagation in the local shearing-sheet model, we follow the process of wave generation by small amplitude coherent circular vortex structures, by direct global numerical simulation, describing the main features of the generated waves.

  19. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore »disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  20. Aspects of wave turbulence in preheating

    SciTech Connect (OSTI)

    Crespo, José A.; De Oliveira, H.P., E-mail: jaacrespo@gmail.com, E-mail: oliveira@dft.if.uerj.br [Universidade do Estado do Rio de Janeiro, Instituto de Física - Departamento de Física Teórica, Rio de Janeiro, RJ, CEP 20550-013 Brazil. (Brazil)

    2014-06-01

    In this work we have studied the nonlinear preheating dynamics of several inflationary models. It is well established that after a linear stage of preheating characterized by the parametric resonance, the nonlinear dynamics becomes relevant driving the system towards turbulence. Wave turbulence is the appropriated description of this phase since the matter contents are fields instead of usual fluids. Turbulence develops due to the nonlinear interations of waves, here represented by the small inhomogeneities of the scalar fields. We present relevant aspects of wave turbulence such as the Kolmogorov-Zakharov spectrum in frequency and wave number that indicates the energy transfer through scales. From the power spectrum of the matter energy density we were able to estimate the temperature of the thermalized system.

  1. Stable directions for small nonlinear Dirac standing waves

    E-Print Network [OSTI]

    Nabile Boussaid

    2006-04-27

    We prove that for a Dirac operator with no resonance at thresholds nor eigenvalue at thresholds the propagator satisfies propagation and dispersive estimates. When this linear operator has only two simple eigenvalues close enough, we study an associated class of nonlinear Dirac equations which have stationary solutions. As an application of our decay estimates, we show that these solutions have stable directions which are tangent to the subspaces associated with the continuous spectrum of the Dirac operator. This result is the analogue, in the Dirac case, of a theorem by Tsai and Yau about the Schr\\"{o}dinger equation. To our knowledge, the present work is the first mathematical study of the stability problem for a nonlinear Dirac equation.

  2. Synthesis of very small diameter silica nanofibers using sound waves

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)Feedback System inStatusandArticle) |HydrogenMetathesiswith ppm

  3. Funding Phases for Small Business Innovation Research and Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phases for Small Business Innovation Research and Small Business Technology Transfer Programs Funding Phases for Small Business Innovation Research and Small Business Technology...

  4. Eligibility for a Small Business Innovation Research and Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eligibility for a Small Business Innovation Research and Small Business Technology Transfer Program Grant Eligibility for a Small Business Innovation Research and Small...

  5. Relativistic Quaternionic Wave Equation II

    E-Print Network [OSTI]

    Schwartz, Charles

    2007-01-01

    Relativistic quaternionic wave equation. II J. Math. Phys.Relativistic quaternionic wave equation. II Charles Schwartzcomponent quaternionic wave equation recently introduced. A

  6. Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)

    E-Print Network [OSTI]

    1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution

  7. Rogue Wave Modes for the Long WaveShort Wave Resonance Model Kwok Wing CHOW

    E-Print Network [OSTI]

    Rogue Wave Modes for the Long Wave­Short Wave Resonance Model Kwok Wing CHOW 1Ã , Hiu Ning CHAN 1 online June 11, 2013) The long wave­short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution equations

  8. Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)

    E-Print Network [OSTI]

    of a long wave matches the group velocity of a short wave. Significant interactions and energy transfer can1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase

  9. Modeling water waves beyond perturbations

    E-Print Network [OSTI]

    Clamond, Didier

    2015-01-01

    In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein-Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.

  10. Waves upstream and downstream of interplanetary shocks driven by coronal mass ejections

    E-Print Network [OSTI]

    California at Berkeley, University of

    Waves upstream and downstream of interplanetary shocks driven by coronal mass ejections P. Kajdic,1) waves and higher-frequency (HF, 1 Hz) whistler precursors upstream of these shocks. Downstream of them as in the upstream case. We find that IP shocks with relatively small Mms can excite waves in large regions in front

  11. Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite

    E-Print Network [OSTI]

    Alexander, M. Joan

    Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern important drag forces on the circulation. Small island orography is generally neglected in mountain wave

  12. Generation, propagation, and breaking of an internal wave beam Heather A. Clark and Bruce R. Sutherlanda

    E-Print Network [OSTI]

    Sutherland, Bruce

    Generation, propagation, and breaking of an internal wave beam Heather A. Clark and Bruce R of internal gravity waves generated by the large-amplitude vertical oscillations of a circular cylinder predictions and experimental investigations of waves generated by small-amplitude cylinder oscillations

  13. Capillary-gravity waves generated by a sudden object motion A. D. Chepelianskii,2

    E-Print Network [OSTI]

    Raphael, Elie

    Capillary-gravity waves generated by a sudden object motion F. Closa,1 A. D. Chepelianskii,2 and E study theoretically the capillary-gravity waves created at the water-air interface by a small object during a sudden accelerated or decelerated rectilinear motion. We analyze the wave resistance

  14. Wave-current interaction in strongly sheared mean flows Zhifei Dong and James T. Kirby

    E-Print Network [OSTI]

    Kirby, James T.

    Wave-current interaction in strongly sheared mean flows Zhifei Dong and James T. Kirby Center@udel.edu Abstract We describe a framework for wave-current interaction theory for small-amplitude surface gravity waves propagating on the strongly sheared mean flows. Using a multiple-scale perturbation method, we

  15. Internal Wave Interferometry

    E-Print Network [OSTI]

    Mathur, Manikandan S.

    Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, ...

  16. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J.

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...

  17. Analytical Approximation for 2-D Nonlinear Periodic Deep Water Waves

    E-Print Network [OSTI]

    Saleh Tanveer

    2013-09-20

    A recently developed method has been extended to a nonlocal equation arising in steady water wave propagation in two dimensions. We obtain analyic approximation of steady water wave solution in two dimensions with rigorous error bounds for a set of parameter values that correspond to heights slightly smaller than the critical. The wave shapes are shown to be analytic. The method presented in quite general and does not assume smallness of wave height or steepness and can be readily extended to other interfacial problems involving Laplace's equation.

  18. Bragg grating rogue wave

    E-Print Network [OSTI]

    Degasperis, Antonio; Aceves, Alejandro B

    2015-01-01

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.

  19. Wave Particles Cem Yuksel

    E-Print Network [OSTI]

    Keyser, John

    Wave Particles Cem Yuksel Computer Science Texas A&M University Donald H. House Visualization captured from our real-time simulation system (approximately 100,000 wave particles) Abstract We present a new method for the real-time simulation of fluid sur- face waves and their interactions with floating

  20. Internal wave instability: Wave-wave versus wave-induced mean flow interactions

    E-Print Network [OSTI]

    Sutherland, Bruce

    , known as parametric sub- harmonic instability, results generally when a disturbance of one frequency imparts energy to disturbances of half that frequency.13,14 Generally, a plane periodic internal wave, energy from primary waves is transferred, for example, to waves with half frequency. Self

  1. Performance Assessment of the Wave Dragon Wave Energy Converter

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

  2. Small Business Commitment | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the U.S. Department of Energy's Small Business Forum & Expo, June 16-18, 2015, in Phoenix, AZ. NREL continues its ongoing involvement with the small business community by...

  3. Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics 

    E-Print Network [OSTI]

    Qian, Tingting

    2010-07-14

    Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...

  4. Low Frequency Scattering Resonance Wave in Strong Heterogeneity

    E-Print Network [OSTI]

    Liu, Yinbin

    2015-01-01

    Multiple scattering of wave in strong heterogeneity can cause resonance-like wave phenomenon where signal exhibits low frequency, high intensity, and slowly propagating velocity. For example, long period event in volcanic seismology and surface plasmon wave and quantum Hall effect in wave-particle interactions. Collective behaviour in a many-body system is usually thought to be the source for generating the anomaly. However, the detail physical mechanism is not fully understood. Here I show by wave field modeling for microscopic bubble cloud model and 1D heterogeneity that the anomaly is related to low frequency scattering resonance happened in transient regime. This low frequency resonance is a kind of wave coherent scattering enhancement phenomenon in strongly-scattered small-scale heterogeneity. Its resonance frequency is inversely proportional to heterogeneous scale and contrast and will further shift toward lower frequency with random heterogeneous scale and velocity fluctuations. Low frequency scatterin...

  5. Passive Millimeter-Wave Ranging Using Discrete Lenses with Wave-Front Coding

    E-Print Network [OSTI]

    Popovic, Zoya

    of a receiving discrete lens with modulated amplitude and/or phase response. The result is a set of image pat on a relatively small (100-element) discrete lens antenna array with a cosinusoidal amplitude mask and half curve around 94 GHz. Waves in this fre- quency range penetrate through dust, fog and smoke

  6. New wave equation for ultrarelativistic particles

    E-Print Network [OSTI]

    Ginés R. Pérez Teruel

    2014-12-15

    Starting from first principles and general assumptions based on the energy-momentum relation of the Special Theory of Relativity we present a novel wave equation for ultrarelativistic matter. This wave equation arises when particles satisfy the condition, $p>>m$, i.e, when the energy-momentum relation can be approximated by, $E\\simeq p+\\frac{m^{2}}{2p}$. Interestingly enough, such as the Dirac equation, it is found that this wave equation includes spin in a natural way. Furthermore, the free solutions of this wave equation contain plane waves that are completely equivalent to those of the theory of neutrino oscillations. Therefore, the theory reproduces some standard results of the Dirac theory in the limit $p>>m$, but offers the possibility of an explicit Lorentz Invariance Violation of order, $\\mathcal{O}((mc)^{4}/p^{2})$. As a result, the theory could be useful to test small departures from Dirac equation and Lorentz Invariance at very high energies. On the other hand, the wave equation can also describe particles of spin 1 by a simple substitution of the spin operators, $\\boldsymbol{\\sigma}\\rightarrow\\boldsymbol{\\alpha}$. In addition, it naturally admits a Lagrangian formulation and a Hamiltonian formalism. We also discuss the associated conservation laws that arise through the symmetry transformations of the Lagrangian.

  7. Wave turbulence revisited: Where does the energy flow?

    E-Print Network [OSTI]

    L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov

    2014-04-03

    Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.

  8. DOE Announces Small Business Awards at its Annual Small Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Small Business Innovative Research-Small Business of the Year Recipient: Deep Web Technologies, Inc. President and CTO: Abe Lederman Santa Fe, New Mexico Small...

  9. Small Business Innovation Research (SBIR) and Small Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) An overview of the...

  10. MHD waves in sunspots

    E-Print Network [OSTI]

    Sych, Robert

    2015-01-01

    The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.

  11. Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some findings and outstanding problems are also presented. Keywords: dusty plasmas, dust acoustic waves PACS: 52

  12. Wave momentum flux parameter: a descriptor for nearshore waves

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

  13. Structure-borne sound Flexural wave (bending wave)

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave ­ flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure

  14. REAL-TIME WATER WAVES WITH WAVE PARTICLES

    E-Print Network [OSTI]

    Keyser, John

    REAL-TIME WATER WAVES WITH WAVE PARTICLES A Dissertation by Cem Yuksel Submitted to the Office of DOCTOR OF PHILOSOPHY August 2010 Major Subject: Computer Science #12;REAL-TIME WATER WAVES WITH WAVE, Valerie E. Taylor August 2010 Major Subject: Computer Science #12;iii ABSTRACT Real-time Water Waves

  15. GN Wave theory and TEBEM for Wave-Body Interaction

    E-Print Network [OSTI]

    GN Wave theory and TEBEM for Wave-Body Interaction Dr. BinBin Zhao and Professor Wenyang Duan of simulating irregular nonlinear water wave interaction with arbitrary floating bodies, the Green-Naghdi wave corners. The results show that the high-level GN theory can predict wave transformation over uneven seabed

  16. Origin of coda waves: earthquake source resonance

    E-Print Network [OSTI]

    Liu, Yinbin

    2015-01-01

    Seismic coda in local earthquake exhibits the characteristics of uniform spatial distribution energy, selective frequency, and slow temporal decay oscillation. It is usually assumed to be the incoherent waves scattered from random heterogeneity in the earth's lithosphere. Here I show by wave field modeling for 1D heterogeneity that seismic coda is related to the natural resonance of earthquake source around the earthquake's focus. This natural resonance is a kind of wave coherent scattering enhancement phenomenon or coupling oscillations happened in steady state regime in strong small-scale heterogeneity. Its resonance frequency is inversely proportional to the heterogeneous scale and contrast and will shift toward lower frequency with increasing random heterogeneous scale and velocity fluctuations. Its energy weakens with decreasing impedance contrast and increasing random heterogeneous scale and velocity fluctuations.

  17. A Nonlocal Formulation of Rotational Water Waves

    E-Print Network [OSTI]

    Anthony C. L Ashton; A. S. Fokas

    2011-07-29

    The classical equations of irrotational water waves have recently been reformulated as a system of two equations, one of which is an explicit non-local equation for the wave height and for the velocity potential evaluated on the free surface. Here, in the two dimensional case, (a) we generalise the relevant formulation to the case of constant vorticity, as well as to the case where the free surface is described by a multi-valued function; (b) in the case of travelling waves we derive an upper bound for the free surface; (c) in the case of constant vorticity we construct a sequence of nearly Hamiltonian systems which provide an approximation in the asymptotic limit of certain physical small parameters. In particular, the explicit dependence of the vorticity on the coefficients of the KdV equation is clarified. Also, in the irrotational case we extend the formalism to n>2 dimensions and analyse rigorously the linear limit of these equations.

  18. Directed Relativistic Blast Wave

    E-Print Network [OSTI]

    Andrei Gruzinov

    2007-04-23

    A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

  19. Elastic wave-turbulence and intermittency

    E-Print Network [OSTI]

    Chibbaro, Sergio

    2015-01-01

    Weak Wave Turbulence is a powerful theory to predict statistical observables of diverse relevant physical phenomena, such as ocean waves, magnetohydrodynamics and nonlinear optics. The theory is based upon an asymptotic closure permitted in the limit of small nonlinearity. Here, we explore the possible deviations from this mean-field framework, in terms of anomalous scaling, focusing on the case of elastic plates. We establish the picture of the possible behaviors at varying the extent of nonlinearity, and we show that the mean-field theory is appropriate when all excited scales remain dominated by linear dynamics. The other picture is non-trivial and our results suggest that, when large scales contain much energy, the cascade sustains extreme events at small scales and the system displays intermittency.

  20. Wave Energy challenges and possibilities

    E-Print Network [OSTI]

    © Wave Energy ­ challenges and possibilities By: Per Resen Steenstrup www.WaveStarEnergy.com Risø-R-1608(EN) 161 #12;© Wave energy is an old story.... The first wave energy patent is 200 years old. Over the last 100 years more than 200 new wave energy devices have been developped and more than 1.000 patents

  1. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  2. Wave Energy Resource Analysis for Use in Wave Energy Conversion 

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01

    In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...

  3. Wave-Corpuscle Mechanics for Electric Charges

    E-Print Network [OSTI]

    Babin, Anatoli; Figotin, Alexander

    2010-01-01

    superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave

  4. Microstructural Design for Stress Wave Energy Management /

    E-Print Network [OSTI]

    Tehranian, Aref

    2013-01-01

    Nasser, S. , 2010. Stress-wave energy management throughNemat-Nasser, Stress-wave energy management through materialconstitute pressure wave energy and/or shear wave energy.

  5. Plane wave holonomies in loop quantum gravity II: sine wave solution

    E-Print Network [OSTI]

    Donald E. Neville

    2014-11-10

    This paper constructs an approximate sinusoidal wave packet solution to the equations of loop quantum gravity (LQG). There is an SU(2) holonomy on each edge of the LQG simplex, and the goal is to study the behavior of these holonomies under the influence of a passing gravitational wave. The equations are solved in a small sine approximation: holonomies are expanded in powers of sines, and terms beyond $\\sin^2$ are dropped; also, fields vary slowly from vertex to vertex. The wave is unidirectional and linearly polarized. The Hilbert space is spanned by a set of coherent states tailored to the symmetry of the plane wave case. Fixing the spatial diffeomorphisms is equivalent to fixing the spatial interval between vertices of the loop quantum gravity lattice. This spacing can be chosen such that the eigenvalues of the triad operators are large, as required in the small sine limit, even though the holonomies are not large. Appendices compute the energy of the wave, estimate the lifetime of the coherent state packet, discuss coarse-graining, and determine the behavior of the spinors used in the U(N) SHO realization of LQG.

  6. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-07-15

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite value. These decaying Kelvin waves correspond to wave number below the critical value for the Donnelly-Glaberson instability, and hence our results on the Schwarz quantum LIA correspond exactly to what one would expect from prior work on the Donnelly-Glaberson instability.

  7. Harmonic generation of gravitational wave induced Alfven waves

    E-Print Network [OSTI]

    Mats Forsberg; Gert Brodin

    2007-11-26

    Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.

  8. Electromagnetic Wave Dynamics in

    E-Print Network [OSTI]

    Kaiser, Robin

    Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases Robin Kaiser and Mark D. Havey Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases #12;39 E xperimental developments permit in the transport proper- ties of electromagnetic radiation in strongly scattering random media. Even in weakly

  9. CATCHING THE FOURTH WAVE

    E-Print Network [OSTI]

    Bieber, Michael

    CATCHING THE FOURTH WAVE YOU MAY HAVE RIDDEN THEM YOURSELF -- the swells that develop farther out beyond Toffler, the fourth wave -- biologi- cal intelligence and medical technology -- is on the horizon second and fourth nationally in terms of cities that receive the most research funds from the National

  10. Rayleigh WaveInternal Wave Coupling and Internal Wave Generation Above a Model Jet Stream

    E-Print Network [OSTI]

    Sutherland, Bruce

    Rayleigh Wave­Internal Wave Coupling and Internal Wave Generation Above a Model Jet Stream B. R to the study of unstable jet flows and applications of this work for internal wave generation by dynamic remains poorly understood. Most investigations of shear­generation of inter­ nal waves in the atmosphere

  11. Rayleigh Wave-Internal Wave Coupling and Internal Wave Generation Above a Model Jet Stream

    E-Print Network [OSTI]

    Sutherland, Bruce

    Rayleigh Wave-Internal Wave Coupling and Internal Wave Generation Above a Model Jet Stream B. R to the study of unstable jet flows and applications of this work for internal wave generation by dynamic remains poorly understood. Most investigations of shear-generation of inter- nal waves in the atmosphere

  12. An unsteady wave driver for narrowbanded waves: modeling nearshore circulation driven by wave groups

    E-Print Network [OSTI]

    Kirby, James T.

    An unsteady wave driver for narrowbanded waves: modeling nearshore circulation driven by wave Abstract In this paper, we derive an unsteady refraction­diffraction model for narrowbanded water waves for use in computing coupled wave­current motion in the nearshore. The end result is a variable

  13. The Cubic Dirac Equation: Small Initial Data in H1(R3)

    E-Print Network [OSTI]

    Bejenaru, I; Herr, S

    2015-01-01

    for homogeneous wave-equations, Math. Z. 120 (1971), 93–106.semilinear Klein-Gordon equations with small weakly decayingComm. Partial Differential Equations 25 (2000), no. 11-12,

  14. Magneto-Acoustic Wave Oscillations in Solar Spicules

    E-Print Network [OSTI]

    A. Ajabshirizadeh; E. Tavabi; S. Koutchmy

    2008-06-09

    Some observations suggest that solar spicules show small amplitude and high frequency oscillations of magneto-acoustic waves, which arise from photospheric granular forcing. We apply the method of MHD seismology to determine the period of kink waves. For this purposes, the oscillations of a magnetic cylinder embedded in a field-free environment is investigated. Finally, diagnostic diagrams displaying the oscillatory period in terms of some equilibrium parameters are provided to allow a comparison between theoretical results and those coming from observations.

  15. Internal wave and boundary current generation by tidal flow over topography Amadeus Dettner, Harry L. Swinney, and M. S. Paoletti

    E-Print Network [OSTI]

    Texas at Austin. University of

    Internal wave and boundary current generation by tidal flow over topography Amadeus Dettner, Harry turbulence and small-scale internal waves above deep-ocean topography Phys. Fluids 25, 106604 (2013); 10.1063/1.4826888 Topographically induced internal solitary waves in a pycnocline: Secondary generation and selection criteria Phys

  16. Recirculation in multiple wave conversions

    E-Print Network [OSTI]

    Brizard, A.J.

    2008-01-01

    model lies with the simple wave energy conservation law itthe recirculation of wave energy introduces interference e?particles, the tertiary-wave energy may be negative and thus

  17. Center for Wave Phenomena Wave Phenomena

    E-Print Network [OSTI]

    Snieder, Roel

    research and education program in seismic exploration, monitoring and wave propagation. The main focus into a life of scientific discovery." Kurang Mehta, Ph.D. Class of 2007 Shell Exploration and Production Phil of CWP is on seismic modeling, imaging and inversion methods, as well as on improving the accuracy

  18. Vol 435|23 June 2005 Floater clustering in a standing wave

    E-Print Network [OSTI]

    Falkovich, Gregory

    the distribution of small particles that float on water? Here we show that drifting small particles concentrate in either the nodes or anti- nodes of a standing wave, depending on whether they are hydrophilic or hydro, the mass of liquid displaced by an object is equal to the mass of that object. Small hydrophilic particles

  19. Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies St´ephan T. Grilli for wave energy harvesting (free-floating or slackly moored), to produce about 1 KW per unit at full scale-contained (water tight) resonating multiple-spar buoy (or Starspar), in which a longer central spar houses the LEG

  20. The unexpected role of D waves in low-energy neutral pion photoproduction

    E-Print Network [OSTI]

    C. Fernandez-Ramirez

    2009-12-21

    It has been commonly assumed that low-energy neutral pion photoproduction from the proton can be described accounting only for S and P waves, and that higher partial waves are irrelevant. We have found that this assumption is not correct and that the inclusion of D waves is necessary to obtain a reliable extraction of the $E_{0+}$ multipole from experimental data. This is due in large measure to the spontaneous breaking of chiral symmetry in QCD which leads to very small S-wave contributions. This makes the usual partial wave expansion less accurate and although D waves are small, their contribution is enhanced through the interference with P waves, which compromises the S-wave extraction from data if D waves are not taken into account. In our work we have used Heavy Baryon Chiral Perturbation Theory to one loop, and up to ${\\cal O}(q^4)$, to account for the S and P waves, while D waves are added in an almost model-independent way using standard Born terms and vector mesons. We also show that higher partial waves do not play an important role.

  1. Diagonalization of pp-waves

    E-Print Network [OSTI]

    B. V. Ivanov

    1997-05-21

    A coordinate transformation is found which diagonalizes the axisymmetric pp-waves. Its effect upon concrete solutions, including impulsive and shock waves, is discussed.

  2. Wave-wave interactions in solar type III radio bursts

    SciTech Connect (OSTI)

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  3. Small Business Resources

    Office of Environmental Management (EM)

    16 Top 10 Small Business Best Practices 4. Monitor Trends * No business operates in a vacuum. * The events and changes in the global landscape have an effect on your business. *...

  4. Small Business First Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-14

    The Department of Energy (DOE) is committed to maximizing opportunities for small business contracts, including prime contracts and subcontracts, while driving towards operational excellence and efficiency across the enterprise. Does not cancel/supersede other directives.

  5. Wave–vortex interactions in the nonlinear Schrödinger equation

    SciTech Connect (OSTI)

    Guo, Yuan Bühler, Oliver

    2014-02-15

    This is a theoretical study of wave–vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave–vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave–vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  6. Shallow Water Waves and Solitary Waves Willy Hereman

    E-Print Network [OSTI]

    Hereman, Willy A.M.

    . Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depthShallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer

  7. Long wave expansions for water waves over random topography

    E-Print Network [OSTI]

    Craig, Walter

    Long wave expansions for water waves over random topography Anne de Bouard1 , Walter Craig2 interacting with the random bottom. We show that the resulting influence of the random topography is expressed numbers: 76B15, 35Q53, 76M50, 60F17 Keywords :Water waves, random topography, long wave asymptotics #12

  8. On Generating Gravity Waves with Matter and Electromagnetic Waves

    E-Print Network [OSTI]

    C. Barrabes; P. A. Hogan

    2008-04-05

    If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.

  9. Evolution of Rogue Waves in Interacting Wave Systems

    E-Print Network [OSTI]

    A. Grönlund; B. Eliasson; M. Marklund

    2009-04-03

    Large amplitude water waves on deep water has long been known in the sea faring community, and the cause of great concern for, e.g., oil platform constructions. The concept of such freak waves is nowadays, thanks to satellite and radar measurements, well established within the scientific community. There are a number of important models and approaches for the theoretical description of such waves. By analyzing the scaling behavior of freak wave formation in a model of two interacting waves, described by two coupled nonlinear Schroedinger equations, we show that there are two different dynamical scaling behaviors above and below a critical angle theta_c of the direction of the interacting waves below theta_c all wave systems evolve and display statistics similar to a wave system of non-interacting waves. The results equally apply to other systems described by the nonlinear Schroedinger equations, and should be of interest when designing optical wave guides.

  10. LABORATORY VII: WAVE OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VII: WAVE OPTICS Lab VII - 1 In this lab, you will solve problems in ways that take-like behavior. These conditions may be less familiar to you than the conditions for which geometrical optics

  11. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  12. Surface wave interferometry 

    E-Print Network [OSTI]

    Halliday, David Fraser

    2009-01-01

    This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...

  13. Relativistic quaternionic wave equation

    E-Print Network [OSTI]

    Schwartz, C

    2006-01-01

    Schrodinger ?time dependent? equation, ? 1 and ? 2 , then?TCP?. The current conservation equation ?3.2? is still truefor this extended wave equation ?8.1?, however, Eq. ?6.7?

  14. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  15. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

  16. Wave Propagation in Multiferroic Materials

    E-Print Network [OSTI]

    Keller, Scott Macklin

    2013-01-01

    Waves in Magnetoelectric Materials . . . Need forApplication of Multiferroic Materials to Receive AntennaMaterials . . . . . . . . . . . . . . . . . . . . . . . . .

  17. Slow Waves in Fractures Filled with Viscous Fluid

    SciTech Connect (OSTI)

    Korneev, Valeri

    2008-01-08

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  18. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect (OSTI)

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  19. Small Business News, Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *Impact NeutronSmall Business News, Publications Small

  20. Small Particles in Cirrus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *Impact NeutronSmall Business- NewsSmall Modular

  1. Small Particles in Cirrus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *Impact NeutronSmall Business- NewsSmall Modular

  2. SMALL-SCALE VARIABILITY IN SEA SURFACE HEIGHTS AND SURFACE WINDS: IMPLICATIONS FOR ERRORS IN OCEAN MODELS AND OBSERVATIONS

    E-Print Network [OSTI]

    Kaplan, Alexey

    SMALL-SCALE VARIABILITY IN SEA SURFACE HEIGHTS AND SURFACE WINDS: IMPLICATIONS FOR ERRORS IN OCEAN on dispersion relationship of planetary waves 4. Small-scale variability in surface winds and sea surface of model and observational data sets. Imperfect parameterization of the small-scale variability (SSV

  3. Global well-posedness of the 3-D full water wave problem

    E-Print Network [OSTI]

    Sijue Wu

    2009-10-13

    We consider the problem of global in time existence and uniqueness of solutions of the 3-D infinite depth full water wave problem. We show that the nature of the nonlinearity of the water wave equation is essentially of cubic and higher orders. For any initial interface that is sufficiently small in its steepness and velocity, we show that there exists a unique smooth solution of the full water wave problem for all time, and the solution decays at the rate $1/t$.

  4. Transport Theory for Acoustic Waves with Re ection and Transmission at Interfaces

    E-Print Network [OSTI]

    Papanicolaou, George C.

    Transport Theory for Acoustic Waves with Re ection and Transmission at Interfaces Guillaume Bal Joseph B. Keller y George Papanicolaou z Leonid Ryzhik x March 8, 1999 Abstract Transport theoretic with small random uctuations. The Wigner distribution is used to go from waves to energy transport

  5. Circumferential creeping waves around a fluid-filled cylindrical cavity in an elastic medium

    E-Print Network [OSTI]

    Nagy, Peter B.

    of fluid fuel trapped in these rather small approximately 6­7 mm in diameter holes would strongly affectCircumferential creeping waves around a fluid-filled cylindrical cavity in an elastic medium Waled The dispersion behavior of circumferential creeping waves around a fluid-filled cylindrical cavity in an infinite

  6. Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy community. Key words: Wave energy, offshore wind turbines, marine energy 1 Introduction Marine renewables installations of a few kW like small wind turbines or photovoltaic cells installed to provide electricity

  7. Emission of Inertial Waves by Baroclinically Unstable Flows: Laboratory Experiments with Altimetric Imaging Velocimetry

    E-Print Network [OSTI]

    the dispersion relation for the inertial waves. The energy of the waves is small compared to the energy, or the "gradient wind" velocity with very high spatial resolution (typically several million vectors) limited largely by the pixel resolution of the available imaging sensors. The technique is particularly suited

  8. HHS SMALL BUSINESS REVIEW FORM

    Office of Environmental Management (EM)

    DOE Form 4220.2 (Revised January 2014) Office of Small and Disadvantaged Business Utilization Small Business Review OSDBU Control Number: Dat...

  9. Mexico Small Business Assistance fest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrate success at New Mexico Small Business Assistance fest April 4, 2011 LOS ALAMOS, New Mexico, April 4, 2011-The New Mexico Small Business Assistance (NMSBA) program is...

  10. Seismic waves in rocks with fluids and fractures

    SciTech Connect (OSTI)

    Berryman, J.G.

    2007-05-14

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.

  11. Gravitational-wave Detection With Matter-wave Interferometers Based On Standing Light Waves

    E-Print Network [OSTI]

    Dongfeng Gao; Peng Ju; Baocheng Zhang; Mingsheng Zhan

    2011-03-25

    We study the possibility of detecting gravitational-waves with matter-wave interferometers, where atom beams are split, deflected and recombined totally by standing light waves. Our calculation shows that the phase shift is dominated by terms proportional to the time derivative of the gravitational wave amplitude. Taking into account future improvements on current technologies, it is promising to build a matter-wave interferometer detector with desired sensitivity.

  12. Small Business Innovation Research and Small Business Technology Transfer Programs

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy’s (EERE’s) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE) SBIR/STTR programs that provide grants to small businesses or individuals who can form a small business within the required application timeline.

  13. Small Wind Electric Systems Small Wind Electric Systems

    E-Print Network [OSTI]

    Branoff, Theodore J.

    An Illinois Consumer's Guide Small Wind Electric Systems #12;Small Wind Electric Systems Cover photo: Small wind turbines, like this grid-connected 10-kilowatt Bergey, can provide supplemental power -- Warren Gretz, NREL/PIX09630 #12;Small Wind Electric Systems Contents Introduction

  14. INTERNAL SOLITARY WAVES WITH A WEAKLY STRATIFIED CRITICAL LAYER

    E-Print Network [OSTI]

    horizontal shear flow and density stratification. On a long time scale, the waves evolve and reach a quasi, we invoke nonlinear effects to re- solve this singularity. Although viscosity and thermal-fluid limit is eventually taken. Crucially, the density stratification is assumed to be small at the critical

  15. Non-linear Langmuir waves in a warm quantum plasma

    SciTech Connect (OSTI)

    Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Kitaev, Ilya N. [Russian Federal Nuclear Center—All-Russia Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), 37 Mira Ave., Nizhny Novgorod region, Sarov 607188 (Russian Federation); Sarov State Institute of Physics and Technology (SarFTI), National Research Nuclear University MEPhI, 607186 Sarov, Nizhny Novgorod region (Russian Federation)

    2014-10-15

    A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.

  16. Study Question: 7 May 2012 OC514 Waves Waveguide modes

    E-Print Network [OSTI]

    condition at t=0. Now consider propagation down the channel, in the x-direction. A disturbance at the center-dispersive waves have, in the presence of confining boundaries, a sort of dispersion. Plot the frequency, and discuss how a initially small scale disturbance will propagate. Choose just one value of n, so that we

  17. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  18. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  19. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott (Lee's Summit, MO)

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  20. Standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  1. Structuring small projects

    SciTech Connect (OSTI)

    Pistole, C.O.

    1995-11-01

    One of the most difficult hurdles facing small project developers is obtaining financing. Many major banks and institutional investors are unwilling to become involved in projects valued at less than $25 million. To gain the interest of small project investors, developers will want to present a well-considered plan and an attractive rate of return. Waste-to-energy projects are one type that can offer diversified revenue sources that assure maximum profitability. The Ripe Touch Greenhouse project, a $14.5 million waste tire-to-energy facility in Colorado, provides a case study of how combining the strengths of the project partners can help gain community and regulatory acceptance and maximize profit opportunities.

  2. Small arms ammunition

    DOE Patents [OSTI]

    Huerta, Joseph (399 Clover St., Aberdeen, MD 21001)

    1992-01-01

    An elongate projectile for small arms use has a single unitary mass with a hollow nose cavity defined by a sharp rigid cutting edge adapted to make initial contact with the target surface and cut therethrough. The projectile then enters the target mass in an unstable flight mode. The projectile base is substantially solid such that the nose cavity, while relatively deep, does not extend entirely through the base and the projectile center of gravity is aft of its geometric center.

  3. Small-dam rehabs

    SciTech Connect (OSTI)

    Denning, J.

    1993-01-01

    This article examines the economics of maintenance, rehabilitation and improvement for small, aging, high-hazard dams. The topics of the article include raising the height of the spillway and repairing deteriorated concrete in the spillway of Fellows Lake Dam, emergency repair of the outlet conduit and replacement of riprap on the upstream slope of Storrie Lake Dam, and extensive rehabilitation of Reeves Lake Dam.

  4. Thermoplastic waves in magnetars

    E-Print Network [OSTI]

    Beloborodov, Andrei M

    2014-01-01

    Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields, which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure and velocity, and discuss implications for observed magnetar activity.

  5. Plate damage identification using wave propagation and impedance methods.

    SciTech Connect (OSTI)

    Wait, J. R. (Jeannette R.); Park, G. H. (Gyu Hae); Sohn, H. (Hoon); Farrar, C. R. (Charles R.)

    2004-01-01

    This paper illustrates an integrated approach for identifying structural damage in an aluminum plate. Piezoelectric (PZT) materials are used to actuatehense the dynamic response of the structure. Two damage identification techniques are integrated in this study, including Lamb wave propagations and impedance methods. In Lamb wave propagations, one PZT launches an elastic wave through the structure, and responses are measured by an array of PZT sensors. The changes in both wave attenuation and reflection are used to detect and locate the damage. The impedance method monitors the variations in structural mechanical impedance, which is coupled with the electrical impedance of the PZT. Both methods operate in high frequency ranges at which there are measurable changes in structural responses even for incipient damage such as small cracks or loose connections. This paper summarizes two methods used for damage identification, experimental procedures, and additional issues that can be used as a guideline for future investigations.

  6. An integrable evolution equation for surface waves in deep water

    E-Print Network [OSTI]

    R. Kraenkel; H. Leblond; M. A. Manna

    2011-01-30

    In order to describe the dynamics of monochromatic surface waves in deep water, we derive a nonlinear and dispersive system of equations for the free surface elevation and the free surface velocity from the Euler equations in infinite depth. From it, and using a multiscale perturbative methods, an asymptotic model for small-aspect-ratio waves is derived. The model is shown to be completely integrable. The Lax pair, the first conserved quantities as well as the symmetries are exhibited. Theoretical and numerical studies reveal that it supports periodic progressive Stokes waves which peak and break in finite time. Comparison between the limiting wave solution of the asymptotic model and classical irrotational results is performed.

  7. Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma

    SciTech Connect (OSTI)

    Niknam, A. R.; Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M.

    2014-04-15

    The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.

  8. Small Angle Neutron Scattering

    SciTech Connect (OSTI)

    Urban, Volker S [ORNL

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  9. Scattering of radio frequency waves by blobs in tokamak plasmas

    SciTech Connect (OSTI)

    Ram, Abhay K.; Hizanidis, Kyriakos; Kominis, Yannis

    2013-05-15

    The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically.

  10. Wave runup on cylinders subject to deep water random waves 

    E-Print Network [OSTI]

    Indrebo, Ann Kristin

    2001-01-01

    runup. Laboratory measurements of irregular waves interfering with vertical platform cylinders were used to obtain the Weibull coefficients necessary for the analytical model. Six data sets with different configurations where the wave elevation...

  11. Real-time Water Waves with Wave Particles 

    E-Print Network [OSTI]

    Yuksel, Cem

    2010-10-12

    This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...

  12. Heat Waves, Global Warming, and Mitigation

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

  13. mm-Wave Phase Shifters and Switches

    E-Print Network [OSTI]

    Adabi Firouzjaei, Ehsan

    2010-01-01

    combiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .solutions . . . . . . . . mm-wave imaging for medical and

  14. Cellular Mechanisms Underlying Retinal Wave Generation

    E-Print Network [OSTI]

    Ford, Kevin

    2011-01-01

    Underlying Retinal Wave Generation By Kevin J Ford AUnderlying Retinal Wave Generation By Kevin J Ford Doctor ofwith age, so does the wave generation mechanism. The most

  15. Guided wave monitoring of prestressing tendons

    E-Print Network [OSTI]

    Nucera, Claudio

    2010-01-01

    and applications of ultrasonic waves. CRC series in pure andStrands by Guided Stress Waves, ASCE Journal of Materials inin Cable Stays via Guided Wave Magnetostrictive Ultrasonics,

  16. mm-Wave Phase Shifters and Switches

    E-Print Network [OSTI]

    Adabi Firouzjaei, Ehsan

    2010-01-01

    4.1.1 Slow wave transmissioncombiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .

  17. Super compact equation for water waves

    E-Print Network [OSTI]

    Dyachenko, A I; Zakharov, V E

    2015-01-01

    We derive very simple compact equation for gravity water waves which includes nonlinear wave term (`a la NLSE) and advection term (may results in wave breaking).

  18. Generating Electromagnetic Waves from Gravity Waves in Cosmology

    E-Print Network [OSTI]

    P. A. Hogan; S. O'Farrell

    2009-05-18

    Examples of test electromagnetic waves on a Friedmann-Lemaitre-Robertson-Walker(FLRW) background are constructed from explicit perturbations of the FLRW space-times describing gravitational waves propagating in the isotropic universes. A possible physical mechanism for the production of the test electromagnetic waves is shown to be the coupling of the gravitational waves with a test magnetic field, confirming the observation of Marklund, Dunsby and Brodin [Phys.Rev. D62,101501(R) (2000)].

  19. Wave refraction and wave energy on Cayo Arenas 

    E-Print Network [OSTI]

    Walsh, Donald Eugene

    1962-01-01

    WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...

  20. Coherent cooling of atoms in a frequency-modulated standing laser wave: Wave function and stochastic trajectory approaches

    SciTech Connect (OSTI)

    Argonov, V. Yu.

    2014-11-15

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field can suppress packet splitting for some atoms whose specific velocities are in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. We also demonstrate that the modulated field can not only trap but also cool the atoms. We perform a numerical experiment with a large atomic ensemble having wide initial velocity and energy distributions. During the experiment, most of atoms leave the wave while the trapped atoms have a narrow energy distribution.

  1. LONG WAVE EXPANSIONS FOR WATER WAVES OVER RANDOM TOPOGRAPHY

    E-Print Network [OSTI]

    LONG WAVE EXPANSIONS FOR WATER WAVES OVER RANDOM TOPOGRAPHY ANNE DE BOUARD 1 , WALTER CRAIG 2 with the ran­ dom bottom. We show that the resulting influence of the random topography is expressed in terms of bottom topography a#ects the equations describing the limit of solutions in the long wave regime. We

  2. Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment

    E-Print Network [OSTI]

    James, L. Allan

    Secular Sediment Waves, Channel Bed Waves, and Legacy Sediment L. Allan James* Geography Department, University South Carolina Abstract The concept of sediment waves is reviewed and clarifications are proposed for nomenclature con- cerning vertical channel responses to large fluvial sediment fluxes over a period of a decade

  3. Wave Propagation Theory 2.1 The Wave Equation

    E-Print Network [OSTI]

    2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived from hydrodynamics and the adia- batic relation between pressure and density. The equation for conservation of mass, Euler's equation (Newton's 2nd Law), and the adiabatic equation of state are respec

  4. Oscillatory Instabilities of Standing Waves in One-Dimensional Nonlinear Lattices

    E-Print Network [OSTI]

    Anna Maria Morgante; Magnus Johansson; Georgios Kopidakis; Serge Aubry

    2000-05-31

    In one-dimensional anharmonic lattices, we construct nonlinear standing waves (SWs) reducing to harmonic SWs at small amplitude. For SWs with spatial periodicity incommensurate with the lattice period, a transition by breaking of analyticity versus wave amplitude is observed. As a consequence of the discreteness, oscillatory linear instabilities, persisting for arbitrarily small amplitude in infinite lattices, appear for all wave numbers Q not equal to zero or \\pi. Incommensurate analytic SWs with |Q|>\\pi/2 may however appear as 'quasi-stable', as their instability growth rate is of higher order.

  5. Transformative Wave Technologies Kent, Washington

    E-Print Network [OSTI]

    California at Davis, University of

    Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

  6. Small Modular Reactors - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top Scientific ImpactTechnologies |SiteSitesmr Small

  7. ARM - Guidelines : Small Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENAField Participants CampaignExpectations of PrincipalReviewSmall

  8. New Mexico Small Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarship supports returning studentsFeet)Thousand CubicSmall

  9. Small Business Resources

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPowerSaveOperationsEnergySmall

  10. Small Business Internet Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performed Steven D. PainSmall(DOE) -

  11. Small Particles, Big Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performed StevenSmall Particles, Big Impact

  12. Derivative expansion at small mass for the spinor effective action

    SciTech Connect (OSTI)

    Dunne, Gerald V.; Huet, Adolfo; Hur, Jin; Min, Hyunsoo

    2011-05-15

    We study the small-mass limit of the one-loop spinor effective action, comparing the derivative expansion approximation with exact numerical results that are obtained from an extension to spinor theories of the partial-wave cutoff method. In this approach, one can compute numerically the renormalized one-loop effective action for radially separable gauge field background fields in spinor QED. We highlight an important difference between the small-mass limit of the derivative expansion for spinor and scalar theories.

  13. Terahertz imaging of sub-wavelength particles with Zenneck surface waves

    SciTech Connect (OSTI)

    Navarro-Cía, M., E-mail: m.navarro@imperial.ac.uk [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom); Centre for Plasmonics and Metamaterials, Imperial College London, London SW7 2AZ (United Kingdom); Centre for Terahertz Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Natrella, M.; Graham, C.; Renaud, C. C.; Seeds, A. J.; Mitrofanov, O., E-mail: o.mitrofanov@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Dominec, F.; Kužel, P., E-mail: kuzelp@fzu.cz [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Delagnes, J. C.; Mounaix, P., E-mail: p.mounaix@loma.u-bordeaux1.fr [LOMA, Bordeaux 1 University, CNRS UMR 4798, 351 cours de la Libération, 33405 Talence (France)

    2013-11-25

    Impact of sub-wavelength-size dielectric particles on Zenneck surface waves on planar metallic antennas is investigated at terahertz (THz) frequencies with THz near-field probe microscopy. Perturbations of the surface waves show the particle presence, despite its sub-wavelength size. The experimental configuration, which utilizes excitation of surface waves at metallic edges, is suitable for THz imaging of dielectric sub-wavelength size objects. As a proof of concept, the effects of a small strontium titanate rectangular particle and a titanium dioxide sphere on the surface field of a bow-tie antenna are experimentally detected and verified using full-wave simulations.

  14. Arnold Schwarzenegger CALIFORNIA OCEAN WAVE

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California, State and Federal Agencies and their expectations in respect to potential wave power deployments Jim a huge amount of wave measurement data from various data sources Asfaw Beyene of the Department

  15. Water wave interactions Walter Craig

    E-Print Network [OSTI]

    Thomann, Laurent

    Water wave interactions Walter Craig Department of Mathematics & Statistics ´EquationsMaster University) Water wave interactions 25 janvier 2011 1 / 34 #12;Joint work with: Philippe Guyenne University, Killam Research Fellows Program, Fields Institute Walter Craig (McMaster University) Water wave

  16. Extreme wave impinging and overtopping 

    E-Print Network [OSTI]

    Ryu, Yong Uk

    2009-06-02

    This investigates the velocity fields of a plunging breaking wave impinging on a structure through measurements in a two-dimensional wave tank. As the wave breaks and overtops the structure, so-called green water is generated. The flow becomes multi...

  17. 2, 70177025, 2014 Freaque wave

    E-Print Network [OSTI]

    NHESSD 2, 7017­7025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract to the corresponding final paper in NHESS if available. Brief Communication: Freaque wave occurrences in 2013 P. C. Liu­7025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract Introduction Conclusions References

  18. 2014 Tube -1 STANDING WAVES

    E-Print Network [OSTI]

    Gustafsson, Torgny

    2014 Tube - 1 STANDING WAVES IN AN AIR COLUMN The objective of the experiment is: · To study the harmonic structure of standing waves in an air column. APPARATUS: Computer, FFTScope software, PC speaker will produce nothing noteworthy. But, if the phase relationship is correct, standing waves can be formed

  19. Universal power law for the energy spectrum of breaking Riemann waves

    E-Print Network [OSTI]

    Dmitry Pelinovsky; Efim Pelinovsky; Elena Kartashova; Tatjana Talipova; Ayrat Giniyatullin

    2013-06-30

    The universal power law for the spectrum of one-dimensional breaking Riemann waves is justified for the simple wave equation. The spectrum of spatial amplitudes at the breaking time $t = t_b$ has an asymptotic decay of $k^{-4/3}$, with corresponding energy spectrum decaying as $k^{-8/3}$. This spectrum is formed by the singularity of the form $(x-x_b)^{1/3}$ in the wave shape at the breaking time. This result remains valid for arbitrary nonlinear wave speed. In addition, we demonstrate numerically that the universal power law is observed for long time in the range of small wave numbers if small dissipation or dispersion is accounted in the viscous Burgers or Korteweg-de Vries equations.

  20. Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since

    E-Print Network [OSTI]

    Rutledge, Steven

    Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields

  1. Chiral Heat Wave and wave mixing in chiral media

    E-Print Network [OSTI]

    Chernodub, M N

    2015-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.

  2. On Mode Conversion, Reflection and Transmission of Magneto-Acoustic Waves from Above in an Isothermal Stratified Atmosphere

    E-Print Network [OSTI]

    Hansen, Shelley; Donea, Alina

    2015-01-01

    We use the exact solutions for magnetoacoustic waves in a two dimensional isothermal atmosphere with uniform inclined magnetic field to calculate the wave reflection, transmission, and conversion of slow and fast waves incident from above ($z=\\infty$). This is relevant to the question of whether waves excited by flares in the solar atmosphere can penetrate the Alfv\\'en/acoustic equipartition layer (which we identify as the canopy) to reach the photosphere with sufficient energy to create sunquakes. It is found that slow waves above the acoustic cutoff frequency efficiently penetrate (transmit) as acoustic (fast) waves if directed at a small attack angle to the magnetic field, with the rest converting to magnetic (slow) waves, in accord with Generalized Ray Theory. This may help explain the compact nature of seismic sources of sunquakes identified using seismic holography. The incident slow waves can also efficiently transmit at low frequency in inclined field due to the reduction in acoustic cutoff frequency ...

  3. Space-frequency correlation of classical waves in disordered media: High-frequency and

    E-Print Network [OSTI]

    Fannjiang, Albert

    OFFPRINT Space-frequency correlation of classical waves in disordered media: High-frequency in disordered media: High-frequency and small-scale asymptotics A. C. Fannjiang Department of Mathematics-band high- frequency fields can be appreciably affected by small random changes of the medium parameters

  4. Two Problems in Computational Wave Dynamics: Klemp-Wilhelmson Splitting at Large Scales and Wave-Wave Instabilities in Rotating Mountain Waves 

    E-Print Network [OSTI]

    Viner, Kevin Carl

    2011-02-22

    IN COMPUTATIONAL WAVE DYNAMICS: KLEMP-WILHELMSON SPLITTING AT LARGE SCALES AND WAVE-WAVE INSTABILITIES IN ROTATING MOUNTAIN WAVES A Dissertation by KEVIN CARL VINER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2009 Major Subject: Atmospheric Sciences TWO PROBLEMS IN COMPUTATIONAL WAVE DYNAMICS: KLEMP-WILHELMSON SPLITTING AT LARGE SCALES AND WAVE-WAVE INSTABILITIES IN ROTATING MOUNTAIN WAVES A Dissertation...

  5. On The Interaction of Gravitational Waves with Magnetic and Electric Fields

    E-Print Network [OSTI]

    C. Barrabes; P. A. Hogan

    2010-03-02

    The existence of large--scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a `spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein--Maxwell vacuum field equations.

  6. Noise sustained waves in subexcitable media: From chemical waves to brain waves

    E-Print Network [OSTI]

    Showalter, Kenneth

    Noise sustained waves in subexcitable media: From chemical waves to brain waves P. Junga the threshold of pat- tern formation, noise can sustain locally coherent pat- terns. The patterns exhibit of nonequilibrium statistical phys- ics, noise has been recognized to play an important role in the formation

  7. Projected Constraints on Lorentz-Violating Gravity with Gravitational Waves

    E-Print Network [OSTI]

    Devin Hansen; Nicolas Yunes; Kent Yagi

    2014-12-12

    Gravitational waves are excellent tools to probe the foundations of General Relativity in the strongly dynamical and non-linear regime. One such foundation is Lorentz symmetry, which can be broken in the gravitational sector by the existence of a preferred time direction, and thus, a preferred frame at each spacetime point. This leads to a modification in the orbital decay rate of binary systems, and also in the generation and chirping of their associated gravitational waves. We here study whether waves emitted in the late, quasi-circular inspiral of non-spinning, neutron star binaries can place competitive constraints on two proxies of gravitational Lorentz-violation: Einstein-\\AE{}ther theory and khronometric gravity. We model the waves in the small-coupling (or decoupling) limit and in the post-Newtonian approximation, by perturbatively solving the field equations in small deformations from General Relativity and in the small-velocity/weak-gravity approximation. We assume a gravitational wave consistent with General Relativity has been detected with second- and third-generation, ground-based detectors, and with the proposed space-based mission, DECIGO, with and without coincident electromagnetic counterparts. Without a counterpart, a detection consistent with General Relativity of neutron star binaries can only place competitive constraints on gravitational Lorentz violation when using future, third-generation or space-based instruments. On the other hand, a single counterpart is enough to place constraints that are 10 orders of magnitude more stringent than current binary pulsar bounds, even when using second-generation detectors. This is because Lorentz violation forces the group velocity of gravitational waves to be different from that of light, and this difference can be very accurately constrained with coincident observations.

  8. Small caliber guided projectile

    DOE Patents [OSTI]

    Jones, James F. (Albuquerque, NM); Kast, Brian A. (Albuquerque, NM); Kniskern, Marc W. (Albuquerque, NM); Rose, Scott E. (Albuquerque, NM); Rohrer, Brandon R. (Albuquerque, NM); Woods, James W. (Albuquerque, NM); Greene, Ronald W. (Albuquerque, NM)

    2010-08-24

    A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.

  9. Nonlinear Hysteretic Torsional Waves

    E-Print Network [OSTI]

    J. Cabaret; P. Béquin; G. Theocharis; V. Andreev; V. E. Gusev; V. Tournat

    2015-01-09

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  10. Fractional Electromagnetic Waves

    E-Print Network [OSTI]

    J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía

    2011-08-31

    In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

  11. wave velocity group velocity

    E-Print Network [OSTI]

    Walker, D. Greg

    -11 3.5e-11 4e-11 4.5e-11 5e-11 400 500 600 700 800 900 1000 location(nm) temperature(K) wave location 15 20 25 0 2 4 6 8 10 12 numberdensity(a.u.) frequency (THz) Summary Model Simulation Results Context. - Seitz and Koehler (1956) solve Boltzmann transport equations Monte Carlo approach is used to· 90 100 3e

  12. DNA waves and water

    E-Print Network [OSTI]

    L. Montagnier; J. Aissa; E. Del Giudice; C. Lavallee; A. Tedeschi; G. Vitiello

    2010-12-23

    Some bacterial and viral DNA sequences have been found to induce low frequency electromagnetic waves in high aqueous dilutions. This phenomenon appears to be triggered by the ambient electromagnetic background of very low frequency. We discuss this phenomenon in the framework of quantum field theory. A scheme able to account for the observations is proposed. The reported phenomenon could allow to develop highly sensitive detection systems for chronic bacterial and viral infections.

  13. Relativistic (covariant) kinetic theory of linear plasma waves and instabilities

    SciTech Connect (OSTI)

    Lazar, M. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); 'Alexandru Ioan Cuza' University, Faculty of Physics, 6600 Iasi (Romania); Schlickeiser, R. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Centre for Plasma Science and Astrophysics, Ruhr-University, D-44780 Bochum (Germany)

    2006-06-19

    The fundamental kinetic description is of vital importance in high-energy astrophysics and fusion plasmas where wave phenomena evolve on scales small comparing with binary collision scales. A rigorous relativistic analysis is required even for nonrelativistic plasma temperatures for which the classical theory yielded unphysical results: e.g. collisonless damping of superluminal waves (phase velocity exceeds the speed of light). The existing nonrelativistic approaches are now improved by covariantly correct dispersion theory. As an important application, the Weibel instability has been recently investigated and confirmed as the source of primordial magnetic field in the intergalactic medium.

  14. Slamming of a breaking wave on a wall

    E-Print Network [OSTI]

    Shu, Jian-Jun

    2014-01-01

    This paper is intended to study impact forces of breaking waves on a rigid wall based on a nonlinear potential-flow theory. This is a model problem for some technologically important design issues such as the impact of breaking waves on ships, coastal and offshore structures. We are interested in the short-time successive triggering of nonlinear effects using a small-time expansion. The analytical solutions for the impact force on a rigid wall and the free-surface profile are derived.

  15. Generation of density inhomogeneities by magnetohydrodynamic waves in two dimensions

    E-Print Network [OSTI]

    S. Van Loo; S. A. E. G. Falle; T. W. Hartquist

    2006-05-10

    Using two dimensional simulations, we study the formation of structures with a high-density contrast by magnetohydrodynamic waves in regions in which the ratio of thermal to magnetic pressure is small. The initial state is a uniform background perturbed by fast-mode wave. Our most significant result is that dense structures persist for far longer in a two-dimensional simulation than in the one-dimensional case. Once formed, these structures persist as long as the fast-mode amplitude remains high.

  16. Modulated wave trains in generalized Kuramoto-Sivashinksi equations

    E-Print Network [OSTI]

    Noble, Pascal

    2010-01-01

    This paper is concerned with the stability of periodic wave trains in a generalized Kuramoto-Sivashinski (gKS) equation. This equation is useful to describe the weak instability of low frequency perturbations for thin film flows down an inclined ramp. We provide a set of equations, namely Whitham's modulation equations, that determines the behaviour of low frequency perturbations of periodic wave trains. As a byproduct, we relate the spectral stability in the small wavenumber regime to properties of the modulation equations. This stability is always critical since 0 is a 0-Floquet number eigenvalue associated to translational invariance.

  17. On the spatial scales of wave heating in the solar chromosphere

    E-Print Network [OSTI]

    Soler, Roberto; Ballester, Jose Luis

    2015-01-01

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and the spatial scales that are required for the efficient dissipation of Alfv\\'en waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfv\\'en waves depends strongly on the magnetic field strength and ranges from 10~m to 1~km for realistic field ...

  18. Nonlinear Gamow vectors, shock waves and irreversibility in optically nonlocal media

    E-Print Network [OSTI]

    Gentilini, Silvia; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio

    2015-01-01

    Dispersive shock waves dominate wave-breaking phenomena in Hamiltonian systems. In the absence of loss, these highly irregular and disordered waves are potentially reversible. However, no experimental evidence has been given about the possibility of inverting the dynamics of a dispersive shock wave and turn it into a regular wave-front. Nevertheless, the opposite scenario, i.e., a smooth wave generating turbulent dynamics is well studied and observed in experiments. Here we introduce a new theoretical formulation for the dynamics in a highly nonlocal and defocusing medium described by the nonlinear Schroedinger equation. Our theory unveils a mechanism that enhances the degree of irreversibility. This mechanism explains why a dispersive shock cannot be reversed in evolution even for an arbitrarirly small amount of loss. Our theory is based on the concept of nonlinear Gamow vectors, i.e., power dependent generalizations of the counter-intuitive and hereto elusive exponentially decaying states in Hamiltonian sys...

  19. Modulation of drift-wave envelopes in a nonuniform quantum magnetoplasma

    SciTech Connect (OSTI)

    Misra, A. P. E-mail: apmisra@gmail.com

    2014-04-15

    We study the amplitude modulation of low-frequency, long-wavelength electrostatic drift-wave envelopes in a nonuniform quantum magnetoplasma consisting of cold ions and degenerate electrons. The effects of tunneling associated with the quantum Bohm potential and the Fermi pressure for nonrelativistic degenerate electrons, as well as the equilibrium density and magnetic field inhomogeneities are taken into account. Starting from a set of quantum magnetohydrodynamic equations, we derive a nonlinear Schrödinger equation (NLSE) that governs the dynamics of the modulated quantum drift-wave packets. The NLSE is used to study the modulational instability (MI) of a Stoke's wave train to a small plane wave perturbation. It is shown that the quantum tunneling effect as well as the scale length of inhomogeneity plays crucial roles for the MI of the drift-wave packets. Thus, the latter can propagate in the form of bright and dark envelope solitons or as drift-wave rogons in degenerate dense magnetoplasmas.

  20. Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics

    DOE Patents [OSTI]

    Bakhtiari, Sasan (Westmont, IL); Gopalsami, Nachappa (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1999-03-23

    A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.

  1. SOLITARY-WAVE AND MULTI-PULSED TRAVELING-WAVE ...

    E-Print Network [OSTI]

    1910-00-81

    ential equations which model waves in a horizontal water channel traveling in ... undisturbed water depth and ? lies in [0,1]. ..... We content ourselves with.

  2. Plane wave solution for elastic wave scattering by a heterogeneous ...

    E-Print Network [OSTI]

    2004-05-28

    tory ultrasonic transmission tests across a synthetic fracture with known, regular geometry, Myer et al. 19855 found good agreement between measured waves ...

  3. Wave Energy Converter Effects on Nearshore Wave Propagation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Converter Effects on Nearshore Wave Propagation Jesse Roberts 1 , Grace Chang *2 , Craig Jones *3 Sandia National Laboratories 1515 Eubank SE, Albuquerque, NM 87123 USA 1...

  4. Catching a Wave: Innovative Wave Energy Device Surfs for Power...

    Office of Environmental Management (EM)

    and cost-effective electricity from clean energy resources, including water. Marine and hydrokinetic (MHK) technologies, which generate power from waves, tides, or...

  5. Spin waves in the (

    SciTech Connect (OSTI)

    Lipscombe, O. J.; Chen, G. F.; Fang, Chen; Perring, T. G.; Abernathy, Douglas L; Christianson, Andrew D; Egami, Takeshi; Wang, Nanlin; Hu, Jiangping; Dai, Pengcheng

    2011-01-01

    We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

  6. Elements of Radio Waves

    E-Print Network [OSTI]

    Frank G. Borg; Ismo Hakala; Jukka Määttälä

    2007-12-24

    We present a summary of the basic properties of the radio wave generation, propagation and reception, with a special attention to the gigahertz bandwidth region which is of interest for wireless sensor networks. We also present some measurement results which use the so-called RSSI indicator in order to track how the field strength varies with position and distance of the transceivers. We hope the paper may be useful to anyone who looks for a quick review of the fundamentals of electromagnetic theory with application to antennas.

  7. DOE Announces Small Business Awards at its Annual Small Business...

    Energy Savers [EERE]

    & Staley Mechanical Contractors, Inc. Administrative Manager Linda Tutor Kevil, Kentucky Service-Disabled Veteran-Owned Small Business of the Year Recipient: Clauss Construction...

  8. Small Business Innovation Research and Small Business Technology...

    Office of Environmental Management (EM)

    Agency Programs Technology-to-Market Home About the Technology-to-Market Program Cleantech University Prize Energy Transition Initiative Lab-Corps Small Business Innovation...

  9. Electromechanical Wave Green's Function Estimation from Ambient Electrical Grid Frequency Noise

    E-Print Network [OSTI]

    Backhaus, Scott

    2011-01-01

    Many electrical grid transients can be described by the propagation of electromechanical (EM) waves that couple oscillations of power flows over transmission lines and the inertia of synchronous generators. These EM waves can take several forms: large-scale standing waves forming inter-area modes, localized oscillations of single or multi-machine modes, or traveling waves that spread quasi-circularly from major grid disturbances. The propagation speed and damping of these EM waves are potentially a powerful tool for assessing grid stability, e.g. small signal or rotor angle stability, however, EM wave properties have been mostly extracted from post-event analysis of major grid disturbances. Using a small set of data from the FNET sensor network, we show how the spatially resolved Green's function for EM wave propagation can be extracted from ambient frequency noise without the need for a major disturbance. If applied to an entire interconnection, an EM-wave Green's function map will enable a model-independent...

  10. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore »of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  11. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    SciTech Connect (OSTI)

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet [Terahertz Systems Laboratory (TeSLa) - Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 (United States)

    2014-02-18

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

  12. Guided acoustic wave inspection system

    DOE Patents [OSTI]

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  13. Wave Decay in MHD Turbulence

    E-Print Network [OSTI]

    Andrey Beresnyak; Alex Lazarian

    2008-05-06

    We present a model for nonlinear decay of the weak wave in three-dimensional incompressible magnetohydrodynamic (MHD) turbulence. We show that the decay rate is different for parallel and perpendicular waves. We provide a general formula for arbitrarily directed waves and discuss particular limiting cases known in the literature. We test our predictions with direct numerical simulations of wave decay in three-dimensional MHD turbulence, and discuss the influence of turbulent damping on the development of linear instabilities in the interstellar medium and on other important astrophysical processes.

  14. Random wave functions and percolation

    E-Print Network [OSTI]

    E. Bogomolny; C. Schmit

    2007-08-31

    Recently it was conjectured that nodal domains of random wave functions are adequately described by critical percolation theory. In this paper we strengthen this conjecture in two respects. First, we show that, though wave function correlations decay slowly, a careful use of Harris' criterion confirms that these correlations are unessential and nodal domains of random wave functions belong to the same universality class as non critical percolation. Second, we argue that level domains of random wave functions are described by the non-critical percolation model.

  15. Volcanoes generate devastating waves

    SciTech Connect (OSTI)

    Lockridge, P. (National Geophysical Data Center, Boulder, CO (USA))

    1988-01-01

    Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.

  16. Small Wind Site Assessment Guidelines

    SciTech Connect (OSTI)

    Olsen, Tim; Preus, Robert

    2015-09-01

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  17. Discrete wave turbulence of rotational capillary water waves

    E-Print Network [OSTI]

    Adrian Constantin; Elena Kartashova; Erik Wahlén

    2010-05-12

    We study the discrete wave turbulent regime of capillary water waves with constant non-zero vorticity. The explicit Hamiltonian formulation and the corresponding coupling coefficient are obtained. We also present the construction and investigation of resonance clustering. Some physical implications of the obtained results are discussed.

  18. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    SciTech Connect (OSTI)

    Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China)] [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China)] [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)] [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)

    2014-04-15

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

  19. New Mexico Small Business Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 31, 2012 Program of Los Alamos, Sandia national laboratories LOS ALAMOS, NEW MEXICO, May 31, 2012-The New Mexico Small Business Assistance (NMSBA) program, a...

  20. Small Business Administration Loan Guarantees

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) offers loan guarantees to banks, savings, and loan associations, credit unions, community development financial institutions, and other authorized specialty lenders.

  1. WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA

    E-Print Network [OSTI]

    Cary, John R.

    2012-01-01

    A LiBRARY ANL WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITYof Califomia. To be in WAVE-ENERGY DENSITY AND WAVE~HOMENTUMExpress1ons for the wave-energy density and wave-momentum

  2. Standing wave instabilities in a chain of nonlinear coupled oscillators

    E-Print Network [OSTI]

    Anna Maria Morgante; Magnus Johansson; Georgios Kopidakis; Serge Aubry

    2001-11-15

    We consider existence and stability properties of nonlinear spatially periodic or quasiperiodic standing waves (SWs) in one-dimensional lattices of coupled anharmonic oscillators. Specifically, we consider Klein-Gordon (KG) chains with either soft (e.g., Morse) or hard (e.g., quartic) on-site potentials, as well as discrete nonlinear Schroedinger (DNLS) chains approximating the small-amplitude dynamics of KG chains with weak inter-site coupling. The SWs are constructed as exact time-periodic multibreather solutions from the anticontinuous limit of uncoupled oscillators. In the validity regime of the DNLS approximation these solutions can be continued into the linear phonon band, where they merge into standard harmonic SWs. For SWs with incommensurate wave vectors, this continuation is associated with an inverse transition by breaking of analyticity. When the DNLS approximation is not valid, the continuation may be interrupted by bifurcations associated with resonances with higher harmonics of the SW. Concerning the stability, we identify one class of SWs which are always linearly stable close to the anticontinuous limit. However, approaching the linear limit all SWs with nontrivial wave vectors become unstable through oscillatory instabilities, persisting for arbitrarily small amplitudes in infinite lattices. Investigating the dynamics resulting from these instabilities, we find two qualitatively different regimes for wave vectors smaller than or larger than pi/2, respectively. In one regime persisting breathers are found, while in the other regime the system rapidly thermalizes.

  3. Wave Mechanics and the Fifth Dimension

    E-Print Network [OSTI]

    Paul S. Wesson; James M. Overduin

    2013-01-28

    Replacing 4D Minkowski space by 5D canonical space leads to a clearer derivation of the main features of wave mechanics, including the wave function and the velocity of de Broglie waves. Recent tests of wave-particle duality could be adapted to investigate whether de Broglie waves are basically 4D or 5D in nature.

  4. Ocean acoustic wave propagation and ray method correspondence: Internal wave fine structure

    E-Print Network [OSTI]

    Tomsovic, Steve

    Ocean acoustic wave propagation and ray method correspondence: Internal wave fine structure 2004 Acoustic wave fields propagating long ranges through the ocean are refracted As acoustic waves propagate long ranges through the deep ocean, they are refracted by inhomogeneities

  5. Using a Bore-Soliton-Splash to understand Rogue Waves, Tsunamis & Wave Energy

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    & new experiments, in portable BSS wave tank or Roombeek channel [7]. 7 New Wave Energy Device [2]. · Clarify connection Bore-Soliton-Splash with rogue waves and tsunamis. · New wave energy device

  6. Full wave simulations of fast wave heating losses in the scrape...

    Office of Scientific and Technical Information (OSTI)

    Full wave simulations of fast wave heating losses in the scrape-off layer of NSTX and NSTX-U Citation Details In-Document Search Title: Full wave simulations of fast wave heating...

  7. Coevolution of Quantum Wave Functions and the Friedmann Universe

    E-Print Network [OSTI]

    W. Q. Sumner; D. Y. Sumner

    2007-04-20

    Erwin Schrodinger (1939) proved that quantum wave functions coevolve with the curved spacetime of the Friedmann universe. Schrodinger's derivation explains the Hubble redshift of photons in an expanding universe, the energy changes of moving particles, and establishes the coevolution of atoms and other quantum systems with spacetime geometry. The assumption often made that small quantum systems are isolated and that their properties remain constant as the Friedmann universe evolves is incompatible with relativistic quantum mechanics and with general relativity.

  8. Design of Millimeter-Wave Power Ampliers in Silicon /

    E-Print Network [OSTI]

    Kalantari, Nader

    2013-01-01

    1.1 Millimeter-Wave Power Amplifier . . . . . . . . . .ported mm-wave power amplifiers. . . . . . . . . . . . . . .GHz Tapered Constructive Wave Power 3.1 Traveling Wave Power

  9. Spatial and temporal modulation of internal waves and thermohaline structure

    E-Print Network [OSTI]

    Cole, Sylvia T

    2010-01-01

    timescale, the internal wave energy cascade that concludes2 addresses the internal wave energy cascade and its spatialto as the internal wave energy cascade. Internal waves

  10. Geothermal Exploration with Visible through Long Wave Infrared...

    Open Energy Info (EERE)

    Wave Infrared Imaging Spectrometers Abstract Surface minerals of active geothermal systems have been mapped using visible-short wave infrared and mid wave and long wave imaging...

  11. Conical Emission from Shock Waves in Ne(1-20 AGeV)+U Collisions

    E-Print Network [OSTI]

    Philip Rau; Jan Steinheimer; Barbara Betz; Hannah Petersen; Marcus Bleicher; Horst Stöcker

    2010-03-05

    The formation and propagation of high-density compression waves, e.g. Mach shock waves, in cold nuclear matter is studied by simulating high-energy nucleus-nucleus collisions of Ne with U in the energy range from E_lab = 0.5 AGeV to 20 AGeV. In an ideal hydrodynamic approach, the high-density shock wave created by the small Ne nucleus passing through the heavy U nucleus is followed by a slower and more dilute Mach shock wave which causes conical emission of particles at the Mach cone angle. The conical emission originates from low-density regions with a small flow velocity comparable to the speed of sound. Moreover, it is shown that the angular distributions of emitted baryons clearly distinguish between a hydrodynamic approach and binary cascade processes used in the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) transport model.

  12. How to Apply for a Small Business Innovation Research and Small...

    Office of Environmental Management (EM)

    How to Apply for a Small Business Innovation Research and Small Business Technology Transfer Program Grant How to Apply for a Small Business Innovation Research and Small...

  13. Colliding axisymmetric pp-waves

    E-Print Network [OSTI]

    B. V. Ivanov

    1997-10-21

    An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.

  14. Stratified Steady Periodic Water Waves

    E-Print Network [OSTI]

    Samuel Walsh

    2009-02-11

    This paper considers two-dimensional stratified water waves propagating under the force of gravity over an impermeable flat bed and with a free surface. We prove the existence of a global continuum of classical solutions that are periodic and traveling. These waves, moreover, can exhibit large density variation, speed and amplitude.

  15. Maritime Interdiction Operations Small Craft Detection

    SciTech Connect (OSTI)

    Dougan, A D; Trombino, D; Dunlop, W; Bordetsky, A

    2010-01-26

    The Naval Postgraduate School has been conducting Tactical Network Topology (TNT) Maritime Interdiction Operations (MIO) experiments with Lawrence Livermore National Laboratory (LLNL) since early in 2005. In this work, we are investigating cutting edge technology to evaluate use of networks, advanced sensors and collaborative technology for globally-supported maritime interdiction operations. Some examples of our research include communications in harsh environments, between moving ships at sea; small boat drive-by radiation detection; network-centric collaboration with global partners; situational awareness; prototype sensors & biometric instruments. Since 2006, we have studied the concept of using a small vessel with fixed radiation sensors to do initial searches for illicit radioactive materials. In our work, we continue to evaluate concepts of operation for small boat monitoring. For example, in San Francisco Bay we established a simulated choke point using two RHIBs. Each RHIB had a large sodium iodide radiation sensor on board, mounted on the side nearest to the passing potential target boats. Once detections were made, notification over the network prompted a chase RHIB also equipped with a radiation sensor to further investigate the potential target. We have also used an unmanned surface vessel (USV) carrying a radiation sensor to perform the initial discovery. The USV was controlled remotely and to drive by boats in different configurations. The potential target vessels were arranged in a line, as a choke point and randomly spaced in the water. Search plans were problematic when weather, waves and drift complicated the ability to stay in one place. A further challenge is to both detect and identify the radioactive materials during the drive-by. Our radiation detection system, ARAM, Adaptable Radiation Area Monitor, is able to detect, alarm and quickly identify plausible radionuclides in real time. We have performed a number of experiments to better understand parameters of vessel speed, time, shielding, and distance in this complex three-dimensional space. At the NMIOTC in September 2009, we employed a dual detector portal followed by a chase. In this event, the challenge was to maintain communications after a lapse. When the chase went past the line-of sight reach of the Tactical Operational Center's (TOC) antenna, with interference from a fortress island in Suda Bay, Wave Relay extended the network for continued observation. Sodium iodide radiation detectors were mounted on two Hellenic Navy SEAL fast boats. After making the detection one of the portal boats maintained line-of sight while the other pursued the target vessel. Network access via Wave Relay antennas was maintained until the conclusion of the chase scenario. Progress has been made in the detection of radioactive materials in the maritime environment. The progression of the TNT MIO experiments has demonstrated the potential of the hardware to solve the problems encountered in this physically challenging environment. There continue to be interesting opportunities for research and development. These experiments provide a variety of platforms and motivated participants to perform real-world testing as solutions are made available.

  16. Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter-examines existing wave run-up data for regular, irregular and solitary waves on smooth, impermeable plane slopes. A simple physical argument is used to derive a new wave run-up equation in terms of a dimensionless wave

  17. Impact of non-hydrostatic effects and trapped lee waves on mountain wave drag

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Impact of non-hydrostatic effects and trapped lee waves on mountain wave drag in directionally effects and trapped lee waves on mountain wave drag in directionally sheared flow. Quarterly Journal;AcceptedArticle Impact of non-hydrostatic effects and trapped lee waves on mountain wave drag

  18. Application of wave generator theory to the development of a Wave Energy Converter

    E-Print Network [OSTI]

    Wood, Stephen L.

    Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri approve the attached thesis Application of wave generator theory to the development of a Wave Energy Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri Principal

  19. Plasma wave measurements with STEREO S/WAVES: Calibration, potential model, and preliminary results

    E-Print Network [OSTI]

    California at Berkeley, University of

    Plasma wave measurements with STEREO S/WAVES: Calibration, potential model, and preliminary results] The S/WAVES experiments on the two STEREO spacecraft measure waves, both in situ plasma waves and remotely generated waves such as Type II and Type III solar bursts. A part of the experiment is aimed

  20. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  1. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  2. A robust absorbing layer method for anisotropic seismic wave modeling

    SciTech Connect (OSTI)

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  3. The Whitham Equation as a Model for Surface Water Waves

    E-Print Network [OSTI]

    Daulet Moldabayev; Henrik Kalisch; Denys Dutykh

    2014-10-30

    The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better than both the KdV and BBM equations.

  4. Transport induced by Density Waves in a Andreev-Lifshitz Supersolid

    E-Print Network [OSTI]

    Kwang-Hua W. Chu

    2006-09-03

    Macroscopic derivation of the entrainment in in a Andreev-Lifshitz Supersolid induced by a surface elastic wave propagating along the flexible interface is conducted by considering the nonlinear coupling between the interface and the rarefaction effect. We obtain the critical bounds for zero-volume-flow-rate states corresponding to specific rarefaction measure and wave number which is relevant to the rather small critical velocity of supersolid flows reported by Kim and Chan.

  5. Electrostatic-plasma-wave energy flux

    E-Print Network [OSTI]

    Amendt, P.; Rostoker, N.

    1984-01-01

    would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thefeature of cross-field wave-energy transport, previous con-

  6. Scholte waves generated by seafloor topography

    E-Print Network [OSTI]

    Zheng, Yingcai

    2012-01-01

    Seafloor topography can excite strong interface waves called Scholte waves that are often dispersive and characterized by slow propagation but large amplitude. This type of wave can be used to invert for near seafloor shear ...

  7. Microstructural Design for Stress Wave Energy Management /

    E-Print Network [OSTI]

    Tehranian, Aref

    2013-01-01

    Nasser, S. , 2010. Stress-wave energy management throughNemat-Nasser, Stress-wave energy management through materialS. , 2009. Acoustic wave-energy management in composite

  8. Electrostatic-plasma-wave energy flux

    E-Print Network [OSTI]

    Amendt, P.; Rostoker, N.

    1984-01-01

    would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

  9. Microstructural Design for Stress Wave Energy Management /

    E-Print Network [OSTI]

    Tehranian, Aref

    2013-01-01

    mode of pressure wave and energy transfer into shearmode of pressure wave and energy transfer into shear mode ItNasser, S. , 2010. Stress-wave energy management through

  10. Deep-water gravity waves: theoretical estimating of wave parameters

    E-Print Network [OSTI]

    Mindlin, Ilia M

    2014-01-01

    This paper addresses deep-water gravity waves of finite amplitude generated by an initial disturbance to the water. It is assumed that the horizontal dimensions of the initially disturbed body of the water are much larger than the magnitude of the free surface displacement in the origin of the waves. Initially the free surface has not yet been displaced from its equilibrium position, but the velocity field has already become different from zero. This means that the water at rest initially is set in motion suddenly by an impulse. Duration of formation of the wave origin and the maximum water elevation in the origin are estimated using the arrival times of the waves and the maximum wave-heights at certain locations obtained from gauge records at the locations, and the distances between the centre of the origin and each of the locations. For points situated at a long distance from the wave origin, forecast is made for the travel time and wave height at the points. The forecast is based on the data recorded by th...

  11. A 6D standing wave Braneworld

    E-Print Network [OSTI]

    L. J. S. Sousa; J. E. G. Silva; C. A. S. Almeida

    2012-09-12

    We constructed a six-dimensional version of the standing wave model with an anisotropic 4-brane generated by a phantom-like scalar field. The model represents a braneworld where the compact (on-brane) dimension is assumed to be sufficiently small in order to describe our universe (hybrid compactification). The proposed geometry of the brane and its transverse manifold is non-static, unlike the majority of braneworld models presented in the literature. Furthermore, we have shown that the zero-mode scalar field is localized around the brane. While in the string-like defect the scalar field is localized on a brane with decreasing warp factor, here it was possible to perform the localization with an increasing warp factor.

  12. Walking Wave as a Model of Particle

    E-Print Network [OSTI]

    A. V. Goryunov

    2012-05-02

    The concept of walking wave is introduced from classical relativistic positions. One- and three-dimensional walking waves considered with their wave equations and dispersion equations. It is shown that wave characteristics (de Broglie's and Compton's wavelengths) and corpuscular characteristics (energy-momentum vector and the rest mass) of particle may be expressed through parameters of walking wave. By that the new view on a number concepts of physic related with wave-particle duality is suggested.

  13. Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment

    E-Print Network [OSTI]

    Bogdanov, O V

    2014-01-01

    The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...

  14. Energy Momentum Pseudo-Tensor of Relic Gravitational Wave in Expanding Universe

    E-Print Network [OSTI]

    Daiqin Su; Yang Zhang

    2012-04-04

    We study the energy-momentum pseudo-tensor of gravitational wave, and examine the one introduced by Landau-Lifshitz for a general gravitational field and the effective one recently used in literature. In short wavelength limit after Brill-Hartle average, both lead to the same gauge invariant stress tensor of gravitational wave. For relic gravitational waves in the expanding universe, we examine two forms of pressure, $p_{gw}$ and $\\mathcal{P}_{gw}$, and trace the origin of their difference to a coupling between gravitational waves and the background matter. The difference is shown to be negligibly small for most of cosmic expansion stages starting from inflation. We demonstrate that the wave equation is equivalent to the energy conservation equation using the pressure $\\mathcal{P}_{gw}$ that includes the mentioned coupling.

  15. Gravitational Waves and the Scale of Inflation

    E-Print Network [OSTI]

    Mehrdad Mirbabayi; Leonardo Senatore; Eva Silverstein; Matias Zaldarriaga

    2015-04-17

    We revisit alternative mechanisms of gravitational wave production during inflation and argue that they generically emit a non-negligible amount of scalar fluctuations. We find the scalar power is larger than the tensor power by a factor of order $1/\\epsilon^2$. For an appreciable tensor contribution the associated scalar emission completely dominates the zero-point fluctuations of inflaton, resulting in a tensor-to-scalar ratio $r\\sim \\epsilon^2$. A more quantitative result can be obtained if one further assumes that gravitational waves are emitted by localized sub-horizon processes, giving $r_{\\rm max} \\simeq 0.3 \\epsilon^2$. However, $\\epsilon$ is generally time dependent, and this result for $r$ depends on its instantaneous value during the production of the sources, rather than just its average value, somewhat relaxing constraints from the tilt $n_s$. We calculate the scalar 3-point correlation function in the same class of models and show that non-Gaussianity cannot be made arbitrarily small, i.e. $f_{NL} \\geq 1$, independently of the value of $r$. Possible exceptions in multi-field scenarios are discussed.

  16. Effect of Resolution on Propagating Detonation Wave

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8?m), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  17. Assembling smallness : the American Small Industries Exhibition, Ceylon 1961

    E-Print Network [OSTI]

    De Silva, Nushelle (Dinuki Nushelle)

    2015-01-01

    The American Small Industries Exhibition was the first instance during the Cold War wherein the USA assembled a solo exhibit outside the framework of an established trade fair. It toured three nonaligned nations between ...

  18. Wave Propagation in Fractured Poroelastic Media

    E-Print Network [OSTI]

    One important mechanism in Biot media at seismic frequencies is wave-induced fluid flow generated by fast compressional waves at mesoscopic-scale ...

  19. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    E-Print Network [OSTI]

    Carmem Lucia de Souza Batista; Dingping Li

    1996-07-24

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are all most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory and the composite fermion theory, are physically equivalent.

  20. Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves

    E-Print Network [OSTI]

    Boris Buffoni; Mark D. Groves; Shu-Ming Sun; Erik Wahlén

    2011-08-09

    In this paper we show that the hydrodynamic problem for three-dimensional water waves with strong surface-tension effects admits a fully localised solitary wave which decays to the undisturbed state of the water in every horizontal direction. The proof is based upon the classical variational principle that a solitary wave of this type is a critical point of the energy subject to the constraint that the momentum is fixed. We prove the existence of a minimiser of the energy subject to the constraint that the momentum is fixed and small. The existence of a small-amplitude solitary wave is thus assured, and since the energy and momentum are both conserved quantities a standard argument may be used to establish the stability of the set of minimisers as a whole. `Stability' is however understood in a qualified sense due to the lack of a global well-posedness theory for three-dimensional water waves.

  1. U.S. Small Business Administration

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration website offers loan information for small business administration loan guarantees.

  2. SPH with Small Scale Details and Improved Surface Reconstruction Juraj Onderik

    E-Print Network [OSTI]

    Durikovic, Roman

    Michal Chl´adek Comenius University Roman Durikovic§ Comenius University Figure 1: Left: Breaking wave in water tank (50k particles). Only red particles are sorted during coherent neighbor search. Right: Our.chladek@fmph.uniba.sk §e-mail: roman.durikovic@fmph.uniba.sk 1 Introduction and Related Work Modeling small scale details

  3. Wireless Relay Communication System for Multiple Small Robots

    E-Print Network [OSTI]

    Baumgartner, Jeremy Gordon

    2015-01-01

    Radio Propagation Radio waves, a form of electromagneticAt these frequencies, radio waves propagate primarily bypursued). Simulations of radio wave propagation in various

  4. Nondestructive testing using stress waves: wave propagation in layered media 

    E-Print Network [OSTI]

    Ortega, Jose Alberto

    2013-02-22

    The use of stress waves in several civil engineering applications such as nondestructive testing of soil deposits or pavement systems has become extremely popular over the last few years. In all cases, a dynamic impulse is applied to the surface...

  5. Backreacting p-wave Superconductors

    E-Print Network [OSTI]

    Raúl E. Arias; Ignacio Salazar Landea

    2013-01-28

    We study the gravitational backreaction of the non-abelian gauge field on the gravity dual to a 2+1 p-wave superconductor. We observe that as in the $p+ip$ system a second order phase transition exists between a superconducting and a normal state. Moreover, we conclude that, below the phase transition temperature $T_c$ the lowest free energy is achieved by the p-wave solution. In order to probe the solution, we compute the holographic entanglement entropy. For both $p$ and $p+ip$ systems the entanglement entropy satisfies an area law. For any given entangling surface, the p-wave superconductor has lower entanglement entropy.

  6. Geometric phases of water waves

    E-Print Network [OSTI]

    Francesco Fedele

    2014-08-08

    Recently, Banner et al. (2014) highlighted a new fundamental property of open ocean wave groups, the so-called crest slowdown. For linear narrowband waves, this is related to the geometric and dynamical phase velocities $U_d$ and $U_g$ associated with the parallel transport through the principal fiber bundle of the wave motion with $\\mathit{U}(1)$ symmetry. The theoretical predictions are shown to be in fair agreement with ocean field observations, from which the average crest speed $c=U_d+U_g$ with $c/U_d\\approx0.8$ and $U_{g}/U_d\\approx-0.2$.

  7. The Wave of the Future 

    E-Print Network [OSTI]

    Swyden, Courtney

    2006-01-01

    stream_source_info The wave of the future.pdf.txt stream_content_type text/plain stream_size 10577 Content-Encoding ISO-8859-1 stream_name The wave of the future.pdf.txt Content-Type text/plain; charset=ISO-8859...-1 The Wave of the Future Story by Courtney Swyden THEWAVE OF THE FUTURE tx H2O | pg. 2 Plans use local involvement to enhance water quality Comprehensive watershed protection plans,outlining ways to preserve or restore water-sheds, are becoming a popular...

  8. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Kaufman, A. N. [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Tracy, E. R. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2008-08-15

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  9. Plasma waves driven by gravitational waves in an expanding universe

    E-Print Network [OSTI]

    D. B. Papadopoulos

    2002-05-22

    In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.

  10. Resonance Van Hove Singularities in Wave Kinetics

    E-Print Network [OSTI]

    Shi, Yi-Kang

    2015-01-01

    Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space $D=(N-2)d$ ($d$ physical space dimension, $N$ the number of waves in resonance) and the degree ...

  11. Alaska Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiatives, the Alaska Rural Small Business Conference is a three-day conference to bring together rural businesses and leaders and provide them with networking opportunities, training, and technical information.

  12. Contractor Fee Payments- Small Sites

    Broader source: Energy.gov [DOE]

    See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Small Sites office on these charts.

  13. Wave Energy Extraction from buoys

    E-Print Network [OSTI]

    Garnaud, Xavier

    2009-01-01

    Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

  14. Gravitational waves: a foundational review

    E-Print Network [OSTI]

    J. G. Pereira

    2015-05-27

    The standard linear approach to the gravitational waves theory is critically reviewed. Contrary to the prevalent understanding, it is pointed out that this theory contains many conceptual and technical obscure issues that require further analysis.

  15. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  16. DIFFUSING ACOUSTIC WAVE TRANSPORT AND SPECTROSCOPY

    E-Print Network [OSTI]

    Page, John

    1 Chapter DIFFUSING ACOUSTIC WAVE TRANSPORT AND SPECTROSCOPY J.H. PAGE, M.L. COWAN Dept. of Physics waves, multiple scattering, energy velocity, Diffusing Acoustic Wave Spectroscopy. Abstract the diffusive transport of ultrasonic waves, and then describe a new ultrasonic technique, Diffusing Acoustic

  17. Nonlinear Gamow vectors, shock waves and irreversibility in optically nonlocal media

    E-Print Network [OSTI]

    Silvia Gentilini; Maria Chiara Braidotti; Giulia Marcucci; Eugenio DelRe; Claudio Conti

    2015-08-04

    Dispersive shock waves dominate wave-breaking phenomena in Hamiltonian systems. In the absence of loss, these highly irregular and disordered waves are potentially reversible. However, no experimental evidence has been given about the possibility of inverting the dynamics of a dispersive shock wave and turn it into a regular wave-front. Nevertheless, the opposite scenario, i.e., a smooth wave generating turbulent dynamics is well studied and observed in experiments. Here we introduce a new theoretical formulation for the dynamics in a highly nonlocal and defocusing medium described by the nonlinear Schroedinger equation. Our theory unveils a mechanism that enhances the degree of irreversibility. This mechanism explains why a dispersive shock cannot be reversed in evolution even for an arbitrarirly small amount of loss. Our theory is based on the concept of nonlinear Gamow vectors, i.e., power dependent generalizations of the counter-intuitive and hereto elusive exponentially decaying states in Hamiltonian systems. We theoretically show that nonlinear Gamow vectors play a fundamental role in nonlinear Schroedinger models: they may be used as a generalized basis for describing the dynamics of the shock waves, and affect the degree of irreversibility of wave-breaking phenomena. Gamow vectors allow to analytically calculate the amount of breaking of time-reversal with a quantitative agreement with numerical solutions. We also show that a nonlocal nonlinear optical medium may act as a simulator for the experimental investigation of quantum irreversible models, as the reversed harmonic oscillator.

  18. A dimension-breaking phenomenon for water waves with weak surface tension

    E-Print Network [OSTI]

    Mark D. Groves; Shu-Ming Sun; Erik Wahlén

    2014-11-10

    It is well known that the water-wave problem with weak surface tension has small-amplitude line solitary-wave solutions which to leading order are described by the nonlinear Schr\\"odinger equation. The present paper contains an existence theory for three-dimensional periodically modulated solitary-wave solutions which have a solitary-wave profile in the direction of propagation and are periodic in the transverse direction; they emanate from the line solitary waves in a dimension-breaking bifurcation. In addition, it is shown that the line solitary waves are linearly unstable to long-wavelength transverse perturbations. The key to these results is a formulation of the water wave problem as an evolutionary system in which the transverse horizontal variable plays the role of time, a careful study of the purely imaginary spectrum of the operator obtained by linearising the evolutionary system at a line solitary wave, and an application of an infinite-dimensional version of the classical Lyapunov centre theorem.

  19. 11. Acoustic waves and shocks 11.1 Acoustic waves of low amplitude

    E-Print Network [OSTI]

    Pohl, Martin Karl Wilhelm

    11. Acoustic waves and shocks 11.1 Acoustic waves of low amplitude Let us consider an adiabatic (or velocity of sound waves is constant. Does that still hold for sound waves of finite amplitude? Equation 11. This is the result of the non-linear nature of the hydrodynamical equations. On should note that wave damping, e

  20. Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics Sergei Lukaschuk,1,* Sergey Nazarenko,2

    E-Print Network [OSTI]

    Nazarenko, Sergey

    Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics Sergei Lukaschuk,1,* Sergey the first simultaneous space-time measurements for gravity wave turbulence in a large laboratory flume. We found that the slopes of k and ! wave spectra depend on wave intensity. This cannot be explained by any

  1. Mixed-domain performance model of the piezoelectric traveling-wave motor and the development of a two-sided device

    E-Print Network [OSTI]

    Glenn, Timothy Scott, 1971-

    2002-01-01

    In recognition of the growing consideration of piezoelectric traveling-wave motors as suitable replacements for small-scale electromagnetic motors, the present work addresses two parallel objectives: (1) to develop an ...

  2. Apparatus and method for measuring and imaging traveling waves

    DOE Patents [OSTI]

    Telschow, Kenneth L. (Idaho Falls, ID); Deason, Vance A. (Idaho Falls, ID)

    2001-01-01

    An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

  3. Gravitational wave production by rotating primordial black holes

    E-Print Network [OSTI]

    Dong, Ruifeng; Stojkovic, Dejan

    2015-01-01

    In this paper we analyze in detail a rarely discussed question of gravity waves production from evaporating black holes. Evaporating black holes emit gravitons which are at classical level registered as gravity waves. We use the latest constraints on the primordial black hole abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by black holes, the epoch in which the black holes are formed, and quantities like mass and angular momentum of evaporating black holes. We conclude that very small primordial black holes which evaporate before the nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as $10^{-5}$. On the other hand, primordial black ...

  4. Eulerian simulations of collisional effects on electrostatic plasma waves

    SciTech Connect (OSTI)

    Pezzi, Oreste; Valentini, Francesco; Perrone, Denise; Veltri, Pierluigi [Dipartimento di Fisica and CNISM, Università della Calabria, 87036 Rende (CS) (Italy)] [Dipartimento di Fisica and CNISM, Università della Calabria, 87036 Rende (CS) (Italy)

    2013-09-15

    The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attack, both from the theoretical and the numerical point of view. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear forms. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator, recently used to describe the collisional dissipation of electron plasma waves in a pure electron plasma column [M. W. Anderson and T. M. O'Neil, Phys. Plasmas 14, 112110 (2007)]. Finally, for the study of collisional plasmas, a recipe to set the simulation parameters in order to prevent the filamentation problem can be provided, by exploiting the property of velocity diffusion operators to smooth out small velocity scales.

  5. Small-world models Winfried Just

    E-Print Network [OSTI]

    Just, Winfried

    Small-world models Winfried Just Hannah Callender May 27, 2015 Small-world networks are classes of networks that have both the small-world property and exhibit strong clustering. Two constructions worlds 1.1 The small-world property and small-world networks In our module Exploring distances with IONTW

  6. Small Wind Guidebook/Things to Consider When Purchasing a Small...

    Open Energy Info (EERE)

    Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Small Wind GuidebookThings to Consider When Purchasing a Small Wind Turbine < Small Wind...

  7. Comparisons on offshore structure responses to random waves using linear and high-order wave theories 

    E-Print Network [OSTI]

    Ramos Heredia, Rafael Juda

    1995-01-01

    methodology for wave kinematics prediction. While the methods commonly used by the offshore industry are empirical and semi-empirical modifications of Linear (random) Wave Theory, the new approach (Hybrid Wave Model) satisfies the principles of hydrodynamics...

  8. Fully nonlinear wave-body interactions by a 2D potential numerical wave tank 

    E-Print Network [OSTI]

    Koo, Weoncheol

    2004-11-15

    A 2D fully nonlinear Numerical Wave Tank (NWT) is developed based on the potential theory, mixed Eulerian-Lagrangian (MEL) time marching scheme, and boundary element method (BEM). Nonlinear Wave deformation and wave forces on stationary and freely...

  9. Measurements and Linear Wave Theory Based Simulations of Vegetated Wave Hydrodynamics for Practical Applications 

    E-Print Network [OSTI]

    Anderson, Mary Elizabeth

    2011-10-21

    impeded. Sparse vegetation fields dissipated less wave energy than the intermediate density; however, the extremely dense fields dissipated very little, if any, wave energy and sometimes wave growth was observed. This is possibly due to the highest...

  10. Wave-Turbulence Interactions in a Breaking Mountain Wave Craig Epifanio and Tingting Qian

    E-Print Network [OSTI]

    #12;Dissipation of Mean Wave Energy · Mean wave energy E is just the total energy (kinetic + available · The dissipation of mean wave energy is caused by the turbulent momentum fluxes--specifically, by their tendency

  11. Energy-momentum relation for solitary waves of relativistic wave equations

    E-Print Network [OSTI]

    T. V. Dudnikova; A. I. Komech; H. Spohn

    2005-08-23

    Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

  12. Experimental studies of irregular water wave component interactions with comparisons to the hybrid wave model 

    E-Print Network [OSTI]

    Longridge, Jonathon Kent

    1993-01-01

    Waves in the oceans pose challenging problems to offshore structural design because they arc irregular and can be highly nonlinear. Although these irregular waves can be viewed as the summation of many linear wave components of different...

  13. Can High Frequency Acoustic Waves Heat the Quiet Sun Chromosphere?

    E-Print Network [OSTI]

    Mats Carlsson; Viggo H. Hansteen; Bart De Pontieu; Scott McIntosh; Theodore D. Tarbell; Dick Shine; Saku Tsuneta; Yukio Katsukawa; Kiyoshi Ichimoto; Yoshinori Suematsu; Toshifumi Shimizu; Shin'ichi Nagata

    2007-09-21

    We use Hinode/SOT Ca II H-line and blue continuum broadband observations to study the presence and power of high frequency acoustic waves at high spatial resolution. We find that there is no dominant power at small spatial scales; the integrated power using the full resolution of Hinode (0.05'' pixels, 0.16'' resolution) is larger than the power in the data degraded to 0.5'' pixels (TRACE pixel size) by only a factor of 1.2. At 20 mHz the ratio is 1.6. Combining this result with the estimates of the acoustic flux based on TRACE data of Fossum & Carlsson (2006), we conclude that the total energy flux in acoustic waves of frequency 5-40 mHz entering the internetwork chromosphere of the quiet Sun is less than 800 W m$^{-2}$, inadequate to balance the radiative losses in a static chromosphere by a factor of five.

  14. Impact of an oblique breaking wave on a wall

    E-Print Network [OSTI]

    Shu, Jian-Jun

    2014-01-01

    The intention of this paper is to study impact force of an oblique-angled slamming wave acting on a rigid wall. In the present study the analytical approach is pursued based on a technique proposed by the author. A nonlinear theory in the context of potential flow is presented for determining accurately the free-surface profiles immediately after an oblique breaking wave impingement on the rigid vertical wall that suddenly starts from rest. The small-time expansion is taken as far as necessary to include the accelerating effect. The analytical solutions for the free-surface elevation are derived up to the third order. The results derived in this paper are of particular interest to the marine and offshore engineering industries, which will find the information useful for the design of ships, coastal and offshore.

  15. Derivation of the Camassa-Holm equations for elastic waves

    E-Print Network [OSTI]

    H. A. Erbay; S. Erbay; A. Erkip

    2015-02-10

    In this paper we provide a formal derivation of both the Camassa-Holm equation and the fractional Camassa-Holm equation for the propagation of small-but-finite amplitude long waves in a nonlocally and nonlinearly elastic medium. We first show that the equation of motion for the nonlocally and nonlinearly elastic medium reduces to the improved Boussinesq equation for a particular choice of the kernel function appearing in the integral-type constitutive relation. We then derive the Camassa-Holm equation from the improved Boussinesq equation using an asymptotic expansion valid as nonlinearity and dispersion parameters tend to zero independently. Our approach follows mainly the standard techniques used widely in the literature to derive the Camassa-Holm equation for shallow water waves. The case where the Fourier transform of the kernel function has fractional powers is also considered and the fractional Camassa-Holm equation is derived using the asymptotic expansion technique.

  16. Small Space Heater Basics | Department of Energy

    Energy Savers [EERE]

    Small Space Heater Basics Small Space Heater Basics August 19, 2013 - 10:38am Addthis Small space heaters, also called portable heaters, are typically used when the main heating...

  17. Big Things from Small Beginnings

    Broader source: Energy.gov [DOE]

    Slide Presentation given by D. Bullen on behalf of Peter S. Winokur, Ph.D., Chairman Defense Nuclear Facilities Safety Board; prepared by D. Bullen, D. Owen, J. MacSleyne, and D. Minnema. Big Things from Small Beginnings. How seemingly unimportant situations can lead to significant, undesirable events.

  18. Control of the chaotic velocity dispersion of a cold electron beam interacting with electrostatic waves

    E-Print Network [OSTI]

    Guido Ciraolo; Cristel Chandre; Ricardo Lima; Marco Pettini; Michel Vittot

    2006-07-31

    In this article we present an application of a method of control of Hamiltonian systems to the chaotic velocity diffusion of a cold electron beam interacting with electrostatic waves. We numerically show the efficiency and robustness of the additional small control term in restoring kinetic coherence of the injected electron beam.

  19. A nonlinear model for magnetoacoustic waves in dense dissipative plasmas with degenerate electrons

    SciTech Connect (OSTI)

    Masood, W.; Jahangir, R.; Siddiq, M.; Eliasson, B.

    2014-10-15

    The properties of nonlinear fast magnetoacoustic waves in dense dissipative plasmas with degenerate electrons are studied theoretically in the framework of the Zabolotskaya-Khokhlov (ZK) equation for small but finite amplitude excitations. Shock-like solutions of the ZK equation are obtained and are applied to parameters relevant to white dwarf stars.

  20. INVERSION OF SPHERICAL MEANS AND THE WAVE EQUATION IN EVEN DIMENSIONS.

    E-Print Network [OSTI]

    Finch, David

    . spherical means, thermoacoustic tomography, wave equation, back-projection AMS subject classifications. 35R interest in the subject was provoked by the new medical imaging technologies called thermoacoustic of radiofrequency or optical energy which causes rapid (though small in magnitude) thermal expansion which generates

  1. Alfven wave collisions, the fundamental building block of plasma turbulence. III. Theory for experimental design

    E-Print Network [OSTI]

    Carter, Troy

    Alfven wave collisions, the fundamental building block of plasma turbulence. III. Theory is a ubiquitous phenomenon in space and astrophysical plasmas, driving a cascade of energy from large to small, influencing the heating of the solar corona and acceleration of the solar wind,1 the dynamics

  2. Alfven wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory experiment

    E-Print Network [OSTI]

    Carter, Troy

    cascade of energy from large to small scales.9 In order to gain insight into this fundamental buildingAlfven wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence

  3. Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma

    SciTech Connect (OSTI)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2014-10-15

    The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.

  4. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  5. Two-wave interaction in ideal magnetohydrodynamics

    E-Print Network [OSTI]

    T. V. Zaqarashvili; B. Roberts

    2006-02-24

    The weakly nonlinear interaction of sound and linearly polarised Alfv{\\'e}n waves propagating in the same direction along an applied magnetic field is studied. It is found that a sound wave is coupled to the Alfv{\\'e}n wave with double period and wavelength when the sound and Alfv{\\'e}n speeds are equal. The Alfv{\\'e}n wave drives the sound wave through the ponderomotive force, while the sound wave returns energy back to the Alfv{\\'e}n wave through the parametric (swing) influence. As a result, the two waves alternately exchange their energy during propagation. The process of energy exchange is faster for waves with stronger amplitudes. The phenomenon can be of importance in astrophysical plasmas, including the solar atmosphere and solar wind.

  6. B8 Page 1 B8. Using CMS-Wave

    E-Print Network [OSTI]

    US Army Corps of Engineers

    B8 ­ Page 1 B8. Using CMS-Wave The most recent CMS-Wave code developed is Version 3.2. Several new capabilities and advanced features in this version include: · Full-plane wind-generation of waves · Automatic wave run-up calculation · Infra-gravity wave calculation · Nonlinear wave-wave interaction · Muddy

  7. Wave propagation in complex coordinates

    E-Print Network [OSTI]

    Horsley, S A R; Philbin, T G

    2015-01-01

    We investigate the analytic continuation of wave equations into the complex position plane. For the particular case of electromagnetic waves we provide a physical meaning for such an analytic continuation in terms of a family of closely related inhomogeneous media. For bounded permittivity profiles we find the phenomenon of reflection can be related to branch cuts in the wave that originate from poles of the permittivity at complex positions. Demanding that these branch cuts disappear, we derive a large family of inhomogeneous media that are reflectionless for a single angle of incidence. Extending this property to all angles of incidence leads us to a generalized form of the Poschl Teller potentials. We conclude by analyzing our findings within the phase integral (WKB) method.

  8. LANL engineers help New Mexico small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineers help New Mexico small businesses LANL engineers help New Mexico small businesses Charles Lucero and G. Loren Toole received Principal Investigator Excellence (PIE) Awards...

  9. Directory of Small Business Program Managers (SBPMs)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Small and Disadvantaged Business Utilization 1000 Independence Ave., SW Washington, DC 20585 DIRECTORY OF SMALL BUSINESS PROGRAM MANAGERS (SBPMs) Section I 2 CONTENTS...

  10. Energy Department Accepting Small Business Grant Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accepting Small Business Grant Applications for Low-Head Hydropower Turbines and MHK Monitoring Systems Energy Department Accepting Small Business Grant Applications for Low-Head...

  11. SMECO- Small Business/Non-Profit Solutions

    Broader source: Energy.gov [DOE]

    Southern Maryland Electric Cooperative (SMECO) offers Small Business Solutions program, which provides incentives up to 80% of the cost of retrofit projects for qualified small business and non...

  12. Small Bowel Obstruction from Capsule Endoscopy

    E-Print Network [OSTI]

    Boysen, Megan M; Ritter, Mike

    2010-01-01

    small bowel obstruction or perforation. 8-12 Volume XI, no .Small bowel obstruction and perforation are rare but seriousbowel obstruction or perforation. Diagnosis may be aided by

  13. Wave-Climate Risk Analysis: Predicting the Size, Frequency and Duration of Large Wave Events

    E-Print Network [OSTI]

    Sobey, Rodney

    2002-01-01

    2001, “Wave Climate Risk Analysis. ” Winslow, Kyle, Ph.D. in2.28.2001 Wave-Climate Risk Analysis: Predicting the Size,

  14. Standing waves for a two-way model system for water waves

    E-Print Network [OSTI]

    2004-10-18

    Sep 12, 2004 ... that, contrary to the classical standing gravity wave problem on a fluid .... The standing waves we are looking for are solutions (?, u) doubly ...

  15. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect (OSTI)

    Sati, Priti; Tripathi, V. K.

    2012-12-15

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  16. Wave propagation in anisotropic viscoelasticity

    E-Print Network [OSTI]

    Andrzej Hanyga

    2015-07-01

    We extend the theory of complete Bernstein functions to matrix-valued functions and apply it to analyze Green's function of an anisotropic multi-dimension\\-al linear viscoelastic problem. Green's function is given by the superposition of plane waves. Each plane wave is expressed in terms of matrix-valued attenuation and dispersion functions given in terms of a matrix-valued positive semi-definite Radon measure. More explicit formulae are obtained for 3D isotropic viscoelastic Green's functions. As an example of an anisotropic medium the transversely isotropic medium with a constant symmetry axis is considered.

  17. On the role of wave-particle interactions in the macroscopic dynamics of collisionless plasmas

    E-Print Network [OSTI]

    Wilson, Lynn B; Osmane, Adnane; Malaspina, David M

    2015-01-01

    What is the relative importance of small-scale (i.e., electron to sub-electron scales), microphysical plasma processes to the acceleration of particles from thermal to suprathermal or even to cosmic-ray energies? Additionally, can these microphysical plasma processes influence or even dominate macroscopic (i.e., greater than ion scales) processes, thus affecting global dynamics? These are fundamental and unresolved questions in plasma and astrophysical research. Recent observations of large amplitude electromagnetic waves in the terrestrial radiation belts [i.e., Cattell et al., 2008; Kellogg et al., 2010; Wilson III et al., 2011] and in collisionless shock waves [i.e., Wilson III et al., 2014a,b] have raised questions regarding the macrophysical effect of these microscopic waves. The processes thought to dominate particle acceleration and the macroscopic dynamics in both regions have been brought into question with these recent observations. The relative importance of wave-particle interactions has recently ...

  18. Breaking of relativistically intense longitudinal space charge waves: A description using Dawson sheet model

    SciTech Connect (OSTI)

    Sengupta, Sudip, E-mail: sudip@ipr.res.in [Institute for Plasma Research, Bhat , Gandhinagar - 382428 (India)

    2014-02-11

    Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.

  19. Studies of the superconducting traveling wave cavity for high gradient LINAC

    E-Print Network [OSTI]

    Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav P

    2015-01-01

    Use of a traveling wave (TW) accelerating structure with a small phase advance per cell instead of standing wave may provide a significant increase of accelerating gradient in a superconducting linear accelerator. The TW section achieves an accelerating gradient 1.2-1.4 larger than TESLA-shaped standing wave cavities for the same surface electric and magnetic fields. Recent tests of an L-band single-cell cavity with a waveguide feedback demonstrated an accelerating gradient comparable to the gradient in a single-cell ILC-type cavity from the same manufacturer. This article presents the next stage of the 3- cell TW resonance ring development which will be tested in the traveling wave regime. The main simulation results of the microphonics and Lorentz Force Detuning (LFD) are also considered.

  20. Mixing of partial waves near B*B?* threshold in e?e? annihilation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xin; Voloshin, M. B.

    2013-05-31

    We consider the production of B*B?* meson pairs in e?e? annihilation near the threshold. The rescattering due to pion exchange between the mesons results in a mixing between three partial wave amplitudes: two P-wave amplitudes with the total spin of the meson pair S=0 and S=2 and an F-wave amplitude. The mixing due to pion exchange with a low momentum transfer is calculable up to c.m. energy E?15–20 MeV above the threshold. We find that the P–F mixing is numerically quite small in this energy range, while the mixing of the two P-wave amplitudes is rapidly changing with energy andmore »can reach of order one at such low energies.« less

  1. Mechanism of destruction of transport barriers in geophysical jets with Rossby waves

    E-Print Network [OSTI]

    M. Yu. Uleysky; M. V. Budyansky; S. V. Prants

    2012-02-02

    The mechanism of destruction of a central transport barrier in a dynamical model of a geophysical zonal jet current in the ocean or the atmosphere with two propagating Rossby waves is studied. We develop a method for computing a central invariant curve which is an indicator of existence of the barrier. Breakdown of this curve under a variation of the Rossby wave amplitudes and onset of chaotic cross-jet transport happen due to specific resonances producing stochastic layers in the central jet. The main result is that there are resonances breaking the transport barrier at unexpectedly small values of the amplitudes that may have serious impact on mixing and transport in the ocean and the atmosphere. The effect can be found in laboratory experiments with azimuthal jets and Rossby waves in rotating tanks under specific values of the wave numbers that are predicted in the theory.

  2. Experimental Investigation of Mass Sensing With Surface Acoustic Wave Devices

    E-Print Network [OSTI]

    MacDonald, Frank Dickinson

    2010-01-01

    Colin, “1927- Surface acoustic wave devices for mobile andColin, “1927- Surface acoustic wave devices and their signalhorizontal surface acoustic waves (SH-SAW) sensor. Figure 9.

  3. Sandia Energy - WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim (Wave Energy Converter SIMulator) Home Stationary Power Energy Conversion Efficiency Water Power WEC-Sim (Wave Energy Converter SIMulator) WEC-Sim (Wave Energy Converter...

  4. Spatial and temporal modulation of internal waves and thermohaline structure

    E-Print Network [OSTI]

    Cole, Sylvia T.

    2010-01-01

    of outward internal wave energy and dissipation was 17 GW.between internal wave energy density, energy flux, andstructure of internal wave energy density, energy flux, and

  5. Langmuir Waves and Electron Acceleration at Heliospheric Shocks

    E-Print Network [OSTI]

    Pulupa, Marc Peter

    2010-01-01

    observations. . . . . . . . . .Radio wave, magnetic field,Acceleration, Plasma Waves, and Radio Emission 3.1 RadioProfessor Stuart Bale, Chair Radio waves at the local plasma

  6. Experimental study of internal wave generation by convection in water

    E-Print Network [OSTI]

    2015-01-01

    study of internal wave generation by convection in waterstudies of internal wave generation by convective turbulenceintermittent generation of internal waves. We also computed

  7. A Novel Overtopping Wave Energy Device Concept Applied to California

    E-Print Network [OSTI]

    Imamura, John

    2009-01-01

    for overtopping wave energy devices are limited in theirhigh power output wave energy devices may be possible.design and modeling of wave energy devices. Nat- urally this

  8. Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction

    E-Print Network [OSTI]

    McLaskey, Gregory Christofer

    2011-01-01

    717-725. Graff, K. (1975). Wave Motion in Elastic Solids (and deterioration on stress wave velocities in concrete,Greenspan, M. (1981) Surface-wave displacement: absolute

  9. Identifying two steps in the internal wave energy cascade

    E-Print Network [OSTI]

    Sun, Oliver Ming-Teh

    2010-01-01

    1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

  10. Wave VelocityWave Velocity Diff t f ti l l itDifferent from particle velocity

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Wave VelocityWave Velocity v=/T =f Diff t f ti l l itDifferent from particle velocity Depends on the medium in which the wave travelsDepends on the medium in which the wave travels stringaonvelocity F v of Waves11-8. Types of Waves Transverse wave Longitudinal wave Liu UCD Phy1B 2014 37 #12;Sound Wave

  11. Three Wave Hypothesis, Gear Model and the Rest Mass

    E-Print Network [OSTI]

    M. I. Sanduk

    2009-04-05

    Three Wave Hypothesis (TWH) is of a relativistic quantum foundation. The formulation of TWH has perfect similarities with bevel gear model. The rest mass is considered within TWH and as a consequence of similarity, between TWH and the gear model, it is found that rest mass frequency is related the frequency of touch point of the gear in relative to the large wheel. In regarding this frequency instead of the small wheel frequency, the gear model leads to four-vector representation of a particle.

  12. On the drift magnetosonic waves in anisotropic low beta plasmas

    SciTech Connect (OSTI)

    Naim, Hafsa, E-mail: roohi-phy@yahoo.com [Department of Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Bashir, M. F., E-mail: frazbashir@yahoo.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Murtaza, G. [Visiting Professor, Department of Physics, Quaid-e-Azam University, Islamabad (Pakistan)

    2014-10-15

    A generalized dispersion relation of obliquely propagating drift magnetosonic waves is derived by using the gyrokinetic theory for anisotropic low beta plasmas. The stability analysis applicable to a wide range of plasma parameters is performed to understand the stabilization mechanism of the drift magnetosonic instability and the estimation of the growth rate is also presented. It is noted that the growth rate of the drift instability enhances for small anisotropy (A{sub e,i}?=?T{sub ?e,i}/T{sub ?e,i}??1)

  13. Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields, provide inde-

    E-Print Network [OSTI]

    Texas at Austin, University of

    Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields (fast and slow) with differing polarization. The 4C, 3D ocean-bottom cable (OBC) multicomponent seismic objectives were to evaluate seismic attributes, such as VP/VS velocity ratios and Poisson's ratio derived

  14. Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains Near-shore wave dynamics Conclusions Tsunamis and ocean waves

    E-Print Network [OSTI]

    Craig, Walter

    dynamics Conclusions Tsunamis and ocean waves Walter Craig Department of Mathematics & Statistics AAAS Annual Meeting St. Louis Missouri February 19, 2006 Walter Craig McMaster University Tsunamis and ocean-shore wave dynamics Conclusions Introduction Tsunami waves are generated relatively often, from various

  15. Wave functions of linear systems

    E-Print Network [OSTI]

    Tomasz Sowinski

    2007-06-05

    Complete analysis of quantum wave functions of linear systems in an arbitrary number of dimensions is given. It is shown how one can construct a complete set of stationary quantum states of an arbitrary linear system from purely classical arguments. This construction is possible because for linear systems classical dynamics carries the whole information about quantum dynamics.

  16. Variational Principles for Water Waves

    E-Print Network [OSTI]

    Boris Kolev; David H. Sattinger

    2007-12-01

    We describe the Hamiltonian structures, including the Poisson brackets and Hamiltonians, for free boundary problems for incompressible fluid flows with vorticity. The Hamiltonian structure is used to obtain variational principles for stationary gravity waves both for irrotational flows as well as flows with vorticity.

  17. EVOLUTION OF L HYBRID WAVES

    E-Print Network [OSTI]

    Karney, Charles

    . INTRODUCTIO In typical lower hybrid heating schemes, lower hybrid waves are launched at the wall sf tokamak. In this paper we study the C numerically, and determine the consequences of our results for lower hybrid heating hybrid heating of a tokamak. 11. THE CMKDV EQUAT The two-dimensional steady-state propagation of a single

  18. Scattering of scalar waves by many small particles Department of Mathematics

    E-Print Network [OSTI]

    by other particles on a particular particle is negligible ( see [5], where one finds a large bibli- ography

  19. WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA

    E-Print Network [OSTI]

    Cary, John R.

    2012-01-01

    case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,

  20. NET SYSTEM POWER: A SMALL SHARE OF

    E-Print Network [OSTI]

    fuel oil. Renewable energy technologies include biomass and waste, geothermal, solar, wind, and small

  1. Small Wind Site Assessor Guidelines Document (Presentation)

    SciTech Connect (OSTI)

    Preus, R.

    2014-12-01

    Presentation on what the small wind site assessor guidelines document will cover and timeline for completion.

  2. Installing Small Wind Turbines Seminar and Workshop

    E-Print Network [OSTI]

    Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

  3. Analysis of optimum Lamb wave tuning

    E-Print Network [OSTI]

    Shi, Yijun, 1970-

    2002-01-01

    Guided waves are of enormous interest in the nondestructive evaluation of thin-walled structures and layered media. Due to their dispersive and multi-modal nature, it is desirable to tune the waves by discriminating one ...

  4. Wind effects on shoaling wave shape

    E-Print Network [OSTI]

    Feddersen, F; Veron, F

    2005-01-01

    breaking in the presence of wind drift and swell. J. Fluidlin, 1995: Asymmetry of wind waves studied in a laboratorycoupling between swell and wind-waves. J. Phys. Oceanogr. ,

  5. Turbulent round jet under gravity waves 

    E-Print Network [OSTI]

    Ryu, Yong Uk

    2002-01-01

    The behavior of a neutrally buoyant horizontal turbulent round jet under a wavy environment was investigated. Progressive waves with different wave amplitudes in an intermediate water depth were used. The Particle Image Velocimetry (PIV) technique...

  6. Generation of sand bars under surface waves

    E-Print Network [OSTI]

    Hancock, Matthew James, 1975-

    2005-01-01

    (cont.) Experiments were performed in a large wave flume to validate the theory and to study additional aspects of sand bar evolution. The wave envelope and bar profile were recorded for low and high beach reflection, ...

  7. Fracture compliance estimation using borehole tube waves

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

  8. Gravitational waves from merging compact binaries

    E-Print Network [OSTI]

    Hughes, Scott A.

    Largely motivated by the development of highly sensitive gravitational-wave detectors, our understanding of merging compact binaries and the gravitational waves they generate has improved dramatically in recent years. ...

  9. Wave Mechanics and General Relativity: A Rapprochement

    E-Print Network [OSTI]

    Paul S. Wesson

    2006-01-16

    Using exact solutions, we show that it is in principle possible to regard waves and particles as representations of the same underlying geometry, thereby resolving the problem of wave-particle duality.

  10. On quantization of nondispersive wave packets

    SciTech Connect (OSTI)

    Altaisky, M. V.

    2013-10-15

    Nondispersive wave packets are widely used in optics and acoustics. We found it interesting that such packets could be also a subject of quantum field theory. Canonical commutation relations for the nondispersive wave packets are constructed.

  11. Wave radiation in simple geophysical models 

    E-Print Network [OSTI]

    Murray, Stuart William

    2013-07-01

    Wave radiation is an important process in many geophysical flows. In particular, it is by wave radiation that flows may adjust to a state for which the dynamics is slow. Such a state is described as “balanced”, meaning ...

  12. Oblique reflections of internal gravity wave beams

    E-Print Network [OSTI]

    Karimi, Hussain H. (Hussain Habibullah)

    2012-01-01

    We study nonlinear effects in reflections of internal gravity wave beams in a continuously stratified liquid which are incident upon a uniform slope at an oblique angle. Wave motion in a stratified fluid medium is unique ...

  13. Carbon nanotube-guided thermopower waves

    E-Print Network [OSTI]

    Choi, Wonjoon

    Thermopower waves are a new concept for the direct conversion of chemical to electrical energy. A nanowire with large axial thermal diffusivity can accelerate a self-propagating reaction wave using a fuel coated along its ...

  14. Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor DEVELOPING WAVE ENERGY IN COASTAL CALIFORNIA: POTENTIAL SOCIO. Developing Wave Energy In Coastal California: Potential Socio-Economic And Environmental Effects. California-ECONOMIC AND ENVIRONMENTAL EFFECTS Prepared For: California Energy Commission Public Interest Energy Research Program

  15. Initial wave packets and the various power-law decreases of scattered wave packets at long times

    E-Print Network [OSTI]

    Manabu Miyamoto

    2004-04-09

    The long time behavior of scattered wave packets $\\psi (x,t)$ from a finite-range potential is investigated, by assuming $\\psi (x,t)$ to be initially located outside the potential. It is then shown that $\\psi (x,t)$ can asymptotically decrease in the various power laws at long time, according to its initial characteristics at small momentum. As an application, we consider the square-barrier potential system and demonstrate that $\\psi (x,t)$ exhibits the asymptotic behavior $t^{-3/2}$, while another behavior like $t^{-5/2}$ can also appear for another $\\psi (x,t)$.

  16. Small Business Innovation Research and Small Business Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performed Steven D. PainSmall

  17. Electromagnetic wave scattering by Schwarzschild black holes

    E-Print Network [OSTI]

    Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

    2009-05-20

    We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

  18. An electromagnetic analog of gravitational wave memory

    E-Print Network [OSTI]

    Lydia Bieri; David Garfinkle

    2013-09-10

    We present an electromagnetic analog of gravitational wave memory. That is, we consider what change has occurred to a detector of electromagnetic radiation after the wave has passed. Rather than a distortion in the detector, as occurs in the gravitational wave case, we find a residual velocity (a "kick") to the charges in the detector. In analogy with the two types of gravitational wave memory ("ordinary" and "nonlinear") we find two types of electromagnetic kick.

  19. Gravitational wave in Lorentz violating gravity

    E-Print Network [OSTI]

    Xin Li; Zhe Chang

    2012-04-01

    By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of gravitational wave is presented explicitly. There is possibility that the speed of gravitational wave is larger than the speed of light and the casuality still holds. We show that the energy-momentum of gravitational wave in the ansiotropic spacetime is still well defined and conserved.

  20. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect (OSTI)

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the ? channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  1. Lensing of 21-cm Fluctuations by Primordial Gravitational Waves

    E-Print Network [OSTI]

    Laura Book; Marc Kamionkowski; Fabian Schmidt

    2011-12-02

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r ~ 10^{-9} - far smaller than those currently accessible - to be probed.

  2. Secondary dust density waves excited by nonlinear dust acoustic waves J. R. Heinrich,1,a)

    E-Print Network [OSTI]

    Merlino, Robert L.

    Secondary dust density waves excited by nonlinear dust acoustic waves J. R. Heinrich,1,a) S.-H. Kim amplitude ðnd=nd0 > 2Þ dust acoustic waves (DAW) that were spontaneously excited in a dc glow discharge dusty plasma in the moderately coupled, C $ 1; state. The high amplitude dust acoustic waves produced

  3. Observations of dust acoustic waves driven at high frequencies: Finite dust temperature effects and wave interference

    E-Print Network [OSTI]

    Merlino, Robert L.

    Observations of dust acoustic waves driven at high frequencies: Finite dust temperature effects An experiment has been performed to study the behavior of dust acoustic waves driven at high frequencies f 100 are observed--interference effects between naturally excited dust acoustic waves and driven dust acoustic waves

  4. One-way wave-equation migration of compressional and converted waves in a VTI medium

    E-Print Network [OSTI]

    Ursin, Bjørn

    One-way wave-equation migration of compressional and converted waves in a VTI medium Ørjan Pedersen- sure and shear-wave reflections, one can increase the amount of information obtained about the subsur- face than by recording pressure waves alone. Geo- logic structures which are not visible by using con

  5. 2013 MLML Wave Award Deadline: February 8, 2013 The 2013 MLML Wave Award

    E-Print Network [OSTI]

    McPhee-Shaw, Erika

    2013 MLML Wave Award Deadline: February 8, 2013 The 2013 MLML Wave Award Sponsored by the MLML Associated Student Body Application Deadline: Friday, February 8, 2013 The Friends of MLML is pleased to announce the 2013 MLML Wave Award. The 2013 MLML Wave Award is sponsored

  6. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    E-Print Network [OSTI]

    Klein, Spencer

    2010-01-01

    waves generated by the thermoacoustic mechanism, little workproduction by the thermoacoustic mechanism is suppressed,

  7. The Effects of Wave Energy Converters on a Monochromatic Wave Climate

    E-Print Network [OSTI]

    Fox-Kemper, Baylor

    in wave energy converters as a possible means of providing renewable energy, the effects of a wave energy The interest in renewable energies is currently increasing due to the reported rise in global temperature and mean wave period of wave energy fields. There is tremendous energy potential in the ocean. Solar energy

  8. Beauty waves: an artistic representation of ocean waves using Bezier curves 

    E-Print Network [OSTI]

    Faulkner, Jay Allen

    2007-04-25

    In this thesis, we present a method for computing an artistic representation of ocean waves using Bezier curves. Wave forms are loosely based on procedural wave models and are designed to emulate those found in both art and nature. The wave forms...

  9. CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland

    E-Print Network [OSTI]

    Haller, Merrick

    gradient technologies. This paper is focused on Ocean Wave Energy Converters (OWECs) and the needCHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms

  10. Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1

    E-Print Network [OSTI]

    Showalter, Kenneth

    Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1 and Kenneth; published 14 February 2005) A wave front interaction model is developed to describe the relationship between excitability and the size and shape of stabilized wave segments in a broad class of weakly excitable media

  11. Full-wave Electromagnetic Field Simulations of Lower Hybrid Waves in Tokamaks

    E-Print Network [OSTI]

    Wright, John C.

    Full-wave Electromagnetic Field Simulations of Lower Hybrid Waves in Tokamaks J. C. Wright , P. T, VA, USA Abstract. The most common method for treating wave propagation in tokamaks in the lower of 2D and 3D plasma inhomogeneity effects on wave propagation, the approach neglects important effects

  12. Title of Document: STUDIES OF HIGH FREQUENCY WAVE EXCITATION IN FAST AND SLOW WAVE

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: STUDIES OF HIGH FREQUENCY WAVE EXCITATION IN FAST AND SLOW WAVE VACUUM of Electrical and Computer Engineering and Department of Physics THz and millimeter-wave length radiation are considered: the reduction in bunching efficiency in orotrons (a slow wave device), and the excitation

  13. Investigating wave data from the FAST satellite by reconstructing the wave distribution function

    E-Print Network [OSTI]

    California at Berkeley, University of

    Investigating wave data from the FAST satellite by reconstructing the wave distribution function G September 2001; published 15 August 2002. [1] We study wave measurements made by the FAST satellite at 4100-km altitude in the auroral region. Three electric and three magnetic wave field components

  14. Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena

    E-Print Network [OSTI]

    Fominov, Yakov

    Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

  15. SOLITARY WAVE INTERACTION IN A COMPACT EQUATION FOR DEEP-WATER GRAVITY WAVES

    E-Print Network [OSTI]

    Boyer, Edmond

    SOLITARY WAVE INTERACTION IN A COMPACT EQUATION FOR DEEP-WATER GRAVITY WAVES FRANCESCO FEDELE of the Zakharov equation for unidirectional deep-water waves recently derived by Dyachenko & Zakharov [7-conserving quantities. Key words and phrases. water waves; deep water approximation; Hamiltonian structure; travelling

  16. Ronald Edward Kumon NONLINEAR SURFACE ACOUSTIC WAVES

    E-Print Network [OSTI]

    Copyright by Ronald Edward Kumon 1999 #12;NONLINEAR SURFACE ACOUSTIC WAVES IN CUBIC CRYSTALS THE UNIVERSITY OF TEXAS AT AUSTIN December 1999 #12;NONLINEAR SURFACE ACOUSTIC WAVES IN CUBIC CRYSTALS Approved Zabolotskaya for teaching me the intricacies of nonlinear surface acoustic waves and for their continuing

  17. Wave Packets and Turbulent Peter Jordan1

    E-Print Network [OSTI]

    Dabiri, John O.

    Wave Packets and Turbulent Jet Noise Peter Jordan1 and Tim Colonius2 1 D´epartement Fluides-control efforts is incomplete. Wave packets are intermittent, advecting disturbances that are correlated over review evidence of the existence, energetics, dynamics, and acous- tic efficiency of wave packets. We

  18. Wave guides: vacuum w/ tube of conductor

    E-Print Network [OSTI]

    Hart, Gus

    Wave guides: vacuum w/ tube of conductor boundary conditions for conductor Properties: non-transverse waves except TEM mode in coaxial cable speed normal modes (from Liouville problem) TE or TM TEM for coaxial cable cuto frequency otherwise evanescent waves separation into and components with 1 #12;B

  19. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  20. CURRENTS DRIVEN BY ELECTRON CYCLOTRON WAVES

    E-Print Network [OSTI]

    Karney, Charles

    -state tokamak reactors are considered. 1. INTRODUCTION The generation of electric currents in a plasma by means and, accordingly, no slow-wave structure is necessary. Moreover, the utilization of the high of the wave into the tokamak and reasonably estimates the speed of the electrons that absorb the wave

  1. Spherical fields as nonparaxial accelerating waves

    E-Print Network [OSTI]

    Miguel A. Alonso; Miguel A. Bandres

    2012-11-07

    We introduce nonparaxial spatially accelerating waves whose two-dimensional transverse profiles propagate along semicircular trajectories while approximately preserving their shape. We derive these waves by considering imaginary displacements on spherical fields, leading to simple closed-form expressions. The structure of these waves also allows the closed-form description of pulses.

  2. METACHRONAL WAVE GAIT GENERATION FOR HEXAPOD ROBOTS

    E-Print Network [OSTI]

    Parker, Gary B.

    METACHRONAL WAVE GAIT GENERATION FOR HEXAPOD ROBOTS GARY B. PARKER and JONATHAN W. MILLS Department@cs.indiana.edu ABSTRACT The metachronal wave is a gait used by most terrestrial arthropods. Each leg only lifts when the leg behind it is on the ground in position to support the animal's weight. The wave starts from

  3. Wave Evolution On the Evolution of Curvelets

    E-Print Network [OSTI]

    Smith, Hart F.

    Curvelets Wave Evolution On the Evolution of Curvelets by the Wave Equation Hart F. Smith Department of Mathematics University of Washington, Seattle 1st PRIMA Congress Hart F. Smith On the Evolution(x) = c (x) c = f(x) (x) dx Hart F. Smith On the Evolution of Curvelets by the Wave Equation #12;Curvelets

  4. Wave Energy Development Roadmap: Design to Commercialization

    E-Print Network [OSTI]

    Siefert, Chris

    the pathway from initial design to commercialization for Wave Energy Converter (WEC) technologies. Commercialization of a wave energy technology is embodied in the deployment of an array of WEC's, a WEC Farm. Index Terms--Wave Energy, Roadmap, Technology Readiness Levels. Numerical Modeling, Experimentation I

  5. Multi-reflective acoustic wave device

    DOE Patents [OSTI]

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  6. WAVE-DRIVEN SURFACE FROM HF RADAR

    E-Print Network [OSTI]

    Miami, University of

    FEATURE INTERNAL CURRENTS WAVE-DRIVEN SURFACE FROM HF RADAR By Lynn K. Shay Observations from recent experiments · . . have revealed internal wave signatures. SURFACE CURRENTobservations from high oscillations are within the inter- nal wave continuum from the buoyancy to the in- ertial frequencies

  7. Wave Motion Unit code: MATH35012

    E-Print Network [OSTI]

    Sidorov, Nikita

    MATH35012 Wave Motion Unit code: MATH35012 Credit Rating: 10 Unit level: Level 3 Teaching period This course unit aims to elucidate some of the physical properties of important types of wave motion and their mathematical descriptions. Overview Wave motion occurs in the oceans, atmosphere and in the earth. Problems

  8. Four-wave mixing microscopy of nanostructures

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Four-wave mixing microscopy of nanostructures Yong Wang, Chia-Yu Lin, Alexei Nikolaenko, Varun July 14, 2010; accepted July 27, 2010; published September 10, 2010 (Doc. ID 128079) The basics of four-wave. Four-Wave Mixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2

  9. Seminario de Matemtica Aplicada "Renowable wave energy

    E-Print Network [OSTI]

    Tradacete, Pedro

    Seminario de Matemática Aplicada "Renowable wave energy: potencial and technical challenges Abstract: Among the various renewable energy sources, ocean wave energy has been only recently investiga will be at first to introduce the potential of wave energy, as a significant, and often neglected, contributor

  10. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

  11. Acoustic oscillations in a field-free cavity under solar small-scale bipolar magnetic canopy

    E-Print Network [OSTI]

    D. Kuridze; T. V. Zaqarashvili; B. M. Shergelashvili1; S. Poedts

    2008-01-18

    Observations show the increase of high-frequency wave power near magnetic network cores and active regions in the solar lower atmosphere. This phenomenon can be explained by the interaction of acoustic waves with a magnetic field. We consider small-scale, bipolar, magnetic field canopy structure near the network cores and active regions overlying field-free cylindrical cavities of the photosphere. Solving the plasma equations we get the analytical dispersion relation of acoustic oscillations in the field-free cavity area. We found that the m = 1 mode, where m is azimuthal wave number, cannot be trapped under the canopy due to energy leakage upwards. However, higher ($m \\geq 2$) harmonics can be easily trapped leading to the observed acoustic power halos under the canopy.

  12. Airborne observations of the kinematics and statistics of breaking waves

    E-Print Network [OSTI]

    Kleiss, Jessica M.

    2009-01-01

    E. M. Janssen, 1996: Wave energy dissipation by whitecaps.waves: Surface impulse and wave energy dissipation rates. J.to the ocean, dissipating wave energy that is then available

  13. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOE Patents [OSTI]

    Möbius, Arnold (Eggenstein, DE); Ives, Robert Lawrence (Saratoga, CA)

    2005-07-19

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  14. Three-wave interactions of dispersive plasma waves propagating parallel to the magnetic field

    E-Print Network [OSTI]

    F. Spanier; R. Vainio

    2008-10-31

    Three-wave interactions of plasma waves propagating parallel to the mean magnetic field at frequencies below the electron cyclotron frequency are considered. We consider Alfv\\'en--ion-cyclotron waves, fast-magnetosonic--whistler waves, and ion-sound waves. Especially the weakly turbulent low-beta plasmas like the solar corona are studied, using the cold-plasma dispersion relation for the transverse waves and the fluid-description of the warm plasma for the longitudinal waves. We analyse the resonance conditions for the wave frequencies $\\omega$ and wavenumbers $k$, and the interaction rates of the waves for all possible combinations of the three wave modes, and list those reactions that are not forbidden.

  15. Big Efficieny for Small Manufacturing 

    E-Print Network [OSTI]

    Trombley, D.

    2014-01-01

    stream_source_info ESL-IE-14-05-10.pdf.txt stream_content_type text/plain stream_size 6203 Content-Encoding UTF-8 stream_name ESL-IE-14-05-10.pdf.txt Content-Type text/plain; charset=UTF-8 Big Efficiency for Small... and corporate memberships • Research and technical assistance • Data on real world experiences, best practices • Policies advancing market transformation/market development • Education and Advocacy • Conferences, publications • National, state and local ESL...

  16. Small Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de ProvenceSolar JumpSloan, New York:Sluneta sroSmall

  17. Small Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanpingSilveiraSmall

  18. Small Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat and Power Jump to:Small

  19. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratory program helps small businesses

  20. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratory program helps small

  1. Damage Detection in Plate Structures using Guided Ultrasonic Waves

    E-Print Network [OSTI]

    Jarmer, Gregory James Sylvester

    Guided Wave Structural Health Monitoring. ” Ultrasonics 50 (to Structural Health Monitoring. ” Philosophicalfor Guided-wave Structural Health Monitoring. ” Structural

  2. Stochastic excitation of seismic waves by a hurricane

    E-Print Network [OSTI]

    Tanimoto, Toshiro

    2015-01-01

    theory for seismic-wave generation by surface atmosphericsources of P-wave microseisms: Generation under tropical

  3. Resonance Van Hove Singularities in Wave Kinetics

    E-Print Network [OSTI]

    Yi-Kang Shi; Gregory Eyink

    2015-07-29

    Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space $D=(N-2)d$ ($d$ physical space dimension, $N$ the number of waves in resonance) and the degree of degeneracy $\\delta$ of the critical points. Following Van Hove, we show that non-degenerate singularities lead to finite phase measures for $D>2$ but produce divergences when $D\\leq 2$ and possible breakdown of wave kinetics if the collision integral itself becomes too large (or even infinite). Similar divergences and possible breakdown can occur for degenerate singularities, when $D-\\delta\\leq 2,$ as we find for several physical examples, including electron-hole kinetics in graphene. When the standard kinetic equation breaks down, then one must develop a new singular wave kinetics. We discuss approaches from pioneering 1971 work of Newell \\& Aucoin on multi-scale perturbation theory for acoustic waves and field-theoretic methods based on exact Schwinger-Dyson integral equations for the wave dynamics.

  4. Thermal Gravitational Waves from Primordial Black Holes

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun

    2010-05-19

    Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.

  5. Construction of KP solitons from wave patterns

    E-Print Network [OSTI]

    Sarbarish Chakravarty; Yuji Kodama

    2013-09-10

    We often observe that waves on the surface of shallow water form complex web-like patterns. They are examples of nonlinear waves, and these patterns are generated by nonlinear interactions among several obliquely propagating waves. In this note, we discuss how to construct an exact soliton solution of the KP equation from such web-pattern of shallow water wave. This can be regarded as an "inverse problem" in the sense that by measuring certain metric data of the solitary waves in the given pattern, it is possible to construct an exact KP soliton solution which can describe the non-stationary dynamics of the pattern.

  6. Matter Wave Radiation Leading to Matter Teleportation

    E-Print Network [OSTI]

    Yong-Yi Huang

    2015-02-12

    The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

  7. Ponderomotive Forces On Waves In Modulated Media

    SciTech Connect (OSTI)

    Dodin, I.Y; Fisch, Nathaniel

    2014-02-28

    Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as ponderomotive wave-particle interactions in high-frequency electromagnetic fi eld. The ponderomotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field. Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new methods of wave manipulation, including asymmetric barriers for light.

  8. Upper limit map of a background of gravitational waves

    E-Print Network [OSTI]

    Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Casey, M M; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Chin, D; Chin, E; Chow, J; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Colacino, C N; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coward, D; Coyne, D; Creighton, J D E; Creighton, T D; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S V; Díaz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Howell, E; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Jackrel, D; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lee, B; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McNabb, J W C; McWilliams, S; Meier, T; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Tarallo, M; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D W; Ungarelli, C; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L

    2007-01-01

    We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two different power laws for the source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8 kHz band the upper limits on the source strain power spectrum vary between 1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the position in the sky. Similarly, in the case of constant strain power spectrum, the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1. As a side product a limit on an isotropic background of gravitational waves was also obtained. All limits are at the 90% confidence level. Finally, as an application, we focused on the direction of Sco-X1, the closest low-mass X-ray binary. We compare the upper limi...

  9. Three-cell traveling wave superconducting test structure

    SciTech Connect (OSTI)

    Avrakhov, Pavel; Kanareykin, Alexei; /Euclid Techlabs, Solon; Kazakov, Sergey; Solyak, Nikolay; Wu, Genfa; Yakovlev, Vyacheslav P.; /Fermilab

    2011-03-01

    Use of a superconducting traveling wave accelerating (STWA) structure with a small phase advance per cell rather than a standing wave structure may provide a significant increase of the accelerating gradient in the ILC linac. For the same surface electric and magnetic fields the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing wave cavities. The STWA allows also longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed, manufactured and successfully tested demonstrating the possibility of a proper processing to achieve a high accelerating gradient. These results open way to take the next step of the TW SC cavity development: to build and test a travelingwave three-cell cavity with a feedback waveguide. The latest results of the single-cell cavity tests are discussed as well as the design of the test 3-cell TW cavity.

  10. Reactions of small molecular systems

    SciTech Connect (OSTI)

    Wittig, C. [Univ. of Southern California, Los Angeles, CA (United States)

    1993-12-01

    This DOE program remains focused on small molecular systems relevant to combustion. Though a number of experimental approaches and machines are available for this research, the authors` activities are centered around the high-n Rydberg time-of-flight (HRTOF) apparatus in this laboratory. One student and one postdoc carry out experiments with this machine and also engage in small intra-group collaborations involving shared equipment. This past year was more productive than the previous two, due to the uninterrupted operation of the HRTOF apparatus. Results were obtained with CH{sub 3}OH, CH{sub 3}SH, Rg-HX complexes, HCOOH, and their deuterated analogs where appropriate. One paper is in print, three have been accepted for publication, and one is under review. Many preliminary results that augur well for the future were obtained with other systems such as HNO{sub 3}, HBr-HI complexes, toluene, etc. Highlights from the past year are presented below that display some of the features of this program.

  11. Multidimensional, autoresonant three-wave interactions O. Yaakobia

    E-Print Network [OSTI]

    Friedland, Lazar

    electromagnetic wave and an ion-acoustic wave stimulated Brillouin scattering SBS or an electrostatic plasma wave waves of the Korteweg­de Vries KdV equation,23 and one-dimensional 1D two- and three-wave interactionsMultidimensional, autoresonant three-wave interactions O. Yaakobia and L. Friedlandb Racah

  12. Millimeter-wave active probe

    DOE Patents [OSTI]

    Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

    1991-01-01

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  13. Gravitational waves from perturbed stars

    E-Print Network [OSTI]

    Valeria Ferrari

    2011-05-09

    Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.

  14. Parametric Modulation of Dynamo Waves

    E-Print Network [OSTI]

    Kitchatinov, Leonid

    2015-01-01

    Long-term variations of solar activity, including the Grand minima, are believed to result from temporal variations of dynamo parameters. The simplest approximation of dynamo waves is applied to show that cyclic variations of the parameters can lead to an exponential growth or decay of magnetic oscillations depending on the variations frequency. There is no parametric resonance in a dynamo, however: the selective sensitivity to distinct frequencies, characteristic of resonant phenomena, is absent. A qualitative explanation for this finding is suggested. Nonlinear analysis of dynamo-waves reveals the hysteresis phenomenon found earlier in more advanced models. However, the simplified model allows a computation of a sufficiently large number of dynamo-cycles for constructing the distribution function of their amplitudes to reproduce qualitatively two modes of solar activity inferred recently from cosmogenic isotope content in natural archives.

  15. Reconstruction of nonlinear wave propagation

    DOE Patents [OSTI]

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  16. Standing waves in the Universe

    E-Print Network [OSTI]

    Evangelos Chaliasos

    2005-12-06

    At first, a review of our knowledge on the distribution of galaxies at large-scale, leading to a foam-like large-scale structure of the Universe, is presented in the Introduction. Then, it is shown how, according to the present theory for the formation of superclusters, wave scalar perturbations of the same frequency traveling in opposite directions give rise to standing waves, which cause a motion of the cosmic material towards the nodes, resulting in the concentration of the cosmic material around the nodes. Generalizing this effect to two (three) dimensions, the cosmic material is concentrated around the node lines (node surfaces). It is proposed that the three-dimensional effect is responsible for the foam-like large-scale structure of the Universe.

  17. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  18. REMARKS BY THE PRESIDENT AT THE SMALL BUSINESS ADMINISTRATION...

    Energy Savers [EERE]

    BY THE PRESIDENT AT THE SMALL BUSINESS ADMINISTRATION'S NATIONAL SMALL BUSINESS WEEK CONFERENCE REMARKS BY THE PRESIDENT AT THE SMALL BUSINESS ADMINISTRATION'S NATIONAL SMALL...

  19. USACE Small Business Listing of Small Business Leaders by Area of Responisibility

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Contracting Organizations' 1200 plus Contracting Professionals. The Small Business Advisors are an integral and execute contracts. The Small Business leaders represent the Corps in all small business mattersUSACE Small Business Listing of Small Business Leaders by Area of Responisibility Updated as 13

  20. On the recovery of traveling water waves with vorticity from the pressure at the bed

    E-Print Network [OSTI]

    Vera Mikyoung Hur; Michael R. Livesay

    2015-10-08

    We propose higher-order approximation formulae recovering the surface elevation from the pressure at the bed and the background shear flow for small-amplitude Stokes and solitary water waves. They offer improvements over the pressure transfer function and the hydrostatic approximation. The formulae compare reasonably well with asymptotic approximations of the exact relation between the pressure at the bed and the surface wave in the zero vorticity case, but they incorporate the effects of vorticity through solutions of the Rayleigh equation. Several examples are discussed.