Powered by Deep Web Technologies
Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-1792: University of Maine's Deepwater Offshore Floating Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's...

2

EA-1792-S1: University of Maine's Deepwater Offshore Floating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site EA-1792-S1:...

3

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

4

EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

92-S1: University of Maine's Deepwater Offshore Floating Wind 92-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site SUMMARY This Supplemental EA in a evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine, Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792). PUBLIC COMMENT OPPORTUNITIES No public comment opportunities at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD

5

Deepwater Offshore Wind Technology Research Requirements (Poster)  

DOE Green Energy (OSTI)

A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

Musial, W.

2005-05-01T23:59:59.000Z

6

Deepwater Offshore Wind Technology Research Requirements (Poster)  

SciTech Connect

A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

Musial, W.

2005-05-01T23:59:59.000Z

7

Engineering Challenges for Floating Offshore Wind Turbines  

SciTech Connect

The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

2007-09-01T23:59:59.000Z

8

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

Enabling New Markets for Offshore Wind Energy." Proc. ofMary, and Laura Parsons. Offshore Wind Energy. Washingto,Challenges for Floating Offshore Wind Turbines. Tech. no.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

9

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

Enabling New Markets for Offshore Wind Energy." Proc. ofand Laura Parsons. Offshore Wind Energy. Washingto, DC:Challenges for Floating Offshore Wind Turbines. Tech. no.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

10

Loads Analysis of Several Offshore Floating Wind Turbine Concepts  

SciTech Connect

This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

Robertson, A. N.; Jonkman, J. M.

2011-10-01T23:59:59.000Z

11

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

12

National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling THE AMOUNT AND FATE OF THE OIL  

E-Print Network (OSTI)

- 1 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling THE AMOUNT AND FATE OF THE OIL ---Draft--- Staff Working Paper No. 3 Staff Working Papers are written by the staff of the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling for the use of members

Meyers, Steven D.

13

Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Platform Aims to Harness Offshore Wind and Deepwater Platform Aims to Harness Offshore Wind and Wave Power Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power March 28, 2011 - 5:55pm Addthis An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Principle Power, Inc, of Seattle is using $1.4 million in funding from the Department of Energy's Office of Energy Efficiency and Renewable Energy to develop an innovative technology with the potential to generate electricity

14

Coupled dynamic analysis of floating offshore wind farms  

E-Print Network (OSTI)

During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible. Then, the overall design and engineering becomes more complicated than fixed platforms including the coupled dynamics of platforms, mooring lines, and blades. In the present study, a numerical time-domain model has been developed for the fully coupled dynamic analysis of an offshore floating wind turbine system including blade-rotor dynamics and platform motions. As a test case, the TLP-type floater system with 3 blades of 70-m diameter designed by the National Renewable Energy Laboratory (NREL) is selected to analyze the dynamic coupling effects among floating system, mooring lines, and wind turbine. The performance of the selected system in a typical wind-wave-current condition has been simulated and analyzed. A similar study for the floater and rotor coupled dynamic analysis was conducted by MIT and NREL. However, in the present case, the dynamic coupling between platform and mooring lines are also considered in addition to the rotor-floater dynamic coupling. It is seen that the rotor-floater coupling effects increase with wind velocity and blade size. The increased coupling effects tend to increase the dynamic tension of TLP tethers. The developed technology and numerical tool are applicable to the new offshore floating wind farms planned in the future.

Shim, Sangyun

2007-12-01T23:59:59.000Z

15

Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine  

SciTech Connect

This report describes the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines.

Jonkman, J. M.

2007-12-01T23:59:59.000Z

16

Floating offshore wind farms : demand planning & logistical challenges of electricity generation  

E-Print Network (OSTI)

Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

17

Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine  

E-Print Network (OSTI)

In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control, mooring dynamics and platform motion. In particular, the numerical tool developed in this study is based on the single turbine analysis tool FAST, which was developed by National Renewable Energy Laboratory (NREL). For linear or nonlinear hydrodynamics of floating platform and generalized-coordinate-based FEM mooring line dynamics, CHARM3D program, hull-riser-mooring coupled dynamics program developed by Prof. M.H. Kim’s research group during the past two decades, is incorporated. So, the entire dynamic behavior of floating offshore wind turbine can be obtained by coupled FAST-CHARM3D in the time domain. During the coupling procedure, FAST calculates all the dynamics and control of tower and wind turbine including the platform itself, and CHARM3D feeds all the relevant forces on the platform into FAST. Then FAST computes the whole dynamics of wind turbine using the forces from CHARM3D and return the updated displacements and velocities of the platform to CHARM3D. To analyze the dynamics of MUFOWT, the coupled FAST-CHARM3D is expanded more and re-designed. The global matrix that includes one floating platform and a number of turbines is built at each time step of the simulation, and solved to obtain the entire degrees of freedom of the system. The developed MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can be applied. The coupled dynamic analysis for the three-turbine MUFOWT and five-turbine MUFOWT are carried out and the performances of each turbine and floating platform in normal operational condition are assessed. To investigate the coupling effect between platform and each turbine, one turbine failure event is simulated and checked. The analysis shows that some of the mal-function of one turbine in MUFOWT may induce significant changes in the performance of other turbines or floating platform. The present approach can directly be applied to the development of the remote structural health monitoring system of MUFOWT in detecting partial turbine failure by measuring tower or platform responses in the future.

Bae, Yoon Hyeok

2013-05-01T23:59:59.000Z

18

A nonlinear wave load model for extreme and fatigue responses of offshore floating wind turbines  

E-Print Network (OSTI)

Ocean energy is one of the most important sources of alternative energy and offshore floating wind turbines are considered viable and economical means of harnessing ocean energy. The accurate prediction of nonlinear ...

Lee, Sungho, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

19

Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint  

SciTech Connect

This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

Jonkman, J. M.; Buhl, M. L., Jr.

2007-06-01T23:59:59.000Z

20

Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines  

Science Conference Proceedings (OSTI)

This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

to the support platform is the “NREL offshore 5- MW baselineOffshore wind turbine classification [3]. .. 3 Figure 1.2: Alternative platform

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

22

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

of European Wind Energy Conference 2009, Marseille, France.Enabling New Markets for Offshore Wind Energy." Proc.Parsons. Offshore Wind Energy. Washingto, DC: Environmental

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

23

Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length  

DOE Green Energy (OSTI)

With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.

Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.

2013-07-01T23:59:59.000Z

24

Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length  

SciTech Connect

With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.

Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.

2013-07-01T23:59:59.000Z

25

Low Wind Speed Technology Phase II: Offshore Floating Wind Turbine Concepts: Fully Coupled Dynamic Response Simulations; Massachusetts Institute of Technology  

SciTech Connect

This fact sheet describes a subcontract with Massachusetts Institute of Technology to study dynamic response simulations to evaluate floating platform concepts for offshore wind turbines.

2006-03-01T23:59:59.000Z

26

Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint  

DOE Green Energy (OSTI)

Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

2013-07-01T23:59:59.000Z

27

New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

Not Available

2011-02-01T23:59:59.000Z

28

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

Enabling New Markets for Offshore Wind Energy." Proc.of European Wind Energy Conference 2009, Marseille, France.and S. E. Sowby. Standardized Wind and Wave Environments for

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

29

Floating plant for offshore liquefaction, temporary storage and loading of LNG  

SciTech Connect

A floating plant is disclosed for offshore liquefaction, temporary storage and loading of lng, made as a semi-submersible platform with storage tanks for lng arranged in the submerged section of the platform. The storage tanks are independent spherical tanks which are supported inside the submerged section of the platform and completely surrounded thereby.

Kvamsdal, R.

1980-05-13T23:59:59.000Z

30

Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform  

DOE Green Energy (OSTI)

An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

Gevorgian, V.

2012-02-01T23:59:59.000Z

31

Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint  

DOE Green Energy (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and analysis needs of the offshore wind community.

Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

2013-11-01T23:59:59.000Z

32

Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines: Preprint  

DOE Green Energy (OSTI)

The goal of this paper is to examine the appropriate length of a floating offshore wind turbine (FOWT) simulation - a fundamental question that needs to be answered to develop design requirements. To examine this issue, a loads analysis of an example FOWT was performed in FAST with varying simulation lengths. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency Code Comparison Collaborative Project and supports NREL's offshore 5-megawatt baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regards to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas industry, where running simulations of at least 3 hours in length is common practice.

Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D.

2013-06-01T23:59:59.000Z

33

Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines: Preprint  

SciTech Connect

The goal of this paper is to examine the appropriate length of a floating offshore wind turbine (FOWT) simulation - a fundamental question that needs to be answered to develop design requirements. To examine this issue, a loads analysis of an example FOWT was performed in FAST with varying simulation lengths. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency Code Comparison Collaborative Project and supports NREL's offshore 5-megawatt baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regards to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas industry, where running simulations of at least 3 hours in length is common practice.

Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D.

2013-06-01T23:59:59.000Z

34

Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint  

DOE Green Energy (OSTI)

In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

2012-11-01T23:59:59.000Z

35

Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint  

SciTech Connect

In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

2012-11-01T23:59:59.000Z

36

Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform  

SciTech Connect

This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. Models in this code are of greater fidelity than most of the models that have been used to analyze floating turbines in the past--which have neglected important hydrodynamic and mooring system effects. The report provides a description of the development process of a TLP model, which is a modified version of a Massachusetts Institute of Technology design derived from a parametric linear frequency-domain optimization process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the International Electrotechnical Commission offshore wind turbine design standard was performed with the verified TLP model. Response statistics, extreme event tables, fatigue lifetimes, and selected time histories of design-driving extreme events are analyzed and presented. Loads for the wind turbine on the TLP are compared to those of an equivalent land-based turbine in terms of load ratios. Major instabilities for the TLP are identified and described.

Matha, D.; Fischer, T.; Kuhn, M.; Jonkman, J.

2010-02-01T23:59:59.000Z

37

Summary of Conclusions and Recommendations Drawn from the DeepCWind Scaled Floating Offshore Wind System Test Campaign: Preprint  

DOE Green Energy (OSTI)

The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems, a tension-leg platform (TLP), a spar-buoy (spar), and a semisubmersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5 MW wind turbine and was tested under a variety of wind/wave conditions. The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.

Robertson, A. N.; Jonkman, J. M.; Masciola, M. D.; Molta, P.; Goupee, A. J.; Coulling, A. J.; Prowell, I.; Browning, J.

2013-07-01T23:59:59.000Z

38

Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint  

SciTech Connect

Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

2010-04-01T23:59:59.000Z

39

Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint  

DOE Green Energy (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

2010-04-01T23:59:59.000Z

40

Multibody Dynamics Using Conservation of Momentum with Application to Compliant Offshore Floating Wind Turbines  

E-Print Network (OSTI)

Environmental, aesthetic and political pressures continue to push for siting off-shore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating structures is likely to be considered. Savings could potentially be realized by reducing hull size, which would allow more compliance with the wind thrust force in the pitch direction. On the other hand, these structures with large-amplitude motions will make dynamic analysis both more challenging and more critical. Prior to the present work, there were no existing dynamic simulation tools specifically intended for compliant wind turbine design. Development and application of a new computational method underlying a new time-domain simulation tool is presented in this dissertation. The compliant floating wind turbine system is considered as a multibody system including tower, nacelle, rotor and other moving parts. Euler's equations of motion are first applied to the compliant design to investigate the large-amplitude motions. Then, a new formulation of multibody dynamics is developed through application of the conservation of both linear momentum and angular momentum to the entire system directly. A base body is prescribed within the compliant wind turbine system, and the equations of motion (EOMs) of the system are projected into the coordinate system associated with this body. Only six basic EOMs of the system are required to capture 6 unknown degrees of freedom (DOFs) of the base body when mechanical DOFs between contiguous bodies are prescribed. The 6 x 6 mass matrix is actually composed of two decoupled 3 x 3 mass matrices for translation and rotation, respectively. Each element within the matrix includes the inertial effects of all bodies. This condensation decreases the coupling between elements in the mass matrix, and so minimizes the computational demand. The simulation results are verified by critical comparison with those of the popular wind turbine dynamics software FAST. The new formulation is generalized to form the momentum cloud method (M- CM), which is particularly well suited to the serial mechanical N-body systems connected by revolute joints with prescribed relative rotation. The MCM is then expanded to multibody systems with more complicated joints and connection types.

Wang, Lei

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NETL: Deepwater Technology Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Deepwater Technology Deepwater Technology Offshore Architecture | Safety & Environmental | Other UDW Technology | Completed DW Projects Project Number Project Name Primary Performer 10121-4306-01 All Electric Subsea Autonomous High Integrity Pressure Protection System (HIPPS) Architecture GE Global Research 10121-4401-02 Ultra-Deepwater Riser Concepts for High Motion Vessels Stress Engineering Services, Inc. 10121-4405-02 Ultra-deepwater Dry Tree System for Drilling and Production in the Gulf of Mexico Det Norske Veritas 10121-4505-01 Coil Tubing Drilling and Intervention System Using Cost Effective Vessel Nautilus International, LLC 09121-3500-01 Intelligent Production System for Ultra-Deepwater with Short Hop Wireless Power and Wireless Data Transfer for Lateral Production Control and Optimization

42

Development of a Scale Model Wind Turbine for Testing of Offshore Floating Wind Turbine Systems.  

E-Print Network (OSTI)

??This thesis presents the development of a 1/50th scale 5 MW wind turbine intended for wind and wave basin model testing of commercially viable floating… (more)

Martin, Heather Rae

2011-01-01T23:59:59.000Z

43

New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

at the National Renewable Energy Laboratory at the National Renewable Energy Laboratory (NREL) develop a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology. Currently, most offshore wind turbines are installed in shallow water, less than 30 meters deep, on bottom-mounted substructures. But these substructures are not

44

Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Calibration and Validation of a Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool Preprint J.R. Browning University of Colorado-Boulder J. Jonkman and A. Robertson National Renewable Energy Laboratory A.J. Goupee University of Maine Presented at the Science of Making Torque from Wind Oldenburg, Germany October 9-11, 2012 Conference Paper NREL/CP-5000-56138 November 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

45

Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines: Preprint  

DOE Green Energy (OSTI)

This paper examines the consistency between response amplitude operators (RAOs) computed from WAMIT, a linear frequency-domain tool, to RAOs derived from time-domain computations based on white-noise wave excitation using FAST, a nonlinear aero-hydro-servo-elastic tool. The RAO comparison is first made for a rigid floating wind turbine without wind excitation. The investigation is further extended to examine how these RAOs change for a flexible and operational wind turbine. The RAOs are computed for below-rated, rated, and above-rated wind conditions. The method is applied to a floating wind system composed of the OC3-Hywind spar buoy and NREL 5-MW wind turbine. The responses are compared between FAST and WAMIT to verify the FAST model and to understand the influence of structural flexibility, aerodynamic damping, control actions, and waves on the system responses. The results show that based on the RAO computation procedure implemented, the WAMIT- and FAST-computed RAOs are similar (as expected) for a rigid turbine subjected to waves only. However, WAMIT is unable to model the excitation from a flexible turbine. Further, the presence of aerodynamic damping decreased the platform surge and pitch responses, as computed by both WAMIT and FAST when wind was included. Additionally, the influence of gyroscopic excitation increased the yaw response, which was captured by both WAMIT and FAST.

Ramachandran, G. K. V.; Robertson, A.; Jonkman, J. M.; Masciola, M. D.

2013-07-01T23:59:59.000Z

46

Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint  

SciTech Connect

To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

2011-10-01T23:59:59.000Z

47

Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009  

DOE Green Energy (OSTI)

This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The report also provides a description of the development process of the TLP model. The model has been verified via comparisons to frequency-domain calculations. Important differences have been identified between the frequency-domain and time-domain simulations, and have generated implications for the conceptual design process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the IEC 61400-3 offshore wind turbine design standard was performed with the verified TLP model. This report compares the loads for the wind turbine on the TLP to those of an equivalent land-based turbine. Major instabilities for the TLP are identified and described.

Matha, D.

2010-02-01T23:59:59.000Z

48

Deepwater Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Deepwater Wind Farm Deepwater Wind Farm Jump to: navigation, search Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation / Deepwater Wind LLC Developer Garden State Offshore Energy Location Atlantic Ocean NJ Coordinates 39.091°, -74.306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.091,"lon":-74.306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

A Comparison of Two and Three Bladed Floating Wind Turbines.  

E-Print Network (OSTI)

??A possible solution to the limitations of current offshore wind technology would be the utilization of a floating platform. Floating platforms are not a new… (more)

Andersen, Brett

2010-01-01T23:59:59.000Z

50

State of the Art in Floating Wind Turbine Design Tools  

SciTech Connect

This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

Cordle, A.; Jonkman, J.

2011-10-01T23:59:59.000Z

51

Deepwater Wind | Open Energy Information  

Open Energy Info (EERE)

Deepwater Wind Deepwater Wind Name Deepwater Wind Address 36-42 Newark Street Suite 402 Place Hoboken, New Jersey Zip 07030 Sector Wind energy Product offshore wind Phone number 201.850.1717 Website http://dwwind.com/ Coordinates 40.7366674°, -74.0295985° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7366674,"lon":-74.0295985,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Flexible dynamics of floating wind turbines  

E-Print Network (OSTI)

This work presents Tower Flex, a structural dynamics model for a coupled analysis of offshore floating wind turbines consisting of a tower, a floating platform and a mooring system. In this multi-body, linear frequency-domain ...

Luypaert, Thomas (Thomas J.)

2012-01-01T23:59:59.000Z

53

EA-1792: DOE Notice of Availability of the Environmental Assessment and Finding of No Significant Impact  

Energy.gov (U.S. Department of Energy (DOE))

University of Maine's Deepwater Offshore Floating WInd Turbine Testing and Demonstration Project, Gulf of Maine

54

Development of Deepwater Riser Monitoring Systems  

Science Conference Proceedings (OSTI)

In recent years, the exploration activity of oil and gas industry in ultra deepwater is numerous. The main offshore industries around the world are busy building drilling systems for deeper and deeper water, progressively using all kinds of new technologies. ... Keywords: Riser, Monitoring, Acoustic

Dai Wei; Bai Yong

2011-01-01T23:59:59.000Z

55

Stabilized floating platforms  

DOE Patents (OSTI)

The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

Thomas, David G. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

56

CONTENTS Japan Completes First Offshore  

NLE Websites -- All DOE Office Websites (Extended Search)

Japan Completes First Offshore Japan Completes First Offshore Production Test .............................1 New Seismic Data Over Known Hydrate Occurrences in the Deepwater Gulf of Mexico .........3 Gas Hydrate Reservoirs in the Offshore Caribbean Region of Colombia ..........................................7 CSEM Survey of a Methane Vent Site, Offshore West Svalbard...12 Pressure Core Analysis Tools Used to Characterize Hydrate- Bearing Sediments from The Nankai Trough ..............................19 Using Noble Gas Signatures to Fingerprint Gas Streams Derived from Dissociating Methane Hydrate .......................................... 23 Announcements ...................... 27 * North Slope Oil and Gas Lands Set Aside for Methane Hydrate Research * 2014 Offshore Technology Conference to Have Sessions on

57

Texas deepwater oil ports vie for support  

SciTech Connect

Two proposals for deepwater oil ports in the Gulf of Mexico apparently are competing for support from several of the same companies. Port of Corpus Christi Authority (PCCA) officials believe some companies to which they have broadened preliminary ideas for an inshore deepwater oil port also are members of a group studying plans for a deepwater port off Freeport, Tex. Safeharbor, proposed on Harbor Island across from Mustang Island in the Corpus Christi Ship Channel (CCSC), and Texas Offshore Oil Port (Texport) won't vie for exactly the same oil imports. Companies importing oil to refineries on Corpus Christi Bay would account for about half the 1 million b/d PCCA officials believe will be needed for Safeharbor to be economically viable. The rest would come from companies moving imported oil into the Houston area through Galveston Bay.

Koen, A.D.

1991-03-25T23:59:59.000Z

58

Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2  

SciTech Connect

Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2011-03-01T23:59:59.000Z

59

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

60

An Update on the National Offshore Wind Strategy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the National Offshore Wind Strategy December 17, 2012 - 11:27am Addthis Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department...

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Offshore Technology  

E-Print Network (OSTI)

This report, and the roadmapping exercise that produced it, is the result of a series of transparent workshops held across the nation. A wealth of information was produced to compliment internal sources like the Energy Information Administration. The active participation of the Department's stakeholders is greatly appreciated. Walter Rosenbusch, Director of the Minerals Management Service (MMS) deserves special recognition. His partnership, participation and input were instrumental to the success of this effort. I also would like to thank my friend Governor Mark White for his participation and support of this effort. In addition, I thank the following workshop chairs and moderators for their participation and contribution to the roadmapping efforts: Mary Jane Wilson, WZI, Inc.; Ron Oligney, Dr. Michael Economides, and Jim Longbottom, University of Houston; John Vasselli, Houston Advanced Research Center; and Art Schroeder, Energy Valley. This report, however, does not represent the end of such long-range planning by the Department, its national labs, and its stakeholders. Rather it is a roadmap for accelerating the journey into the ultradeepwater Western Gulf of Mexico. The development of new technologies and commercialization paths, discoveries by marine biologists, and the fluctuations of international markets will continue to be important influences. With that in mind, let the journey begin. Emil Pea Deputy Assistant Secretary for Natural Gas and Petroleum Technology OFFSHORE TECHNOLOGY ROADMAP FOR THE ULTRA-DEEPWATER GULF OF MEXICO U.S. Department of Energy Maximumhistm,183 oil product,0 ratd for Gulf of Mexico wells. Taller barsindicat higherproduct44 ratdu The dat show numerous deepwat, oil wells producedat significant2 higherrate tt ever seen in t, Gulf of ...

Roadmap For The; Deepwater Gulf; Of Mexico

2000-01-01T23:59:59.000Z

62

EA-1792: Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE))

University of Maine's DeepWater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine

63

influence of met-ocean conditions on the loads analysis of a Floating wind turbine.  

E-Print Network (OSTI)

??Better wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical… (more)

Barj, Lucie

2013-01-01T23:59:59.000Z

64

International Collaboration on Offshore Wind Energy Under IEA Annex XXIII  

DOE Green Energy (OSTI)

This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

Musial, W.; Butterfield, S.; Lemming, J.

2005-11-01T23:59:59.000Z

65

Offshore Wind Research (Fact Sheet)  

SciTech Connect

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

2011-10-01T23:59:59.000Z

66

Offshore Wind Research (Fact Sheet)  

DOE Green Energy (OSTI)

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

67

Floating Cars  

E-Print Network (OSTI)

land- scape of destroyed cars provides a stark illustrationTHE ACCESS ALMANAC Floating Cars BY DANIEL BALDWIN HESS S Uof the excessive number of cars in the United States, where

Hess, Daniel Baldwin

2006-01-01T23:59:59.000Z

68

Fixed-base platform concepts for deepwater Gulf of Mexico  

Science Conference Proceedings (OSTI)

Today, offshore platforms are installed in water as deep as 5,000 ft. Gulf of Mexico offshore platforms can be categorized by the water-depth ranges where they are cost-effective: Fixed-base rigid platforms (to approximately 1,400 ft); Compliant towers (1,200 to 2,000 ft); and Floating systems (deeper than 1,600 ft). The paper describes production and equipment, design, platform concepts, in-place considerations, fabrication considerations, and installation considerations.

NONE

1998-04-01T23:59:59.000Z

69

Deepwater Oil & Gas Resources  

Energy.gov (U.S. Department of Energy (DOE))

The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energy’s Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection.

70

Definition of the Floating System for Phase IV of OC3  

DOE Green Energy (OSTI)

Phase IV of the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3) involves the modeling of an offshore floating wind turbine. This report documents the specifications of the floating system, which are needed by the OC3 participants for building aero-hydro-servo-elastic models.

Jonkman, J.

2010-05-01T23:59:59.000Z

71

Deepwater Oil & Gas Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

72

An Update on the National Offshore Wind Strategy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy December 17, 2012 - 11:27am Addthis Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Jose Zayas Jose Zayas Program Manager, Wind and Water Power Program Get the Details on Offshore Wind Take a look at our National Offshore Wind Strategy for information

73

NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

SWAY hopes these data will validate its design for a 10-megawatt floating offshore wind turbine. The SWAY one-fifth scale prototype has a 13-meter (m) downwind rotor on a 29-m...

74

Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint  

DOE Green Energy (OSTI)

This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

Bir, G.; Jonkman, J.

2007-08-01T23:59:59.000Z

75

Floating vessel  

SciTech Connect

The invention relates to a floating vessel which may be used in oil recovery. The assembly consists of a vertical column having a relatively small diameter. The column has a buoyancy capacity and is supplied with a ballast section having a larger diameter at its end. An upper structure is movably connected to the column. The column and the ballast chamber determine the limits of a shaft. The shaft is open at its lower end and is supplied with means to let fluid into the shaft over a relatively large area. (8 claims)

1974-05-14T23:59:59.000Z

76

Rhode Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Offshore Wind Farm Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Sakonnet RI Coordinates 40.96°, -71.44° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.96,"lon":-71.44,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

13.022 Surface Waves and their Interaction With Floating Bodies, Spring 2002  

E-Print Network (OSTI)

Introduces the physics and mathematical modeling of linear and nonlinear surface wave interactions with floating bodies, e.g., ships and offshore platforms. Surface wave theory, including linear and nonlinear effects in a ...

Sclavounos, Paul D.

78

Influence of Control on the Pitch Damping of a Floating Wind Turbine  

SciTech Connect

This paper presents the influence of conventional wind turbine blade-pitch control actions on the pitch damping of a wind turbine supported by an offshore floating barge with catenary moorings.

Jonkman, J. M.

2008-03-01T23:59:59.000Z

79

Ultra-Deepwater Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater Advisory Committee Ultra-Deepwater Advisory Committee Minutes of Meeting of June 21, 2007 Crystal City Marriott, Arlington, VA Executive Session Bill Hochheiser, the Committee Management Officer (CMO), welcomed the Ultra- Deepwater Advisory Committee (hereafter referred to as the Committee) at 8:35 a.m. on June 21, 2007. Bill noted that he shared the CMO responsibilities with Elena Melchert but, although she was not able to attend the meeting, she sent her regards to the Committee members. The Agenda for the meeting and Committee Member Sign-in sheet are provided as Appendix 1 and Appendix 2, respectively. After appointment and administration of Oath of Office for special Government employees, the Committee was briefed on conflict of interest statutes and the

80

Floating Windfarms Corporation | Open Energy Information  

Open Energy Info (EERE)

Windfarms Corporation Windfarms Corporation Jump to: navigation, search Name Floating Windfarms Corporation Place Houston, Texas Zip 77060 Sector Wind energy Product Texas-based offshore wind power developer that uses floating and non-floating vertical axis wind turbines to generate power. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)  

DOE Green Energy (OSTI)

Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

Not Available

2011-07-01T23:59:59.000Z

82

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)  

SciTech Connect

Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

2011-07-01T23:59:59.000Z

83

A Lagrangian Float  

Science Conference Proceedings (OSTI)

The design and Operation of neutrally buoyant floats that attempt to track the three-dimensional motion of water parcels in highly turbulent regions of the ocean, such as the upper mixed layer, are described. These floats differ from previous ...

Eric A. D'Asaro; David M. Farmer; James T. Osse; Geoffrey T. Dairiki

1996-12-01T23:59:59.000Z

84

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine May 27, 2011 EA-1792: DOE...

85

Microsoft Word - Appendix C - Draft EA Communications.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

impacts associated with the: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project Gulf of Maine DOEEA 1792 DOE's Golden Field...

86

EA-1792: DOE Notice of Availability of the Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Finding of No Significant Impact University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792-DOENOAFEA-20110.pdf...

87

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

impacts associated with the: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project Gulf of Maine DOEEA 1792 DOE's Golden Field...

88

EA-1792: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792-FONSI-2011.pdf More...

89

Notices of Availability (NOA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Environmental Assessment University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site in Hancock County,...

90

NOTICE OF AVAILABILITY  

NLE Websites -- All DOE Office Websites (Extended Search)

impacts associated with the: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site Castine, Hancock...

91

NOTICE OF AVAILABILITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

impacts associated with the: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project DOEEA - 1792 Gulf of Maine DOE's Golden...

92

DOE/EA-1792S DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT FOR...  

NLE Websites -- All DOE Office Websites (Extended Search)

ENVIRONMENTAL ASSESSMENT FOR THE UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT Castine US Department of Energy Office of...

93

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine September 26, 2011 EA-1792:...

94

DOE/EA-1792 FINAL ENVIRONMENTAL ASSESSMENT FOR UNIVERSITY OF...  

NLE Websites -- All DOE Office Websites (Extended Search)

FINAL ENVIRONMENTAL ASSESSMENT FOR UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT GULF OF MAINE U.S. Department of Energy...

95

Microsoft Word - 20130320 UMaine Castine Final SEA_final draft...  

NLE Websites -- All DOE Office Websites (Extended Search)

ENVIRONMENTAL ASSESSMENT FOR THE UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT Castine US Department of Energy Office of...

96

SUPPLEMENT ANALYSIS FOR THE SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT...  

NLE Websites -- All DOE Office Websites (Extended Search)

ASSESSMENTFINDING OF NO SIGNIFICANT IMPACT FOR THE UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT CASTINE, MAINE DOE...

97

Experimental and numerical analysis of a deepwater mini-TLP  

E-Print Network (OSTI)

As the quest for oil and gas resources drives the industry to ever deeper waters, model testing still represents an essential step after numerical modeling when designing offshore platforms in these hostile environments. In an attempt to better understand the overall response behavior of a small-size deepwater tension leg platform (TLP) designed by the offshore industry, an experimental campaign was led at the Offshore Technology Research Center (OTRC) in cooperation with Statoil. Time-domain statistics and dimensionless ratios are used to characterize the environmental design sea conditions. Similar methods are utilized to examine the critical issues of the clearance between the wave train crests and the underside of the platform's deck, and the wave run-up on the TLP columns. Rough estimations of the wave forces applied on the hull are given by a Morison's equation modified to fit the TLP geometrical complexity. These predictions are compared with WAMIT numerical simulations and the experimental results. The structure's natural periods of vibration and damping coefficients are computed by fitting free-decay tests and by analyzing the motion spectral responses. The time-domain analysis provides estimates of extreme surge offset and maximum yaw angle. The low-frequency, wave-frequency and high-frequency components of the response signals are identified through the spectral density analysis of the platform's motions and tendon tensions.

Guichard, Aurelien

2001-01-01T23:59:59.000Z

98

Ultra-Deepwater Production Systems  

SciTech Connect

The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

Ken L. Smith; Marc E. Leveque

2005-05-31T23:59:59.000Z

99

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The...

100

2010 Annual Plan Ultra-Deepwater and Unconventional Natural Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2010 Annual Plan Ultra-Deepwater and Unconventional...

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2009 Annual Plan Ultra-Deepwater and Unconventional Natural Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2009 Annual Plan Ultra-Deepwater and Unconventional...

102

Rhode Island to Build First Offshore Wind Farm | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm March 15, 2010 - 6:38pm Addthis Rhode Island’s first offshore wind farm will be built in Block Island. | File photo Rhode Island's first offshore wind farm will be built in Block Island. | File photo Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island's first offshore wind farm. Powerful ocean winds lie right off Block Island's south shore. That's the benefit of offshore wind farms - they can take advantage of the harder, stronger winds found a few miles off the coast Deepwater Wind LLC is leading the effort with plans to construct up to eight wind turbines three miles off of Block Island's shore.

103

Deepwater Wind Formerly Winergy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Formerly Winergy LLC Wind Formerly Winergy LLC Jump to: navigation, search Name Deepwater Wind (Formerly Winergy LLC) Place Shirley, New York Zip 11967 Sector Wind energy Product Has carried out a survey of feasible offshore wind sites in the US. Coordinates 40.80063°, -72.872189° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.80063,"lon":-72.872189,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

NETL: News Release - Keeping Deepwater Pipelines Flowing  

NLE Websites -- All DOE Office Websites (Extended Search)

remediation problem for offshore oil producers. Wax deposits can restrict the flow of crude oil and natural gas liquids, curtailing operations from offshore platforms that can...

105

Performance of Autonomous Lagrangian Floats  

Science Conference Proceedings (OSTI)

A truly Lagrangian float would follow all three components of oceanic velocity on all timescales. Progress toward this goal is reviewed by analyzing the performance of nearly Lagrangian floats deployed in a variety of oceanic flows. Two new float ...

Eric A. D'Asaro

2003-06-01T23:59:59.000Z

106

Ultra-Deepwater Production Systems  

Science Conference Proceedings (OSTI)

This report includes technical progress made during the period October, 2003 through September, 2004. At the end of the last technical progress report, the subsea processing aspects of the work program had been dropped due to the lack of commercial opportunity within ConocoPhillips, and the program had been redirected towards two other promising deepwater technologies: the development and demonstration of a composite production riser, and the development and testing of a close-tolerance liner drilling system. This report focuses on these two technologies.

K. L. Smith; M. E. Leveque

2004-09-30T23:59:59.000Z

107

Future for Offshore Wind Energy in the United States: Preprint  

DOE Green Energy (OSTI)

Until recently, the offshore wind energy potential in the United States was ignored because vast onshore wind resources have the potential to fulfill the electrical energy needs for the entire country. However, the challenge of transmitting the electricity to the large load centers may limit wind grid penetration for land-based turbines. Offshore wind turbines can generate power much closer to higher value coastal load centers. Reduced transmission constraints, steadier and more energetic winds, and recent European success, have made offshore wind energy more attractive for the United States. However, U.S. waters are generally deeper than those on the European coast, and will require new technology. This paper presents an overview of U.S. coastal resources, explores promising deepwater wind technology, and predicts long-term cost-of-energy (COE) trends. COE estimates are based on generic 5-MW wind turbines in a hypothetical 500-MW wind power plant. Technology improvements and volume production are expected to lower costs to meet the U.S. Department of Energy target range of $0.06/kWh for deployment of deepwater offshore wind turbines by 2015, and $0.05/kWh by 2012 for shallow water. Offshore wind systems can diversify the U.S. electric energy supply and provide a new market for wind energy that is complementary to onshore development.

Musial, W.; Butterfield, S.

2004-06-01T23:59:59.000Z

108

Microsoft PowerPoint - Deepwater Horizon Containment - 30 JUN.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Horizon Source Control Deepwater Horizon Source Control June 30, 2010 DOE/DOI External Science Advisors On-Site DOI + DOE Labs Team Reach Back to Labs BP + Contractors + Industry Design Key Decisions * Independent Analysis * Information Flow * Integrated Design Reviews * Development of Joint Action Plans * Decision Engagement Analysis Operations Federal & BP Working Relationship Path Forward via Unified Command Strategy and Forward Plan * Run a Safe Operation * Long Term - Relief Wells * Short Term - Containment - Option to Shut-in Well; Test Integrity * Leverage Industry and Government Expertise * Multiple Parallel Options * No Stone Unturned to Minimize Pollution Containment: Early July Capacity 40 - 53 mbd Containment: Offshore Operations Toisa Pisces Loch Rannoch Helix Producer Subsea Manifold Air Can in Moonpool

109

NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

Not Available

2013-10-01T23:59:59.000Z

110

OpenEI - offshore  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm3220 en NREL GIS Data: Global Offshore Wind http:en.openei.orgdatasetsnode869

GIS data for offshore wind speed (meters...

111

Micromechanisms with floating pivot  

DOE Patents (OSTI)

A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

Garcia, Ernest J. (Albuquerque, NM)

2001-03-06T23:59:59.000Z

112

Plasma Screen Floating Mount  

Engineers at the Savannah River National Laboratory (SRNL) have invented a new mounting system for flat panel video technology.  The plasma screen floating mount is a mounting system proven to eliminate vibration and dampen shock for mobile uses of ...

113

Float-in powerhouses  

Science Conference Proceedings (OSTI)

The nation's inland waterway system affords a means of transporting large objects limited only by channel depth, size of locks and bridge clearances. The concept of prefabricating standardized, hydroelectric powerhouses at shipyards, transporting them along the inland waterways and installing them at navigation dams without powerhouses was examined for the McClellan-Kerr Arkansas River Navigation system. It was found that construction costs for the float-in design was very close to those of conventional sitebuilt design. Experience at Greenup Dam on the Ohio River where a float-in powerhouse has been installed indicated that construction time could be reduced if the float-in design was used. This time saving, use of standardized designs and construction of the float-in module at a shipyard may offer advantages that should be examined in more detailed when the power potential of the nation's low navigation dams is assessed.

Makela, G.A.

1983-06-01T23:59:59.000Z

114

Quantitative Comparison of the Responses of Three Floating Platforms  

DOE Green Energy (OSTI)

This report presents a comprehensive dynamic-response analysis of three offshore floating wind turbine concepts. Models were composed of one 5-MW turbine supported on land and three 5-MW turbines located offshore on a tension leg platform, a spar buoy, and a barge. A loads and stability analysis adhering to the procedures of international design standards was performed for each model using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The concepts are compared based on the calculated ultimate loads, fatigue loads, and instabilities. The results of this analysis will help resolve the fundamental design trade-offs between the floating-system concepts.

Jonkman, J.; Matha, D.

2010-03-01T23:59:59.000Z

115

NETL: Oil and Natural Gas: Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Deepwater Technology Research Project Summaries Reference Shelf O&G Document Archive Deepwater (and Ultra-Deepwater, 5000 feet of water depth and beyond) is recognized as one of the last remaining areas of the world were oil and natural gas resources remain to be discovered and produced. The architecture of the systems employed to cost-effectively develop these resources in an environmentally safe manner, reflect some of industryÂ’s most advanced engineering accomplishments. NETL is funding research to catalyze further advances that can help Gulf of Mexico discoveries progress to production quickly and safely, and that can help maximize oil and gas recovery from fields that are currently at the edge of industry capabilities. Many of these efforts are focused on subsea production

116

Offshore software maintenance methodology  

Science Conference Proceedings (OSTI)

Keywords: maintenance methodology, offshore maintenance, remote maintenance, software economics, software maintenance

M. Pavan Kumar; V. Sita Rama Das; N. Netaji

1996-05-01T23:59:59.000Z

117

Improving Floating Point Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Improving Floating Point Compression through Binary Masks Leonardo A. Bautista Gomez Argonne National Laboratory Franck Cappello Argonne National Laboratory Abstract-Modern scientific technology such as particle accel- erators, telescopes and supercomputers are producing extremely large amounts of data. That scientific data needs to be processed using systems with high computational capabilities such as supercomputers. Given that the scientific data is increasing in size at an exponential rate, storing and accessing the data is becoming expensive in both, time and space. Most of this scientific data is stored using floating point representation. Scientific applications executed in supercomputers spend a large amount of CPU cycles reading and writing floating point values, making data compression techniques an interesting way to increase computing efficiency.

118

Fiber-Optic Sensors to Monitor Deepwater Oil and Gas ...  

Science Conference Proceedings (OSTI)

Fiber-Optic Sensors to Monitor Deepwater Oil and Gas Pipelines. Partnering Organization: Luna Innovations, Incorporated, Blacksburg, VA. ...

119

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

of wind turbine. Rating Control Rotor Radius Rated Windturbines is a major design consideration due to cyclic loading induced by the rotating rotors [the turbine. The base was assumed to be fixed and the rotor

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

120

Data from Deepwater Horizon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data from Deepwater Horizon Data from Deepwater Horizon Data from Deepwater Horizon "Transparency is not only in the public interest, it is part of the scientific process. We want to make sure that independent scientists, engineers and other experts have every opportunity to review this information and make their own conclusions." -Secretary Chu As part of the Obama Administration's ongoing commitment to transparency surrounding the response to the BP oil spill, the Department of Energy is providing online access to schematics, pressure tests, diagnostic results and other data about the malfunctioning blowout preventer. Secretary Chu insisted on making the data widely available to ensure the public is as informed as possible, and to ensure that outside experts making recommendations have access to the same information that BP and the

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Temperature Prediction in Deepwater Drilling of Vertical Well  

E-Print Network (OSTI)

The extreme operating conditions in deepwater drilling lead to serious relative problems. The knowledge of subsea temperatures is of prime interest to petroleum engineers and geo-technologists alike. Petroleum engineers are interested in subsea temperatures to better understand geo-mechanisms; such as diagenesis of sediments, formation of hydrocarbons, genesis and emplacement of magmatic formation of mineral deposits, and crustal deformations. Petroleum engineers are interested in studies of subsurface heat flows. The knowledge of subsurface temperature to properly design the drilling and completion programs and to facilitate accurate log interpretation is necessary. For petroleum engineers, this knowledge is valuable in the proper exploitation of hydrocarbon resources. This research analyzed the thermal process in drilling or completion process. The research presented two analytical methods to determine temperature profile for onshore drilling and numerical methods for offshore drilling during circulating fluid down the drillstring and for the annulus. Finite difference discretization was also introduced to predict the temperature for steady-state in conventional riser drilling and riserless drilling. This research provided a powerful tool for the thermal analysis of wellbore and rheology design of fluid with Visual Basic and Matlab simulators.

Feng, Ming

2011-05-01T23:59:59.000Z

122

RE: Northeast Gateway Deepwater Port Project Incidental Harassment Authorization Request  

E-Print Network (OSTI)

submits this request in accordance with 50 CFR 216.104 for Incidental Harassment Authorizations (IHAs) for the “taking ” of small numbers of marine mammals incidental to the proposed action described herein or to make a finding that incidental take is unlikely to occur. On May 14, 2007 Maritime Administration (MARAD) issued a License to Northeast Gateway to own, construct, and operate a Deepwater Port for the import and regasification of LNG located approximately 13 miles (21 kilometers) offshore of Gloucester, Massachusetts in federal waters approximately 270 to 290 feet (82 to 88 meters) in depth. This facility will deliver regasified LNG to onshore markets via new and existing pipeline facilities owned and operated by Algonquin Gas Transmission Company (Algonquin). Construction of the Port was completed in December of 2007 and the Port was commissioned for operation by the USCG in February 2008. In October 2006, Northeast Gateway submitted its original application to the National Oceanic Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS) for an IHA. The

Shane Guan; Dear Mr. Guan

2008-01-01T23:59:59.000Z

123

ORISE: White paper analyzes Deepwater Horizon event for improving nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Horizon and Nuclear and Radiological Incidents: Common Challenges Deepwater Horizon and Nuclear and Radiological Incidents: Common Challenges and Solutions White paper analyzes Deepwater Horizon response, identifies approaches for radiological or nuclear emergency planning The 2010 Deepwater Horizon oil spill shares many of the same challenges associated with a radiological incident like the one considered in the Empire 09 exercise or even a much larger nuclear incident. By analyzing experiences during Deepwater Horizon, these challenges can be identified by the interagency in advance of a radiological or nuclear emergency and solutions made available. In the white paper Deepwater Horizon and Nuclear and Radiological Incidents: Common Challenges and Solutions (PDF, 462KB), ORISE examines the following three aspects of the Deepwater Horizon response:

124

Ultra-Deepwater Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater Advisory Ultra-Deepwater Advisory Committee Ultra-Deepwater Advisory Committee Ultra-deepwater architecture and technology. | Graphic courtesy of FMC Ultra-deepwater architecture and technology. | Graphic courtesy of FMC Mission The Secretary of Energy, in response to provisions of Subtitle J, Sec. 999 of the Energy Policy Act of 2005, must carry out a program of research, development, demonstration, and commercial application of technologies for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, including addressing the technology challenges for small producers, safe operations, and environmental mitigation (including reduction of greenhouse gas emissions and sequestration of carbon). The Department's Ultra-Deepwater Advisory Committee (UDAC) was established

125

Maine Project Launches First Grid-Connected Offshore Wind Turbine in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Launches First Grid-Connected Offshore Wind Turbine Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating platform wind turbine to be deployed in the world - strengthening American leadership in innovative clean energy technologies that diversify the nation's energy mix with more clean, domestic energy sources. "Developing America's vast renewable energy resources is an important part of the Energy Department's all-of-the-above strategy to pave the way

126

Pliocene to recent stratigraphy of the Cuu Long and Nam Con Son Basins, offshore Vietnam  

E-Print Network (OSTI)

The Cuu Long and Nam Con Basins, offshore Vietnam, contain sediment dispersal systems, from up-dip fluvial environments to down-dip deep-water slope and basinal environments that operated along the southern continental margin of Vietnam during Pliocene to Recent time. The available data enabled sediment thickness patterns, sequence-stratigraphic relationships, and channel types (fluvial to deep-water channels) within the lower Pliocene to Recent stratigraphic succession in the Cuu Long and Nam Con Son basins of offshore Vietnam to be analyzed. At least nine sequences and their accompanying systems tracts exist in the Pliocene to Recent section. Shelf-edge development in the study area is limited to the Eastern Nam Con Son Sub-Basin. Overall south to southeastward migration of the shelf edge complex during Pliocene to Recent time indicates that the Paleo-Mekong River System was the dominant sediment source for the area.

Yarbrough, Christopher Neil

2006-05-01T23:59:59.000Z

127

Offshore Wind 101  

Wind Powering America (EERE)

visual impact and potential user conflict. Sorry. According to the Department of Energy's national renewable energy lab, the nation's potential offshore wind energy resource is...

128

NETL: EPAct2005 - Ultra-deepwater and Unconventional Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies, architectures, and methods that ensure safe and environmentally responsible exploration and production of hydrocarbons from the ultra-deepwater portion of the Outer...

129

Ultra-Deepwater Advisory Committee Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Committee Members Petroleum Reserves International Cooperation Natural Gas Regulation Advisory Committees 2011-2013 Ultra-Deepwater Advisory Committee Members Dr....

130

Economic Analysis of a Representative Deep-Water Gas Production ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1998: Issues and Trends 181 Appendix C Economic Analysis of a Representative Deep-Water Gas Production Project

131

PRESSURE PREDICTION AND UNDERBALANCED DRILLING IN THE DEEPWATER NIGER DELTA.  

E-Print Network (OSTI)

??The mechanisms that cause overpressure can be broadly classified into two categories: loading and unloading. This study looks at eight wells from the deepwater Niger… (more)

GOODWYNE, OLAR,KAMAL

2012-01-01T23:59:59.000Z

132

ORISE: White paper analyzes Deepwater Horizon event for improving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Incidents: Common Challenges and Solutions White paper analyzes Deepwater Horizon response, identifies approaches for radiological or nuclear emergency planning The 2010...

133

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

(Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade...

134

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Yemen (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Yemen (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

135

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and...

136

EA-1792: DOE Notice of Availability of the Draft Environmental Assessment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Draft Environmental Assessment EA-1792: DOE Notice of Availability of the Draft Environmental Assessment University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine This draft EA to evaluate and describe the potential environmental impacts associated with the: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project Gulf of Maine. Notice of Availability of the Draft Environmental Assessment for the University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project Gulf of Maine, DOE/EA-1792 (June 2011) More Documents & Publications EA-1792: DOE Notice of Availability of the Environmental Assessment and Finding of No Significant Impact

137

GAOH Offshore | Open Energy Information  

Open Energy Info (EERE)

Intends to become the preferred supplier of transport and logistical solutions for the offshore wind industry. References GAOH Offshore1 LinkedIn Connections CrunchBase...

138

Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint  

DOE Green Energy (OSTI)

Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

2013-09-01T23:59:59.000Z

139

Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume  

Science Conference Proceedings (OSTI)

The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

2011-06-15T23:59:59.000Z

140

The Deepwater Horizon oil spill and Miami-Dade County  

E-Print Network (OSTI)

The Deepwater Horizon oil spill and Miami-Dade County Issue 8.2 Background On Tuesday, April 20 days later off the coast of Louisiana. The Deepwater Horizon oil spill is now the largest oil spill in U.S. history and has been designated as a Spill of Na- tional Significance. Current projections from

Jawitz, James W.

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Models Computer Models Integrate Wind Turbines with Floating Platforms Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines. Coupling wind turbines and floating platforms requires complex computer models. Land- based wind turbines are designed and analyzed using simulation tools, called computer-aided engineering (CAE) design tools, that are capable of predicting a design's dynamic response to

142

Texas Offshore Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore New Mexico...

143

Federal Offshore, Gulf of Mexico, Texas Natural Gas Gross Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore New Mexico...

144

offshore | OpenEI  

Open Energy Info (EERE)

offshore offshore Dataset Summary Description GIS data for offshore wind speed (meters/second). Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m. Annual average >= 10 months of data, no nulls. Source National Renewable Energy Laboratory (NREL) Date Released Unknown Date Updated Unknown Keywords GIS global NOAA NREL offshore wind wind speed Data application/zip icon Download Shapefile (zip, 18.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Please cite NREL and NOAA Rate this dataset Usefulness of the metadata

145

Offshore Development and Production  

Reports and Publications (EIA)

Natural gas production in the Federal offshore has increased substantially in recent years, gaining more than400 billion cubic feet between 1993 and 1997 to a level of 5.14 trillion cubic feet.

Information Center

1999-04-01T23:59:59.000Z

146

Session: Offshore wind  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

147

Structure of Offshore Flow  

Science Conference Proceedings (OSTI)

The horizontal and vertical structure of the mean flow and turbulent fluxes are examined using aircraft observations taken near a barrier island on the east coast of the United States during offshore flow periods. The spatial structure is ...

Dean Vickers; L. Mahrt; Jielun Sun; Tim Crawford

2001-05-01T23:59:59.000Z

148

Session: Offshore wind  

SciTech Connect

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

149

Slow motion responses of compliant offshore structures  

E-Print Network (OSTI)

An efficient method is developed to predict slow motion responses of slender compliant offshore structures in the unidirectional irregular waves and currents. The environmental loads are computed using the modified Morison equation based on slender-body approximation. The Hybrid Wave Model, which considers the nonlinear wave-wave interactions, is used to predict wave kinematics accurately up to the second order of wave steepness. Other second-order forces due to convective acceleration, free-surface fluctuation, time-varying structural displacement and axial divergence effects are also included. An iterative-incremental Newmark-,3 scheme is employed to simulate the structural responses in the time domain. It is observed that the predicted slow-drift motions of a Joint, Industry Project Spar and a Floating Jacket Platform are in excellent agreement with the model test measurements. However, the predicted slow-drift motions using Wheeler Stretching and Linear Extrapolation wave kinematics models do not agree with the measurements well.

Cao, Peimin

1996-01-01T23:59:59.000Z

150

Strategies for sharing a floating point unit between SPEs  

E-Print Network (OSTI)

Floating Point Unit . . . . . . . . . . . . . . . . . . .compliant floating point unit”. In DATE ’06: Proceedings offor sharing a Floating Point Unit between SPEs A Thesis

Lugo Martinez, Jose E.

2010-01-01T23:59:59.000Z

151

Offshoring in the Semiconductor Industry: Historical Perspectives  

E-Print Network (OSTI)

the first to invest in offshore facilities to manufacturebe cost-effective to offshore in any location with adequateoften affect decisions to offshore. The framework within

Brown, Clair; Linden, Greg

2005-01-01T23:59:59.000Z

152

Capital Energy Offshore | Open Energy Information  

Open Energy Info (EERE)

Offshore Jump to: navigation, search Name Capital Energy Offshore Place Spain Sector Wind energy Product JV between Gamesa and Capital Energy to develop offshore wind farms...

153

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name Blyth Offshore Wind Ltd Place United Kingdom Sector Renewable Energy, Wind energy Product Blyth Offshore Wind Limited,...

154

Norfolk Offshore Wind NOW | Open Energy Information  

Open Energy Info (EERE)

Norfolk Offshore Wind NOW Jump to: navigation, search Name Norfolk Offshore Wind (NOW) Place United Kingdom Sector Wind energy Product Formed to develop the 100MW Cromer offshore...

155

Definition: Offshore Wind | Open Energy Information  

Open Energy Info (EERE)

Definition: Offshore Wind Jump to: navigation, search Dictionary.png Offshore Wind Wind turbine installations built near-shore or further offshore on coastlines for...

156

EERE: Golden Field Office Public Reading Room - FINAL Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

(PDF 6.2 MB) Appendix C (PDF 1.9 MB) University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine (DOEEA 1792-S1) Final Supplemental...

157

EERE: Golden Field Office Public Reading Room - DRAFT Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

No. 12690-005) 1-15-2013 (PDF 1.5 MB) University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project- Castine Harbor site (DOEEA 1792-S1) Notice...

158

Secretaries Chu and Salazar to Convene Meeting on Strengthening Deepwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Convene Meeting on Strengthening to Convene Meeting on Strengthening Deepwater Blowout Containment Capabilities Secretaries Chu and Salazar to Convene Meeting on Strengthening Deepwater Blowout Containment Capabilities September 17, 2010 - 12:00am Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu and Secretary of the Interior Ken Salazar will convene top U.S. government scientists and key industry and stakeholder leaders to discuss how to strengthen capabilities for responding to potential blowouts of oil and gas wells in deepwaters on the Outer Continental Shelf. The September 22, 2010 panel discussion will help guide reforms that are raising the bar for the oil and gas industry's practices, inform recommendations on whether and how to lift the current deepwater drilling suspension, and assist in establishing a path forward for government and

159

DOE Announces New Research to Advance Safe and Responsible Deepwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Research to Advance Safe and Responsible Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies May 21, 2012 - 1:00pm Addthis Washington, DC - Thirteen projects aimed at reducing the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE) for further development. Negotiations for the new projects will lead to awards totaling $35.4 million, adding to the research portfolio of the Office of Fossil Energy's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include (1) new and better ways to

160

DOE Announces New Research to Advance Safe and Responsible Deepwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces New Research to Advance Safe and Responsible DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies May 21, 2012 - 1:00pm Addthis Washington, DC - Thirteen projects aimed at reducing the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE) for further development. Negotiations for the new projects will lead to awards totaling $35.4 million, adding to the research portfolio of the Office of Fossil Energy's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include (1) new and better ways to

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater and Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a public/private partnership valued at $400 million over eight years that is designed to benefit consumers by developing technologies to increase America's domestic oil and gas production and reduce the Nation's dependency on foreign imports. Key aspects of the program include utilizing a non-profit consortium to manage the research, establishing two federal advisory committees, and funding of $50 million per year derived from royalties, rents, and bonuses from federal onshore

162

Acoustic measurement of the Deepwater Horizon Macondo well flow rate  

E-Print Network (OSTI)

On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

Camilli, Richard

163

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

Gasoline and Diesel Fuel Update (EIA)

(Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

164

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Yemen (Million Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

165

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Trinidad and Tobago (Million Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

166

LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LIVE: Meeting on Strengthening Deepwater Blowout Containment LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities September 22, 2010 - 12:56pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs At 1 PM EDT today Secretary Chu and Secretary of the Interior Ken Salazar will convene top U.S. government scientists and key industry and stakeholder leaders to discuss how to strengthen capabilities for responding to potential blowouts of oil and gas wells on the Outer Continental Shelf. The panel discussion will help guide reforms that are raising the bar for the oil and gas industry's practices, inform recommendations on whether and how to lift the current deepwater drilling suspension and assist in

167

Regional distribution of diagenetic carbonate cement in Palaeocene deepwater  

E-Print Network (OSTI)

Regional distribution of diagenetic carbonate cement in Palaeocene deepwater sandstones: North Sea. This study attempts to make a large-scale regional examination of the distribution of carbonate cements

Haszeldine, Stuart

168

Computational Intelligence for Deepwater Reservoir Depositional Environments Interpretation  

E-Print Network (OSTI)

Predicting oil recovery efficiency of a deepwater reservoir is a challenging task. One approach to characterize a deepwater reservoir and to predict its producibility is by analyzing its depositional information. This research proposes a deposition-based stratigraphic interpretation framework for deepwater reservoir characterization. In this framework, one critical task is the identification and labeling of the stratigraphic components in the reservoir, according to their depositional environments. This interpretation process is labor intensive and can produce different results depending on the stratigrapher who performs the analysis. To relieve stratigrapher's workload and to produce more consistent results, we have developed a novel methodology to automate this process using various computational intelligence techniques. Using a well log data set, we demonstrate that the developed methodology and the designed workflow can produce finite state transducer models that interpret deepwater reservoir depositional...

Yu, Tina; Clark, Julian; Sullivan, Morgan; 10.1016/j.jngse.2011.07.014

2013-01-01T23:59:59.000Z

169

NREL: Wind Research - Offshore Design Tools and Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Tools and Methods Design Tools and Methods Graphic of a modular depiction of the FAST tool, which includes aerodynamics, hydrodynamics, control and electrical system dynamics, and structural dynamics modules. NREL's CAE Tool, FAST, and its Sub-Modules Illustration of wind turbines in various environments including land-based, shallow water (0-30m), transitional depth (30-60m), and deep water floating (greater than 60m). FAST has the capability of modeling a wide range of offshore wind system configurations including shallow water, transitional depth, and floating systems. With DOE's support, NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. It has state-of-the-art capabilities for full dynamic system simulation over a

170

Offshore Wind Project Surges Ahead in South Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Project Surges Ahead in South Carolina Offshore Wind Project Surges Ahead in South Carolina Offshore Wind Project Surges Ahead in South Carolina October 13, 2010 - 11:21am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE In the parking lot of Coastal Carolina University's Center for Marine and Wetland Studies (CMWS) in Conway, South Carolina, sit six buoys just back from sea. For 14 months, they were floating miles off the coasts of Myrtle Beach and Winyah Bay, as part of the Palmetto Wind Research Project in South Carolina, taking wind speed measurements for a study that could lay the foundation for an offshore wind farm. "It's been cooking along under the radar," said Paul Gayes, director of the CMWS, which partnered with local utility Santee Cooper. "We've

171

Vertical Motion of Neutrally Buoyant Floats  

Science Conference Proceedings (OSTI)

The vertical motion of a neutrally buoyant float is determined from the solution to the nonlinear forced harmonic oscillator equation originally set forth by Voorhis. Float response to forced vertical oscillations is characterized by the response ...

Louis Goodman; Edward R. Levine

1990-02-01T23:59:59.000Z

172

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

DOE Green Energy (OSTI)

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

173

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

SciTech Connect

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

174

Energy from Offshore Wind: Preprint  

DOE Green Energy (OSTI)

This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

Musial, W.; Butterfield, S.; Ram, B.

2006-02-01T23:59:59.000Z

175

Equilibrium Response of Ocean Deep-Water Circulation to Variations in Ekman Pumping and Deep-Water Sources  

Science Conference Proceedings (OSTI)

A multilayer ocean model that is physically simple and computationally efficient is developed for studies of competition and interaction among deep-water sources in determining ocean circulation. The model is essentially geostrophic and ...

F. L. Yin; I. Y. Fung; C. K. Chu

1992-10-01T23:59:59.000Z

176

Offshore Renewable Energy R&D (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

Not Available

2011-10-01T23:59:59.000Z

177

Offshore Renewable Energy R&D (Fact Sheet)  

SciTech Connect

This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

2011-10-01T23:59:59.000Z

178

Offshore Renewable Energy Solutions  

E-Print Network (OSTI)

and sustainable energy supply. The UK is uniquely placed to harness its natural resources ­ wind, wave and tidalOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre science centre, Cefas provides a bridge between government and industry. We have unprecedented links

179

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

180

Columbia University Prospectivity of the Ultra-Deepwater Gulf of Mexico  

E-Print Network (OSTI)

", June 2001 and Oligney, R., J. Longbottom, and M. Kenderdine, Ultra-deepwater R&D Program Needed, Hart., Longbottom, J., and Kenderdine, M., Ultra-deepwater R&D Program Needed, Hart's E&P, Sept 2001. Werbos, P

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On the Linkage between Antarctic Surface Water Stratification and Global Deep-Water Temperature  

Science Conference Proceedings (OSTI)

The suggestion is advanced that the remarkably low static stability of Antarctic surface waters may arise from a feedback loop involving global deep-water temperatures. If deep-water temperatures are too warm, this promotes Antarctic convection, ...

Ralph F. Keeling; Martin Visbeck

2011-07-01T23:59:59.000Z

182

2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2008 Annual Plan for the Ultra-Deepwater and...

183

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and...

184

Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint  

SciTech Connect

Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

Jonkman, J. M.; Sclavounos, P. D.

2006-01-01T23:59:59.000Z

185

Feasibility of Floating Platform Systems for Wind Turbines: Preprint  

DOE Green Energy (OSTI)

This paper provides a general technical description of several types of floating platforms for wind turbines. Platform topologies are classified into multiple- or single-turbine floaters and by mooring method. Platforms using catenary mooring systems are contrasted to vertical mooring systems and the advantages and disadvantages are discussed. Specific anchor types are described in detail. A rough cost comparison is performed for two different platform architectures using a generic 5-MW wind turbine. One platform is a Dutch study of a tri-floater platform using a catenary mooring system, and the other is a mono-column tension-leg platform developed at the National Renewable Energy Laboratory. Cost estimates showed that single unit production cost is $7.1 M for the Dutch tri-floater, and $6.5 M for the NREL TLP concept. However, value engineering, multiple unit series production, and platform/turbine system optimization can lower the unit platform costs to $4.26 M and $2.88 M, respectively, with significant potential to reduce cost further with system optimization. These foundation costs are within the range necessary to bring the cost of energy down to the DOE target range of $0.05/kWh for large-scale deployment of offshore floating wind turbines.

Musial, W.; Butterfield, S.; Boone, A.

2003-11-01T23:59:59.000Z

186

Attitudes toward offshore oil development: A summary of current evidence  

E-Print Network (OSTI)

Press; 1968. [11] Offshore Staff. Deep sea drillingproject completes second leg. Offshore 1969:67–72. [12] Weeks LG. Offshore operations around the world. Offshore

Gramling, R; Freudenburg, Wm R

2006-01-01T23:59:59.000Z

187

Forensic Investigation of the Deepwater Horizon Blowout Preventer  

Science Conference Proceedings (OSTI)

Fretting Corrosion Induced Fracture of a Floating Bearing Base Plate in a 250 Tons Yankee Paper Drum · Materials Are Often More Reliable Than People.

188

Annual Report: EPAct Complementary Program's Ultra-Deepwater R&D Portfolio and Unconventional Resources R&D Portfolio (30 September 2012)  

SciTech Connect

This report summarizes FY13 research activities performed by the National Energy Technology Laboratory (NETL), Office of Research and Development (ORD), along with its partners in the Regional University Alliance (RUA) to fulfill research needs under the Energy Policy Act of 2005 (EPAct) Section 999?s Complementary Program. Title IX, Subtitle J, Section 999A(d) of EPAct 2005 authorizes $50 million per year of federal oil and gas royalties, rents and bonus payments for an oil and natural gas research and development effort, the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program. Section 999 further prescribes four program elements for the effort, one of which is the Complementary Research Program that is to be performed by NETL. This document lays out the plan for the research portfolio for the Complementary Research Program, with an emphasis on the 2013 funding. The Complementary Program consists of two research portfolios focused on domestic resources: (1) the Deepwater and Ultra-Deepwater Portfolio (UDW) (focused on hydrocarbons in reservoirs in extreme environments) and (2) the Unconventional Resources Portfolio (UCR) (focused on hydrocarbons in shale reservoirs). These two portfolios address the science base that enables these domestic resources to be produced responsibly, informing both regulators and operators. NETL is relying on a core Department of Energy-National Energy Technology Laboratory (DOE-NETL) competency in engineered-natural systems to develop this science base, allowing leveraging of decades of investment. NETL?s Complementary Research Program research portfolios support the development of unbiased research and information for policymakers and the public, performing rapid predictions of possible outcomes associated with unexpected events, and carrying out quantitative assessments for energy policy stakeholders that accurately integrate the risks of safety and environmental impacts. The objective of this body of work is to build the scientific understanding and assessment tools necessary to develop the confidence that key domestic oil and gas resources can be produced safely and in an environmentally sustainable way. For the Deepwater and Ultra-Deepwater Portfolio, the general objective is to develop a scientific base for predicting and quantifying potential risks associated with exploration and production in extreme offshore environments. This includes: (1) using experimental studies to improve understanding of key parameters (e.g., properties and behavior of materials) tied to loss-of-control events in deepwater settings, (2) compiling data on spatial variability for key properties used to characterize and simulate the natural and engineered components involved in extreme offshore settings, and (3) utilizing findings from (1) and (2) in conjunction with integrated assessment models to model worst-case scenarios, as well as assessments of most likely scenarios relative to potential risks associated with flow assurance and loss of control. This portfolio and approach is responsive to key Federal-scale initiatives including the Ocean Energy Safety Advisory Committee (OESC). In particular, the findings and recommendations of the OESC?s Spill Prevention Subcommittee are addressed by aspects of the Complementary Program research. The Deepwater and Ultra-Deepwater Portfolio is also aligned with some of the goals of the United States- Department of the Interior (US-DOI) led Alaska Interagency Working Group (AIWG) which brings together state, federal, and tribal government personnel in relation to energy-related issues and needs in the Alaskan Arctic. For the Unconventional Fossil Resources Portfolio, the general objective is to develop a sufficient scientific base for predicting and quantifying potential risks associated with the oil/gas resources in shale reservoirs that require hydraulic fracturing and/or other engineering measures to produce. The major areas of focus include: (1) improving predictions of fugitive methane and greenhouse gas emissions, (2) pr

none,; Rose, Kelly [NETL] [NETL; Hakala, Alexandra [NETL] [NETL; Guthrie, George [NETL] [NETL

2012-09-30T23:59:59.000Z

189

Offshore Berth | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Offshore Berth Jump to: navigation, search Retrieved from "http:en.openei.orgw...

190

Off-Shore Cargo Handling  

Science Conference Proceedings (OSTI)

... concepts. T-ACS (Tactical Auxiliary Crane Ship) RoboCrane. T- ACS_RoboCrane. ONR Mobile Offshore Base (MOB) Crane. ...

2011-08-26T23:59:59.000Z

191

OpenEI - offshore resource  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm8570 en Offshore Wind Resource http:en.openei.orgdatasetsnode921

Global Wind Potential Supply Curves by Country, Class, and...

192

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

DOE Green Energy (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

193

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas Annual report on ultra-deepwater natural gas, etc, required by Energy Policy Act of 2005, Subtitle J, Section 999 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program More Documents & Publications 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan

194

English-Spanish glossary: offshore exploration and production, gas processing, and valves  

Science Conference Proceedings (OSTI)

This series of articles contains 3 different English-Spanish glossaries of related terms used in the oil industry. The glossary of the offshore exploration and production involves a summary of terms used in the offshore oil activity. It also includes names of singular equipment used in offshore drilling, as well as several navigation terms in relation to the floating oil structures. With the help of the Gas Processors Association it was possible to compile a glossary of gas processing with a concise selection of common terms of the industry of gas processing. The glossary of valves includes more than 200 terms of the industry of valves in a specialized glossary, and several explanations about the application and operation of valves.

Not Available

1981-12-01T23:59:59.000Z

195

2002 Amendments to Deepwater Port Act of 1974  

U.S. Energy Information Administration (EIA)

This amendment has provided the natural gas industry the means to pursue the construction of offshore terminals for receiving liquefied natural gas ... approval must ...

196

Three dimensional scour along offshore pipelines.  

E-Print Network (OSTI)

??Three-dimensional scour propagation along offshore pipelines is a major reason to pipeline failures in an offshore environment. Although the research on scour in both numerical… (more)

Yeow, Kervin

2007-01-01T23:59:59.000Z

197

Offshore Wind Accelerator | Open Energy Information  

Open Energy Info (EERE)

Sector Wind energy Product Research and development initiative aimed at cutting the cost of offshore wind energy. References Offshore Wind Accelerator1 LinkedIn Connections...

198

Accelerating Offshore Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rooftop Solar Challenge NEUP Award Recipients NEUP Award Recipients 2011 Grants for Offshore Wind Power 2011 Grants for Offshore Wind Power 2011 Grants for Advanced...

199

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Site Map Printable Version Offshore Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data...

200

Vertical pump with free floating check valve  

DOE Patents (OSTI)

A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

Lindsay, Malcolm (O' Hara Township, Allegheny County, PA)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Brazoria Offshore | Open Energy Information  

Open Energy Info (EERE)

Brazoria Offshore Brazoria Offshore Jump to: navigation, search Name Brazoria Offshore Facility Brazoria Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 28.764°, -95.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.764,"lon":-95.33,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Importance of Second-Order Difference-Frequency Wave-Diffraction Forces in the Validation of a Fast Semi-Submersible Floating Wind Turbine Model: Preprint  

DOE Green Energy (OSTI)

To better access the abundant offshore wind resource, efforts across the world are being undertaken to develop and improve floating offshore wind turbine technologies. A critical aspect of creating reliable, mature floating wind turbine technology is the development, verification, and validation of efficient computer-aided-engineering (CAE) tools that can be relied upon in the design process. The National Renewable Energy Laboratory (NREL) has created a comprehensive, coupled analysis CAE tool for floating wind turbines, FAST, which has been verified and utilized in numerous floating wind turbine studies. Several efforts are currently underway that leverage the extensive 1/50th-scale DeepCwind wind/wave basin model test dataset, obtained at the Maritime Research Institute Netherlands (MARIN) in 2011, to validate the floating platform functionality of FAST to complement its already validated aerodynamic and structural simulation capabilities. In this paper, further work is undertaken to continue this validation. In particular, the ability of FAST to replicate global response behaviors associated with dynamic wind forces, second-order difference-frequency wave-diffraction forces and their interaction with one another are investigated.

Couling, A. J.; Goupee, A. J.; Robertson, A. N.; Jonkman, J. M.

2013-06-01T23:59:59.000Z

203

Deepwater Horizon Oil Spill PI ConferenceDeepwater Horizon Oil Spill PI Conference Session: Crude oil & dispersants-impact on human  

E-Print Network (OSTI)

Deepwater Horizon Oil Spill PI ConferenceDeepwater Horizon Oil Spill PI Conference Session: Crude oil & dispersants-impact on human health & socioeconomic systems Panelist: James H. Diaz, MD, MPH, Dr Health #12;Oil/dispersants: impact health & S-E systems. Outline of Research Questions? 1. What

204

Offshore Wind Turbines and Their Installation  

Science Conference Proceedings (OSTI)

Offshore winds tend to be higher, more constant and not disturbed by rough terrain, so there is a large potential for utilizing wind energy near to the sea. Compared with the wind energy converters onland, wind turbine components offshore will subject ... Keywords: renewable energy, wind power generation, offshore wind turbines, offshore installation

Liwei Li; Jianxing Ren

2010-01-01T23:59:59.000Z

205

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

206

WindWaveFloat Final Report  

Science Conference Proceedings (OSTI)

Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

Alla Weinstein, Dominique Roddier, Kevin Banister

2012-03-30T23:59:59.000Z

207

4C Offshore Limited | Open Energy Information  

Open Energy Info (EERE)

4C Offshore Limited 4C Offshore Limited Jump to: navigation, search Name 4C Offshore Limited Place Suffolk, United Kingdom Country United Kingdom Product Project planning, consulting for offshore industries (wind, oil, gas) Year founded 2009 Company Type For Profit Company Ownership Private Small Business No Affiliated Companies 4C Offshore Limited Technology Offshore Wind Phone number +44 (0)1502 509260 Website http://www.4coffshore.com/ References 4C Offshore website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. 4C Offshore Limited is a company based in Suffolk, United Kingdom. 4C Offshore is an independent marine consulting firm, that provides advice and consulting services in offshore development, particularly renewables and

208

WindWaveFloat Final Report  

DOE Green Energy (OSTI)

capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

Alla Weinstein, Dominique Roddier, Kevin Banister

2012-03-30T23:59:59.000Z

209

Used float shoe recovered and tested  

SciTech Connect

A cement float valve has been recovered after it was circulated through and cemented downhole. It was retrieved by coring as part of an investigation into a cementing failure. The float equipment was then analyzed for downhole performance. This is believed to be the first instance of intact recovery of full-scale cementing hardware after it has been cemented in place. In this instance, the valve performed as designed. Flash set proved to be the probable cause of job failure. This article documents the job and includes photographs of the used float shoe and its components.

Colvard, R.L.

1986-02-01T23:59:59.000Z

210

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Annual Plan for the Ultra-Deepwater and Unconventional Natural 7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program More Documents & Publications 2007 Annual Plan Recommendations: Draft 2008 Section 999 Annual Plan 2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program

211

Proposed Evanston Offshore Wind Farm  

NLE Websites -- All DOE Office Websites (Extended Search)

Evanston Offshore Wind Farm Evanston Offshore Wind Farm August 1, 2011 Monday, August 1, 2011 Off Shore Wind Farm FAQ Document available from http://www.greenerevanston.org/ at the Renewable Energy Task Force tab Monday, August 1, 2011 City Manager Commits to City to sign onto Kyoto emissions reduction goals Wind Farm Timeline April 2006 Summer 2007 Fall 2008 February 2008 April 2010 March 2011 July 2011 Network for Evanston's Future proposes joint climate planning effort CGE Formed and Renewable Energy Task Force formed - Wind farm concept begun ECAP passed by City Council with 1st version of proposed Offshore Wind Farm included Offshore Wind Farm RFI unanimously passed by City Council Mayor Tisdahl appointments Committee on the Wind Farm City Council

212

Jefferson Offshore | Open Energy Information  

Open Energy Info (EERE)

Jefferson Offshore Jefferson Offshore Facility Jefferson Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 29.568°, -93.957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.568,"lon":-93.957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

On Offshore Propagating Diurnal Waves  

Science Conference Proceedings (OSTI)

Characteristics and dynamics of offshore diurnal waves induced by land–sea differential heating are examined using linear theory. Two types of heating profiles are investigated, namely a shallow heating source confined within an atmospheric ...

Qingfang Jiang

2012-05-01T23:59:59.000Z

214

Tests find hammering, fluid cutting, erosion cause float shoe failures  

SciTech Connect

The results of a systematic test program to evaluate float equipment performance are presented. The testing has destroyed, over an eightmonth period, 160 float valves, float shoes and float collars. A new float valve design with greater resistance to failure has been developed as a result of the testing. New float collars and float shoes are expected to provide the operator with a failure rate of less than 1 1/2% when used within design limits and under normal cementing conditions. Further testing objectives include: extension of operating temperature limits to include deep well and geothermal conditions, and evaluation of the effects of more abrasive mud and cement systems.

Stringfellow, B.

1985-01-21T23:59:59.000Z

215

ORISE: DeepwaterHorizon and Nuclear & Radiological Incidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Wi l l i a m H a l e y Wi l l i a m H a l e y B r a d P o t t e r C o mm o n C h a l l e n g e s a n d S o l u t i o n s J u n e 2 0 1 1 D e e p w a t e r H o r i z o n a n dN u c l e a r & R a d i o l o g i c a l I n c i d e n t s The 2010 Deepwater Horizon oil spill shares many of the same challenges associated with a radiological incident like the one considered in the Empire 09 1 exercise or even a much larger nuclear incident. By analyzing experiences during Deepwater Horizon, these challenges can be identified by the interagency in advance of a radiological or nuclear emergency and solutions made available. Establishing and staffing a UnifiEd Command strUCtUrE The demands of Deepwater Horizon challenged the traditional response construct envisioned by national planning systems.

216

Velocity Probability Density Functions for Oceanic Floats  

Science Conference Proceedings (OSTI)

Probability density functions (PDFs) of daily velocities from subsurface floats deployed in the North Atlantic and equatorial Atlantic Oceans are examined. In general, the PDFs are approximately Gaussian for small velocities, but with significant ...

Annalisa Bracco; J. H. LaCasce; Antonello Provenzale

2000-03-01T23:59:59.000Z

217

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

218

The IFF: The Isopycnal Float Fluorometer  

Science Conference Proceedings (OSTI)

An isopycnal float has been developed which provides a description of water parcel motion and simultaneous measurements of chlorophyll a fluorescence, pressure and temperature along a chosen isopycnal surface. The device consists of a modified ...

Gary L. Hitchcock; E. J. Lessard; D. Dorson; J. Fontaine; T. Rossby

1989-02-01T23:59:59.000Z

219

Offshoring in the Semiconductor Industry: A Historical Perspective  

E-Print Network (OSTI)

the first to invest in offshore facilities to manufacturebe cost-effective to offshore in any location with adequateoften affect decisions to offshore. The framework within

Brown, Clair; Linden, Greg

2005-01-01T23:59:59.000Z

220

Offshoring of Software Development: Patterns and Recession Effects  

E-Print Network (OSTI)

and Debora Dunkle, 2009. Offshore software development:may accelerate offshore sourcing, PricewaterhouseCoopers andthe current patterns of offshore software development and

Kraemer, Kenneth L.; Dedrick, Jason; Dunkle, Debbie

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2011 Grants for Offshore Wind Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Power 2011 Grants for Offshore Wind Power 2011 Grants for Offshore Wind Power Addthis Browse By Topic TOPICS Energy Efficiency ---Home Energy Audits --Design &...

222

Travel Time Estimation Using Floating Car Data  

E-Print Network (OSTI)

This report explores the use of machine learning techniques to accurately predict travel times in city streets and highways using floating car data (location information of user vehicles on a road network). The aim of this report is twofold, first we present a general architecture of solving this problem, then present and evaluate few techniques on real floating car data gathered over a month on a 5 Km highway in New Delhi.

Sevlian, Raffi

2010-01-01T23:59:59.000Z

223

NREL GIS Data: Global Offshore Wind GIS data for offshore wind...  

Open Energy Info (EERE)

Global Offshore Wind GIS data for offshore wind speed (meterssecond).  Specified to Exclusive Economic Zones (EEZ).

Wind resource based on NOAA blended sea winds and...

224

Accelerating Offshore Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the Full Map Today the Energy Department announced investments in seven offshore wind demonstration projects. These projects are part of a broader effort to launch an offshore wind industry in the United States, and support innovative offshore installations for commercial deployment by 2017.

225

Offshore Drilling Safety and Response Technologies | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production increases are anticipated to come from onshore enhanced oil recovery projects, shale oil plays, and deepwater drilling in the Gulf of Mexico. They also project that U.S....

226

2012 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum  

E-Print Network (OSTI)

Message from the Secretary Fueling our Nation's economy by making the most of America's natural gas and oil resources continues to be an important part of our Nation's overall strategy for energy security and a clean energy economy. The Department continues its work toward safe and responsible · development of fossil fuels, while giving American families and communities high confidence that air and water quality, and public health and safety will not be compromised. The EPACT Section 999 program (including the NETL Complementary Research program) coordinates with DOE's ongoing natural gas research and development program within Fossil Energy. The natural gas program is the locus of the Department of Energy's (DOE) natural gas R&D work and is focused on a collaborative interagency effort with the Environmental Protection Agency, and the Department of the Interior. A federal R&D plan is being developed for this collaboration, focusing on high priority recommendations of the Secretary of Energy Advisory Board (SEAB) Natural Gas Subcommittee to safely and prudently develop the Nation's unconventional sale gas and tight oil resources. Each agency will focus on specific core research competencies. In the 2012 Annual Plan, and in light of the interagency collaborative work being carried out in DOE's natural gas R&D program onshore, we will focus on supporting the implementation of the priority collaborative research and development initiative. Offshore, we will deepen the collaboration and coordination with the DOl Bureau of Safety and Environmental Enforcement. A number of initiatives, analyses, and recommendations underpin the 2012 Annual Plan. These include coordination with the high priority work being carried out by DOE, EPA, and DOl related to recommendations from the Secretary of Energy Advisory Board regarding shale gas production, insights from our work with the DOl's Ocean Energy Safety Advisory Committee, recommendations from the DOE Ultra-Deepwater Advisory Committee and recommendations

unknown authors

2012-01-01T23:59:59.000Z

227

Floating Power Plant A S FPP | Open Energy Information  

Open Energy Info (EERE)

Power Plant A S FPP Power Plant A S FPP Jump to: navigation, search Name Floating Power Plant A/S (FPP) Address Stenholtsvej 27 Place Fredensborg, Denmark Zip DK-3480 Sector Wind energy Product Fredensborg-based company commercialising developments in the wave and wind energy sectors. Poseidon is the company's core development being tested at the site of an existing Dong offshore wind plant. Phone number 45 3391 9120 Website http://www.poseidonorgan.com Coordinates 55.978295°, 12.402055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.978295,"lon":12.402055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Offshore Wind Energy Market Overview (Presentation)  

SciTech Connect

This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

Baring-Gould, I.

2013-07-01T23:59:59.000Z

229

offshore wind | OpenEI  

Open Energy Info (EERE)

wind wind Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

230

wind offshore | OpenEI  

Open Energy Info (EERE)

offshore offshore Dataset Summary Description This dataset presents summary information related to world wind energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU wind offshore Wind Power wind power capacity world Data application/vnd.ms-excel icon Excel spreadsheet, data on multiple tabs (xls, 114.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period through 2009 License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

231

offshore resource | OpenEI  

Open Energy Info (EERE)

resource resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

232

IT Trends 2004: Offshore Outsourcing  

E-Print Network (OSTI)

mpanies must understand the latest trends in global outsourcing. Recommendations Companies should not rush into offshore or nearshore outsourcing relationships without first understanding how to approach the endeavor (see Planning Assumption, Critical Success Factors for Offshore Outsourcing, Stephanie Moore). Global outsourcing is a complex undertaking that requires significant investment in knowledge acquisition and program management (see IdeaByte, Increasing Acceptance of Remote Programming and Maintenance Resources, Stephanie Moore, and IdeaByte, Organizing for Outsourcing: Offshore Governance, Stephanie Moore). To simplify this effort and increase the chance for success, companies should engage with vendors that have strong relationship and engagement management capabilities. For nearshore outsourcing at a low price point, companies should consider Mexico and Canada. Vendors in these countries can be viable near shore outsourcing alternatives, such as IBM Global Services (Mexic

Stephanie Moore

2003-01-01T23:59:59.000Z

233

Floating seal system for rotary devices  

DOE Patents (OSTI)

This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

Banasiuk, Hubert A. (Chicago, IL)

1983-01-01T23:59:59.000Z

234

Floating seal system for rotary devices  

DOE Patents (OSTI)

This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

Banasiuk, H.A.

1983-08-23T23:59:59.000Z

235

Battery charging in float vs. cycling environments  

SciTech Connect

In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

COREY,GARTH P.

2000-04-20T23:59:59.000Z

236

Definition: Offshore Wind | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Offshore Wind (Redirected from Offshore Wind) Jump to: navigation, search Dictionary.png Offshore Wind Wind turbine installations built near-shore or further offshore on coastlines for commercial electricity generation.[1] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition No reegle definition available Related Terms wind turbine, wind farm, near-shore, offshore References ↑ http://en.wikipedia.org/wiki/Offshore_wind_power Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Offshore_Wind&oldid=586583" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

237

Scira Offshore Energy | Open Energy Information  

Open Energy Info (EERE)

United Kingdom Zip NR32 1DE Sector Wind energy Product Developer of the Sheringham Shoals offshore wind farm. References Scira Offshore Energy1 LinkedIn Connections CrunchBase...

238

Offshore Wind Power | Open Energy Information  

Open Energy Info (EERE)

Power Jump to: navigation, search Name Offshore Wind Power Place St Albans, United Kingdom Zip AL1 3AW Sector Wind energy Product Formed to develop offshore wind farms around the...

239

Offshoring attitudes and relational behaviours in german-indian offshoring collaborations: reflections from a field study  

Science Conference Proceedings (OSTI)

Offshoring arrangements have become a common setting for intercultural collaborations. There is ample evidence that the success of these offshoring arrangements is influenced on the relational behaviours between offshore and onshore colleagues. However, ... Keywords: attitudes, global teams, offshoring, transnational teams, vicious circle

Angelika Zimmermann

2012-03-01T23:59:59.000Z

240

OpenEI - offshore wind  

Open Energy Info (EERE)

/0 en Offshore Wind Resource /0 en Offshore Wind Resource http://en.openei.org/datasets/node/921 Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW)

License
Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Overview of Offshore Wind Technology: Preprint  

SciTech Connect

This paper provides a short overview of some of the challenges facing the growth of offshore wind energy technology.

Butterfield, C. P.; Musial, W.; Jonkman, J.

2007-10-01T23:59:59.000Z

242

Numerical Prediction of Experimentally Observed Behavior of a Scale Model of an Offshore Wind Turbine Supported by a Tension-Leg Platform: Preprint  

Science Conference Proceedings (OSTI)

Realizing the critical importance the role physical experimental tests play in understanding the dynamics of floating offshore wind turbines, the DeepCwind consortium conducted a one-fiftieth-scale model test program where several floating wind platforms were subjected to a variety of wind and wave loading condition at the Maritime Research Institute Netherlands wave basin. This paper describes the observed behavior of a tension-leg platform, one of three platforms tested, and the systematic effort to predict the measured response with the FAST simulation tool using a model primarily based on consensus geometric and mass properties of the test specimen.

Prowell, I.; Robertson, A.; Jonkman, J.; Stewart, G. M.; Goupee, A. J.

2013-01-01T23:59:59.000Z

243

Numerical Methods in Offshore Geotechnics: Applications to Submarine Landslides and Anchor Plates  

E-Print Network (OSTI)

The emphasis of this dissertation is on using numerical and plasticity based methods to study two main areas of offshore geotechnics. The first part of this dissertation focuses on the undrained behavior of deeply embedded anchor plates under combined shear and torsion. Plate anchors are increasingly being used instead of typical foundation systems to anchor offshore floating platforms to sustain uplift operating forces. However extreme loading cases would create general loading conditions involving six degrees of freedom. The focus of my research was to evaluate the bearing capacity of plate anchors under two-way horizontal and torsional loading and to study the decreasing effect of torsional moment on the horizontal bearing capacity of these foundations. The study takes advantage of several approaches: Numerical simulation (two and three dimensional finite element analysis) Evaluating and modification of the available plasticity solutions Developing equations for three degree-of-freedom yield locus surfaces The same methodology is applied to evaluate the response of shallow foundations for subsea infrastructure subjected to significant eccentric horizontal loads. The second part of this study focuses on offshore geohazards. Coastal communities and the offshore industry can be impacted directly by geohazards, such as submarine slope failures, or by tsunamis generated by the failed mass movements. This study aims at evaluating the triggering mechanisms of submarine landslide under cyclic

Nouri, Hamid Reza

2013-05-01T23:59:59.000Z

244

An Advanced Method to Estimate Deep Currents from Profiling Floats  

Science Conference Proceedings (OSTI)

Subsurface ocean currents can be estimated from the positions of drifting profiling floats that are being widely deployed for the international Argo program. The calculation of subsurface velocity depends on how the trajectory of the float while ...

Jong Jin Park; Kuh Kim; Brian A. King; Stephen C. Riser

2005-08-01T23:59:59.000Z

245

Sampling Characteristics from Isobaric Floats in a Convective Eddy Field  

Science Conference Proceedings (OSTI)

During the recent Labrador Sea Deep Convection Experiment, numerous isobaric floats were deployed. Interpretation of the quasi-Lagrangian measurements from these floats requires an understanding of any biases that may be introduced by the ...

Sonya Legg; James C. McWilliams

2002-02-01T23:59:59.000Z

246

Float Observations of the Southern Ocean. Part II: Eddy Fluxes  

Science Conference Proceedings (OSTI)

Autonomous Lagrangian Circulation Explorer (ALACE) floats are used to examine eddy fluxes in the Southern Ocean. Eddy fluxes are calculated from differences between ALACE float data and mean fields derived from hydrographic atlas data or ...

Sarah T. Gille

2003-06-01T23:59:59.000Z

247

RAFOS Floats: Defining and Targeting Surfaces of Neutral Buoyancy  

Science Conference Proceedings (OSTI)

For timescales much greater than the local buoyancy period, the buoyant response of a RAFOS float is virtually dictated by its compressibility. As the compressibility of a thermally inert RAFOS float increases from zero, its oceanic equilibrium ...

Dana D. Swift; Stephen C. Riser

1994-08-01T23:59:59.000Z

248

Profiling ALACEs and Other Advances in Autonomous Subsurface Floats  

Science Conference Proceedings (OSTI)

Over the past decade more than 1200 autonomous floats have been deployed worldwide. In addition to velocity as marked by lateral movement, many of these floats measured quantities like profiles of temperature and salinity, temperature ...

R. E. Davis; J. T. Sherman; J. Dufour

2001-06-01T23:59:59.000Z

249

Improvements in floating point addition/subtraction operations  

DOE Patents (OSTI)

Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

Farmwald, P.M.

1984-02-24T23:59:59.000Z

250

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

251

Structural Design for the Development of the Floating Type ...  

Science Conference Proceedings (OSTI)

Finally, we designed and developed floating type photovoltaic generation system using the ... Polymer Electrolyte Membrane for Direct Methanol Fuel Cell.

252

Comparisons on offshore structure responses to random waves using linear and high-order wave theories  

E-Print Network (OSTI)

The predicted responses of an offshore structure when the wave induced kinematics are computed from different estimation methods can change significantly. The sometimes controversial results have recently motivated the development of a new methodology for wave kinematics prediction. While the methods commonly used by the offshore industry are empirical and semi-empirical modifications of Linear (random) Wave Theory, the new approach (Hybrid Wave Model) satisfies the principles of hydrodynamics and explicitly considers the non-linear effect of the wave-wave interactions on wave elevation, kinematics and evolution. This methodology has been proven to be more accurate and reliable for the estimations of wave kinematics, but its impact on the prediction of the structural response is yet to be investigated. In this study, the performance of the new methodology arid other methods currently used for kinematics prediction was tested. The (surge) response of two offshore structures designed specially for deep-oil production was estimated using three methods (Hybrid Wave Model, Wheeler "Stretching" and Linear Extrapolation) and compared with the corresponding laboratory measurements. The wave forces were computed from the conventional Morison Equation evaluating the ambient wave kinematics from the wave elevation measurements. A numerical scheme based on a Finite Element time integration technique (Newmark-beta method) was used for the response evaluation after it had been validated and calibrated by an analytical (linear) solution and measured responses for regular waves. The comparisons between measured and predicted responses using kinematics calculated from the Hybrid Wave Model showed excellent agreement, specially for the low frequency components, while those using methods based on linear modifications rendered poor underestimations. The low frequency (peak) responses of these deep-water offshore structures were found to be greatly dominated by very low frequency wave excitations, which are mainly due to the wave-wave interactions.

Ramos Heredia, Rafael Juda

1995-01-01T23:59:59.000Z

253

Free Floating Atmospheric Pressure Ball Plasmas  

NLE Websites -- All DOE Office Websites (Extended Search)

Free-Floating Atmospheric Pressure Ball Plasmas Free-Floating Atmospheric Pressure Ball Plasmas G. A. Wurden, Z. Wang, C. Ticos Los Alamos National Laboratory L Al NM 87545 USA Los Alamos, NM 87545 USA C. J. v. Wurden Los Alamos High School L Al NM 87544 Los Alamos, NM 87544 Presented at the PPPL Colloquium Sept. 17, 2008 U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA LA-UR-08-06284 Outline of this talk *A discussion of ball lightning reports in nature *How can ball plasmas be made in the laboratory? *Detailed experiments on long lived free floating *Detailed experiments on long-lived free-floating atmospheric pressure ball plasmas C i f l b b ll l i h "b ll *Comparison of laboratory ball plasmas with "ball lightning" *Summary U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA

254

Notes 11. High pressure floating ring seals  

E-Print Network (OSTI)

Floating ring seals for compressors: leakage and force coefficients, seal lock up and effect on rotor stability, recommendations to reduce seal cross-coupled effects. Long oil seals as pressure barriers in industrial mixers: leakage and force coefficients, effect on rotor stability, recommendations for grooved seals with reduced leakage and lesser cross-stiffnesses.

San Andres, Luis

2009-01-01T23:59:59.000Z

255

Tracking Three Meddies with SOFAR Floats  

Science Conference Proceedings (OSTI)

Three Meddies were tracked for up to two years in the Canary Basin using neutrally buoyant SOFAR floats. These Meddies have cores of warm, salty Mediterranean Water and are approximately 100 km in diameter, 800 m thick, and are centered at a ...

P. L. Richardson; J. F. Price; D. Walsh; L. Armi; M. Schröder

1989-03-01T23:59:59.000Z

256

Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs  

SciTech Connect

During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Gas saturated reservoirs change reflection amplitudes significantly. The goal for the final project period was to systematically combine and document these various effects for use in deep water exploration and transfer this knowledge as clearly and effectively as possible.

Michael Batzle

2006-04-30T23:59:59.000Z

257

MHK Technologies/Hybrid Float | Open Energy Information  

Open Energy Info (EERE)

Float Float < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid Float.jpg Technology Profile Primary Organization PerpetuWave Power Pty Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Elongated floats operate parallel to the wave fronts so that maximum energy extraction from the waves is possible by the large cross sectional area of the floats to be immersed in a wave front at once and thence moved upwards with the wave A further major feature of the Technology is the motion of the floats that due to the trailing arm type design move backwards as well as upwards so that the energy in the moving water and of any breaking waves on the floats is transferred to useable energy of the float by forcing the floats backwards as well as upwards This motion mimics the motion of an unattached float on the surface of the water as waves pass This is unique to our technology and combined with the large cross sectional area offered by the float design in the highest pulse loading possible This is repeated a number of times as a wave passes through with a resultant optimum energy extraction from the wave Below the vessel are fixed horizontal staliser plates that limit the r

258

CT Offshore | Open Energy Information  

Open Energy Info (EERE)

CT Offshore CT Offshore Place Otterup, Denmark Zip 5450 Sector Wind energy Product Denmark-based consultancy which provides assistance for project management, damage assessment and stabilization as well as other activities related to wind farms and subsea maintenance. Coordinates 55.543228°, 10.40294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.543228,"lon":10.40294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Hurricanes and Offshore Wind Farms  

Wind Powering America (EERE)

Hurricanes and Offshore Wind Farms Hurricanes and Offshore Wind Farms July 17, 2013 Man: Please continue to stand by. Today's conference will begin momentarily. Thank you. Coordinator: Welcome, and think you for standing by. At this time, all participants are in a listen only mode for the duration of today's call. Today's conference is being recorded. If you have any objections, you may disconnect at this time. Now I would like to turn the meeting over to Mr. Jonathan Bartlett. Sir you may begin. Jonathan Bartlett: Thank you. Good afternoon, this is Jonathan Bartlett. I'm speaking to you from the Department of Energy in Washington, D.C. Welcome everyone to the July Edition of the Wind Power in America webinar. This month we have two speakers, Joel Cline and Mark Powell will discuss the impacts of

260

The Deepwater Horizon Disaster: What Happened and Why  

Science Conference Proceedings (OSTI)

The Deepwater Horizon disaster was the largest oil spill in US history, and the second largest spill in the world. 11 men lost their lives in the explosion and fire. Although the impacts of the spill were evident to large numbers of people, its causes were harder to see. This lecture will focus on the technical aspects of the events that led to the spill itself: what happened on the rig before, during and after the event, up to the time the rig sank. As with many engineering disasters, the accident was due to a sequence of failures, including both technical systems and procedural issues. Although the causes were complex and interacting, the lecture will focus on four main problems: (1) the failure of the cement and casing seal, (2) the failure to recognize and respond to hydrocarbon flow into the riser, (3) the ignition of hydrocarbons on the rig, and (4) the failure of the blow-out preventer (BOP) to seal the well. The lecture will conclude with some suggestions as to how events such as the Deepwater Horizon disaster can be avoided in the future. (Roland N. Horne is the Thomas Davies Barrow Professor of Earth Sciences at Stanford University, and was the Chairman of Petroleum Engineering from 1995 to 2006. He holds BE, PhD and DSc degrees from the University of Auckland, New Zealand, all in Engineering Science. Horne is a member of the U.S. National Academy of Engineering and is also an Honorary Member of the Society of Petroleum Engineers.)

Horne, Roland N. (Stanford University)

2011-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Golden Field Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401-3393 FINDING OF NO SIGNIFICANT IMPACT UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT - CASTINE DOE/EA-1792-S1 AGENCY: U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) has completed a Supplemental Environmental Assessment (Supplemental EA) DOE/EA-1792-S1 for the University of Maine's (UMaine) Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine. DOE prepared the Supplemental EA to evaluate the potential environmental impacts of

262

Offshore oil: Correctness of perspective  

Science Conference Proceedings (OSTI)

Except for the Gulf of Mexico, the offshore oil industry has been virtually banned from the US Exclusive Economic Zone for ten years. The oil potential in Alaska's Arctic National Wildlife Refuge (ANWR) is also off limits. The Gulf of Mexico is the only place with prospects for future success and a number of companies both large and small are determined to move forward. The depressed price of oil does not encourage development but recently gas prices in the US have increased, making offshore gas development more feasible. Perhaps most significant is development and application of new technology and more intense management to make sure it works. The offshore oil companies and support industries have made significant technological advances, expending over and above the dollars paid in taxes, lease fees, and royalties. The ocean industries harbor a great reservoir of high technology knowledge. They have demonstrated the ability to successfully meet a vast array of challenges in exploring for, drilling, and producing oil and gas in extreme conditions. These facts beg the question as to the rational basis of each and every regulation and the ban on drilling.

Burns, R.F.

1993-05-01T23:59:59.000Z

263

Overview of the Federal Offshore Royalty Relief Program  

U.S. Energy Information Administration (EIA)

Deep Gas in Shallow Water Royalty Relief Provisions Similar to deepwater leases, royalty relief incentives have been offered since 2001 to

264

DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selects Projects Aimed at Reducing Drilling Risks in Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater November 22, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy's Office of Fossil Energy (FE) has selected six new natural gas and oil research projects aimed at reducing risks and enhancing the environmental performance of drilling in ultra-deepwater settings. The projects have been selected for negotiation leading to awards totaling $9.6 million, and will add to the research portfolio for FE's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include the prevention of uncontrolled oil flow through new and better ways to cement well casing,

265

Laboratory and Analytical Model Studies of the Faroe Bank Channel Deep-Water Outflow  

Science Conference Proceedings (OSTI)

Results are described from a combined laboratory and analytical study of the dense, deep-water flow through the Faroe Bank Channel. Archival field data have been used to specify the velocity and density field conditions in an idealized, distorted ...

P. A. Davies; A. K. Wĺhlin; Y. Guo

2006-07-01T23:59:59.000Z

266

Deep-Water Renewal in the Upper Basin of Loch Sunart, a Scottish Fjord  

Science Conference Proceedings (OSTI)

Recording current meters were deployed near the surface and bottom in the upper basin of Loch Sunart during the summers of 1987, 1989, and 1990. The measurements revealed frequent, though irregular, deep-water renewal events when the basin water ...

Philip A. Gillibrand; William R. Turrell; Alan J. Elliott

1995-06-01T23:59:59.000Z

267

A Three-Dimensional Numerical Study of Deep-Water Formation in the Northwestern Mediterranean Sea  

Science Conference Proceedings (OSTI)

Deep-water formation (DWF) in the northwestern Mediterranean Sea and the subsequent horizontal circulation are investigated in a rectangular basin with a three-dimensional primitive equation model. The basin is forced by constant climatological ...

Gurvan Madec; Pascale Delecluse; Michel Crepon; Michel Chartier

1991-09-01T23:59:59.000Z

268

Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean  

Science Conference Proceedings (OSTI)

The Arctic Ocean likely impacts global climate through its effect on the rate of deep-water formation and the subsequent influence on global thermohaline circulation. Here, the renewal of the deep waters in the isolated Canadian Basin is ...

M-L. Timmermans; P. Winsor; J. A. Whitehead

2005-08-01T23:59:59.000Z

269

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

270

INFOGRAPHIC: Offshore Wind Outlook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Outlook Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic resource could support up to 200,000 manufacturing, construction, operation and supply chain jobs across the country and drive over $70 billion in annual investments by 2030. Infographic by Sarah Gerrity. For more details, check out: New Reports Chart Offshore Wind’s Path Forward. According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic

271

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

272

Tillamook Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Farm Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Principle Power Developer Principle Power Location Offshore from Tillamook OR Coordinates 45.527°, -124.179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.527,"lon":-124.179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Galveston Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Farm Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Wind Energy Systems Technology Developer Wind Energy Systems Technology Location Offshore from Galveston TX Coordinates 29.161°, -94.797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.161,"lon":-94.797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Can Oil Float Completely Submerged in Water?  

E-Print Network (OSTI)

Droplet formation in a system of two or more immiscible fluids is a celebrated topic of research in the fluid mechanics community. In this work, we propose an innovative phenomenon where oil when injected drop-wise into a pool of water moves towards the air-water interface where it floats in a fully submerged condition. The configuration, however, is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. The droplet contour is analyzed using edge detection. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number established the assumption of lubrication regime in the thin gap. A brief theoretical formulation also showed the temporal variation of the gap thickness

Nath, Saurabh; Chatterjee, Souvick

2013-01-01T23:59:59.000Z

275

Federal Offshore Gulf of Mexico Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Federal Offshore Gulf of Mexico Proved Reserves Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series...

276

Offshore Islands Ltd | Open Energy Information  

Open Energy Info (EERE)

Islands Ltd Jump to: navigation, search Name Offshore Islands Ltd Sector Marine and Hydrokinetic Website http:http:www.offshoreisla Region United States LinkedIn Connections...

277

Offshore Infrastructure Associates Inc | Open Energy Information  

Open Energy Info (EERE)

Infrastructure Associates Inc Jump to: navigation, search Name Offshore Infrastructure Associates Inc Sector Marine and Hydrokinetic Website http:http:www.offinf.com Region...

278

,"California Federal Offshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

279

Offshore Ostsee Wind AG | Open Energy Information  

Open Energy Info (EERE)

Ostsee Wind AG Jump to: navigation, search Name Offshore Ostsee Wind AG Place Brgerende, Mecklenburg-Western Pomerania, Germany Zip 18211 Sector Wind energy Product Joint...

280

Voltage Source Converter Technology for Offshore Grids.  

E-Print Network (OSTI)

??This master thesis has investigated the possible application of voltage source converters (VSC) for the interconnection of offshore installations, i.e. wind farms and petroleum platforms,… (more)

Vormedal, Pĺl Kristian Myhrer

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wind tunnel model testing of offshore platforms.  

E-Print Network (OSTI)

?? The purpose of this thesis is to highlight some of the areas of interest when it comes to wind tunnel experimenting of offshore platforms… (more)

Abrahamsen, Ida Sinnes

2012-01-01T23:59:59.000Z

282

Optimization of offshore natural gas field development.  

E-Print Network (OSTI)

?? In this thesis the target is to find the optimal development solution of an offshore natural gas field. Natural gas is increasing in importance… (more)

Johansen, Gaute Rannem

2011-01-01T23:59:59.000Z

283

Offshore Wind in NY State (New York)  

Energy.gov (U.S. Department of Energy (DOE))

NYSERDA has expressed support for the development of offshore wind and committed funding to several publicly-available assessments that measure the potential energy benefits and environmental...

284

Attitudes toward offshore oil development: A summary of current evidence  

E-Print Network (OSTI)

that support the offshore platforms— ranging from dieselthat these platforms were being put many miles offshore. 3.platforms would be found in more than 200 ft of water, although the offshore

Gramling, R; Freudenburg, Wm R

2006-01-01T23:59:59.000Z

285

Finite Element Analysis of Erosion for Offshore Structure  

Science Conference Proceedings (OSTI)

Presentation Title, Finite Element Analysis of Erosion for Offshore Structure ... impacting, is one of the major failure modes that cause offshore structure damage .

286

Federal Offshore--Texas Natural Gas Marketed Production (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Federal Offshore--Texas Natural Gas Marketed Production (Million Cubic Feet) Federal Offshore--Texas Natural Gas Marketed Production...

287

Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals...

288

Obama Administration Hosts Great Lakes Offshore Wind Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes...

289

Louisiana (with State Offshore) Shale Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Louisiana (with State Offshore) Shale Production (Billion Cubic Feet) Louisiana (with State Offshore) Shale Production (Billion Cubic...

290

Texas (with State Offshore) Shale Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Texas (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Shale Proved Reserves (Billion...

291

Alabama (with State Offshore) Shale Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion...

292

Texas (with State Offshore) Shale Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas (with State Offshore) Shale Production (Billion Cubic Feet) Texas (with State Offshore) Shale Production (Billion Cubic Feet)...

293

Louisiana (with State Offshore) Shale Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves...

294

Alaska Region Offshore GIS Data The US Department of Interior...  

Open Energy Info (EERE)

Region Offshore GIS Data The US Department of Interior's (DOI) Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) published GIS data of offshore information for...

295

Robust Offshore Networks for Oil and Gas Facilities.  

E-Print Network (OSTI)

??Offshore Communication Networks utilize multiple of communication technologies to eradicate any possibilities of failures, when the network is operational. Offshore Oil and Gas platforms and… (more)

Maheshwari, D.

2010-01-01T23:59:59.000Z

296

Lattice Tower Design of Offshore Wind Turbine Support Structures.  

E-Print Network (OSTI)

??Optimal design of support structure including foundation and turbine tower is among the most critical challenges for offshore wind turbine. With development of offshore wind… (more)

Gong, W.

2011-01-01T23:59:59.000Z

297

Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)  

DOE Green Energy (OSTI)

This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

Not Available

2012-04-01T23:59:59.000Z

298

Off-design Simulations of Offshore Combined Cycles.  

E-Print Network (OSTI)

?? This thesis presents an off-design simulation of offshore combined cycles. Offshore installations have a substantial power demand to facilitate the oil and gas production.… (more)

Flatebř, Řystein

2012-01-01T23:59:59.000Z

299

DOE Announces Webinars on Economic Impacts of Offshore Wind,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy...

300

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network (OSTI)

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil solved, a DTI and EPSRC-sponsored research programme on foundations for wind turbines will be briefly

Houlsby, Guy T.

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cost of Offshore Wind Energy Charlene Nalubega  

E-Print Network (OSTI)

Cost of Offshore Wind Energy water as well as on land based wind farms. The specific offshore wind energy case under consideration kilowatt Hour will be determined. Wind Energy has been around for a very long time. It started as out

Mountziaris, T. J.

302

FLIP FLoating Instrument Platform (SIO Reference 62-24)  

E-Print Network (OSTI)

SAN DIEGO 52, CALIFORNIA FLIP FLoating Instrument Platformpressure prior to all flips. ( Pump running. ) 8. UnlockCheck-off Prior to each flip, the following list should be

Bronson, Earl D; Glosten, Larry R

1962-01-01T23:59:59.000Z

303

Fretting Corrosion Induced Fracture of a Floating Bearing Base Plate ...  

Science Conference Proceedings (OSTI)

This presentation will decribe the case of the rupture of a 250 Tons Yankee drum free bearing floating base plate made in a hardened low alloyed carbon steel ...

304

European Wind Atlas: Offshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Offshore European Wind Atlas: Offshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Offshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/oceanmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-offshore,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European offshore wind resources over open sea map developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on the large scale are

305

Offshore Wind Resource | OpenEI  

Open Energy Info (EERE)

Offshore Wind Resource Offshore Wind Resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

306

Underbalanced drilling benefits now available offshore  

Science Conference Proceedings (OSTI)

Offshore underbalanced drilling (UBD) is a reality. Applications in older, partially depleted fields and new fields are being considered. However, low productivity reservoirs and fields with sub normal pressures causing drilling problems are currently the main targets for offshore UBD. With proper planning and the correct technique, both jointed pipe and coiled tubing UBD drilling operations have been carried out offshore with success. The main concerns for offshore UBD have been altered drilling practices and surface production system operation. These issues have been examined and equipment has been designed and tested to address them. Environmental, safety and health issues are paramount and have been studied carefully. Detailed well planning, engineering, and flow modeling have proven critical for successful offshore UBD operations. Examples are given from oil and gas fields.

Vozniak, J.P.; Cuthbertson, B.; Nessa, D.O.

1997-05-01T23:59:59.000Z

307

The fluid mechanics of floating and sinking  

E-Print Network (OSTI)

permeability of a porous medium 10?9 m2 ?c capillary length (2.7) 2.7 mm ls strip length 7 cm m mass per unit length n exponent in governing equation (6.24) 1 (Darcy) 3 (lubrication) q volume flux (6.6) t? time scale for asymmetric spreading (6.7) B Bond number... . (1997) determined this condition explicitly in their study of thin, two-dimensional strips. In addition to the radius and density of an object, its surface properties might be expected to influence its ability to float. For our purposes, these surface...

Vella, Dominic Joseph Robert

2007-10-02T23:59:59.000Z

308

Assessing the value of 3D post-stack seismic amplitude data in forecasting fluid production from a deepwater Gulf-of-Mexico  

E-Print Network (OSTI)

a deepwater Gulf-of-Mexico reservoir Maika GambĂşs-Ordaz and Carlos Torres-VerdĂ­n The University of Texas in the deepwater Gulf of Mexico. The availability of measured time records of fluid production and pressure is specialized to the analysis of a gas/condensate and oil field reservoir located in the deepwater Gulf

Torres-VerdĂ­n, Carlos

309

Estimating Beijing's travel delays at intersections with floating car data  

Science Conference Proceedings (OSTI)

In this paper, we presented a technical framework to calculate the turn delays on road network with floating car data (FCD). Firstly the original FCD collected with GPS equipped taxies was cleaned and matched to a street map with a distributed system ... Keywords: float car data, intersection delay, principal curves, trajectory

Xiliang Liu; Feng Lu; Hengcai Zhang; Peiyuan Qiu

2012-11-01T23:59:59.000Z

310

Outsourcing and Offshoring: Pushing the European Model Over the Hill  

E-Print Network (OSTI)

European economies and reforms, offshoring, and the impact of information technologies. Before joining the Institute, he

Jacob Funk Kirkegaard

2005-01-01T23:59:59.000Z

311

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude ...  

U.S. Energy Information Administration (EIA)

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil Reserves New Field Discoveries (Million Barrels)

312

New method developed for LPG offshore loading  

SciTech Connect

An innovative concept for refrigerated LPG offshore loading has been developed by TOTAL and Enterprise D'Equipments Mecaniques at Hydrauliques. Known as CHAGAL, the system integrates with the catenary anchor leg mooring offshore loading system commonly used for crude oil. CHAGAL provides a suitable answer to short-term development schemes of LPG trade. It can be adapted for possible extrapolation to cryogenic temperatures of LNG and it opens a new way to the development of offshore liquefaction projects for which the offloading of production is still an unsolved key problem.

1985-10-01T23:59:59.000Z

313

Virginia Offshore Wind Development Authority (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) < Back Eligibility Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Virginia Program Type Industry Recruitment/Support Provider Virginia Offshore Wind Development Authority The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other qualified entities, of the offshore wind energy industry, offshore wind energy projects, and

314

8. annual international energy week conference and exhibition: Conference papers. Book 3: Drilling and production operations  

Science Conference Proceedings (OSTI)

The three volumes within this book are subdivided as follows: (1) Drilling Technology -- underbalanced drilling; field and laboratory testing; drilling systems and dynamics; advances in drill bits; coiled tubing and tubulars; advances in drilling fluids; novel/scientific drilling; and drillstrings; (2) Petroleum Production Technology -- environmental health and safety issues; production technology for deepwater; disposal methods for production waste; and offshore facility abandonment; and (3) Offshore Engineering and Operations -- floating production systems; strategic service alliance; offshore facility abandonment; offshore development economics; heavy construction, transportation, and installation for offshore fields; and subsea technology. Papers have been processed separately for inclusion on the data base.

NONE

1997-07-01T23:59:59.000Z

315

Quantitative Comparison of the Responses of Three Floating Platforms  

NLE Websites -- All DOE Office Websites (Extended Search)

Commision MIT Massachusetts Institute of Technology NREL National Renewable Energy Laboratory O & G oil and gas O & M operations and maintenance OC3 Offshore Code...

316

Offshore Development Policy in the United States  

Gasoline and Diesel Fuel Update (EIA)

U.S. Legislation and Regulations Affecting U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Legislation and regulations regarding natural gas and oil exploration, development, and production from U.S. offshore lands developed over many decades in response to a variety of concerns and disputes that were most often engendered by competing priorities. This article discusses the evolution of offshore developments and the major legislation and regulations that have affected the natural gas and oil industry in the past 50 years. The most common early disputes revolved around ownership of coastal waters. Eventually, as offshore activities became more abundant, more complicated issues arose over the need to ensure that operations are accompanied by safety, equity, and the

317

Accelerating Offshore Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up to three of these projects to advance the follow-on design, fabrication, and deployment phases to achieve commercial operation by 2017. Each of the these projects will be eligible for up to $47 million in additional funding over four years, subject to Congressional appropriations. This map also includes 42

318

Outsourcing, offshoring and the US office market  

E-Print Network (OSTI)

There is intense debate among industry analysts and scholars over potential job losses caused by offshoring. The real estate industry has been grappling to understanding the implications of these numbers, as some have ...

Topolewski, Tanya M., 1969-

2004-01-01T23:59:59.000Z

319

Volatility Due to Offshoring: Theory and Evidence  

E-Print Network (OSTI)

Existing models of offshoring are not equipped to explain how global production sharing affects the volatility of economic activity. This paper develops a trade model that can account for why offshoring industries in low wage countries such as Mexico experience fluctuations in employment that are twice as large as in high wage countries such as the United States. We argue that a key to explaining this outcome is that the extensive margin of offshoring responds endogenously to shocks in demand and transmits those shocks across borders in an amplified manner. Empirical evidence supports the claim that the extensive margin of offshoring is an active margin of adjustment, and quantitative simulation experiments show that the degree of movement of this margin in the data is sufficient to explain relative employment volatility in Mexico and the U.S. JEL classification: F1, F4

Paul R. Bergin; Robert C. Feenstra; Gordon H. Hanson

2011-01-01T23:59:59.000Z

320

Federal Offshore California Natural Gas Marketed Production ...  

Gasoline and Diesel Fuel Update (EIA)

Marketed Production (Million Cubic Feet) Federal Offshore California Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Future characteristics of Offshore Support Vessels  

E-Print Network (OSTI)

The objective of this thesis is to examine trends in Offshore Support Vessel (OSV) design and determine the future characteristics of OSVs based on industry insight and supply chain models. Specifically, this thesis focuses ...

Rose, Robin Sebastian Koske

2011-01-01T23:59:59.000Z

322

Visualization of vibration experienced in offshore platforms  

E-Print Network (OSTI)

In this thesis, I design and evaluate methods to optimize the visualization of vortex-induced vibration (VIV) in marine risers. VIV is vibration experienced by marine risers in offshore drilling platforms due to ocean ...

Patrikalakis, Alexander Marinos Charles

2010-01-01T23:59:59.000Z

323

Large-Scale Offshore Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Scale Offshore Wind Power in the United States EXECUTIVE SUMMARY September 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United...

324

Gulf of Mexico Federal Offshore Production  

Annual Energy Outlook 2012 (EIA)

Federal Offshore Gulf of Mexico production volumes are presented as a separate data series beginning in 2001. Production data for the Gulf of Mexico for years prior to 2001 are...

325

UFO: "Unidentified" Floating Object Driven by Thermocapillarity  

E-Print Network (OSTI)

In this fluid dynamics video, we show thermocapillary actuation of a binary drop of water and heptanol where the binary drop in motion takes on a UFO-like shape. On a parylene-coated silicon surface subjected to a linear temperature gradient, a pure heptanol droplet quickly moves to the cold side by the Marangoni stress, while a pure water droplet remains stuck due to a large contact angle hysteresis. When the water droplet was encapsulated by a thin layer of heptanol and thermally actuated, the binary droplet takes on a peculiar shape resembling an UFO, i.e. an "unidentified" floating object as the mechanism is not yet completely understood. Our finding suggests that pure liquid droplets (e.g. aqueous solutions) that are not conducive to thermocapillary actuation can be made so by encapsulating them with another judiciously chosen liquid (e.g. heptanol).

Zhao, Yuejun

2010-01-01T23:59:59.000Z

326

Oncale v. Sundowner Offshore Services, Inc., 96-568, Amici Curiae Brief in Support of Petitioner  

E-Print Network (OSTI)

text. ) Oncale v. Sundowner Offshore Servs. , Inc. , 83 F.3dPetitioner, VS. SUNDOWNER OFFSHORE SERVICES, INC. , JOHNNovember of 1991 by Sundowner Offshore Services, Inc. , as a

MacKinnon, Catharine A.

1997-01-01T23:59:59.000Z

327

Fish Bulletin 140. The Marine Environment offshore From Point Loma, San Diego County  

E-Print Network (OSTI)

and Animals Observed offshore from Point Loma February andand Animals Observed offshore from Point Loma February andand Animals Observed offshore from Point Loma February and

Turner, Charles H; Ebert, Earl E; Given, Robert R

1967-01-01T23:59:59.000Z

328

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network (OSTI)

in Public Opinion on Offshore Oil Development in California.and Economics 005 "Support for Offshore Oil and Gas Drillingdirectly. Support for Offshore Oil and Gas Drilling among

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

329

Annotated Bibliography: Fisheries Species and Oil/Gas Platforms Offshore California  

E-Print Network (OSTI)

California coastal zone and offshore areas. Vol. II. ,shelf of the mainland and offshore islands, deep sea basins,and Oil/Gas Platforms Offshore California MBC Applied

MBC Applied Environmental Sciences

1987-01-01T23:59:59.000Z

330

Offshoring of NPD in the Electronics Industry: Patterns and Recession Effects  

E-Print Network (OSTI)

may accelerate offshore sourcing, PricewaterhouseCoopers andDebora Dunkle (2009). Offshore hardware development: surveyWhile manufacturing has been offshore since the 1980’s, the

Kraemer, Kenneth L.; Dedrick, Jason; Dunkle, Debbie

2010-01-01T23:59:59.000Z

331

Annotated Bibliography: Fisheries Species and Oil/Gas Platforms Offshore California  

E-Print Network (OSTI)

is controlled. Fishing offshore platforms: Central Gulf ofanti-fouling system for offshore platforms that works! Oceanbiofouling growth on offshore platforms while also providing

MBC Applied Environmental Sciences

1987-01-01T23:59:59.000Z

332

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Results of a RANS Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions Y. Yu and Y. Li Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19 - 24, 2011 Conference Paper NREL/CP-5000-50967 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

333

Plastic Limit Analysis of Offshore Foundation and Anchor  

E-Print Network (OSTI)

This study presents the applications of plastic limit analysis to offshore foundations and anchors, including the drag embedment anchors (DEAs) for mobile offshore drilling units (MODU’s) and spudcan foundations for jack-up platforms. In deep waters, drag embedment anchors are an attractive option for mooring of semisubmersible platforms due to low installation cost and high holding capacity; on the other hand, jack-up platforms are more stable than semisubmersible platforms but only can be placed in shallow waters. The analyses of anchor capacities are developed for an idealized anchor comprising a rectangular fluke, a cylindrical shank, and a metal chain connected to the shank at the padeye. The anchor trajectory prediction during drag embedment is also developed by considering anchor behavior in conjunction with the mechanics of the anchor line. The results of simulations show that anchors approach at equilibrium condition rapidly during the embedment and both the normalized holding capacity and the anchor line uplift angle remain constants in this stage. Besides the geometry of the fluke, the properties of the shank and soil are also crucial factors in the anchor-soil interaction behavior. Partial failure of mooring systems for floating structures will subject drag anchors to loads having an appreciable component outside of the intended plane of loading. Partial failure of mooring systems during hurricanes in recent years have generated an interest in understanding drag anchor performance under these conditions. The analysis presents the simulations of three dimensional trajectories of an anchor system subjected to an out-of-plane load component. For the conditions simulated in the example analyses, the anchor experienced a modest amount of continued embedment following partial failure of the mooring system; however, the ultimate embedment and capacity of the anchor is much less than what would have developed if the anchor had continued in its original trajectory within the plane of intended loading. The analyses of the spudcan foundation of jack-up units include preloading, bearing capacity, and the displacement assessment. When the contribution of the soil moment resistance is considered, a three-stage assessment procedure is recommended: superposing environmental forces on the plot of yield surface, determining the value of yield function corresponding to the external forces, and computing the factor of safety of the spudcan. The results of the assessment may be ambiguous while the different yield functions are employed to analyze the spudcan in soft clay.

Chi, Chao-Ming

2010-08-01T23:59:59.000Z

334

Float level switch for a nuclear power plant containment vessel  

DOE Patents (OSTI)

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

Powell, J.G.

1993-11-16T23:59:59.000Z

335

Float level switch for a nuclear power plant containment vessel  

DOE Patents (OSTI)

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

Powell, James G. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

336

Flow-loop endurance tests compare float performance  

SciTech Connect

Endurance tests have identified qualities and characteristics of the three types of cement float valves-flapper, ball, and plunger. Plunger valves last the longest. Flappers have the lowest pressure drop, but less endurance. Uncoated ball valves outlast coated ones, but stability is a problem with each. Float equipment consists of structural elements and a nonreturn or check valve. Three basic nonreturn valve design types are commonly used in float equipment. These are the ball, the flapper and the plunger. This article reviews these basic design types and examines variations in configurations and the operating characteristics. The operating characteristics are compared by impact on drilling.

Stringfellow, B.

1986-02-01T23:59:59.000Z

337

New insights into microbial responses to oil spills from the Deepwater Horizon incident  

Science Conference Proceedings (OSTI)

On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

Mason, O.U.; Hazen, T.C.

2011-06-15T23:59:59.000Z

338

Estimating Surface Oil Extent from the Deepwater Horizon Oil Spill using ASCAT Backscatter  

E-Print Network (OSTI)

Estimating Surface Oil Extent from the Deepwater Horizon Oil Spill using ASCAT Backscatter Richard Provo, UT 84602 Abstract--The damping effects of oil on capillary ocean waves alter the backscattered backscatter from the ocean surface uncontaminated by surface oil. Large differences between expected

Long, David G.

339

Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill  

E-Print Network (OSTI)

.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted and impede recovery of the system. There are over 3,000 active oil & gas production platforms in U.S. OuterDisturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil

Pennings, Steven C.

340

Offshore refrigerated LPG loading/unloading terminal using a CALM buoy  

SciTech Connect

In existing Liquefied Petroleum Gases terminals, the transfer of liquefied gases to the tanker is performed via articulated loading arms or flexible hoses, working under quasistatic conditions. The tanker has to be firmly moored alongside a jetty or a process barge in a protected area (such as a harbour in most cases). This paper gives the main results of the development of an offshore refrigerated LPG (-48/sup 0/C) loading/unloading system, using a CALM buoy and LPG floating hoses working under dynamic conditions. The aim of this new concept is to replace the standard harbour structure for loading/unloading refrigerated LPG and to provide a considerable reduction in investments and a greater flexibility regarding the terminal location. The main components of that terminal have been designed so as to enable the loading of a 75 000 cubic meter LPG carrier in 15 hours. The results of static and dynamic low temperature tests on a LPG swivel joint for CALM buoy and LPG floating hoses show that such a SPM terminal is now a realistic solution.

Bonjour, E.L.; Simon, J.M.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Texas Tech Toxicologists Use Duck Eggs to Study Effects of Deepwater Horizon Oil Spill http://texas-oil-spill-classaction.org/texas-tech-toxicologists-use-duck-eggs-to-study-effects-of-deepwater-horizon-oil-spill/[8/2/2011 1:44:16 PM  

E-Print Network (OSTI)

Texas Tech Toxicologists Use Duck Eggs to Study Effects of Deepwater Horizon Oil Spill http://texas-oil-spill-classaction.org/texas-tech-toxicologists-use-duck-eggs-to-study-effects-of-deepwater-horizon-oil-spill/[8/2/2011 1:44:16 PM] « US Approves First Deep-Water Oil Well in Gulf Since BP Spill Texas Tech

Rock, Chris

342

Exchange flow between open water and floating vegetation  

E-Print Network (OSTI)

This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating ...

Zhang, Xueyan

343

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

344

Offshore Gross Withdrawals of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total Offshore 3,476,755 3,028,561 3,072,285 2,875,945 2,416,644 2,044,643 1977-2012 State Offshore 618,042 653,704 586,953 575,601 549,151 489,505 1978-2012 From Gas Wells 276,117 297,565 259,848 234,236 208,970 204,667 1978-2012 From Oil Wells 341,925 356,139 327,105 341,365 340,182 284,838 1978-2012 Federal Offshore 2,858,713 2,374,857 2,485,331 2,300,344 1,867,492 1,555,138 1977-2012 From Gas Wells 2,204,379 1,849,891 1,878,928 1,701,665 1,355,489 1,028,474 1977-2012 From Oil Wells 654,334 524,965 606,403 598,679 512,003 526,664 1977-2012 Alabama Total Offshore 134,451 125,502 109,214 101,487 84,270 87,398 1987-2012 State Offshore 134,451 125,502 109,214 101,487 84,270 87,398 1987-2012

345

The Float Park: A New Tool for a Cost-Effective Collection of Lagrangian Time Series with Dual Release RAFOS Floats  

Science Conference Proceedings (OSTI)

The World Ocean Circulation Experiment has established Lagrangian observations with neutrally buoyant floats as a routine tool in the study of deep-sea currents. Here a novel variant of the well-proven RAFOS concept for seeding floats at ...

Walter Zenk; Andreas Pinck; Sylvia Becker; Pierre Tillier

2000-10-01T23:59:59.000Z

346

Velocity and Eddy Kinetic Energy of the Gulf Stream System from 700-m SOFAR Floats Subsampled to Simulate Pop-up Floats  

Science Conference Proceedings (OSTI)

Velocity and eddy kinetic energy were calculated from SOFAR (sound fixing and ranging) float trajectories using original daily values and values subsampled at intervals of 15, 30, and 60 days to simulate pop-up floats that surface for position ...

P. L. Richardson

1992-08-01T23:59:59.000Z

347

Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993  

Science Conference Proceedings (OSTI)

This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

Francois, D.K.

1994-12-31T23:59:59.000Z

348

Apex Offshore Phase 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 Facility Apex Offshore Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind Energy Developer Apex Offshore Wind / Outer Banks Ocean Energy Corp / Maersk Line Limited Location Atlantic Ocean NC Coordinates 34.169°, -77.12° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.169,"lon":-77.12,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Apex Offshore Phase 2 | Open Energy Information  

Open Energy Info (EERE)

2 2 Facility Apex Offshore Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind Energy Developer Apex Offshore Wind / Outer Banks Ocean Energy Corp / Maersk Line Limited Location Atlantic Ocean NC Coordinates 34.169°, -76.91° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.169,"lon":-76.91,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

351

Offshoring in the new global political economy  

E-Print Network (OSTI)

abstract This essay challenges claims by economists and management scholars that ‘offshoring ’ is simply another form of trade with mutual benefits. I argue that reducing wages through offshoring leads to wealth creation for shareholders but not necessarily for countries and employees, and that many displaced workers have difficulty ‘trading up ’ to higher skilled jobs. Offshoring is a new phenomenon that entails the organizational and technological ability to relocate specific tasks and coordinate a geographically dispersed network of activities. It decouples the linkages between economic value creation and geographic location. The result is the creation of global commodity markets for particular skills and a shift in the balance of market power among firms, workers, and countries.

David L. Levy

2005-01-01T23:59:59.000Z

352

Louisiana Natural Gas Gross Withdrawals Total Offshore (Million...  

Annual Energy Outlook 2012 (EIA)

Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

353

Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

-- Offshore Natural Gas Withdrawals (Million Cubic Feet) Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

354

Strengthening America's Energy Security with Offshore Wind (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

Not Available

2012-02-01T23:59:59.000Z

355

Offshore Natural Gas Royalty Regime (Newfoundland and Labrador, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The province’s offshore contains large natural gas deposits. The Provincial Government has developed an Offshore Natural Gas Royalty Regime that will ensure these resources are developed in the...

356

The Deepwater Program : a case study in organizational transformation inspired by the parallel interaction of internal and external core groups  

E-Print Network (OSTI)

This paper attempts to explain why the United States Coast Guard decided to undertake its most recent major capital asset replacement effort-the Deepwater Program-through the use of a systems approach. Several explanations ...

Mansharamani, Vikram, 1974-

2004-01-01T23:59:59.000Z

357

Deepwater Horizon Oil Spill Principal Investigator (PI) Conference Sponsored by the NSTC SOST, hosted by the University of South Florida  

E-Print Network (OSTI)

Deepwater Horizon Oil Spill Principal Investigator (PI) Conference Sponsored Ballroom · Oil/dispersant - extent and fate Tom Ryerson, National Oceanic and Atmospheric Administration · Oil/dispersant - impacts and mitigation in coastal

Meyers, Steven D.

358

Deep-Water Formation and Meridional Overturning in a High-Resolution Model of the North Atlantic  

Science Conference Proceedings (OSTI)

The authors use different versions of the model of the wind- and thermohaline-driven circulation in the North and Equatorial Atlantic developed under the WOCE Community Modeling Effort to investigate the mean flow pattern and deep-water formation ...

Claus W. Böning; Frank O. Bryan; William R. Holland; Ralf Döscher

1996-07-01T23:59:59.000Z

359

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural ...  

U.S. Energy Information Administration (EIA)

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels)

360

Wind Resource Mapping for United States Offshore Areas  

DOE Green Energy (OSTI)

A poster for the WindPower 2006 conference showing offshore resource mapping efforts in the United States.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Offshore Renewable Energy R&D (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the offshore renewable energy R and D efforts at the National Renewable Energy Laboratory.

Not Available

2012-04-01T23:59:59.000Z

362

EMGeo: Risk Minimizing Software for Finding Offshore Fossil ...  

EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification. CR-2418, CR-2688,CR-2981

363

OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION  

E-Print Network (OSTI)

No complete mathematical model of offshore wind farm O&M costs has been found in the literature. Many studies expensive components of an offshore wind farm. Support structure, O&M, and wake models have been discussedOFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION C. N. Elkinton* , J. F

Massachusetts at Amherst, University of

364

Planning and control of logistics for offshore wind farms  

Science Conference Proceedings (OSTI)

Construction and utilization of offshore wind farms will increase within the next years. So far the first German offshore wind farm was constructed and put into operation by "Alpha Ventus". Experiences illustrate that bad weather conditions are the main ... Keywords: MILP, installation scheduling, maritime logistics, offshore wind farm, supply chain

Bernd Scholz-Reiter; Michael Lütjen; Jens Heger; Anne Schweizer

2010-11-01T23:59:59.000Z

365

A US Client's learning from outsourcing IT work offshore  

Science Conference Proceedings (OSTI)

Based on 45 interviews and significant documentation, we explore the offshore outsourcing experiences of a US-based biotechnology company. This company offshore outsourced 21 IT projects to six suppliers in India. Senior managers and the official documents ... Keywords: IT, Offshore, Outsourcing

Joseph W. Rottman; Mary C. Lacity

2008-04-01T23:59:59.000Z

366

Fully coupled dynamic analysis of a floating wind turbine system  

E-Print Network (OSTI)

The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

Withee, Jon E

2004-01-01T23:59:59.000Z

367

ULTRA-DEEPWATER AND FRONTIER REGIONS RESEARCH NETL Team Technical Coordinator: Kelly Rose  

NLE Websites -- All DOE Office Websites (Extended Search)

ULTRA-DEEPWATER AND FRONTIER REGIONS RESEARCH NETL Team Technical Coordinator: Kelly Rose ULTRA-DEEPWATER AND FRONTIER REGIONS RESEARCH NETL Team Technical Coordinator: Kelly Rose Name Project Role Affiliation University Project Title Enick, Robert PI Pitt Baled, Hseen Post Doc Pitt Enick, Robert PI Pitt Baled, Hseen Post Doc Pitt Liu, Xingbo PI WVU Chen, Ting Graduate Student WVU Enick, Robert PI Pitt Baled, Hseen Post Doc Pitt Xing, Dazun Post Doc Pitt Baled, Hseen Grad Student Pitt Anderson, Brian PI WVU Velaga, Srinath Grad Student WVU Equation of State Model Assessment and development Evaluate Heavy Oil Viscosity Standard Quantifying complex fluid- phase properties at high pressure/high temperature (HTHP) Experimental and numerical evaluation of key metal-based failures Plume Modeling for High- pressure Water Tunnel Facility Name Title Affiliation Rose, Kelly Geologist

368

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) NETL-ORD Project Information Resource Assessment | Drilling Under Extreme Conditions | Environmental Impacts Enhanced and Unconventional Oil Recovery Enhanced Oil Recovery from Fractured Media Read Detailed Project Information [PDF] Read project abstract Oil recovery from unconventional media is often difficult. However, significant hydrocarbon resources can be found in fractured reservoirs. As the supply of oil from conventional reservoirs is depleted, fractured media will provide a greater proportion of the country's oil reserves. One example of such a resource is the Bakken shale, part of the Williston Basin in North and South Dakota and Montana. It is estimated that over 100-176 billion barrels of oil are present in the Bakken shale. However, due to the low permeability of the formation and the apparent oil-wet nature of the shale, production from this formation presents considerable problems.

369

Department of Energy Activities in Response to the Deepwater BP Oil Spill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activities in Response to the Deepwater BP Oil Spill Activities in Response to the Deepwater BP Oil Spill At the request of the President, Secretary Chu and Secretary Salazar traveled to Houston and participated in meetings today with DOE and national lab staff, industry officials and other engineers and scientists involved in finding solutions to cap the flow of oil and contain the spill. Secretary Chu assembled a group of top scientific experts from inside and outside of government to join in today's discussions in Houston about possible solutions. This team includes: * Dr. Tom Hunter, Director of the Department of Energy's Sandia National Labs * Dr. George A. Cooper, an expert in materials science and retired professor from UC Berkeley * Richard Lawrence Garwin, a physicist and IBM Fellow Emeritus

370

Offshore Gross Withdrawals of Natural Gas  

Annual Energy Outlook 2012 (EIA)

Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 View History Federal Offshore 112,056 119,737 117,914 114,382 102,975 110,124 1997-2013 From Gas Wells NA NA NA NA NA NA 1997-2013 From...

371

Powering the World: Offshore Oil & Gas Production  

E-Print Network (OSTI)

rate of production of oil is peaking now, coal will peak in 2-5 years, and natural gas in 20-30 yearsPowering the World: Offshore Oil & Gas Production Macondo post-blowout operations Tad Patzek Gulf of Mexico's oil and gas production Conclusions ­ p.5/59 #12;Summary of Conclusions. . . The global

Patzek, Tadeusz W.

372

Corrosion of Oil and Gas Offshore Production  

Science Conference Proceedings (OSTI)

Table 13   Design criteria for offshore cathodic protection systems...Persian Gulf 15 30 85 Moderate Low 54â??86 5â??6 Indonesia 19 24 75 Moderate Moderate 54â??65 5â??6 (a) Water resistivity is

373

Federal Offshore California Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2012 (EIA)

Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 -...

374

Offshore Gross Withdrawals of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 View History Federal Offshore 119,737 117,931 114,382 103,384 110,472 104,257 1997-2013 From Gas Wells NA NA NA NA NA NA 1997-2013 From...

375

Thailand offshore line is longest ever laid  

SciTech Connect

A major natural gas pipeline system, scheduled to be commissioned September 15, 1981, will help transform Thailand into a producer and consumer of natural gas. Construction activities are nearing an end on a total of 360 miles of 34 and 28-in. diam pipelines, including 264 miles of 34-in. underwater pipelines - currently the longest single stretch of offshore pipeline in the world.

Dietsch, D.

1981-08-01T23:59:59.000Z

376

Offshore Wind Turbine Wakes Measured by Sodar  

Science Conference Proceedings (OSTI)

A ship-mounted sodar was used to measure wind turbine wakes in an offshore wind farm in Denmark. The wake magnitude and vertical extent were determined by measuring the wind speed profile behind an operating turbine, then shutting down the ...

R. J. Barthelmie; L. Folkerts; F. T. Ormel; P. Sanderhoff; P. J. Eecen; O. Stobbe; N. M. Nielsen

2003-04-01T23:59:59.000Z

377

Accord near for offshore California oil shipments  

Science Conference Proceedings (OSTI)

There are faint glimmers of hope again for offshore California operators. After more than a decade of often bitter strife over offshore oil and gas development and transportation issues, state officials and oil producers may be moving toward compromise solutions. One such solution may be forthcoming on offshore development. But the real change came with the turnabout of the California Coastal Commission (CCC), which last month approved a permit for interim tankering of crude from Point Arguello oil field in the Santa Barbara Channel to Los Angeles. The dispute over how to ship offshore California crude to market has dragged on since before Point Arguelo development plans were unveiled. The project's status has become a flashpoint in the U.S. debate over resource use and environmental concerns. The controversy flared anew in the wake of the 1989 Exxon Valdez tanker spill off Alaska, when CCC voided a Santa Barbara County permit for interim tankering, a move project operator Chevron Corp. linked to the Exxon Valdez accident. Faced with litigation, the state's economic devastation, and acrimonious debate over transporting California crude, Gov. Pete Wilson and other agencies approved the CCC permit. But there's a catch: A permanent pipeline must be built to handle full production within 3 years. The paper discusses permit concerns, the turnaround decision, the anger of environmental groups, and pipeline proposals.

Not Available

1993-02-15T23:59:59.000Z

378

Ultrasonic thickness testing of aging offshore structures  

E-Print Network (OSTI)

The objectives of this thesis concern the use of ultrasonic thickness (UT) testing for use in the offshore industry. Evidence from prior studies conducted at Texas A&M University suggests that the corrosion on the surface of offshore structural members is not distributed in a random fashion. It was therefore desired to study the matter more extensively to 1) determine the feasibility of using ultrasonic thickness measurements for assessment of corroded members in offshore structures, 2) determine the amount of data needed for meaningful assessment, and 3) identify any common patterns of corrosion in offshore structural members, which might be used in designing a more effective assessment protocol. First, three specimens from an earlier study were available for use here. These "Riverside Specimens'' were subjected to extensive UT measurements. An important statistical tool, Analysis of Variance (ANOVA), was used to determine the probability that thickness variations along the length and around the circumference of each member could be a random event. Both longitudinal and circumferential non-random variations were found in some of these members. A study of reduced sample size confirmed that reduction of data caused more uncertainty in the results. Next, a field study was conducted on recently salvaged offshore jackets in Morgan City, LA. Six tubular bracing specimens (three horizontal, three diagonal) near the splash zone were evaluated. The statistical evidence for corrosion trends was found to be rather weak. Nonetheless, it was possible to make certain generalizations. In particular, the outside facing sections tend to be the most corroded (thinnest), while the surfaces toward the center of the structure tend to be the least corroded (thickest). This also agrees with industry observations. Finally, the effect of sample size on the detection of strength loss was observed. Using some basic assumptions regarding sample mean and standard deviation, it was shown that even with greatly reduced numbers of measurement points, one may still obtain reasonable estimates of critical thickness values corresponding to certain strength loss ratios.

Ellison, Brian Kirk

1999-01-01T23:59:59.000Z

379

Float equipment including float collars and modular plugs for well operations  

SciTech Connect

This patent describes a float collar for use in well operations. It comprises an elongated hollow tubular body, a seal plate disposed across the hollow tubular body, the seal plate having an integral outwardly extending arm member sealingly contacting an inner surface of the hollow tubular body, the seal plate having a bore for fluid flow therethrough, an amount of hardened cement disposed beneath and in contact with the seal plate, the cement having a bore in fluid communication with the bore of the seal plate permitting fluid flow through the collar, and a recess provided in the outwardly extending arm member for receiving and holding a sealing O-ring for sealingly abutting the inner surface of the hollow tubular body, portions of the arm member adjacent the recess sealingly contacting the inner surface of the tubular body.

Langer, F.H.

1990-12-25T23:59:59.000Z

380

Salazar, Chu Announce Major Offshore Wind Initiatives | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Offshore Wind Initiatives Major Offshore Wind Initiatives Salazar, Chu Announce Major Offshore Wind Initiatives February 7, 2011 - 12:00am Addthis NORFOLK, VA - Unveiling a coordinated strategic plan to accelerate the development of offshore wind energy, Secretary of the Interior Ken Salazar and Secretary of Energy Steven Chu today announced major steps forward in support of offshore wind energy in the United States, including new funding opportunities for up to $50.5 million for projects that support offshore wind energy deployment and several high priority Wind Energy Areas in the mid-Atlantic that will spur rapid, responsible development of this abundant renewable resource. Deployment of clean, renewable offshore wind energy will help meet the President's goal of generating 80 percent of the Nation's electricity from

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Brigantine OffshoreMW Phase 1 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 1 Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer Offshore MW Location Atlantic Ocean NJ Coordinates 39.584°, -73.77° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.584,"lon":-73.77,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

NREL: Wind Research - Grid Integration of Offshore Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Offshore Wind Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in which offshore wind scenarios were analyzed. Nearly 80 GW of offshore wind was studied in the highest penetration scenario. Specific offshore grid distribution and transmission solutions were identified, including cost estimates. With the Atlantic coast likely to lead the way in offshore wind power deployment, EWITS is a benchmark for

383

Offshoring, tasks, and the skill-wage pattern  

E-Print Network (OSTI)

The paper investigates the relationship between offshoring, wages, and the ease with which individuals ’ tasks can be offshored. Our analysis relates to recent theoretical contributions arguing that there is only a loose relationship between the suitability of a task for offshoring and the associated skill level. Accordingly, wage effects of offshoring can be very heterogeneous within skill groups. We test this hypothesis by combining micro-level information on wages and demographic and workplace characteristics as well as occupational information relating to the degree of offshorability with industry-level data on offshoring. Our main results suggest that in partial equilibrium, wage effects of offshoring are fairly modest but far from homogeneous and depend significantly on the extent to which the respective task requires personal interaction or can be described as non-routine. When allowing for cross-industry movement of Daniel Baumgarten thanks the Leibniz Association for financial support.

Daniel Baumgarten; Ingo Geishecker; Holger Görg; Ingo Geishecker; Holger Görg

2010-01-01T23:59:59.000Z

384

Global Offshore Wind Farms Database | Open Energy Information  

Open Energy Info (EERE)

Global Offshore Wind Farms Database Global Offshore Wind Farms Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Offshore Wind Farms Database Focus Area: Renewable Energy Topics: Deployment Data Website: www.4coffshore.com/offshorewind/ Equivalent URI: cleanenergysolutions.org/content/global-offshore-wind-farms-database,h Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This online database and interactive map for global offshore wind development contains details on over 900 wind farms in 36 countries. The 4C Offshore Interactive Map provides an interactive map-based view of wind farm data, as well as wind farm-related news and career information. References Retrieved from "http://en.openei.org/w/index.php?title=Global_Offshore_Wind_Farms_Database&oldid=514428"

385

Garden State Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Farm Offshore Wind Farm Jump to: navigation, search Name Garden State Offshore Wind Farm Facility Garden State Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Garden State Offshore Energy Location Offshore from Avalon NJ Coordinates 39.08°, -74.310556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.08,"lon":-74.310556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

MHK Technologies/Floating anchored OTEC plant | Open Energy Information  

Open Energy Info (EERE)

anchored OTEC plant anchored OTEC plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating anchored OTEC plant.jpg Technology Profile Primary Organization LAUSDEO Incorporated Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Anchored floating OTEC plant Small volume above ocean surface so that device can avoid damage due to severe weather Water depth must exceed 600 meters Prefer to use power line to transmit electricity to shore facility Can use electrolysis to produce hydrogen and transport hydrogen to floating or shore facility Mooring Configuration The preferred mooring configuration is gravity base with three bottom weights The weights can be at depths up to 3000 meters

387

MHK Technologies/Floating wave Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Floating Wave Powered Generator is an attenuator that uses three pontoons that pivot on rigid arms as the wave passes driving gears that turn a generator Technology Dimensions Device Testing Date Submitted 45:12.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Floating_wave_Generator&oldid=681577"

388

The Thermodynamic and Cost Benefits of Floating Cooling Systems  

E-Print Network (OSTI)

Historically, a fixed cooling concept is used in the design of evaporative heat rejection systems for process and power plants. In the fixed cooling mode, a plant is designed for maximum output at the design summer wet bulb temperature. The application of a floating cooling concept to evaporative heat rejection systems can have significant impact on improving plant performance. The floating cooling concept refers to the optimization of yearly plant output and energy consumption by taking advantage of seasonal wet bulb temperature fluctuations. The maximum plant output occurs at the average winter wet bulb temperature. Floating cooling is especially suited to base load power plants located in regions with large daily and seasonal wet bulb temperature variations. An example for a geothermal power plant is included in this paper.

Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

1983-01-01T23:59:59.000Z

389

Float Observations of the Southern Ocean. Part I: Estimating Mean Fields, Bottom Velocities, and Topographic Steering  

Science Conference Proceedings (OSTI)

Autonomous Lagrangian Circulation Explorer (ALACE) floats are used to examine mean flow and eddy fluxes at 900-m depth in the Southern Ocean. Mean temperature and dynamic topography from float data are consistent with earlier estimates from ...

Sarah T. Gille

2003-06-01T23:59:59.000Z

390

T-561: IBM and Oracle Java Binary Floating-Point Number Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability T-561: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service...

391

Measurement of Turbulent Kinetic Energy Dissipation Rate with a Lagrangian Float  

Science Conference Proceedings (OSTI)

This study tests the ability of a neutrally buoyant float to estimate the dissipation rate of turbulent kinetic energy ? from its vertical acceleration spectrum using an inertial subrange method. A Lagrangian float was equipped with a SonTek ...

Ren-Chieh Lien; Eric A. D'Asaro

2006-07-01T23:59:59.000Z

392

A Mechanism for the Accumulation of Floating Marine Debris North of Hawaii  

Science Conference Proceedings (OSTI)

A mechanism for the accumulation of floating marine debris in the North Pacific, especially north of the Hawaiian Islands, is investigated. First, about 50 pseudo marine debris markers floating at the sea surface are arranged in the North ...

M. Kubota

1994-05-01T23:59:59.000Z

393

In Situ CO2 and O2 Measurements on a Profiling Float  

Science Conference Proceedings (OSTI)

In recent years, profiling floats, which form the basis of the successful international Argo observatory, are also being considered as platforms for marine biogeochemical research. This study showcases the utility of floats as a novel tool for ...

Björn Fiedler; Peer Fietzek; Nuno Vieira; Péricles Silva; Henry C. Bittig; Arne Körtzinger

2013-01-01T23:59:59.000Z

394

Deep Convection in the Labrador Sea as Observed by Lagrangian Floats  

Science Conference Proceedings (OSTI)

During the winters of 1997 and 1998, a total of 24 Lagrangian floats were deployed in the Labrador Sea. These floats were designed to match the buoyancy and compressibility of seawater. They measured temperature and three-dimensional position (...

Elizabeth L. Steffen; Eric A. D'Asaro

2002-02-01T23:59:59.000Z

395

The Real-Time Data Management System for Argo Profiling Float Observations  

Science Conference Proceedings (OSTI)

Argo is an internationally coordinated program directed at deploying and maintaining an array of 3000 temperature and salinity profiling floats on a global 3° latitude × 3° longitude grid. Argo floats are deployed from research vessels, merchant ...

Claudia Schmid; Robert L. Molinari; Reyna Sabina; Yeun-Ho Daneshzadeh; Xiangdong Xia; Elizabeth Forteza; Huiqin Yang

2007-09-01T23:59:59.000Z

396

Numerical prediction of mobile offshore drilling unit drift during hurricanes  

E-Print Network (OSTI)

Hurricanes Ivan, Katrina, and Rita tracked through a high-density corridor of the oil and gas infrastructures in the Gulf of Mexico. Extreme winds and large waves exceeding the 100-year design criteria of the MODUs during these hurricanes, caused the failure of mooring lines to a number of Mobile Offshore Drilling Units (MODUs) in the Gulf of Mexico. In addition to the damage MODUs undertook during these severe hurricanes, drifting MODUs might impose a great danger to other critical elements of the oil and gas industry. Drifting MODUs may potentially collide with fixed or floating platforms and transportation hubs or rupture pipelines by dragging anchors over the seabed. Therefore, it is desirable to understand the physics of the drift of a MODU under the impact of severe wind, wave, and current and have the capabilities to predict the trajectory of a MODU that is drifting. In this thesis, a numerical program, named “DRIFT,” is developed for predicting the trajectory of drifting MODUs given met-ocean conditions (wind, current, and wave) and the characteristics of the MODU. To verify “DRIFT,” the predicted drift of two typical MODUs is compared with the corresponding measured trajectory recorded by Global Positioning System (GPS). To explore the feasibility and accuracy of predicting the trajectory of a drifting MODU based on real-time or hindcast met-ocean conditions and limited knowledge of the condition of the drift, this study employed a simplified equation describing only the horizontal (surge, sway, and yaw) motions of a MODU under the impact of steady wind, current, and wave forces. The simplified hydrodynamic model neglects the first- and second-order oscillatory wave forces, unsteady wind forces, wave drift damping, and the effects of body oscillation on the steady wind and current forces. It was assumed that the net effects of the oscillatory forces on the steady motion are insignificant. Two types of MODU drift predictions are compared with the corresponding measured trajectories: 1) MODU drift prediction with 30-minute corrections of the trajectory (every 30 minutes the simulation of the drift starts from the measured trajectory), and 2) continuous MODU drift prediction without correction.

Tahchiev, Galin Valentinov

2007-05-01T23:59:59.000Z

397

Air–Sea Heat Flux Measurements from Nearly Neutrally Buoyant Floats  

Science Conference Proceedings (OSTI)

The ability of neutrally buoyant, high-drag floats to measure the air–sea heat flux from within the turbulent oceanic boundary layer is investigated using float data from four different winter and fall float deployments. Two flux estimates can be ...

Eric A. D'Asaro

2004-07-01T23:59:59.000Z

398

Automatic welding comes of age. [Offshore  

SciTech Connect

Automatic pipe welding systems today fall into three main categories: gas metal arc welding, gas-tungsten arc welding, and flash-butt welding. The first automatic welding devices used offshore were the CRC and H.C. Price systems. Both use gas metal arc welding with a consumable steel filler wire. The recently developed McDermott flash-butt welding system is described. (DLC)

Turner, D.L. Jr.

1981-07-01T23:59:59.000Z

399

NOTICE OF AVAILABILITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

supplemental supplemental Environmental Assessment (EA) to analyze and describe the potential environmental impacts associated with the: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site Castine, Hancock County, Maine DOE/EA 1792-S1 DOE's Golden Field Office has prepared the supplemental EA in accordance with the National Environmental Policy Act (NEPA). The University of Maine is proposing to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan

400

MHK Technologies/Ocean Treader floating | Open Energy Information  

Open Energy Info (EERE)

Treader floating Treader floating < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Ocean Treader is comprised of two sponsons at the fore and aft of the device and a spar buoy in the center. As a wave passes along the device, first the fore sponson lifts and falls, then the spar buoy, and then the aft sponson, respectively. The relative motion between these three floating bodies is harvested by hydraulic cylinders mounted between the tops of the arms and the spar buoy. The cylinders pressurize hydraulic fluid that spins hydraulic motors and an electric generator. The electricity is exported via a cable piggy-backed to the anchor cable. Ocean Treader is designed to passively weather-vane to face the wave direction; and in addition, the device has active onboard adjustment to allow for offset due to the effects of current.

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Criticality condition for information floating with random walk of nodes  

Science Conference Proceedings (OSTI)

In an opportunistic content sharing system referred to as floating content, information is copied between mobile nodes upon node encounters inside an area which is called the anchor zone. We study the conditions under which information can be sustained ... Keywords: Opportunistic networking, Random walk, Transport equation

Jorma Virtamo; Esa Hyytiä; Pasi Lassila

2013-02-01T23:59:59.000Z

402

Gulf Stream Kinematics along an Isopycnal Float Trajectory  

Science Conference Proceedings (OSTI)

An isopycnal-following float was deployed near the 400 m depth level in the high speed jet region of the Gulf Stream and tracked for approximately 300 km from the Blake Plateau towards Cape Hatteras during 16–19 May 1983. During its transit ...

E. R. Levine; D. N. Connors; P. C. Cornillon; H. T. Rossby

1986-07-01T23:59:59.000Z

403

Vertical Heat-Flux Measurements from a Neutrally Buoyant Float  

Science Conference Proceedings (OSTI)

A neutrally buoyant float instrumented to measure 1–5 m shear and stratification was deployed for ten days in a near-inertial critical layer at the base of a warm-core ring. Vertical velocity and temperature data, from which large-scale (>5 m) ...

Haili Sun; Eric Kunze; A. J. Williams III

1996-06-01T23:59:59.000Z

404

Overcoming Challenges in America's Offshore Wind Industry | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overcoming Challenges in America's Offshore Wind Industry Overcoming Challenges in America's Offshore Wind Industry Overcoming Challenges in America's Offshore Wind Industry November 18, 2013 - 4:40pm Addthis Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association Gregory M. Matzat PE; Senior Advisor, Offshore Wind Technologies A year of progress, preparation and promise was the theme connecting two days of panels and presentations last month at the 2013 American Wind

405

Brigantine OffshoreMW Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 2 Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer OffshoreMW Location Atlantic Ocean NJ Coordinates 39.348°, -73.969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.348,"lon":-73.969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Blowing in the Wind ...Offshore | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore February 10, 2011 - 9:28am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What will this project do? The new offshore wind strategy lays out a path to potentially have 54 gigawatts of offshore wind capacity by 2030, enough to power more than 15 million homes with clean, renewable energy. Have you ever flown a kite at the beach? If you have, you know how breezy it can be. A few miles offshore, you'll find that the wind is even stronger and steadier. And it's like that all around the country. Along the eastern seaboard and west coast, in the Great Lakes and Gulf of Mexico, and even around Hawaii we have a massive clean energy resource waiting to

407

Chu, Salazar to Announce Major Offshore Wind Energy Initiatives |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salazar to Announce Major Offshore Wind Energy Initiatives Salazar to Announce Major Offshore Wind Energy Initiatives Chu, Salazar to Announce Major Offshore Wind Energy Initiatives February 4, 2011 - 12:00am Addthis NORFOLK,VA - On Monday, February 7, 2011 Energy Secretary Steven Chu and Secretary of the Interior Ken Salazar will announce major new initiatives to accelerate the responsible siting and development of offshore wind energy projects. WHAT: Offshore Wind Energy News Conference WHEN: Monday, February 7, 11:00 AM EST WHO: Steven Chu, Secretary of Energy Ken Salazar, Secretary of the Interior WHERE: Half Moone Center 11 Waterside Dr Norfolk, VA 23510 DIAL-IN: News media, state and local stakeholders, industry representatives and other interested parties can join a listen-only teleconference of the announcement by dialing 800-369-3311 and entering code: OFFSHORE.

408

NREL: Wind Research - Energy Analysis of Offshore Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis of Offshore Systems Energy Analysis of Offshore Systems Chart of cost data for actual and projected offshore wind projects as reported by developers. Enlarge image NREL has a long history of successful research to understand and improve the cost of wind generation technology. As a research laboratory, NREL is a neutral, third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore wind. Market Analysis NREL's extensive research on installed and proposed projects in Europe, the United States, and other emerging offshore markets enables the compilation of a database of installed and proposed project costs. These are used to report on cost trends. Recent studies include: Analysis of capital cost trends for planned and installed offshore

409

New Reports Chart Offshore Wind's Path Forward | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Chart Offshore Wind's Path Forward Reports Chart Offshore Wind's Path Forward New Reports Chart Offshore Wind's Path Forward December 12, 2012 - 2:29pm Addthis Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. Click here to view the full infographic. | Infographic by Sarah Gerrity. Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. Click here to view the full infographic. | Infographic by Sarah Gerrity. Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. Click here to view the full infographic. | Infographic by Sarah Gerrity.

410

Mustang Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mustang Island Offshore Wind Farm Mustang Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from Mustang Island TX Coordinates 27.66°, -97.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.66,"lon":-97.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment  

DOE Green Energy (OSTI)

This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

Jonkman, J.; Musial, W.

2010-12-01T23:59:59.000Z

412

Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...  

Gasoline and Diesel Fuel Update (EIA)

Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep (Percent)...

413

Gulf of Mexico Federal Offshore Percentage of Crude Oil Production...  

Gasoline and Diesel Fuel Update (EIA)

from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Crude Oil Production from Greater than 200 Meters Deep (Percent) Decade Year-0...

414

Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...  

Annual Energy Outlook 2012 (EIA)

Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Proved Reserves from Greater than 200 Meters Deep (Percent)...

415

Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...  

Gasoline and Diesel Fuel Update (EIA)

from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production from Greater than 200 Meters Deep (Percent) Decade...

416

,"Alaska--State Offshore Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Natural Gas Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

417

,"Louisiana--State Offshore Natural Gas Marketed Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2011 ,"Release Date:","10...

418

,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Natural Gas Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

419

Geotechnical analysis of offshore pipelines and steel catenary risers.  

E-Print Network (OSTI)

??As hydrocarbon developments move further offshore into deeper water, the pipelines and risers used in the transportation of oil and gas form an increasingly significant… (more)

Hodder, Matthew Steven

2009-01-01T23:59:59.000Z

420

Upheaval Buckling of Offshore Pipelines in Homogeneous and Layered Soils.  

E-Print Network (OSTI)

??Offshore oil and gas pipelines are commonly buried below the seabed to provide environmental stability and protection. Many of these pipelines are prone to upheaval… (more)

Deljoui, Porang

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Condition monitoring of offshore pipelines using vibration based methods.  

E-Print Network (OSTI)

??[Truncated abstract] Subsea pipelines are essential structural systems to transport natural oil or gas from offshore oil wells to an onshore location. Damage along a… (more)

Peng, Xue-Lin

2012-01-01T23:59:59.000Z

422

,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

423

,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

424

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2012 (EIA)

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

425

,"Louisiana State Offshore Associated-Dissolved Natural Gas,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

426

,"Mississippi (with State Offshore) Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

427

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

428

,"Louisiana--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

429

,"Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

430

,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

431

,"Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

432

,"Alabama (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

433

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

434

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

435

The outsourcing and offshoring competitive landscape and its uncertainties  

E-Print Network (OSTI)

The outsourcing and offshoring competitive landscape is rapidly and constantly evolving, presenting new challenges and opportunities for providers and customers alike. Outsourcing providers are pressured to increase the ...

Sultan, Ziad R. (Ziad Raymond)

2005-01-01T23:59:59.000Z

436

,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

437

Federal Offshore--Gulf of Mexico Natural Gas Extraction Loss...  

Annual Energy Outlook 2012 (EIA)

Pages: Extraction Loss of Natural Gas at Processing Plants (Summary) Federal Offshore Gulf of Mexico Natural Gas Plant Processing Extraction Loss of Natural Gas at...

438

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

439

,"Mississippi (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

440

,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

442

,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million...

443

Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

444

,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

445

,"Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

446

,"U.S. Federal Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

447

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

448

A Review of Metallic Systems Used in Offshore, Sour Environments  

Science Conference Proceedings (OSTI)

This work presents a survey of the research literature focused on the effect of various parameters in H2S offshore, harsh environments. The parameters to be ...

449

,"Louisiana State Offshore Dry Natural Gas Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

450

Overview of U.S. Legislation and Regulations Affecting Offshore ...  

U.S. Energy Information Administration (EIA)

exploration and production in offshore regions of the United States. It discusses the role and importance of these areas as well as the competing interests ...

451

Attitudes toward offshore oil development: A summary of current evidence  

E-Print Network (OSTI)

years, offshore exploration and production have spreadthe sea [11]. As the exploration and production continued tothe initial exploration, drilling, and production occurred

Gramling, R; Freudenburg, Wm R

2006-01-01T23:59:59.000Z

452

,"California State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million...

453

,"California--State Offshore Natural Gas Marketed Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2011 ,"Release...

454

California State Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2012 (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

455

,"Federal Offshore--California Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

456

,"California Federal Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

457

California (with State Offshore) Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

458

California--State Offshore Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

459

,"California State Offshore Dry Natural Gas Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Dry Natural Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2011...

460

,"Federal Offshore--California Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2011...

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

California Federal Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1...

462

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

463

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

464

,"California--State Offshore Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million...

465

,"California Federal Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million...

466

,"California--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

467

,"California (with State Offshore) Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

468

California (with State Offshore) Crude Oil Reserves in Nonproducing...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) California (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0...

469

Federal Offshore--California Crude Oil Reserves in Nonproducing...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

470

,"California State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

471

,"California State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

472

,"California State Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

473

,"Federal Offshore--California Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

474

,"California--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million...

475

,"California Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

476

,"California Federal Offshore Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Dry Natural Gas Proved Reserves (Billion Cubic...

477

,"California (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million...

478

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

479

California Federal Offshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

480

Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Condensate, Proved Reserves (Million Barrels) Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "deepwater offshore floating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

California State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

482

Alabama (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

483

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

484

Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

485

Alabama (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Condensate, Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

486

Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Condensate, Proved Reserves (Million Barrels) Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

487

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

488

Texas (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Condensate, Proved Reserves (Million Barrels) Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

489

Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

490

Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

491

Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Condensate, Proved Reserves (Million Barrels) Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

492

California (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

493

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Condensate, Proved Reserves (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

494

Federal Offshore--California Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

495

California--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Condensate, Proved Reserves (Million Barrels) California--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

496

Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

497

Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Condensate, Proved Reserves (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

498

California (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Condensate, Proved Reserves (Million Barrels) California (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

499

Digital Offshore Cadastre (DOC) - Pacific83 - Baseline Points...  

NLE Websites -- All DOE Office Websites (Extended Search)

Points Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Data Digital Offshore Cadastre (DOC) -...

500

Digital Offshore Cadastre (DOC) - Pacific83 - Ecological Preserve...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ecological Preserve Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Data Digital Offshore Cadastre...