National Library of Energy BETA

Sample records for deepwater offshore floating

  1. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind ...

  2. University of Maine Researching Floating Technologies for Deepwater...

    Office of Environmental Management (EM)

    Maine Researching Floating Technologies for Deepwater Offshore Wind University of Maine Researching ... To pursue commercial development of floating wind turbine technology, ...

  3. EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE’s Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and stimulate revitalization of key sectors of the economy.

  4. A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.

    SciTech Connect (OSTI)

    Bull, Diana L; Fowler, Matthew; Goupee, Andrew

    2014-08-01

    This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

  5. Deepwater Offshore Wind Technology Research Requirements (Poster)

    SciTech Connect (OSTI)

    Musial, W.

    2005-05-01

    A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

  6. EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project – Castine Harbor Test Site

    Broader source: Energy.gov [DOE]

    This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

  7. Engineering Challenges for Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

    2007-09-01

    The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

  8. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  9. Study Compares Floating-Platform Options for Offshore Vertical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines - Sandia Energy Energy Search ... compare floating platform options for each turbine in the design space. ...

  10. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Broader source: Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  11. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine

    SciTech Connect (OSTI)

    Jonkman, J. M.

    2007-12-01

    This report describes the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines.

  12. Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power

    Broader source: Energy.gov [DOE]

    Principle Power, Inc, of Seattle is using $1.4 million in funding from the Department of Energy's Office of Energy Efficiency and Renewable Energy to develop an innovative technology with the potential to generate electricity from the powerful winds and strong waves off our coasts. The company’s device, known as the WindWaveFloat, will combine their floating offshore wind turbine platform with wave energy convertors, so the system can simultaneously generate electricity from the wind and the waves.

  13. Sandia and Partners Complete Phase I of a Vertical-Axis Deep-Water Offshore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Study and Partners Complete Phase I of a Vertical-Axis Deep-Water Offshore Turbine Study - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  14. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  15. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Buhl, M. L., Jr.

    2007-06-01

    This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

  16. Sandia Energy - Sandia-Univ. of Minnesota (UMN) Floating Offshore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-sponsored offshore wind Funding Opportunity Announcement on high-resolution offshore wind turbinefarm modeling. UMN's contribution is experimentation and wind turbine...

  17. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    SciTech Connect (OSTI)

    Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.

    2013-07-01

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.

  18. Low Wind Speed Technology Phase II: Offshore Floating Wind Turbine Concepts: Fully Coupled Dynamic Response Simulations; Massachusetts Institute of Technology

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with Massachusetts Institute of Technology to study dynamic response simulations to evaluate floating platform concepts for offshore wind turbines.

  19. OCT (Offshore Technology Conference) accents deepwater action around the globe

    SciTech Connect (OSTI)

    Yost, P.; Scarborough, R.H.

    1980-05-12

    According to P. Yost (US Coast Guard) at the 12th Offshore Technology Conference (Houston 1980), the US Coast Guard's high-seas boom and skimmer equipment worked well with the strong constant currents and heavy crude involved in the Ixtoc blowout but due to a lighter crude and more variable currents, was not as successful in containing spills from the Burmah Agate tanker in the fall of 1989. Texas beaches will not remove any more oil from the Ixtoc blowout, but the long term effects of the spill remain unknown. Federal and state officials are examining options concerning the 17-19 tar mats deposited by the spill on the beaches; the only way to remove the tar mats might be by bulldozer at low tide. A Coast Guard study of tanker and freighter traffic off Galveston, Texas has been completed and recommendations, possibly involving earlier boarding by pilots of incoming vessels, will be made soon. Other papers presented at the OTC are discussed.

  20. Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

    2013-07-01

    Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

  1. Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

    2014-04-01

    Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

  2. New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

  3. NREL-Statoil Collaborate to Make the First Multi-Turbine Floating Offshore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Array a Reality - News Releases | NREL NREL-Statoil Collaborate to Make the First Multi-Turbine Floating Offshore Array a Reality August 24, 2015 A recent study performed by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping Norway-based Statoil analyze key issues related to the installation of what has the potential to be the world's first multi-turbine floating offshore array. Statoil deployed the first spar-based system called Hywind

  4. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  5. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  6. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform

    SciTech Connect (OSTI)

    Gevorgian, V.

    2012-02-01

    An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

  7. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  8. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

  9. Study Compares Floating-Platform Options for Offshore Vertical-Axis Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbines Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  10. Modal Dynamics and Stability of Large Multi-megawatt Deepwater Offshore Vertical-axis Wind Turbines: Initial Support Structure and Rotor Design Impact Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modal Dynamics and Stability of Large Multi-megawatt Deepwater Offshore Vertical-axis Wind Turbines: Initial Support Structure and Rotor Design Impact Studies Brian C. Owens ∗ and D. Todd Griffith † Sandia National Laboratories ‡ , Albuquerque, New Mexico, 87185, USA John E. Hurtado § Texas A&M University, College Station, Texas, 77843, USA The availability of offshore wind resources in coastal regions, along with a high concen- tration of load centers in these areas, makes offshore

  11. Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

    2013-11-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and analysis needs of the offshore wind community.

  12. Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D.

    2013-06-01

    The goal of this paper is to examine the appropriate length of a floating offshore wind turbine (FOWT) simulation - a fundamental question that needs to be answered to develop design requirements. To examine this issue, a loads analysis of an example FOWT was performed in FAST with varying simulation lengths. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency Code Comparison Collaborative Project and supports NREL's offshore 5-megawatt baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regards to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas industry, where running simulations of at least 3 hours in length is common practice.

  13. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  14. Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform

    SciTech Connect (OSTI)

    Matha, D.; Fischer, T.; Kuhn, M.; Jonkman, J.

    2010-02-01

    This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. Models in this code are of greater fidelity than most of the models that have been used to analyze floating turbines in the past--which have neglected important hydrodynamic and mooring system effects. The report provides a description of the development process of a TLP model, which is a modified version of a Massachusetts Institute of Technology design derived from a parametric linear frequency-domain optimization process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the International Electrotechnical Commission offshore wind turbine design standard was performed with the verified TLP model. Response statistics, extreme event tables, fatigue lifetimes, and selected time histories of design-driving extreme events are analyzed and presented. Loads for the wind turbine on the TLP are compared to those of an equivalent land-based turbine in terms of load ratios. Major instabilities for the TLP are identified and described.

  15. Development of mooring-anchor program in public domain for coupling with floater program for FOWTs (Floating Offshore Wind Turbines)

    SciTech Connect (OSTI)

    Kim, MooHyun

    2014-08-01

    This report presents the development of offshore anchor data sets which are intended to be used to develop a database that allows preliminary selection and sizing of anchors for the conceptual design of floating offshore wind turbines (FOWTs). The study is part of a project entitled “Development of Mooring-Anchor Program in Public Domain for Coupling with Floater Program for FOWTs (Floating Offshore Wind Turbines)”, under the direction of Dr. Moo-Hyun Kim at the Texas A&M University and with the sponsorship from the US Department of Energy (Contract No. DE-EE0005479, CFDA # 81.087 for DE-FOA-0000415, Topic Area 1.3: Subsurface Mooring and Anchoring Dynamics Models).

  16. Summary of Conclusions and Recommendations Drawn from the DeepCWind Scaled Floating Offshore Wind System Test Campaign: Preprint

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.; Masciola, M. D.; Molta, P.; Goupee, A. J.; Coulling, A. J.; Prowell, I.; Browning, J.

    2013-07-01

    The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems, a tension-leg platform (TLP), a spar-buoy (spar), and a semisubmersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5 MW wind turbine and was tested under a variety of wind/wave conditions. The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.

  17. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    SciTech Connect (OSTI)

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  18. Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

    2014-03-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

  19. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  20. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale inmore » a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  1. On-Site Research: Deepwater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Resources Assessing Risk and Mitigating Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with remote and challenging regions, such as the ultra-deepwater (greater than 5,000 feet) Gulf of Mexico and the offshore Arctic. Development in these areas poses unique technical and operational challenges, as well as distinct environmental and societal concerns. At present, ultra-deepwater resources

  2. Computation of Wave Loads under Multidirectional Sea States for Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Duarte, T.; Gueydon, S.; Jonkman, J.; Sarmento, A.

    2014-03-01

    This paper focuses on the analysis of a floating wind turbine under multidirectional wave loading. Special attention is given to the different methods used to synthesize the multidirectional sea state. This analysis includes the double-sum and single-sum methods, as well as an equal-energy discretization of the directional spectrum. These three methods are compared in detail, including the ergodicity of the solution obtained. From the analysis, the equal-energy method proved to be the most computationally efficient while still retaining the ergodicity of the solution. This method was chosen to be implemented in the numerical code FAST. Preliminary results on the influence of these wave loads on a floating wind turbine showed significant additional roll and sway motion of the platform.

  3. WindWaveFloat

    SciTech Connect (OSTI)

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  4. Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Ramachandran, G. K. V.; Robertson, A.; Jonkman, J. M.; Masciola, M. D.

    2013-07-01

    This paper examines the consistency between response amplitude operators (RAOs) computed from WAMIT, a linear frequency-domain tool, to RAOs derived from time-domain computations based on white-noise wave excitation using FAST, a nonlinear aero-hydro-servo-elastic tool. The RAO comparison is first made for a rigid floating wind turbine without wind excitation. The investigation is further extended to examine how these RAOs change for a flexible and operational wind turbine. The RAOs are computed for below-rated, rated, and above-rated wind conditions. The method is applied to a floating wind system composed of the OC3-Hywind spar buoy and NREL 5-MW wind turbine. The responses are compared between FAST and WAMIT to verify the FAST model and to understand the influence of structural flexibility, aerodynamic damping, control actions, and waves on the system responses. The results show that based on the RAO computation procedure implemented, the WAMIT- and FAST-computed RAOs are similar (as expected) for a rigid turbine subjected to waves only. However, WAMIT is unable to model the excitation from a flexible turbine. Further, the presence of aerodynamic damping decreased the platform surge and pitch responses, as computed by both WAMIT and FAST when wind was included. Additionally, the influence of gyroscopic excitation increased the yaw response, which was captured by both WAMIT and FAST.

  5. S. 403: A Bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, February 18, 1993

    SciTech Connect (OSTI)

    1993-12-31

    The report S.403 is a bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. The proposed legislative text is included.

  6. WindFloat Feasibility Study Support. Cooperative Research and Development Final Report, CRADA Number CRD-11-419

    SciTech Connect (OSTI)

    Sirnivas, Senu

    2015-05-07

    This shared resource CRADA defines research collaborations between the National Renewable Energy Laboratory and Principle Power, Inc. and its subsidiaries (“Principle Power”). Under the terms and conditions described in this CRADA agreement, NREL and Principle Power will collaborate on the DEMOWFLOAT project, a full-scale 2-MW demonstration project of a novel floating support structure for large offshore wind turbines, called WindFloat. The purpose of the project is to demonstrate the longterm field performance of the WindFloat design, thus enabling the future commercialized deployment of floating deepwater offshore wind power plants. NREL is the leading U.S. Department of Energy (DOE) laboratory for the development and advancement of renewable energy and has a strong interest in offshore wind and the development of deepwater offshore wind systems. NREL will provide expertise and resources to the DEMOWFLOAT project in assessing the environmental impacts, independent technical performance validation, and engineering analysis. Principle Power is a Seattle, Washington-based renewable energy company that owns all the intellectual property associated with the WindFloat. In return for NREL’s support of the DEMOWFLOAT project, Principle Power will provide NREL with valuable test data from the project that will be used to validate the numerical tools developed by NREL for analyzing offshore wind turbines. In addition, NREL will gain experience and knowledge in offshore wind designs and testing methods through this collaboration. 2 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. NREL and Principle Power will work together to advance floating offshore wind technology, and demonstrate its viability for supplying the world with a new clean energy source.

  7. Floating Windfarms Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Place: Houston, Texas Zip: 77060 Sector: Wind energy Product: Texas-based offshore wind power developer that uses floating and non-floating vertical axis wind...

  8. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

    2011-10-01

    To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

  9. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009

    SciTech Connect (OSTI)

    Matha, D.

    2010-02-01

    This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The report also provides a description of the development process of the TLP model. The model has been verified via comparisons to frequency-domain calculations. Important differences have been identified between the frequency-domain and time-domain simulations, and have generated implications for the conceptual design process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the IEC 61400-3 offshore wind turbine design standard was performed with the verified TLP model. This report compares the loads for the wind turbine on the TLP to those of an equivalent land-based turbine. Major instabilities for the TLP are identified and described.

  10. EA-1992: Funding for Principle Power, Inc., for the WindFloat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration ...

  11. State of the Art in Floating Wind Turbine Design Tools

    SciTech Connect (OSTI)

    Cordle, A.; Jonkman, J.

    2011-10-01

    This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

  12. Deepwater Horizon Situation Report #5

    SciTech Connect (OSTI)

    2010-06-10

    At approximately 11:00 pm EDT April 20, 2010 an explosion occurred aboard the Deepwater Horizon mobile offshore drilling unit (MODU) located 52 miles Southeast of Venice, LA and 130 miles southeast of New Orleans, LA. The MODU was drilling an exploratory well and was not producing oil at the time of the incident. The Deepwater Horizon MODU sank 1,500 feet northwest of the well site. Detailed information on response and recovery operations can be found at: http://www.deepwaterhorizonresponse.com/go/site/2931/

  13. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Broader source: Energy.gov (indexed) [DOE]

    Two engineers working in the nacelle of a Siemens offshore wind turbine. To build the ... the economic impacts associated with floating offshore wind technology, which is ...

  14. Stabilized floating platforms

    DOE Patents [OSTI]

    Thomas, David G.

    1976-01-01

    The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

  15. EA-1792: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine

  16. EA-1792: DOE Notice of Availability of the Environmental Assessment and Finding of No Significant Impact

    Office of Energy Efficiency and Renewable Energy (EERE)

    University of Maine's Deepwater Offshore Floating WInd Turbine Testing and Demonstration Project, Gulf of Maine

  17. EA-1792: Draft Environmental Assessment

    Broader source: Energy.gov [DOE]

    University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine

  18. Comparison of Second-Order Loads on a Semisubmersible Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Gueydon, S.; Duarte, T.; Jonkman, J.; Bayati, I.; Sarmento, A.

    2014-03-01

    As offshore wind projects move to deeper waters, floating platforms become the most feasible solution for supporting the turbines. The oil and gas industry has gained experience with floating platforms that can be applied to offshore wind projects. This paper focuses on the analysis of second-order wave loading on semisubmersible platforms. Semisubmersibles, which are being chosen for different floating offshore wind concepts, are particularly prone to slow-drift motions. The slack catenary moorings usually result in large natural periods for surge and sway motions (more than 100 s), which are in the range of the second-order difference-frequency excitation force. Modeling these complex structures requires coupled design codes. Codes have been developed that include turbine aerodynamics, hydrodynamic forces on the platform, restoring forces from the mooring lines, flexibility of the turbine, and the influence of the turbine control system. In this paper two different codes are employed: FAST, which was developed by the National Renewable Energy Laboratory, and aNySIM, which was developed by the Maritime Research Institute Netherlands. The hydrodynamic loads are based on potential-flow theory, up to the second order. Hydrodynamic coefficients for wave excitation, radiation, and hydrostatic forces are obtained with two different panel codes, WAMIT (developed by the Massachusetts Institute of Technology) and DIFFRAC (developed by MARIN). The semisubmersible platform, developed for the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation project is used as a reference platform. Irregular waves are used to compare the behavior of this platform under slow-drift excitation loads. The results from this paper highlight the effects of these loads on semisubmersible-type platforms, which represent a promising solution for the commercial development of the offshore deepwater wind resource.

  19. Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2011-03-01

    Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

  20. Ultra-Deepwater Production Systems

    SciTech Connect (OSTI)

    K. L. Smith; M. E. Leveque

    2003-09-30

    This report includes technical progress made during the period October, 2002 through September, 2003. At the end of the second technical progress report, the ConocoPhillips opportunities to apply subsea processing in the Gulf of Mexico had been exhausted, and an alternative site was identified in Norway. This was a non-ConocoPhillips operated field, and the subsea processing was proposed as a phased development approach with 2-phase separation at the field, and then gas and liquids exported via pipeline to remote platform locations for processing. Although the unrisked economics were quite favorable, the risked economic evaluation compelled the operator to develop the field with the more conventional and proven Floating Production, Storage and Offloading (FPSO) option. Work on the subsea processing was suspended at this time. Discussions with DOE regarding two other step-change deepwater technologies ensued. One was an effort to develop a light-weight, high pressure composite production riser. A field demonstration of the design would then be performed by deploying a limited number of composite joints in a Gulf of Mexico deepwater development. The other was to begin the process of taking drilling with casing technology to the deepwater. This is called, ''close-tolerance liner drilling''. It was agreed that both technologies should be pursued, and the work began. During this reporting period, the initial production riser design had been completed and preliminary test sample components were being fabricated. Regarding the liner drilling, the sub-contractors were selected, the design basis was agreed and designs progressed towards meeting a projected first quarter, 2004 onshore test program.

  1. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and Constructing Floating Production Systems API RP 2GEOISO ... Qualification for Steel Plates for Offshore Structures API RP 95J Gulf of Mexico Jack-up Operations for ...

  2. Improving Design Methods for Fixed-Foundation Offshore Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University, MMI Engineering, and DOE's National ... Water Depth Depth Range Foundation Class % of U.S. Offshore ... jacket structures 29% Deep water > 60 m Floating ...

  3. NREL: Wind Research - NREL Supports Innovative Offshore Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects NREL Supports Innovative Offshore Wind Energy Projects Demonstration Projects Eligible for up to $46.7M Additional Funding An offshore wind turbine floating off the coast of Portugal, with no land in sight. WindFloat floating offshore foundation developed by Principle Power with a Vestas V-80 2-MW offshore wind turbine. Photo by Senu Sirnivas, NREL 27606 July 29, 2014 In December 2012, the U.S. Department of Energy (DOE) announced that it would fund seven offshore wind demonstration

  4. An Update on the National Offshore Wind Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Offshore Wind Strategy An Update on the National Offshore Wind Strategy December 17, 2012 - 11:27am Addthis Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating

  5. The November WINDExchange Webinar: Offshore Wind Market Update

    Broader source: Energy.gov [DOE]

    Aaron Smith, an energy analyst at the National Renewable Energy Laboratory, will present an overview and update of the U.S. offshore wind market. Stacy Tingley and Bryan Wilson of Deepwater Wind...

  6. Deepwater_Response.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DeepwaterResponse.pdf DeepwaterResponse.pdf PDF icon DeepwaterResponse.pdf More Documents & Publications UDAC Meeting - September 2012 UDAC Meeting - January 2012...

  7. EA-1792-S1: Draft Supplemental Environmental Assessment

    Broader source: Energy.gov [DOE]

    University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site in Hancock County, Maine

  8. EA-1792-S1: Final Supplemental Environmental Assessment

    Broader source: Energy.gov [DOE]

    University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site in Hancock County, Maine

  9. EA-1792: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    University of Maine's DeepWater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine

  10. EA-1792: DOE Notice of Availability of the Draft Environmental Assessment

    Broader source: Energy.gov [DOE]

    University of Maine’s Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine

  11. EA-1792-S1: DOE Notice of Availability of the Draft Supplemental Environmental Assessment

    Broader source: Energy.gov [DOE]

    University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site in Hancock County, Maine

  12. EA-1792-S1: Supplement Analysis

    Broader source: Energy.gov [DOE]

    University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site in Hancock County, Maine

  13. Offshore Wind Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  14. International Collaboration on Offshore Wind Energy Under IEA Annex XXIII

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Lemming, J.

    2005-11-01

    This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

  15. Subsea valve actuator for ultra deepwater

    SciTech Connect (OSTI)

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  16. Definition of the Semisubmersible Floating System for Phase II of OC4

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Masciola, M.; Song, H.; Goupee, A.; Coulling, A.; Luan, C.

    2014-09-01

    Phase II of the Offshore Code Comparison Collaboration Continuation (OC4) project involved modeling of a semisubmersible floating offshore wind system as shown below. This report documents the specifications of the floating system, which were needed by the OC4 participants for building aero-hydro-servo-elastic models.

  17. Definition of the Floating System for Phase IV of OC3

    SciTech Connect (OSTI)

    Jonkman, J.

    2010-05-01

    Phase IV of the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3) involves the modeling of an offshore floating wind turbine. This report documents the specifications of the floating system, which are needed by the OC3 participants for building aero-hydro-servo-elastic models.

  18. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data acquisition system integrated for offshore testing Trained crew of offshore certified test engineers and technicians Colorado- and Boston-based laboratory test facilities for large blade and multi-megawatt drivetrain testing A2LA accredited certification testing to IEC standards Third-party design verification of innovative floating and fixed-bottom wind turbines

  19. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stehly, Walt Musial Floating Substructure Sensitivities Global Market Trends * The global offshore wind industry is set to reach a deployment record with 4,000 megawatts (MW)...

  20. Sandia and Partners Complete Phase I of a Vertical-Axis Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep-Water Offshore Turbine Study - Sandia Energy ... Energy Conversion Efficiency Solar Energy Wind Energy Water ... design codes for floating offshore VAWT systems, ...

  1. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  2. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  3. University of Maine Researching Floating Technologies for Deepwater

    Energy Savers [EERE]

    From left to right: Shannan Hoyos, Ed Greene, Matthew Staley, Patrick Wade, Nick Janssen, Chic O'Dell, Pryce Brown, Bruce Lee, Wyatt Rehder, Dominic Dionne. Photo from the University of Alaska, Fairbanks. From left to right: Shannan Hoyos, Ed Greene, Matthew Staley, Patrick Wade, Nick Janssen, Chic O'Dell, Pryce Brown, Bruce Lee, Wyatt Rehder, Dominic Dionne. Photo from the University of Alaska, Fairbanks. Project Description For the inaugural U.S. Department of Energy Collegiate Wind

  4. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Bir, G.; Jonkman, J.

    2007-08-01

    This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

  5. Floating Point Control Library

    Energy Science and Technology Software Center (OSTI)

    2007-08-02

    Floating Point Control is a Library that allows for the manipulation of floating point unit exception masking funtions control exceptions in both the Streaming "Single Instruction, Multiple Data" Extension 2 (SSE2) unit and the floating point unit simultaneously. FPC also provides macros to set floating point rounding and precision control.

  6. Floating production unit to work off Brazil

    SciTech Connect (OSTI)

    Not Available

    1992-10-19

    This paper reports that Petroleo Brasileiro SA expects by early November to deploy its Petrobras XXIV floating production unit (FPU) in about 900 ft of water in Albacora field off Brazil. The FPU was scheduled to depart Galveston, Tex., this month, following completion of modifications and upgrades under a turnkey contract with Chiles Offshore International Inc. Chiles began modifying Petrobras XXIV about 1 year ago as part of a deal closed in October 1991 in which Chiles Offshore Corp. sold the vessel, then known as Intrepid, to Brasoil, the international subsidiary of Petrobras.

  7. Influence of Control on the Pitch Damping of a Floating Wind Turbine

    SciTech Connect (OSTI)

    Jonkman, J. M.

    2008-03-01

    This paper presents the influence of conventional wind turbine blade-pitch control actions on the pitch damping of a wind turbine supported by an offshore floating barge with catenary moorings.

  8. Deepwater seismic acquisition technology

    SciTech Connect (OSTI)

    Caldwell, J.

    1996-09-01

    Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are some new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.

  9. NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

  10. Offshore Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Twitter Google + Vimeo GovDelivery SlideShare Offshore ...

  11. Proceedings of the 22nd annual offshore technology conference

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This book contains the proceedings of the 22nd annual offshore technology conference, volume 4. Topics covered include: axial load capacity of steel piles in sand; hydrodynamic aspects of flexible riser; a deepwater test of subsea wirelining techniques; and soil reaction to axially loaded piles.

  12. New subsea wiper plugs hold down deepwater cementing costs

    SciTech Connect (OSTI)

    Stringer, R.; Sonnefeld, A.; Minge, J.

    1997-02-01

    British Petroleum Exploration (BPX) achieved top-quality cementing performance at significantly lower costs in a deepwater area 45 miles offshore Louisiana by using a new method of launching subsea wiper plugs. The method is based on a newly designed subsea casing wiper plug release system, which uses up to three solid wiper plugs loaded in a basket and released by individual darts launched from a surface tool. This design has eliminated the problems sometimes associated with the latching, unlatching and sealing of conventional subsea casing wiper plugs.

  13. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  14. Major deepwater pipelay vessel starts work in North Sea

    SciTech Connect (OSTI)

    Heerema, E.P.

    1998-05-04

    Industry`s deepwater pipelaying capability has received a boost this year with the entry into the world`s fleet of Solitaire, a dynamically positioned pipelay vessel of about 350 m including stinger. The converted bulk carrier, formerly the Trentwood, will arrive on station in the North Sea and begin laying pipe this month on Statoil`s Europipe II project, a 600-km, 42-in. OD gas pipeline from Norway to Germany. Next year, the vessel will install pipe for the Exxon U.S.A.`s Gulf of Mexico South Diana development (East Breaks Block 945) in a water depth of 1,643 m and for Mobil Oil Canada as part of the Sable Island Offshore and Energy Project offshore Nova Scotia. Using the S-lay mode, Solitaire is particularly well-suited for laying large lines economically, including the deepwater projects anticipated for the US Gulf of Mexico. Table 1 presents Solitaire`s technical specifications. The design, construction, pipelaying, and justification for building vessels such as the Solitaire are discussed.

  15. 28. annual offshore technology conference: Proceedings. Volume 4: Field drilling and development systems

    SciTech Connect (OSTI)

    1996-12-31

    The 88 papers in this volume cover the following topics: Small operator implementation of subsea technology; Control system umbilicals, components and ROV interfacing; DeepStar--Results and plans; Deepwater subsea manifold systems; Drilling technology; Limit state design criteria for pipelines; Liuhua project; Mobile offshore drilling units; Offshore coiled tubing operations; Oman-India gas pipeline; Paraffin and hydrate control; Pompano--A deepwater subsea development; Severe operating conditions; Subsea production systems; and Well completions technology. Papers have been processed separately for inclusion on the data base.

  16. A semisubmersible type drilling, early production and testing system with 100,000 bbl storage for deepwater

    SciTech Connect (OSTI)

    Nakamura, Masahiro; Yokokura, Kozo; Nakamura, Arata

    1996-12-31

    Deepwater petroleum development is increasing throughout the world. Complete evaluation of deepwater oil fields prior to development is extremely important, but difficult due to harsh conditions and deepwater. Extended well testing and early production of a field will allow complete evaluation, reducing risk prior to long term commitments. Conceptual design and studies for a semisubmersible type deepwater drilling, early production and testing system with 100,000 bbl storage (DEPTS) that will allow this have been completed. Needs analysis were performed and several potential concepts compared. Sizing and costing of the semisubmersible unit, mooring, and riser systems as well as selection of the drilling, production, and storage units were carried out. The unique aspect of the system is that the combination of drilling, production facilities, and storage on the same vessel will allow the system to be applied across the early phases of offshore oil field development from drilling to early production. With storage integrated into the vessel, oil production can continue in the most extreme conditions. The system`s intended operational area will be the deepwater fields of Asia and Oceania. Studies have been carried out showing the technical and economic feasibility of the system in deepwater up to 2,000 m.

  17. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  18. Micromechanisms with floating pivot

    DOE Patents [OSTI]

    Garcia, Ernest J.

    2001-03-06

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

  19. ultra_deepwater | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Policy Act of 2005 The Energy Policy Act of 2005 charges NETL with review and ... ultra-deepwater and unconventional natural gas and other petroleum resource exploration ...

  20. Ultra-Deepwater Production Systems

    SciTech Connect (OSTI)

    Ken L. Smith; Marc E. Leveque

    2005-05-31

    The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

  1. Ultra-Deepwater Advisory Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Deepwater Advisory Committee Ultra-deepwater architecture and technology. | Graphic ... gas and other petroleum resources, and review and comment on the program's annual plan. ...

  2. Deepwater Wind | Open Energy Information

    Open Energy Info (EERE)

    Street Suite 402 Place: Hoboken, New Jersey Zip: 07030 Region: Northeast - NY NJ CT PA Area Sector: Wind energy Product: offshore wind Phone Number: 201.850.1717 Website:...

  3. Factors affecting ductile fracture in offshore gas pipelines

    SciTech Connect (OSTI)

    Maxey, W.A.

    1982-01-01

    The results are presented of experimental research conducted during the past 3 year with the objective of understanding ductile fracture propagation in the offshore environment. Experiments have been conducted to examine decompression phenomenon inside the carrier pipe when the exhausting gas is in a simulated deep-water environment. Ductile fracture experiments of 12-inch pipe in a simulated deep offshore environment also have been examined. The most current research is designed to examine the pressure waves in the water surrounding the pipeline that are caused by the sudden release of gas from a rupture and the resulting lower differential pressure across the pipe wall thickness. The research to date suggests that long running ductile fracture propagation in an offshore pipline is less probable than in an onshore pipeline. Future research is planned with a full-scale experiment in a water-filled quarry and in the real offshore environment.

  4. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect (OSTI)

    Yost, K.; Lopez, R.; Mok, J.

    1998-03-09

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  5. Quantitative Comparison of the Responses of Three Floating Platforms

    SciTech Connect (OSTI)

    Jonkman, J.; Matha, D.

    2010-03-01

    This report presents a comprehensive dynamic-response analysis of three offshore floating wind turbine concepts. Models were composed of one 5-MW turbine supported on land and three 5-MW turbines located offshore on a tension leg platform, a spar buoy, and a barge. A loads and stability analysis adhering to the procedures of international design standards was performed for each model using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The concepts are compared based on the calculated ultimate loads, fatigue loads, and instabilities. The results of this analysis will help resolve the fundamental design trade-offs between the floating-system concepts.

  6. EERE Success Story-United States Launches First Grid-Connected Offshore

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbine | Department of Energy United States Launches First Grid-Connected Offshore Wind Turbine EERE Success Story-United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an EERE investment, the University of Maine deployed the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. The university and its project partners conducted extensive design, engineering, and testing of

  7. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  8. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. | Department of Energy Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating

  9. Ultra-Deepwater Production Systems

    SciTech Connect (OSTI)

    K. L. Smith; M. E. Leveque

    2004-09-30

    This report includes technical progress made during the period October, 2003 through September, 2004. At the end of the last technical progress report, the subsea processing aspects of the work program had been dropped due to the lack of commercial opportunity within ConocoPhillips, and the program had been redirected towards two other promising deepwater technologies: the development and demonstration of a composite production riser, and the development and testing of a close-tolerance liner drilling system. This report focuses on these two technologies.

  10. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional anemometer cup technology. • During storms, mean Turbulent Kinetic Energy (TKE) increases with height above water; • Sufficient wind resources exist over Lake Michigan to generate 7,684 kWh of power using a 850 kW rated turbine at elevations between 90 - 125 meters, a height lower than originally anticipated for optimum power generation; • Based on initial assessments, wind characteristics are not significantly different at distant (thirty-two mile) offshore locations as compared to near-shore (six mile) locations; • Significant cost savings can be achieved in generation wind energy at lower turbine heights and locating closer to shore. • Siting must be sufficiently distant from shore to minimize visual impact and to address public sentiment about offshore wind development; • Project results show that birds and bats do frequent the middle of Lake Michigan, bats more so than birds; • Based on the wind resource assessment and depths of Lake Michigan encountered during the project, future turbine placement will most likely need to incorporate floating or anchored technology; • The most appropriate siting of offshore wind energy locations will enable direct routing of transmission cables to existing generating and transmission facilities located along the Michigan shoreline; • Wind turbine noise propagation from a wind energy generating facility at a five mile offshore location will not be audible at the shoreline over normal background sound levels.

  11. AWEA Offshore WINDPOWER 2016

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association (AWEA) Offshore WINDPOWER 2016 Conference & Exhibition program gathers top developers and experts in offshore wind energy to define the next steps in...

  12. Compound floating pivot micromechanisms

    DOE Patents [OSTI]

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  13. Industry decries sharp decline in U. S. offshore activity

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    Roadblocks to offshore activity in the U.S. drew much of the spotlight at the 24th Offshore Technology Conference last week in Houston. Among OTC highlights included in this paper are: Two panels reviewed how federal leasing moratoriums and regulatory restrictions are reining U.S. offshore development. Conoco Inc.'s manager of exploration and development in Russia detailed the allure of giant and supergiant fields in the Commonwealth of Independent States and reviewed the status of the company's efforts to negotiate E and D deals with Russian partners. Minerals Management Service officials reviewed environmental challenges facing operators on the U.S. Outer Continental Shelf and new MMS inspection strategies in the Gulf of Mexico. The 1992 OTC Distinguished Achievement Award for companies went to Brazil's Petroleo Brasileiro SA for deepwater development records set with the 3 Marlim well in the Campos basin off Brazil.

  14. Ultra-Deepwater Advisory Committee Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Deepwater Advisory Committee » Ultra-Deepwater Advisory Committee Members Ultra-Deepwater Advisory Committee Members 2013-2014 Ultra-Deepwater Advisory Committee Members Dr. George A. Cooper* Professor University of California, Berkeley Dr. Quenton R. Dokken President/CEO Gulf of Mexico Foundation Dr. Hartley H. Downs Technology Fellow Baker Hughes Incorporated Dr. Douglas J. Foster Senior Scientist ConocoPhillips Mr. James D. Litton* President and CEO Litton Consulting Group, Inc. Mr. D.

  15. Floating Rate Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Floating Rate Agreement Floating Rate Agreement PDF icon Floating Rate Agreement More Documents & Publications Fixed Rate Agreement Energy Efficiency Loan Program Agreement Template Energy Efficiency Loan Program Agreement-Template

  16. A National Offshore Wind Strategy: Creating an Offshore Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry in the United States | Department of Energy A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. PDF icon A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. More Documents & Publications

  17. Floating Silicon Method

    SciTech Connect (OSTI)

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  18. NREL: Wind Research - Offshore Design Tools and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Tools and Methods Graphic of a modular depiction of the FAST tool, which includes aerodynamics, hydrodynamics, control and electrical system dynamics, and structural dynamics modules. NREL's CAE Tool, FAST, and its Sub-Modules Illustration of wind turbines in various environments including land-based, shallow water (0-30m), transitional depth (30-60m), and deep water floating (greater than 60m). FAST has the capability of modeling a wide range of offshore wind system configurations

  19. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  20. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  1. Floating Production Systems | OpenEI Community

    Open Energy Info (EERE)

    Floating Production Systems Home There are currently no posts in this category. Syndicate content...

  2. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  3. Electrically floating, near vertical incidence, skywave antenna

    DOE Patents [OSTI]

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  4. Verification of New Floating Capabilities in FAST v8: Preprint

    SciTech Connect (OSTI)

    Wendt, F.; Robertson, A.; Jonkman, J.; Hayman, G.

    2015-01-01

    In the latest release of NREL's wind turbine aero-hydro-servo-elastic simulation software, FAST v8, several new capabilities and major changes were introduced. FAST has been significantly altered to improve the simulator's modularity and to include new functionalities in the form of modules in the FAST v8 framework. This paper is focused on the improvements made for the modeling of floating offshore wind systems. The most significant change was to the hydrodynamic load calculation algorithms, which are embedded in the HydroDyn module. HydroDyn is now capable of applying strip-theory (via an extension of Morison's equation) at the member level for user-defined geometries. Users may now use a strip-theory-only approach for applying the hydrodynamic loads, as well as the previous potential-flow (radiation/diffraction) approach and a hybrid combination of both methods (radiation/diffraction and the drag component of Morison's equation). Second-order hydrodynamic implementations in both the wave kinematics used by the strip-theory solution and the wave-excitation loads in the potential-flow solution were also added to HydroDyn. The new floating capabilities were verified through a direct code-to-code comparison. We conducted a series of simulations of the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation (OC4) floating semisubmersible model and compared the wind turbine response predicted by FAST v8, the corresponding FAST v7 results, and results from other participants in the OC4 project. We found good agreement between FAST v7 and FAST v8 when using the linear radiation/diffraction modeling approach. The strip-theory-based approach inherently differs from the radiation/diffraction approach used in FAST v7 and we identified and characterized the differences. Enabling the second-order effects significantly improved the agreement between FAST v8 and the other OC4 participants.

  5. Maryland Offshore Wind Annual Meeting

    Broader source: Energy.gov [DOE]

    This event will provide updates on regional offshore wind projects and will help attendees understand Maryland's offshore wind project and the team members required. Participants will also learn...

  6. Wind Offshore Port Readiness

    Broader source: Energy.gov [DOE]

    This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations.

  7. DOE Announces New Research to Advance Safe and Responsible Deepwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drilling Technologies | Department of Energy Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies May 21, 2012 - 1:00pm Addthis Washington, DC - Thirteen projects aimed at reducing the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE) for further

  8. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Program | Department of Energy Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a public/private partnership valued at $400 million over eight years that is designed to benefit consumers by developing

  9. ORISE: White paper analyzes Deepwater Horizon event for improving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incidents: Common Challenges and Solutions White paper analyzes Deepwater Horizon response, identifies approaches for radiological or nuclear emergency planning The 2010...

  10. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-deepwater architecture and technology (35% of funds). Unconventional natural gas and ... development and implementation, and review and comment on the program's annual plan. ...

  11. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    SciTech Connect (OSTI)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  12. Offshore Development and Production

    Reports and Publications (EIA)

    1999-01-01

    Natural gas production in the federal offshore has increased substantially in recent years, gaining more than 400 billion cubic feet between 1993 and 1997 to a level of 5.14 trillion cubic feet.

  13. Articles about Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations.

    Mon, 07 Dec 2015 18:52:00 +0000...

  14. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    SciTech Connect (OSTI)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

  15. Apex Offshore Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    1 Jump to: navigation, search Name Apex Offshore Phase 1 Facility Apex Offshore Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind...

  16. Apex Offshore Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Apex Offshore Phase 2 Facility Apex Offshore Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind...

  17. EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial ... Tool (NuMAD v2.0) for Wind Turbine Blades: User's Guide (7143 ...

  18. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Articles about Offshore Wind RSS Below are stories about offshore wind featured by the U.S. Department of Energy (DOE) Wind Program. December 7, 2015 Articles about Offshore Wind Wind Measurement Buoy Advances Offshore Wind Energy A next-generation buoy will provide unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations. October 27, 2015 Articles about Offshore Wind Innovative Study Helps Offshore Wind Developers

  19. Energy from Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  20. GAOH Offshore | Open Energy Information

    Open Energy Info (EERE)

    GAOH Offshore Jump to: navigation, search Name: GAOH Offshore Place: St Peter Port, United Kingdom Zip: GY1 4EE Sector: Wind energy Product: Intends to become the preferred...

  1. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

  2. Moray Firth Deepwater Wind Farm Trial | Open Energy Information

    Open Energy Info (EERE)

    Firth Deepwater Wind Farm Trial Place: United Kingdom Sector: Wind energy Product: A joint venture to trial deep water wind turbines on the Beatrice Oil Field in the Moray...

  3. First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine | Department of Energy First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - 12:33pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a floating platform in the ocean. Castine, Maine - On May 31, 2013, the University of Maine's

  4. Research Portfolio Report Ultra-Deepwater: Drilling and Completion Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultra-Deepwater: Drilling and Completion Operations Cover images: Photograph of the North Star Imaging M-5000 industrial CT scanner (left) and 3-D renderings of a (10.4 mm) 3 digital subsection of 10% foam quality cement sample (right). Research Portfolio Report Ultra-Deepwater: Drilling and Completion Operations DOE/NETL-2015/1697 Prepared by: Kathy Bruner, Jennifer Funk, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer

  5. Secretaries Chu and Salazar to Convene Meeting on Strengthening Deepwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blowout Containment Capabilities | Department of Energy to Convene Meeting on Strengthening Deepwater Blowout Containment Capabilities Secretaries Chu and Salazar to Convene Meeting on Strengthening Deepwater Blowout Containment Capabilities September 17, 2010 - 12:00am Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu and Secretary of the Interior Ken Salazar will convene top U.S. government scientists and key industry and stakeholder leaders to discuss how to strengthen

  6. Plasma Screen Floating Mount - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The floating mount also provides added protection to equipment investment during transit or for shipping. SRNL integrated this technology for use in a mobile laboratory van....

  7. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  8. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  9. Rhode Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rhode Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  10. Mustang Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  11. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore ...

  12. Shell appraising deepwater discovery off Philippines

    SciTech Connect (OSTI)

    Scherer, M. ); Lambers, E.J.T.; Steffens, G.S. )

    1993-05-10

    Shell International Petroleum Co. Ltd. negotiated a farmout in 1990 from Occidental International Exploration and Production Co. for Block SC-38 in the South China Sea off Palawan, Philippines, following Oxy's discovery of gas in 1989 in a Miocene Nido limestone buildup. Under the terms of the farmout agreement, Shell became operator with a 50% share. Following the disappointing well North Iloc 1, Shell was successful in finding oil and gas in Malampaya 1. Water 700-1,000 m deep, remoteness, and adverse weather conditions have imposed major challenges for offshore operations. The paper describes the tectonic setting; the Nido limestone play; the Malampaya discovery; and Shell's appraisal studies.

  13. Three years' experience with the offshore self-boring pressuremeter ''PAM''

    SciTech Connect (OSTI)

    Brucy, F.; Fay, J.B.; LeTirant, P.

    1984-05-01

    The Offshore Self-Boring Pressuremeter (PAM) has been developed by the Institut Francais du Petrole for geotechnical investigations in water depths up to 1000 meters. The PAM was first presented at the 1981 OTC. It mainly consists of a seabed frame from which a self-boring pressuremeter probe is operated. To date, the PAM has totaled nearly 450 meters of borehole depth and more than 200 pressuremeter tests. Investigations have been performed in a wide variety of soil types. The latest deepwater campaign was carried out successfully in the Mediterranean at a water depth of 625 meters. Extensive geotechnical information is obtained from a PAM boring operation. The use of the pressuremeter method for offshore investigations and foundation designing should open up very interesting prospects.

  14. 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...

    Office of Environmental Management (EM)

    Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 PDF icon 2007 Annual Plan for the Ultra-Deepwater ...

  15. CT Offshore | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: CT Offshore Place: Otterup, Denmark Zip: 5450 Sector: Wind energy Product: Denmark-based consultancy which provides assistance for project...

  16. offshore wind research and development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offshore wind research and development - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  17. WindWaveFloat Final Report

    SciTech Connect (OSTI)

    Alla Weinstein, Dominique Roddier, Kevin Banister

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  18. Importance of Second-Order Difference-Frequency Wave-Diffraction Forces in the Validation of a Fast Semi-Submersible Floating Wind Turbine Model: Preprint

    SciTech Connect (OSTI)

    Couling, A. J.; Goupee, A. J.; Robertson, A. N.; Jonkman, J. M.

    2013-06-01

    To better access the abundant offshore wind resource, efforts across the world are being undertaken to develop and improve floating offshore wind turbine technologies. A critical aspect of creating reliable, mature floating wind turbine technology is the development, verification, and validation of efficient computer-aided-engineering (CAE) tools that can be relied upon in the design process. The National Renewable Energy Laboratory (NREL) has created a comprehensive, coupled analysis CAE tool for floating wind turbines, FAST, which has been verified and utilized in numerous floating wind turbine studies. Several efforts are currently underway that leverage the extensive 1/50th-scale DeepCwind wind/wave basin model test dataset, obtained at the Maritime Research Institute Netherlands (MARIN) in 2011, to validate the floating platform functionality of FAST to complement its already validated aerodynamic and structural simulation capabilities. In this paper, further work is undertaken to continue this validation. In particular, the ability of FAST to replicate global response behaviors associated with dynamic wind forces, second-order difference-frequency wave-diffraction forces and their interaction with one another are investigated.

  19. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Articles about Offshore Wind RSS Below are stories about offshore wind featured by the U.S. Department of Energy (DOE) Wind Program. December 7, 2015 Articles about...

  20. Offshore LNG (liquefied natural gas) production and storage systems

    SciTech Connect (OSTI)

    Barden, J.K.

    1982-01-01

    A barge, outfitted with gas liquefaction processing equipment and liquefied natural gas (LNG) storage tanks, is suggested as a possible way to exploit remote offshore gas production. A similar study with a barge-mounted methanol plant was conducted several years ago, also using remote offshore feed gas. This barge-mounted, LNG system is bow-moored to a single point mooring through which feed gas is piped via seafloor pipeline from a nearby gas production facility. The barge is arranged with personnel accommodation forward, LNG storage midships, and gas liquefaction processing equipment aft. A flare boom is cantilevered off the barge's stern. The basis of design stipulates feed gas properties, area environmental data, gas liquefaction process, LNG storage tank type plus other parameters desirable in a floating process plant. The latter were concerned with safety, low maintenance characteristics, and the fact that the process barge also would serve as an offshore port where LNG export tankers would moor periodically. A brief summary of results for a barge-mounted methanol plant from an earlier study is followed then by a comparison of LNG and methanol alternatives.

  1. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in...

  2. Norfolk Offshore Wind NOW | Open Energy Information

    Open Energy Info (EERE)

    Norfolk Offshore Wind NOW Jump to: navigation, search Name: Norfolk Offshore Wind (NOW) Place: United Kingdom Sector: Wind energy Product: Formed to develop the 100MW Cromer...

  3. Offshore Wind Accelerator | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy....

  4. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in ...

  5. Capital Energy Offshore | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: JV between Gamesa and Capital Energy to develop offshore wind farms References: Capital Energy Offshore1 This article is a stub. You can help...

  6. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  7. Design and installation of an ultra deepwater subsea system: How to minimize risks and costs

    SciTech Connect (OSTI)

    Izetti, R.G.; Moreira, J.R.F.

    1994-12-31

    The world`s deepest Subsea Tree was successfully installed offshore Brazil at a water depth of 1,027 m. The psychological barrier of 1,000 m was finally broken. Actually, subsea completion technology reached a point where the fundamental question is no longer whether fields located at water depths beyond 1,000 m can be profitably completed. The key issue now is: is there a better and safer way to do it? PETROBRAS has pursued an aggressive strategy in research and development concept evaluations and various field studies aiming at a continuous decrease in both CAPEX and OPEX. This paper primarily describes the major subsea completion achievements, resulting from this great effort, which among other topics include: implementation of a standardization program; sharp reduction of both subsea completion and drilling time; a new flowline connection method which combines the advantages of both lay-away and pull-in methods; design and future installation of the world first subsea electrical submersible pump; completion equipment simplification and resulting cost reduction. Also addressed are the key safety aspects related to deepwater completions and the equipment design improvement necessary to safely conduct those operations.

  8. Design and installation of an ultra-deepwater subsea system: How to minimize risks and costs

    SciTech Connect (OSTI)

    Izetti, R.G.; Moreira, J.R.F.

    1995-04-01

    The world`s deepest subsea tree was successfully installed offshore Brazil at a water depth of 1,027 m, finally breaking the psychological barrier of 1,000 m. Actually, subsea completion technology has reached a point where the fundamental question no linger is whether fields located at water depths > 1,000 m can be profitably completed; is there a better and safer way to do it is now the key issue. Petrobras has pursued an aggressive strategy in R and D concept evaluations and various field studies aiming at a continuous decrease in both capital and operational expenditures. This paper describes the major subsea completion achievements resulting from this great effort, which include implementation of a standardization program; sharp reduction of subsea completion and drilling time; a new flowline connection method that combines the advantages of lay-away and pull-in methods; design and future installation of the world`s first subsea electrical submersible pump; and completion equipment simplification and resulting cost reduction. Also addressed are the key safety aspects related to deepwater completions and the equipment design improvement necessary to conduct those operations safely.

  9. A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States

    Energy Savers [EERE]

    Industry in the United States | Department of Energy A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. PDF icon A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. More Documents & Publications

  10. Offshore Wind Potential Tables

    Wind Powering America (EERE)

    Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40

  11. Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory: Preprint

    SciTech Connect (OSTI)

    Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.; Hayman, G.

    2015-04-02

    A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.

  12. Floating seal system for rotary devices

    DOE Patents [OSTI]

    Banasiuk, Hubert A.

    1983-01-01

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

  13. Floating seal system for rotary devices

    DOE Patents [OSTI]

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  14. NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 15013 Denver West Parkway Golden, CO 80401 303-275-3000 | www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. NWTC researchers gain valuable data from one of the first floating offshore wind prototypes. The National Renewable Energy Laboratory (NREL) is collaborating with SWAY, a renewable energy company from Norway,

  15. Accelerating Offshore Wind Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the

  16. Michigan Offshore Wind Pilot Project | Open Energy Information

    Open Energy Info (EERE)

    Michigan Offshore Wind Pilot Project Jump to: navigation, search Name Michigan Offshore Wind Pilot Project Facility Michigan Offshore Wind Pilot Project Sector Wind energy Facility...

  17. Texas Offshore Pilot Research Project | Open Energy Information

    Open Energy Info (EERE)

    Offshore Pilot Research Project Jump to: navigation, search Name Texas Offshore Pilot Research Project Facility Texas Offshore Pilot Research Project Sector Wind energy Facility...

  18. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals ... Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals Texas Offshore ...

  19. Offshore Wind Research, Development, and Deployment Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Offshore Wind Research, Development, and Deployment Projects Offshore Wind Research, Development, and Deployment Projects Offshore Wind Research, Development, and Deployment Projects

  20. Garden State Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Garden State Offshore Energy Location Offshore from Avalon NJ Coordinates 39.08, -74.310556...

  1. Improvements in floating point addition/subtraction operations

    DOE Patents [OSTI]

    Farmwald, P.M.

    1984-02-24

    Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

  2. MHK Technologies/Hybrid Float | Open Energy Information

    Open Energy Info (EERE)

    Description Elongated floats operate parallel to the wave fronts so that maximum energy extraction from the waves is possible by the large cross sectional area of the floats to...

  3. 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Petroleum Resources Research and Development Program | Department of Energy 7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 PDF icon 2007

  4. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geologic Uncertainty Cover Image: 3D visualization of directionally drilled boreholes in the Gulf of Mexico, field MC109, showing NETL's interpretation of two reservoir sand intervals. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty DOE/NETL-2015/1694 Prepared by: Mari Nichols-Haining, Jennifer Funk, Kathy Bruner, John Oelfke, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract

  5. Research Portfolio Report Ultra-Deepwater: Surface Systems and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Systems and Umbilicals (Wellbore Stability) Research Portfolio Report Ultra-Deepwater: Surface Systems and Umbilicals (Wellbore Stability) DOE/NETL-2015/1696 Prepared by: Mari Nichols-Haining, Jennifer Funk, John Oelfke, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity 4003.200.03 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the

  6. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  7. The impact of subsea boosting on deepwater field development

    SciTech Connect (OSTI)

    Ribeiro, O.J.S.; Camargo, R.M.T.; Paulo, C.A.S.

    1996-12-31

    This paper describes the impact that the use of a subsea boosting system will have on the development of a deepwater field. The analysis covers the technology demands and constraints encountered on screening studies executed for the fields of Marlim, Albacora and Barracuda, as well as an overview of the economic benefits encountered. The paper focuses on the technological demands and constraints identified as well as some considerations about possible alternatives. The demands and constraints identified in the study will provide the industry with some more input to guide the development of the subsea boosting technology, as well as a better understanding of how to apply this new tool on the development of deepwater prospects. The results of the screening study are showing that the subsea boosting systems are a valuable tool to reduce the costs of deepwater developments. The cost cutting possibilities through an integration between the conventional subsea hardware and the subsea boosting systems and the combination of boosting systems are promising alternatives. The encouraging economic results found, as well as the demands and constraints raised in the paper will be of use for those trying to apply these technologies in various areas of the world.

  8. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology Advancement, and Cost Reduction

    SciTech Connect (OSTI)

    Smith, Aaron; Stehly, Tyler; Walter Musial

    2015-09-29

    2015 has been an exciting year for the U.S. offshore wind market. After more than 15 years of development work, the U.S. has finally hit a crucial milestone; Deepwater Wind began construction on the 30 MW Block Island Wind Farm (BIWF) in April. A number of other promising projects, however, have run into economic, legal, and political headwinds, generating much speculation about the future of the industry. This slow, and somewhat painful, start to the industry is not without precedent; each country in northern Europe began with pilot-scale, proof-of-concept projects before eventually moving to larger commercial scale installations. Now, after more than a decade of commercial experience, the European industry is set to achieve a new deployment record, with more than 4 GW expected to be commissioned in 2015, with demonstrable progress towards industry-wide cost reduction goals. DWW is leveraging 25 years of European deployment experience; the BIWF combines state-of-the-art technologies such as the Alstom 6 MW turbine with U.S. fabrication and installation competencies. The successful deployment of the BIWF will provide a concrete showcase that will illustrate the potential of offshore wind to contribute to state, regional, and federal goals for clean, reliable power and lasting economic development. It is expected that this initial project will launch the U.S. industry into a phase of commercial development that will position offshore wind to contribute significantly to the electric systems in coastal states by 2030.

  9. Brigantine OffshoreMW Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind...

  10. Deepwater Wind Formerly Winergy LLC | Open Energy Information

    Open Energy Info (EERE)

    New York Zip: 11967 Sector: Wind energy Product: Has carried out a survey of feasible offshore wind sites in the US. Coordinates: 40.80063, -72.872189 Show Map Loading...

  11. FE's Ultra-Deepwater Program focuses on spill prevention, safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will continue to be an important part of U.S. energy strategy for decades to come. ... Why are these resources important? Consider these facts: U.S. offshore oil and gas ...

  12. Numerical Prediction of Experimentally Observed Behavior of a Scale Model of an Offshore Wind Turbine Supported by a Tension-Leg Platform: Preprint

    SciTech Connect (OSTI)

    Prowell, I.; Robertson, A.; Jonkman, J.; Stewart, G. M.; Goupee, A. J.

    2013-01-01

    Realizing the critical importance the role physical experimental tests play in understanding the dynamics of floating offshore wind turbines, the DeepCwind consortium conducted a one-fiftieth-scale model test program where several floating wind platforms were subjected to a variety of wind and wave loading condition at the Maritime Research Institute Netherlands wave basin. This paper describes the observed behavior of a tension-leg platform, one of three platforms tested, and the systematic effort to predict the measured response with the FAST simulation tool using a model primarily based on consensus geometric and mass properties of the test specimen.

  13. Federal Offshore--California Natural Gas Liquids Lease Condensate...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Offshore--California Natural Gas Liquids Lease Condensate, Reserves Based Production ... Lease Condensate Estimated Production Federal Offshore, Pacific (California) Lease ...

  14. Offshore Energy Knowledge Exchange Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-04-12

    A report detailing the presentations and topics discussed at the Offshore Energy Knowledge Exchange Workshop, an event designed to bring together offshore energy industry representatives to share information, best practices, and lessons learned.

  15. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 29, 2014 New Reports Highlight Major Potential in Offshore Wind Energy The Energy Department today announced a new report showing steady progress for the U.S. offshore wind...

  16. Scira Offshore Energy | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: NR32 1DE Sector: Wind energy Product: Developer of the Sheringham Shoals offshore wind farm. References: Scira Offshore Energy1 This article is a stub. You can...

  17. U.S. Offshore Wind Port Readiness

    Broader source: Energy.gov [DOE]

    Report that reviews the current capability of U.S. ports to support offshore wind project development and assesses the challenges and opportunities related to upgrading this capability to support as much as 54 gigawatts of offshore wind by 2030.

  18. Offshore Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Offshore Wind Power Place: St Albans, United Kingdom Zip: AL1 3AW Sector: Wind energy Product: Formed to develop offshore wind farms around the coast of Great Britain. References:...

  19. 4C Offshore Limited | Open Energy Information

    Open Energy Info (EERE)

    database and interactive map for global offshore wind development. The Global Offshore Wind Farms Database contains details on over 600 wind farms in over30 countries. The 4C...

  20. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  1. European Wind Atlas: Offshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-offshore,http:c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  2. Offshore and onshore engineering practices compared

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The comparison between the practices relevant to onshore and offshore developments is the overall theme of this book. It provides help and guidance to people familiar with onshore practices who are venturing offshore for the first time or vice versa. They draw attention to the lessons of experience which benefit future developments and point to future guidelines and regulations. CONTENTS: Project economic evaluation and conceptual planning - the differences between onshore and offshore projects; A comparison of offshore and onshore plant design; Gas compression equipment - design differences between onshore and offshore applications; Experience in reliable pump design for onshore and offshore applications; Operability, reliability and maintenance - the differences onshore and offshore; Risk analysis in layout and safety engineering for platforms and terminals; The design of electrical supplies for equipment operation; Production measurements for a North Sea oil field; Chemical treatment and process equipment for water injection and oily water treatment systems offshore and onshore; Gas desulphurisation - the consequence of moving the process offshore; A comparison of offshore and onshore pipeline construction and commissioning; Pre-commissioning and commissioning of facilities onshore and offshore; Some aspects of revamp work on onshore and offshore plants.

  3. Offshore Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2016. PDF icon Offshore Wind Energy Projects 2006-2016 More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Environmental Wind Projects

  4. Time Variant Floating Mean Counting Algorithm

    Energy Science and Technology Software Center (OSTI)

    1999-06-03

    This software was written to test a time variant floating mean counting algorithm. The algorithm was developed by Westinghouse Savannah River Company and a provisional patent has been filed on the algorithm. The test software was developed to work with the Val Tech model IVB prototype version II count rate meter hardware. The test software was used to verify the algorithm developed by WSRC could be correctly implemented with the vendor''s hardware.

  5. Floating Oscillating Water Column Reference Model Completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Floating Oscillating Water Column Reference Model Completed - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  6. Salt tectonics and structural styles in the deep-water province of the Cabo Frio Region, Rio de Janeiro, Brazil

    SciTech Connect (OSTI)

    Mohriak, W.U.; Macedo, J.M.; Castellani, R.T.

    1996-12-31

    The Cabo Frio region, offshore Rio de Janeiro, lies between two of the most prolific Brazilian oil provinces, the Campos and Santos basins. Major geologic features have been identified using a multidisciplinary approach integrating seismic, gravity, petrographic, and borehole data. The Cabo Frio frontier region is characterized by marked changes in stratigraphy and structural style and is unique among the Brazilian marginal basins. Major geologic features include the deflection of the coastline and pre-Aptian hings line from northeast to east; a large east-striking offshore graben related to salt tectonics; a northwest-trending lineament extending from oceanic crust to the continent; basement-involved landward-dipping (antithetic) normal faults in shallow water; a stable platform in the southern Campos Basin; a thick sequence of postbreakup intrusive and extrusive rocks; and, near the Santos Basin, a mobilized sequence of deep-water postrift strata affected by landward-dipping listric normal faults. These faults are unusual in salt-related passive margins in that they dip landward, apparently detach on the Aptian salt, and show large late Tertiary offsets. Locally, the older sequences do not show substantial growth in the downthrown blocks. South of the Rio de Janeiro coast, a phenomenal landward-dipping fault system detaches blocks of the Albian platform to the north and, to the south, coincides with the depositional limit of the Albian platform. Two end-member processes of salt tectonics in the Cabo Frio region result in either synthetic or antithetic basal shear along the fault weld under the overburden: (1) thin-skinned processes, in which the listric faults were caused by salt flow in response to gravity forces related to massive clastic progradation from the continent; and (2) thick-skinned processes, in which faulting was indirectly triggered by diastrophic causes or disequilibrium in the basement topography.

  7. DOE's Portal to Deepwater Horizon Oil Spill Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    On April 20, 2010, the Deepwater Horizon platform in the Gulf of Mexico exploded. The explosion and fire killed and injured workers on the oil rig, and caused major releases of oil and gas into the Gulf for several months. The Department of Energy, in keeping with the Obama Administrations ongoing commitment to transparency, provided online access to data and information related to the response to the BP oil spill. Included are schematics, pressure tests, diagnostic results, video clips, and other data. There are also links to the Restore the Gulf website, to the trajectory forecasts from NOAA, and oil spill information from the Environmental Protection Agency.

  8. Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.41 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Price

  9. Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Trinidad and Tobago (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.44 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  10. Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Yemen (Dollars per Thousand Cubic Feet) Yemen (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Yemen (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.33 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  11. Peru onshore-deepwater basins should have large potential

    SciTech Connect (OSTI)

    Zuniga-Rivero, F.; Keeling, J.A.; Hay-Roe, H.

    1998-10-19

    Perupetro`s recent announcement that 13 offshore exploration blocks of nearly 1 million acres each will be offered for bids in the fourth quarter of 1998 has reawakened interest in this extensive, largely unexplored area. The new government policy, combined with the results of modern, deep-probing seismic surveys, has already led to a stepped-up search for oil and gas that will probably escalate. Most of Peru`s ten coastal basins are entirely offshore, but at both ends of the 1,500-mile coastline the sedimentary basins stretch from onshore across the continental shelf and down the continental slope. Two of these basin areas, both in the north, have commercial production. The third, straddling the country`s southern border, has never been drilled either on land or offshore. The Peruvian sectors of these three basins total roughly 50,000 sq miles in area, 75% offshore. All have major oil and gas potential. They are described individually in this article, an update in the ongoing studies last reported at the 1998 Offshore Technology Conference and in the first article of this series.

  12. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  13. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Wind Powering America (EERE)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  14. Generating and executing programs for a floating point single instruction

    Office of Scientific and Technical Information (OSTI)

    multiple data instruction set architecture (Patent) | SciTech Connect Generating and executing programs for a floating point single instruction multiple data instruction set architecture Citation Details In-Document Search Title: Generating and executing programs for a floating point single instruction multiple data instruction set architecture Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture

  15. MHK Technologies/Floating anchored OTEC plant | Open Energy Informatio...

    Open Energy Info (EERE)

    anchored OTEC plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating anchored OTEC plant.jpg Technology Profile Primary Organization...

  16. Floating Power Plant A S FPP | Open Energy Information

    Open Energy Info (EERE)

    Power Plant A S FPP Jump to: navigation, search Name: Floating Power Plant AS (FPP) Address: Stenholtsvej 27 Place: Fredensborg, Denmark Zip: DK-3480 Region: Denmark Sector: Wind...

  17. MHK Technologies/Ocean Treader floating | Open Energy Information

    Open Energy Info (EERE)

    homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK ProjectsDevelopment of Ocean...

  18. High pressure floating zone growth and structural properties...

    Office of Scientific and Technical Information (OSTI)

    quantum paraelectric BaFe12O19 Citation Details In-Document Search Title: High pressure floating zone growth and structural properties of ferrimagnetic quantum ...

  19. MHK Technologies/Floating absorber | Open Energy Information

    Open Energy Info (EERE)

    database homepage Floating absorber.jpg Technology Profile Primary Organization Euro Wave Energy Technology Resource Click here Wave Technology Description The main module consists...

  20. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator...

  1. Generating and executing programs for a floating point single...

    Office of Scientific and Technical Information (OSTI)

    set architecture Citation Details In-Document Search Title: Generating and executing programs for a floating point single instruction multiple data instruction set architecture ...

  2. Free Floating Atmospheric Pressure Ball Plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Floating Atmospheric Pressure Ball Plasmas G. A. Wurden, Z. Wang, C. Ticos Los Alamos National Laboratory L Al NM 87545 USA Los Alamos, NM 87545 USA C. J. v. Wurden Los Alamos High School L Al NM 87544 Los Alamos, NM 87544 Presented at the PPPL Colloquium Sept. 17, 2008 U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA LA-UR-08-06284 Outline of this talk *A discussion of ball lightning reports in nature *How can ball plasmas be made in the

  3. Energy Department Announces Offshore Wind Demonstration Awardees |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) Wind Program recently announced seven technology demonstration partnerships with broad consortia that are developing breakthrough offshore wind energy generation projects. The primary goals of

  4. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect (OSTI)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Gas saturated reservoirs change reflection amplitudes significantly. The goal for the final project period was to systematically combine and document these various effects for use in deep water exploration and transfer this knowledge as clearly and effectively as possible.

  5. Offshore Infrastructure Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Infrastructure Associates Inc Region: Puerto Rico Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  6. Offshore Islands Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Offshore Islands Ltd Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  7. Oregon Department of Energy Webinar: Offshore Wind

    Broader source: Energy.gov [DOE]

    The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

  8. Offshore Wind Technology Development Projects | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development Projects Offshore Wind Technology Development Projects The Wind ... more robustly (i.e., requiring less maintenance) than land-based turbines due to the ...

  9. Gulf of Mexico Federal Offshore Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Federal Offshore Alabama, Louisiana, and Texas. See Definitions, Sources, and Notes link above for more information on this table. Release Date: 12...

  10. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 10, 2013 Energy Department Announces Offshore Wind Demonstration Awardees This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter....

  11. WINDExchange Webinar: Offshore Wind Market Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    Aaron Smith, an energy analyst at the National Renewable Energy Laboratory, will present an overview and update of the U.S. offshore wind market.

  12. Offshore Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a...

  13. Offshore Ostsee Wind AG | Open Energy Information

    Open Energy Info (EERE)

    Ostsee Wind AG Jump to: navigation, search Name: Offshore Ostsee Wind AG Place: Brgerende, Mecklenburg-Western Pomerania, Germany Zip: 18211 Sector: Wind energy Product: Joint...

  14. Annual Report: EPAct Complementary Program's Ultra-Deepwater R&D Portfolio and Unconventional Resources R&D Portfolio (30 September 2012)

    SciTech Connect (OSTI)

    none,; Rose, Kelly; Hakala, Alexandra; Guthrie, George

    2012-09-30

    This report summarizes FY13 research activities performed by the National Energy Technology Laboratory (NETL), Office of Research and Development (ORD), along with its partners in the Regional University Alliance (RUA) to fulfill research needs under the Energy Policy Act of 2005 (EPAct) Section 999�s Complementary Program. Title IX, Subtitle J, Section 999A(d) of EPAct 2005 authorizes $50 million per year of federal oil and gas royalties, rents and bonus payments for an oil and natural gas research and development effort, the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program. Section 999 further prescribes four program elements for the effort, one of which is the Complementary Research Program that is to be performed by NETL. This document lays out the plan for the research portfolio for the Complementary Research Program, with an emphasis on the 2013 funding. The Complementary Program consists of two research portfolios focused on domestic resources: (1) the Deepwater and Ultra-Deepwater Portfolio (UDW) (focused on hydrocarbons in reservoirs in extreme environments) and (2) the Unconventional Resources Portfolio (UCR) (focused on hydrocarbons in shale reservoirs). These two portfolios address the science base that enables these domestic resources to be produced responsibly, informing both regulators and operators. NETL is relying on a core Department of Energy-National Energy Technology Laboratory (DOE-NETL) competency in engineered-natural systems to develop this science base, allowing leveraging of decades of investment. NETL�s Complementary Research Program research portfolios support the development of unbiased research and information for policymakers and the public, performing rapid predictions of possible outcomes associated with unexpected events, and carrying out quantitative assessments for energy policy stakeholders that accurately integrate the risks of safety and environmental impacts. The objective of this body of work is to build the scientific understanding and assessment tools necessary to develop the confidence that key domestic oil and gas resources can be produced safely and in an environmentally sustainable way. For the Deepwater and Ultra-Deepwater Portfolio, the general objective is to develop a scientific base for predicting and quantifying potential risks associated with exploration and production in extreme offshore environments. This includes: (1) using experimental studies to improve understanding of key parameters (e.g., properties and behavior of materials) tied to loss-of-control events in deepwater settings, (2) compiling data on spatial variability for key properties used to characterize and simulate the natural and engineered components involved in extreme offshore settings, and (3) utilizing findings from (1) and (2) in conjunction with integrated assessment models to model worst-case scenarios, as well as assessments of most likely scenarios relative to potential risks associated with flow assurance and loss of control. This portfolio and approach is responsive to key Federal-scale initiatives including the Ocean Energy Safety Advisory Committee (OESC). In particular, the findings and recommendations of the OESC�s Spill Prevention Subcommittee are addressed by aspects of the Complementary Program research. The Deepwater and Ultra-Deepwater Portfolio is also aligned with some of the goals of the United States- Department of the Interior (US-DOI) led Alaska Interagency Working Group (AIWG) which brings together state, federal, and tribal government personnel in relation to energy-related issues and needs in the Alaskan Arctic. For the Unconventional Fossil Resources Portfolio, the general objective is to develop a sufficient scientific base for predicting and quantifying potential risks associated with the oil/gas resources in shale reservoirs that require hydraulic fracturing and/or other engineering measures to produce. The major areas of focus include: (1) improving predictions of fugitive methane and greenhouse gas emissions, (2) predicting the composition and volume of waters produced during shale gas development, (3) predicting subsurface fluid and gas migration, and (4) predicting subsurface phenomena (e.g., geophysical and geomechanical responses) using the application of field measurements and observations. The portfolio is building a general understanding of: (1) spatial variations in reservoir properties that impact risk, (2) wellbore integrity (particularly for pre-existing wellbores), (3) fracture propagation dynamics, (4) groundwater geochemistry and hydrogeology, and (5) air quality. This portfolio and approach is responsive to key Federal-scale initiatives including the Multi-Agency Collaboration on Unconventional Oil and Gas Research.

  15. Brigantine OffshoreMW Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  16. DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Office of Fossil Energy has selected six new natural gas and oil research projects aimed at reducing risks and enhancing the environmental performance of drilling in ultra-deepwater settings.

  17. Bundled pipe speeds offshore laying

    SciTech Connect (OSTI)

    Brockbank, J. )

    1990-05-07

    Technology which allows pipelines to be installed in bundles is expediting pipelay operations in the North Sea. This paper reports how the piggyback system was recently used on 60 km of North Sea gas pipelines for three major projects. For 7 years the practice of installing two or more pipelines in one operation has become an established practice for North Sea offshore oil and gas projects. The technique, commonly referred to as a piggyback operation, reduces installation costs, improves operation reliability, and cuts maintenance time.

  18. Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas ... Natural Gas Used for Repressuring Federal Offshore Gulf of Mexico Natural Gas Gross ...

  19. Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Dry ... Natural Gas Dry Production Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals ...

  20. Tackling the Challenges of Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tackling the Challenges of Offshore Wind Tackling the Challenges of Offshore Wind January 10, ... Charlestown, Massachusetts-While electricity produced by land-based wind farms in the ...

  1. California Federal Offshore Natural Gas Plant Liquids, Proved...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore ... Natural Gas Liquids Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California) ...

  2. California--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) California--State Offshore Natural Gas Dry Production ... Referring Pages: Natural Gas Dry Production California State Offshore Natural Gas Gross ...

  3. New Report Shows Trend Toward Larger Offshore Wind Systems, with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects ... in offshore wind farms, increasing the amount of electricity delivered to consumers. ...

  4. American Wind Energy Association Offshore WINDPOWER Conference & Exhibition

    Broader source: Energy.gov [DOE]

    AWEA Offshore WINDPOWER 2014 Conference & Exhibition is the largest offshore wind energy event in North America. The conference and exhibition will be held at the Atlantic City Convention...

  5. International Effort Advances Offshore Wind Turbine Design Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Effort Advances Offshore Wind Turbine Design Codes International Effort Advances Offshore Wind Turbine Design Codes September 12, 2014 - 12:16pm Addthis For the past ...

  6. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of ...

  7. Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

  8. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Energy Savers [EERE]

    0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape ...

  9. Texas--State Offshore Natural Gas Marketed Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Marketed Production (Million Cubic Feet) Texas--State Offshore Natural Gas Marketed ... Referring Pages: Natural Gas Marketed Production Texas State Offshore Natural Gas Gross ...

  10. Texas--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Texas--State Offshore Natural Gas Gross Withdrawals ... Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals Texas State ...

  11. Foundation for Offshore Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    for Offshore Wind Energy Jump to: navigation, search Name: Foundation for Offshore Wind Energy Place: Varel, Germany Zip: D-26316 Sector: Wind energy Product: Foundation...

  12. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting ...

  13. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - ...

  14. DOE Releases Comprehensive Report on Offshore Wind Power in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Releases Comprehensive Report on Offshore Wind Power in the United States DOE Releases Comprehensive Report on Offshore Wind Power in the United States October 7, 2010 -...

  15. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, ...

  16. Offshore Wind Market Acceleration Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of offshore wind technology research, development, and demonstration projects. Offshore Wind Energy Resources and the Environment Establishing environmental parameters is an...

  17. Energy and Interior Departments Host Offshore Energy Knowledge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The workshop attendees represented a broad cross-section of the offshore energy industry. A summary report about the offshore energy knowledge exchange workshop will be available ...

  18. U.S. Offshore Wind Port Readiness

    SciTech Connect (OSTI)

    C. Elkinton, A. Blatiak, H. Ameen

    2013-10-13

    This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations.

  19. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect (OSTI)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  20. New Modeling Tool Analyzes Floating Platform Concepts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The majority of today's offshore wind farms are located in shallow water off European coasts. That means that these European turbines can be installed on bottom-mounted ...

  1. Offshore Wind RD&D: Large Offshore Rotor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40

  2. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  3. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  4. Offshore megaproject instrumentation needs planning

    SciTech Connect (OSTI)

    Guerrero, V.

    1986-05-05

    The design and construction of the Statfjord ''C'' drilling/production platform in the North Sea is a good example of the demands a megaproject like this can put on instrumentation activities. The huge platform is in production in the Norwegian sector of the North Sea. It is a result of modern construction techniques. Such techniques emphasize the fabrication of large modular subassemblies limited in size only by the ability to transport or lift them into position. These modules are constructed as complete as possible before being assembled and interconnected to become an integrated whole. The instrumentation distributed throughout the modules must eventually be operated and maintained as systems. Therefore, these systems should have the same types of hardware and be installed in a uniform way. This article describes the coordination of instrumentation activities required to achieve this objective in an offshore platform project that consisted of some 30 modules built at 11 construction sites in 4 countries.

  5. Offshore Wind Energy Systems Engineering Curriculum Development

    SciTech Connect (OSTI)

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  6. Offshore Lubricants Market Size | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Size Home There are currently no posts in this category. Syndicate content...

  7. Offshore Lubricants Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Forecast Home There are currently no posts in this category. Syndicate...

  8. Global Offshore Lubricants Market | OpenEI Community

    Open Energy Info (EERE)

    Global Offshore Lubricants Market Home There are currently no posts in this category. Syndicate content...

  9. Offshore Lubricants Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Analysis Home There are currently no posts in this category. Syndicate...

  10. INFOGRAPHIC: Offshore Wind Outlook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic resource could support up to 200,000 manufacturing, construction, operation and supply chain jobs across the country and drive over $70 billion in annual investments by 2030. Infographic by <a href="node/379579">Sarah Gerrity</a>.

  11. New method developed for LPG offshore loading

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    An innovative concept for refrigerated LPG offshore loading has been developed by TOTAL and Enterprise D'Equipments Mecaniques at Hydrauliques. Known as CHAGAL, the system integrates with the catenary anchor leg mooring offshore loading system commonly used for crude oil. CHAGAL provides a suitable answer to short-term development schemes of LPG trade. It can be adapted for possible extrapolation to cryogenic temperatures of LNG and it opens a new way to the development of offshore liquefaction projects for which the offloading of production is still an unsolved key problem.

  12. Quantifying the Impact of Single Bit Flips on Floating Point...

    Office of Scientific and Technical Information (OSTI)

    We focus on quantifying the impact of a single bit flip on specific floating-point operations. We analyze the error induced by flipping specific bits in the most widely used IEEE ...

  13. Free Floating Atmospheric Pressure Ball Plasmas | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2008, 4:15pm to 5:30pm Colloquia MBG Auditorium Free Floating Atmospheric Pressure Ball Plasmas Dr. Glen Wurden Los Alamos National Laboratory Presentation: PDF icon Free...

  14. High voltage switches having one or more floating conductor layers

    DOE Patents [OSTI]

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  15. Quantifying the Impact of Single Bit Flips on Floating Point...

    Office of Scientific and Technical Information (OSTI)

    We analyze the error induced by flipping specific bits in the most widely used IEEE floating-point representation in an architecture-agnostic manner, i.e., without requiring ...

  16. A National Offshore Wind Strategy. Creating an Offshore Wind Energy Industry in the United States

    SciTech Connect (OSTI)

    Beaudry-Losique, Jacques; Boling, Ted; Brown-Saracino, Jocelyn; Gilman, Patrick; Hahn, Michael; Hart, Chris; Johnson, Jesse; McCluer, Megan; Morton, Laura; Naughton, Brian; Norton, Gary; Ram, Bonnie; Redding, Tim; Wallace, Wendy

    2011-02-01

    This document outlines the Department of Energy's strategy for accelerating the responsible development of offshore wind energy in the United States.

  17. Offshore Wind Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Research and Development Offshore Wind Research and Development The offshore wind projects map provides information about progress around the country. The offshore wind projects map provides information about progress around the country. The U.S. Department of Energy's Wind Program funds research nationwide to develop and deploy offshore wind technologies that can capture wind resources off the coasts of the United States and convert that wind into electricity. The program is

  18. Salazar, Chu Announce Major Offshore Wind Initiatives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Major Offshore Wind Initiatives Salazar, Chu Announce Major Offshore Wind Initiatives February 7, 2011 - 12:00am Addthis NORFOLK, VA - Unveiling a coordinated strategic plan to accelerate the development of offshore wind energy, Secretary of the Interior Ken Salazar and Secretary of Energy Steven Chu today announced major steps forward in support of offshore wind energy in the United States, including new funding opportunities for up to $50.5 million for projects that support offshore

  19. Gulf of Mexico Federal Offshore Production

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore Gulf of Mexico production volumes are presented as a separate data series beginning in 2001. Production data for the Gulf of Mexico for years prior to 2001 are...

  20. Blyth Offshore Wind Ltd | Open Energy Information

    Open Energy Info (EERE)

    Product: Blyth Offshore Wind Limited, comprising Border Wind, PowerGen Renewables (a joint venture between Abbot Group and PowerGen), Nuon UK and Shell Renewables built the...

  1. Offshore Wind Market and Economic Analysis

    Energy Savers [EERE]

    of Minnesota's Virtual Wind Simulator | Department of Energy Offshore Wind Farm Model Development - Upcoming Release of the University of Minnesota's Virtual Wind Simulator Offshore Wind Farm Model Development - Upcoming Release of the University of Minnesota's Virtual Wind Simulator September 16, 2015 - 1:14pm Addthis Large-eddy simulation of wind farms with parameterization of wind turbines is emerging as a powerful tool for improving the performance and lowering the maintenance cost of

  2. 2014 Offshore Wind Market and Economic Analysis

    SciTech Connect (OSTI)

    Hamilton, Bruce

    2014-08-25

    The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.This 3rd annual report focuses on new developments that have occurred in 2014. The report provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. Available for download are both the full report and the report's underlying data.

  3. New design of a guidelineless horizontal tree for deepwater ESP wells

    SciTech Connect (OSTI)

    Olijnik, L.A.; Vigesa, S.; Paula, M.T.R.; Figueiredo, M.W. de; Rutherford, H.W.

    1996-12-31

    This paper presents the new design of a horizontal tree for deepwater installation, as a key piece of equipment for application of a Electrical Submersible Pump in Subsea Wells. The production from subsea wells equipped with ESPs is a reality since October/94 with the first installation in Campos Basin. The horizontal tree adds simplicity to workover operations expected to be two to three times more frequency when compared to natural flow or gas lifted wells. The design and fabrication of the deepwater horizontal tree is a result of a Technological Cooperation Agreement. The design incorporates new solutions, mainly in diverless guidelineless connection of power cables and flowlines using the vertical connection system. The guidelineless horizontal subsea tree is fully prepared to be integrated on the new manifolds being designed for the Brazilian deepwater oilfields. The applications of the horizontal trees in subsea ESP wells reduce intervention cost, increasing economical attractiveness and scenarios for the applications of this new boosting technology.

  4. Arctic & Offshore Technical Data System

    Energy Science and Technology Software Center (OSTI)

    1990-07-01

    AORIS is a computerized information system to assist the technology and planning community in the development of Arctic oil and gas resources. In general, AORIS is geographically dependent and, where possible, site specific. The main topics are sea ice, geotechnology, oceanography, meteorology, and Arctic engineering, as they relate to such offshore oil and gas activities as exploration, production, storage, and transportation. AORIS consists of a directory component that identifies 85 Arctic energy-related databases and tellsmore » how to access them; a bibliographic/management information system or bibliographic component containing over 8,000 references and abstracts on Arctic energy-related research; and a scientific and engineering information system, or data component, containing over 800 data sets, in both tabular and graphical formats, on sea ice characteristics taken from the bibliographic citations. AORIS also contains much of the so-called grey literature, i.e., data and/or locations of Arctic data collected, but never published. The three components are linked so the user may easily move from one component to another. A generic information system is provided to allow users to create their own information systems. The generic programs have the same query and updating features as AORIS, except that there is no directory component.« less

  5. Arctic & Offshore Technical Data System

    Energy Science and Technology Software Center (OSTI)

    1990-07-01

    AORIS is a computerized information system to assist the technology and planning community in the development of Arctic oil and gas resources. In general, AORIS is geographically dependent and, where possible, site specific. The main topics are sea ice, geotechnology, oceanography, meteorology, and Arctic engineering, as they relate to such offshore oil and gas activities as exploration, production, storage, and transportation. AORIS consists of a directory component that identifies 85 Arctic energy-related databases and tellsmorehow to access them; a bibliographic/management information system or bibliographic component containing over 8,000 references and abstracts on Arctic energy-related research; and a scientific and engineering information system, or data component, containing over 800 data sets, in both tabular and graphical formats, on sea ice characteristics taken from the bibliographic citations. AORIS also contains much of the so-called grey literature, i.e., data and/or locations of Arctic data collected, but never published. The three components are linked so the user may easily move from one component to another. A generic information system is provided to allow users to create their own information systems. The generic programs have the same query and updating features as AORIS, except that there is no directory component.less

  6. Offshore refrigerated LPG loading/unloading terminal using a CALM buoy

    SciTech Connect (OSTI)

    Bonjour, E.L.; Simon, J.M.

    1985-03-01

    In existing Liquefied Petroleum Gases terminals, the transfer of liquefied gases to the tanker is performed via articulated loading arms or flexible hoses, working under quasistatic conditions. The tanker has to be firmly moored alongside a jetty or a process barge in a protected area (such as a harbour in most cases). This paper gives the main results of the development of an offshore refrigerated LPG (-48/sup 0/C) loading/unloading system, using a CALM buoy and LPG floating hoses working under dynamic conditions. The aim of this new concept is to replace the standard harbour structure for loading/unloading refrigerated LPG and to provide a considerable reduction in investments and a greater flexibility regarding the terminal location. The main components of that terminal have been designed so as to enable the loading of a 75 000 cubic meter LPG carrier in 15 hours. The results of static and dynamic low temperature tests on a LPG swivel joint for CALM buoy and LPG floating hoses show that such a SPM terminal is now a realistic solution.

  7. New insights into microbial responses to oil spills from the Deepwater Horizon incident

    SciTech Connect (OSTI)

    Mason, O.U.; Hazen, T.C.

    2011-06-15

    On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

  8. Offshore Gross Withdrawals of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2010 2011 2012 2013 2014 2015 View History U.S. Total Offshore 2,875,945 2,416,644 2,044,643 1,859,469 1,818,267 1977-2014 State Offshore 575,601 549,151 489,505 505,318 514,809 1978-2014 From Gas Wells 234,236 208,970 204,667 186,887 159,337 1978-2014 From Oil Wells 341,365 340,182 284,838 318,431 355,472 1978-2014 Federal Offshore 2,300,344 1,867,492 1,555,138

  9. Federal offshore statistics: leasing - exploration - production - revenue

    SciTech Connect (OSTI)

    Essertier, E.P.

    1984-01-01

    Federal Offshore Statistics is a numerical record of what has happened since Congress gave authority to the Secretary of the Interior in 1953 to lease the Federal portion of the Continental Shelf for oil and gas. The publication updates and augments the first Federal Offshore Statistics, published in December 1983. It also extends a statistical series published annually from 1969 until 1981 by the US Geological Survey (USGS) under the title Outer Continental Shelf Statistics. The USGS collected royalties and supervised operation and production of minerals on the Outer Continental Shelf (OCS) until the Minerals Management Service (MMS) took over these functions in 1982. Statistics are presented under the following topics: (1) highlights, (2) leasing, (3) exploration and development, (4) production and revenue, (5) federal offshore production by ranking operator, 1983, (6) reserves and undiscovered recoverable resources, and (7) oil pollution in the world's oceans.

  10. Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993

    SciTech Connect (OSTI)

    Francois, D.K.

    1994-12-31

    This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

  11. Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities

    Broader source: Energy.gov [DOE]

    The Energy Department today released the first National Offshore Wind Energy Grid Interconnection Study that investigated the key economic and technological factors that will influence the integration of offshore wind energy onto the national grid.

  13. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  14. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  15. Sixth North American Offshore Wind Development and Finance Summit

    Broader source: Energy.gov [DOE]

    Join leading offshore wind developers, Federal and State policy-makers, U.S. and European banks and investors and other key stakeholders at the 6th North American Offshore Wind Development &...

  16. Strengthening America's Energy Security with Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

  17. Los Alamos computer simulation improves offshore drill rig safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 1, 2015 A simulation of vortex induced motion shows how ocean currents affect offshore oil rigs. A simulation of vortex induced motion shows how ocean currents affect offshore ...

  18. New Report Shows Domestic Offshore Wind Industry Potential, 21...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters ... first commercial-scale offshore wind farm, one of 21 projects totaling 15,650 ...

  19. United States Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an ...

  20. University of Michigan Gets Offshore Wind Ready for Winter on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michigan Gets Offshore Wind Ready for Winter on Lake Michigan University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am Addthis The ...

  1. AWEA and DOE Collaborate on Offshore Wind Recommended Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AWEA and DOE Collaborate on Offshore Wind Recommended Practices AWEA and DOE Collaborate on Offshore Wind Recommended Practices October 1, 2012 - 11:37am Addthis This is an excerpt ...

  2. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  3. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per...

  4. File:EIA-offshore-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    offshore-gas.pdf Jump to: navigation, search File File history File usage Natural Gas Production in Offshore Fields, Lower 48 States Size of this preview: 776 600 pixels. Full...

  5. NREL: Wind Research - Grid Integration of Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park ...

  6. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Broader source: Energy.gov (indexed) [DOE]

    ...MWh of offshore wind added to the grid-helping justify the high initial investment of offshore wind projects. (Note this this represents operations costs and does not include ...

  7. Bifurcated method and apparatus for floating point addition with decreased latency time

    DOE Patents [OSTI]

    Farmwald, Paul M.

    1987-01-01

    Apparatus for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

  8. New Reports Highlight Major Potential in Offshore Wind Energy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reports Highlight Major Potential in Offshore Wind Energy New Reports Highlight Major Potential in Offshore Wind Energy August 29, 2014 - 12:53pm Addthis The Energy Department today announced a new report showing steady progress for the U.S. offshore wind energy industry over the past year. The report highlights 14 projects in advanced stages of development, together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further,

  9. 2014 Offshore Wind Market and Economic Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Offshore Wind Market and Economic Analysis 2014 Offshore Wind Market and Economic Analysis The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.This 3rd annual report focuses on new developments that have occurred in 2014. The report provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. Available for download are both the full report and the

  10. 2015 Offshore Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Offshore Wind Market Report 2015 Offshore Wind Market Report This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers,

  11. Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm Addthis Watch the Energy 101 video above to learn about how wind turbines capture wind energy on land and offshore. Greg Matzat Senior Advisor on Offshore Wind Technologies, Wind Program With almost 80% of the U.S. electricity demand coming from cities and towns located in coastal states,

  12. National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. PDF icon NOWEGIS Full Report.pdf PDF icon NOWEGIS Executive Summary.pdf More Documents &

  13. Offshore Wind Advanced Technology Demonstration Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, offshore wind is a crucial renewable resource to be incorporated in the country's clean energy mix. Designed to reduce the cost of offshore wind energy through the development and deployment of innovative technologies, the Department of Energy has selected three Offshore Wind Advanced Technology

  14. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet describes the offshore renewable energy R and D efforts at the National Renewable Energy Laboratory.

  15. Offshore Wind Energy Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Offshore Wind Energy Projects from 2006 to 2014.

  16. U.S. Offshore Wind Manufacturing and Supply Chain Development...

    Broader source: Energy.gov (indexed) [DOE]

    an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential...

  17. Offshore Wind Market and Economic Analysis Report 2013

    SciTech Connect (OSTI)

    Frantzis, Lisa

    2013-10-01

    The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.

  18. Chu, Salazar to Announce Major Offshore Wind Energy Initiatives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chu, Salazar to Announce Major Offshore Wind Energy Initiatives Chu, Salazar to Announce Major Offshore Wind Energy Initiatives February 4, 2011 - 12:00am Addthis NORFOLK,VA - On Monday, February 7, 2011 Energy Secretary Steven Chu and Secretary of the Interior Ken Salazar will announce major new initiatives to accelerate the responsible siting and development of offshore wind energy projects. WHAT: Offshore Wind Energy News Conference WHEN: Monday, February 7, 11:00 AM

  19. NREL Assesses National Design Standards for Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  20. Department of Energy Awards $43 Million to Spur Offshore Wind...

    Energy Savers [EERE]

    The projects will advance wind turbine design tools and hardware, improve information about ... innovations in key components such as floating support structures and turbine rotor ...

  1. Multi-input and binary reproducible, high bandwidth floating point adder in a collective network

    DOE Patents [OSTI]

    Chen, Dong; Eisley, Noel A; Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-03-10

    To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to the collective logic device and receive outputs only once from the collective logic device.

  2. Designs and applications for floating-hydro power systems in small streams

    SciTech Connect (OSTI)

    Rehder, J.B.

    1983-01-01

    The project focuses on an appropriate technology for small-scale hydro power: floating waterwheels and turbines. For background, relic and existing systems such as early floating mills, traditional Amish waterwheels, and micro-hydro systems are examined. In the design phase of the project, new designs for Floating Hydro Power Systems include: an analysis of floatation materials and systems; a floating undershot waterwheel design; a floating cylinder (fiberglass storage tank) design; a submerged tube design; and a design for a floating platform with submerged propellers. Finally, in the applications phase, stream flow data from East Tennessee streams are used in a discussion of the potential applications of floating hydro power systems in small streams.

  3. The geotechnical centrifuge in offshore engineering

    SciTech Connect (OSTI)

    Murff, J.D.

    1996-12-31

    One of the greatest needs in offshore geotechnical engineering is for large scale test measurements on which to calibrate design procedures. The geotechnical centrifuge offers at least a partial remedy. Because it allows one to properly simulate stresses, it is a legitimate, relatively inexpensive option to full scale field testing. As such it is a valuable technique and can be an excellent complement to laboratory tests, 1-g model tests and numerical analyses. However, it has not been widely used by industry even though the capability has existed for almost thirty years. This paper argues that this technology should gain acceptance beyond the research community. The paper presents an overview of centrifuge principles, philosophies of use, and limitations of the technique. For illustration, several actual applications of centrifuge testing for complex offshore problems are described. Results are shown to provide important insights into prototype behavior and to agree well with full scale measurements where these are available.

  4. Offshore Gross Withdrawals of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Federal Offshore 122,038 116,075 106,086 112,137 108,556 101,200 1997-2016 From Gas Wells NA NA NA NA NA NA 1997-2016 From Oil Wells NA NA NA NA NA NA 1997-2016

  5. It's MAGIC A Floating Laboratory A Focus on Clouds Definitions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    issue It's MAGIC A Floating Laboratory A Focus on Clouds Definitions Activity About ARM The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility for the study of global climate change. As part of its outreach program, ARM provides education resources for students, teachers,and communities. www.arm.gov EDUCATION NEWS An Ocean of Data-About Clouds With contributions from Steve Linn, 4 th grade teacher at Cottonwood Elementary,

  6. Seismic response of offshore guyed towers

    SciTech Connect (OSTI)

    Jain, A.K.; Bisht, R.S.

    1993-12-31

    Seismic stresses in the offshore Guyed Tower assumes importance because of its flexural modes having smaller periods (in the range of 1 to 3 sec), which may attract considerable seismic forces. Since the displacement of the offshore Guyed Tower is generally guided by the rigid body mode corresponding to the fundamental period which lies between 20 to 40 sec., seismic excitation is relatively unimportant in relation to the towers` overall displacement behavior. The response of offshore Guyed Tower to ransom ground motion (E1 Centro earthquake, 1940) is investigated. The guyed tower is modeled as a uniform shear beam with a rotational spring at the base of the tower. The guylines are represented by a linearized spring whose force-excursion relationship is derived from a separate static analysis of the guylines. The dynamic equation of motion duly takes into account the pressure-drag effect produced due to fluid-structure interaction. The response is obtained in tim- domain using Newmark`s {beta} Time Integration Scheme.

  7. Development of mid-scale and floating LNG facilities

    SciTech Connect (OSTI)

    Price, B.C.; Mortko, R.A.

    1998-12-31

    The development of large-scale base load LNG facilities has dominated the process industry for decades. However, in many areas of the world, base load facilities are not feasible due to inadequate reserves. Mid-scale facilities can be economically attractive in certain locations and, in fact, have several advantages which aid in their development. The PRICO II LNG liquefaction process offers a process configuration which fits well with these developments. The process has been used in a range of facility sizes from base load to peak shaving applications. In addition to onshore facilities, floating liquefaction facilities can be developed on barges or tankers to handle mid-scale to large scale LNG production. Concepts for several sizes and configurations of floating facilities have been developed using the PRICO II process integrated into a total production, liquefaction, and load-out system. This paper covers the PRICO process concept, application areas and facility configurations which are currently being developed for mid-scale and floating LNG facilities.

  8. Double-Precision Floating-Point Cores V1.9

    Energy Science and Technology Software Center (OSTI)

    2005-10-15

    In studying the acceleration of scientific computing applications with reconfigurable hardware, such as field programmable gate arrays, one finds that many scientific applications require high-precision, floating-point arithmetic that is not innately supported in reconfigurable hardware. Consequently, we have written VDL code that describes hardware for performing double-precision (64-bit) floating-point arithmetic. From this code, it is possible for users to implement double-precision floating-point operations on FPGAs or any other hardware device to which VHDL code canmore » be synthesized. Specifically, we have written code for four floating-point cores. Each core performs one operation: one performs addition/subtraction, one performs multiplication, one performs division, and one performs square root. The code includes parameters that determine the features of the floating-point cores, such as what types of floating-point numbers are supported and what roudning modes are supported. These parameters influence the frequency achievable by the designs as well as the chip area required for the designs. The parameters are chosen so that the floating-point cores have varyinig amounts of compliance with the industry standard for floating-point cores have varying amounts of compliance with the industry standard for floating-point arithmetic, IEEE standard 754. There is an additional parameter that determines the number of pipelining stages in the floating-point cores.« less

  9. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  10. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Funding | Department of Energy Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle Power

  11. Assessment of Offshore Wind Energy Resources for the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment of Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is

  12. AWEA Offshore WINDPOWER 2015 Conference & Exhibition | Department of Energy

    Energy Savers [EERE]

    Offshore WINDPOWER 2015 Conference & Exhibition AWEA Offshore WINDPOWER 2015 Conference & Exhibition September 29, 2015 8:00AM EDT to September 30, 2015 5:00PM EDT Baltimore, MD Join the U.S. Department of Energy at the 2015 AWEA Offshore WINDPOWER Conference & Exhibition program this September. Employees of DOE will present on a vriety of topics listed below. Along with these DOE presentations, attendees will have the opportunity to: Hear from leading developers on the current state

  13. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Hybrids Show Best Potential | Department of Energy Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential February 24, 2012 - 11:30am Addthis This is an excerpt from the First Quarter 2012 edition of the Wind Program R&D Newsletter. Adding offshore wind to the U.S. renewable energy portfolio promises access to a large,

  14. DOE Selects Projects to Assess Offshore Carbon Storage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy to Assess Offshore Carbon Storage DOE Selects Projects to Assess Offshore Carbon Storage July 15, 2015 - 10:30am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected four projects to receive funding through NETL's Carbon Storage program. The program is working to develop and advance the effectiveness of onshore and offshore carbon storage technologies, reduce the challenges associated with implementation, and prepare them for widespread

  15. 2011 DOE Funded Offshore Wind Project Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 DOE Funded Offshore Wind Project Updates 2011 DOE Funded Offshore Wind Project Updates September 12, 2014 - 10:52am Addthis For the past few years, much of the U.S. Department of Energy's (DOE's) Wind Program research and development efforts have been focused on accelerating the development and deployment of offshore wind energy technology. In 2011, DOE awarded $43 million to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying

  16. DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - 3:26pm Addthis The U.S. Department of Energy (DOE) recently announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The project could be the first

  17. Enormous Blades for Offshore Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enormous Blades for Offshore Energy Enormous Blades for Offshore Energy February 8, 2016 - 2:00pm Addthis Sandia's design for giant wind turbine blades that are stowed at dangerous wind speeds to reduce the risk of damage. | Courtesy of TrevorJohnston.com/Popular Science Stephanie Holinka Sandia National Laboratories A new design for gigantic blades longer than two football fields could help bring offshore 50-megawatt (MW) wind turbines to the United States and the world. Sandia's research on

  18. Innovative Study Helps Offshore Wind Developers Protect Wildlife |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Study Helps Offshore Wind Developers Protect Wildlife Innovative Study Helps Offshore Wind Developers Protect Wildlife October 27, 2015 - 9:33am Addthis Innovative Study Helps Offshore Wind Developers Protect Wildlife Jocelyn Brown-Saracino Jocelyn Brown-Saracino Environmental Research Manager, Wind and Water Power Technologies Office Thanks to a first-of-its-kind in-depth study of wildlife distribution and movements, the nation's Eastern Seaboard is better prepared than

  19. NREL: Wind Research - Energy Analysis of Offshore Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis of Offshore Systems Chart of cost data for actual and projected offshore wind projects as reported by developers. Enlarge image NREL has a long history of successful research to understand and improve the cost of wind generation technology. As a research laboratory, NREL is a neutral, third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore wind. Market Analysis NREL's extensive research

  20. Energy Department Announces Innovative Offshore Wind Energy Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovative Offshore Wind Energy Projects Energy Department Announces Innovative Offshore Wind Energy Projects May 7, 2014 - 2:05pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- As a part of the Administration's all-of-the-above energy strategy, the Energy Department today announced the selection of three pioneering offshore wind demonstrations to receive up to $47 million each over the next four years to deploy innovative, grid-connected systems in federal and

  1. Federal Offshore--Gulf of Mexico Nonhydrocarbon Gases Removed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production Nonhydrocarbon Gases Removed from ...

  2. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from ...

  3. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Referring Pages: Natural Gas Gross Withdrawals from Shale Gas Wells Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from ...

  4. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Proved Reserves from Greater than 200 Meters Deep...

  5. Gulf of Mexico Federal Offshore Percentage of Crude Oil Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Crude Oil Production from Greater than 200 Meters Deep (Percent) Decade Year-0...

  6. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves from Less than 200 Meters Deep (Million Barrels)...

  7. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Greater than 200 Meters Deep (Million Barrels)...

  8. Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than...

  9. Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0...

  10. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Less than 200 Meters Deep (Billion Cubic...

  11. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

  12. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0...

  13. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters Deep (Billion...

  14. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Lease Condensate Proved Reserves from Greater than 200...

  15. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production from Greater than 200 Meters Deep (Percent) Decade...

  16. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Less than 200 Meters Deep (Billion...

  17. Gulf of Mexico Federal Offshore Percentage of Crude Oil Proved...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Crude Oil Proved Reserves from Greater than 200 Meters Deep (Percent)...

  18. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep (Billion Cubic Feet) Decade...

  19. Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Production from Greater than 200...

  20. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

  1. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves from Greater than 200 Meters Deep (Million...

  2. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep...

  3. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Production from Greater than 200 Meters Deep (Percent)...

  4. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

  5. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Lease Condensate Production from Greater than 200 Meters...

  6. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Less than 200 Meters Deep (Million Barrels) Decade...

  7. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200 Meters Deep...

  8. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    such as marine mammals, sea turtles, and fish in the offshore wind farm environment. ... in water (also called sonar) to locate marine mammals, sea turtles, and large fish. ...

  9. California Offshore Natural Gas Plant Liquids Production Extracted...

    Gasoline and Diesel Fuel Update (EIA)

    Plant Liquids Production Extracted in California (Million Cubic Feet) California Offshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade ...

  10. California State Offshore Natural Gas Plant Liquids, Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 ...

  11. California (with State Offshore) Natural Gas Liquids Lease Condensate...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas ... Referring Pages: Lease Condensate Estimated Production California Lease Condensate Proved ...

  12. California (with State Offshore) Natural Gas Plant Liquids, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 ...

  13. Property:PotentialOffshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric...

  14. Property:PotentialOffshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The...

  15. Offshore Wind Farm Model Development - Upcoming Release of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Farm Model Development - Upcoming Release of the University of Minnesota's ... September 16, 2015 - 1:14pm Addthis Large-eddy simulation of wind farms with ...

  16. 2014 WIND POWER PROGRAM PEER REVIEW-OFFSHORE DEMOS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Technologies PR-5000-62152 2 Contents GOWind Demonstration Project-Ian Hatton, Baryonyx Corporation Fishermen's Atlantic City Windfarm: Birthplace of Offshore Wind in ...

  17. Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  18. Louisiana--State Offshore Natural Gas Plant Liquids, Expected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  19. Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

  20. Mississippi (with State Offshore) Natural Gas Plant Liquids,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

  1. Texas State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  2. Louisiana State Offshore Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  3. New Reports Chart Offshore Wind's Path Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Chart Offshore Wind's Path Forward New Reports Chart Offshore Wind's Path Forward December 12, 2012 - 2:29pm Addthis Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. <a href=" http://energy.gov/articles/infographic-offshore-wind-outlook"> Click here</a> to view the full infographic. | Infographic by Sarah Gerrity. Taking a look at the challenges and opportunities that lie ahead as the U.S.

  4. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... energy and energy-cost savings, maintenance savings, greenhouse gas reductions, net ... DOE Announces Webinars on Pedestrian-Friendly Nighttime Lighting, an Offshore Wind ...

  5. EA-1985: Virginia Offshore Wind Technology Advancement Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles ... (OCS EISEA BOEM 2014-1000 and DOEEA-1985). http:www.boem.govVOWTAP PUBLIC ...

  6. Offshore Wind Technologie GmbH OWT | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Offshore Wind Technologie GmbH (OWT) Place: Leer, Germany Zip: 26789 Sector: Wind energy Product: Germany-based wind project developer....

  7. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL's analysis finds that the Gulf Coast's existing manufacturing workforce, supply ... The fixed-bottom offshore wind JEDI is one of several user-friendly NREL models that ...

  8. Federal Offshore California Natural Gas Plant Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

  9. Alabama Offshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0...

  10. Texas State Offshore Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

  11. ,"Federal Offshore California Natural Gas Withdrawals from Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Withdrawals from Gas Wells (MMcf)",1,"Annual",2014 ,"Release...

  12. Texas State Offshore Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  13. Texas State Offshore Nonassociated Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

  14. Louisiana Offshore Natural Gas Plant Liquids Production Extracted...

    Gasoline and Diesel Fuel Update (EIA)

    Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade...

  15. ,"Federal Offshore California Natural Gas Withdrawals from Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Withdrawals from Oil Wells (MMcf)",1,"Annual",2014 ,"Release...

  16. Offshore Resource Assessment and Design Conditions Public Meeting Summary Report

    Broader source: Energy.gov [DOE]

    Report from DOE's June 2011 meeting that focused on the critical meteorological and oceanographic measurements and data needed for successful deployment of offshore renewable energy technologies.

  17. Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 ...

  18. Texas (with State Offshore) Shale Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Shale Proved ... Shale Natural Gas Proved Reserves as of Dec. 31 Texas Shale Gas Proved Reserves, Reserves ...

  19. Texas (with State Offshore) Natural Gas Plant Liquids, Expected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  20. Texas (with State Offshore) Natural Gas Liquids Lease Condensate...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves (Million Barrels) Texas (with State Offshore) Natural Gas Liquids Lease ... Lease Condensate Proved Reserves as of Dec. 31 Texas Lease Condensate Proved Reserves, ...

  1. Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 ...

  2. Texas--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  3. EERE Success Story-University of Michigan Gets Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The University of Michigan received funding from EERE to develop a modeling tool to simulate surface water ice impact on offshore wind turbine designs, especially designs involving ...

  4. Los Alamos computer simulation improves offshore drill rig safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 24, 2015 A simulation of vortex induced motion shows how ocean currents affect offshore oil rigs. A simulation of vortex induced motion shows how ocean currents affect ...

  5. Offshore Resource Assessment and Design Conditions Public Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2011 Offshore Resource Assessment and Design Conditions Public Meeting More Documents & Publications Marine and Hydrokinetic Energy Projects 2014 Water Power Peer Review ...

  6. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  7. ,"Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  8. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  9. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  10. ,"Federal Offshore, Gulf of Mexico, Texas Nonassociated Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  11. ,"Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981" ,"Release...

  12. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  13. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  14. ,"Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  15. New Airborne Technology Measures Ocean Surface Currents for Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions New Airborne Technology Measures Ocean Surface Currents for ...

  16. Advanced Offshore Solutions ApS AOS | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Denmark-based consultancy for offshore wind industry. Coordinates: 56.091431, 10.13779 Show Map Loading map... "minzoom":false,"mappingservice":"googlema...

  17. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional ...

  18. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  19. 2011 Grants for Offshore Wind Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Web Policies Home Social Media Article Guidance History Offices 2011 Grants for Offshore Wind Power View All Maps Addthis Careers & Internships Contact Us link to facebook link to...

  20. Global Offshore Wind Farms Database | Open Energy Information

    Open Energy Info (EERE)

    Wind Farms Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Offshore Wind Farms Database Focus Area: Renewable Energy Topics: Deployment Data Website:...

  1. California--State Offshore Natural Gas Plant Liquids Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants California State Offshore Natural Gas Gross Withdrawals and Production...

  2. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (ReEDS) model for electricity generation and transmission, the study surveyed appropriate ... justify the high initial investment of offshore wind projects (Note ...

  3. Blowing in the Wind ...Offshore | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore February 10, 2011 - 9:28am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What will this project do? The new offshore wind strategy lays out a path to potentially have 54 gigawatts of offshore wind capacity by 2030, enough to power more than 15 million homes with clean, renewable energy. Have you ever flown a kite at the beach? If you have, you know how breezy it can be. A few miles

  4. DOE to Host a Booth at Offshore WINDPOWER

    Broader source: Energy.gov [DOE]

    The Wind Program will be exhibiting at the American Wind Energy Association (AWEA) Offshore WINDPOWER 2013 Conference & Exhibition in Providence, Rhode Island, from October 22-23, 2013. If you're attending, visit DOE's booth, #401, to learn more about the program's latest offshore wind energy research and development efforts and pick up a copy of the latest publications. On October 21, prior to the conference, DOE Wind Program representatives will be participating in the U.S. Offshore Wind Market and Supply Chain Workshop, which will present results from the DOE-funded annual offshore wind market report.

  5. New DOE Report Investigates Port Readiness for Offshore Wind

    Broader source: Energy.gov [DOE]

    As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind supply chain, because all plant and transport logistics must transit through these facilities. Therefore, it is important that federal and state policy-makers and port authorities understand offshore wind's ports requirements in planning future investments. The Department of Energy tasked the independent consultancy GL Garrad Hassan with reviewing the current capability of U.S. ports to support offshore wind project development and assessing the challenges and opportunities related to upgrading this capability to support the targeted capacity growth of as much as 54 gigawatts installed in U.S. waters by 2030.

  6. New DOE Reports Assess Offshore Wind Market and Supply Chain...

    Broader source: Energy.gov (indexed) [DOE]

    subsystems of offshore wind projects Federal, state, and local policymakers and economic development agencies, to assist in identifying policies and investment strategies with the ...

  7. Overview of the Federal Offshore Royalty Relief Program

    Reports and Publications (EIA)

    2006-01-01

    This special report briefly explains the set of laws that govern royalty payments for federal offshore oil and natural gas production.

  8. Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2010-11-23

    Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

  9. Long Island New York City Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Long Island New York City Offshore Wind Farm Jump to: navigation, search Name Long Island New York City Offshore Wind Farm Facility Long Island New York City Offshore Wind Farm...

  10. U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations

    Broader source: Energy.gov [DOE]

    Provides an account of the proceedings of public meeting DE-FOA-0000659 on February 7, 2012 in Washington, DC Contains discussion of the draft financial opportunity announcement DE-FOA-0000410-DRAFT Includes information on offshore wind and the national strategy of the U.S. Department of Energy

  11. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  12. Apparatus for removing oil and other floating contaminants from a moving body of water

    DOE Patents [OSTI]

    Strohecker, J.W.

    1973-12-18

    The patent describes a process in which floating contaminants such as oil and solid debris are removed from a moving body of water by employing a skimming system which uses the natural gravitational flow of the water. A boom diagonally positioned across the body of water diverts the floating contaminants over a floating weir and into a retention pond where an underflow weir is used to return contaminant-free water to the moving body of water. The floating weir is ballasted to maintain the contaminant-receiving opening therein slightly below the surface of the water during fluctuations in the water level for skimming the contaminants with minimal water removal.

  13. Sandia Energy - Joint Sandia-DOE-HMRC Testing of a Floating Oscillatin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillating Water Column Wave Energy Converter Device Home Renewable Energy Energy Water Power Partnership News News & Events Joint Sandia-DOE-HMRC Testing of a Floating...

  14. Floating point only SIMD instruction set architecture including compare, select, Boolean, and alignment operations

    DOE Patents [OSTI]

    Gschwind, Michael K.

    2011-03-01

    Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.

  15. Federal Offshore Gulf of Mexico Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore Gulf of Mexico Proved Reserves Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series 2002 2003 2004 2005 2006 2007 View History Dry Natural Gas (billion cubic feet) 24,689 22,059 18,812 17,007 14,549 13,634 1992-2007 Depth Less Than 200 Meters 14,423 12,224 10,433 8,964 8,033 NA 1992-2007 Depth Greater Than 200 Meters 10,266 9,835 8,379 8,043 6,516 NA 1992-2007 Percentage from Depth Greater

  16. Subsea solution solves deep problems - producing offshore

    SciTech Connect (OSTI)

    Gilman, B.

    1997-04-01

    Using remotely operated intervention techniques to perform tasks subsea offers advantages in terms of cost efficiency and safety, particularly in deepwater environments. These considerations have prompted the development of the patented Diverless Flowline Connection System (DCFS). The DFCS offers a proven, viable and cost-effective alternative. The DFCS is a lightweight modular Remotely Operated Vehicle (ROV) mounted package designed to complete the tie-in of single or bundled flowline and control umbilical jumpers of up to 18 inches in outer diameter on the seafloor. It has the flexibility to pull in and connect flowlines, umbilicals or both from either the flowline end or manifold, depending upon the operator`s preference. It requires a minimum of permanent subsea hardware or prior structural modifications and is capable of accommodating a variety of situations which can arise during a flowline tie-in, such as the flowline falling outside the target area or the testing and replacement of flowline connector seals. The system itself consists of a neutrally buoyant, skid-mounted module which can be attached to a variety of host work-class ROVs. The ROV and DFCS are deployed separately onto the seabed, and the ROV can dock and undock from the DFCS.

  17. Split ring floating air riding seal for a turbine

    SciTech Connect (OSTI)

    Mills, Jacob A

    2015-11-03

    A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, and a central passage connecting the annular cavity to the annular piston chamber to supply compressed air to the seal face, where the annular piston assembly is a split piston assembly to maintain a tight seal as coning of the rotor disk occurs.

  18. Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Vented ... Natural Gas Vented and Flared Federal Offshore Gulf of Mexico Natural Gas Gross ...

  19. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, ... operating in the marine environment where offshore wind farms could be installed. ...

  20. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect (OSTI)

    Russell E. Fray

    2007-06-30

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Progress continues to be made in establishing the program administration policies, procedures, and strategic foundation for future research awards. Significant progress was made in development of the draft program solicitations. In addition, RPSEA personnel continued an aggressive program of outreach to engage the industry and ensure wide industry participation in the research award solicitation process.

  1. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect (OSTI)

    Russell E. Fray

    2007-05-31

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Significant progress has been made in establishing the program administration policies, procedures, and strategic foundation for future research awards. RPSEA has concluded an industry-wide collaborative effort to identify focus areas for research awards under this program. This effort is summarized in the RPSEA Draft Annual Plan, which is currently under review by committees established by the Secretary of Energy.

  2. 2014-2015 Offshore Wind Technologies Market Report

    SciTech Connect (OSTI)

    Smith, Aaron

    2015-11-18

    This presentation provides an overview of progress toward offshore wind cost reduction in Europe and implications for the U.S. market. The presentation covers an overview of offshore wind developments, economic and performance trends, empirical evidence of LCOE reduction, and challenges and opportunities in the U.S. market.

  3. Proceedings of the 22nd annual offshore technology conference

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This book contains the proceeding of the 22 annual offshore technology conference, volume 1. Topics covered include: South China Sea extended well testing program: Implementation and results; API oil well cementing practices; Offshore grant fields, 1950 to 1990; Exploitation study and impact on the Korean formations; and South El Morgan Field, Gulf of Suez, Egypt.

  4. Federal offshore statistics: leasing, exploration, production, revenue

    SciTech Connect (OSTI)

    Essertier, E.P.

    1984-09-01

    This publication is a numerical record of what has happened since Congress gave authority to the Secretary of the Interior in 1953 to lease the federal portion of the Continental Shelf for oil and gas. The publication updates and augments the first Federal Offshore Statistics, published in December 1983. It also extends a statistical series published annually from 1969 until 1981 by the US Geological Survey (USGS) under the title Outer Continental Shelf Statistics. The USGS collected royalties and supervised operation and production of minerals on the Outer Continental Shelf (OCS) until the Minerals Management Service (MMS) took over these functions in 1982. Some of the highlights are: of the 329.5 million acres offered for leasing, 37.1 million acres were actually leased; total revenues for the 1954 to 1983 period were $68,173,112,563 and for 1983 $9,161,435,540; a total of 22,095 wells were drilled in federal waters and 10,145 wells were drilled in state waters; from 1954 through 1983, federal offshore areas produced 6.4 billion barrels of oil and condensate, and 62.1 trillion cubic feet of natural gas; in 1983 alone production was 340.7 million barrels of oil and condensate, and 3.9 trillion cubic feet of gas; and for the second straight year, no oil was lost in 1983 as a result of blowouts in federal waters. 8 figures, 66 tables.

  5. Management of offshore wastes in the United States.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-10-22

    During the process of finding and producing oil and gas in the offshore environment operators generate a variety of liquid and solid wastes. Some of these wastes are directly related to exploration and production activities (e.g., drilling wastes, produced water, treatment workover, and completion fluids) while other types of wastes are associated with human occupation of the offshore platforms (e.g., sanitary and domestic wastes, trash). Still other types of wastes can be considered generic industrial wastes (e.g., scrap metal and wood, wastes paints and chemicals, sand blasting residues). Finally, the offshore platforms themselves can be considered waste materials when their useful life span has been reached. Generally, offshore wastes are managed in one of three ways--onsite discharge, injection, or transportation to shore. This paper describes the regulatory requirements imposed by the government and the approaches used by offshore operators to manage and dispose of wastes in the US.

  6. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia

    Broader source: Energy.gov [DOE]

    DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

  7. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  8. Wind Measurement Buoy Advances Offshore Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement Buoy Advances Offshore Wind Energy Wind Measurement Buoy Advances Offshore Wind Energy December 7, 2015 - 1:52pm Addthis Wind Measurement Buoy Advances Offshore Wind Energy Alana Duerr Alana Duerr Ph.D., Ocean Engineer (New West Technologies) Seen here at a visit to the Energy Department's headquarters in Washington D.C., the Axys WindSentinel buoy is now deployed at its final destination off the coast of New Jersey. Photo courtesy: U.S. Department of Energy. The United States is a

  9. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect (OSTI)

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  10. Fixed-rate compressed floating-point arrays

    Energy Science and Technology Software Center (OSTI)

    2014-03-30

    ZFP is a library for lossy compression of single- and double-precision floating-point data. One of the unique features of ZFP is its support for fixed-rate compression, which enables random read and write access at the granularity of small blocks of values. Using a C++ interface, this allows declaring compressed arrays (1D, 2D, and 3D arrays are supported) that through operator overloading can be treated just like conventional, uncompressed arrays, but which allow the user tomore » specify the exact number of bits to allocate to the array. ZFP also has variable-rate fixed-precision and fixed-accuracy modes, which allow the user to specify a tolerance on the relative or absolute error.« less

  11. Evolutionary developments advancing the floating production, storage, and offloading concept

    SciTech Connect (OSTI)

    Carter, J.H.T.; Foolen, J.

    1982-01-01

    Tanker-based floating production, storage and offloading (FPSO) systems have been in operation since Aug. 1977, when a single-well FPSO was put into production by Shell Espana in the Mediterranean. The overall operational experience with this system at this field is reviewed. Special attention is directed to the wireline workover facilities which have proven to be satisfactory. A subsequent evolutionary step, a FPSO accommodating multiple wells, necessitated development of a multiple-bore product swivel. A design program for this swivel was initiated in 1978, a prototype was built and fullscale testing finalized in 1980. A summary of the test results is presented. Simultaneous with the multiple-bore swivel development, detailed engineering for an 8-well FPSO was begun. This sytem includes gas lift a

  12. System and method for floating-substrate passive voltage contrast

    DOE Patents [OSTI]

    Jenkins, Mark W.; Cole, Jr., Edward I.; Tangyunyong, Paiboon; Soden, Jerry M.; Walraven, Jeremy A.; Pimentel, Alejandro A.

    2009-04-28

    A passive voltage contrast (PVC) system and method are disclosed for analyzing ICs to locate defects and failure mechanisms. During analysis a device side of a semiconductor die containing the IC is maintained in an electrically-floating condition without any ground electrical connection while a charged particle beam is scanned over the device side. Secondary particle emission from the device side of the IC is detected to form an image of device features, including electrical vias connected to transistor gates or to other structures in the IC. A difference in image contrast allows the defects or failure mechanisms be pinpointed. Varying the scan rate can, in some instances, produce an image reversal to facilitate precisely locating the defects or failure mechanisms in the IC. The system and method are useful for failure analysis of ICs formed on substrates (e.g. bulk semiconductor substrates and SOI substrates) and other types of structures.

  13. 2014 Offshore Wind Market & Economic Analysis Cover Photo | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 Offshore Wind Market & Economic Analysis Cover Photo 2014 Offshore Wind Market & Economic Analysis Cover Photo Image icon Navigant 2014 Offshore Wind Market and Economic Analysis.JPG More Documents & Publications U.S. Wind Energy Manufacturing & Supply Chain Cover Photo Offshore Wind Projects 2014 Offshore Wind Market and Economic Analysis Wind Program Home About the Program Research & Development WINDExchange Financial Opportunities Information Resources News

  14. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...

  15. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...

  16. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1...

  17. Gulf of Mexico Federal Offshore Crude Oil Production from Greater...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2...

  18. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  19. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  20. Gulf of Mexico Federal Offshore Crude Oil Production from Less...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  1. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1...

  2. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Gulf of Mexico Federal Offshore Crude Oil Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 267 266...

  4. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  5. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1...

  6. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  8. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  9. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  10. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  11. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  12. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2...

  13. Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  14. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  15. Offshore Wind and Vehicle to Grid Power | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11, 2013, 4:30pm to 6:00pm Princeton University Computer Science Auditorium 104 Offshore Wind and Vehicle to Grid Power Professor Willett Kempton University of Delaware Professor...

  16. California--State Offshore Natural Gas Withdrawals from Gas Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. Federal Offshore California Natural Gas Withdrawals from Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  18. California Offshore Natural Gas Processed in California (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Processed in California (Million Cubic Feet) California Offshore Natural Gas Processed in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. Federal Offshore California Natural Gas Withdrawals from Gas...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  20. B9 Energy Offshore Developments Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: BT40 2SF Sector: Wind energy Product: Established in 2002 to develop the offshore wind energy potential in Northern Ireland. Coordinates: 54.85114, -5.823019...

  1. Overcoming Challenges in America’s Offshore Wind Industry

    Broader source: Energy.gov [DOE]

    A year of progress, preparation and promise was the theme connecting two days of panels and presentations last month at the 2013 American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island.

  2. New Report Shows Trend Toward Larger Offshore Wind Systems

    Broader source: Energy.gov [DOE]

    The Energy Department released a new report showing progress for the U.S. offshore wind energy market in 2012, including 11 commercial-scale U.S. projects reaching an advanced stage of development.

  3. Rhode Island to Build First Offshore Wind Farm

    Broader source: Energy.gov [DOE]

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  4. DOE Wind Program to Host Booth at Offshore WINDPOWER

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Wind Program will once again host a booth at the AWEA Offshore WINDPOWER Conference and Exhibition in Atlantic City, New Jersey, October 7 and 8, 2014.

  5. Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER October 1, 2012 - 11:15am Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D ...

  6. Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  9. Alaska--State Offshore Natural Gas Plant Liquids Production,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  10. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  11. Developing Integrated National Design Standards for Offshore Wind Plants

    Broader source: Energy.gov [DOE]

    The DOE Wind Program and the National Renewable Energy Laboratory recently published a report that summarizes the regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  12. Texas--State Offshore Natural Gas Plant Liquids, Expected Future...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  13. Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  14. Texas (with State Offshore) Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  15. Offshore Wind Resource Characterization Buoy “Open-Hatch” Exposition

    Broader source: Energy.gov [DOE]

    Please join the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy for an “Open-Hatch” as one of the nation’s most advanced offshore wind resource characterization buoys...

  16. New DOE Modeling Tool Estimates Economic Benefits of Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    benefits of offshore wind plants, the U.S. Department of Energy (DOE) recently released a new version of the Jobs and Economic Development Impact (JEDI) input-output modeling tool. ...

  17. Modeling the National Potential for Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Short, W.; Sullivan, P.

    2007-06-01

    The Wind Deployment System (WinDS) model was created to assess the potential penetration of offshore wind in the United States under different technology development, cost, and policy scenarios.

  18. Offshore Wind Balance-of-System Cost Modeling (Poster), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters, can yield a rise in BOS cost, such as the spike near 500 megawatts. Figure 4. Offshore wind fixed substructure BOS costs decrease as turbine rating increases, which is...

  19. “Open Hatch” Tour of Offshore Wind Buoy

    SciTech Connect (OSTI)

    Zayas, Jose

    2015-09-18

    Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development.

  20. FOR THE SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT/FINDING OF NO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 FOR THE SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT/FINDING OF NO SIGNIFICANT IMPACT FOR THE UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT CASTINE, MAINE DOE/EA-1792-S1 US Department of Energy Office of Energy Efficiency and Renewable Energy Golden, Colorado November 2014 Supplement Analysis - 2 i November 20, 2014 DOE/EA-1792-S1 CONTENTS 1.0 Background