National Library of Energy BETA

Sample records for deep vadose zone

  1. Deep Vadose Zone - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Range Deep Vadose Zone Program Plan, (Rev. 0) - (PDF) Implementation Plan for the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC) - (PDF) Ecology's groundwater...

  2. Deep Vadose Zone

    Broader source: Energy.gov [DOE]

    The Mission of the Deep Vadose Zone Applied Field Research Initiative is to protect water resources across the DOE complex over the long-term by developing effective solutions to solve DOE’s most...

  3. Applied Field Research Initiative Deep Vadose Zone

    Office of Environmental Management (EM)

    Applied Field Research Initiative Deep Vadose Zone Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the challenge of preventing contamination in the deep vadose zone from reaching groundwater. Led by the Pacific Northwest National Laboratory, the Initiative is a collaborative effort that leverages Department of Energy (DOE) investments in basic science and applied

  4. Deep Vadose Zone Field Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Insights from Thin Layers Deep Insights from Thin Layers March 13, 2014 - 4:08pm Addthis The Linac Coherent Light Source will create 3D images of single molecules using ultrafast pulses of very intense hard X-rays. | Image courtesy of SLAC. The Linac Coherent Light Source will create 3D images of single molecules using ultrafast pulses of very intense hard X-rays. | Image courtesy of SLAC. Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) How does it work? A

  5. Central Plateau Groundwater and Deep Vadose Zone Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vadose Zone Executive Council Hanford Advisory Board River and Plateau Committee Briant L. Charboneau DOE-RL, Soil and Groundwater Federal Project Director October 9, 2012 1 Discussion Topics * Purpose of the Executive Council - Why was this established? * Who participates? * What are the integration topics of interest to the Council? * Examples of groundwater and vadose zone integration - Deep Vadose Zone treatability testing leading to evaluation of measures to protect groundwater - B complex

  6. Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI)

    Broader source: Energy.gov [DOE]

    Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the challenge of...

  7. Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) - Overview

    SciTech Connect (OSTI)

    2011-02-01

    The Deep Vadoze Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources and to address the challenge of preventing contamination in the deep vadose zone from reaching groundwater. This factsheet provides an overview of the initiative and the approach to integrate basic science and needs-driven applied research activities with cleanup operations.

  8. Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark D.; Dresel, P. E.; Cantrell, Kirk J.

    2012-03-21

    Deep vadose zone contamination is a significant issue facing the U.S. Department of Energys (DOE) Office of Environmental Management (EM). Contamination in the deep vadose zone is isolated from exposure such that direct contact is not a factor in risk to human health and the environment; rather, movement of contamination from the deep vadose zone to the groundwater creates the potential for exposure and risk to receptors. Transport of deep vadose zone contamination and discharge to the groundwater creates the potential for exposure and risk to receptors, so limiting flux to groundwater is key for protection of groundwater resources. Remediation approaches for the deep vadose zone need to be considered within the regulatory context, targeted at mitigating the source of contamination and reduce contaminant flux to groundwater. This paper reviews the processes for deep vadose zone metal and radionuclide remediation as well as challenges and opportunities for implementation.

  9. Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides - 12025

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark; Cantrell, Kirk J.; Dresel, P. Evan

    2012-07-01

    Deep vadose zone contamination is a significant issue facing the U.S. Department of Energy's (DOE) Office of Environmental Management (EM). Contamination in the deep vadose zone is isolated from exposure such that direct contact is not a factor in risk to human health and the environment. Transport of deep vadose zone contamination and discharge to the groundwater creates the potential for exposure and risk to receptors, so limiting flux to groundwater is key for protection of groundwater resources. Remediation approaches for the deep vadose zone need to be considered within the regulatory context, targeted at mitigating the source of contamination and reducing contaminant flux to groundwater. Processes for deep vadose zone metal and radionuclide remediation are discussed, as well as challenges and opportunities for implementation. It may be useful to consider the risk and challenges with leaving contaminants in place as part of a flux-control remedy in comparison with risks associated with contaminant removal and final disposition elsewhere. Understanding and quantifying the ramifications of contaminant removal and disposition options are therefore warranted. While this review suggests that some additional development work is needed for deep vadose zone remediation techniques, the benefits of applying vadose zone remediation for groundwater protection are compelling and worthy of continued development. (authors)

  10. Contaminants in Vadose Zone Environments

    Broader source: Energy.gov [DOE]

    The Deep Vadose Zone – Applied Field Research Initiative (DVZ-AFRI) partnered with the Vadose Zone Journal to create a special section of the journal's November 2012 issue.

  11. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Soil Desiccation Pilot Test Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Freedman, Vicky L.; Johnson, Christian D.; Greenwood, William J.; Ward, Anderson L.; Clayton, Ray E.; Lindberg, Michael J.; Peterson, John E.; Hubbard, Susan; Chronister, Glen B.; Benecke, Mark W.

    2012-05-01

    This report describes results of a pilot test of soil desiccation conducted as part of the Deep Vadose Zone Treatability Test program. The report is written in CERCLA treatabilty test report format.

  12. Technical Basis for Evaluating Surface Barriers to Protect Groundwater from Deep Vadose Zone Contamination

    SciTech Connect (OSTI)

    Fayer, Michael J.; Ward, Anderson L.; Freedman, Vicky L.

    2010-02-03

    This document presents a strategy for evaluating the effectiveness of surface barriers for site-specific deep vadose zone remediation. The strategy provides a technically defensible approach to determine the depth to which a surface barrier can effectively isolate contaminants in the vadose at a specific site as a function of subsurface properties, contaminant distribution, barrier design, and infiltration control performance. The strategy also provides an assessment of additional data and information needs with respect to surface barrier performance for deep vadose zone applications. The strategy addresses the linkage between surface barriers and deep vadose zone in situ remediation activities, monitoring issues, and emerging science, technology, and regulatory objectives. In short, the report documents the existing knowledge base, identifies knowledge needs (based on data gaps), and suggests tasks whose outcomes will address those knowledge needs. More important, the report serves as a starting point to engage the regulator and stakeholder community on the viability of deploying surface barriers for deep vadose zone contamination. As that engagement unfolds, a systematic methodology can be formalized and instituted. The strategy is focused on deep vadose zone contamination and the methods needed to determine the impact to groundwater from those deep vadose zone contaminants. Processes that affect surface barrier performance, recharge in the areas surrounding the surface barrier, and the near-surface vadose zone beneath the barrier are acknowledged but are not addressed by this strategy. In addition, the collection of site-specific data on contaminant distribution and geologic structure and properties are programmatic responsibilities and are not provided by this strategy.

  13. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  14. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    SciTech Connect (OSTI)

    FAYER JM; FREEDMAN VL; WARD AL; CHRONISTER GB

    2010-02-24

    The U.S. DOE and its predecessors released nearly 2 trillion liters (450 billion gallons) of contaminated liquid into the vadose zone at the Hanford Site. Some of the contaminants currently reside in the deeper parts of the vadose zone where they are much less accessible to characterization, monitoring, and typical remediation activities. The DOE Richland Operations Office (DOE-RL) prepared a treatability test plan in 2008 to examine remediation options for addressing contaminants in the deep vadose zone; one of the technologies identified was surface barriers (also known as engineered barriers, covers, and caps). In the typical configuration, the contaminants are located relatively close to the surface, generally within 15 m, and thus they are close to the base of the surface barrier. The proximity of the surface barrier under these conditions yielded few concerns about the effectiveness of the barrier at depth, particularly for cases in which the contaminants were in a lined facility. At Hanford, however, some unlined sites have contaminants located well below depths of 15 m. The issue raised about these sites is the degree of effectiveness of a surface barrier in isolating contaminants in the deep vadose zone. Previous studies by Hanford Site and PNNL researchers suggest that surface barriers have the potential to provide a significant degree of isolation of deep vadose zone contaminants. The studies show that the actual degree of isolation is site-specific and depends on many factors, including recharge rates, barrier size, depth of contaminants, geohydrologic properties ofthe sediments, and the geochemical interactions between the contaminants and the sediments. After the DOE-RL treatability test plan was published, Pacific Northwest National Laboratory was contracted to review the information available to support surface barrier evaluation for the deep vadose zone, identify gaps in the information and outcomes necessary to fill the data gaps, and outline

  15. Evaluation of In Situ Grouting as a Potential Remediation Method for the Hanford Central Plateau Deep Vadose Zone

    SciTech Connect (OSTI)

    Truex, Michael J.; Pierce, Eric M.; Nimmons, Michael J.; Mattigod, Shas V.

    2011-01-11

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau report identifies in situ grouting as a potential remediation technology for the deep vadose zone and includes a planned effort to evaluate in situ grouting to provide information for future feasibility studies. This report represents the first step in this evaluation effort.

  16. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.

    2011-10-01

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative

  17. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    SciTech Connect (OSTI)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  18. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  19. Potential for Microbial Stimulation in Deep Vadose Zone Sediments by Gas-Phase Nutrients

    SciTech Connect (OSTI)

    Li, S.W.; Plymale, A. E.; Brockman, F.J.

    2006-04-05

    Viable microbial populations are low, typically 10{sup 4} cells per gram, in deep vadose zones in arid climates. There is evidence that microbial distribution in these environments is patchy. In addition, infiltration or injection of nutrient-laden water has the potential to spread and drive contaminants downward to the saturated zone. For these reasons, there are uncertainties regarding the feasibility of bioremediation of recalcitrant contaminants in deep vadose zones. The objectives of this study were to investigate the occurrence of denitrifying activity and gaseous carbon-utilizing activity in arid-climate deep vadose zone sediments contaminated with, and/or affected by past exposure to, carbon tetrachloride (CT). These metabolisms are known to degrade CT and/or its breakdown product chloroform under anoxic conditions. A second objective was to determine if CT would be degraded in these sediments under unsaturated, bulk-phase aerobic incubation conditions. Both denitrifier population (determined by MPN) and microbial heterotrophic activity (measured by mineralization of 14-C labeled glucose and acetate) were relatively low and the sediments with greater in situ moisture (10-21% versus 2-7%) tended to have higher activities. When sediments were amended with gaseous nutrients (nitrous oxide and triethyl/tributyl phosphate) and gaseous C sources (a mixture of methane, ethane, propylene, propane, and butane) and incubated for 6 months, approximately 50% of the samples showed removal of one or more gaseous C sources, with butane most commonly used (44% of samples), followed by propylene (42%), propane (31%), ethane (22%), and methane (4%). Gaseous N and gaseous P did not stimulate removal of gaseous C substrates compared to no addition of N and P. CT and gaseous C sources were spiked into the sediments that removed gaseous C sources to determine if hydrocarbon-degraders have the potential to degrade CT under unsaturated conditions. In summary, gaseous C sources

  20. Implementation Plan for the Deep Vadose Zone-Applied Field Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    209 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Implementation Plan for the Deep Vadose Zone-Applied Field Research Center DM Wellman RE Gephart MJ Truex MB Triplett MD Freshley TC Johnson February 2011 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express

  1. Model Fit to Experimental Data for Foam-Assisted Deep Vadose Zone Remediation

    SciTech Connect (OSTI)

    Roostapour, A.; Lee, G.; Zhong, Lirong; Kam, Seung I.

    2014-01-15

    Foam has been regarded as a promising means of remeidal amendment delivery to overcome subsurface heterogeneity in subsurface remediation processes. This study investigates how a foam model, developed by Method of Characteristics and fractional flow analysis in the companion paper of Roostapour and Kam (2012), can be applied to make a fit to a set of existing laboratory flow experiments (Zhong et al., 2009) in an application relevant to deep vadose zone remediation. This study reveals a few important insights regarding foam-assisted deep vadose zone remediation: (i) the mathematical framework established for foam modeling can fit typical flow experiments matching wave velocities, saturation history , and pressure responses; (ii) the set of input parameters may not be unique for the fit, and therefore conducting experiments to measure basic model parameters related to relative permeability, initial and residual saturations, surfactant adsorption and so on should not be overlooked; and (iii) gas compressibility plays an important role for data analysis, thus should be handled carefully in laboratory flow experiments. Foam kinetics, causing foam texture to reach its steady-state value slowly, may impose additional complications.

  2. Implementation Plan for the Deep Vadose Zone-Applied Field Research Center

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark D.; Gephart, Roy E.; Triplett, Mark B.; Johnson, Timothy C.

    2011-02-11

    The Long-Range Deep Vadose Zone Program Plan was published in October 2010. It summarized the U.S. Department of Energy’s (DOE’s) state-of-knowledge about the contaminant remediation challenges facing the deep vadose zone (DVZ) beneath the Central Plateau of the Hanford Site and their approach to solving those challenges. Developing an implementation plan is the next step to address the knowledge and capabilities required to solve DVZ challenges when needed. This multi-year plan (FY-11 through FY-20) identifies the short to long-term research, management, and execution plans required to solve those problems facing the DVZ-Applied Field Research Center (DVZ-AFRC). The schedule supporting implementation overlies existing activities and milestones from Hanford’s DOE-Environmental Management (EM) end-user projects. Success relies upon multi-project teams focused on coordinated subsurface projects undertaken across the DOE Complex combined with facilitated, problem-focused, research investments implemented through the DVZ-AFRC.

  3. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    SciTech Connect (OSTI)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Dever, L.G.; O`Neill, L.J. [DOE Nevada Operations Office, Las Vegas, NV (United States). Waste Management Div.; Tyler, S.W. [Desert Research Institute, Reno, NV (United States). Water Resources Center; Chapman, J. [Desert Research Institute, Las Vegas, NV (United States). Water Resources Center

    1994-03-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement.

  4. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    SciTech Connect (OSTI)

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2014-09-01

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  5. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  6. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    SciTech Connect (OSTI)

    Truex, Michael J.; Strickland, Christopher E.; Oostrom, Martinus; Johnson, Christian D.; Tartakovsky, Guzel D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  7. Vadose zone water fluxmeter

    DOE Patents [OSTI]

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  8. Deep Vadose Zone–Applied Field Research Initiative Fiscal Year 2012 Annual Report

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Truex, Michael J.; Johnson, Timothy C.; Bunn, Amoret L.; Golovich, Elizabeth C.

    2013-03-14

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2012.

  9. Vadose zone isobaric well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2001-01-01

    A deep tensiometer is configured with an outer guide tube having a vented interval along a perforate section at its lower end, which is isolated from atmospheric pressure at or above grade. A transducer having a monitoring port and a reference port is located within a coaxial inner guide tube. The reference port of the transducer is open to the vented interval of the outer guide tube, which has the same gas pressure as in the sediment surrounding the tensiometer. The reference side of the pressure transducer is thus isolated from the effects of atmospheric pressure changes and relative to pressure changes in the material surrounding the tensiometer measurement location and so it is automatically compensated for such pressure changes.

  10. Vadose Zone Microbiology: Science and Applications

    SciTech Connect (OSTI)

    Brockman, Fred J.; Bradley, Stephen D.; Kieft, Thomas L.

    2002-03-12

    Brockman FJ, SN Bradley and TL Kieft. 2002. Vadose zone microbiology. In Encyclopedia of Environmental Microbiology, volume 6, pp. 3236-3246. John Wiley and Sons, New York.

  11. Vadose Zone Transport Field Study: Status Report

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-30

    Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of the past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.

  12. Effects of remediation amendments on vadose zone microorganisms

    SciTech Connect (OSTI)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  13. FOAM: NOVEL DELIVERY TECHNOLOGY FOR REMEDIATION OF VADOSE ZONE ENVIRONMENTS

    SciTech Connect (OSTI)

    Jansik, Danielle P.; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Wu, Yuxin; Foote, Martin; Zhang, Z. F.; Hubbard, Susan

    2011-07-05

    Deep vadose zone environments can be a primary source and pathway for contaminant migration to groundwater. These environments present unique characterization and remediation challenges that necessitate scrutiny and research. The thickness, depth, and intricacies of the deep vadose zone, combined with a lack of understanding of the key subsurface processes (e.g., biogeochemical and hydrologic) affecting contaminant migration, make it difficult to create validated conceptual and predictive models of subsurface flow dynamics and contaminant behavior across multiple scales. These factors also make it difficult to design and deploy sustainable remedial approaches and monitor long-term contaminant behavior after remedial actions. Functionally, the methods for addressing contamination must remove and/or reduce transport of contaminants. This problem is particularly challenging in the arid western United States where the vadose zone is hundreds of feet thick, rendering transitional excavation methods exceedingly costly and ineffective. Delivery of remedial amendments is one of the most challenging and critical aspects for all remedy-based approaches. The conventional approach for delivery is through injection of aqueous remedial solutions. However, heterogeneous deep vadose zone environments present hydrologic and geochemical challenges which limit the effectiveness. Because the flow of solution infiltration is dominantly controlled by gravity and suction, injected liquid preferentially percolates through highly permeable pathways, by-passing low-permeability zones which frequently contain the majority of contamination. Moreover, the wetting front can readily mobilize and enhance contaminant transport to the underlying aquifer prior to stabilization. Development of innovative, in-situ technologies may be the only way to meet remedial action objectives and long-term stewardship goals. Surfactants can be used to lower the liquid surface tension and create stabile foams

  14. Mass transport of volatile organic compounds between the saturated and vadose zones. Master`s thesis

    SciTech Connect (OSTI)

    Harner, M.S.

    1996-12-01

    Volatile organic compounds (VOCs) dissolved in the saturated zone are transported into the vadose zone primarily by gaseous phase diffusion. If the saturated zone is remediated, VOCs present in the vadose zone may become a secondary source of contamination for the groundwater. The amount of VOCs that remain in the vadose zone is dependent on site hydrology, soil properties, and the chemical properties of the contaminants. The purpose of this study was to determine what conditions caused VOC concentrations in the vadose zone to significantly recontaminate the saturated zone. A one-dimensional numerical model was developed to investigate the transport of a VOC, trichioroethylene, between the saturated and vadose zones under a variety of conditions. The model featured steady-state unsaturated water flow and transient contaminant transport. Transport mechanisms included aqueous phase advection-dispersion and gaseous phase diffusion. Partitioning between the water, gas, and soil compartments were modeled as equilibrium processes. Sensitivity analyses were performed on several variables including soil type (homogeneous and heterogeneous profiles), water infiltration rate and vadose zone depth. Results indicated that recontamination was most significant rate, and vadose zone depth. Results indicated that recontamination was most significant in the presence of heterogeneous soils, low infiltration rates and deep vadose zones.

  15. New Approach to Assess Volatile Contamination in Vadose Zone Provides Path Forward for Site Closure

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. and LOS ALAMOS, N.M. – Through the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI), scientists and engineers from Pacific Northwest National Laboratory, CH2M HILL Plateau Remediation Company, federal agencies, and the scientific community are collaborating to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination.

  16. Vadose Zone Transport Field Study: Summary Report

    SciTech Connect (OSTI)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energys Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanfords vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNLs Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration

  17. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  18. Remediation of Uranium in the Hanford Vadose Zone Using Gas-Transported Reactants: Laboratory Scale Experiments in Support of the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Williams, Mark D.; Resch, Charles T.; McKinley, James P.

    2010-01-04

    This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Uranium is present in the sediment in multiple phases that include (in decreasing mobility): aqueous U(VI) complexes, adsorbed U, reduced U(IV) precipitates, rind-carbonates, total carbonates, oxides, silicates, phosphates, and in vanadate minerals. Geochemical changes were evaluated in the ability to change the mixture of surface U phases to less mobile forms, as defined by a series of liquid extractions that dissolve progressively less soluble phases. Although liquid extractions provide some useful information as to the generalized uranium surface phases (and are considered operational definitions of extracted phases), positive identification (by x-ray diffraction, electron microprobe, other techniques) was also used to positively identify U phases and effects of treatment. Some of the changes in U mobility directly involve U phases, whereas other changes result in precipitate coatings on U surface phases. The long-term implication of the U surface phase changes to alter U mass mobility in the vadose zone was then investigated using simulations of 1-D infiltration and downward migration of six U phases to the water table. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. Phosphate addition (mist or foam advected) showed

  19. Deficiencies in Vadose Zone Understanding at the INEEL

    SciTech Connect (OSTI)

    Wood, Thomas Ronald; Bates, Dona Louise; Bishop, Carolyn Wagoner; Heard, Robert Eugene; Hubbell, Joel Michael; Hull, Laurence Charles; Lehman, Richard Michael; Magnuson, Swen O; Mattson, Earl Douglas; Mccarthy, James Michael; Porro, Indrek; Ritter, Paul David; Roddy, Michael Scott; Singler, Robert Edward; Smith, Richard Paul

    2000-08-01

    Subsurface contamination in the vadose zone, that portion of the subsurface pathway between land surface and an underlying aquifer, poses environmental problems at the Idaho National Engineering and Environmental Laboratory (INEEL) in eastern Idaho and across the U.S. Department of Energy complex. Assessing potential adverse impacts from these contaminated sites requires an understanding of the mechanisms controlling contaminant transport. Currently, vadose zone experts at the INEEL cannot with confidence predict the movement of water and contaminants in the complex, heterogeneous, fractured subsurface at the INEEL, especially within the vadose zone. In the draft version (Revision 1) of the Vadose Zone Deficiencies document, deficiencies in scientific understanding of flow and transport processes in the vadose zone at the INEEL were identified and grouped into 13 categories and recommendations were provided to address each of the deficiencies. The draft document provided the basis for an INEEL Vadose Zone Workshop that was conducted October 20 and 21, 1999, in Idaho Falls, Idaho. The workshop was conducted to group and rank the previously identified deficiencies and for the subsequent development of science plans to address the deficiencies that limit reliable predictions of water and contaminant movement in the subsurface. The workshop participants, comprising INEEL and scientists and project managers and non-INEEL scientists knowledgeable about the vadose zone, developed science- and technology-based recommendations derived through a series of technical sessions at the workshop. In this document, the final version of the Vadose Zone Deficiencies document, the draft document has been incorporated, largely intact, as well as the results from the workshop. The workshop participants grouped the deficiencies in vadose zone understanding at the INEEL into seven categories. These seven categories will be the focus areas of five science plans that are being developed to

  20. GEOPHYSICS AND SITE CHARACTERIZATION AT THE HANFORD SITE THE SUCCESSFUL USE OF ELECTRICAL RESISTIVITY TO POSITION BOREHOLES TO DEFINE DEEP VADOSE ZONE CONTAMINATION - 11509

    SciTech Connect (OSTI)

    GANDER MJ; LEARY KD; LEVITT MT; MILLER CW

    2011-01-14

    Historic boreholes confirmed the presence of nitrate and radionuclide contaminants at various intervals throughout a more than 60 m (200 ft) thick vadose zone, and a 2010 electrical resistivity survey mapped the known contamination and indicated areas of similar contaminants, both laterally and at depth; therefore, electrical resistivity mapping can be used to more accurately locate characterization boreholes. At the Hanford Nuclear Reservation in eastern Washington, production of uranium and plutonium resulted in the planned release of large quantities of contaminated wastewater to unlined excavations (cribs). From 1952 until 1960, the 216-U-8 Crib received approximately 379,000,000 L (100,000,000 gal) of wastewater containing 25,500 kg (56,218 lb) uranium; 1,029,000 kg (1,013 tons) of nitrate; 2.7 Ci of technetium-99; and other fission products including strontium-90 and cesium-137. The 216-U-8 Crib reportedly holds the largest inventory of waste uranium of any crib on the Hanford Site. Electrical resistivity is a geophysical technique capable of identifying contrasting physical properties; specifically, electrically conductive material, relative to resistive native soil, can be mapped in the subsurface. At the 216-U-8 Crib, high nitrate concentrations (from the release of nitric acid [HNO{sub 3}] and associated uranium and other fission products) were detected in 1994 and 2004 boreholes at various depths, such as at the base of the Crib at 9 m (30 ft) below ground surface (bgs) and sporadically to depths in excess of 60 m (200 ft) bgs. These contaminant concentrations were directly correlative with the presence of observed low electrical resistivity responses delineated during the summer 2010 geophysical survey. Based on this correlation and the recently completed mapping of the electrically conductive material, additional boreholes are planned for early 2011 to identify nitrate and radionuclide contamination: (a) throughout the entire vertical length of the

  1. Options To Cleanup Site-wide Vadose Zone Contamination At The Hanford Site, WA, State

    SciTech Connect (OSTI)

    Goswami, D. [Ph.D, and John Price, Nuclear Waste Program, Washington State Department of Ecology, Richland, WA (United States)

    2008-07-01

    The U.S. Department of Energy (DOE) Hanford Site in south central Washington State lies along the Columbia River and is one of DOE's largest legacy waste management sites. Enormous radionuclide and chemical inventories exist below-ground. These include Resource Conservation and Recovery Act (RCRA) storage facilities where hazardous and radioactive contaminants were discharged and leaked to the soil surface and to the deep vadose zone and groundwater. The vadose zone is also contaminated from facilities regulated by the RCRA and Comprehensive Environmental Response Compensation and Liability Act (CERCLA) Act. Hanford now contains as much as 28,300 cubic meters of soil contaminated with radionuclides from liquid wastes released near processing facilities. The Hanford Federal Facility Agreement and Consent Order, Tri-Party Agreement (TPA) has set the completion of the cleanup of these sites by 2024. There are numerous technical and regulatory challenges to cleanup of the vadose zone at the Hanford site. This paper attempts to identify the categories of deep vadose zone problem and identifies a few possible regulatory options to clean up the site under the mix of state and federal regulatory authorities. There are four major categories of vadose contamination areas at the Hanford Site. The first is laterally extensive with intermediate depth (ground surface to about 45 meters depth) mostly related to high volume effluent discharge into cribs, ponds and ditches of designated CERCLA facilities. The second is dominated by laterally less extensive mostly related to leaks from RCRA tank farms. The later contamination is often commingled at depth with wastes from adjacent CERCLA facilities. The third category is from the high volume CERCLA facilities extending from the surface to more than 60 meters below ground. Contamination from the later category crosses the entire thickness of the vadose zone and reached groundwater. The fourth category is the lower volume waste sites

  2. 1999 vadose zone monitoring plan and guidance for subsequent years

    SciTech Connect (OSTI)

    Horton, D.G.; Reidel, S.P.; Last, G.V.

    1998-08-01

    The US Department of Energy`s Hanford Site has the most diverse and largest amounts of radioactive waste in the US. The majority of the liquid waste was disposed to the soil column where much of it remains today. This document provides the rationale and general framework for vadose zone monitoring at cribs, ditches, trenches and other disposal facilities to detect new sources of contamination and track the movement of existing contamination in the vadose zone for the protection of groundwater. The document provides guidance for subsequent site-specific vadose zone monitoring plans and includes a brief description of past vadose monitoring activities (Chapter 3); the results of the Data Quality Objective process used for this plan (Chapter 4); a prioritization of liquid waste disposal sites for vadose monitoring (Chapter 5 and Appendix B); a general Monitoring and Analysis Plan (Chapter 6); a general Quality Assurance Project Plan (Appendix A), and a description of vadose monitoring activities planned for FY 1999 (Appendix C).

  3. EVALUATION OF VADOSE ZONE TREATMENT TECHNOLOGIES TO IMMOBILIZE TECHNETIUM-99

    SciTech Connect (OSTI)

    PETERSEN, S.W.

    2006-03-15

    The Hanford Site End State Vision document (DOE/RL-2003-59) states: ''There should be an aggressive plan to develop technology for remediation of the contamination that could get to the groundwater (particularly the technetium [{sup 99}Tc])''. In addition, there is strong support from the public and regulatory agencies for the above statement, with emphasis on investigation of treatment alternatives. In July 2004, PNNL completed a preliminary evaluation of remediation technologies with respect to their effectiveness and implementability for immobilization of {sup 99}Tc beneath the BC Cribs in the 200 West Area (Truex, 2004). As a result of this evaluation, PNNL recommended treatability testing of in situ soil desiccation, because it has the least uncertainty of those technologies evaluated in July 2004 (Treatability Test Outline, September 30, 2004). In 2005, DOE-RL and Fluor Hanford convened an independent technical panel to review alternative remediation technologies, including desiccation, at a three-day workshop in Richland, Washington. The panel was composed of experts in vadose-zone transport, infiltration control, hydrology, geochemistry, environmental engineering, and geology. Their backgrounds include employment in academia, government laboratories, industry, and consulting. Their review, presented in this document, is based upon written reports from Hanford, oral presentations from Hanford staff, and each panel members' years of experience in their particular field of expertise. The purpose of this report is to document the panel's evaluation of various treatment alternatives with potential for minimizing contaminant migration in the deep vadose zone at the Department of Energy Hanford Site. The panel was tasked with assessing the most viable and practical approach and making recommendations for testing. The evaluation of vadose-zone treatment alternatives was conducted to be broadly applicable at a variety of locations at Hanford. However, because of

  4. Vadose Zone Transport Field Study: FY 2002 Status Report

    SciTech Connect (OSTI)

    Ward, Anderson L.; Gee, Glendon W.; Zhang, Z. F.; Keller, Jason M.

    2003-01-02

    This work reported here is part of the U. S. Department of Energys Science and Technology Initiative to develop improved conceptual models of flow and transport in the vadose zone, particularly for the Hanford Site, Washington. The National Academy of Sciences has identified significant knowledge gaps in conceptual model development as one reason for discovery of subsurface contamination in unexpected places. Inadequate conceptualizations limits, not only the understanding of long-term fate and transport, but also the selection and design of remediation technologies. Current conceptual models are limited partly because they do not account for the random heterogeneity that occurs under the extremes of very nonlinear flow behavior typical of the Hanford vadose zone. A major improvement in conceptual modeling of the Hanford vadose zone includes a better understanding and description of soil anisotropy, a property that appears to control much of the subsurface flow and transport in layered sediments at the Hanford Site.

  5. Sensitivity of Vadose Zone Water Fluxes to Climate Shifts in Arid Settings

    SciTech Connect (OSTI)

    Pfletschinger, Heike; Prommel, K.; Schuth, C.; Herbst, M.; Engelhardt, I.

    2014-01-13

    Vadose zone water fluxes in arid settings are investigated regarding their sensitivity to hydraulic soil parameters and meteorological data. The study is based on the inverse modeling of highly defined soil column experiments and subsequent scenario modeling comparing different climate projections for a defined arid region. In arid regions, groundwater resources are prone to depletion due to excessive water use and little recharge potential. Especially in sand dune areas, groundwater recharge is highly dependent on vadose zone properties and corresponding water fluxes. Nevertheless, vadose zone water fluxes under arid conditions are hard to determine owing to, among other reasons, deep vadose zones with generally low fluxes and only sporadic high infiltration events. In this study, we present an inverse model of infiltration experiments accounting for variable saturated nonisothermal water fluxes to estimate effective hydraulic and thermal parameters of dune sands. A subsequent scenario modeling links the results of the inverse model with projections of a global climate model until 2100. The scenario modeling clearly showed the high dependency of groundwater recharge on precipitation amounts and intensities, whereas temperature increases are only of minor importance for deep infiltration. However, simulated precipitation rates are still affected by high uncertainties in the response to the hydrological input data of the climate model. Thus, higher certainty in the prediction of precipitation pattern is a major future goal for climate modeling to constrain future groundwater management strategies in arid regions.

  6. Vadose Zone Hydrogeology Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Last, George V.; Freeman, Eugene J.; Cantrell, Kirk J.; Fayer, Michael J.; Gee, Glendon W.; Nichols, William E.; Bjornstad, Bruce N.; Horton, Duane G.

    2006-06-01

    This data package documents the technical basis for selecting physical and geochemical parameters and input values that will be used in vadose zone modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc., Richland, Washington, and revised as part of the Characterization of Systems Project managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Richland Operations Office (DOE-RL). This data package describes the geologic framework, the physical, hydrologic, and contaminant transport properties of the geologic materials, and deep drainage (i.e., recharge) estimates, and builds on the general framework developed for the initial assessment conducted using the System Assessment Capability (SAC) (Bryce et al. 2002). The general approach for this work was to update and provide incremental improvements over the previous SAC data package completed in 2001. As with the previous SAC data package, much of the data and interpreted information were extracted from existing documents and databases. Every attempt was made to provide traceability to the original source(s) of the data or interpretations.

  7. A comprehensive analysis of contaminant transport in the vadose zone beneath tank SX-109

    SciTech Connect (OSTI)

    Ward, A.L.; Gee, G.W.; White, M.D.

    1997-02-01

    The Vadose Zone Characterization Project is currently investigating the subsurface distribution of gamma-emitting radionuclides in S and SX Waste Management Area (WMA-S-SX) located in the 200 West Area of the US Department of Energy`s Hanford Site in southeastern Washington State. Spectral-gamma logging of boreholes has detected elevated {sup 137}Cs concentrations as deep as 38 m, a depth considered excessive based on the assumed geochemistry of {sup 137}Cs in Hanford sediments. Routine groundwater sampling under the Resource Conservation and Recovery Act (RCRA) have also detected elevated levels of site-specific contaminants downgradient of WMA-S-SX. The objective of this report is to explore the processes controlling the migration of {sup 137}Cs, {sup 99}Tc, and NO{sub 3} through the vadose zone of WMA-S-SX, particularly beneath tank SX-109.

  8. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    SciTech Connect (OSTI)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple PhasesWater-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  9. A Catalog of Vadose Zone Hydraulic Properties for the Hanford Site

    SciTech Connect (OSTI)

    Freeman, Eugene J.; Khaleel, Raziuddin; Heller, Paula R.

    2001-09-24

    The purpose of this catalog is to integrate all available soil physics data and information from vadose zone characterization and performance assessments into one useable, scientifically defensible document.

  10. TWRS vadose zone contamination issue expert panel report

    SciTech Connect (OSTI)

    Shafer, D.S.

    1997-05-01

    When members were first canvassed for participation in the Vadose Zone Expert Panel the stated purpose for convening the Panel was to review a controversial draft report, the SX Tank Farm Report. This report was produced by a DOE Grand Junction Project Office (GJPO) contractor, RUST Geotech, now MACTEC-ERS, for the DOE Richland Office (DOERL). Three meetings were planned for June, July and August, 1995 to review the draft report and to complete a Panel report by mid-September. The Expert Panel has found its efforts confounded by various non-technical issues. The Expert Panel has chosen to address some of the non-technical issues in this Preface rather than to dilute the technical discussion that follows in the body of this independent expert panel status report (Panel Report). Rather than performing a straightforward manuscript review, the Panel was asked to resolve conflicting interpretations of gamma-ray logging measurements performed in vadose zone boreholes (drywells) surrounding the high-level radioactive wastes of the SX tank farm. There are numerous and complex technical issues that must be evaluated before the vertical and radial extent of contaminant migration at the SX tank farm can be accurately assessed. When the Panel first met in early June, 1996, it quickly became apparent that the scientific and technical issues were obscured by policy and institutional affairs which have polarized discussion among various segments of the Hanford organization. This situation reflects the kinds of institutional problems described separately in reports by the National Research Council of the National Academy of Sciences (NAS/NRC), The Hanford Tanks Environmental Impacts and Policy Choices and BmTiers to Science: Technical Management of the Department of Energy Environmental Remediation Program. The Vadose Zone Characterization Program, appears to be caught between conflicting pressures and organizational mandates, some imposed from outside DOE-RL and some self

  11. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    SciTech Connect (OSTI)

    Fred Brokman; John Selker; Mark Rockhold

    2004-01-26

    While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination.

  12. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    SciTech Connect (OSTI)

    Brockman, Fred J.; Selker, John S.; Rockhold, Mark L.

    2004-10-31

    Executive Summary - While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination...

  13. Vadose Zone Characterization Techniques Developed by EMSP Research

    SciTech Connect (OSTI)

    Guillen, Donna P.

    2003-02-24

    This paper discusses research contributions made by Environmental Management Science Program (EMSP) research in the area of geophysical characterization of the subsurface. The goal of these EMSP research projects is to develop combined high-resolution measurement and interpretation packages that provide accurate, timely information needed to characterize the vadose zone. Various types of geophysical imaging techniques can be used to characterize the shallow subsurface. Since individual geophysical characterization tools all have specific limitations, many different techniques are being explored to provide more widespread applicability over a range of hydrogeologic settings. A combination of laboratory, field, theoretical, and computational studies are necessary to develop our understanding of how contaminants move through the vadose zone. This entails field tests with field-hardened systems, packaging and calibration of instrumentation, data processing and analysis algorithms, forward and inverse modeling, and so forth. DOE sites are seeking to team with EMSP researchers to leverage the basic science research investment and apply these advances to address subsurface contamination issues that plague many U.S. Department of Energy (DOE) sites.

  14. Summary of Vadose -- Zone Conceptual Models for Flow and Contaminant Transport and 1999 - 2003 Progress on Resolving Deficiencies in Understanding the Vadose Zone at the INEEL

    SciTech Connect (OSTI)

    Robert C. Starr; Dana L. Dettmers; Brennon R. Orr; Thomas R. Wood

    2003-12-01

    The thick vadose zone that underlies the Idaho National Engineering and Environmental Laboratory has been recognized both as an avenue through which contaminants disposed at or near the ground surface can migrate to groundwater in the underlying Eastern Snake River Plain aquifer, and as a barrier to the movement of contaminants into the aquifer. Flow and contaminant transport in the vadose zone at the INEEL is complicated by the highly heterogeneous nature of the geologic framework and by the variations in the behavior of different contaminants in the subsurface. The state of knowledge concerning flow and contaminant transport in the vadose zone at and near the INEEL IN 1999 was summarized in Deficiencies in Vadose Zone Understanding at the Idaho National Engineering and Environmental Laboratory (Wood et al., 2000). These authors identified deficiencies in knowledge of flow and contaminant transport processes in the vadose zone, and provided recommendations for additional work that should be conducted to address these deficiencies. In the period since (Wood et al., 2000) was prepared, research has been published that, to some degree, address these deficiencies. This document provides a bibliography of reports, journal articles, and conference proceedings published 1999 through mid-2003 that are relevant to the vadose zone at or near the INEEL and provides a brief description of each work. Publications that address specific deficiencies or recommendations are identified, and pertinent information from selected publications is presented.

  15. Characterization of Direct Push Vadose Zone Sediments from the T and TY Waste Management Areas

    SciTech Connect (OSTI)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-06-08

    This report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 5 direct push characterization holes emplaced to investigate vadose zone contamination associated with leaks from tanks 241-TY-105 (UPR-200-W-152) and 241-TY-106 (UPR-200-W-153). Tank 241-TY-105 is estimated to have leaked 35,000 gal of tributyl phosphate (TBP) waste from the uranium recovery process to the vadose zone in 1960. Tank 241-TY-106 is estimated to have leaked 20,000 gal of TBP-uranium recovery waste to the vadose zone in 1959. Although several drywells in the vicinity of tank 241-TY-106 contain measurable quantities of cesium-137 and/or cobalt-60, their relatively low concentrations indicate that the contaminant inventory in the vadose zone around tank 241-TY-106 is quite small. Additionally, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 7 direct push characterization holes emplaced to investigate vadose zone contamination associated with an overfill event and leak from tank 241-T-101.

  16. December 12, 2013 Webinar- The Use of Graded Approach in Hanford Vadose Zone Modeling

    Broader source: Energy.gov [DOE]

    P&RA CoP Webinar - Dec. 12, 2013 - Alaa Aly (INTERA) & Dib Goswami (Washington State Ecology), “The Use of Graded Approach in Hanford Vadose Zone Modeling”

  17. Remedy Evaluation Framework for Inorganic, Non-Volatile Contaminants in the Vadose Zone

    SciTech Connect (OSTI)

    Truex, Michael J.; Carroll, Kenneth C.

    2013-05-01

    Contaminants in the vadose zone may act as a potential long-term source of groundwater contamination and need to be considered in remedy evaluations. In many cases, remediation decisions for the vadose zone will need to be made all or in part based on projected impacts to groundwater. Because there are significant natural attenuation processes inherent in vadose zone contaminant transport, remediation in the vadose zone to protect groundwater is functionally a combination of natural attenuation and use of other remediation techniques, as needed, to mitigate contaminant flux to groundwater. Attenuation processes include both hydrobiogeochemical processes that serve to retain contaminants within porous media and physical processes that mitigate the rate of water flux. In particular, the physical processes controlling fluid flow in the vadose zone are quite different and generally have a more significant attenuation impact on contaminant transport relative to those within the groundwater system. A remedy evaluation framework is presented herein that uses an adaptation of the established EPA Monitored Natural Attenuation (MNA) evaluation approach and a conceptual model based approach focused on identifying and quantifying features and processes that control contaminant flux through the vadose zone. A key concept for this framework is to recognize that MNA will comprise some portion of all remedies in the vadose zone. Thus, structuring evaluation of vadose zone waste sites to use an MNA-based approach provides information necessary to either select MNA as the remedy, if appropriate, or to quantify how much additional attenuation would need to be induced by a remedial action (e.g., technologies considered in a feasibility study) to augment the natural attenuation processes and meet groundwater protection goals.

  18. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    SciTech Connect (OSTI)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  19. Potential effects of low-volume effluent discharges on past-practice vadose zone contamination

    SciTech Connect (OSTI)

    Barnett, D.B., Westinghouse Hanford

    1996-07-30

    Collard, L. B., J. D. Davis, D. B. Barnett, 1996, Potential Effects of Low-Volume Effluent Discharges on Past Practice Vadose Zone Contamination: WHC-SD-LEF-ER-001, Westinghouse Hanford Company, Richland Washington. This document estimates the behavior of extremely low-discharges of water in the unsaturated zone in the vicinity of past-practice facilities.

  20. A National Roadmap for Vadose Zone Science and Technology

    SciTech Connect (OSTI)

    Kowall, Stephen Jacob

    2001-08-01

    This roadmap is a means of achieving, to the best of our current knowledge, a reasonable scientific understanding of how contaminants of all forms move in the vadose geological environments. This understanding is needed to reduce the present uncertainties in predicting contaminant movement, which in turn will reduce the uncertainties in remediation decisions.

  1. Gas-Phase Treatment of Technetium in the Vadose Zone at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Zhong, Lirong; Qafoku, Nikolla

    2014-09-01

    Technetium-99 (Tc-99) is present in the vadose zone of the Hanford Central Plateau and is a concern with respect to the protection of groundwater. The persistence, limited natural attenuation mechanisms, and geochemical behavior of Tc-99 in oxic vadose zone environments must be considered in developing effective alternatives for remediation. This report describes a new in situ geochemical manipulation technique for decreasing Tc-99 mobility using a combination of geochemical Tc-99 reduction with hydrogen sulfide gas and induced sediment mineral dissolution with ammonia vapor, which create conditions for deposition of stable precipitates that decrease the mobility of Tc-99. Laboratory experiments were conducted to examine changes in Tc-99 mobility in vadose zone sediment samples to evaluate the effectiveness of the treatment under a variety of operational and sediment conditions.

  2. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    SciTech Connect (OSTI)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will provide additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well

  3. Vadose zone transport field study: Detailed test plan for simulated leak tests

    SciTech Connect (OSTI)

    AL Ward; GW Gee

    2000-06-23

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to

  4. Tritium Irrigation Facility & Automated Vadose Zone Monitoring System |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Ecology Laboratory Tritium Irrigation Facility and Automated Vadose Monitoring System The opportunity to study tritium movement in a natural system presents a rare opportunity for both physical and biological research. Researchers may take advantage of tritium's properties as a conservative tracer for modeling contaminant transport, as a radioactive tracer for examining biological processes involving water, or as an example of radionuclide contaminant behavior in natural

  5. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    SciTech Connect (OSTI)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  6. Biotic and Abiotic Transformation of a Volatile Organics Plume in a Semi-Arid Vadose Zone

    SciTech Connect (OSTI)

    Studer, J.E.; Singletary, M.A.; Miller, D.R.

    1999-04-08

    An evaluation of biotic and abiotic attenuation processes potentially important to chlorinated and non-chlorinated volatile organic compound (VOC) fate and transport in the 148 meter thick vadose zone beneath the Chemical Waste Landfill (CWL) was conducted. A unique feature of this evaluation is the comparison of two estimates of VOC mass present in the soil gas, pore-water, and solid phases (but not including mass as non-aqueous phase liquid [NAPL]) of the vadose zone in 1993. One estimate, 1,800 kg, was obtained from vadose zone transport modeling that incorporated molecular diffusion and volatilization to the atmosphere, but not biotic or chemical processes. The other estimate, 2,120 kg, was obtained from the sum of VOC mass physically removed during soil vapor extraction and an estimate of VOC mass remaining in the vadose zone in 1998, both adjusted to exclude NAPL mass. This comparison indicates that biogeochemical processes were at best slightly important to historical VOC plume development. Some evidence of aerobic degradation of non-chlorinated VOCs and abiotic transformation of 1,1,1-Trichloroethane was identified. Despite potentially amenable site conditions, no evidence was found of cometabolic and anaerobic transformation pathways. Relying principally on soil-gas analytical results, an upper-bound estimate of 21% mass reduction due to natural biogeochemical processes was developed. Although available information for the CWL indicates that natural attenuation processes other than volatilization to the atmosphere did not effective y enhance groundwater protection, these processes could be important in significantly reducing groundwater contamination and exposure risks at other sites. More laboratory and field research is required to improve our collective ability to characterize and exploit natural VOC attenuation processes, especially with respect to the combination of relatively thick and dry vadose zones and chlorinated VOCs.

  7. Conceptual Models for Migration of Key Groundwater Contaminants Through the Vadose Zone and Into the Upper Unconfined Aquifer Below the B-Complex

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Keller, Jason M.; Thorne, Paul D.; Lanigan, David C.; Christensen, J. N.; Thomas, Gregory S.

    2010-07-01

    The B-Complex contains 3 major crib and trench disposal sites and 3 SST farms that have released nearly 346 mega-liters of waste liquids containing the following high groundwater risk drivers: ~14,000 kg of CN, 29,000 kg of Cr, 12,000 kg of U and 145 Ci of Tc-99. After a thorough review of available vadose zone sediment and pore water, groundwater plume, field gamma logging, field electrical resistivity studies, we developed conceptual models for which facilities have been the significant sources of the contaminants in the groundwater and estimated the masses of these contaminants remaining in the vadose zone and currently present in the groundwater in comparison to the totals released. This allowed us to make mass balance calculations on how consistent our knowledge is on the current deep vadose zone and groundwater distribution of contaminants. Strengths and weaknesses of the conceptual models are discussed as well as implications on future groundwater and deep vadose zone remediation alternatives. Our hypothesized conceptual models attribute the source of all of the cyanide and most of the Tc-99 currently in the groundwater to the BY cribs. The source of the uranium is the BX-102 tank overfill event and the source of most of the chromium is the B-7-A&B and B-8 cribs. Our mass balance estimates suggest that there are much larger masses of U, CN, and Tc remaining in the deep vadose zone within ~20 ft of the water table than is currently in the groundwater plumes below the B-Complex. This hypothesis needs to be carefully considered before future remediation efforts are chosen. The masses of these groundwater risk drivers in the the groundwater plumes have been increasing over the last decade and the groundwater plumes are migrating to the northwest towards the Gable Gap. The groundwater flow rate appears to flucuate in response to seasonal changes in hydraulic gradient. The flux of contaminants out of the deep vadose zone from the three proposed sources also

  8. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  9. The Use of Radar Methods to Determine Moisture Content in the Vadose Zone

    SciTech Connect (OSTI)

    Rosemary Knight

    2003-12-28

    Water content is a critical parameter affecting both liquid-phase and vapor-phase contaminant transport in the vadose zone. This means that accurate estimate of in situ water content must be obtained in order to design for the appropriate handling or remediation of a contaminated region of the vadose zone. Traditional methods of sampling the subsurface by drilling and/or direct sampling are very time consuming, limited in terms of spatial coverage, and have the associated risk of contacting and increasing the size of the contaminated area. One solution is to use geophysical methods which can provide a high-resolution, non-invasive means of sampling or imagin the subsurface.

  10. Science Road Map for Phase 2 of the Tank-Farm Vadose Zone Program

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Mann, Frederick M.

    2008-08-18

    Phase 1 of the Tank-Farm Vadose Zone Program (TFVZP) developed information on the nature and extent of vadose zone contamination in the tank farms through field studies, laboratory analyses and experiments, and historical data searches; assembled data and performed tank-farm risk analysis; and initiated interim corrective actions to lessen the impacts of tank leak contaminants. Pacific Northwest National Laboratory scientists and external collaborators at universities and U.S. Department of Energy user facilities sampled and analyzed contaminant plumes. These types of activities will continue during Phase 2 of the TFVZP to refine and expand scientific understanding of the subsurface beneath tank farms, especially of water movement, residual waste leaching, and contaminant transport.

  11. Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests

    SciTech Connect (OSTI)

    Ward, Anderson L.; Gee, Glendon W.

    2000-06-23

    This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

  12. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  13. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  14. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Zhong, Lirong; Thomle, Jonathan N.; Johnson, Timothy C.

    2014-09-01

    Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of this technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.

  15. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    SciTech Connect (OSTI)

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  16. Conditional stochastic modeling of transport of contaminant in the vadose zone. Final project report

    SciTech Connect (OSTI)

    Yeh, T.C.J.; Harter, T.

    1995-06-01

    Spatial heterogeneity media leads to uncertainty in predicting both flow and transport in the vadose zone. In this work an efficient and flexible, combined analytical-numerical Monte Carlo approach is developed for the analysis of steady-state flow and transient transport processes in highly heterogeneous, variably saturated porous media. The approach is also used for the investigation of the validity of linear, first order analytical stochastic models. A combined analytical-numerical conditional simulation algorithm is developed to estimate the impact of in-situ soil hydraulic measurements on reducing the uncertainty of concentration and solute flux predictions.

  17. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    SciTech Connect (OSTI)

    Baolin Deng; Edward Thornton; Kirk Cantrell; Khris Olsen; James Amonette

    2004-01-11

    Immobilization of toxic and radioactive metals in the vadose zone by In Situ Gaseous Reduction (ISGR) using hydrogen sulfide (H2S) is a promising technology for soil remediation. Earlier laboratory and field studies have shown that Cr(VI) can be effectively immobilized by treatment with dilute gaseous H2S. The objective of this project is to characterize the interactions among H2S, the metal contaminants, and soil components. Understanding these interactions is needed to assess the long-term effectiveness of the technology and to optimize the remediation system.

  18. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect (OSTI)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  19. Effects of Porous Medium Heterogeneity on Vadose Zone Desiccation: Intermediate-scale Laboratory Experiments and Simulations

    SciTech Connect (OSTI)

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Dane, Jacob H.; Truex, Michael J.

    2012-11-01

    Soil desiccation (drying), involving water evaporation induced by dry gas injection, is a potentially robust vadose zone remediation process to limit contaminant transport through the vadose zone. A series of four intermediate-scale flow cell experiments was conducted in homogeneous and simple layered heterogeneous porous medium systems to investigate the effects of heterogeneity on desiccation of unsaturated porous media. The permeability ratios of porous medium layers ranged from about five to almost two orders of magnitude. The insulated flow cell was equipped with twenty humidity and temperature sensors and a dual-energy gamma system was used to determine water saturations at various times. The multiphase code STOMP was used to simulate the desiccation process. Results show that injected dry gas flowed predominantly in the higher permeability layer and delayed water removal from the lower permeability material. For the configurations tested, water vapor diffusion from the lower to the higher permeability zone was considerable over the duration of the experiments, resulting in much larger relative humidity values of the outgoing air than based on permeability ratios alone. Acceptable numerical matches with the experimental data were obtained when an extension of the saturation-capillary pressure relation below the residual water saturation was used. The agreements between numerical and experimental results suggest that the correct physics are implemented in the simulator and that the thermal and hydraulic properties of the porous media, flow cell wall and insulation materials were properly represented.

  20. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2008-09-11

    The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.

  1. Flow and Transport in the Hanford 300 Area Vadose Zone-Aquifer-River System

    SciTech Connect (OSTI)

    Waichler, Scott R.; Yabusaki, Steven B.

    2005-07-13

    Contaminant migration in the 300 Area unconfined aquifer is strongly coupled to fluctuations in the Columbia River stage. To better understand the interaction between the river, aquifer, and vadose zone, a 2-D saturated-unsaturated flow and transport model was developed for a vertical cross-section aligned west-east across the Hanford Site 300 Area, nearly perpendicular to the river. The model was used to investigate water flow and tracer transport in the vadose zone-aquifer-river flow system, in support of the ongoing study of the 300 Area uranium plume. The STOMP simulator was used to model 1-year from 3/1/92 to 2/28/93, a period when hourly data were available for both groundwater and river levels. Net water flow to the river (per 1-meter width of shoreline) was 182 m3/y in the base case, but the cumulative exchange or total flow back and forth across the riverbed was 30 times greater. The low river case had approximately double the net water and Groundwater tracer flux into the river as compared to the base case.

  2. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    SciTech Connect (OSTI)

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The primary

  3. EVALUATION OF A TECHNETIUM-99 DETECTOR BASED ON LABORATORY TESTING FOR USE IN IN-SITU VADOSE ZONE APPLICATIONS

    SciTech Connect (OSTI)

    MANN FM; MYERS DA

    2009-09-11

    This document evaluates the feasibility of in-situ detection of technetium-99 in Hanford Site vadose zone soils (the soils between the surface and groundwater) using laboratory tests. The detector system performs adequately for high technetium concentration, but more development and laboratory testing is needed before field demonstration is performed.

  4. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla; Serne, R. Jeffrey

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  5. Notice of construction for tank waste remediation system vadose zone characterization

    SciTech Connect (OSTI)

    HILL, J.S.

    1999-05-04

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of constriction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection - Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone characterization activities include the drilling and sampling

  6. T-TY Tank Farm Interim Surface Barrier Demonstration—Vadose Zone Monitoring Plan

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-09-27

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energy’s Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

  7. Field evidence for strong chemical separation of contaminants inthe Hanford Vadose Zone

    SciTech Connect (OSTI)

    Conrad, Mark E.; DePaolo, Donald J.; Maher, Katharine; Gee,Glendon W.; Ward, Anderson L.

    2007-04-10

    Water and chemical transport from a point source withinvadose zone sediments at Hanford were examined with a leak testconsisting of five 3800-liter aliquots of water released at 4.5 m depthevery week over a 4-week period. The third aliquot contained bromide, D2Oand 87Sr. Movement of the tracers was monitored for 9 months by measuringpore water compositions of samples from boreholes drilled 2-8 m from theinjection point. Graded sedimentary layers acting as natural capillarybarriers caused significant lateral spreading of the leak water. D2Oconcentrations>50 percent of the concentration in the tracer aliquotwere detected at 9-11 m depth. However, increased water contents, lowerd18O values, and geophysical monitoring of moisture changes at otherdepths signified high concentrations of leak fluids were added where D2Oconcentrations were<3 percent above background, suggesting limitedmixing between different aliquots of the leak fluids. Initially highbromide concentrations decreased more rapidly over time than D2O,suggesting enhanced transport of bromide due to anion exclusion. Nosignificant increase in 87Sr was detected in the sampled pore water,indicating strong retardation of Sr by the sediments. These resultshighlight some of the processes strongly affecting chemical transport inthe vadose zone and demonstrate the significant separation of contaminantplumes that can occur.

  8. T-TY Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY10 Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2011-01-01

    The U.S. Department of Energy’s Office of River Protection has constructed interim surface barriers over a portion of the T and TY tank farms as part of the Interim Surface Barrier Demonstration Project. The interim surface barriers (hereafter referred to as the surface barriers or barriers) are designed to minimize the infiltration of precipitation into the soil zones containing radioactive contaminants and minimize the movement of the contaminants. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barriers at reducing soil moisture. Solar-powered systems were installed to continuously monitor soil water conditions at four locations in the T (i.e., instrument Nests TA, TB, TC, and TD) and the TY (i.e., instrument Nests TYA and TYB) Farms beneath the barriers and outside the barrier footprint as well as site meteorological conditions. Nests TA and TYA are placed in the area outside the barrier footprint and serve as controls, providing subsurface conditions outside the influence of the surface barriers. Nest TB provides subsurface measurements to assess surface-barrier edge effects. Nests TC, TD, and TYB are used to assess changes in soil-moisture conditions beneath the interim surface barriers.

  9. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY08 Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2009-02-01

    DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. The surface barrier is designed to minimize the infiltration of precipitation into the contaminated soil zone created by the Tank T-106 leak and minimize movement of the contamination. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint and serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier.

  10. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect (OSTI)

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  11. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    SciTech Connect (OSTI)

    HILL, J.S.

    2000-03-08

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection--Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOE/TU-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(axl), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone

  12. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    SciTech Connect (OSTI)

    HILL, J.S.

    2000-04-20

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOm-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 milliredyear total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial start-up in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone

  13. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect (OSTI)

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  14. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

  15. Characterization of Vadose Zone Sediment: Borehole 41-09-39 in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 5.15. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 41-09-39 installed adjacent to tank SX-109.

  16. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    SciTech Connect (OSTI)

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey; Bovaird, Chase C.

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.

  17. Flow dynamics and potential for Biodegradation of Organic Contaminants in Fractured Rock Vadose Zones

    SciTech Connect (OSTI)

    Geller, J.T.; Holman, H.-Y.; Su, T.-S.; Liou, M.S.; Conrad, M.S.; Pruess, K.; Hunter-Devera, J.C.

    1998-12-01

    We present an experimental approach for investigating the potential for bioremediation of volatile organic chemicals (VOCs) in fractured-rock vadose zones. This approach is based on the coupling of fluid flow dynamics and biotransformation processes. Fluid flow and distribution within fracture networks may be a significant factor in the ability of microorganisms to degrade VOCs, as they affect the availability of substrate, moisture and nutrients. Biological activity can change liquid surface tension and generate biofilms that may change the nettability of solid surfaces, locally alter fracture permeability and redirect infiltrating liquids. Our approach has four components: (1) establishing a conceptual model for fluid and contaminant distribution in the geologic matrix of interest; (2) physical and numerical experiments of liquid seepage in the fracture plane; (3) non-destructive monitoring of biotransformations on rock surfaces at the micron-scale; and, (4) integration of flow and biological activity in natural rock ''geocosms''. Geocosms are core-scale flow cells that incorporate some aspects of natural conditions, such as liquid seepage in the fracture plane and moisture content. The experimental work was performed with rock samples and indigenous microorganisms from the site of the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL), located in a basalt flow basin where VOC contamination threatens the Snake River Aquifer. The insights gained from this approach should contribute to the design of techniques to monitor and stimulate naturally occurring biological activity and control the spread of organic contaminants.

  18. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm

    SciTech Connect (OSTI)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-10

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit.

  19. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    SciTech Connect (OSTI)

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-04-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  20. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    SciTech Connect (OSTI)

    Gee, Glendon W. ); Ward, Anderson L. ); Ritter, Jason C. ); Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-10-30

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001).

  1. Characterization of Vadose Zone Sediment: Borehole 299-E33-45 Near BX-102 in the B-BX-BY Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.22. The data was removed due to potential contamination introduced during the acid extraction process. The remaining text is unchanged from the original report issued in 2002. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area B-BX-BY. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 299-E33-45 installed northeast of tank BX-102.

  2. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-12-04

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ~1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer.

  3. A resolution analysis of two geophysical imaging methods for characterizing and monitoring hydrologic conditions in the Vadose zone.

    SciTech Connect (OSTI)

    Brainard, James Robert; Hammond, Gary.; Alumbaugh, David L.; La Brecque, D.J.

    2007-06-01

    This research project analyzed the resolution of two geophysical imaging techniques, electrical resistivity tomography (ERT) and cross-borehole ground penetrating radar (XBGPR), for monitoring subsurface flow and transport processes within the vadose zone. The study was based on petrophysical conversion of moisture contents and solute distributions obtained from unsaturated flow forward modeling. This modeling incorporated boundary conditions from a potable water and a salt tracer infiltration experiment performed at the Sandia-Tech Vadose Zone (STVZ) facility, and high-resolution spatial grids (6.25-cm spacing over a 1700-m domain) and incorporated hydraulic properties measured on samples collected from the STVZ. The analysis process involved petrophysical conversion of moisture content and solute concentration fields to geophysical property fields, forward geophysical modeling using the geophysical property fields to obtain synthetic geophysical data, and finally, inversion of this synthetic data. These geophysical property models were then compared to those derived from the conversion of the hydrologic forward modeling to provide an understanding of the resolution and limitations of the geophysical techniques.

  4. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

    2007-09-28

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  5. Appraisal of nuclear waste isolation in the vadose zone in arid and semiarid regions (with emphasis on the Nevada Test Site)

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1983-05-01

    An appraisal was made of the concept of isolating high-level radioactive waste in the vadose zone of alluvial-filled valleys and tuffaceous rocks of the Basin and Range geomorphic province. Principal attributes of these terranes are: (1) low population density, (2) low moisture influx, (3) a deep water table, (4) the presence of sorptive rocks, and (5) relative ease of construction. Concerns about heat effects of waste on unsaturated rocks of relatively low thermal conductivity are considered. Calculations show that a standard 2000-acre repository with a thermal loading of 40 kW/acre in partially saturated alluvium or tuff would experience an average temperature rise of less than 100{sup 0}C above the initial temperature. The actual maximum temperature would depend strongly on the emplacement geometry. Concerns about seismicity, volcanism, and future climatic change are also mitigated. The conclusion reached in this appraisal is that unsaturated zones in alluvium and tuff of arid regions should be investigated as comprehensively as other geologic settings considered to be potential repository sites.

  6. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  7. Recommendations for computer code selection of a flow and transport code to be used in undisturbed vadose zone calculations for TWRS immobilized environmental analyses

    SciTech Connect (OSTI)

    VOOGD, J.A.

    1999-04-19

    An analysis of three software proposals is performed to recommend a computer code for immobilized low activity waste flow and transport modeling. The document uses criteria restablished in HNF-1839, ''Computer Code Selection Criteria for Flow and Transport Codes to be Used in Undisturbed Vadose Zone Calculation for TWRS Environmental Analyses'' as the basis for this analysis.

  8. A Long-Term Strategic Plan for Hanford Sediment Physical Property and Vadose Zone Hydraulic Parameter Databases

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Last, George V.; Middleton, Lisa A.

    2009-09-30

    Physical property data and unsaturated hydraulic parameters are critical input for analytic and numerical models used to predict transport and fate of contaminants in variably saturated porous media and to assess and execute remediation alternatives. The Remediation Decision Support (RDS) project, managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) and the CH2M Hill Plateau Remediation Company (CHPRC), has been compiling physical and hydraulic property data and parameters to support risk analyses and waste management decisions at Hanford. Efforts have been initiated to transfer sediment physical property data and vadose zone hydraulic parameters to CHPRC for inclusion in HEIS-Geo, a new instance of the Hanford Environmental Information System database that is being developed for borehole geologic data. This report describes these efforts and a strategic plan for continued updating and improvement of these datasets.

  9. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    SciTech Connect (OSTI)

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-10-20

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  10. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-01-01

    DOEs Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint and serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements (i

  11. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutynakov, I. V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-02-05

    A geologic/geochemical investigation in the vicinity of UPR-200-E-82 was performed using pairs of cone-penetrometer probe holes. A total of 41 direct-push cone-penetrometer borings (19 pairs to investigate different high moisture zones in the same sampling location and 3 individual) were advanced to characterize vadose zone moisture and the distribution of contaminants. A total of twenty sample sets, containing up to two split-spoon liners and one grab sample, were delivered to the laboratory for characterization and analysis. The samples were collected around the documented location of the C-152 pipeline leak, and created an approximately 120-ft diameter circle around the waste site. UPR-200-E-82 was a loss of approximately 2,600 gallons of Cs-137 Recovery Process feed solution containing an estimated 11,300 Ci of cesium-137 and 5 Ci of technetium-99. Several key parameters that are used to identify subsurface contamination were measured, including: water extract pH, electrical conductivity, nitrate, technetium-99, sodium, and uranium concentrations and technetium-99 and uranium concentrations in acid extracts. All of the parameters, with the exception of electrical conductivity, were elevated in at least some of the samples analyzed as part of this study. Specifically, soil pH was elevated (from 8.69 to 9.99) in five samples collected northeast and southwest of the C-152 pipeline leak. Similarly, samples collected from these same cone-pentrometer holes contained significantly more water-extractable sodium (more than 50 ?g/g of dry sediment), uranium (as much as 7.66E-01 ?g/g of dry sediment), nitrate (up to 30 ?g/g of dry sediment), and technetium-99 (up to 3.34 pCi/g of dry sediment). Most of the samples containing elevated concentrations of water-extractable sodium also had decreased levels of water extractable calcium and or magnesium, indicating that tank-related fluids that were high in sodium did seep into the vadose zone near these probe holes. Several of

  12. Laboratory determination of gas-side mass transfer coefficients applicable to soil-venting systems for removing petroleum hydrocarbons from vadose-zone soils. Master's thesis

    SciTech Connect (OSTI)

    Van Valkenburg, M.E.

    1991-01-01

    Contamination of the subsurface environment by organic solvents has become a national problem. The EPA's Superfund list (40 CFR Part 300, 1990) continues to grow, with continual discovery of new hazardous waste sites. Various techniques are employed to remediate these sites, including excavation and removal of the contaminated soil for proper disposal, pumping and treatment of contaminated ground water and an organic phase if present, containment by slurried soil-bentonite cut-off barriers, in situ biological treatment of the organic wastes, and vadose zone soil venting for gas absorption of volatiles. Each technique, or combination, may have merit at a given site. The soil venting process, an inexpensive but relatively successful technique for removal of contaminants from the vadose (unsaturated) zone, is the focus of the research.

  13. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1998 annual progress report

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Glass, R.J.; Yeh, T.C.; LaBrecque, D.

    1998-06-01

    'The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from electric resistivity tomography (ERT) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity of the vadose zone (from the ERT measurements) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related. As of the 21st month of a 36-month project, a three-dimensional stochastic hydrologic inverse model for heterogeneous vadose zones has been developed. This model employs pressure and moisture content measurements under both transient and steady flow conditions to estimate unsaturated hydraulic parameters. In this model, an innovative approach to sequentially condition the estimate using temporal measurements has been incorporated. This allows us to use vast amounts of pressure and moisture content information measured at different times while keeping the computational effort manageable. Using this model the authors have found that the relative importance of the pressure and moisture content measurements in defining the different vadose zone parameters depends on whether the soil is wet or dry. They have also learned that pressure and moisture content measurements collected during steady state flow provide the best characterization of heterogeneity compared to other types of hydrologic data. These findings provide important guidance to the design of sampling scheme of the field experiment described below.'

  14. Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near B 110 in the B BX-BY Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; mccain, r. G.; Lindenmeier, Clark W.; Orr, Robert D.; Legore, Virginia L.; Clayton, Ray E.; Lindberg, Michael J.; Kutynakov, I. V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-ectractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in December 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the B-BX-BY Waste Management Area. This report is the third in a series of three reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a borehole installed approximately 4.5 m (15 ft) northeast of tank B- 110 (borehole 299-E33-46).

  15. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  16. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  17. Estimating flow parameters using ground-penetrating radar and hydrological data during transient flow in the vadose zone

    SciTech Connect (OSTI)

    Kowalsky, Michael; Finsterle, Stefan; Rubin, Yoram

    2003-05-12

    Methods for determining the parameters necessary for modeling fluid flow and contaminant transport in the shallow subsurface are in great demand. Soil properties such as permeability, porosity, and water retention are typically estimated through the inversion of hydrological data (e.g., measurements of capillary pressure and water saturation). However, ill-posedness and non-uniqueness commonly arise in such inverse problems making their solutions elusive. Incorporating additional types of data, such as from geophysical methods, may greatly improve the success of inverse modeling. In particular, ground-penetrating radar (GPR) has proven sensitive to subsurface fluid flow processes. In the present work, an inverse technique is presented in which permeability distributions are generated conditional to time-lapsed GPR measurements and hydrological data collected during a transient flow experiment. Specifically, a modified pilot point framework has been implemented in iTOUGH2 allowing for the generation of permeability distributions that preserve point measurements and spatial correlation patterns while reproducing geophysical and hydrological measurements. Through a numerical example, we examine the performance of this method and the benefit of including synthetic GPR data while inverting for fluid flow parameters in the vadose zone. Our hypothesis is that within the inversion framework that we describe, our ability to predict flow across control planes greatly improves with the use of both transient hydrological measurements and geophysical measurements (GPR-derived estimates of water saturation, in particular).

  18. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  19. Vadose Zone Contaminant Migration Multi-Layer Model Software (Version 4.0)

    Energy Science and Technology Software Center (OSTI)

    2009-08-12

    The Version 4.0 model is designed to improve functionality and addresses a greater range of unsaturated zone scenarios than previous versions. The additional flexibility is accomplished in the model by including user-defined hydraulic layer functions and hydraulic parameters.

  20. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

    2010-12-01

    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

  1. Hanford Tank Farms Vadose Zone, Addendum to the BX Tank Farm Report

    SciTech Connect (OSTI)

    Pearson, A.W.

    2000-07-01

    This addendum to the BX Tank Farm Report (GJO-98-40-TARA, GJO-HAN-19) published in August 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the BX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the BX Tank Farm at the DOE Hanford Site in the state of Washington.

  2. Hanford Tank Farms Vadose Zone Addendum to the TY Tank Farm Report

    SciTech Connect (OSTI)

    Spatz, Robert

    2000-08-01

    This addendum to the TY Tank Farm Report (GJO-97-30-TAR, GJO-HAN-16) published in January 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TY Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TY Tank Farm at the DOE Hanford Site in the state of Washington.

  3. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    SciTech Connect (OSTI)

    Spatz, R.

    2000-08-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington.

  4. Hanford Tank Farms Vadose Zone Addendum to the S Tank Farm Report

    SciTech Connect (OSTI)

    Pearson, A.

    2000-08-01

    This addendum to the S Tank Farm Report (GJO-97-31-TAR, GJO-HAN-17) published in February 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the S Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the S Tank Farm at the DOE Hanford Site in the state of Washington.

  5. Factors Effecting the Fate and Transport of CL-20 in the Vadose Zone and Groundwater: Final Report 2002 - 2004 SERDP Project CP-1255

    SciTech Connect (OSTI)

    Szecsody, James E.; Riley, Robert G.; Devary, Brooks J.; Girvin, Donald C.; Resch, Charles T.; Campbell, James A.; Fredrickson, Herbert L.; Thompson, Karen T.; Crocker, Fiona H.; Qasim, Mohammad M.; Gamerdinger, Amy P.; Lemond, Luke A.

    2005-06-01

    This SERDP-funded project was initiated to investigate the fate of CL-20 in the subsurface environment, with a focus on identification and quantification of geochemical and microbial reactions of CL-20. CL-20 can be released to the surface and subsurface terrestrial environment by: a) manufacturing processes, b) munition storage, and c) use with low order detonation or unexploded ordnance. The risk of far-field subsurface migration was assessed through labora-tory experiments with a variety of sediments and subsurface materials to quantify processes that control CL-20 sorption-limited migration and degradation. Results of this study show that CL-20 will exhibit differing behavior in the subsurface terrestrial environment: 1. CL-20 on the sediment surface will photodegrade and interact with plants/animals (described in other SERDP projects CU 1254, 1256). CL-20 will exhibit greater sorption in humid sediments to organic matter. Transport will be solubility limited (i.e., low CL-20 aqueous solubility). 2. CL-20 infiltration into soils (<2 m) from spills will be subject to sorption to soil organic matter (if present), and low to high biodegradation rates (weeks to years) depending on the microbial population (greater in humid environment). 3. CL-20 in the vadose zone (>2 m) will be, in most cases, subject to low sorption and low degradation rates, so would persist in the subsurface environment and be at risk for deep migration. Low water content in arid regions will result in a decrease in both sorption and the degradation rate. Measured degradation rates in unsaturated sediments of years would result in significant subsurface migration distances. 4. CL-20 in groundwater will be subject to some sorption but likely very slow degradation rates. CL-20 sorption will be greater than RDX. Most CL-20 degradation will be abiotic (ferrous iron and other transition metals), because most deep subsurface systems have extremely low natural microbial populations. Degradation rates

  6. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2006-10-18

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants

  7. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    SciTech Connect (OSTI)

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-21

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  8. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    SciTech Connect (OSTI)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-06-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  9. Characterization of Vadose Zone Sediment: RCRA Borehole 299-E33-338 Located Near the B-BX-BY Waste Management Area

    SciTech Connect (OSTI)

    Lindenmeier, Clark W.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.8. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in June 2003. The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are: 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at the B-BX-BY tank farm waste management area are found in CH2M HILL (2000).

  10. ESTIMATING FATE AND TRANSPORT OF MULTIPLE CONTAMINANTS IN THE VADOSE ZONE USING A MULTI-LAYERED SOIL COLUMN AND THREE-PHASE EQUILIBRIUM PARTITIONING MODEL

    SciTech Connect (OSTI)

    Rucker, G

    2007-05-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and contaminate drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminates. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: contaminant decay, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use.

  11. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    SciTech Connect (OSTI)

    Rucker, Gregory G.

    2007-07-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  12. Deep Vadose Zone Remediation: Technical and Policy Challenges, Opportunities, and Progress in Achieving Cleanup Endpoints

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Freshley, Mark D.; Truex, Michael J.; Lee, Michelle H.

    2013-02-24

    Current requirements for site remediation and closure are standards-based and are often overly conservative, costly, and in some cases, technically impractical. Use of risk-informed alternate endpoints provides a means to achieve remediation goals that are permitted by regulations and are protective of human health and the environment. Alternate endpoints enable the establishment of a path for cleanup that may include intermediate remedial milestones and transition points and/or regulatory alternatives to standards-based remediation. A framework is presented that is centered around developing and refining conceptual models in conjunction with assessing risks and potential endpoints as part of a system-based assessment that integrates site data with scientific understanding of processes that control the distribution and transport of contaminants in the subsurface and pathways to receptors. This system-based assessment and subsequent implementation of the remediation strategy with appropriate monitoring are targeted at providing a holistic approach to addressing risks to human health and the environment. This holistic approach also enables effective predictive analysis of contaminant behavior to provide defensible criteria and data for making long-term decisions. Developing and implementing an alternate endpoint-based approach for remediation and waste site closure presents a number of challenges and opportunities. Categories of these challenges include scientific and technical, regulatory, institutional, and budget and resource allocation issues. Opportunities exist for developing and implementing systems-based approaches with respect to supportive characterization, monitoring, predictive modeling, and remediation approaches.

  13. Alternate Endpoints for Deep Vadose Zone Environments: Challenges, Opportunities, and Progress

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Freshley, Mark D.; Truex, Michael J.; Lee, Michelle H.

    2013-02-24

    Current requirements for site remediation and closure are standards-based and are often overly conservative, costly, and in some cases, technically impractical to achieve. Use of risk-informed alternate endpoints provide a means to achieve remediation goals that are permitted by regulations and are protective of human health and the environment. Alternate endpoints enable establishing a path for cleanup that may include intermediate remedial milestones and transition points and/or regulatory alternatives to standards-based remediation. A framework is presented that is centered around developing and refining conceptual models in conjunction with assessing risks and potential endpoints as part of a system-based assessment that integrates site data with scientific understanding of processes that control the distribution and transport of contaminants in the subsurface and pathways to receptors. This system based assessment and subsequent implementation of the remediation strategy with appropriate monitoring are targeted at providing a holistic approach to addressing risks to human health and the environment. This holistic approach also enables effective predictive analysis of contaminant behavior to provide defensible criteria and data for making long-term decisions. Developing and implementing an alternate endpoint-based approach for remediation and waste site closure presents a number of challenges and opportunities. Categories of these challenges include scientific and technical, regulatory, institutional, and budget and resource allocation issues. Opportunities exist for developing and implementing systems-based approaches with respect to supportive characterization, monitoring, predictive modeling, and remediation approaches.

  14. Tensiometer for shallow or deep measurements including vadose zone and aquifers

    DOE Patents [OSTI]

    Faybishenko, B.

    1999-08-24

    A two cell tensiometer is described in which water level in the lower cell is maintained at a relatively constant height, and in equilibrium with the water pressure of materials that surround the tensiometer. An isolated volume of air in the lower cell changes pressure proportionately to the changing water pressure of the materials that surround the tensiometer. The air pressure is measured remotely. The tensiometer can be used in drying as well as wetting cycles above and below the water table. 8 figs.

  15. Tensiometer for shallow or deep measurements including vadose zone and aquifers

    DOE Patents [OSTI]

    Faybishenko, Boris

    1999-01-01

    A two cell tensiometer is described in which water level in the lower cell is maintained at a relatively constant height, and in equilibrium with the water pressure of materials that surround the tensiometer. An isolated volume of air in the lower cell changes pressure proportionately to the changing water pressure of the materials that surround the tensiometer. The air pressure is measured remotely. The tensiometer can be used in drying as well as wetting cycles above and below the water table.

  16. Characterization of Vadose Zone Sediment: Borehole C3103 Located in the 216-B-7A Crib Near the B Tank Farm

    SciTech Connect (OSTI)

    Lindenmeier, Clark W.; Serne, R JEFFREY.; Bjornstad, Bruce N.; Last, George V.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2002-12-01

    This report summarizes data collected from samples in borehole C3103. Borehole C3103 was completed to further characterize the nature and extent of vadose zone contaminants supplied by intentional liquid discharges into the crib 216-B7A/7B between 1954 and 1967. These cribs received dilute waste streams from the bismuth phosphate fuel reprocessing program in the 1950's and decontamination waste in the 1960's. Elevated concentrations of several constituents were primarily measured at different depth intervals. The primary radionuclides present in this borehole are cesium-137 and uranium near the top of the borehole. Chemical characteristics attributed to wastewater-soil interaction at different locations within this zone are elevated pH, sodium, fluoride, carbonate nitrate, and sulphate

  17. Computer code selection criteria for flow and transport code(s) to be used in undisturbed vadose zone calculations for TWRS environmental analyses

    SciTech Connect (OSTI)

    Mann, F.M.

    1998-01-26

    The Tank Waste Remediation System (TWRS) is responsible for the safe storage, retrieval, and disposal of waste currently being held in 177 underground tanks at the Hanford Site. In order to successfully carry out its mission, TWRS must perform environmental analyses describing the consequences of tank contents leaking from tanks and associated facilities during the storage, retrieval, or closure periods and immobilized low-activity tank waste contaminants leaving disposal facilities. Because of the large size of the facilities and the great depth of the dry zone (known as the vadose zone) underneath the facilities, sophisticated computer codes are needed to model the transport of the tank contents or contaminants. This document presents the code selection criteria for those vadose zone analyses (a subset of the above analyses) where the hydraulic properties of the vadose zone are constant in time the geochemical behavior of the contaminant-soil interaction can be described by simple models, and the geologic or engineered structures are complicated enough to require a two-or three dimensional model. Thus, simple analyses would not need to use the fairly sophisticated codes which would meet the selection criteria in this document. Similarly, those analyses which involve complex chemical modeling (such as those analyses involving large tank leaks or those analyses involving the modeling of contaminant release from glass waste forms) are excluded. The analyses covered here are those where the movement of contaminants can be relatively simply calculated from the moisture flow. These code selection criteria are based on the information from the low-level waste programs of the US Department of Energy (DOE) and of the US Nuclear Regulatory Commission as well as experience gained in the DOE Complex in applying these criteria. Appendix table A-1 provides a comparison between the criteria in these documents and those used here. This document does not define the models (that

  18. Electrical Resistivity Correlation to Vadose Zone Sediment and Pore-Water Composition for the BC Cribs and Trenches Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Ward, Anderson L.; Um, Wooyong; Bjornstad, Bruce N.; Rucker, Dale F.; Lanigan, David C.; Benecke, Mark W.

    2009-06-01

    This technical report documents the results of geochemical and soil resistivity characterization of sediment obtained from four boreholes drilled in the BC Cribs and Trench area. Vadose zone sediment samples were obtained at a frequency of about every 2.5 ft from approximately 5 ft bgs to borehole total depth. In total, 505 grab samples and 39 six-inch long cores were obtained for characterization. The pore-water chemical composition data, laboratory-scale soil resistivity and other ancillary physical and hydrologic measurements and analyses described in this report are designed to provide a crucial link between direct measurements on sediments and the surface-based electrical-resistivity information obtained via field surveys. A second goal of the sediment characterization was to measure the total and water-leachable concentrations of key contaminants of concern as a function of depth and distance from the footprints of inactive disposal facilities. The total and water-leachable concentrations of key contaminants will be used to update contaminant distribution conceptual models and to provide more data for improving base-line risk predictions and remedial alternative selections. The ERC “ground truthing” exercise for the individual boreholes showed mixed results. In general, the high concentrations of dissolved salts in the pore waters of sediments from C5923, C5924 and C4191 produced a low resistivity “target” in the processed resistivity field surveys, and variability could be seen in the resistivity data that could relate to the variability in pore- water concentrations but the correlations (regression R2 were mediocre ranging from 0.2 to 0.7 at best; where perfect correlation is 1.0). The field-based geophysical data also seemed to suffer from a sort of vertigo, where looking down from the ground surface, the target (e.g., maximum pore-water salt concentration) depth was difficult to resolve. The best correlations between the field electrical

  19. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Parker, Kyle R.; Waichler, Scott R.; Williams, Mark D.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale model of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.

  20. Characterization of Vadose Zone Sediment: Borehole 299-W23-19 [SX-115] in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Gee, Glendon W.; Lindenmeier, Clark W.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Last, George V.; Kutnyakov, Igor V.; Burke, Deborah S.; Wilson, Teresa C.; Williams, Bruce A.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.15 and 4.19. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The Tank Farm Vadose Zone Project is led by CH2M HILL Hanford Group, Inc. Their goals include defining risks from past and future single-shell tank farm activities, identifying and evaluating the efficacy of interim measures, and collecting geotechnical information and data. The purpose of these activities is to support future decisions made by the U.S. Department of Energy (DOE) regarding near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas. To help in this effort, CH2M HILL Hanford Group, Inc. contracted with scientists at Pacific Northwest National Laboratory to analyze sediment samples collected from borehole 299-W23-19.

  1. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-09-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  2. Carbon isotopic evidence for biodegradation of organic contaminants in the shallow vadose zone of the radioactive waste management complex

    SciTech Connect (OSTI)

    Conrad, Mark E.; DePaolo, Donald J.

    2003-09-04

    Waste material buried in drums in the shallow subsurface at the Radioactive Waste Management Facility (RWMC) of the Idaho National Engineering and Environmental Laboratory (INEEL) contained significant amounts of organic compounds including lubricating oils and chlorinated solvents. CO{sub 2} concentrations in pore gas samples from monitoring wells in the vicinity of the disposal pits are 3 to 5 times higher than the concentrations in nearby background wells. The stable carbon isotope ratios ({delta}{sup 13}C values) of CO{sub 2} from the disposal pits averaged 2.4. less than CO{sub 2} from the background wells, indicating that the elevated CO{sub 2} concentrations around the pits were derived from source materials with {delta}{sup 13}C values in the range of -24{per_thousand} to -29{per_thousand}. These {delta}{sup 13}C values are typical of lubricating oils, but higher than most solvents. The radiocarbon ({sup 14}C) contents of CO{sub 2} across most of the site were significantly elevated above modern concentrations due to reactor blocks buried in a subsurface vault at the site. However, several samples collected from the high-CO{sub 2} zone on the far side of the RWMC from the reactor blocks had very low {sup 14}C contents (less than 0.13 times modern), confirming production from lubricating oils manufactured from fossil hydrocarbons. The magnitude of the CO{sub 2} anomaly observed at the site is consistent with intrinsic biodegradation rates on the order of 0.5 to 3.0 metric tons of carbon per year.

  3. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    SciTech Connect (OSTI)

    Saueressig, Daniel G.

    2013-07-01

    In 1965 and 1966, approximately 303 m{sup 3} of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  4. Stable isotope evidence for limited fluid infiltration of deep crustal rocks from the Ivrea Zone, Italy

    SciTech Connect (OSTI)

    Baker, A.J.

    1988-06-01

    Isotopic and petrologic studies of the Ivrea Zone, a segment of deep-crustal high-grade rocks, suggest that metamorphism did not involve the transfer of large quantities of CO/sub 2/ from mantle to crust. High-grade Ivrea Zone calcites may retain high ..delta../sup 18/O (up to 24 per thousand SMOW), indicating little interaction with externally derived fluid. Graphite isotopic compositions (..delta../sup 13/C = -10 per thousand to -25 per thousand PDB) that do not vary with grade are attributed to mixing between carbonate carbon and biogenic noncarbonate carbon. Calcites from high-grade, carbonate-poor amphibolites have ..delta../sup 13/C of about 1 per thousand PDB and sedimentary, not infiltrative, origins. The general lack of carbon and oxygen isotopic homogenization suggests that fluid interactions may be explained in terms of fluid generated internally to the Ivrea Zone metasedimentary rocks.

  5. Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico

    SciTech Connect (OSTI)

    Buss, Heather; Brantley, S. L.; Scatena, Fred; Bazilevskaya, Ekaterina; Blum, Alex; Schulz, M; Jimenez, M; White, Art; Rother, Gernot; Cole, David

    2013-01-01

    Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world s oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g., soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared to the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream.

  6. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  7. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  8. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  9. CHPRC1104-16_Rev06A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Vadose Zone Deep Vadose Zone Deep Vadose Zone Addressing contamination deep in the vadose zone Enter Please use your mouse to navigate CHPRC1104-16_Rev05_5-18-11 Contents • Where is the Hanford deep vadose zone? • What is the vadose zone? • How was it contaminated? • What are the risks? • Why is it so tough to clean up? • What is being done? • What’s next? • For more information Exit Contents Home Deep Vadose Zone Where is the Hanford deep vadose zone? At the Hanford Site in

  10. FOAM: NOVEL DELIVERY TECHNOLOGY FOR REMEDIATION OF VADOSE ZONE...

    Office of Scientific and Technical Information (OSTI)

    environments can be a primary source and pathway for contaminant migration to groundwater. ... and hydrologic) affecting contaminant migration, make it difficult to create validated ...

  11. DEVELOPMENT OF VADOSE-ZONE HYDRAULIC PARAMETER VALUES

    SciTech Connect (OSTI)

    ROGERS PM

    2008-01-21

    Several approaches have been developed to establish a relation between the soil-moisture retention curve and readily available soil properties. Those relationships are referred to as pedotransfer functions. Described in this paper are the rationale, approach, and corroboration for use of a nonparametric pedotransfer function for the estimation of soil hydraulic-parameter values at the yucca Mountain area in Nevada for simulations of net infiltration. This approach, shown to be applicable for use at Yucca Mountain, is also applicable for use at the Hanford Site where the underlying data were collected.

  12. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers

    SciTech Connect (OSTI)

    Oostrom, Martinus; Smoot, Katherine V.; Wietsma, Thomas W.; Truex, Michael J.; Benecke, Mark W.; Chronister, Glen B.

    2012-11-19

    Super-absorbent polymers (SAPs) have the potential to remove water and associated contaminants from unsaturated sediments in the field. Column and flow cell experiment were conducted to test the ability of four types of SAPs to remove water from unsaturated porous media. Column experiments, with emplacement of a layer of polymer on top of unsaturated porous media, showed the ability of the SAPs to extract up to 80% of the initially emplaced water against gravity into the sorbent over periods up to four weeks. In column experiments where the sorbent was emplaced between layers of unsaturated porous media, gel formation was observed at both the sorbent-porous medium interfaces. The extraction percentages over four weeks of contact time were similar for both column configurations and no obvious differences were observed for the four tested SAPs. Two different flow cells were used to test the wicking behavior of SAPs in two dimensions using three configurations. The largest removal percentages occurred for the horizontal sorbent layer configuration which has the largest sorbent-porous medium interfacial area. In a larger flow cell, a woven nylon sock was packed with sorbent and subsequently placed between perforated metal plates, mimicking a well configuration. After one week of contact time the sock was removed and replaced by a fresh sock. The results of this experiment showed that the sorbent was able to continuously extract water from the porous media, although the rate decreased over time. The declining yield during both periods is associated with the sharp reduction in water saturation and relative permeability near the sorbent. It was also observed that the capillary pressure continued to increase over the total contact time of 14 days, indicating that the sorbent remained active over that period. This work has demonstrated the potential of soil moisture wicking using SAPs at the proof-of-principle level.

  13. Determining flow, recharge, and vadose zonedrainage in anunconfined aquifer from groundwater strontium isotope measurements, PascoBasin, WA

    SciTech Connect (OSTI)

    mjsingleton@lbl.gov

    2004-06-29

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr.

  14. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deep vadose zone toolbox - Existing, proven technologies will be carried forward in feasibility study Identify and test promising technologies for dealing with deep, mobile...

  15. Porosity formation in deep-burial environment: overview, with examples, from Permian basin

    SciTech Connect (OSTI)

    Mazzullo, S.J.; Harris, P.M.

    1989-03-01

    Porosity formation accompanying deep burial is ubiquitous and widespread in the Permian basin, particularly but not exclusively in offshore platform and resedimented basinal carbonates of Pennsylvanian and Permian age. Hydrocarbon reservoirs in such platform carbonate examples locally contain evidence of subaerial exposure and meteoric diagenesis. Commonly, much of the porosity formed during exposure is ultimately reduced by compaction and cementation during early burial. By contrast, no evidence of meteoric diagenesis is observed in associated basinal carbonates, although compaction and cementation accompanying progressive burial are readily evident. In both cases, however, such early diagenesis is overprinted by late burial dissolution, sometimes coincident with hydrocarbon emplacement, creating rocks of high porosity. The formation of porosity by cement dissolution may exhume occluded pores or enhance relict pores that formed in the eogenetic zone, the result being a preponderance of interparticle and moldic pores and residual cements that mimic vadose and phreatic products. In other cases, nonfabric selective dissolution, locally associated with fractures or stylolites, creates vuggy porosity which may resemble that formed during eodiagenesis. Multiple phases of deep-burial dissolution and partial cementation or replacement (by calcite or dolomite) are indicated for many of these diagenetic systems and result in a complex suite of different pore types.

  16. Microsoft PowerPoint - GW4-07pres.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup Integration Status of Groundwater/ Vadose Zone Integrated Project Teams (IPTs) April, 2007 2 Discussion Topics Status of Integrated Project Teams * Groundwater/Vadose Zone Executive Council * Groundwater/Vadose Zone Integrated Project Team (Core Team) * B Area Integrated Project Team - Tank Farm and Waste Sites High Resolution Resistivity (HRR) investigation * T Area Integrated Project Team - New Tc-99 pump & treat system * Central Plateau Deep Vadose Zone Integrated Project Team

  17. Outgoing Board Correspondence - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and CW-5 Record of Decision 081511 John Morse, Margo Voogd, Marty Doornbos & Sonya Johnson Deep Vadose Zone Preliminary Technology Information Exchange Appreciation 080211...

  18. Documents - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ContractsProcurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RIFS Sitewide Probabilistic Seismic Hazard Analysis Environmental...

  19. Fate of Magnesium Chloride Brine Applied to Suppress Dust from...

    Office of Scientific and Technical Information (OSTI)

    Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests ...

  20. Hanford Site Cleanup Completion Framework - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RIFS Sitewide Probabilistic Seismic Hazard Analysis Environmental Hanford Site Cleanup Completion Framework Email Email...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Energy Technology Engineering Center (ETEC), Canoga ... Metallic Contaminants in Deep Vadose Zone Mattigod, Shas ... limit the volume of water (< 20% vol.) required for ...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Energy Technology Engineering Center (ETEC), Canoga ... so was not readily oxidizedremobilized into pore water. ... Z. F. ; Hubbard, Susan Deep vadose zone environments can ...

  3. NEPA - Environmental Assessments - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ContractsProcurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RIFS Sitewide Probabilistic Seismic Hazard Analysis Environmental...

  4. BIGHORN SHEEP: SUPPLEMENTAL ANALYSIS TO THE FOREST PLAN ENVIRONMENTAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Committee call placeholder: Tuesday, August 13 @ 1:30 p.m. * PNNL Deep Vadose Zone technologies (Tim Johnson, John Morse) * Advice responses? * Committee Business Holding Bin: ...

  5. TANK VIBRATION LIMIT STUDY IN SUPPORT OF THE VADOSE ZONE DRILLING OPERATION [SEC 1 & 2

    SciTech Connect (OSTI)

    STURGES, M.H.

    2005-01-18

    The analysis contained herein supports the 0.1 g vibration limit that is currently established for the tanks. The natural frequency distributions and mode shapes for several different tank-soil models are presented. These frequencies can be compared to the natural frequencies from the measured test data. The best tank-soil model can then be selected for further study. This document is provided for historical information and has not been reviewed and checked beyond originator.

  6. Technologies Provide High-Resolution Subsurface Imaging of Vadose Zone Contamination at Hanford Site

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Cold War waste disposal practices resulted in both planned and unplanned releases of large amounts of radionuclide and heavy metal contamination into the subsurface throughout the DOE complex.

  7. T Farm Interim Surface Barrier Vadose Zone Monitoring FY08 Fourth-Quarter Status Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.

    2008-09-30

    This report briefly summarizes the system status and monitoring results of Nests A, B, C and D and the Meteorological Station in the T Tank Farm from July to September, 2008.

  8. Chromium Speciation and Mobility in a High Level Nuclear Waste Vadose Zone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plume 4 John M. Zachara1 Calvin C. Ainsworth,1 Gordon E. Brown, Jr.,2 and Jeffrey G. Catalano2 1Pacific Northwest National Laboratory, Richland, WA 2Stanford University, Stanford, CA Chromate (hexavalent chromium as CrO42-) is a significant groundwater contaminant at the U.S. Department of Energy (DOE) Hanford Site in southeastern WA (Poston et al., 2001) where Pu was produced during WWII and the cold war, and where DOE's largest inventory of legacy wastes remain. Chromate in ground water is

  9. A Catalog of Vadose Zone Hydraulic Properties for the Hanford Site

    SciTech Connect (OSTI)

    Freeman, Eugene J.; Khaleel, Raziuddin; Heller, Paula R.

    2002-09-30

    To predict contaminant release to the groundwater, it is necessary to understand the hydraulic properties of the material between the release point and the water table. Measurements of the hydraulic properties of the Hanford unsaturated sediments that buffer the water table are available from many areas of the site; however, the documentation is not well cataloged nor is it easily accessible. The purpose of this report is to identify what data is available for characterization of the unsaturated hydraulic properties at Hanford and Where these data can be found.

  10. Uranium Geochemistry in Vadose Zone and Aquifer Sediments from the 300 Area Uranium Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Davis, Jim A.; Liu, Chongxuan; McKinley, James P.; Qafoku, Nik; Wellman, Dawn M.; Yabusaki, Steven B.

    2005-07-21

    This report documents research conducted by the RCS Project to update the record of decision for the 300-FF-5 Operable Unit on the Hanford Site.

  11. Iodine Sorbent Performance in FY 2012 Deep Bed Tests (Technical...

    Office of Scientific and Technical Information (OSTI)

    Iodine Sorbent Performance in FY 2012 Deep Bed Tests Citation Details In-Document Search ... for lower iodine concentrations. * The depth of the mass transfer zone was determined ...

  12. Microsoft PowerPoint - HAB-RAP-May 2015_Final.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River & Plateau Committee Groundwater Update Dib Goswami WA State Dept. Ecology May 12, 2015 Groundwater and Deep Vadose Zone 200 West Area: * Groundwater remediation is in place to address all existing past practice (CERCLA) and RCRA (Tank Farm) groundwater contamination * All deep vadose contamination (except CCL-4) yet to be addressed 200 East Area: * No groundwater remediation is currently in place * A treatability test to remediate Tc-99, U and nitrate is planned * All the deep vadose

  13. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  14. Deep Lysimeter

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2004-06-01

    A deep lysimeter including a hollow vessel having a chamber, a fill conduit extending into the chamber through apertures, a semi-permeable member mounted on the vessel and in fluid communication with the fill conduit, and a line connection for retrieving the lysimeter.

  15. A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites

    SciTech Connect (OSTI)

    Rego, J.H.; Smith, D.K.; Friensehner, A.V.

    1995-05-26

    The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for {alpha}, {beta} and {gamma} emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for {gamma} and {alpha}/{beta} monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in {alpha}/{beta} liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure {sup 241}Am produced from {sup 241}Pu by {beta} decay. Because {sup 241}Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., {sup 137}Cs).

  16. Climate Zones

    Broader source: Energy.gov [DOE]

    Building America determines building practices based on climate zones to achieve the most energy savings in a home. This page offers some general guidelines on the definitions of the various...

  17. Treatability Test Report: Characterization of Vadose Zone Carbon Tetrachloride Source Strength Using Tomographic Methods at the 216-Z-9 Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Carroll, Kenneth C.; Rohay, Virginia J.; Mackley, Rob D.; Parker, Kyle R.

    2012-09-28

    A treatability test was conducted in 2011 at the 216-Z-9 Trench to evaluate methods for collecting characterization information that supports refined assessment of SVE performance goals based on impact to groundwater. The characterization information can also provide input to operational strategies for continued SVE operation and decisions regarding closure of the SVE system or transition to other remedies, if necessary.

  18. Estimation of SX Farm Vadose Zone CS-137 Inventories from Geostatistical Analysis of Drywell and Soil Core Data

    SciTech Connect (OSTI)

    KNEPP, A.J.

    2000-06-02

    This report provides an estimation of the Cs-137 inventories in the soil under the SX Tank Farm based on measurements obtained from drywell and soil cores. The Cs-137 inventories are estimated separately for distinct volumes of soil associated etc.

  19. BIGHORN SHEEP: SUPPLEMENTAL ANALYSIS TO THE FOREST PLAN ENVIRONMENTAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Committee call placeholder: Tuesday, March 12 @ 1:30 p.m. * Groundwater modeling tutorial (move to future month per DOE) * Deep Vadose Zone Remediation Technologies o General...

  20. Microsoft Word - FINAL_RAP_March08_summary.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2008 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING March 12, 2008 Richland, WA Topics in this Meeting Summary Welcome and Introductions ................................................................................................ 1 Information Management .................................................................................................... 1 Deep Vadose Zone Treatability Test Plan

  1. Zone separator for multiple zone vessels

    DOE Patents [OSTI]

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  2. Deep Web video

    SciTech Connect (OSTI)

    None Available

    2009-06-01

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  3. Deep Web video

    ScienceCinema (OSTI)

    None Available

    2012-03-28

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  4. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    SciTech Connect (OSTI)

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or {open_quotes}REDOX{close_quotes} process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as {open_quotes}assumed leakers{close_quotes} and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report.

  5. Water and Heat Balance Model for Predicting Drainage Below the Plant Root Zone

    Energy Science and Technology Software Center (OSTI)

    1989-11-01

    UNSAT-H Version 2.0 is a one-dimensional model that simulates the dynamic processes of infiltration, drainage, redistribution, surface evaporation, and the uptake of water from soil by plants. The model was developed for assessing the water dynamics of arid sites used or proposed for near-surface waste disposal. In particular, the model is used for simulating the water balance of cover systems over buried waste and for estimating the recharge rate (i.e., the drainage rate beneath themore » plant root zone when a sizable vadose zone is present). The mathematical base of the model are Richards'' equation for water flow, Ficks'' law for vapor diffusion, and Fouriers law for heat flow. The simulated profile can be homogeneous or layered. The boundary conditions can be controlled as either constant (potential or temperature) or flux conditions to reflect actual conditions at a given site.« less

  6. Zoning and Permitting Resources

    Broader source: Energy.gov [DOE]

    Zoning and permitting is commonly controlled by local governments and may be applicable to both residential and commercial properties.

  7. Deep Sky Astronomical Image Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  8. Exploration for deep coal

    SciTech Connect (OSTI)

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  9. High gain photoconductive semiconductor switch having tailored doping profile zones

    DOE Patents [OSTI]

    Baca, Albert G.; Loubriel, Guillermo M.; Mar, Alan; Zutavern, Fred J; Hjalmarson, Harold P.; Allerman, Andrew A.; Zipperian, Thomas E.; O'Malley, Martin W.; Helgeson, Wesley D.; Denison, Gary J.; Brown, Darwin J.; Sullivan, Charles T.; Hou, Hong Q.

    2001-01-01

    A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.

  10. ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Subtype A Subtype B Subtype C Climate Zone Number 1 Zone 1A Zone 1B NA Climate Zone Number 2 Zone 2A Zone 2B NA Climate Zone Number 3 Zone 3A Zone 3B Zone...

  11. DE FG02-06ER64193: Final Technical Report Nucleation and Precipitation Processes in the Vadose Zone during Contaminant Transport

    SciTech Connect (OSTI)

    Kathryn L. Nagy

    2012-07-06

    The report describes results of experiments to synthesize and characterize uranium(VI)-silicates from solutions containing dissolved U(VI), Si, Na, and nitrate as a function of solution pH and Si:U ratio under ambient conditions. Solids characterization was accomplished by X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and high-energy X-ray scattering (HEXS) analysis. The purpose was to develop a framework for describing the formation of U(VI)-silicate solids that might form in contaminated soils and sediments under oxidizing conditions in the presence of aqueous uranium, and are known to exist naturally in geologic uranium deposits.

  12. IN-SITU ASSAY OF TRANSURANIC RADIONUCLIDES IN THE VADOSE ZONE USING HIGH-RESOLUTION SPECTRAL GAMMA LOGGING - A HANFORD CASE STUDY

    SciTech Connect (OSTI)

    ROHAY VJ; HENWOOD P; MCCAIN R

    2009-11-30

    High-resolution spectral gamma logging in steel-cased boreholes is used to detect and quantify transuranic radionuclides in the subsurface. Pu-239, Pu-241, Am-241, and Np-237 are identified based on characteristic decay gammas. Typical minimum detectable levels are on the order of 20 to 40 nCi/g. In intervals of high transuranic concentrations, gamma rays from other sources may complicate analysis and interpretation. Gamma rays detected in the borehole may originate from three sources: decay of the parent transuranic radionuclide or a daughter; alpha interactions; and interactions with neutrons resulting from either spontaneous fission or alpha particle interactions.

  13. Three-dimensional contaminant plume dynamics in the vadose zone: Simulation of the 241-T-106 single-shell tank leak at Hanford

    SciTech Connect (OSTI)

    Smoot, J.L.; Sagar, B.

    1990-01-01

    Approximately 2,000 m{sup 3} of liquid containing radioactive and chemical wastes leaked from the 241-T-106 single-shell tank at the Hanford Site. The leak discharged into the unsaturated, coarse-grained sediments of the Hanford formation which underlie the base of the tank. The PORFLO-3 computer code was used to study plume migration for {sup 106}Ru and {sup 137}Cs. The flow and transport properties of the soils through which the plume has migrated are critical input data for the model but are not available. Information from a catalogue of Hanford Site soil properties was used. The transient magnitudes and locations of the plume were simulated in three dimensions. Using the reduced vertical hydraulic conductivity, the migration of {sup 106}Ru and {sup 137}Cs was simulated for the time between 1973 and 1990. 24 refs., 33 figs., 3 tabs.

  14. Microsoft PowerPoint - GradedApproach_P&RA_CoP_December2013 ...

    Office of Environmental Management (EM)

    Hanford Site Graded Approach to Vadose Zone Approach to Vadose Zone Modeling: Current Status and Future Applications pp Presented to: PA Community of Practice 12 December 2013 12 ...

  15. Renewable Energy Renaissance Zones

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the purposes of renaissance zone designation, “renewable energy facility” means a facility that creates energy, fuels, or chemicals directly from the wind, the sun, trees, grasses, bio-solids,...

  16. Deep Energy Retrofits & State Applications

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Deep Energy Retrofits & State Applications

  17. Nervana Neon - Scalable Deep Learning library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neon Nervana Neon - Scalable Deep Learning library Description and Overview neon is an easy to use, python-based scalable Deep Learning library. Deep Learning has recently achieved...

  18. Deep drawing of uranium metal

    SciTech Connect (OSTI)

    Jackson, R J; Lundberg, M R

    1987-01-19

    A procedure was developed to fabricate uranium forming blanks with high ''draw-ability'' so that cup shapes could be easily and uniformly deep drawn. The overall procedure involved a posttreatment to develop optimum mechanical and structural properties in the deep-drawn cups. The fabrication sequence is casting high-purity logs, pucking cast logs, cross-rolling pucks to forming blanks, annealing and outgassing forming blanks, cold deep drawing to hemispherical shapes, and stress relieving, outgassing, and annealing deep-drawn parts to restore ductility and impart dimensional stability. The fabrication development and the resulting fabrication procedure are discussed in detail. The mechanical properties and microstructural properties are discussed.

  19. A deep earthquake goes supershear

    SciTech Connect (OSTI)

    Wilson, R. Mark

    2014-09-01

    Seismic analysis of an aftershock off Russias Kamchatka Peninsula offers evidence that deep earthquakes are more complicated than geoscientists realized.

  20. RAP Meeting Transcribed Flipcharts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 6, 2013 Follow up for Post-2015 Vision IMs - Dale*, Shelley, Bob * 2 thoughts for HAB input o Funding o Priorities * As sequestration/funding unfolds, IMs will look at timing and propose committee next steps Potential joint with BCC Page 1 Vision (cont.) * Renegotiate extension on closure contract - impacts to priority Page 2 Deep Vadose Zone Techs IMs - Dale*, Shelley Follow up: * EnviroIssues send link to "Deep Vadose Zone - Applied Field Research Initiative" FY 2012 Annual

  1. Renewable liquid reflecting zone plate

    DOE Patents [OSTI]

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  2. Enterprise Zone | Open Energy Information

    Open Energy Info (EERE)

    Zone Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleEnterpriseZone&oldid542697"...

  3. Radiant zone heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  4. Santa Clara County- Zoning Ordinance

    Broader source: Energy.gov [DOE]

    Santa Clara County's Zoning Ordinance includes standards for wind and solar structures for residential, agricultural, and commercial uses.

  5. Hydrogeologic characterization of an arid zone Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Ginanni, J.M.; O`Neill, L.J. [USDOE Nevada Operations Office, Las Vegas, NV (United States); Hammermeister, D.P.; Blout, D.O.; Dozier, B.L.; Sully, M.J.; Johnejack, K.R.; Emer, D.F. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Tyler, S.W. [Nevada Univ., Reno, NV (United States). Desert Research Inst.

    1994-06-01

    An in-depth subsurface site characterization and monitoring program for the soil water migration pathway has been planned, implemented, and completed to satisfy data requirements for a waiver from groundwater monitoring, for an exemption from liner leachate collections systems, and for different regulatory driven performance assessments. A traditional scientific approach has been taken to focus characterization and monitoring efforts. This involved developing a conceptual model of the hydrogeologic system and defining and testing hypotheses about this model. Specific hypotheses tested included: that the system was hydrologically heterogenous and anisotropic, and that recharge was very low or negligible. Mineralogical, physical, and hydrologic data collected to test hypotheses has shown the hydrologic system to be remarkably homogenous and isotropic rather than heterogenous and anisotropic. Both hydrodynamic and environmental tracer approaches for estimating recharge have led to the conclusion that recharge from the Area 5 RWMS is not occurring in the upper region of the vadose zone, and that recharge at depth is extremely small or negligible. This demonstration of ``no migration of hazardous constituents to the water table satisfies a key requirement for both the groundwater monitoring waiver and the exemption from liner leachate collection systems. Data obtained from testing hypotheses concerning the soil water migration pathway have been used to refine the conceptual model of the hydrogeologic system of the site. These data suggest that the soil gas and atmospheric air pathways may be more important for transporting contaminants to the accessible environment than the soil water pathway. New hypotheses have been developed about these pathways, and characterization and monitoring activities designed to collect data to test these hypotheses.

  6. Stand-Off Furring in Deep Energy Retrofits, Syracuse, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stand-Off Furring in Deep Energy Retrofits Syracuse, New York PROJECT INFORMATION Project Name: Deep Energy Retrofit Location: Syracuse, NY Project Partners: GreenHomes America, www.greenhomesamerica.com/ IBACOS, www.ibacos.com Building Component: Building envelope Application: Single-family retrofit Year Tested: 2012 Applicable Climate Zone(s): Cold PERFORMANCE DATA Cost of energy efficiency measure (including labor): $23,518 Projected energy savings: Approximately 50% overall savings Exterior

  7. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  8. Liquid zone seal

    DOE Patents [OSTI]

    Klebanoff, Leonard E.

    2001-01-01

    A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.

  9. Breathing zone air sampler

    DOE Patents [OSTI]

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  10. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-03-01

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback

  11. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-09-01

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback

  12. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect (OSTI)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  13. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code also allows for preservation plans in historic districts to incorporate sustainability measures such as solar technologies and other energy generation and efficiency measures.

  14. Western Renewable Energy Zones (Presentation)

    SciTech Connect (OSTI)

    Hein, J.

    2011-06-01

    This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

  15. Sandia defines solar variability zones

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    defines solar variability zones - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  16. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect (OSTI)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  17. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  18. Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones

    SciTech Connect (OSTI)

    Walsh, David A.; Zaikova, Elena; Howes, Charles L.; Song, Young; Wright, Jody; Tringe, Susannah G.; Tortell, Philippe D.; Hallam, Steven J.

    2009-07-15

    Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide range of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.

  19. Structure of Precambrian crust in the U. S. from COCORP deep seismic profiling

    SciTech Connect (OSTI)

    Brown, L.D. (Cornell Univ., Ithaca, NY (United States))

    1992-01-01

    COCORP and industry seismic reflection profiles probing beneath the thin veneer of Paleozoic sedimentary rocks of the US mid-continent are mapping a complex, largely unknown three dimensional mosaic of major fault zones and sutures, a highly variable Moho, and extensive sequences of unexplored volcanic and/or sedimentary strata. Key features of the Precambrian suggested by COCORP and other deep profiling include: Pervasive, distributed reflectivity, often diffractive, dominating the middle and lower crust. Moho that is rarely reflective, usually evident as a downward transition of distributed crustal reflectivity into mantle transparency. Volcano-clastic filled graben of the late Proterozoic Keweenawan rift buried beneath Paleozoic strata in Kansas and Michigan. Extensive, subhorizontal Precambrian stratification in the upper crust beneath the east- central US and the Texas-Oklahoma border region, argued to be either an extensive volcano-clastic basin, a voluminous felsic volcanic outpouring or a major intrusive sill complex. Crustal penetrating, dipping reflection zones that mark known (Grenville front) or inferred (Cashocton zone, Trans-Hudson orogen) shear zones. Non-reflective ( ) basement beneath the Appalachian foreland suggesting transparent massifs'' that serve as collisional buttresses during terrane accretion. Deep structure is sometimes at odds with simple extrapolations of surface geology. Clearly deep seismic profiling has only begun to reveal the buried craton in the US. It is time for an integrated program for the systematic exploration of this special scientific frontier.

  20. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  1. Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

    2011-02-23

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

  2. DOE - NNSA/NFO -- Kids Zone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZONE NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Cartoon drawing of science girl Kids Zone Welcome K-12 students and teachers The NNSANFO Kids Zone contains ...

  3. Climate Zone 1B | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype B. Climate Zone 1B is defined as Dry with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C . The following places are categorized as class 1B climate zones:...

  4. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect (OSTI)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  5. Turkey Near-Zero Zone

    Broader source: Energy.gov [DOE]

    The Turkey Near-Zero Zone is an industrial energy efficiency project designed to reduce Turkey’s dependence on energy imports, bolster energy security, cut carbon emissions, and create business opportunities.

  6. Cohesive Zone Model User Element

    Energy Science and Technology Software Center (OSTI)

    2007-04-17

    Cohesive Zone Model User Element (CZM UEL) is an implementation of a Cohesive Zone Model as an element for use in finite element simulations. CZM UEL computes a nodal force vector and stiffness matrix from a vector of nodal displacements. It is designed for structural analysts using finite element software to predict crack initiation, crack propagation, and the effect of a crack on the rest of a structure.

  7. Deep Borehole Disposal Research: Demonstration Site Selection...

    Office of Environmental Management (EM)

    The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper ...

  8. Transition Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Unknown Planned Capacity 1 Geothermal Areas within the Transition Zone Geothermal Region Energy Generation Facilities within the Transition Zone Geothermal Region Geothermal Power...

  9. GridZone | Open Energy Information

    Open Energy Info (EERE)

    search Name: GridZone Sector: Efficiency, Services, Transmission Technology: Smart Grid, Energy Storage, Energy Security ParentHolding Organization: GridZone Limited Company...

  10. Wetlands and Riparian Zones | Open Energy Information

    Open Energy Info (EERE)

    Wetlands and Riparian Zones Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWetlandsandRiparianZones&oldid612217...

  11. Generic Deep Geologic Disposal Safety Case

    Broader source: Energy.gov [DOE]

    The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options (e.g., salt, shale, granite, deep borehole) in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW).

  12. Adams County, Washington ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  13. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  14. Property:Buildings/ModelClimateZone | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Pages using the property "BuildingsModelClimateZone" Showing 12 pages using this property. G General Merchandise...

  15. Overlap zoned electrically heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

    2011-07-19

    A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  16. Deep Ultrasound Enhancements Final Report

    SciTech Connect (OSTI)

    Quarry, M; Thomas, G; Ward, W; Gardner, D

    2006-05-01

    This study involves collaboration between Los Alamos National Laboratory and Lawrence Livermore National Laboratory to enhance and optimize LANL's ultrasonic inspection capabilities for production. Deep-penetrating ultrasonic testing enhancement studies will extend the current capabilities, which only look for disbonds. Current ultrasonic methods in production use 15-20 MHz to inspect for disbonds. The enhanced capabilities use 5 MHz to penetrate to the back surface and image the back surface for any flaws. The enhanced capabilities for back surface inspection use transducers and squirter modifications that can be incorporated into the existing production system. In a production setup the current 15-20 MHz transducer and squirter would perform a bond inspection, followed by a deep inspection that would be performed by simply swapping out the 5 MHz transducer and squirter. Surrogate samples were manufactured of beryllium and bismuth to perform the ultrasonic enhancement studies. The samples were used to simulate flaws on the back surface and study ultrasound's ability to image them. The ultrasonic technique was optimized by performing experiments with these samples and analyzing transducer performance in detecting flaws in the surrogate. Beam patterns were also studied experimentally using a steel ball reflector to measure beam patterns, focal points, and sensitivities to better understand the relationship between design and performance. Many transducers were evaluated including transducers from LANL's production system, LLNL, and other commercially available transducers. Squirter design was also analyzed while performing experiments Flat-bottom holes and ball-mill defects of various sizes were introduced into the samples for experimentation. Flaws depths were varied from .020'' to 0.060'', and diameters varied from 0.0625'' to 0.187''. The smallest defect, .020'' depth and 0.0625'', was detected. Ultrasonic amplitude features produced better images than time

  17. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    SciTech Connect (OSTI)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  18. DeepStream Technologies | Open Energy Information

    Open Energy Info (EERE)

    Place: Bangor, United Kingdom Zip: LL57 4EZ Product: DeepStream Technologies produces digital sensors and controls that measure, monitor, and manage energy usage. References:...

  19. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  20. Vehicle Technologies Program Deep Dive Briefing

    SciTech Connect (OSTI)

    none,

    2009-09-22

    Deep-Dive briefing presentation dated September 22, 2009. Included in the briefing are mission, goals, targets, and budget of the Vehicle Technologies Program.

  1. USDOE Deep Borehole Proposal River & Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Small dimension DOE spent nuclear fuel Some DOE-managed SNF currently ... considered Key Observations Seven Panels Panel 1 - Experience in Deep ...

  2. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Containment Technologies Presented by: T. J. Simpkin/M. J. Truex Location: Shilo Inn, Richland, Washington Date: June 7, 2011 CHPRC1106-08B HNF-49887-VA HNF-49887-VA General Response Action - Containment Technologies General Description * Physically isolate contaminants or limit water movement through contaminated zones to slow their movement sufficiently to meet groundwater remediation goals 2 State of Development * Has been applied as a remedy for waste sites, but not for the deep vadose zone

  3. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C.

    1999-03-01

    Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

  4. Eastern Energy Zones Mapping Tool

    Broader source: Energy.gov [DOE]

    The Eastern Interconnection States’ Planning Council (EISPC) has released the Energy Zones (EZ) Mapping Tool, a free, web-based interactive tool that will help states and other stakeholders in the Eastern Interconnection identify geographic areas suitable for the development of clean energy resources (natural gas, sequestration or utilitization locations for C02 from coal, nuclear, and renewable) which can potentially provide significant amounts of new electric power generation.

  5. TASK 2: QUENCH ZONE SIMULATION

    SciTech Connect (OSTI)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  6. Deep soil mixing for reagent delivery and contaminant treatment

    SciTech Connect (OSTI)

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-12-31

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy`s Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd{sup 3}), there are few alternatives for soils of this type.

  7. Pellet Zone Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pellet Zone Ltd Jump to: navigation, search Name: Pellet Zone Ltd Place: England, United Kingdom Zip: NR19 1AE Sector: Biomass Product: UK based biomass pellet trading firm....

  8. Climate Zone 8B | Open Energy Information

    Open Energy Info (EERE)

    Subtype B. Climate Zone 8B is defined as Subarctic with IP Units 12600 < HDD65F and SI Units 7000 < HDD18C . The following places are categorized as class 8B climate zones:...

  9. Climate Zone 8A | Open Energy Information

    Open Energy Info (EERE)

    A. Climate Zone Number 8A is defined as Subarctic with IP Units 12600 < HDD65F and SI Units 7000 < HDD18C . The following places are categorized as class 8A climate zones:...

  10. Climate Zone 1A | Open Energy Information

    Open Energy Info (EERE)

    A. Climate Zone 1A is defined as Very Hot - Humid with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C . The following places are categorized as class 1A climate zones:...

  11. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  12. Farmland Security Zone | Open Energy Information

    Open Energy Info (EERE)

    Security Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Farmland Security ZoneLegal Abstract California Department of...

  13. Zero Zone Comment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Zone Comment Zero Zone Comment These comments are submitted by Zero Zone Inc., a manufacturer of CRE equipment, in response to the U.S. Department of Energy's (DOE) notice in the July 3, 2014 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its regulatory program more effective and less burdensome. Zero Zone comments (101.48 KB) More Documents & Publications Regulatory Burden RFI Executive Order 13563 certification, compliance and

  14. Optimization of Deep Borehole Systems for HLW Disposal

    SciTech Connect (OSTI)

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  15. Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  16. Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  17. Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  18. Atkinson County, Georgia ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Atkinson County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atkinson County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  19. Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region (Redirected from Central Nevada Seismic Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Central Nevada Seismic Zone...

  20. Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Mississippi ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Mississippi ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  1. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  2. Meridional flow in the solar convection zone. I. Measurements from gong data

    SciTech Connect (OSTI)

    Kholikov, S.; Serebryanskiy, A.; Jackiewicz, J.

    2014-04-01

    Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-time differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.

  3. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  4. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory

  5. Sampling and Analysis Instruction for Installation of UPR-100-N-17 Bioremediation Wells and Performance of Bioventing Pilot Tests

    SciTech Connect (OSTI)

    W. S. Thompson

    2008-12-30

    Sampling and analytical requirements for in situ bioremediation pilot study for remediation of vadose zone petroleum hydrocarbon contamination.

  6. U.S. Climate Zones Map for Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Climate Zone U. S. Climate Zones for 2003 CBECS: climate zones map Note:Map updated with corrections, February 2012 Further Explanation on How Climate Zones are Defined...

  7. U.S. Climate Zones Map for Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Past Climate Zones U. S. Climate Zones for 1979-1999 CBECS: climate zone map Return to Climate Zones for 2003 CBECS Return to CBECS Home Page Note:Map updated with corrections,...

  8. Property:ASHRAE 169 Climate Zone Subtype | Open Energy Information

    Open Energy Info (EERE)

    A + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Subtype B + Adams County,...

  9. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adams County,...

  10. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    much of the enhanced geothermal focus on stimulating fracture development (e.g., fracking) at depth is not directly relevant to deep borehole disposal. For deep borehole...

  11. Test of factorization in diffractive deep inelastic scattering...

    Office of Scientific and Technical Information (OSTI)

    Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA Citation Details In-Document Search Title: Test of factorization in diffractive deep ...

  12. Tanzania-Developing Energy Enterprises Project (DEEP) | Open...

    Open Energy Info (EERE)

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Tanzania-Developing Energy Enterprises Project (DEEP) Name Tanzania-Developing Energy Enterprises...

  13. Uganda-Developing Energy Enterprises Project (DEEP) | Open Energy...

    Open Energy Info (EERE)

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Uganda-Developing Energy Enterprises Project (DEEP) Name Uganda-Developing Energy Enterprises Project...

  14. Kenya-Developing Energy Enterprises Project (DEEP) | Open Energy...

    Open Energy Info (EERE)

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Kenya-Developing Energy Enterprises Project (DEEP) Name Kenya-Developing Energy Enterprises Project...

  15. Neural Interface for Deep Brain Stimulation (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neural Interface for Deep Brain Stimulation Citation Details In-Document Search Title: Neural Interface for Deep Brain Stimulation Authors: Tooker, A C ; Madsen, T E ; Crowell, A ; ...

  16. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  17. Deep Borehole Disposal of Nuclear Waste. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste. Abstract not provided. Authors: Arnold, Bill Walter ;...

  18. Deep Energy Retrofits & State Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Energy Retrofits & State Applications Deep Energy Retrofits & State Applications This presentation, given through the DOE's Technical Assitance Program (TAP), provides...

  19. Deep Sky Astronomical Image Database Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  20. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  1. Presentation at the Weatherization Program Deep Dive Briefing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 U.S. Department of...

  2. Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation...

    Office of Scientific and Technical Information (OSTI)

    Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation Citation Details In-Document Search Title: Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation ...

  3. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel...

    Office of Scientific and Technical Information (OSTI)

    Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Citation Details In-Document Search Title: Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Nuclear ...

  4. MHK Technologies/Deep Green | Open Energy Information

    Open Energy Info (EERE)

    MHK TechnologiesDeep Green < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Green.jpg Technology Profile Primary Organization Minesto AB...

  5. Deep Borehole Disposal of Nuclear Waste: Science Needs. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste: Science Needs. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste: Science Needs. Abstract not provided. ...

  6. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Research Development and Demonstration Roadmap for Deep Borehole Disposal. Citation Details In-Document Search Title: Research Development and Demonstration Roadmap for Deep...

  7. Research, Development, and Demonstration Roadmap for Deep Borehole...

    Energy Savers [EERE]

    Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to ...

  8. Long-Baseline Neutrino Facility / Deep Underground Neutrino Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Baseline Neutrino Facility Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline ...

  9. Project Profile: Deep Eutectic Salt Formulations Suitable as...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics ...

  10. Arctic Stratus and Tropical Deep Convection. Integrating Measurements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Arctic Stratus and Tropical Deep Convection. Integrating Measurements and Simulations Citation Details In-Document Search Title: Arctic Stratus and Tropical Deep ...

  11. National Library of Energy : Main View : Deep Federated Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Library of Energy Search Powered By Deep Web Technologies New Search Preferences Powered by Deep Web Technologies energy.gov Office of Scientific and Technical Information...

  12. OSTIblog Articles in the deep web technologies Topic | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    During that time, working in close partnership with Deep Web Technologies, we have made ... individual source in Science.gov.... Related Topics: deep web technologies, energy portal

  13. Coastal Zone Management Act and Regulations (NOAA)

    Broader source: Energy.gov [DOE]

    The Coastal Zone Management Act (CZMA) of 1972 provides for the management of the nation’s coastal resources, including the Great Lakes.

  14. Washington Coastal Zone Management Regulatory Handbook | Open...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - GuideHandbook: Washington Coastal Zone Management Regulatory HandbookPermittingRegulatory GuidanceGuideHandbook Author Washington...

  15. Maricopa County- Renewable Energy Systems Zoning Ordinance

    Broader source: Energy.gov [DOE]

    The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil...

  16. Climate Zone 2B | Open Energy Information

    Open Energy Info (EERE)

    are categorized as class 2B climate zones: Bandera County, Texas Dimmit County, Texas Edwards County, Texas Frio County, Texas Imperial County, California Kinney County, Texas La...

  17. Coastal Zone Management Act | Open Energy Information

    Open Energy Info (EERE)

    and the National Estuarine Research Reserve System. The 34 coastal programs aim to balance competing land and water issues in the coastal zone, while estuarine reserves serve...

  18. Mapping Hydrothermal Upwelling and Outflow Zones: Preliminary...

    Open Energy Info (EERE)

    temperature anomaly has been mapped. A group of subtle temperature anomalies along Simpson Pass, south of the current production area, are interpreted as an upwelling zone with...

  19. Coastal Zone Management Act and Regulations

    Broader source: Energy.gov [DOE]

    The Coastal Zone Management Act (CZMA) of 1972 provides for the management of the nation’s coastal resources, including the Great Lakes.

  20. Land subsidence along the northeastern Texas Gulf coast: Effects of deep hydrocarbon production

    SciTech Connect (OSTI)

    Sharp, J.M. Jr.; Hill, D.W.

    1995-04-01

    The Texas Gulf of Mexico coast is experiencing high (5-11 mm/yr) rates of relative sea level (RSL) rise that are the sum of subsidence and eustatic sea level (ESL) rise. Even higher rates are associated with areas of ground-water pumping from confined aquifers. We investigate the possibility of deep petroleum production as a cause for the high regional rates of subsidence. The northeast Texas coast was chosen for the study because it has a high rate of RSL rise, very limited groundwater production, and a long history of petroleum production. We examine in detail the Big Hill and Fannett fields, for which adequate bottom hole pressure (BHP) and well log data are available. The hypothesis of deep petroleum production is tested in three ways. First, industry BHP tests show many of the fields are depressurized to far below hydrostatic pressures. Second, analysis of BHP data over time in the Big Hill and Fannett fields indicates that some zones in these fields were below hydrostatic when production commenced. This indicates that depressurization from production in neighboring fields or zones within the same filed is not limited to the production zone. Third, three models for subsidence (a general 1-D regional model, an intra-reservoir model, and a reservoir bounding layer model), using reasonable hydrogeological parameters, predict subsidence within the inferred range of data. The latter two models use data from the Big Hill and Fannett fields. Additional verification of the hypothesis that deep petroleum production is causing or accelerating regional subsidence will require the collection and analysis of data on the subsurface hydrogeological parameters and detailed measure ments of the spatial and temporal distribution of subsidence along the Texas Coast.

  1. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01

    This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new

  2. Ultra Deep Wave Equation Imaging and Illumination

    SciTech Connect (OSTI)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  3. Treating tar sands formations with karsted zones

    DOE Patents [OSTI]

    Vinegar, Harold J.; Karanikas, John Michael

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  4. New proppant for deep hydraulic fracturing

    SciTech Connect (OSTI)

    Underdown, D.R.; Das, K.

    1982-01-01

    Much work has been done in the development and evaluation of various materials for use as proppants for hydraulic fracturing. Sand is most often used as a frac proppant in shallow wells. Deep wells having high closure stresses require a proppant such as sintered bauxite which will not crush under such adverse conditions. Proppants such as ceramic and zirconium oxide beads and resin coated sand have been developed for deep hydraulic fracturing; however, use of these materials has been limited. A new frac proppant has been developed which exhibits the properties necessary for use in deep hydraulic fracturing. This frac proppant is produced by precuring a specially modified phenol-formaldehyde resin onto sand. The new frac proppant maintains conductivity and resists crushing, similar to that of sintered bauxite at high closure stress. 11 references.

  5. New proppant for deep hydraulic fracturing

    SciTech Connect (OSTI)

    Das, K.; Underdown, D.R.

    1985-01-01

    Much work has focused on developing and evaluating various materials for use as proppants for hydraulic fracturing. Sand is used most often as a fracturing proppant in shallow wells. Deep wells with high closure stresses require a proppant, such as sintered bauxite, that will not crush under adverse conditions. Ceramic and zirconium oxide beads and resin-coated sand proppants also have been developed for deep hydraulic fracturing. A new fracturing proppant has been developed that exhibits the properties necessary for use in deep hydraulic fracturing. This proppant is produced by precuring a specially modified phenolformaldehyde resin onto sand. The new proppant maintains conductivity and resists crushing much better than does sand. The new proppant was compared to intermediate-density sintered bauxitic proppants and cured-in-place proppants and the tests were confirmed by an independent laboratory.

  6. Deep Energy Retrofit Case Studies: Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Energy Retrofit Case Studies: Lessons Learned. Alea German Alliance for Residential Building Innovation June 25, 2014 Davis Energy Group | June 25, 2014 ‹#› Agenda * Background / motivation * Results from 3 CA retrofits - Sonoma Passive House Retrofit - Stockton Hot Dry Retrofit - Sunnyvale Marine Deep Retrofit Davis Energy Group | June 25, 2014 ‹#› Background * >60 million homes in the U.S. over 30 yrs old * Huge potential - Energy savings ‹#› Davis Energy Group | June 25,

  7. Experimental Investigation of the Effective Foam Viscosity in Unsaturated Porous Media

    SciTech Connect (OSTI)

    Zhang, Z. F.; Zhong, Lirong; White, Mark D.; Szecsody, James E.

    2012-11-01

    Foam has the potential to effectively carry and distribute either aqueous or gaseous amendments to the deep vadose zone for contaminant remediation. However, the transport of foam in porous media is complicated because flow characteristics such as the effective viscosity are affected not only by foam properties but also by the sediment properties and flow conditions. We determined the average effective foam viscosity via a series of laboratory experiments and found that the effective foam viscosity increased with the liquid fraction in foam, the injection rate, and sediment permeability. These impacts are quantified with an empirical expression, which is further demonstrated with data from literature. The results show that the liquid fraction in foam and sediment permeability are two primary factors affecting effective foam viscosity. These results suggest that, when foam is used in deep vadose zone remediation, foam flow will not suffer from gravitational drainage and can distribute amendments uniformly in heterogeneous sediments.

  8. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect (OSTI)

    Nick Soelberg; Tony Watson

    2014-08-01

    are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  9. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H.; Ganoe, Carl W.

    1999-01-01

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  10. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  11. Langley Deep Field, discovery and interpretation

    SciTech Connect (OSTI)

    Henderson, G.J.; Lake, E.A.; Douglas, G.

    1984-01-01

    In May 1978, ARCO Oil and Gas Co. completed the Langley Deep Unit 1 well in Lea County, New Mexico, discovering a deep gas field with production from two horizons. The discovery well produces gas from a northwest-southeast-trending anticline that has a reverse fault at the Ellenburger formation on the northeast flank of the structure. This reverse fault, possibly persistent to the base of the Wolfcamp Formation, generated an anticlinal feature in the upthrown block at the Devonian level. The fault itself is the trap at the Ellenburger formation. Since the discovery of the Langley Deep field in 1978, a new geologic interpretation has been proposed for the eastern rim of the Delaware basin. A major conclusion, based on seismic control, the well control from this field, and on subsurface control throughout southern Lea County, New Mexico, is that a strike-slip fault was activated during the Late Pennsylvanian and Early Permian and caused deformation resulting in the formation of the Langley Deep structure.

  12. Regulatory issues for deep borehole plutonium disposition

    SciTech Connect (OSTI)

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission.

  13. Environmental - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Environmental Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental CERCLA Five-Year Review NEPA - Categorical Exclusions

  14. DOE/RL-2010-89

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RL-2010-89 Revision 0 Long-Range Deep Vadose Zone Program Plan TRADEMARK DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. This report has been reproduced from the best available copy. Printed in the United States of America

  15. Hanford Site Safety Standards - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Safety Standards Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards Hanford Hoisting and Rigging Manual DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Hanford Site

  16. Microsoft Word - DVZ Technologies Public Information Exchange Summary.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DVZ Technologies Public Information Exchange June 7, 2011 Location: Shilo Inn, Richland, WA Opening Session - Flip Chart Notes Comments  Excavation technologies are good to approximately 40 ft. and make a big footprint. Develop some cost curves to get general understanding of cost/benefit.  Excavation can be cheap and quick.  Lots of deep vadose zone problems are black and white at 60 to 120 ft, but not at 250 ft.  Good technology screening process important. Need to categorize and

  17. Integrated Waste Feed Delivery Plan - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Integrated Waste Feed Delivery Plan Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Email Email Page | Print Print

  18. NEPA - Environmental Impact Statements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statements Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental CERCLA Five-Year Review NEPA - Categorical Exclusions NEPA -

  19. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Vadose Zone Research and Development MARK FRESHLEY AND HOPE LEE PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND, WASHINGTON 99354 August 6, 2013 Mike Truex, Tim C. Johnson, Amoret Bunn, and Dawn M. Wellman 1 August 6, 2013 2 Soil and Groundwater Remediation Strategic DOE EM Program Technical Basis for Soil and Groundwater Remediation 3 What is an endpoint framework?  Systematic understanding of a problem to provide understanding and justification for decision making  Risk informed

  20. CERCLA Five-Year Review - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Environmental CERCLA Five-Year Review Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental CERCLA Five-Year Review Third

  1. Review of Literature on Terminal Box Control, Occupancy Sensing Technology and Multi-zone Demand Control Ventilation (DCV)

    SciTech Connect (OSTI)

    Liu, Guopeng; Dasu, Aravind R.; Zhang, Jian

    2012-03-01

    This report presents an overall review of the standard requirement, the terminal box control, occupancy sensing technology and DCV. There is system-specific guidance for single-zone systems, but DCV application guidance for multi-zone variable air volume (VAV) systems is not available. No real-world implementation case studies have been found using the CO2-based DCV. The review results also show that the constant minimum air flow set point causes excessive fan power consumption and potential simultaneous heating and cooling. Occupancy-based control (OBC) is needed for the terminal box in order to achieve deep energy savings. Key to OBC is a technology for sensing the actual occupancy of the zone served in real time. Several technologies show promise, but none currently fully meets the need with adequate accuracy and sufficiently low cost.

  2. Category:ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    Category Edit History Category:ASHRAE Climate Zones Jump to: navigation, search Climate Zones defined in the ASHRAE 169-2006 standards. Pages in category "ASHRAE Climate Zones" The...

  3. China-Low Carbon Development Zones | Open Energy Information

    Open Energy Info (EERE)

    China-Low Carbon Development Zones (Redirected from E3G-China-Low Carbon Development Zones) Jump to: navigation, search Name China-Low Carbon Development Zones AgencyCompany...

  4. San Diego County- Solar Zoning Regulations

    Office of Energy Efficiency and Renewable Energy (EERE)

    The County of San Diego has established zoning guidelines for solar electric systems of varying sizes in the unincorporated areas of San Diego County. Photovoltaic (PV) systems which have their...

  5. Local Option- Rural Renewable Energy Development Zones

    Broader source: Energy.gov [DOE]

    Commercial renewable energy property in these zones are eligible for a 3 to 5 year local property tax exemption. Eligible property includes either wind, geothermal, solar, biomass, or other uncon...

  6. Climate Zone 5C | Open Energy Information

    Open Energy Info (EERE)

    C. Climate Zone 5C is defined as Marine with IP Units 5400 < HDD65F 7200 and SI Units 3000 < HDD18C 4000 . The following places are categorized as class 5C...

  7. Zone heated diesel particulate filter electrical connection

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-03-30

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  8. U-PLANT GEOGRAPHIC ZONE CLEANUP PROTOTYPE

    SciTech Connect (OSTI)

    ROMINE, L.D.

    2006-02-01

    The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as ''cleanup items'') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is available to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will

  9. Treating nahcolite containing formations and saline zones

    DOE Patents [OSTI]

    Vinegar, Harold J

    2013-06-11

    A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

  10. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    SciTech Connect (OSTI)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  11. Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit History Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place...

  12. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid ...

  13. Future Energy Zone Private Ltd FEZ | Open Energy Information

    Open Energy Info (EERE)

    Zone Private Ltd FEZ Jump to: navigation, search Name: Future Energy Zone Private Ltd (FEZ) Place: Chennai, Tamil Nadu, India Sector: Renewable Energy Product: Focused on building...

  14. Walker-Lane Transition Zone Geothermal Region | Open Energy Informatio...

    Open Energy Info (EERE)

    At Walker-Lane Transitional Zone Region (Coolbaugh, Et Al., 2005 - 2) Direct-Current Resistivity Survey At Walker-Lane Transitional Zone Region (Pritchett,...

  15. Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  16. Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  17. Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  18. Geodetic Survey At Walker-Lane Transitional Zone Region (Blewitt...

    Open Energy Info (EERE)

    Zone Region (Blewitt Et Al, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geodetic Survey Activity Date...

  19. Field Mapping At Walker-Lane Transitional Zone Region (Blewitt...

    Open Energy Info (EERE)

    Zone Region (Blewitt Et Al, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness...

  20. Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity...

  1. Compound and Elemental Analysis At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Compound and Elemental Analysis...

  2. Isotopic Analysis At Walker-Lane Transitional Zone Region (Laney...

    Open Energy Info (EERE)

    Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date...

  3. Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity...

  4. Geographic Information System At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geographic Information System Activity...

  5. Geothermometry At Walker-Lane Transitional Zone Region (Laney...

    Open Energy Info (EERE)

    Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness...

  6. Archive Reference Buildings by Climate Zone: 3A Atlanta, Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Archive Reference Buildings by Climate Zone: 3B Los Angeles, California Archive Reference Buildings by Climate Zone: 3B Las Vegas, Nevada Archive ...

  7. Longyang Zone Hongqiang Hydroelectric Power Development Co Ltd...

    Open Energy Info (EERE)

    Longyang Zone Hongqiang Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Longyang Zone Hongqiang Hydroelectric Power Development Co., Ltd. Place: Baoshan...

  8. Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone |...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit History Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

  9. Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Central Nevada Seismic Zone Geothermal Region Details Areas (3) Power...

  10. An Updated Site Scale Saturated Zone Ground Water Transport Model...

    Office of Scientific and Technical Information (OSTI)

    An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water ...

  11. Montana Streamside Management Zone Law Webpage | Open Energy...

    Open Energy Info (EERE)

    Zone Law Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Streamside Management Zone Law Webpage Abstract Provides information on...

  12. LADOL Integrated Logistics Free Zone Enterprise LILE | Open Energy...

    Open Energy Info (EERE)

    LADOL Integrated Logistics Free Zone Enterprise LILE Jump to: navigation, search Name: LADOL Integrated Logistics Free Zone Enterprise (LILE) Place: Lagos, Nigeria Product:...

  13. Haleakala SW Rift Zone Exploration | Open Energy Information

    Open Energy Info (EERE)

    SW Rift Zone Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Haleakala SW Rift Zone Exploration Project Location Information...

  14. Electrically heated particulate filter with zoned exhaust flow...

    Office of Scientific and Technical Information (OSTI)

    Electrically heated particulate filter with zoned exhaust flow control Title: Electrically heated particulate filter with zoned exhaust flow control A system includes a particulate ...

  15. Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

  16. Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, South Carolina ASHRAE Standard ASHRAE 169-2006...

  17. Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone ...

    Open Energy Info (EERE)

    Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, West Virginia ASHRAE Standard ASHRAE 169-2006...

  18. Anderson County, Tennessee ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate...

  19. Anderson County, South Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Anderson County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, South Carolina ASHRAE Standard ASHRAE 169-2006...

  20. Alameda County, California ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County, California ASHRAE Standard ASHRAE 169-2006 Climate...

  1. Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone |...

    Open Energy Info (EERE)

    Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bernalillo County, New Mexico ASHRAE Standard ASHRAE 169-2006...

  2. Workers Create Demolition Zone at Hanford Site's Plutonium Finishing...

    Office of Environmental Management (EM)

    Create Demolition Zone at Hanford Site's Plutonium Finishing Plant Workers Create Demolition Zone at Hanford Site's Plutonium Finishing Plant August 28, 2014 - 12:00pm Addthis The ...

  3. Deep East Texas Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Deep East Texas Elec Coop Inc Jump to: navigation, search Name: Deep East Texas Elec Coop Inc Place: Texas Phone Number: 1-800-392-5986 Website: www.deepeast.com Facebook: https:...

  4. Co2 Deep Store Ltd | Open Energy Information

    Open Energy Info (EERE)

    Deep Store Ltd Jump to: navigation, search Name: Co2 Deep Store Ltd Place: Scotland, United Kingdom Zip: AB11 7LH Sector: Carbon Product: UK based organization focused on the...

  5. A Deep Dive into the Subsea Environment | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Deep Dive into the Subsea Environment Click to email this to a friend (Opens in new ... A Deep Dive into the Subsea Environment Bruno Betoni Parodi 2014.04.07 In 2012, we hosted ...

  6. Workers Will Clean Up Groundwater Contamination Source With Deep...

    Broader source: Energy.gov (indexed) [DOE]

    150-foot-tall crane turns an eight-foot-diameter auger performing deep-soil mixing at the ... A 150-foot-tall crane turns an eight-foot-diameter auger performing deep-soil mixing at ...

  7. Energy Department selects Battelle team for a deep borehole field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battelle team for a deep borehole field test in North Dakota Energy Department selects Battelle team for a deep borehole field test in North Dakota January 5, 2016 - 5:31pm ...

  8. Adams County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  9. Baxter County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baxter County, Arkansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  10. Deep Challenges for Foundation Performance at Savannah River Site

    Broader source: Energy.gov [DOE]

    Deep Challenges for Foundation Performance at Savannah River Site Frank H. Syms and Brent Gutierrez October 22, 2014

  11. NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science Computational Researchers Test Advanced Machine Learning Tools for HPC December 8, 2015 Contact: Kathy Kincade, kkincade@lbl.gov, 510-495-2124 braindeeplearning Researchers in Berkeley Lab's Biological Systems and Engineering Division are using a deep learning library to analyze recordings of the human brain during speech production. Image: Kris Bouchard Deep

  12. Building America Webinar: A National Summary of Deep Energy Retrofits |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A National Summary of Deep Energy Retrofits Building America Webinar: A National Summary of Deep Energy Retrofits This presentation by Brennan Less is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. BA Webinar_less_6-25-14.pdf (1016.92 KB) More Documents & Publications Building America Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact

  13. Building America Webinar: Deep Energy Retrofit Case Studies: Lessons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learned | Department of Energy Deep Energy Retrofit Case Studies: Lessons Learned Building America Webinar: Deep Energy Retrofit Case Studies: Lessons Learned This presentation by Alea German is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. BA Webinar_german_6-25-14.pdf (1.23 MB) More Documents & Publications Building America Webinar: Introduction - Who's Successfully Doing Deep Energy Retrofits? Energy Auditor - Single

  14. Small diameter, deep bore optical inspection system

    DOE Patents [OSTI]

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  15. Small diameter, deep bore optical inspection system

    DOE Patents [OSTI]

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  16. Jet-images — deep learning edition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de Oliveira, Luke; Kagan, Michael; Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    2016-07-13

    Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physicallymotivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less

  17. License for the Konrad Deep Geological Repository

    SciTech Connect (OSTI)

    Biurrun, E.; Hartje, B.

    2003-02-24

    Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

  18. Benchmark field study of deep neutron penetration

    SciTech Connect (OSTI)

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  19. Quantitative damage evaluation of localized deep pitting

    SciTech Connect (OSTI)

    Al Beed, A.A.; Al Garni, M.A.

    2000-04-01

    Localized deep pitting is considered difficult to precisely measure and evaluate using simple techniques and daily-use analysis approaches. A case study was made of carbon steel heat exchangers in a typical fresh cooling water environment that experienced severe pitting. To effectively and precisely evaluate the encountered pitting damage, a simple measurement and analyses approach was devised. In this article, the pitting measurement technique and the damage evaluation approach are presented and discussed in detail.

  20. Completion practices in deep sour Tuscaloosa wells

    SciTech Connect (OSTI)

    Huntoon, G.G.

    1984-01-01

    Successful development of the Tuscaloosa trend in Louisiana has required unique completion practices to produce the trend's deep sour formations. Amoco's operations in the Tuscaloosa formation are between 16,000 and 21,000 ft (4877 and 6400 m), and a range of pressure environments, high temperatures, and corrosive elements is encountered. Application of proved completion practices and equipment has resulted in several techniques that enhance the safety, longevity, and production capacity of these wells. The design of deep Tuscaloosa completions is assisted by a series of correlations developed to project bottomhole and surface shut-in tubing pressures, temperature gradients, and flow capacities for deep sour wells. This paper discusses material selection, completion practices, completion fluids, wellhead equipment, packer designs, corrosion-inhibition systems, and safety and monitoring equipment used in the Tuscaloosa trend. The design of a wellhead surface installation used to detect equipment failure, to pump kill fluids, and to circulate corrosion inhibitors is reviewed. A case study illustrates the methods used in completing a Tuscaloosa well with surface pressures exceeding 16,000 psi (110.3 MPa). Deep high-pressure sour-gas wells can be completed safely if all the elements of the environment that will affect the mechanical integrity of the wellbore are considered in the completion designs. The development of higher-strength material capable of withstanding SSC is needed if wells are completed in formations deeper than 22,000 ft (6700 m). Further research is necessary on the use of alloy steels and nonferrous metals for sour service. Effective high-temperature corrosion inhibitors for heavy zinc bromide completion fluids must be developed before these brines can be used in the Tuscaloosa. The testing of new inhibitors for use in highpressure sour-gas completions should be continued.

  1. Hawaii Deep Water Cable Program: Executive Summary

    SciTech Connect (OSTI)

    1990-09-01

    The Hawaii Deep Water Cable Program has succeeded unequivocally in determining the feasibility of deploying a submarine power cable system between the islands of Hawaii and Oahu. Major accomplishments of the program include designing, fabricating and testing an appropriate power cable, developing an integrated system to control all aspects of the cable laying operation, and testing all deployment systems at sea in the most challenging sections of the route.

  2. HELIOSEISMIC INVESTIGATION OF EMERGING MAGNETIC FLUX IN THE SOLAR CONVECTION ZONE

    SciTech Connect (OSTI)

    Ilonidis, Stathis; Zhao, Junwei; Hartlep, Thomas

    2013-11-10

    Helioseismology is capable of detecting signatures of emerging sunspot regions in the solar interior before they appear at the surface. Here we present measurements that show the rising motion of the acoustic travel-time perturbation signatures in the deep convection zone, and study the possible physical origin of these signatures using observational and numerical simulation data. Our results show that the detected signatures first appear at deeper layers and then rise, with velocities of up to 1 km s{sup –1}, to shallower regions. We find evidences that these signatures may not be caused by subsurface flows or wave-speed perturbations, but are associated with acoustic power variations and frequency shifts of the cross-covariance function measured in the emerging-flux region. We also confirm with the use of numerical simulation data that phase travel-time shifts can be associated with frequency shifts related to acoustic power variations. The results of this work reveal the rising motion of magnetic flux in the deep convection zone and explain the large amplitude of the detected perturbation signatures.

  3. Deep Sludge Gas Release Event Analytical Evaluation

    SciTech Connect (OSTI)

    Sams, Terry L.

    2013-08-15

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical

  4. Zoned electrical heater arranged in spaced relationship from particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-11-15

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  5. Detonation Reaction Zones in Condensed Explosives

    SciTech Connect (OSTI)

    Tarver, C M

    2005-07-14

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich--von Neumann--Doring (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes is discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  6. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    SciTech Connect (OSTI)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L.; Arendt, R.; Barmby, P.; Barro, G.; Faber, S.; Guhathakurta, P.; Bouwens, R.; Cattaneo, A.; Croton, D.; Dave, R.; Dunlop, J. S.; Egami, E.; Finlator, K.; Grogin, N. A.; and others

    2013-05-20

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg{sup 2} to a depth of 26 AB mag (3{sigma}) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 {mu}m. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 {+-} 1.0 and 4.4 {+-} 0.8 nW m{sup -2} sr{sup -1} at 3.6 and 4.5 {mu}m to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  7. Innovation and Success in Planning and Zoning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning and Zoning Innovation and Success in Planning and Zoning This document summarizes several successful initiatives to implement solar-friendly planes and zoning codes. webinar_072413_planning_zoning.pdf (2.99 MB) More Documents & Publications webinar_innovation_planning_zoning.doc SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE) The SunShot Vision Study

  8. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cascade Apartments - Deep Energy Multifamily Retrofit Kent, Washington PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: King County Housing Authority, Kent, Washington http://www.kcha.org/ Size: 108 units in 27 four-plexes Rent: 30% of household income Date completed: 2010 Climate Zone: Marine PERFORMANCE DATA State low-income weatherization investment: $385,850 for all 108 units $15,850 per 4-plex $3,858 per unit Site savings per unit: Billing analysis:

  9. Recent seafloor metallogeneses: examples from the Atlantis II Deep, Red Sea and 21/sup 0/N East Pacific Rise

    SciTech Connect (OSTI)

    Zierenberg, R.A.

    1983-01-01

    Massive sulfide from 21/sup 0/N East Pacific Rise consists of pyrrhotite, cubic cubanite, wurtzite, chalcopyrite, pyrite, sphalerite, marcasite, and traces of galena. The samples show a complex paragenesis with extensive replacement and sulfur isotope disequilibrium. Sulfides in the Atlantis II Deep, Red Sea are very fine grained pyrrhotite, cubic cubanite, chalcopyrite, sphalerite, and pyrite which are interlayered with iron phyllosilicates. Epigenetic veins cutting unlithified metalliferous sediment in the Atlantis II are the conduits for the entry or new hot brine into the Deep. Vein mineralogy is dominated by talc and anhydrite with subordinate sulfides and phyllosilicates. Vertical zoning of vein minerals is related to cooling of hydrothermal fluid. Stable isotope ratios indicate depositional temperatures up to 300/sup 0/C. Stable isotope ratios also suggest that cooling of the hydrothermal fluid is caused by mixing with cooler brine having the approximate composition of the lower brine layer. Geochemical modeling of mixing successfully predicts the observed vertical zonation. The 21/sup 0/N East Pacific Rise deposit and the Atlantis II Deep have similar geochemical systems dominated by interaction with hot tholeiitic basalt. The differences in the deposits are related to their different depositional environments. The 21/sup 0/N East Pacific Rise deposit is forming directly on the seafloor in contact with cold oxygenated seawater, while the Atlantis II Deep deposit is forming beneath a warm, saline, anoxic brine pool.

  10. Coiled tubing facilitates deep underbalanced workover

    SciTech Connect (OSTI)

    Adams, L.S.; Overstreet, C.C.

    1997-03-31

    A recent workover shows the technical capability and cost effectiveness of coiled tubing for cleaning out scale in a 22,611-ft, low pressure, high-temperature gas well. The well, operated by Chevron USA Production Co., is in the Fort Stockton Gas Unit 5-1 Gomez (Ellenburger) field, in West Texas. The development of reliable 100,000-psi minimal yield strength coiled tubing was a major factor that allowed this work to succeed. The methods demonstrated by this workover are becoming a standard for deep well cleanouts in the Gomez (Ellenburger) field. The paper describes coiled tubing advantages, well history, and implementation.

  11. National Grid Deep Energy Retrofit Pilot

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance.

  12. Deep Secrets of the Neutrino: Physics Underground

    SciTech Connect (OSTI)

    Rowson, P.C.

    2010-03-23

    Among the many beautiful, unexpected and sometimes revolutionary discoveries to emerge from subatomic physics, probably none is more bizarre than an elementary particle known as the 'neutrino'. More than a trillion of these microscopic phantoms pass unnoticed through our bodies every second, and indeed, through the entire Earth - but their properties remain poorly understood. In recent years, exquisitely sensitive experiments, often conducted deep below ground, have brought neutrino physics to the forefront. In this talk, we will explore the neutrino - what we know, what we want to know, and how one experiment in a New Mexico mine is trying to get there.

  13. Archived Reference Climate Zone: 8 Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zonesis available for reference.Current versionsare also available.

  14. Archived Reference Climate Zone: 8 Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  15. Injectivity Testing for Vapour Dominated Feed Zones

    SciTech Connect (OSTI)

    Clotworthy, A.W.; Hingoyon, C.S.

    1995-01-01

    Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

  16. Climate Zone Number 1 | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  17. FED. Zoning for TRUMP Heat Transfer Code

    SciTech Connect (OSTI)

    Elrod, D.

    1987-10-23

    FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP. TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, two, or three dimensions.

  18. Eastern Energy Zones Mapping Tool Now Available

    Broader source: Energy.gov [DOE]

    The Eastern Interconnection States’ Planning Council (EISPC) has released the Energy Zones (EZ) Mapping Tool, a free, web-based interactive tool that will help states and other stakeholders in the Eastern Interconnection identify geographic areas suitable for the development of clean energy resources which can potentially provide significant amounts of new electric power generation.

  19. Webinar: EISPC Energy Zones Mapping Tool Demonstration

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory has organized a webinar demonstration of the Eastern Interconnection States’ Planning Council (EISPC) Energy Zones (EZ) Mapping Tool, a free online mapping tool for identifying areas in all 39 EISPC states that may be suitable for new clean power generation. The tool is maintained by Argonne National Laboratory with funding from the U.S. Department of Energy.

  20. Archived Reference Climate Zone: 7 Duluth, Minnesota

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  1. Archived Reference Climate Zone: 7 Duluth, Minnesota

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  2. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  3. Articulated plural well deep water production system

    SciTech Connect (OSTI)

    Lawson, J.

    1980-07-08

    Apparatus for subsea production of fluids through a manifold and central riser from a plurality of individual wells drilled in different parts of a field in deep water, is described that is comprised of: a central manifold base having flow line connectors thereon; an elongated boom for each well to be produced in a field, each boom being rigidly attached to the manifold base; a temporary guide base mounted to the other end of each boom for establishing a well site; and a flow line extending along each boom from a flow line connector on the central manifold base. A method of producing well fluids from a number of individual wells drilled in different parts of a field located in deep water to a production platform via a central riser, which comprises the steps of: submerging to the ocean floor a subsea production apparatus which includes a central manifold base having an elongated boom for each well articulated thereto at one end and mounting a temporary guide base at the other end of the boom for establishing a well site, and a preinstalled flow line extending along each boom from the manifold base; landing a manifold section on the manifold; and landing a subsea tree on each temporary guide base.

  4. Cost reduction in deep water production systems

    SciTech Connect (OSTI)

    Beltrao, R.L.C.

    1995-12-31

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project.

  5. National Grid Deep Energy Retrofit Pilot

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

  6. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  7. Building America Efficient Solutions for Existing Homes Case Study: Deep

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Retrofit of 1910 House, Portland, Oregon | Department of Energy Deep Energy Retrofit of 1910 House, Portland, Oregon Building America Efficient Solutions for Existing Homes Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons learned for a 100-year-old home in Portland, Oregon, audited by Pacific Northwest National Laboratory for a deep energy

  8. Long-Baseline Neutrino Facility / Deep Underground Neutrino Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LBNF-DUNE) | Department of Energy Long-Baseline Neutrino Facility / Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility / Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility / Deep Underground Neutrino Project (LBNF-DUNE) Chris Mossey, Deputy Lab Director (Fermi) and Project Director for LBNF-DUNE March 23, 2016 Presentation (5.94 MB) Key Resources PMCDP EVMS PARS IIe FPD Resource Center PM Newsletter Forms and Templates More Documents

  9. Energy Department Explores Deep Direct Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Explores Deep Direct Use Energy Department Explores Deep Direct Use Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and fisheries. Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and fisheries. Deep Direct Use (DDU) geothermal applications utilize natural geothermal fluid for a full spectrum of cascading uses, including

  10. Building America Webinar: Results from Phased Deep Retrofits in Florida

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phased Deep Retrofits in Florida D. Parker, D. Chasar, K. Sutherland, J. Montemurno, J. Kono Florida Solar Energy Center June, 2014 Phased Deep Retrofit (PDR) Project * Detailed residential field metering project in FPL Service Territory * Cooperative project between U.S. DOE and FPL * Sixty heavily metered homes evaluated over 2 years * Shallow retrofit in all & then deep retrofits in 10 * Collecting data of unique value to FPL/DOE PDR: Extensive end-use metering * January - July 2013: 60

  11. Building America Webinar: Results from Phased Deep Retrofits in Florida |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Results from Phased Deep Retrofits in Florida Building America Webinar: Results from Phased Deep Retrofits in Florida This presentation by Danny Parker is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. BA Webinar_parker_6-25-14.pdf (4.04 MB) More Documents & Publications Building America Case Studies for Existing Homes: Supplemental Ductless Mini-Split Heat Pump in the Hot-Humid Climate Building America

  12. Building America Webinar: Who's Successfully Doing Deep Energy Retrofits? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Who's Successfully Doing Deep Energy Retrofits? Building America Webinar: Who's Successfully Doing Deep Energy Retrofits? The webinar on June 25, 2014, focused on specific Building America projects that highlighted real-world examples of deep energy retrofits (DER) that are meeting with technical and market success. Presenters focused on technical strategies, modeled and actual performance results, and project costs. Danny Parker, Building America Partnership for

  13. Origin of deep crustal reflections: Implications of coincident seismic refraction and reflection data in Nevada

    SciTech Connect (OSTI)

    Holbrook, W.S. (Woods Hole Oceanographic Institution, MA (USA)); Catchings, R.D. (U.S. Geological Survey, Menlo Park, CA (USA)); Jarchow, C.M. (Stanford Univ., CA (USA))

    1991-02-01

    The authors compare seismic refraction and reflection results along the PASSCAL/COCORP 40{degree}N transect in the northern Basin and Range of Nevada in order to determine the origin of the prominent reflections from the deep crystalline crust. Reflection data along the transect show a thick zone of discontinuous, subhorizontal reflections, beginning at 4-6 s two-way traveltime (10-20 km depth) and ending at 9-11 s (27-35 km). Two independently derived velocity models, based on refraction data, are largely similar and agree on many important aspects of the reflectivity-velocity relation. Both models show that the top of the reflective zone lies 3-8 km above a prominent mid-crustal velocity discontinuity, which is interpreted to separate bulk silicic from bulk dioritic-gabbroic crust; in most places, the silicic mid-crust is more strongly reflective than the mafic lower crust. This pattern is expected in areas where ductile shearing is the mechanism responsible for the reflectivity. One of the velocity models, however, suggests that, in places, the strongest reflectivity spans both the middle (6.1-6.3 km/s) and lower (6.6 km/s) crust; this pattern suggests that the combined influence of ductile strain fabrics and mafic intrusions gives rise to crustal reflections. Both models show that the lowermost crust and crust/mantle transition are highly reflective, also suggesting the presence of mafic and/or ultramafic intrusions. Thus the observed reflection patterns suggest that ductile shearing and the intrusion of mantle-derived magma - both of which are likely to have accompanied the extreme Cenozoic extension - are important factors in generating deep crustal reflections.

  14. Deep River, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Deep River, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3856546, -72.4356422 Show Map Loading map... "minzoom":false,"mappi...

  15. Deep River Center, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Deep River Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3729131, -72.4435674 Show Map Loading map......

  16. Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSRC Workshop 2015 Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics in Materials Imaging Home Announcement Meeting REGISTRATION Call for Abstracts Abstract Submission...

  17. NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a deep learning library to analyze recordings of the human brain during speech production. ... Theano to analyze recordings of the human brain during speech production. "The fundamental ...

  18. Analysis Procedure And Equipment For Deep Geoelectrical Soundings...

    Open Energy Info (EERE)

    A brief description is given of a digital geoelectrical acquisition data system and of some examples of data filtering relative to a deep dipole-dipole sounding...

  19. Iodine Sorbent Performance in FY 2012 Deep Bed Tests (Technical...

    Office of Scientific and Technical Information (OSTI)

    Deep-bed iodine sorption tests for both silver-functionalized Aerogel and silver zeolite sorbents were performed during Fiscal Year 2012. These tests showed that: * Decontamination ...

  20. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Broader source: Energy.gov (indexed) [DOE]

    May 27, 2015 EA-1943: Draft Environmental Assessment Long Baseline Neutrino FacilityDeep Underground Neutrino Experiment (LBNFDUNE) at Fermilab, Batavia, Illinois and the...

  1. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big, Deep, and Smart Data in Energy Materials Research: Atomic View on Materials Functionalities Event Sponsor: Computing, Environment, and Life Sciences Seminar Start Date: Sep 22...

  2. Deep Geothermal Reservoir Temperatures in the Eastern Snake River...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry Citation Details In-Document Search Title: Deep Geothermal Reservoir ...

  3. MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information

    Open Energy Info (EERE)

    Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal...

  4. Building America Webinar: Who's Successfully Doing Deep Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Who's Successfully Doing Deep Energy Retrofits? The webinar on June 25, 2014, focused on specific Building America projects that highlighted real-world ...

  5. MHK Technologies/Deep Ocean Water Application Facility DOWAF...

    Open Energy Info (EERE)

    the temperature differential between the warm surface and the cold deep seawater The OTEC heat engine converts the thermal energy into usable mechanical energy which in turn is...

  6. CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits - 2015 Peer Review Presenter: Rudy Terry, Philadelphia Industrial Development Corp. View the Presentation PDF icon ...

  7. Application Of Electrical Resistivity And Gravimetry In Deep...

    Open Energy Info (EERE)

    Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Electrical...

  8. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel...

    Office of Scientific and Technical Information (OSTI)

    Title: Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Nuclear fission ... Subject: 12 MGMT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES ...

  9. Whole-House Solutions Case Study: Sunnyvale Marine Climate Deep...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-House Solutions Case Study: Sunnyvale Marine Climate Deep Retrofit The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated ...

  10. Using Cloud-Resolving Model Simulations of Deep Convection to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so extending them to a global model with many different environments is not straightforward. For example, deep convection creates abundant cloudiness and yet little is known...

  11. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Development and Demonstration Roadmap for Deep Borehole Disposal. Arnold, Bill W.; MacKinnon, Robert J.; Brady, Patrick V. Abstract Not Provided Sandia National Laboratories USDOE...

  12. Deep Geothermal Reservoir Temperatures in the Eastern Snake River...

    Office of Scientific and Technical Information (OSTI)

    ESRP. Masking much of the deep thermal potential of the ... apply the RTEst model to water compositions measured from ... on Geothermal Reservoir Engineering,Stanford,02242014,02...

  13. National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Grid Deep Energy Retrofit Pilot Massachusetts and ... America program is engineering the American home for ... LIGHTING, APPLIANCES, AND WATER HEATING * 100% CFL or ...

  14. Building America Webinar: Introduction- Who's Successfully Doing Deep Energy Retrofits?

    Broader source: Energy.gov [DOE]

    This presentation provides the introduction for the Building America webinar, Who's Successfully Doing Deep Energy Retrofits, presented on June 25, 2014.

  15. Analysis of offsite emergency planning zones project

    SciTech Connect (OSTI)

    Petrocchi, A.J.; Armstrong, C.E. . Rocky Flats Plant); McKinney, J.M.; Verholek, M.G.; Fraser, P.J.; Dalfonso, P.H. )

    1991-07-18

    The Rocky Flats Plant maintains and uses significant nonradioactive chemically hazardous material (HAZMAT) inventories. Some of these materials are used in sufficient quantities to represent a credible risk to the offsite public in the event of an emergency at the facility. In Phase 2 of this project, the EG G Rocky Flats, Inc. and TENERA, L.P. Task Team (Task Team) produced an initial screening-level modeling analysis study and an Emergency Planning Zone (EPZ) encompassing the Vulnerable Zones (VZs) for hazardous materials stored at the facility. The screening-level analysis will be supplemented with more refined evaluations during subsequent phases of the project. The existence of these chemicals in the Rocky Flats Plant Occupational Health Information System (OHIS) chemical inventory database was verified. All liquid and gaseous chemicals were considered as potential hazardous material source terms for further screening analysis. Hazards associated with solid substances were not considered in this phase of the project. 2 figs., 13 tabs.

  16. Diesel particulate filter with zoned resistive heater

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  17. Rural Productivity Zones (RPZs) for microenterprises

    SciTech Connect (OSTI)

    Hansen, R.D.

    1997-12-01

    In this paper the authors discuss the concept of rural productivity zones (RPZs) which are defined as a business incubator to foster income-producing opportunities for the rural poor. The essential ingredients of such a program include: electric power; business development assistance; office services; and quality work space. The electric power source must be a good quality system, consisting of a diesel/wind/photovoltaic hybrid type system, providing reliable service, with a local maintenance program and a functional load management program.

  18. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  19. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D'Silva, Arthur

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  20. Baroclinic instability in stellar radiation zones

    SciTech Connect (OSTI)

    Kitchatinov, L. L.

    2014-03-20

    Surfaces of constant pressure and constant density do not coincide in differentially rotating stars. Stellar radiation zones with baroclinic stratification can be unstable. Instabilities in radiation zones are of crucial importance for angular momentum transport, mixing of chemical species, and, possibly, for magnetic field generation. This paper performs linear analysis of baroclinic instability in differentially rotating stars. Linear stability equations are formulated for differential rotation of arbitrary shape and then solved numerically for rotation nonuniform in radius. As the differential rotation increases, r- and g-modes of initially stable global oscillations transform smoothly into growing modes of baroclinic instability. The instability can therefore be interpreted as stability loss to r- and g-modes excitation. Regions of stellar parameters where r- or g-modes are preferentially excited are defined. Baroclinic instability onsets at a very small differential rotation of below 1%. The characteristic time of instability growth is about 1000 rotation periods. Growing disturbances possess kinetic helicity. Magnetic field generation by the turbulence resulting from baroclinic instability in differentially rotating radiation zones is therefore possible.

  1. Gulf of California Rift Zone Geothermal Region | Open Energy...

    Open Energy Info (EERE)

    Projects (0) Techniques (0) Map: Name The Gulf of California rift zone is a complex transition zone between the dextral (right-lateral) motion of the San Andreas transform...

  2. Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Name: Evaluation of a Low-Rise Multifamily Retrofit in Boulder, CO Location: ... Applicable Climate Zone(s): Cold, very cold PERFORMANCE DATA Cost of Energy Efficiency Measure ...

  3. Diffusion releases through one and two finite planar zones from...

    Office of Scientific and Technical Information (OSTI)

    When the effective diffusion coefficient in the first zone is several orders of magnitude lower than that in the host rock, then the two-zone geometry can be approximately by a ...

  4. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    SciTech Connect (OSTI)

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  5. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

  6. DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2010 | Department of Energy New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid Seismic Zone Electric Utilities Workshop, held in Memphis, TN, in July 2010 for the electric utilities in the seismic zone was a chance to bring together a diverse set of industry partners to discuss the potential effects of an earthquake in the New Madrid and Wabash Valley

  7. SATURATED ZONE IN-SITU TESTING

    SciTech Connect (OSTI)

    P.W. REIMUS

    2004-11-08

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid

  8. Zoning for Distributed Wind Power - Breaking Down Barriers: Preprint

    SciTech Connect (OSTI)

    Green, J.; Sagrillo, M.

    2005-08-01

    Zoning regulations for the use of small wind turbines vary from state to state and from one local jurisdiction to the next. This paper examines the zoning experiences of small wind turbine owners, options for local actions, and examples of state and federal limited preemption of local zoning authority as a means of promoting the implementation of new technologies.

  9. Focused Crawling of the Deep Web Using Service Class Descriptions

    SciTech Connect (OSTI)

    Rocco, D; Liu, L; Critchlow, T

    2004-06-21

    Dynamic Web data sources--sometimes known collectively as the Deep Web--increase the utility of the Web by providing intuitive access to data repositories anywhere that Web access is available. Deep Web services provide access to real-time information, like entertainment event listings, or present a Web interface to large databases or other data repositories. Recent studies suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, yet dynamic content is often ignored by existing search engine indexers owing to the technical challenges that arise when attempting to search the Deep Web. To address these challenges, we present DynaBot, a service-centric crawler for discovering and clustering Deep Web sources offering dynamic content. DynaBot has three unique characteristics. First, DynaBot utilizes a service class model of the Web implemented through the construction of service class descriptions (SCDs). Second, DynaBot employs a modular, self-tuning system architecture for focused crawling of the DeepWeb using service class descriptions. Third, DynaBot incorporates methods and algorithms for efficient probing of the Deep Web and for discovering and clustering Deep Web sources and services through SCD-based service matching analysis. Our experimental results demonstrate the effectiveness of the service class discovery, probing, and matching algorithms and suggest techniques for efficiently managing service discovery in the face of the immense scale of the Deep Web.

  10. Deep seismic reflection study of a passive margin, southeatern Gulf of Guinea

    SciTech Connect (OSTI)

    Rosendahl, B.R.; Groschel-Becker, H.; Meyers, J.; Kaczmarick, K. )

    1991-04-01

    A large grid of deep-imaging, marine seismic reflection data has been acquired in the Gulf of Guinea. The data show that the architecture of old Atlantic igneous crust and upper mantle is highly variable, particularly if reflection Moho is taken to be the base of the crust. Most abrupt changes in oceanic basement thickness and depth to Moho can be correlated with fracture-zone crossings, but significant variations can occur between fracture zones and along flow lines, especially near the ocean-continent transition. Reflection Moho is usually continuous from ocean to continent and does not display any systematic changes in character, continuity, or reflection time even beneath the innermost shelf areas. There are several varieties of intracrustal reflectors, including those that mark different levels within the oceanic gabbroic complex and events that diagonally link the top of oceanic seismic layer 2 and Moho. Different types of sub-Moho dipping reflections also are observed. Some are associated with fracture zones, some originate within continental crust and dip toward the ocean, dissecting Moho without offsetting it, and still others originate at the oceanic Moho and dip toward the continent. The transition from oceanic to continental crust is generally quite sharp north of lat 1{degree}S, but the exact nature of the transition ranges from rift-block geology to abrupt juxtapositions of oceanic and continental crustal rocks. South of about lat 1{degree}S, the transition to continental crust is more gradual, involving a progressive thickening of oceanic crust toward land. This difference may relate to the occurrence of much more oblique initial rifting north of 1{degree}S.

  11. Adams County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  12. Anderson County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Anderson County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  13. Workshop to develop deep-life continental scientific drilling projects

    SciTech Connect (OSTI)

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; Kallmeyer, J.; Kiel Reese, B.; Lin, L.-H.; Long, P. E.; Moser, D. P.; Mills, H.; Sar, P.; Schulze-Makuch, D.; Stan-Lotter, H.; Wagner, D.; Wang, P.-L.; Westall, F.; Wilkins, M. J.

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP

  14. Workshop to develop deep-life continental scientific drilling projects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; et al

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore » a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP

  15. PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES

    SciTech Connect (OSTI)

    Morrison, Sarah; Malhotra, Renu

    2015-01-20

    We investigate the orbital evolution of particles in a planet's chaotic zone to determine their final destinations and their timescales of clearing. There are four possible final states of chaotic particles: collision with the planet, collision with the star, escape, or bounded but non-collision orbits. In our investigations, within the framework of the planar circular restricted three body problem for planet-star mass ratio μ in the range 10{sup –9} to 10{sup –1.5}, we find no particles hitting the star. The relative frequencies of escape and collision with the planet are not scale-free, as they depend upon the size of the planet. For planet radius R{sub p} ≥ 0.001 R{sub H} where R{sub H} is the planet's Hill radius, we find that most chaotic zone particles collide with the planet for μ ≲ 10{sup –5}; particle scattering to large distances is significant only for higher mass planets. For fixed ratio R{sub p} /R{sub H} , the particle clearing timescale, T {sub cl}, has a broken power-law dependence on μ. A shallower power law, T {sub cl} ∼ μ{sup –1/3}, prevails at small μ where particles are cleared primarily by collisions with the planet; a steeper power law, T {sub cl} ∼ μ{sup –3/2}, prevails at larger μ where scattering dominates the particle loss. In the limit of vanishing planet radius, we find T {sub cl} ≈ 0.024 μ{sup –3/2}. The interior and exterior boundaries of the annular zone in which chaotic particles are cleared are increasingly asymmetric about the planet's orbit for larger planet masses; the inner boundary coincides well with the classical first order resonance overlap zone, Δa {sub cl,} {sub int} ≅ 1.2 μ{sup 0.28} a{sub p} ; the outer boundary is better described by Δa {sub cl,} {sub ext} ≅ 1.7 μ{sup 0.31} a{sub p} , where a{sub p} is the planet-star separation.

  16. Modeling Deep Burn TRISO Particle Nuclear Fuel

    SciTech Connect (OSTI)

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  17. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect (OSTI)

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  18. NaturAnalogs for the Unsaturated Zone

    SciTech Connect (OSTI)

    A. Simmons; A. Unger; M. Murrell

    2000-03-08

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.

  19. Double patterning HSQ processes of zone plates for 10 nm diffraction...

    Office of Scientific and Technical Information (OSTI)

    ... Using the new process, we successfully realized zone plates of 10 nm and 12 nm outermost zones. Fig. 3 shows the SEM micrographs of the zone plates outer regions. The zone plates ...

  20. Anderson County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number...

  1. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsDeep Convective Clouds and Chemistry Campaign Links DC3 Experiment Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Deep Convective Clouds and Chemistry 2012.05.01 - 2012.06.30 Lead Scientist : Christopher Cantrell Abstract The Deep Convective Clouds and Chemistry (DC3) sought to understand the influence of convection on the upper troposphere which will lead to better understanding of radiative forcing and chemical

  2. Deep Well #4 Backup Power Systems Project Closeout Report

    SciTech Connect (OSTI)

    Jeremy Westwood

    2010-04-01

    The project scope was to install a diesel generated power source to deep well 4 in addition to the existing commercial power source. The diesel power source and its fuel supply system shall be seismically qualified to withstand a Performance Category 4 (PC-4) seismic event. This diesel power source will permit the deep well to operate during a loss of commercial power. System design will incorporate the ability to select and transfer power between the new diesel power source and commercial power sources for the the deep well motor and TRA-672 building loads.

  3. http://www.hanford.gov/boards/hab/response/054.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    54 From: John D. Wagoner Ms. Merilyn B. Reeves, Chair Hanford Advisory Board 723 The Parkway, Suite 200 Richland, Washington 99352 March 3, 1998 Dear Merilyn Reeves: HANFORD ADVISORY BOARD (HAB) ADVICE ON TANK WASTE REMEDIATION SYSTEM (TWRS) VADOSE ZONE In response to your letter to me, "TWRS Vadose Zone Characterization," dated December 5, 1997, HAB Consensus Advice #83, on Vadose Zone Characterization needed to support the overall mission of the TWRS Program, the U. S. Department of

  4. http://www.hanford.gov/boards/hab/response/083.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 From: John D. Wagoner Ms. Merilyn B. Reeves, Chair Hanford Advisory Board 723 The Parkway, Suite 200 Richland, Washington 99352 March 3, 1998 Dear Merilyn Reeves: HANFORD ADVISORY BOARD (HAB) ADVICE ON TANK WASTE REMEDIATION SYSTEM (TWRS) VADOSE ZONE In response to your letter to me, "TWRS Vadose Zone Characterization," dated December 5, 1997, HAB Consensus Advice #83, on Vadose Zone Characterization needed to support the overall mission of the TWRS Program, the U. S. Department of

  5. Deep Water Drilling to Catalyze the Global Drilling Fluids Market...

    Open Energy Info (EERE)

    Deep Water Drilling to Catalyze the Global Drilling Fluids Market Home > Groups > Renewable Energy RFPs John55364's picture Submitted by John55364(100) Contributor 13 May, 2015 -...

  6. Building America Webinar: Deep Energy Retrofit Case Studies:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation by Alea German is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. PDF icon BA Webinargerman6-25-14....

  7. E-print Network : Main View : Deep Federated Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    javascript. Home About Contact Us Help E-print Network Search Powered By Deep Web Technologies New Search Preferences E-print Network E-print Network Skip to main content FAQ *...

  8. DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING...

    Office of Scientific and Technical Information (OSTI)

    We report the discovery of an eclipsing cataclysmic variable with eclipse depths >5.7 mag, ... The optical light curves show a deep, 5-minute eclipse immediately followed by a shallow ...

  9. Deep Web Video, Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    Deep Web Video Download latest version of Flash Player exit federal site to view Video. ... To support the needs of web patrons, OSTI has developed state-of-the-art technologies and ...

  10. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema (OSTI)

    None

    2010-01-08

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  11. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect (OSTI)

    2009-03-31

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  12. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect (OSTI)

    2009-01-01

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  13. Nitrogen is a deep acceptor in ZnO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  14. OSTIblog Articles in the deep web technologies Topic | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    Recently, I pointed out that OSTI has been on the forefront of the development of federated search for over a decade. During that time, working in close partnership with Deep Web ...

  15. Deep drilling data Raft River geothermal area, Idaho | Open Energy...

    Open Energy Info (EERE)

    data Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data Raft River geothermal area, Idaho Abstract...

  16. ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND RECOMMENDATIONS 2014 ULTRA-DEEPWATER ADVISORY COMMITTEE COMMITTEE FINDINGS AND RECOMMENDATIONS i Table of Contents Research and Development Program Committee ............................................ 1 Sunset Committee .................................................................................................. 5 Advisory Committee Members ........................................................................... 7 ULTRA-DEEPWATER

  17. Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere

    SciTech Connect (OSTI)

    Wilkins, Michael J.; Daly, Rebecca; Mouser, Paula J.; Trexler, Ryan; Sharma, Shihka; Cole, David R.; Wrighton, Kelly C.; Biddle , Jennifer F.; Denis, Elizabeth; Fredrickson, Jim K.; Kieft, Thomas L.; Onstott, T. C.; Peterson, Lee; Pfiffner, Susan M.; Phelps, Tommy J.; Schrenk, Matthew O.

    2014-09-12

    Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on “Trends and Future Challenges in Sampling The Deep Subsurface” was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation’s Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

  18. SITE-SCALE SATURATED ZONE TRANSPORT

    SciTech Connect (OSTI)

    S. KELLER

    2004-11-03

    This work provides a site-scale transport model for calculating radionuclide transport in the saturated zone (SZ) at Yucca Mountain, for use in the abstractions model in support of ''Total System Performance Assessment for License Application'' (TSPA-LA). The purpose of this model report is to provide documentation for the components of the site-scale SZ transport model in accordance with administrative procedure AP-SIII.10Q, Models. The initial documentation of this model report was conducted under the ''Technical Work Plan For: Saturated Zone Flow and Transport Modeling and Testing'' (BSC 2003 [DIRS 163965]). The model report has been revised in accordance with the ''Technical Work Plan For: Natural System--Saturated Zone Analysis and Model Report Integration'', Section 2.1.1.4 (BSC 2004 [DIRS 171421]) to incorporate Regulatory Integration Team comments. All activities listed in the technical work plan that are appropriate to the transport model are documented in this report and are described in Section 2.1.1.4 (BSC 2004 [DIRS 171421]). This report documents: (1) the advection-dispersion transport model including matrix diffusion (Sections 6.3 and 6.4); (2) a description and validation of the transport model (Sections 6.3 and 7); (3) the numerical methods for simulating radionuclide transport (Section 6.4); (4) the parameters (sorption coefficient, Kd ) and their uncertainty distributions used for modeling radionuclide sorption (Appendices A and C); (5) the parameters used for modeling colloid-facilitated radionuclide transport (Table 4-1, Section 6.4.2.6, and Appendix B); and (6) alternative conceptual models and their dispositions (Section 6.6). The intended use of this model is to simulate transport in saturated fractured porous rock (double porosity) and alluvium. The particle-tracking method of simulating radionuclide transport is incorporated in the finite-volume heat and mass transfer numerical analysis (FEHM) computer code, (FEHM V2.20, STN: 10086

  19. Near-field/altered-zone models report

    SciTech Connect (OSTI)

    Hardin, E. L., LLNL

    1998-03-01

    The U.S. Department of Energy is studying Yucca Mountain as the possible site for the first underground repository for permanent disposal of spent fuel from commercial nuclear reactors as well as for other types high-level nuclear waste. Emplacement of high-level radioactive waste, especially commercial spent nuclear fuel (CSNF), in Yucca Mountain will release a large amount of heat into the rock above and below the repository. The heating rate will decrease with time, creating a thermal pulse. Over a period of several thousand years, the rock temperature will rise initially, then drop when the production of decay heat falls below the rate at which heat escapes from the hot zone. Besides raising the rock temperature, much of this heat will vaporize water, which will then condense in cooler regions. The condensate is likely to form a gravity-driven heat pipe above the repository, creating the possibility that water may drain back onto the waste packages (WPs) or that it may ''shed'' through the pillars between emplacement drifts. The long-term importance of these effects has been investigated through the development, testing, and application of thermohydrologic (TH) models. Other effects, such coupled chemical and mechanical processes, may also influence the movement of water above, within, and below the emplacement drifts. A recent report on thermally driven coupled processes (Hardin and Chesnut, 1997) provides a qualitative assessment of the probable significance of these processes for the Yucca Mountain Site Characterization Project (YMSCP) and is the phenomenological framework for the present report. This report describes the conceptual and numerical models that have been developed to predict the thermal, mechanical, hydrologic, and chemical responses to the cumulative heat production of the potential host rock at Yucca Mountain. As proposed, the repository horizon will be situated within the Topopah Spring tuff, in the adjacent middle nonlithophysal and lower

  20. Application of water-base mud in deep well drilling

    SciTech Connect (OSTI)

    Li, Y.; Qian, F.; Lo, P.

    1982-01-01

    This paper reports the results of laboratory research and field practice on the application of temperature resistant water-base muds for deep drilling in Sichuan Province, China. The major problems discussed include mud stability; adjustment and control of mud properties under high temperatures and pressures; the effect of pH on the properties of mud systems. Some means of solving these and other problems involved in deep well drilling are proposed.

  1. Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Fluids | Department of Energy Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics logo Halotechnics, under the Thermal Storage FOA, is conducting high-throughput, combinatorial research and development of salt formulations for use as highly efficient heat transfer fluids (HTFs). Approach Robotic high-throughput screening methods typically used in the

  2. Assessing 116 Deep Retrofits Across the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASSESSING 116 DEEP RETROFITS ACROSS THE U.S. By: Brennan Less & Iain Walker, LBNL, Residential Building Systems ACI National Home Performance Conference, Detroit, MI, 04/30/2014 Defining a Deep Energy Retrofit- Variable and Flexible 2  Comprehensive upgrades to the building enclosure, heating, cooling and hot water equipment.  Often incorporates appliance and lighting upgrades, plug load reductions, renewable energy and occupant conservation. % Reduction >50% Absolute Reduction

  3. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Citation Details In-Document Search Title: Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I129, due to its radioactivity, high

  4. Parameterizing deep convection using the assumed probability density function method

    SciTech Connect (OSTI)

    Storer, R. L.; Griffin, B. M.; Hoft, Jan; Weber, J. K.; Raut, E.; Larson, Vincent E.; Wang, Minghuai; Rasch, Philip J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.

  5. Parameterizing deep convection using the assumed probability density function method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  6. Parameterizing deep convection using the assumed probability density function method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2014-06-11

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  7. Parameterizing deep convection using the assumed probability density function method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storer, R. L.; Griffin, B. M.; Hft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.moreThe same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.less

  8. Tank Farm Area Cleanup Decision-Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

  9. Geophysical monitoring of foam used to deliver remediation treatments...

    Office of Scientific and Technical Information (OSTI)

    Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone Citation Details In-Document Search Title: Geophysical monitoring of foam used to ...

  10. Influence of alkaline co-contaminants on technetium mobility...

    Office of Scientific and Technical Information (OSTI)

    Influence of alkaline co-contaminants on technetium mobility in vadose zone sediments Citation Details In-Document Search Title: Influence of alkaline co-contaminants on technetium ...

  11. December 12, 2013 Webinar - The Use of Graded Approach in Hanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 12, 2013 Webinar - The Use of Graded Approach in Hanford Vadose Zone Modeling Alaa H. Aly (CHPRCINTERA) & Dibakar Goswami ( Washington State Department of Ecology) ...

  12. Recent SREL Reprints

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... translocations: Apparent advantage of prior residence. ... Dichristina. 2010. Outer Membrane-Associated Serine ... sampling in the vadose zone utilizing real-time data. ...

  13. Site Specific Single Shell Tank (SST) phase 1 RFI and CMS Work Plan Addendum for Waste Management B-BX-BY

    SciTech Connect (OSTI)

    ROGERS, P.M.

    2000-05-19

    This site-specific work plan addendum for WMA B-BX-BY addresses vadose zone characterization plans for collecting and analyzing sediment samples.

  14. Geodetic Survey At Central Nevada Seismic Zone Region (Laney...

    Open Energy Info (EERE)

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Central Nevada Seismic Zone Region (Laney, 2005) Exploration...

  15. Geodetic Survey At Walker-Lane Transitional Zone Region (Laney...

    Open Energy Info (EERE)

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration...

  16. Tectonic analysis of the Rio Grande Rift Zone, central Colorado...

    Open Energy Info (EERE)

    Rift Zone, central ColoradoThesisDissertation Abstract Abstract unavailable. Author D.H. Knepper Organization Colorado School of Mines Published Publisher Not Provided, 1974...

  17. Modeling-Computer Simulations At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration...

  18. Modeling-Computer Simulations At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration...

  19. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration...

  20. Modeling-Computer Simulations At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Exploration...